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Abstract

We performed three types first-principles calculations and compared the
results with experimental facts. in order to get policies for designing the
phonon-mediated superconductor with high critical temperature.

First, we simulated the critical temperature of already-known supercon-
ductors, CaSis and phosphorus, under higher pressure. The CaSiy trans-
formed from the trigonal structure to the AlBy structure at 17 GPa. After
the transition, the critical temperature increases because atomic oscillation
direction of Es, phonon mode is parallel to the covalent bonding direction
of silicons. As for the phosphorus, the critical temperature of modulated
structure is lower than that of simple cubic and simple hexagonal structures,
because the density of states at Fermi level is reduced by the modulation.

Second, we simulated the critical temperature of NaFeAs, NaCoAs and
NaNiAs. NaFeAs has been found as FeAs superconductor. NaCoAs and
NaNiAs are virtual materials in which Fe atoms of NaFeAs are substituted
by Co or Ni. We simulated the critical temperature of three materials and
determined NaFeAs is not phonon-mediated superconductor because the cal-
culated T, = 0.034 K is lower than experimental data T, = 12 K. The NaNiAs
has the largest electron-phonon interaction and the highest 7, because some
phonon modes expand and contract the covalent bondings of Ni and As. As
for the NaFeAs and the NaCoAs, these modes do not have strong interaction
because they have non-covalent bonding bands at Fermi level.

Third, we simulated the property of CuAlO, under higher pressure or with
doped. The superconductivity of CuAlO, has not been observed, while this
is already known as semiconductor. At P, = 60 GPa, the CuAlO, transforms
from the delafossite structure to the leaning delafossite structure. The energy

gap rises and falls in both structure phases. The metalization is not observed



under 100 GPa. The Self-interaction correction remove the discrepancy of the
energy gap between experimental data and the results calculated within local
density approximation. The 0.2 ~ 0.3 hole-doped CuAlO, has relatively high
T, ~ 40 K because the atomic oscillation direction of A;L; phonon mode is
parallel to th direction of O-Cu-O covalent bondings. Doped over 0.6 hole, the
critical temperature decreases to about 10 K because the electrons strongly
interacting with A;L,; mode phonon are removed.

From these results, we got two policies for designing the high T, phonon-
mediated superconductor: 1)The direction of covalent bonding is parallel
to that the atomic oscillation direction of some phonon mode, and 2)The

covalent bonding bands locate at Fermi level.
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Chapter 1

Introduction

Designing new materials is a big issue among the theoretical study. It requires
the reliable theory which is able to reproduce the experimental facts. As
for phonon-mediated superconductors, the strong coupling theory enables us
to quantitatively calculate the superconducting critical temperature. This
explain the superconductivity of pure substances, A15 structure materials,
MgBs and so on. In this thesis, we study the several materials by using the
strong coupling theory and would like to understand what determines the
critical temperature T, of the phonon-mediated superconductors.

First, the targets are CaSi, and phosphorus. These are already-known
pressure-induced superconductor. We predicted the crystal structure and the
critical temperature in pressure range where these materials have not been
researched in theoretical study.

Second, the targets are NaFeAs, NaCoAs and NaNiAs. NaFeAs has been
found as FeAs superconductor while NaCoAs and NaNiAs have not been
found as the real materials. We simulated the critical temperature of three
materials and discussed the difference in their electronic structures and su-

perconducting properties.



Third, the target is CuAlO,. This is already known as semiconductor. It
has not been observed that CuAlO, shows the superconductivity. We calcu-
lated the property of pressured and doped CuAlO, and discussed whether it
can be high T, superconductor.

Finally, we concluded the policy for designing the high 7, phonon-mediated

superconductor.



Chapter 2

CaSiQ

2.1 Introduction

At the ambient pressure. calcium di-silicide, CaSi,, has a rhombohedral crys-
tal structure. In this structure, CaSi, is a semimetal and not a superconduc-
tor down to 0.03 K.[1] At about 10 GPa, the rhombohedral CaSi, transforms
into a trigonal structure.[2] The trigonal structure has corrugated honeycomb
Si networks. Between two Si networks, Ca atoms are intercalated, forming a
triangular lattice plane. Each Ca atom locates just above the center of one
corrugated hexagon of Si atoms. In this structure, CaSi, is a superconductor
with the critical temperature 7, ~ 3 K.[3] At about 15 GPa, structural phase
transformation takes place and the corrugated Si networks become "nearly”
flat. If the Si networks is ”perfectly” flat, the crystal structure is AlBy struc-
ture. Because the Si networks remain corrugated, this structure of CaSis is
called the AlBs-like structure.[2] In the AlBo-like structure, 7. increases up
to around 14 K. This temperature is the highest among Si-based compounds.
Here, we note that before these experimental findings, the structural tran-

sition from the trigonal structure to the AlB, structure has been predicted



theoretically.[4]

After MgB, have been found to be a high-temperature superconductor,[5]
the superconductivity in the AlB, structure attracted much attention. As for
CaSiy, theoretical studies were done in low-pressure phases.[6, 7] Satta et al.
considered possibility of the AlB, structure under high pressure and however,
they could not find this structure with fixed cell parameters.[8] The electron-
phonon interaction and the superconducting critical temperature were rarely
estimated theoretically.[9] Thus, CaSi; has not been studied so often in the
literature compared with MgB..

The purpose of this study is to clarify stable structures and supercon-
ductivity of CaSi, under high pressure. Using first-principles calculation,
we optimized the crystal structures and studied electronic band structures,
phonon dispersion and superconducting critical temperatures. Our results
show that CaSiy transforms to the AIBy structure and that 7. will increase

after the transition.

2.2 Methods

First-principles calculations were performed within the density functional
theory[10, 11] with a plane-wave pseudopotential method, as implemented
in the Quantum-ESPRESSO code.[12] We used the Perdew-Wang general-
ized gradient approximation exchange-correlation functional[13] and ultra-
soft pseudopotentials.[14] For the pseudopotentials, Ca 3d electrons were
also included in valence electrons. Atomic positions and cell parameters
were optimized by the constant-pressure variable-cell relaxation using the
Parrinello-Rahman method[15] without any symmetry requirements.

We used a 12 x 12 x 12 k-point grid (electron) and a 4 x 4 x 4 g-point

10



grid (phonon) in the Monkhorst-Pack grid.[16] The energy cut-off for the
wave functions is 16 Ry and that for the charge density is 64 Ry. Though
these values may be comparatively small, the accuracy is enough. This is
confirmed by the calculations with larger energy cut-offs of 40 Ry and 160 Ry,
resulting in ”almost the same” optimized structure.

