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Abstract

We performed three types first-principles calculations and compared the

results with experimental facts. in order to get policies for designing the

phonon-mediated superconductor with high critical temperature.

First, we simulated the critical temperature of already-known supercon-

ductors, CaSi2 and phosphorus, under higher pressure. The CaSi2 trans-

formed from the trigonal structure to the AlB2 structure at 17 GPa. After

the transition, the critical temperature increases because atomic oscillation

direction of E2g phonon mode is parallel to the covalent bonding direction

of silicons. As for the phosphorus, the critical temperature of modulated

structure is lower than that of simple cubic and simple hexagonal structures,

because the density of states at Fermi level is reduced by the modulation.

Second, we simulated the critical temperature of NaFeAs, NaCoAs and

NaNiAs. NaFeAs has been found as FeAs superconductor. NaCoAs and

NaNiAs are virtual materials in which Fe atoms of NaFeAs are substituted

by Co or Ni. We simulated the critical temperature of three materials and

determined NaFeAs is not phonon-mediated superconductor because the cal-

culated Tc = 0.034K is lower than experimental data Tc = 12K. The NaNiAs

has the largest electron-phonon interaction and the highest Tc, because some

phonon modes expand and contract the covalent bondings of Ni and As. As

for the NaFeAs and the NaCoAs, these modes do not have strong interaction

because they have non-covalent bonding bands at Fermi level.

Third, we simulated the property of CuAlO2 under higher pressure or with

doped. The superconductivity of CuAlO2 has not been observed, while this

is already known as semiconductor. At Pc = 60 GPa, the CuAlO2 transforms

from the delafossite structure to the leaning delafossite structure. The energy

gap rises and falls in both structure phases. The metalization is not observed
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under 100 GPa. The Self-interaction correction remove the discrepancy of the

energy gap between experimental data and the results calculated within local

density approximation. The 0.2 ∼ 0.3 hole-doped CuAlO2 has relatively high

Tc ≃ 40 K because the atomic oscillation direction of A1L1 phonon mode is

parallel to th direction of O-Cu-O covalent bondings. Doped over 0.6 hole, the

critical temperature decreases to about 10K because the electrons strongly

interacting with A1L1 mode phonon are removed.

From these results, we got two policies for designing the high Tc phonon-

mediated superconductor: 1)The direction of covalent bonding is parallel

to that the atomic oscillation direction of some phonon mode, and 2)The

covalent bonding bands locate at Fermi level.
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Chapter 1

Introduction

Designing new materials is a big issue among the theoretical study. It requires

the reliable theory which is able to reproduce the experimental facts. As

for phonon-mediated superconductors, the strong coupling theory enables us

to quantitatively calculate the superconducting critical temperature. This

explain the superconductivity of pure substances, A15 structure materials,

MgB2 and so on. In this thesis, we study the several materials by using the

strong coupling theory and would like to understand what determines the

critical temperature Tc of the phonon-mediated superconductors.

First, the targets are CaSi2 and phosphorus. These are already-known

pressure-induced superconductor. We predicted the crystal structure and the

critical temperature in pressure range where these materials have not been

researched in theoretical study.

Second, the targets are NaFeAs, NaCoAs and NaNiAs. NaFeAs has been

found as FeAs superconductor while NaCoAs and NaNiAs have not been

found as the real materials. We simulated the critical temperature of three

materials and discussed the difference in their electronic structures and su-

perconducting properties.
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Third, the target is CuAlO2. This is already known as semiconductor. It

has not been observed that CuAlO2 shows the superconductivity. We calcu-

lated the property of pressured and doped CuAlO2 and discussed whether it

can be high Tc superconductor.

Finally, we concluded the policy for designing the high Tc phonon-mediated

superconductor.
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Chapter 2

CaSi2

2.1 Introduction

At the ambient pressure. calcium di-silicide, CaSi2, has a rhombohedral crys-

tal structure. In this structure, CaSi2 is a semimetal and not a superconduc-

tor down to 0.03K.[1] At about 10 GPa, the rhombohedral CaSi2 transforms

into a trigonal structure.[2] The trigonal structure has corrugated honeycomb

Si networks. Between two Si networks, Ca atoms are intercalated, forming a

triangular lattice plane. Each Ca atom locates just above the center of one

corrugated hexagon of Si atoms. In this structure, CaSi2 is a superconductor

with the critical temperature Tc ≃ 3 K.[3] At about 15 GPa, structural phase

transformation takes place and the corrugated Si networks become ”nearly”

flat. If the Si networks is ”perfectly” flat, the crystal structure is AlB2 struc-

ture. Because the Si networks remain corrugated, this structure of CaSi2 is

called the AlB2-like structure.[2] In the AlB2-like structure, Tc increases up

to around 14 K. This temperature is the highest among Si-based compounds.

Here, we note that before these experimental findings, the structural tran-

sition from the trigonal structure to the AlB2 structure has been predicted

9



theoretically.[4]

After MgB2 have been found to be a high-temperature superconductor,[5]

the superconductivity in the AlB2 structure attracted much attention. As for

CaSi2, theoretical studies were done in low-pressure phases.[6, 7] Satta et al.

considered possibility of the AlB2 structure under high pressure and however,

they could not find this structure with fixed cell parameters.[8] The electron-

phonon interaction and the superconducting critical temperature were rarely

estimated theoretically.[9] Thus, CaSi2 has not been studied so often in the

literature compared with MgB2.

The purpose of this study is to clarify stable structures and supercon-

ductivity of CaSi2 under high pressure. Using first-principles calculation,

we optimized the crystal structures and studied electronic band structures,

phonon dispersion and superconducting critical temperatures. Our results

show that CaSi2 transforms to the AlB2 structure and that Tc will increase

after the transition.

2.2 Methods

First-principles calculations were performed within the density functional

theory[10, 11] with a plane-wave pseudopotential method, as implemented

in the Quantum-ESPRESSO code.[12] We used the Perdew-Wang general-

ized gradient approximation exchange-correlation functional[13] and ultra-

soft pseudopotentials.[14] For the pseudopotentials, Ca 3d electrons were

also included in valence electrons. Atomic positions and cell parameters

were optimized by the constant-pressure variable-cell relaxation using the

Parrinello-Rahman method[15] without any symmetry requirements.

We used a 12 × 12 × 12 k-point grid (electron) and a 4 × 4 × 4 q-point
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grid (phonon) in the Monkhorst-Pack grid.[16] The energy cut-off for the

wave functions is 16Ry and that for the charge density is 64Ry. Though

these values may be comparatively small, the accuracy is enough. This is

confirmed by the calculations with larger energy cut-offs of 40Ry and 160Ry,

resulting in ”almost the same” optimized structure.

We estimated superconducting critical temperature Tc using the strong

coupling theory.[17] The electron-phonon matrix is calculated by the density

functional perturbation theory.[18]

The space-group of the trigonal lattices of CaSi2 is P 3̄m1 (No.164) and

that of AlB2 structure is P6/mmm (No.191). The Wyckoff position of the

calcium atom at the 1a site of P 3̄m1 is given by (0, 0, 0), while those of

two silicon atoms at the 2d sites are (1/3, 2/3, z) and (2/3, 1/3, z̄) with the

internal parameter z. The trigonal structure with z = 0.5 is identical to the

AlB2 structure.

In this study, we consider the pressure range of P = 10 ∼ 20GPa because

superconductivity does not appear below 10GPa.

2.3 Results and Discussion

2.3.1 Structural optimization under high pressure

Fig. 2.1 shows optimized lattice parameters. From 10 to 15GPa, the calcu-

lated lattice parameters agree with experimental data.[2] The relative errors

are less than 2%. Above 17GPa, however, the calculated lattice parameters

disagree with experimental data. Especially, calculated internal parameter z

is 0.5, while in the experiment it does not reach 0.5. Our result shows that

CaSi2 has the AlB2 structure above 17GPa where experiment shows that

CaSi2 has AlB2-like structure.
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Figure 2.1: Pressure dependence of lattice parameters: (a) lattice constant

a, (b) lattice constant c, and (c) internal parameter z. The parameters

are obtained by the structural optimization at each pressure, and they are

represented by open circles. The experimental data[2] is represented by closed

circles.
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This discrepancy is not attributed to the pseudopotential method used

here. We checked results of all electron methods: the full potential linear

muffin tin orbital method and the full potential linearized augmented-plane

wave method. The former is implemented in the packaged code developed

by S. Y. Savrasov and D. Y. Savrasov.[19] The latter is implemented in the

WIEN2k code.[20] By using both methods, we optimized the structure with

constant cell volume. The results indicate that the AlB2 structure is more

stable than the trigonal structure under high pressure. Here, we note that

the pressures obtained by the first-principles calculation could have an error.

For example, the pressures of calcium calculated by the same method as this

study are much lower than experimental data.[21]

To test stability of the AlB2 structure, we checked the phonon frequency in

the whole Brillouin zone. Only real frequencies appear all over the Brillouin

zone as shown later (Fig. 2.6). We expect that the AlB2 structure will be

observed under higher pressure in the experiment.

Fig. 2.2 shows enthalpy of some atomic structures. Each structure is given

by optimizing c/a with fixing z. This figure indicates that CaSi2 abruptly

transforms from the trigonal structure (z = 0.42) to the AlB2 structure

(z = 0.5). In our calculation, CaSi2 does not transform from the trigonal

structure to the AlB2-like structure (z = 0.44).

2.3.2 Electronic band structure

Fig. 2.3(a) and (b) show the band structures of CaSi2 in trigonal and ALB2

structures. An electronic band structure of CaSi2 in the AlB2 structure was

studied in earlier works.[4, 8] There are some differences between the present

result and the earlier one. This is due to whether the lattice parameters are

optimized (this study) or not (earlier one).
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Figure 2.2: Enthalpy of CaSi2 under high pressure. Lattice parameters of

each structures are determined with a fixed z. The enthalpy of AlB2 structure

(z = 0.5) is set to be 0 Ry.