We estimated superconducting critical temperature 7. using the strong
coupling theory.[17] The electron-phonon matrix is calculated by the density
functional perturbation theory.[18]

The space-group of the trigonal lattices of CaSiy is P3m1 (No.164) and
that of AlB, structure is P6/mmm (No.191). The Wyckoff position of the
calcium atom at the la site of P3ml is given by (0,0,0), while those of
two silicon atoms at the 2d sites are (1/3,2/3, 2) and (2/3,1/3, 2) with the
internal parameter z. The trigonal structure with z = 0.5 is identical to the
AlB, structure.

In this study, we consider the pressure range of P = 10 ~ 20 GPa because

superconductivity does not appear below 10 GPa.

2.3 Results and Discussion

2.3.1 Structural optimization under high pressure

Fig. 2.1 shows optimized lattice parameters. From 10 to 15 GPa, the calcu-
lated lattice parameters agree with experimental data.[2] The relative errors
are less than 2%. Above 17 GPa, however, the calculated lattice parameters
disagree with experimental data. Especially, calculated internal parameter z
is 0.5, while in the experiment it does not reach 0.5. Our result shows that
CaSi, has the AlB, structure above 17 GPa where experiment shows that
CaSiy has AlB,-like structure.

11
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This discrepancy is not attributed to the pseudopotential method used
here. We checked results of all electron methods: the full potential linear
muffin tin orbital method and the full potential linearized augmented-plane
wave method. The former is implemented in the packaged code developed
by S. Y. Savrasov and D. Y. Savrasov.[19] The latter is implemented in the
WIEN2k code.[20] By using both methods, we optimized the structure with
constant cell volume. The results indicate that the AlBy structure is more
stable than the trigonal structure under high pressure. Here, we note that
the pressures obtained by the first-principles calculation could have an error.
For example, the pressures of calcium calculated by the same method as this
study are much lower than experimental data.[21]

To test stability of the AlBy structure, we checked the phonon frequency in
the whole Brillouin zone. Only real frequencies appear all over the Brillouin
zone as shown later (Fig. 2.6). We expect that the AlB, structure will be
observed under higher pressure in the experiment.

Fig. 2.2 shows enthalpy of some atomic structures. Each structure is given
by optimizing ¢/a with fixing z. This figure indicates that CaSiy abruptly
transforms from the trigonal structure (z = 0.42) to the AlBy structure
(z = 0.5). In our calculation, CaSiy does not transform from the trigonal

structure to the AlBs-like structure (z = 0.44).

2.3.2 Electronic band structure

Fig. 2.3(a) and (b) show the band structures of CaSi, in trigonal and ALB,
structures. An electronic band structure of CaSi, in the AlBy structure was
studied in earlier works.[4, 8] There are some differences between the present
result and the earlier one. This is due to whether the lattice parameters are

optimized (this study) or not (earlier one).
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Figure 2.2: Enthalpy of CaSi; under high pressure. Lattice parameters of
each structures are determined with a fixed z. The enthalpy of AlB, structure

(z =0.5) is set to be 0 Ry.

Fig. 2.3 (a) shows the band structure of the trigonal structure. Bands
crossing the Fermi level show Si p,, Ca d and Si p,-Ca d hybridized characters.
Since the Si planes are corrugated, p. bands of Si should rather be called
" (7*)-like” band.

Fig. 2.3 (b) shows the band structure of the AlB, structure. First, we
can observe d-character in some ¢* bands near the Fermi level. We should
note that for a Ca compound under high pressure Ca d-orbitals often appear
at the Fermi level. For example, appearance of the d character was pointed
out theoretically for CaSi in the CuAu structure and CaSiz in the CuAus
structure.[6] Second, the 7* band lies also near the Fermi level. Comparing
with Fig. 2.3 (a), it looks that the electrons are moved from the o* bands
to 7 bands. Third, the doubly degenerated p-d hybridized bands at the A
point form the Fermi pockets. Along the A-L symmetry line, one of those

bands becomes almost dispersion-less. The dispersion-less band enhance the
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density of states around the Fermi level as shown below.

Fig. 2.4 shows the pressure dependence of density of states at the Fermi
level. Through the structural transition, the density of states increases, be-
cause in the AlB, structure the s, d and o*-d bands go down to Fermi level

and make electron pockets as shown in Fig. 2.3.

1.8 T T T T

1.6

1.4

1.2

1

0.8

Density of state [states/eV]

0.6 1 1 1 1
10 12 14 16 18 20

Pressure [GPa]

Figure 2.4: Pressure dependence of the density of states at the Fermi level.

It suddenly increases when the structure transforms to the AlBs structure.

Here, we compare the electronic band structure of CaSi, with that of
MgB, (Fig. 2.3 (c)). These materials in AlB, structures have both 7- and
o-bands of sp?-hybridized orbitals. The o bands of MgB, looks to be partly
hole-doped creating small two-dimensional hole pockets.[22] In CaSiy, on the
other hand, o bands are fully occupied and a flat ¢* band lies along the A-L
line around the Fermi level. The MgB, has only 7- and o-bands. The CaSi,,
however, has additional bands around the Fermi level: Ca 3d bands, Si 3s

band, and o*-d hybridized bands.
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2.3.3 Superconducting critical temperature

Fig. 2.5 shows superconducting critical temperature. Our results that through
the structural transition, 7, suddenly increases and reaches to a value one
order of magnitude larger than those in the low pressure phase. In the trig-
onal structure, calculation results are almost one-tenth of the experimental
data,[23] which is about 3 ~ 4 K. This discrepancy may be due to utilization
of an isotropic approximation in the Eliashberg theory (See Appendix).

2 T T T
01 I I I I
15 ¥ _
o
— \.\'/./o—o
z 1L 0 4T ]
g 101112131415
Pressure [GPa]
05 |
0 P R R T I T R T
0 5 10 15 20

Pressure [GPa]

Figure 2.5: Pressure dependence of T.. From 10 to 17 GPa, CaSiy has the
trigonal structure with the corrugated silicon network and above 17 GPa, it

transforms to the AlBy structure with the perfectly flat silicon network.

Let us discuss why T increases after the structural transition. According
to the Allen-Dynes modified McMillan’s formula,[24, 25] T is given by three
factors: the electron-phonon interaction A, the logarithmic averaged phonon

frequency wiog, and the screened Coulomb interaction p*, in the following

Wiog 104(1 + )\)
T — _ . 2.1
12 P < N — (1 + 0.62)) 2.1)

form.
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Here A and wi,g are obtained by the density functional perturbation theory.
As for p*, we assume the value p* ~0.1. This value holds for weak correlated
systems. In this study, the critical temperature is determined by A and wje,.
The table 2.1 shows A and wioe. While wy,, decreases about 10%, A increases

about 50%. Therefore, the increase of A leads to the increase of T,.

structure A Wi K]
trigonal(10GPa) 0.27 300
AlB, (20GPa) 041 280

Table 2.1: Electron-phonon interaction A and logarithmic averaged phonon

frequencies wiog.

Here, we analyze the electron-phonon interaction. The parameter A is

given explicitly as follows.

A=2 /OOO dw&z(w)? (2.2)

using the Eliashberg function o?F (w),

) ~ N(0) Yig | M q|25(w — Wyq)0(ek)0(Ektq)
o Flw)= Zk:6(5k>5(5k+Q> - (23)

Here, N(0) is electronic density of states with a single spin component at the

Fermi level, which is set to be 0. w,q and ey are phonon and electron energies.
M5, 4 is the electron-phonon matrix elements. For the mode analysis, we
introduce partial electron-phonon interaction A,q so that A = 37,4 Ayq. It is

defined by the following form.

2N(0) Xk ’M£i+q’25(5k)5(5k+q)

Mo =
4 Woq Zkq 0(Ex)0(Ektq)

(2.4)

18



Using \,q we find the most influential phonon mode for the supercon-
ductivity and 7. In Fig. 2.6, the magnitude of ), is represented by radius
of circle on each phonon dispersion. This figure indicates that, in the AlB,
structure, the highest mode at the I' point is effective. This mode is the Ey,
mode. In this mode, the neighboring silicon atoms oscillate in the anti-phase
within a Si plane. This feature is the same as that observed in MgB,.[26]
The Eq, mode is a key of the high-temperature superconductivity of MgBs.

In addition, we see another effective mode in the AlB, structure. This
mode is the B;, mode. In this mode, the neighboring silicon atoms oscillate
in the anti-phase perpendicularly to a Si plane. This displacement makes the
Si plane corrugated. Frequencies of By, are softened around the I' point. Due
to the softening, A,q has a large value. However, the softening may reduce

Wiog given by

2 [ R
Wiog = €XP <X/o dw&T(LU) logw> , (2.5)

and does not necessarily work to increase the critical temperature as ex-
emplified in iodine.[27] In the case of CaSiy, the AlB, structure has higher
frequency optical branches than the trigonal structure. As a result, wi,, and
T are not decreased by the phonon softening. This means that both By, and
Es, phonon modes contribute to enhancement of electron-phonon interaction

and superconducting critical temperature.

2.4 Summary

In this chapter, we optimized the crystal structure of CaSi; under high pres-
sure by using first-principles calculations. Our results show that AlBs struc-
ture is stable above 17 GPa. The density of states at the Fermi level in
the AlB, structure is higher than that in the trigonal structure. After the

19
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transition, Eg, and B;, phonon modes have a strong interaction with elec-
trons because corrugated Si network becomes flat. High frequencies of the
Esy, mode phonon prevent decrease of wi,s and T¢. by By, phonon softening.
These findings suggest that the AlB, structure has higher 7T, than the trigonal

structure.
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Chapter 3

Phosphorus

3.1 Introduction

Phosphorus has a A17 structure (phase I) at the ambient pressure. The A17
structure transforms to the A7 structure (phase II) at 4.5 GPa. The A7 phos-
phorus transtorms to simple cubic structure (phase III) at 10GPa. In this
structure, phosphorus shows the superconductivity. The critical temperature
T. has a maximum of 9.5 K at 32 GPa. and decreases to 4.3 K at 100 GPa.[28§]
Akahama et al. reported that through an intermadiate structure (phase IV),
a simple cubic phosphorus transforms to a simple hexagonal structure (phase
V) at 137 GPa.[29] Under higher pressures, the body centered cubic struc-
ture (phase VI) has been theoretically predicted[30] and later experimentally
observed at 262 GPa.[31] At this time, the crystal structure of IV phase, how-
ever, was not identified experimentally. Ordinary the Rietveld analysis based
on a knowledge of the monoclinic symmetry was not successfull, presumably
owing to he complexity of the lattice.

To determine the structure of IV phase, many theoretical studies have

been reported. Ahuja considered a structure of space group Imma.[32] Ehelrs

22



and Christensen investigated relative stability of the Ba-IV structure which
is an incommensurate composite structure against sc and sh.[33] The calcu-
lated x-ray diffraction patterns of these structures, however, disagree with
the experimental pattern of IV phase. In 2005 Ishikawa et al. explored the
structure of IV phase by the first-principle metadynamics simulation and pre-
dicted another candidate structure which has the incommensurately modu-
lated structure.[34] The calculated diffraction pattern of the modulated struc-
ture matches the experimental pattern.

Recently Fujihisa et al. has experimentally determined the structure of
IV phase by a Rietveld analysis.[35] The structure if the incommensurately
modulated structure along c¢ axis with a monoclinic distortion v = 97.8°.
They also reported that the modulation wave vector along c axis is 0.268
at 113 GPa and it decreases to 0.266 at 137 GPa. This structure is almost
identical to Ishikawa’s theoretically predicted structure.

As shown above, theoretical and experimental studies showed that I
V phase structure is modulated structure. Superconducting properties in this
structure, however, has not been studied well theoretically and experimen-
tally. In this study, we have simulated superconducting critical temperature

in the modulated structure by using first-principles calculation.

3.2 Methods

The crystal structure of IV phase is incommensurate modulated structure.
It belongs to the superspace group C'mmm(007)s00 with v = 0.2673(1/~ =
3.741) at 125 GPa.[35] It needs a large supercell to deal with the incommensu-
rate structure exactly by using first-principles calculation. We approximated

the incommensurate structure by commensurate one with 1/y = 4. Fig. 3.1
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shows the approximated structure. Atomic positions of the approximated
structure in crystal coordinate are following; (0,0,0),(0,0,1/2), (y,y,1/4),
and (_y7 Y, 3/4)

A A SRR
vo o
oou il

(a) (b)

Figure 3.1: Approximated crystal structure of phosphorus IV phase(1 /vy ~ 4):
(a)the xy-plane top view, (b)the yz-plane side view.