Fig. 2.3 (a) shows the band structure of the trigonal structure. Bands

crossing the Fermi level show Si pz, Ca d and Si pz-Ca d hybridized characters.

Since the Si planes are corrugated, pz bands of Si should rather be called

”π(π∗)-like” band.

Fig. 2.3 (b) shows the band structure of the AlB2 structure. First, we

can observe d-character in some σ∗ bands near the Fermi level. We should

note that for a Ca compound under high pressure Ca d-orbitals often appear

at the Fermi level. For example, appearance of the d character was pointed

out theoretically for CaSi in the CuAu structure and CaSi3 in the CuAu3

structure.[6] Second, the π∗ band lies also near the Fermi level. Comparing

with Fig. 2.3 (a), it looks that the electrons are moved from the σ∗ bands

to π∗ bands. Third, the doubly degenerated p-d hybridized bands at the A

point form the Fermi pockets. Along the A-L symmetry line, one of those

bands becomes almost dispersion-less. The dispersion-less band enhance the

14



-10

-8

-6

-4

-2

 0

 2

 4

AHLAΓKMΓ

E
ne

rg
y 

[e
V

]

(a)

d

π

π* pz-d pz-d

π

π*

-10

-8

-6

-4

-2

 0

 2

 4

AHLAΓKMΓ

E
ne

rg
y 

[e
V

]

(b)

3s

d
π
π*

d 3s σ*-d

σ*

π

π*

-10

-8

-6

-4

-2

0

2

4

Γ M K Γ A L H A

E
ne

rg
y 

[e
V

]

(c)

Figure 2.3: Electronic band structure of the optimized structures of CaSi2 in

(a) the trigonal structure and (b) AlB2 structure. (c) The electronic band

structure of MgB2.
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density of states around the Fermi level as shown below.

Fig. 2.4 shows the pressure dependence of density of states at the Fermi

level. Through the structural transition, the density of states increases, be-

cause in the AlB2 structure the s, d and σ∗-d bands go down to Fermi level

and make electron pockets as shown in Fig. 2.3.
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Figure 2.4: Pressure dependence of the density of states at the Fermi level.

It suddenly increases when the structure transforms to the AlB2 structure.

Here, we compare the electronic band structure of CaSi2 with that of

MgB2 (Fig. 2.3 (c)). These materials in AlB2 structures have both π- and

σ-bands of sp2-hybridized orbitals. The σ bands of MgB2 looks to be partly

hole-doped creating small two-dimensional hole pockets.[22] In CaSi2, on the

other hand, σ bands are fully occupied and a flat σ∗ band lies along the A-L

line around the Fermi level. The MgB2 has only π- and σ-bands. The CaSi2,

however, has additional bands around the Fermi level: Ca 3d bands, Si 3s

band, and σ∗-d hybridized bands.
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2.3.3 Superconducting critical temperature

Fig. 2.5 shows superconducting critical temperature. Our results that through

the structural transition, Tc suddenly increases and reaches to a value one

order of magnitude larger than those in the low pressure phase. In the trig-

onal structure, calculation results are almost one-tenth of the experimental

data,[23] which is about 3 ∼ 4K. This discrepancy may be due to utilization

of an isotropic approximation in the Eliashberg theory (See Appendix).
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Figure 2.5: Pressure dependence of Tc. From 10 to 17GPa, CaSi2 has the

trigonal structure with the corrugated silicon network and above 17GPa, it

transforms to the AlB2 structure with the perfectly flat silicon network.

Let us discuss why Tc increases after the structural transition. According

to the Allen-Dynes modified McMillan’s formula,[24, 25] Tc is given by three

factors: the electron-phonon interaction λ, the logarithmic averaged phonon

frequency ωlog, and the screened Coulomb interaction µ∗, in the following

form.

Tc =
ωlog

1.2
exp

(

− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)

. (2.1)
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Here λ and ωlog are obtained by the density functional perturbation theory.

As for µ∗, we assume the value µ∗ ∼0.1. This value holds for weak correlated

systems. In this study, the critical temperature is determined by λ and ωlog.

The table 2.1 shows λ and ωlog. While ωlog decreases about 10%, λ increases

about 50%. Therefore, the increase of λ leads to the increase of Tc.

structure λ ωlog[K]

trigonal(10GPa) 0.27 300

AlB2 (20GPa) 0.41 280

Table 2.1: Electron-phonon interaction λ and logarithmic averaged phonon

frequencies ωlog.

Here, we analyze the electron-phonon interaction. The parameter λ is

given explicitly as follows.

λ ≡ 2
∫ ∞

0
dω
α2F (ω)

ω
, (2.2)

using the Eliashberg function α2F (ω),

α2F (ω) =
N(0)

∑

kνq |Mνq
k,k+q|2δ(ω − ωνq)δ(εk)δ(εk+q)
∑

kq δ(εk)δ(εk+q)
. (2.3)

Here, N(0) is electronic density of states with a single spin component at the

Fermi level, which is set to be 0. ωνq and εk are phonon and electron energies.

Mνq
k,k+q is the electron-phonon matrix elements. For the mode analysis, we

introduce partial electron-phonon interaction λνq so that λ =
∑

νq λνq. It is

defined by the following form.

λνq =
2N(0)

∑

k |Mνq
k,k+q|2δ(εk)δ(εk+q)

ωνq
∑

kq′ δ(εk)δ(εk+q′)
. (2.4)
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Using λνq we find the most influential phonon mode for the supercon-

ductivity and Tc. In Fig. 2.6, the magnitude of λνq is represented by radius

of circle on each phonon dispersion. This figure indicates that, in the AlB2

structure, the highest mode at the Γ point is effective. This mode is the E2g

mode. In this mode, the neighboring silicon atoms oscillate in the anti-phase

within a Si plane. This feature is the same as that observed in MgB2.[26]

The E2g mode is a key of the high-temperature superconductivity of MgB2.

In addition, we see another effective mode in the AlB2 structure. This

mode is the B1g mode. In this mode, the neighboring silicon atoms oscillate

in the anti-phase perpendicularly to a Si plane. This displacement makes the

Si plane corrugated. Frequencies of B1g are softened around the Γ point. Due

to the softening, λνq has a large value. However, the softening may reduce

ωlog given by

ωlog = exp

(

2

λ

∫ ∞

0
dω
α2F (ω)

ω
logω

)

, (2.5)

and does not necessarily work to increase the critical temperature as ex-

emplified in iodine.[27] In the case of CaSi2, the AlB2 structure has higher

frequency optical branches than the trigonal structure. As a result, ωlog and

Tc are not decreased by the phonon softening. This means that both B1g and

E2g phonon modes contribute to enhancement of electron-phonon interaction

and superconducting critical temperature.

2.4 Summary

In this chapter, we optimized the crystal structure of CaSi2 under high pres-

sure by using first-principles calculations. Our results show that AlB2 struc-

ture is stable above 17GPa. The density of states at the Fermi level in

the AlB2 structure is higher than that in the trigonal structure. After the
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CaSi2 in (a) an optimized trigonal structure (10 GPa) and (b) an optimized
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text.
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transition, E2g and B1g phonon modes have a strong interaction with elec-

trons because corrugated Si network becomes flat. High frequencies of the

E2g mode phonon prevent decrease of ωlog and Tc by B1g phonon softening.

These findings suggest that the AlB2 structure has higher Tc than the trigonal

structure.
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Chapter 3

Phosphorus

3.1 Introduction

Phosphorus has a A17 structure (phase I) at the ambient pressure. The A17

structure transforms to the A7 structure (phase II) at 4.5GPa. The A7 phos-

phorus transtorms to simple cubic structure (phase III) at 10GPa. In this

structure, phosphorus shows the superconductivity. The critical temperature

Tc has a maximum of 9.5K at 32GPa. and decreases to 4.3K at 100GPa.[28]

Akahama et al. reported that through an intermadiate structure (phase IV),

a simple cubic phosphorus transforms to a simple hexagonal structure (phase

V) at 137GPa.[29] Under higher pressures, the body centered cubic struc-

ture (phase VI) has been theoretically predicted[30] and later experimentally

observed at 262GPa.[31] At this time, the crystal structure of IVphase, how-

ever, was not identified experimentally. Ordinary the Rietveld analysis based

on a knowledge of the monoclinic symmetry was not successfull, presumably

owing to he complexity of the lattice.

To determine the structure of IVphase, many theoretical studies have

been reported. Ahuja considered a structure of space group Imma.[32] Ehelrs
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and Christensen investigated relative stability of the Ba-IV structure which

is an incommensurate composite structure against sc and sh.[33] The calcu-

lated x-ray diffraction patterns of these structures, however, disagree with

the experimental pattern of IVphase. In 2005 Ishikawa et al. explored the

structure of IVphase by the first-principle metadynamics simulation and pre-

dicted another candidate structure which has the incommensurately modu-

lated structure.[34] The calculated diffraction pattern of the modulated struc-

ture matches the experimental pattern.

Recently Fujihisa et al. has experimentally determined the structure of

IVphase by a Rietveld analysis.[35] The structure if the incommensurately

modulated structure along c axis with a monoclinic distortion γ = 97.8◦.

They also reported that the modulation wave vector along c axis is 0.268

at 113GPa and it decreases to 0.266 at 137GPa. This structure is almost

identical to Ishikawa’s theoretically predicted structure.

As shown above, theoretical and experimental studies showed that I

Vphase structure is modulated structure. Superconducting properties in this

structure, however, has not been studied well theoretically and experimen-

tally. In this study, we have simulated superconducting critical temperature

in the modulated structure by using first-principles calculation.

3.2 Methods

The crystal structure of IVphase is incommensurate modulated structure.

It belongs to the superspace group Cmmm(00γ)s00 with γ = 0.2673(1/γ =

3.741) at 125GPa.[35] It needs a large supercell to deal with the incommensu-

rate structure exactly by using first-principles calculation. We approximated

the incommensurate structure by commensurate one with 1/γ = 4. Fig. 3.1
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shows the approximated structure. Atomic positions of the approximated

structure in crystal coordinate are following; (0, 0, 0), (0, 0, 1/2), (y, y, 1/4),

and (−y,−y, 3/4).