First-principles calculations were performed within the density functional
theory[10, 11] with a plane-wave pseudopotential method, as implemented in
the Quantum-ESPRESSO code.[12] We employed the Perdew-Burke-Ernzerhof
generalized gradient approximation exchange-correlation functional[36] and
ultra-soft pseudo-potentials.[14]

We optimized crystal cells of simple cubic phase(10 ~ 100GPa), IV phase
(110 ~ 130GPa), and simple hexagonal phase (140 ~ 300GPa) and calcu-
lated superconducting critical temperatures in these phases. Atomic posi-
tions and cell parameters were optimized by the constant-pressure variable-
cell relaxation using the Parrinello-Rahman method[15] without any sym-
metry requirements. We estimated the superconducting critical temperature
T. using the strong coupling theory.[17, 25] The electron-phonon matrix was

calculated by the density functional perturbation theory.[18]

24



In electronic calculation, we used 32 x 32 x 32 (sc, sh) and 32 x 32 x 8 (IV)
k-point grid in the Monkhorst-Pack grid.[16] In phonon calculation, we used
8 x 8 x 8 (sc, sh) and 8 x 8 x 2 (IV) g-point grid in the same grid. Energy
cut-off for wave function is 40 Ry and that for charge density is 320 Ry. These
k-point meshes and cut-off energies are fine enough to achieve convergence

within 0.1mRy/atom in the total energy.

3.3 Results and Discussion

3.3.1 Structural optimizations

Calculated lattice parameters are consistent with results simulated by Ishikawa
et al..[34] We observe that only real frequencies appear all over the Brillouin
zone. This result indicates that approximated structure is sufficient to discuss

superconducting properties.

3.3.2 Superconducting critical temperature

Fig. 3.2 shows calculation results of T;, A and wj,. The calculated critical
temperature above 30 GPa is consistent with observed values in experiment.[28]
Below 30 GPa, however, calculated T. is decreasing, while experimentally
observed one is increasing. This discrepancy may mean that A7 structure
remains until 30 GPa. The IV phase has lower critical temperature than the
other phases.

Let us examine the origin of the low T.. According to the Allen-Dynes
modified McMillan’s formula,[24, 25] T, is given by three factors: the electron-

phonon interaction A, the logarithmic averaged phonon frequency wiyg, and
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Figure 3.2: Calculated superconducting parameters
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the screened Coulomb interaction p*, in the following form.

Wiog 1.04(1 + A)
T, = = . 3.1
12 P < A — (1 + 0.62)) (3:1)

Here A\ and w,g are obtained by the first-principle calculations using the den-
sity functional perturbation theory. As for p*, we assume the value p* = 0.1.
This value holds for simple metals. In this study, the critical temperature is
determined by A and wje. Comparing pressure dependence of these, we found
that the pressure dependence of the electron-phonon interaction determines
that of superconducting critical temperature.

The electron-phonon interaction is strongly affected by density of states
(DOS) at Fermi level. Fig. 3.3 shows calculated electronic DOS at Fermi
level. The modulated structure has lower DOS than sc and sh. The small
DOS is related to the modulation. The detail has already been discussed in
Ishikawa’s doctoral thesis[37] and Marqués’s study.[38] We concluded that
the small DOS decreases the electron-phonon interaction and that the small

A decreases the superconducting critical temperature.
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Figure 3.3: Calculated electronic density of states at Fermi level.

In each structure, the electron-phonon interaction and critical temper-
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ature monotonically decrease, while the logarithmic averaged phonon fre-
quency rises and falls. The electron-phonon interaction and the logarithmic

averaged phonon frequency are defined as followings.
oo 2 F

2 / 1) (3.2)
0 w

2 [ R
Wiog = €XP (X/o dw&T(cd)logw>, (3.3)

Fig. 3.4 shows the density of states of phonon. This figure indicates the

A

hardening of phonon. The hardening decreases o F(w)/w and increases log w.
Therefore, these two competing effects make wio, rises and falls, while the

former increases \.
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Figure 3.4: Calculated density of states of phonon.

3.4 Summary

In this chapter, we simulated the superconducting critical temperature of
phosphorus under high pressure. The IV phase has lower critical temperature

than the other phases. The low T is attributed to the small electronic DOS,
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which is decreased by the modulation. As pressure increases, the electron-

phonon interaction and 7, decreases due to the hardening of phonon.
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Chapter 4

NaFeAs

4.1 Introduction

Recently, FeAs superconductors attract many attention, because the maxi-
mum of their superconducting critical temperatures (maximum of 7t ~ 55 K)
is the highest among non-cuprate superconductors. [39, 40, 41] Many exper-
imental and theoretical studies suggest that the superconductivity of FeAs
compounds are not explained only by electron-phonon interaction. But, we
should note that the electron-phonon interaction may be important because
the isotope effect is observed. NiAs compounds are also superconductors
and are considered to be conventional phonon-mediated superconductors.
According to our best knowledge, superconductivity of CoAs has not been
observed.

To study the material dependence of the pnictides is main purpose of this
chapter. For this purpose, we considered the electronic and phonon struc-
ture of NaFeAs and substitutions of Fe by other transition metals: Co and
Ni. NaFeAs is one of pnictide superconductors and shows superconductivity

without doping at the ambient pressure,[42, 43] while many FeAs compounds
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show superconductivity under pressure or with doped.

4.2 Methods

In this study, targets are NaFeAs, NaCoAs and NaNiAs. We calculated the
electronic band structure, the density of states, the Fermi surface, the phonon
dispersion, the electron-phonon interaction, and the superconducting critical
temperature of these materials as following methods.

First-principles calculations were performed within the density functional
theory[10, 11] with a plane-wave pseudopotential method, as implemented in
the Quantum-ESPRESSO code.[12] We used the Perdew-Burke-Ernzerhof
generalized gradient approximation exchange-correlation functional[36] and
ultra-soft pseudo-potentials.[14] For the pseudopotentials, 4s and 4p electrons
of the transition metal atoms(Fe, Co and Ni) were also included in the valence
electrons.

Atomic positions and cell parameters were optimized by the constant-
pressure variable-cell relaxation using the Parrinello-Rahman method|[15]
without any symmetry requirements. Initial cells of optimizations are the
experimental values of NaFeAs at ambient pressure.The space-group sym-
metry of NaFeAs is classified in P4/nmm (No.129). The Wyckoff positions
of Fe at 2a sites are given by (3/4,1/4,0) and (1/4,3/4,0), while those of Na
(and As) at 2c sites are given by (1/4,1/4, z) and (3/4, 3/4, —z) with internal
parameter z. We estimated superconducting critical temperature 7, using
the strong coupling theory.[17] The electron-phonon matrix is calculated by
the density functional perturbation theory.[18] We used 16 x 16 x 16 k-point
grid (electron) and 4 x 4 x 2 g-point grid (phonon). The energy cut-off for
wave functions is 30 Ry and that for charge density is 240 Ry.
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4.3 Results and Discussion

4.3.1 Structural optimizations

Table 4.1 shows the optimized lattice constants and internal parameters. To
test the stability of virtual materials (NaCoAs and NaNiAs), we checked
the phonon frequencies in the whole Brillouin zone. Only real frequencies
appear all over the Brillouin zone as shown latter (Fig. 4.4). We expect the

experimental feasibility for synthesis of these virtual materials: NaCoAs and

NaNiAs.

alau] c/a 2Na zas Vo [au?]

NaFeAs | 7.3795 1.7975 0.6585 0.1913 722.1248
NaCoAs | 7.4257 1.7636 0.6567 0.1895 722.3534
NaNiAs | 7.6197 1.6944 0.6426 0.1873 749.6000

Table 4.1: Optimized lattice parameters of NaFeAs, NaCoAs and NaNiAs.

4.3.2 Electronic band structures

Fig. 4.1 shows the band structure, the density of states and the Fermi surface
of NaFeAs. There are electron pockets around the M point and hole pockets
around the I' point, which displays a semi-metallic feature. At the Fermi
level, only Fe 3d bands appear. These bands are not covalent bonding bands.
The cylindrical Fermi surfaces at the center and corner of Brillouin zone have
two-dimensional nature.

Fig. 4.2 shows the band structure, the density of states and the Fermi
surface of NaCoAs. Around the I' point, the hole pockets are occupied and

electron pockets appear. In addition to transition metal 3d bands, As 4p
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Figure 4.1: Electronic band structure (top), Density of states (center) and

Fermi surface (bottom) of NaFeAs.
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Fermi surface (bottom) of NaNiAs.
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bands appear at the Fermi level. Two-dimensional feature of Fermi surfaces
becomes less clear.

Fig. 4.3 shows the band structure, the density of states and the Fermi
surface of NaNiAs. The hole pockets go down deeply and band structure is
metallic. At the Fermi level, Ni 3d-As4p anti-bonding bands appear. Fermi
surface is three dimensional ant the two-dimensional feature disappears.

Comparing Fig. 4.1, 4.2 and 4.3, a rigid band picture is roughly realized.
Correspondence of bands is clear. The band structures of NaCoAs and Na-
NiAs are approximately given by heavy electron doping in the band structure

of NaFeAs.

4.3.3 Superconducting critical temperature

Table 4.2 shows superconducting critical temperature of NaFeAs, NaCoAs
and NaNiAs. As for NaFeAs, the calculated T, are about 0.3% of the exper-
imental data, which is about 12 K. [42, 43] This discrepancy suggests that
NaFeAs may not be a phonon-mediated superconductor. An another group
also reported the low critical temperature of NaFeAs calculated within the

density functional perturbation theory.[44]

T. [K] A wieg K]
NaFeAs | 0.034 0.275 178
NaCoAs | 0.13 0.312 181
NaNiAs | 3.5  0.698 103

Table 4.2: Superconducting temperature T, electron-phonon interaction A
and logarithmic averaged phonon frequencies wios of NaFeAs, NaCoAs and

NaNiAs. The definition is explained in the section 2.3.3.
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Table 4.2 shows that T, of NaNiAs is the highest among three compounds.
Let us discuss why T of NaNiAs is large. According to the Allen-Dynes
modified McMillan’s formula,[24, 25] T, is given by three factors: the electron-
phonon interaction A, the logarithmic averaged phonon frequency wiog, and

the screened Coulomb interaction p*, in the following form.

T. = — . 4.1
1.2 P ( N — (1 +0.62)) (41)

Here A and wi,g are obtained by the density functional perturbation theory.
As for p*, we assume the value p* ~0.1. This value holds for weak correlated
systems. In this study, the critical temperature is determined by A and wje,.

Comparing NaFeAs and NaCoAs, we do not find a large difference in A
and wieg. On the other hand, there are large difference between NaNiAs and
the others. NaNiAs has more than twice A and about half wi,s. The former
increases Tg, while later decreases wi,s. But, A increases 7T, exponentially
while wiog increases Tt linearly. Therefore, T, of NaNiAs is the highest among
three compounds.

Here, we analyze the electron-phonon interaction. For the mode analysis,
we introduce partial electron-phonon interaction A,q so that A =32, g, as
same as section 2.3.3.

Using A,q, we find the most influential phonon mode for the supercon-
ductivity and T,. Fig. 4.4 shows the phonon dispersion of NaFeAs, NaCoAs
and NaNiAs. In this figure, the magnitude of \,4 is represented by radius of
circle on each phonon dispersion.

The phonon band structure of NaCoAs is similar to that of NaFeAs, and
the partial electron-phonon interaction, too. On the other hand, NaNiAs has
lower frequency than the others. The low frequency of NaNiAs means the
softness of the material. This softness and lattice instability is attributed to

the occupation of the anti-bonding bands at Fermi level as shown in fig. 4.3.
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In NaNiAs, low frequency phonon modes have large electron-phonon in-
teraction. These phonon modes expand and contract the covalent bondings
of As and transition metal. Not only NaNiAs but also NaFeAs and NaCoAs
have these phonon modes because the types of phonon modes are determined
only by the lattice symmetry and the lattices of three materials are same.
In spite of same phonon modes, why only NaNiAs has large electron-phonon
interaction 7 The difference is attributed to the bands at Fermi level. In Na-
NiAs, the electrons in anti-bonding bands at Fermi level can interact largely
with the phonon modes because they are involved in bondings which are
expanded and contracted by the phonons. As for NaFeAs and NaCoAs, the

bands at Fermi level are the non-covalent bonding bands as seen in fig. 4.1.

4.4 Summary

In this chapter, we compared the electronic and phonon properties of NaFeAs,
NaCoAs and NaNiAs. We find a realization of rigid band picture among three
compounds. NaFeAs is semimetalic feature and has two-dimensional Fermi
surface, while NaNiAs is metal and has three-dimensional Fermi surface.
The NaNiAs has the largest electron-phonon interaction and the highest
superconducting critical temperature, because some phonon modes expand
and contract the covalent bondings of Ni and As. As for the NaFeAs and the
NaCoAs, these modes do not have strong interaction because they have non-
covalent bonding bands at Fermi level. From these findings, we conclude that
it is important for the covalent bonding (or anti-bonding) bands to locate at

Fermi level.
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Chapter 5

CU.AIOQ

5.1 CuAlO; under high pressure

5.1.1 Introduction

CuAlQO,, is known as p-type transparent conductor. The "p-type” trans-
parent conductor is rare and important, because it is necessary for the p-n
junction of the transparent conductors. Many appricaltions of CuAlO, are
expected: flat panel displays, solar cells and the high-efficient thermo-electric-
power materials, and so on.