(a) (b)

Figure 3.1: Approximated crystal structure of phosphorus IVphase(1/γ ≃ 4):

(a)the xy-plane top view, (b)the yz-plane side view.

First-principles calculations were performed within the density functional

theory[10, 11] with a plane-wave pseudopotential method, as implemented in

the Quantum-ESPRESSO code.[12] We employed the Perdew-Burke-Ernzerhof

generalized gradient approximation exchange-correlation functional[36] and

ultra-soft pseudo-potentials.[14]

We optimized crystal cells of simple cubic phase(10 ∼ 100GPa), IVphase

(110 ∼ 130GPa), and simple hexagonal phase (140 ∼ 300GPa) and calcu-

lated superconducting critical temperatures in these phases. Atomic posi-

tions and cell parameters were optimized by the constant-pressure variable-

cell relaxation using the Parrinello-Rahman method[15] without any sym-

metry requirements. We estimated the superconducting critical temperature

Tc using the strong coupling theory.[17, 25] The electron-phonon matrix was

calculated by the density functional perturbation theory.[18]
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In electronic calculation, we used 32×32×32 (sc, sh) and 32×32×8 (IV)

k-point grid in the Monkhorst-Pack grid.[16] In phonon calculation, we used

8 × 8 × 8 (sc, sh) and 8 × 8 × 2 (IV) q-point grid in the same grid. Energy

cut-off for wave function is 40Ry and that for charge density is 320Ry. These

k-point meshes and cut-off energies are fine enough to achieve convergence

within 0.1mRy/atom in the total energy.

3.3 Results and Discussion

3.3.1 Structural optimizations

Calculated lattice parameters are consistent with results simulated by Ishikawa

et al..[34] We observe that only real frequencies appear all over the Brillouin

zone. This result indicates that approximated structure is sufficient to discuss

superconducting properties.

3.3.2 Superconducting critical temperature

Fig. 3.2 shows calculation results of Tc, λ and ωlog. The calculated critical

temperature above 30GPa is consistent with observed values in experiment.[28]

Below 30GPa, however, calculated Tc is decreasing, while experimentally

observed one is increasing. This discrepancy may mean that A7 structure

remains until 30GPa. The IVphase has lower critical temperature than the

other phases.

Let us examine the origin of the low Tc. According to the Allen-Dynes

modified McMillan’s formula,[24, 25] Tc is given by three factors: the electron-

phonon interaction λ, the logarithmic averaged phonon frequency ωlog, and
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Figure 3.2: Calculated superconducting parameters

26



the screened Coulomb interaction µ∗, in the following form.

Tc =
ωlog

1.2
exp

(

− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)

. (3.1)

Here λ and ωlog are obtained by the first-principle calculations using the den-

sity functional perturbation theory. As for µ∗, we assume the value µ∗ = 0.1.

This value holds for simple metals. In this study, the critical temperature is

determined by λ and ωlog. Comparing pressure dependence of these, we found

that the pressure dependence of the electron-phonon interaction determines

that of superconducting critical temperature.

The electron-phonon interaction is strongly affected by density of states

(DOS) at Fermi level. Fig. 3.3 shows calculated electronic DOS at Fermi

level. The modulated structure has lower DOS than sc and sh. The small

DOS is related to the modulation. The detail has already been discussed in

Ishikawa’s doctoral thesis[37] and Marqués’s study.[38] We concluded that

the small DOS decreases the electron-phonon interaction and that the small

λ decreases the superconducting critical temperature.

Figure 3.3: Calculated electronic density of states at Fermi level.

In each structure, the electron-phonon interaction and critical temper-
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ature monotonically decrease, while the logarithmic averaged phonon fre-

quency rises and falls. The electron-phonon interaction and the logarithmic

averaged phonon frequency are defined as followings.

λ ≡ 2
∫ ∞

0
dω
α2F (ω)

ω
, (3.2)

ωlog ≡ exp

(

2

λ

∫ ∞

0
dω
α2F (ω)

ω
logω

)

, (3.3)

Fig. 3.4 shows the density of states of phonon. This figure indicates the

hardening of phonon. The hardening decreases α2F (ω)/ω and increases logω.

Therefore, these two competing effects make ωlog rises and falls, while the

former increases λ.
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Figure 3.4: Calculated density of states of phonon.

3.4 Summary

In this chapter, we simulated the superconducting critical temperature of

phosphorus under high pressure. The IVphase has lower critical temperature

than the other phases. The low Tc is attributed to the small electronic DOS,
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which is decreased by the modulation. As pressure increases, the electron-

phonon interaction and Tc decreases due to the hardening of phonon.
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Chapter 4

NaFeAs

4.1 Introduction

Recently, FeAs superconductors attract many attention, because the maxi-

mum of their superconducting critical temperatures (maximum of Tc ≃ 55 K)

is the highest among non-cuprate superconductors. [39, 40, 41] Many exper-

imental and theoretical studies suggest that the superconductivity of FeAs

compounds are not explained only by electron-phonon interaction. But, we

should note that the electron-phonon interaction may be important because

the isotope effect is observed. NiAs compounds are also superconductors

and are considered to be conventional phonon-mediated superconductors.

According to our best knowledge, superconductivity of CoAs has not been

observed.

To study the material dependence of the pnictides is main purpose of this

chapter. For this purpose, we considered the electronic and phonon struc-

ture of NaFeAs and substitutions of Fe by other transition metals: Co and

Ni. NaFeAs is one of pnictide superconductors and shows superconductivity

without doping at the ambient pressure,[42, 43] while many FeAs compounds
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show superconductivity under pressure or with doped.

4.2 Methods

In this study, targets are NaFeAs, NaCoAs and NaNiAs. We calculated the

electronic band structure, the density of states, the Fermi surface, the phonon

dispersion, the electron-phonon interaction, and the superconducting critical

temperature of these materials as following methods.

First-principles calculations were performed within the density functional

theory[10, 11] with a plane-wave pseudopotential method, as implemented in

the Quantum-ESPRESSO code.[12] We used the Perdew-Burke-Ernzerhof

generalized gradient approximation exchange-correlation functional[36] and

ultra-soft pseudo-potentials.[14] For the pseudopotentials, 4s and 4p electrons

of the transition metal atoms(Fe, Co and Ni) were also included in the valence

electrons.

Atomic positions and cell parameters were optimized by the constant-

pressure variable-cell relaxation using the Parrinello-Rahman method[15]

without any symmetry requirements. Initial cells of optimizations are the

experimental values of NaFeAs at ambient pressure.The space-group sym-

metry of NaFeAs is classified in P4/nmm (No.129). The Wyckoff positions

of Fe at 2a sites are given by (3/4, 1/4, 0) and (1/4, 3/4, 0), while those of Na

(and As) at 2c sites are given by (1/4, 1/4, z) and (3/4, 3/4,−z) with internal

parameter z. We estimated superconducting critical temperature Tc using

the strong coupling theory.[17] The electron-phonon matrix is calculated by

the density functional perturbation theory.[18] We used 16× 16× 16 k-point

grid (electron) and 4 × 4 × 2 q-point grid (phonon). The energy cut-off for

wave functions is 30Ry and that for charge density is 240Ry.
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4.3 Results and Discussion

4.3.1 Structural optimizations

Table 4.1 shows the optimized lattice constants and internal parameters. To

test the stability of virtual materials (NaCoAs and NaNiAs), we checked

the phonon frequencies in the whole Brillouin zone. Only real frequencies

appear all over the Brillouin zone as shown latter (Fig. 4.4). We expect the

experimental feasibility for synthesis of these virtual materials: NaCoAs and

NaNiAs.

a [a.u.] c/a zNa zAs V [a.u.3]

NaFeAs 7.3795 1.7975 0.6585 0.1913 722.1248

NaCoAs 7.4257 1.7636 0.6567 0.1895 722.3534

NaNiAs 7.6197 1.6944 0.6426 0.1873 749.6000

Table 4.1: Optimized lattice parameters of NaFeAs, NaCoAs and NaNiAs.

4.3.2 Electronic band structures

Fig. 4.1 shows the band structure, the density of states and the Fermi surface

of NaFeAs. There are electron pockets around the M point and hole pockets

around the Γ point, which displays a semi-metallic feature. At the Fermi

level, only Fe 3d bands appear. These bands are not covalent bonding bands.

The cylindrical Fermi surfaces at the center and corner of Brillouin zone have

two-dimensional nature.

Fig. 4.2 shows the band structure, the density of states and the Fermi

surface of NaCoAs. Around the Γ point, the hole pockets are occupied and

electron pockets appear. In addition to transition metal 3d bands, As 4p
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Figure 4.1: Electronic band structure (top), Density of states (center) and

Fermi surface (bottom) of NaFeAs.
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Figure 4.2: Electronic band structure (top), Density of states (center) and

Fermi surface (bottom) of NaCoAs.
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Figure 4.3: Electronic band structure (top), Density of states (center) and

Fermi surface (bottom) of NaNiAs.
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bands appear at the Fermi level. Two-dimensional feature of Fermi surfaces

becomes less clear.

Fig. 4.3 shows the band structure, the density of states and the Fermi

surface of NaNiAs. The hole pockets go down deeply and band structure is

metallic. At the Fermi level, Ni 3d-As4p anti-bonding bands appear. Fermi

surface is three dimensional ant the two-dimensional feature disappears.

Comparing Fig. 4.1, 4.2 and 4.3, a rigid band picture is roughly realized.

Correspondence of bands is clear. The band structures of NaCoAs and Na-

NiAs are approximately given by heavy electron doping in the band structure

of NaFeAs.