Katayama-Yoshida and co-workers have calculated the Fermi surface of
p-type doped CuAlOs by shifting the Fermi level rigidly.[46] The calculated
Fermi surface is nesting, showing two-dimensional characteristics. These au-
thors expected that the nesting Fermi surface may cause a strong electron-
phonon interaction and a transparent superconductivity for visible light.

While they considered the p-type doped CuAlO,, semiconductors can be
metallized not only by doping, but also by pressure. As stated above, we

are better informed about the pressure than the doping. In addition, the
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pressured system is calculated more easily than the doped one. Therefore,
first we consider the pressured CuAlOs.

The purpose of this section is to clarify the stable structure and band
gap of CuAlOy under high pressure and examine whether it is metallized
or not by using first-principles calculations. Our results show that CuAlO,
transforms to a leaning delafossite structure and that the energy gap rises

and falls as pressure increases in both the structures.

5.1.2 Methods

First-principles calculations were performed within the density functional
theory[10, 11] with a plane-wave pseudopotential method, as implemented in
the Quantum-ESPRESSO code.[12] We employed the Perdew-Burke-Ernzerhof
generalized gradient approximation exchange-correlation functional[36] and
ultra-soft pseudopotentials.[14] For the pseudopotentials, Cu 3d electrons
were also included in the valence electrons.

We used 16 x 16 x 4(delafossite) and 8 x 8 x 4(chalcopyrite) k-point grids.
The energy cut-off for wave functions is 40 Ry and that for charge density is
320 Ry. This k-point meshes and cut-off energies are fine enough to achive
convergence within 0.1mRy/atom in the total energy.

Atomic positions and cell parameters were optimized by the constant-
pressure variable-cell relaxation using the Parrinello-Rahman method|[15]
without any symmetry requirements. Some materials similar to CuAlO5(CuAlS,,
CuAlSey, CuAlTey) have a chalcopyrite structure.[47] In order to research
whether a chalcopyrite structure can appear under high pressure, we started
optimization from not only delafossite, but also chalcopyrite structure. Ini-
tial cell parameters of the preliminary calculation are the experimental values

at ambient pressure.[48]
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CuAlO,, has a delafossite structure at atmospheric pressure.[49] The unit
cell of the delafossite structure is represented by a hexagonal cell or a rhom-
bohedral cell. Fig. 5.1(a) shows the conventional hexagonal cell of CuAlOs.

For convenience, the hexagonal cell is used here.

5.1.3 Results and Discussion
Structural optimizations under high pressure

Under lower pressure, the local stable structure is delafossite structure and
no structural transition is found. Under higher pressure, a new structure
phase appears as a stable structure. Fig. 5.1(b) shows the hexagonal cell
of this new structure. We call this structure a leaning delafossite structure
because the crystal structure seems to be leaning.

Fig. 5.2 shows optimized cell parameters. At 60 GPa, lattice constant a
increases slightly and ¢/a decreases. After the structural transition, angle «
decreases from 90°, and oxygen atoms at (0,0, +z) move to (+z, £2x, +2).
The other oxygen atoms at (2/3,1/3, £z + 1/3),(1/3,2/3, £z + 2/3) move
similarly. Table 5.1 shows our results and previous theoretical studies.[50, 51]

Our results agree with the previous results well.

0GPa 30 GPa
alA] c/a 2 alA]  c/a z
This study | 2.861 5.9690 0.1101 | 2.704 6.1670 0.1088
Ref.50 2.839 5.9331 0.1099 | 2.698 6.065 0.1089
Ref.51 2.835 5.999 0.11 |2.713 6.2 0.1088

Table 5.1: Comparison of calculated cell parameters a,c/a and z with previ-
ous studies.[50, 51] Note that some parameters are not written explicitly in

these papers. We read these parameters from the graphs.
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(b) leaning delafossite structure.

Figure 5.1: Side view of crystal cells. These cells contain Cu, O, and Al atom

layers from the top. 13
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Fig. 5.3 shows the enthalpies of delafossite, leaning delafossite, and chal-
copyrite structures. Here, the enthalpy of the delafossite structure is set to
be 0 Ry. The critical pressure of the structural transition from delafossite to
leaning delafossite is 60 GPa. As pressure increases, the enthalpy of the chal-
copyrite structure increases. Therefore, we conclude that under high pressure
CuAlO;, does not transform to the chalcopyrite structure. The result that
no structural transition occurs under 20 GPa is consistent with experimental

data.[52]
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Figure 5.3: Enthalpies under high pressure. The enthalpy of delafossite

structure is set to be 0 Ry.

Table 5.2 shows total energy, volume and enthalpy of delafossite and lean-
ing delafossite structure at 100 GPa. The leaning delafossite structure has
higher total energy than delafossite structure, though the former has lower

enthalpy than later. On the other hand, the leaning delafossite structure
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has smaller volume than delafossite structure. Therefore, the small volume

leaning delafossite structure is important for stability under high pressure.

Total energy [Ry] Volume [a.u.?] enthalpy [Ry]

delafossite -198.232535 198.1865 -196.885303
leaning delafossite -198.197797 190.8753 -196.900758

Table 5.2: Total energy, volume and enthalpy of delafossite and leaning de-
lafossite structure at 100 GPa.

Pressure dependence of the density of states and energy gap

Fig. 5.4 shows pressure dependence of the energy gap under high pressure.
In both structure, the pressure dependence of the energy gap are same: rises
and falls. At 60 GPa, the structural transition occurs and the energy gap
jumps. In the pressure region from 0 GPa to 30 GPa, the calculated indirect
energy gap follows as £, = 0.0149P + 1.84[eV]. This pressure coefficient is
consistent with experimental data.[52] From 30 GPa to 60 GPa, it follows as
E, = —0.00343P + 2.37 [eV].

The CuAlO; has a Cu 3ds,2_,2-O 2p, anti-bonding state and a Cu 4p, ,
state as conduction bands. As pressure increases, the anti-bonding state rises
because of the bonding length of O-Cu-O shorts. On the other hand, the band
width of a Cu 4p, , state is extended. because the distance between Cu atoms
decreases. As a result, a transition width between valence and conduction
band is reduced. These two cometing pressure dependencies make the energy
gap rises and falls.

Near 60 GPa, the energy gap decreases as pressure increases. As shown
in Fig. 5.2(a), the structural transition expands lattice constant a. This

reverse pressure effect is the reason why the energy gap jumps.
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Figure 5.4: Pressure dependence of the energy gap under high pressure.