4.3.3 Superconducting critical temperature

Table 4.2 shows superconducting critical temperature of NaFeAs, NaCoAs

and NaNiAs. As for NaFeAs, the calculated Tc are about 0.3% of the exper-

imental data, which is about 12 K. [42, 43] This discrepancy suggests that

NaFeAs may not be a phonon-mediated superconductor. An another group

also reported the low critical temperature of NaFeAs calculated within the

density functional perturbation theory.[44]

Tc [K] λ ωlog [K]

NaFeAs 0.034 0.275 178

NaCoAs 0.13 0.312 181

NaNiAs 3.5 0.698 103

Table 4.2: Superconducting temperature Tc, electron-phonon interaction λ

and logarithmic averaged phonon frequencies ωlog of NaFeAs, NaCoAs and

NaNiAs. The definition is explained in the section 2.3.3.
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Table 4.2 shows that Tc of NaNiAs is the highest among three compounds.

Let us discuss why Tc of NaNiAs is large. According to the Allen-Dynes

modified McMillan’s formula,[24, 25] Tc is given by three factors: the electron-

phonon interaction λ, the logarithmic averaged phonon frequency ωlog, and

the screened Coulomb interaction µ∗, in the following form.

Tc =
ωlog

1.2
exp

(

− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)

. (4.1)

Here λ and ωlog are obtained by the density functional perturbation theory.

As for µ∗, we assume the value µ∗ ∼0.1. This value holds for weak correlated

systems. In this study, the critical temperature is determined by λ and ωlog.

Comparing NaFeAs and NaCoAs, we do not find a large difference in λ

and ωlog. On the other hand, there are large difference between NaNiAs and

the others. NaNiAs has more than twice λ and about half ωlog. The former

increases Tc, while later decreases ωlog. But, λ increases Tc exponentially

while ωlog increases Tc linearly. Therefore, Tc of NaNiAs is the highest among

three compounds.

Here, we analyze the electron-phonon interaction. For the mode analysis,

we introduce partial electron-phonon interaction λνq so that λ =
∑

νq λνq, as

same as section 2.3.3.

Using λνq, we find the most influential phonon mode for the supercon-

ductivity and Tc. Fig. 4.4 shows the phonon dispersion of NaFeAs, NaCoAs

and NaNiAs. In this figure, the magnitude of λνq is represented by radius of

circle on each phonon dispersion.

The phonon band structure of NaCoAs is similar to that of NaFeAs, and

the partial electron-phonon interaction, too. On the other hand, NaNiAs has

lower frequency than the others. The low frequency of NaNiAs means the

softness of the material. This softness and lattice instability is attributed to

the occupation of the anti-bonding bands at Fermi level as shown in fig. 4.3.
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Figure 4.4: Phonon dispersions of NaFeAs(top), NaCoAs(center) and Na-

NiAs(bottom). The radius of circle displays the magnitude of partial

electron-phonon interaction λνq. The definition is explained in the section

2.3.3.
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In NaNiAs, low frequency phonon modes have large electron-phonon in-

teraction. These phonon modes expand and contract the covalent bondings

of As and transition metal. Not only NaNiAs but also NaFeAs and NaCoAs

have these phonon modes because the types of phonon modes are determined

only by the lattice symmetry and the lattices of three materials are same.

In spite of same phonon modes, why only NaNiAs has large electron-phonon

interaction ? The difference is attributed to the bands at Fermi level. In Na-

NiAs, the electrons in anti-bonding bands at Fermi level can interact largely

with the phonon modes because they are involved in bondings which are

expanded and contracted by the phonons. As for NaFeAs and NaCoAs, the

bands at Fermi level are the non-covalent bonding bands as seen in fig. 4.1.

4.4 Summary

In this chapter, we compared the electronic and phonon properties of NaFeAs,

NaCoAs and NaNiAs. We find a realization of rigid band picture among three

compounds. NaFeAs is semimetalic feature and has two-dimensional Fermi

surface, while NaNiAs is metal and has three-dimensional Fermi surface.

The NaNiAs has the largest electron-phonon interaction and the highest

superconducting critical temperature, because some phonon modes expand

and contract the covalent bondings of Ni and As. As for the NaFeAs and the

NaCoAs, these modes do not have strong interaction because they have non-

covalent bonding bands at Fermi level. From these findings, we conclude that

it is important for the covalent bonding (or anti-bonding) bands to locate at

Fermi level.
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Chapter 5

CuAlO2

5.1 CuAlO2 under high pressure

5.1.1 Introduction

CuAlO2, is known as p-type transparent conductor. The ”p-type” trans-

parent conductor is rare and important, because it is necessary for the p-n

junction of the transparent conductors. Many appricaltions of CuAlO2 are

expected: flat panel displays, solar cells and the high-efficient thermo-electric-

power materials, and so on.

Katayama-Yoshida and co-workers have calculated the Fermi surface of

p-type doped CuAlO2 by shifting the Fermi level rigidly.[46] The calculated

Fermi surface is nesting, showing two-dimensional characteristics. These au-

thors expected that the nesting Fermi surface may cause a strong electron-

phonon interaction and a transparent superconductivity for visible light.

While they considered the p-type doped CuAlO2, semiconductors can be

metallized not only by doping, but also by pressure. As stated above, we

are better informed about the pressure than the doping. In addition, the
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pressured system is calculated more easily than the doped one. Therefore,

first we consider the pressured CuAlO2.

The purpose of this section is to clarify the stable structure and band

gap of CuAlO2 under high pressure and examine whether it is metallized

or not by using first-principles calculations. Our results show that CuAlO2

transforms to a leaning delafossite structure and that the energy gap rises

and falls as pressure increases in both the structures.

5.1.2 Methods

First-principles calculations were performed within the density functional

theory[10, 11] with a plane-wave pseudopotential method, as implemented in

the Quantum-ESPRESSO code.[12] We employed the Perdew-Burke-Ernzerhof

generalized gradient approximation exchange-correlation functional[36] and

ultra-soft pseudopotentials.[14] For the pseudopotentials, Cu 3d electrons

were also included in the valence electrons.

We used 16×16×4(delafossite) and 8×8×4(chalcopyrite) k-point grids.

The energy cut-off for wave functions is 40Ry and that for charge density is

320Ry. This k-point meshes and cut-off energies are fine enough to achive

convergence within 0.1mRy/atom in the total energy.

Atomic positions and cell parameters were optimized by the constant-

pressure variable-cell relaxation using the Parrinello-Rahman method[15]

without any symmetry requirements. Some materials similar to CuAlO2(CuAlS2,

CuAlSe2, CuAlTe2) have a chalcopyrite structure.[47] In order to research

whether a chalcopyrite structure can appear under high pressure, we started

optimization from not only delafossite, but also chalcopyrite structure. Ini-

tial cell parameters of the preliminary calculation are the experimental values

at ambient pressure.[48]
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CuAlO2, has a delafossite structure at atmospheric pressure.[49] The unit

cell of the delafossite structure is represented by a hexagonal cell or a rhom-

bohedral cell. Fig. 5.1(a) shows the conventional hexagonal cell of CuAlO2.

For convenience, the hexagonal cell is used here.

5.1.3 Results and Discussion

Structural optimizations under high pressure

Under lower pressure, the local stable structure is delafossite structure and

no structural transition is found. Under higher pressure, a new structure

phase appears as a stable structure. Fig. 5.1(b) shows the hexagonal cell

of this new structure. We call this structure a leaning delafossite structure

because the crystal structure seems to be leaning.

Fig. 5.2 shows optimized cell parameters. At 60 GPa, lattice constant a

increases slightly and c/a decreases. After the structural transition, angle α

decreases from 90◦, and oxygen atoms at (0, 0,±z) move to (±x,±2x,±z).
The other oxygen atoms at (2/3, 1/3,±z + 1/3), (1/3, 2/3,±z + 2/3) move

similarly. Table 5.1 shows our results and previous theoretical studies.[50, 51]

Our results agree with the previous results well.

0GPa 30GPa

a[Å] c/a z a[Å] c/a z

This study 2.861 5.9690 0.1101 2.704 6.1670 0.1088

Ref.50 2.839 5.9331 0.1099 2.698 6.065 0.1089

Ref.51 2.835 5.999 0.11 2.713 6.2 0.1088

Table 5.1: Comparison of calculated cell parameters a,c/a and z with previ-

ous studies.[50, 51] Note that some parameters are not written explicitly in

these papers. We read these parameters from the graphs.
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(a) delafossite structure.

(b) leaning delafossite structure.

Figure 5.1: Side view of crystal cells. These cells contain Cu, O, and Al atom

layers from the top.
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Figure 5.2: Optimized lattice parameters.
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Fig. 5.3 shows the enthalpies of delafossite, leaning delafossite, and chal-

copyrite structures. Here, the enthalpy of the delafossite structure is set to

be 0 Ry. The critical pressure of the structural transition from delafossite to

leaning delafossite is 60 GPa. As pressure increases, the enthalpy of the chal-

copyrite structure increases. Therefore, we conclude that under high pressure

CuAlO2 does not transform to the chalcopyrite structure. The result that

no structural transition occurs under 20GPa is consistent with experimental

data.[52]
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Figure 5.3: Enthalpies under high pressure. The enthalpy of delafossite

structure is set to be 0 Ry.

Table 5.2 shows total energy, volume and enthalpy of delafossite and lean-

ing delafossite structure at 100 GPa. The leaning delafossite structure has

higher total energy than delafossite structure, though the former has lower

enthalpy than later. On the other hand, the leaning delafossite structure

45



has smaller volume than delafossite structure. Therefore, the small volume

leaning delafossite structure is important for stability under high pressure.

Total energy [Ry] Volume [a.u.3] enthalpy [Ry]

delafossite -198.232535 198.1865 -196.885303

leaning delafossite -198.197797 190.8753 -196.900758

Table 5.2: Total energy, volume and enthalpy of delafossite and leaning de-

lafossite structure at 100 GPa.

Pressure dependence of the density of states and energy gap

Fig. 5.4 shows pressure dependence of the energy gap under high pressure.

In both structure, the pressure dependence of the energy gap are same: rises

and falls. At 60 GPa, the structural transition occurs and the energy gap

jumps. In the pressure region from 0 GPa to 30 GPa, the calculated indirect

energy gap follows as Eg = 0.0149P + 1.84[eV]. This pressure coefficient is

consistent with experimental data.[52] From 30 GPa to 60 GPa, it follows as

Eg = −0.00343P + 2.37 [eV].

The CuAlO2 has a Cu 3d3z2−r2-O 2pz anti-bonding state and a Cu 4px,y

state as conduction bands. As pressure increases, the anti-bonding state rises

because of the bonding length of O-Cu-O shorts. On the other hand, the band

width of a Cu 4px,y state is extended. because the distance between Cu atoms

decreases. As a result, a transition width between valence and conduction

band is reduced. These two cometing pressure dependencies make the energy

gap rises and falls.

Near 60 GPa, the energy gap decreases as pressure increases. As shown

in Fig. 5.2(a), the structural transition expands lattice constant a. This

reverse pressure effect is the reason why the energy gap jumps.
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Figure 5.4: Pressure dependence of the energy gap under high pressure.

5.1.4 Summary

In this section, we calculated the stable structure of CuAlO2 under high

pressure and found that it transforms from the delafossite structure to the

leaning delafossite structure at Pc = 60 GPa. On the other hand, a chal-

copyrite structure is not found to be a stable structure. The energy gap rises

and falls as pressure increases in both the structures. Through the structural

transition, the energy gap is slightly expanded. The O-Cu-O dumbbell-like

coupling is stable under high pressure.
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5.2 Self-interaction correction

5.2.1 Introduction

Many first-principles calculations use local density approximation(LDA). The

simplicity of the LDA enables fast calculation and, however, causes some

errors. One of the faults is underestimation of energy gap. For example, Eg

of CuAlO2 is determined to be 1.84 eV by first-principle calculation as shown

in the previous section, while the experimental data is 2.96 eV.[52] One reason

of this error is the self-interaction in the energy functional. This is a Coulomb

and exchange-correlation interaction between one electron and himself. This

interaction is non-physical. For one-electron system, the sum of Coulomb,

exchange and correlation energy should be zero. In the LDA, however, this is

not always zero. The effect of non-zero self-interaction is small for itinerant

systems. As for localized systems, however, it is not negligible and often

cases some error.

Perdew and Zunger proposed the method for the self-interaction correc-

tion (SIC).[55] Their method is suitable for free atoms, but not for condensed

systems due to a large computing effort. Vogel and co-workers suggested the

alternative to Perdew’s method and applied their approach to non-magnetic

semiconductors.[54] Filippetti and Spaldin develop the Vogel’s method.[53]

Filippetti’s approach can be applied to more general cases, in particular, to

magnetic and highly correlated systems. In this study, we implemented Fil-

ippetti’s method into first-principles calculation code, Quantum-espresso[12]

and compared the energy gaps calculated within LDA and SIC.

In this section, we explained the formulation of the SIC and applied the

SIC for typical semiconductor, GaN, and CuAlO2.
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5.2.2 Formulation

The useful SIC method is suggested by Perdew and Zunger.[55] It subtracts

the self-interaction contribution from Hartree Eh[n] and exchange-correlation

energy Exc[n↑, n↓],

Eh[n] + Exc[n↑, n↓] → Eh[n] + Exc[n↑, n↓] −
∑

iσ

(Eh[niσ] + Exc[niσ, 0]). (5.1)

Here n = n↑ + n↓ is the total electronic charge density, and niσ = |ψiσ|2 is

the density of an orbital with quantum numbers i and spin σ. In the self-

interaction term, a single orbital is fully spin polarized. Minimizing the total

energy including this term, they got one-electron equation:

{−∇2 + Vext + Vh[n] + Vxc[n↑, n↓] − Vh[niσ] − Vxc[niσ, 0]}ψiσ = ǫiσψiσ. (5.2)

This method can improve total energies, ionization potentials, and electron

affinities of atoms. However, the application for extended systems is difficult

because self-interaction term of this approximation, −Vh[niσ] − Vxc[niσ, 0], is

orbital-dependent and vanishes as Ω− 1

3 (Ω: the system volume).[55]

Vogel et al. improved this method by using self-interaction correlated

pseudopotential and approximating the SI in the crystal with that in the

free atom.[54] In this method, SIC is described by a non-local potential like

the usual pseudopotential.

{−∇2 + Vext + Vhxc −
∑

i

|φi > Vhxc[niσ] < φi|}|ψnkσ >= ǫnkσ|ψnkσ > . (5.3)

Vhxc[niσ] = Vh[niσ] + Vxc[niσ, 0]. (5.4)

Here, φi is the atomic orbitals. This method is efficient for some highly

ionic compounds with atomic-like, poorly hybridized bands, such as II-VI

semiconductors.
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Filippetti and Spaldin generalized the Vogel’s method.[53] They intro-

duced the occupation numbers piσ.

niσ = piσ|φi|2 (5.5)

piσ =
∑

nk

fnkσ| < ψnkσ|φi > |2 (5.6)

Vogel’s method corresponds to that piσ is 1. Introduction of piσ make appli-

cation for general cases: hybridized bands, magnetic system and metal.

For saving time, they approximated as the following:

Vhxc[piσ|φi|2] ≃ piσVhxc[|φi|2] (5.7)

This is exact for the Hartree term. At each iteration of the self-consistency,

you needs only recalculation of piσ and not recalculation of Vxc[piσ|φi|2].
In this study, we started the formulation from the total energy. SIC-

corrected total energy is as following:

Etot =
∑

nkσ

< ψnkσ|[−∇2 + Vext]|ψnkσ > +Ehxc −
∑

iσ

Ehxc[piσ|φi|2] (5.8)

Minimizing this total energy, we got one-electron equation:

{−∇2 + Vext + Vhxc −
∑

i

|φi > Ci < φi|}|ψnkσ >= ǫnkσ|ψnkσ > (5.9)

Ci =< φi|Vhxc[piσ|φi|2]|φi > (5.10)

In addition, the approximation shown as (5.7) is applied

5.2.3 Methods

First-principles calculations were performed within the density functional

theory[10, 11] with a plane-wave pseudopotential method, as implemented in

the Quantum-ESPRESSO code.[12] We employed the Perdew-Wang type[13]
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(GaN) and the Perdew-Burke-Ernzerhof type[36] (CuAlO2) generalized gra-

dient approximation exchange-correlation functional and ultra-soft pseudo-

potentials.[14] In electronic calculation, we used 8×8×8 (GaN) and 8×8×2

(CuAlO2) k-point grid in the Monkhorst-Pack grid.[16] Energy cut-off for

wave function is 40Ry and that for charge density is 320Ry.

5.2.4 Results and Discussion

Fig. 5.5 shows the band structures of GaN which are calculated within the

LDA and the SIC. In the LDA (Fig. 5.5(a)), the Ga d bands locate at the

same energy level as the N s bands and make a s-d hybridized band. This s-d

hybridization splits the N s band. and push up the valence N p bands. As a

result, the energy gap is underestimated: calculation results is Eg = 1.88 eV,

while experimental data is Eg = 3.5 eV.[56]

In the SIC (Fig. 5.5(b)), the Ga d bands locate below the N s bands and

does not make a s-d hybridized band. The energy gap is corrected: Eg = 2.42

eV.

Fig. 5.6 shows the band structures of CuAlO2 which are calculated in

LDA and SIC. In the band figure, there is no large difference between the

LDA result (Fig. 5.6(a)) and the SIC result (Fig. 5.6(b)). But, the band

width of the valence band in the SIC is narrower than that in the LDA. This

is attributed to that the SIC makes the d-band potential more attractive. As

a result, the energy gap of the SIC (Eg = 3.16 eV) is larger than that of the

LDA (Eg = 1.84 eV) and close to experimental data (Eg = 2.96 eV[52]).

5.2.5 Summary

In this section, we calculated self-interaction correction by using first-principles

calculations. The SIC expanded the energy gaps of GaN and CuAlO2.
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Figure 5.5: Band structure of wurtzite GaN.
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Figure 5.6: Band structure of CuAlO2.
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5.3 Doped CuAlO2

5.3.1 Introduction

As stated in section 5.1, Katayama-Yoshida, et al. have calculated the Fermi

surface of p-type doped CuAlO2 by shifting the Fermi level rigidly.[46] They

speculated that the doped CuAlO2 may be a transparent superconductivity

for visible light. But, they only suggested the possibility and did not calculate

the electron-phonon interaction and the critical temperature of the doped

CuAlO2.

The purpose of this section is to clarify the superconductivity of the

doped CuAlO2 by using first-principles calculations. Our results show that

0.1 ∼ 0.2 hole doped CuAlO2 can be high temperature superconductor with

Tc ∼ 40K.

5.3.2 Methods

First-principles calculations were performed within the density functional

theory[10, 11] with a plane-wave pseudopotential method, as implemented in

the Quantum-ESPRESSO code.[12] We employed the Perdew-Burke-Ernzerhof

generalized gradient approximation exchange-correlation functional[36] and

ultra-soft pseudopotentials.[14] For the pseudopotentials, Cu 3d electrons

were also included in the valence electrons. Therefore, non-doped CuAlO2

has 26 electrons. In this study, we calculated CuAlO2 with number of elec-

tron Nel = 25.0 ∼ 25.8. A calculation with Nel = 25.9 does not convergence.

In electronic and phonon calculation, we used 8×8×8 k-point grid in the

Monkhorst-Pack grid.[16] Energy cut-off for wave function is 40Ry and that

for charge density is 320Ry. These k-point meshes and cut-off energies are

fine enough to achieve convergence within 0.1mRy/atom in the total energy.
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We used the optimization results in section 5.1 as inputs.

We explain how to calculate the doped CuAlO2. It is difficult to calcu-

late the property of doped system exactly. Therefore, some properties are

approximately calculated in this study. Let us pick up the electron-phonon

interaction λ as an example. This is represented as following.