5.1.4 Summary

In this section, we calculated the stable structure of CuAlOy under high
pressure and found that it transforms from the delafossite structure to the
leaning delafossite structure at P. = 60 GPa. On the other hand, a chal-
copyrite structure is not found to be a stable structure. The energy gap rises
and falls as pressure increases in both the structures. Through the structural
transition, the energy gap is slightly expanded. The O-Cu-O dumbbell-like

coupling is stable under high pressure.
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5.2 Self-interaction correction

5.2.1 Introduction

Many first-principles calculations use local density approximation(LDA). The
simplicity of the LDA enables fast calculation and, however, causes some
errors. One of the faults is underestimation of energy gap. For example, E,
of CuAlQs is determined to be 1.84 eV by first-principle calculation as shown
in the previous section, while the experimental data is 2.96 eV.[52] One reason
of this error is the self-interaction in the energy functional. This is a Coulomb
and exchange-correlation interaction between one electron and himself. This
interaction is non-physical. For one-electron system, the sum of Coulomb,
exchange and correlation energy should be zero. In the LDA, however, this is
not always zero. The effect of non-zero self-interaction is small for itinerant
systems. As for localized systems, however, it is not negligible and often
cases some error.

Perdew and Zunger proposed the method for the self-interaction correc-
tion (SIC).[55] Their method is suitable for free atoms, but not for condensed
systems due to a large computing effort. Vogel and co-workers suggested the
alternative to Perdew’s method and applied their approach to non-magnetic
semiconductors.[54] Filippetti and Spaldin develop the Vogel’s method.[53]
Filippetti’s approach can be applied to more general cases, in particular, to
magnetic and highly correlated systems. In this study, we implemented Fil-
ippetti’s method into first-principles calculation code, Quantum-espresso[12]
and compared the energy gaps calculated within LDA and SIC.

In this section, we explained the formulation of the SIC and applied the
SIC for typical semiconductor, GaN, and CuAlQOs.
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5.2.2 Formulation

The useful SIC method is suggested by Perdew and Zunger.[55] It subtracts
the self-interaction contribution from Hartree E},[n] and exchange-correlation
energy Fy.[ny,nl,

En[n] + Ex[ny,n)] — En[n] + Exc[ng,ng] = (Eu[nie] + Exc[nis, 0]). (5.1)
Here n = n; + n; is the total electronic charge density, and n;, = |1, |* is
the density of an orbital with quantum numbers ¢ and spin ¢. In the self-
interaction term, a single orbital is fully spin polarized. Minimizing the total

energy including this term, they got one-electron equation:
{_VQ + ‘/éxt + Vh[n] + ‘/;(C[nTa nl] - ‘/h[nio'] - ‘/;cc[nw'a O]}ww = Ew%‘a- (52)

This method can improve total energies, ionization potentials, and electron
affinities of atoms. However, the application for extended systems is difficult
because self-interaction term of this approximation, —Vj[nis| — Vielnis, 0], is
orbital-dependent and vanishes as 73 (Q: the system volume).[55]

Vogel et al. improved this method by using self-interaction correlated
pseudopotential and approximating the SI in the crystal with that in the
free atom.[54] In this method, SIC is described by a non-local potential like

the usual pseudopotential.

{_v2 + Vext + Vie — Z |¢Z > VhXC[niU] < ¢i|}|¢nka >= Enkcrw)nkcr > (53)

‘/hxc [nio'] = Vh [nia] + ‘/xc [ni0'> 0] (54)

Here, ¢; is the atomic orbitals. This method is efficient for some highly
ionic compounds with atomic-like, poorly hybridized bands, such as II-VI

semiconductors.
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Filippetti and Spaldin generalized the Vogel’s method.[53] They intro-

duced the occupation numbers p;,.

Nie = Piol¢il” (5.5)
Pic = anka‘ < wnkayqsi > ‘2 (56)
nk

Vogel’s method corresponds to that p;, is 1. Introduction of p;, make appli-
cation for general cases: hybridized bands, magnetic system and metal.

For saving time, they approximated as the following:

thc[pw’@’Q] = pia‘/hxcHQSiF] (57)

This is exact for the Hartree term. At each iteration of the self-consistency,
you needs only recalculation of p;, and not recalculation of Vi.[pi,|®i]?]-
In this study, we started the formulation from the total energy. SIC-

corrected total energy is as following:

Etot = Z < wnka‘[_VQ + ‘/ext”wnka > +Ehxc - Z Ehxc [pw‘¢z’2] (58)

nko

Minimizing this total energy, we got one-electron equation:

{_v2 + Vst + Vike — Z ‘¢Z > O < ¢i‘}‘wnka >= 6nko‘wnka > (59)

Ci =< | Vielpio |04 @i > (5.10)

In addition, the approximation shown as (5.7) is applied

5.2.3 Methods

First-principles calculations were performed within the density functional
theory[10, 11] with a plane-wave pseudopotential method, as implemented in

the Quantum-ESPRESSO code.[12] We employed the Perdew-Wang type[13]
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(GaN) and the Perdew-Burke-Ernzerhof type[36] (CuAlO,) generalized gra-
dient approximation exchange-correlation functional and ultra-soft pseudo-
potentials.[14] In electronic calculation, we used 8 x 8 x 8 (GaN) and 8 x 8 x 2
(CuAlO;) k-point grid in the Monkhorst-Pack grid.[16] Energy cut-off for
wave function is 40 Ry and that for charge density is 320 Ry.

5.2.4 Results and Discussion

Fig. 5.5 shows the band structures of GaN which are calculated within the
LDA and the SIC. In the LDA (Fig. 5.5(a)), the Ga d bands locate at the
same energy level as the N s bands and make a s-d hybridized band. This s-d
hybridization splits the N s band. and push up the valence N p bands. As a
result, the energy gap is underestimated: calculation results is £, = 1.88¢V,
while experimental data is E;, = 3.5eV.[56]

In the SIC (Fig. 5.5(b)), the Ga d bands locate below the N s bands and
does not make a s-d hybridized band. The energy gap is corrected: £, = 2.42
eV.

Fig. 5.6 shows the band structures of CuAlOy which are calculated in
LDA and SIC. In the band figure, there is no large difference between the
LDA result (Fig. 5.6(a)) and the SIC result (Fig. 5.6(b)). But, the band
width of the valence band in the SIC is narrower than that in the LDA. This
is attributed to that the SIC makes the d-band potential more attractive. As
a result, the energy gap of the SIC (E, = 3.16¢eV) is larger than that of the
LDA (E, = 1.84¢V) and close to experimental data (£, = 2.96eV[52]).