λ =
∑

νq

2N(εF)
∑

k |Mνq
k,k+q|2δ(εk − εF)δ(εk+q − εF)

ωνq
∑

kq′ δ(εk − εF)δ(εk+q′ − εF)
. (5.11)

In the calculation of electron-phonon interaction, averaging at Fermi surface

are performed. We shifted the Fermi level εF rigidly in the averaging. On the

other hand, the electron-phonon matrix Mνq
k,k+q and the phonon frequency

ωνq of non-doped CuAlO2 are used. The idea underlying this approxima-

tion is that doping does not greatly change the whole band structure of the

electron and the phonon.

5.3.3 Results and Discussion

Electronic band structure

Fig. 5.7 shows the electronic density of states(DOS) of non-doped CuAlO2.

The valence band of CuAlO2 has a small peak. This peak is mainly occupied

by a Cu 3d3z2−r2-O 2pz anti-bonding state.

Fig.5.8 tells us the corresponds of the Fermi level to number of electrons.

When Nel = 25.7, Fermi level locates at the top of the small peak. When

Nel = 25.4, Fermi level locates at the valley of DOS.

Superconducting critical temperature

Fig. 5.9 shows the superconducting critical temperature. Note that the x-

axis is not doping concentration, but the number of electrons. When Nel =

25.7 ∼ 25.8, CuAlO2 has Tc ≃ 40K. Especially, superconducting critical
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Figure 5.7: Total and partial density of states.

 10

 11

 12

 13

 14

 15

 16

 17

 18

 25  25.1  25.2  25.3  25.4  25.5  25.6  25.7  25.8

D
e

n
si

ty
 o

f 
st

a
te

s 
[s

ta
te

s/
R

y]

Number of electrons
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temperature of 0.2 hole-doped CuAlO2, Tc = 44 K, is the highest record

among phonon-mediated superconductors. The heavily-doped CuAlO2(Nel =

25.0 ∼ 25.4), however, has Tc ≃ 10K.
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Figure 5.9: Superconducting critical temperature

Let us examine the origin of the high Tc of lighter-doped CuAlO2 (Nel =

25.7 ∼ 25.8). According to the Allen-Dynes modified McMillan’s formula,[24,

25] Tc is given by three factors: the electron-phonon interaction λ, the loga-

rithmic averaged phonon frequency ωlog, and the screened Coulomb interac-

tion µ∗, in the following form.

Tc =
ωlog

1.2
exp

(

− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)

. (5.12)

Here λ and ωlog are obtained by the first-principle calculations using the

density functional perturbation theory. As for µ∗, we assume the value µ∗ ≃
0.1. This value holds for weak correlated systems. In this study, the critical
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temperature is determined by λ and ωlog. The table 5.3 shows λ and ωlog.

When Ne increases, λ rises about 90%, while ωlog rises about 10%. Therefore,

the large λ leads to the high Tc.

Nel λ ωlog [K]

25.3 0.449 727

25.8 0.870 806

Table 5.3: Electron-phonon interaction λ and logarithmic averaged phonon

frequencies ωlog. Tc has max. and min. at Nel = 25.8, 25.3.

Here we analyze the electron-phonon interaction. For the mode analysis,

we introduce partial electron-phonon interaction λνq so that λ =
∑

λνq as

same as section 2. Using λνq we find the most influential phonon mode for the

superconductivity and Tc. In Fig. 5.10, the magnitude of λνq is represented

by radius of circle on each phonon dispersion. According to this figure, the

highest mode on the Z − Γ line has large electron-phonon interaction. This

mode is called the A1L1 mode. In this mode, the O atoms oscillate in the

anti-phase and the oscillation direction is parallel to a O-Cu-O bond.

Irrespective of Nel, CuAlO2 has an A1L1 mode because the types of

phonon modes are determined only by the lattice symmetry. In spite of

the same phonon mode, why only lighter-doped CuAlO2 has large electron-

phonon interaction ? The difference is attributed to the bands at Fermi level.

In the case with Nel = 25.7 ∼ 25.8, the Cu 3d3z2−r2 and the O 2pz electrons

appears at Fermi level and make O-Cu-O covalent bond. They have large

interaction with the A1L1 mode phonon because a bonding direction is par-

allel to an oscillation direction of the A1L1 mode phonon. As Nel decreases,

the electron-phonon interaction decreases, due to reduction of Cu 3d3z2−r2
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and the O 2pz electrons, which strongly interact with A1L1 phonon.

5.3.4 Summary

In this section, we calculated the superconducting critical temperature of

hole-doped CuAlO2 by using first-principles calculations. In lightly hole-

doped CuAlO2, Cu 3d3z2−r2 and O 2pz electrons appear at the Fermi level.

A1L1 phonon mode have a strong interaction with these electrons because

the oscillation direction of this mode is parallel to the bonding direction of

these electrons. Based on these findings, we conclude that lightly hole-doped

CuAlO2 can be high Tc superconductor.
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Figure 5.10: Phonon dispersions and electron-phonon interactions of doped

CuAlO2. The radius of circle displays the magnitude of partial electron-

phonon interaction λνq. The definition is explained in the text.
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Chapter 6

Conclusion of this thesis

The strong coupling theory enables us to quantitatively calculate the super-

conducting critical temperature of phonon-mediated superconductors. This

is useful for the prediction of critical temperature under unresearched con-

dition and the determination of whether the material is phonon-mediated

superconductors. In this study, we predicted the critical temperature of

CaSi2 in AlB2 structure, phosphorus in incommensurate structure, NaCoAs,

NaNiAs, and doped CuAlO2. In addition, we determined NaFeAs is not

phonon-mediated superconductor by comparing results of electron-phonon

calculation with experimental data.

In CaSi2 and CuAlO2, the directions of phonon oscillation and electronic

bonding are important for the superconductivity. When these directions

agree, the electron-phonon interaction and the critical temperature increase.

In addition, as stated in chapter of NaFeAs and CuAlO2, it is also impor-

tant that the covalent bonding bands locate at the Fermi level, because the

covalent bondings make the hard lattice and this makes the strong electron-

phonon interaction.

The results of this thesis suggest two policies: 1)The direction of covalent

61



bonding agrees with that of the lattice oscillation and 2)The covalent bonding

bands locate at Fermi level. Following these policies, we will be able to design

the superconductor with higher Tc.
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Appendix A

Strong coupling theory

We write the strong coupling theory of superconductor and explain how to

calculate the superconducting critical temperature. In this chapter, Hartree

atomic unit is employed and Boltzmann constant kB = 1.

A.1 Eliashberg equation

In this section, we show the formulation of Eliashberg equation. The Eliash-

berg equation is an expansion of Dyson equation of normal-conductivity for

superconductivity.

Within the first order approximation of ion displacement, the Hamilto-

nian which represents the electron-phonon interaction is as follows.

Hel−ph =
∑

kqσ

Mk+q,k(aq + a†−q)c
†
k+qσckσ. (A.1)

Here, c†kσ and ckσ are creation and annihilation operators of electrons with

wave number vector k and spin σ 1 and a†q and aq are creation and an-

1band index i is included in wave number vector k and omitted.
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nihilation operators of phonons with wave number vector q. 2 We define

φq ≡ (aq + a†−q).

Mk+q,k is the electron-phonon interaction when an electron is scattered

from k to k + q by a phonon with q.

Mk+q,k =
1

√

2NcellMωq

〈k + q|nq · ∇U |k〉. (A.2)

Ncell is a number of unit cell, M is a mass of ion, ωq is frequency of

phonon, U is an ion potential and nq is a polarization vector of phonon.

The total Hamiltonian is as follows.

H =
∑

kσ

ξkc
†
kσckσ +

∑

q

ωqa
†
qaq +

∑

kqσ

Mk+q,kφqc
†
k+qσckσ. (A.3)

ξk is the energy of the electron. The electron Green’s function is as

follows.

G(k, τ − τ ′)

≡ −〈Tck↑(τ)c†k↑(τ ′)〉

= −〈ck↑(τ)c†k↑(τ ′)θ(τ − τ ′) − ck↑(τ
′)†ck↑(τ)θ(τ

′ − τ)〉. (A.4)

Here, 〈A〉 is a thermal average of A. When we set β reverse temperature,

〈A〉 =
tr(e−βHA)

tr(e−βH)
. (A.5)

T is the operator of time ordered product. The following holds for oper-

ators A(τ) and B(τ ′),

2phonon mode index ν is included in wave number vector q and omitted.
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TA(τ)B(τ ′) =











A(τ)B(τ ′) (τ > τ ′),

∓B(τ ′)A(τ) (τ ′ > τ),
(A.6)

(−:Fermion, +:Boson). Here, A(τ) ≡ eHτAe−Hτ . For getting the equation of

motion for Green’s function, we differentiate the Green’s function by τ ,

∂

∂τ
G(k, τ − τ ′) = −〈δ(τ − τ ′)[ck↑(τ), c

†
k↑(τ

′)] + T [H, ck↑(τ)]c†k↑(τ ′)〉. (A.7)

Here,

[H, ck↑(τ)] = eHτ [H, ck↑]e−Hτ

= eHτ
∑

k′σ

ξk′[c†k′σck′σ, ck↑]e
−Hτ

+eHτ
∑

k′qσ

Mk′+q,k′ φq[c
†
k′+qσck′σ, ck↑]e

−Hτ

= −eHτξkck↑e
−Hτ − eHτ

∑

q

Mk,k−qφqck−q↑e
−Hτ

= −ξkck↑(τ) −
∑

q

Mk,k−qφq(τ)ck−q↑(τ). (A.8)

In addition, if we change −q → q and assume φ−q = φq, (A.7) becomes as

follows.

∂

∂τ
G(k, τ − τ ′) = −δ(τ − τ ′) + ξk〈Tck↑(τ)c†k↑(τ ′)〉

+
∑

q

Mk,k+q〈Tφq(τ)ck+q↑(τ)c
†
k↑(τ

′)〉. (A.9)

Here, we define

Γ(q,k, τ, τ ′′, τ ′) ≡ −〈Tφq(τ)ck+q↑(τ
′′)c†k↑(τ

′)〉. (A.10)

and rewrite as follows.
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[

− ∂

∂τ
− ξk

]

G(k, τ − τ ′) = δ(τ − τ ′) +
∑

q

Mk,k+qΓ(q,k, τ, τ, τ ′). (A.11)

Next, in order to get the expression of Γ, we calculate the equation of

motion for Γ.

In the preparation, we calculate the equations of motion for a†q, a−q and

φq. We differentiate a†q by τ .

∂

∂τ
a†q(τ) = [H, a†q(τ)]

= eHτ [H, a†q]e−Hτ

= eHτ
∑

q′

ωq′ [a†q′aq′ , a†q]e
−Hτ

+eHτ
∑

kq′σ

Mk+q′,k[(aq′ + a†−q′), a†q]c
†
k+qσckσe

−Hτ

= eHτωqa
†
qe

−Hτ + eHτ
∑

kσ

Mk+q,kc
†
k+qσckσe

−Hτ

= ωqa
†
q(τ) +

∑

kσ

Mk+q,kc
†
k+qσ(τ)ckσ(τ). (A.12)

As for aq, we calculate in a similar way.

∂

∂τ
aq(τ) = −ωqaq(τ) −

∑

kσ

Mk−q,kc
†
k−qσ(τ)ckσ(τ). (A.13)

In this formula, if we exchange q → −q, assume ω−q = ωq and rearrange

the expression, the equations of motion for a†q and a−q become as follows.

[

∂

∂τ
− ωq

]

a†q(τ) =
∑

kσ

Mk+q,kc
†
k+qσ(τ)ckσ(τ), (A.14)

[

∂

∂τ
+ ωq

]

a−q(τ) = −
∑

kσ

Mk+q,kc
†
k+qσ(τ)ckσ(τ). (A.15)
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If we apply [ ∂
∂τ

+ ωq] to (A.14), apply [ ∂
∂τ

− ωq] to (A.15) and sum up

these, we obtain 3

[

∂2

∂τ 2
− ω2

q

]

φq(τ) = 2ωq

∑

kσ

Mk+q,kc
†
k+qσ(τ)ckσ(τ), (A.16)

From this formula and (A.10), we calculate the equation of motion for Γ.
[

∂2

∂τ 2
− ω2

q

]

Γ(q,k, τ, τ ′′, τ ′)

= −2ωq

∑

k′σ

Mk′+q,k′〈Tc†k′+qσ(τ)ck′σ(τ)ck+q↑(τ
′′)c†k↑(τ

′)〉. (A.17)

We use the phonon Green’s function to solve this equation. The phonon

Green’s function is as follows.

D(q, τ − τ ′) ≡ −〈Tφq(τ)φ−q(τ
′)〉. (A.18)

This yields the equation of motion for phonon Green’s function. If we

differentiate the phonon Green’s function by τ twice,

∂

∂τ
D(q, τ − τ ′)

= − ∂

∂τ
〈φq(τ)φ−q(τ

′)θ(τ − τ ′) + φ−q(τ
′)φq(τ)θ(τ

′ − τ)〉

= −〈T ∂φq

∂τ
φ−q(τ

′)〉 − 〈[φq(τ), φ−q(τ
′)]〉δ(τ − τ ′)

= −〈T ∂φq

∂τ
φ−q(τ

′)〉, (A.19)

∂2

∂τ 2
D(q, τ − τ ′)

= −〈T ∂
2φq

∂τ 2
φ−q(τ

′)〉 − 〈[∂φq

∂τ
, φ−q(τ

′)]〉δ(τ − τ ′)

= −ω2
q〈Tφq(τ)φ−q(τ

′)〉 − 2ωq

∑

kσ

Mk+q,k〈Tc†k+qσ(τ)ckσ(τ)φ−q(τ
′)〉

−ωq〈[
(

a†q(τ) − a−q(τ)
)

, φ−q(τ
′)]〉δ(τ − τ ′)

= ω2
qD(q, τ − τ ′) − 2ωq

∑

kσ

Mk+q,k〈Tc†k+qσ(τ)ckσ(τ)φ−q(τ
′)〉

+2ωqδ(τ − τ ′). (A.20)
3We use φq = a†

q + a−q because we assume φ−q = φq as mentioned above.
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If we approximate the second term of right-hand side to be 0, the equation

of motion for the phonon Green’s function is as follows.

[

∂2

∂τ 2
− ω2

q

]

D(q, τ − τ ′) = 2ωq δ(τ − τ ′). (A.21)

From this and (A.17), we get the expression of Γ.

Γ(q,k, τ, τ ′′, τ ′) = −
∫ β

0
dτ1D(q, τ − τ1)

∑

k′σ

Mk′+q,k′〈Tc†k′+qσ(τ1)ck′σ(τ1)ck+q↑(τ
′′)c†k↑(τ

′)〉. (A.22)

If we substitute this into (A.11), we get the equation of motion for the electron

Green’s function.
[

− ∂

∂τ
− ξk

]

G(k, τ − τ ′)

= δ(τ − τ ′) −
∑

q

∫ β

0
dτ1Mk,k+qD(q, τ − τ1)

×
∑

k′σ

Mk′+q,k′〈Tc†k′+qσ(τ1)ck′σ(τ1)ck+q↑(τ)c
†
k↑(τ

′)〉. (A.23)

If the Mean field approximation is employed,

〈Tc†k′+qσ(τ1)ck′σ(τ1)ck+q↑(τ)c
†
k↑(τ

′)〉

→ δk′,kδσ,↑〈Tck+q↑(τ)c
†
k+q↑(τ1)〉〈Tck↑(τ1)c†k↑(τ ′)〉

− δk′,−k−qδσ,↓〈Tck+q↑(τ)c−k−q↓(τ1)〉〈Tc†−k↓(τ1)c
†
k↑(τ

′)〉. (A.24)

The anomalous Green’s function is defined as follows.

F †(k, τ − τ ′) ≡ −〈Tc†−k↓(τ)c
†
k↑(τ

′)〉. (A.25)

The equation of motion is expressed by using this.
[

− ∂

∂τ
− ξk

]

G(k, τ − τ ′)
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= δ(τ − τ ′) −
∑

q

∫ β

0
dτ1|Mk+q,k|2D(q, τ − τ1)

×
[

G(k + q, τ − τ1)G(k, τ1 − τ ′) − F (k + q, τ − τ1)F
†(k, τ1 − τ ′)

]

.

(A.26)

Let’s calculate the Fourier transform of this. The Fourier transform of

the Green’s function is

G(k, τ − τ ′) =
1

β

∑

n

e−iωn(τ−τ ′)G(k, iωn). (A.27)

Here, ωn is called Matsubara frequency. For integer n, it is defined by

ωn ≡











(2n+ 1)πT (Fermion),

2nπT (Boson).
(A.28)

Therefore,

∫ β

0
dτ1D(q, τ − τ1)G(k + q, τ − τ1)G(k, τ1 − τ ′)

=
∫ β

0
dτ1

1

β3

∑

lmn

D(q, iωl)e
−iωl(τ−τ1)

×G(k + q, iωm)e−iωm(τ−τ1)G(k, iωn)e−iωn(τ1−τ ′)

=
1

β2

∑

lmn

e−i(ωl+ωm)τ+iωnτ ′

D(q, iωl)

×G(k + q, iωm)G(k, iωn)
1

β

∫ β

0
dτ1e

i(ωl+ωm−ωn)τ1

=
1

β2

∑

mn

e−iωn(τ−τ ′)D(q, iωn − iωm)G(k + q, iωm)G(k, iωn). (A.29)

The Fourier transform of F † is calculated in a similar way.

In addition, from

[

− ∂

∂τ
− ξk

]

G(k, τ − τ ′) = (iωn − ξk)
1

β

∑

n

e−iωn(τ−τ ′)G(k, iωn),(A.30)

δ(τ − τ ′) =
1

β

∑

n

e−iωn(τ−τ ′), (A.31)
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(A.26) is

(iω − ξk)G(k, τ − τ ′)

= 1 − T
∑

q

|Mk+q,k|2
∑

m

D(q, iωn − iωm)

×
[

G(k + q, iωm)G(k, iωn) − F (k + q, iωm)F †(k, iωn)
]

. (A.32)

If we define k′ = k + q and assume D(k′ − k) = D(k − k′),

(iω − ξk)G(k, τ − τ ′)

= 1 − T
∑

k′

|Mk′,k|2
∑

m

D(k′ − k, iωn − iωm)

×
[

G(k′, iωm)G(k, iωn) − F (k′, iωm)F †(k, iωn)
]

. (A.33)

The normal self-energy ΣN and anomalous self-energy ΣA are defined by

ΣN (k, iωn) ≡ −T
∑

k′m

|Mk′,k|2D(k − k′, iωn − iωm)G(k′, iωm),(A.34)

ΣA(k, iωn) ≡ T
∑

k′m

|Mk′,k|2D(k − k′, iωn − iωm)F (k′, iωm). (A.35)

Therefore, the equation of motion is as follows.

[iωn − ξk − ΣN(k, iωn)]G(k, iωn) − ΣA(k, iωn)F †(k, iωn) = 1. (A.36)

In a similar way, we calculate the equation of motion for anomalous Green’s

function F †.

[iωn + ξk + ΣN (k,−iωn)]F †(k, iωn) − Σ∗
A(k, iωn)G(k, iωn) = 0. (A.37)

The (A.34), (A.35), (A.36) and (A.37) are called the Eliashberg equa-

tions. Note that the vertex correction is neglected in this formulation. This

approximation is guaranteed by the Migdal’s theorem.[57]
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A.2 Gap equation

In this section, we explain the gap equation to determinate the supercon-

ducting gap. Tc can be calculated from the gap equation and the property

that the superconducting gap vanishes at T = Tc. From this section, k and

iωn are omitted except cases that they are important.

Solving the Eliashberg equations (A.36) and (A.37) for G,F †,







G

F †





 =
1

[iωn + ξ + ΣN(−iωn)][iωn − ξ − ΣN(iωn)] − |ΣA|2

×







iωn + ξ + ΣN(−iωn)

ΣA(iωn)





 . (A.38)

Here, Z, χ and ∆ are defined as follows.

1

2
[ΣN (iωn) − ΣN (−iωn)] ≡ iωn[1 − Z(iωn)], (A.39)

1

2
[ΣN (iωn) + ΣN (−iωn)] ≡ χ(iωn), (A.40)

ΣA ≡ ∆Z. (A.41)

The ∆ is called superconducting gap.

By using these definitions, G and F † are expressed by






G

F †





 =
1

(iωnZ)2 − (ξ + χ)2 − (|∆|Z)2







ωnZ + (ξ + χ)

∆Z





 .(A.42)

Because the iωn dependence of χ is small in general, we assume that χ(0) =

Σ(0) is included in the quasi-particle band ξ and χ is negligible compared

with iωn.

From this, (A.34), (A.39) and (A.40), the normal self-energy ΣN is ob-

tained as follows.

ΣN = iωn(1 − Z)
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= −T
∑

k′m

|Mkk′|2D(k − k′, iωn − iωm)G(k′, iωm)

= −T
∑

k′m

λ(k,k′, n−m)

N(0)

ξ + iωmZ

ξ2 + Z2(ω2
m + |∆|2) . (A.43)

Here,

λ(k,k′, n−m) ≡ −N(0)|Mkk′|2D(k − k′, iωn − iωm). (A.44)

N(0) is the density of states at Fermi level. Note that many textbook define

λ using the Eliashberg function α2F (k,k′,Ω) as follows.

λ(k,k′, n) ≡
∫ ∞

0
dΩα2F (k,k′,Ω)

2Ω

ω2
n + Ω2

, (A.45)

α2F (k,k′,Ω) ≡ −N(0)|Mkk′|2 1

π
ImD(k − k′,Ω + iη)

= N(0)|Mkk′|2δ(Ω − ωk−k′). (A.46)

Here, the second equation in (A.46) is obtained from assumption that the

phonons do not interact with each other.

Approximating the λ to the average at Fermi surface:

λ(k,k′, n) ≃ λ(n) ≡
∑

kk′ λ(k,k′, n)δ(ǫk)δ(ǫk′)
∑

kk′ δ(ǫk)δ(ǫk′)
, (A.47)

and
∑

k ≃ N(0)
∫

dξ, we obtained

iωn(1 − Z) = −T
∑

m

λ(n−m)
∫ ∞

−∞
dξ

ξ + iωmZ

ξ2 + Z2(ω2
m + |∆|2)

= −T
∑

m

λ(n−m)
iπωm

(ω2
m + |∆|2)1/2

. (A.48)

When T ≃ Tc, the superconducting gap ∆ is very small and negligible com-

pared with ωm.

ωn(1 − Z) = −πT
∑

m

λ(n−m)
ωm

|ωm|
. (A.49)

Defining sn ≡ sign(ωn) = (2n+ 1)/|2n+ 1|, we solve the equation for Z.

Z(iωn) = 1 +
1

|2n+ 1|
∑

m

λ(n−m)snsm. (A.50)
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Calculating for anomalous self-energy ΣA in a similar way,

Z(iωn)∆(iωn) =
∑

m

1

|2m+ 1|λ(n−m)∆(iωm). (A.51)

If we eliminate the Z from the two equation, we obtain the gap equation:

∆(iωn) =
∑

m

1

|2m+ 1|

[

λ(n−m) − δnm

∑

m′

λ(n−m′)snsm′

]

∆(iωm).

(A.52)

The superconducting critical temperature Tc is the maximum value of tem-

perature where the equation has a non-trivial solution ∆ 6= 0.

A.3 Coulomb interaction

As for the Coulomb interaction Vc, we neglect the vertex correction as same

as electron-phonon interaction. Here, you should note that the Migdal’s

theorem does not hold for the Coulomb interaction.

The self-energy has two type: normal self-energy Σc
N and anomalous self-

energy Σc
A. The contribution of Σc

N is already included to the normal Green’s

function GN .

We assume that the contribution of normal Green’s function GN to self-

energy is already included. The remaining part Σc
N =

∫

Vc(G − GN) is

negligible when T ≃ Tc. Therefore, we have to deal with only the following

equations.

Σc
A(iωn) = −

∑

km

Vc(k,k
′)F †(k, iωm) ≡ Vc ◦ F †, (A.53)

Vc(k,k
′) = 〈k′ ↑,−k′ ↓ |Vc|k ↑,−k ↓〉

=
∫

dr
∫

dr′
∫

dr′′ψ∗
k′(r)ψ∗

−k′(r′)
1

ǫ(r, r′′)|r′′ − r′|ψk(r)ψ−k(r′).

(A.54)
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Here, ǫ is the dielectric function.

We divide the range of ωm into (I) |ωm| < ωc and (II) |ωm| > ωc, and

define V ∗
c as the effective interaction convolved with the contribution in (II).

Σc
A = Vc ◦ F †

I+II ≡ V ∗
c ◦ F †

I . (A.55)

In the range (II), the contribution to ΣA by the phonon is negligible compared

with ω. Therefore, using (A.42), we approximate

F †
II ≃ Σc

A

ω2
m + ξ2

≡ K ◦ Σc
A. (A.56)

Then,

Σc
A = Vc ◦ F †

I + Vc ◦ F †
II , (A.57)

V ∗
c ◦ F †

I = Vc ◦ F †
I + Vc ◦K ◦ Σc

A

= Vc ◦ F †
I + Vc ◦K ◦ V ∗

c ◦ F †
I . (A.58)

Therefore, the equation of V ∗
c is as follows.

V ∗
c = Vc + Vc ◦K ◦ V ∗

c . (A.59)

If we neglect the anisotropy and assume that Vc and V ∗
c are constants,

|ωm|>ωc
∑

km

K = N(0)
|ωm|>ωc
∑

m

∫ ǫb

−ǫb

dξ
1

ω2
m + ξ2

≃ N(0) ln
(

ǫb
ωc

)

. (A.60)

The upper limit of |ξ|, ǫb ≫ ωc, is thought to be of the order of band

width. We define µ ≡ N(0)Vc and µ∗ ≡ N(0)V ∗
c . From (A.55) and (A.59),

Σc
A = T

|ωm|<ωc
∑

k′m

µ∗

N(0)
F †(k′, iωm), (A.61)

µ∗ =
µ

1 + µ ln(ǫb/ωc)
. (A.62)
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Adding this to (A.35) and solving the gap equations, we obtain

∆(iωn) =
|ωm|<ωc
∑

m

1

|2m+ 1|

[

λ(n−m) − µ∗ − δnm

∑

m′

λ(n−m′)snsm′

]

∆(iωm).

(A.63)

A.4 McMillan’s formula

McMillan’s formula is the approximated solution of the gap equation and is

used to estimate Tc of phonon-mediated superconductor.

For solving the gap equation, we use the square-well model. For the cut-

off frequency ωD = π(2N + 1)Tc, this model assumes that in the first term

in right-hand side,

λ(n−m) = λθ(ωD − |ωn|)θ(ωD − |ωm|), (A.64)

and in the third term in right-hand side,

λ(n−m) = λθ(ωD − |ωn−m|). (A.65)

Here, λ = λ(0). Therefore,

λ = 2
∫ ∞

0
dΩ

α2F (Ω)

Ω
. (A.66)

The equation becomes

(1 + λ)∆(iωn) = (λ− µ∗)
|ωm|<ωD
∑

m

∆(iωm)

|2m+ 1| . (A.67)

If we assume the solution ∆(iωn) = ∆θ(ωD − |ωn|) and substitute into

the equation,

1 + λ

λ− µ∗
=

N−1
∑

n=0

1

n + 1/2

= ψ
(

ωD

2πTc
+ 1

)

− ψ(1/2)
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≃ log
(

ωD

2πTc

)

− log

(

e−γ

4

)

≃ log
(

1.13ωD

Tc

)

. (A.68)

Tc = 1.13ωD exp

(

− 1 + λ

λ− µ∗

)

. (A.69)

Here, ψ(z) is the digamma function and γ is the Euler’s constant (See next

section).

McMillan calculated this formula and corrected it to agree with the ex-

perimental Tc data.[24] After his study, Allen and Dynes made the additional

correction and obtained the following formula.[25]

Tc =
ωlog

1.2
exp

(

−1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)

, (A.70)

ωlog = exp

(

2

λ

∫

dω
α2F (ω)

ω
logω

)

. (A.71)

This is called McMillan’s formula (also called Allen-Dynes formula).

A.5 digamma function

Here, we explain the digamma function and the Euler’s constant (also called

Euler-Masheroni constant) used at (A.68). The definition of the digamma

function ψ(z) is as follows.

ψ(z) ≡ d

dz
log Γ(z). (A.72)

Here, Γ(z) is the gamma function.

The following formula is holds due to the property of the gamma function

Γ(z + 1) = zΓ(z).

ψ(z + 1) = ψ(z) +
1

z
. (A.73)
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If we change z → m+ z and sum up m = 1 ∼ n cases,

ψ(n+ z + 1) = ψ(z + 1) +
n
∑

m=1

1

m+ z
. (A.74)

For Stirling’s formula, if n is large,

ψ(n+ z + 1) ≃ ψ(n+ 1)

=
d

dn
logn!

≃ d

dn
(n logn− n)

= log n. (A.75)

The definition of the Euler’s constant is

γ ≡ lim
n→∞

(

n
∑

m=1

1

m
− logn

)

. (A.76)

Therefore, at the limit for n→ ∞, (A.74) becomes

ψ(z + 1) = −γ −
∞
∑

m=1

(

1

m+ z
− 1

m

)

. (A.77)

If z = −1/2,

ψ(1/2) = −γ − 2
∞
∑

m=1

(

1

2m− 1
− 1

2m

)

= −γ − 2
(

1 − 1

2
+

1

3
− 1

4
· ··
)

= −γ − 2 log 2

= log

(

e−γ

4

)

. (A.78)

Therefore, (A.68) holds.
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