5.2.5 Summary

In this section, we calculated self-interaction correction by using first-principles

calculations. The SIC expanded the energy gaps of GaN and CuAlOs.
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Figure 5.6: Band structure of CuAlO2.
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5.3 Doped CuAlQO,

5.3.1 Introduction

As stated in section 5.1, Katayama-Yoshida, et al. have calculated the Fermi
surface of p-type doped CuAlO, by shifting the Fermi level rigidly.[46] They
speculated that the doped CuAlO, may be a transparent superconductivity
for visible light. But, they only suggested the possibility and did not calculate
the electron-phonon interaction and the critical temperature of the doped
CuAlO,.

The purpose of this section is to clarify the superconductivity of the
doped CuAlO, by using first-principles calculations. Our results show that
0.1 ~ 0.2 hole doped CuAlO, can be high temperature superconductor with
T. ~ 40K.

5.3.2 Methods

First-principles calculations were performed within the density functional
theory[10, 11] with a plane-wave pseudopotential method, as implemented in
the Quantum-ESPRESSO code.[12] We employed the Perdew-Burke-Ernzerhof
generalized gradient approximation exchange-correlation functional[36] and
ultra-soft pseudopotentials.[14] For the pseudopotentials, Cu 3d electrons
were also included in the valence electrons. Therefore, non-doped CuAlO,
has 26 electrons. In this study, we calculated CuAlO, with number of elec-
tron N = 25.0 ~ 25.8. A calculation with Ny = 25.9 does not convergence.
In electronic and phonon calculation, we used 8 x 8 x 8 k-point grid in the
Monkhorst-Pack grid.[16] Energy cut-off for wave function is 40 Ry and that
for charge density is 320 Ry. These k-point meshes and cut-off energies are

fine enough to achieve convergence within 0.1mRy/atom in the total energy.
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We used the optimization results in section 5.1 as inputs.

We explain how to calculate the doped CuAlO,. It is difficult to calcu-
late the property of doped system exactly. Therefore, some properties are
approximately calculated in this study. Let us pick up the electron-phonon

interaction A as an example. This is represented as following.

o Z 2N (ep) Xk | kk+q‘25(6k — &F)0(Extq — gF)‘ (5.11)

Wyg Xkq 0(ek — €7)0(Extqr — €F)
In the calculation of electron-phonon interaction, averaging at Fermi surface
are performed. We shifted the Fermi level e rigidly in the averaging. On the
other hand, the electron-phonon matrix My, and the phonon frequency
Wyq of non-doped CuAlO, are used. The idea underlying this approxima-
tion is that doping does not greatly change the whole band structure of the

electron and the phonon.

5.3.3 Results and Discussion
Electronic band structure

Fig. 5.7 shows the electronic density of states(DOS) of non-doped CuAlOs.
The valence band of CuAlO5 has a small peak. This peak is mainly occupied
by a Cu 3ds,2_,2-O 2p, anti-bonding state.

Fig.5.8 tells us the corresponds of the Fermi level to number of electrons.
When N, = 25.7, Fermi level locates at the top of the small peak. When
Ng = 25.4, Fermi level locates at the valley of DOS.

Superconducting critical temperature

Fig. 5.9 shows the superconducting critical temperature. Note that the x-
axis is not doping concentration, but the number of electrons. When N =

25.7 ~ 25.8, CuAlOs has T, ~ 40K. Especially, superconducting critical
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Figure 5.7: Total and partial density of states.
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Figure 5.8: Density of states at the Fermi level.
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temperature of 0.2 hole-doped CuAlO,, T, = 44 K, is the highest record
among phonon-mediated superconductors. The heavily-doped CuAlOs(Ng =
25.0 ~ 25.4), however, has T, ~ 10K.

45
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15
10

5_

0 | | | | | | |
25 25.1 25.2 25.3 25.4 255 25.6 25.7 25.8

Number of electrons

Critical temperature [K]

Figure 5.9: Superconducting critical temperature

Let us examine the origin of the high T of lighter-doped CuAlOs (N =
25.7 ~ 25.8). According to the Allen-Dynes modified McMillan’s formula,[24,
25] T is given by three factors: the electron-phonon interaction A, the loga-
rithmic averaged phonon frequency wiqg, and the screened Coulomb interac-
tion p*, in the following form.

Wlog 1.0A(1 + \)
T — _ . 12
1.2 P ( N — (1 + 0.62)) (5.12)

Here A and wig are obtained by the first-principle calculations using the
density functional perturbation theory. As for pu*, we assume the value p* ~

0.1. This value holds for weak correlated systems. In this study, the critical
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temperature is determined by A and wi,s. The table 5.3 shows A and wie,.
When N, increases, A rises about 90%, while wjog rises about 10%. Therefore,

the large A leads to the high T..

Nel )\ wlog [K]
25.3 0.449 727
25.8 0.870 806

Table 5.3: Electron-phonon interaction A and logarithmic averaged phonon

frequencies wiog. T has max. and min. at Ny = 25.8,25.3.

Here we analyze the electron-phonon interaction. For the mode analysis,
we introduce partial electron-phonon interaction A,q so that A = >\ 4 as
same as section 2. Using A,q we find the most influential phonon mode for the
superconductivity and 7. In Fig. 5.10, the magnitude of A, 4 is represented
by radius of circle on each phonon dispersion. According to this figure, the
highest mode on the Z — I' line has large electron-phonon interaction. This
mode is called the A;L; mode. In this mode, the O atoms oscillate in the
anti-phase and the oscillation direction is parallel to a O-Cu-O bond.

Irrespective of Ng, CuAlO, has an A;L; mode because the types of
phonon modes are determined only by the lattice symmetry. In spite of
the same phonon mode, why only lighter-doped CuAlO, has large electron-
phonon interaction ? The difference is attributed to the bands at Fermi level.
In the case with Ny = 25.7 ~ 25.8, the Cu 3ds,2_,2 and the O 2p, electrons
appears at Fermi level and make O-Cu-O covalent bond. They have large
interaction with the A;L; mode phonon because a bonding direction is par-
allel to an oscillation direction of the A;L; mode phonon. As N, decreases,

the electron-phonon interaction decreases, due to reduction of Cu 3ds,2_,2
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and the O 2p, electrons, which strongly interact with A;L; phonon.

5.3.4 Summary

In this section, we calculated the superconducting critical temperature of
hole-doped CuAlOy by using first-principles calculations. In lightly hole-
doped CuAlOg, Cu 3ds,2_,2 and O 2p, electrons appear at the Fermi level.
A1L; phonon mode have a strong interaction with these electrons because
the oscillation direction of this mode is parallel to the bonding direction of
these electrons. Based on these findings, we conclude that lightly hole-doped
CuAlO; can be high T superconductor.
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Figure 5.10: Phonon dispersions and electron-phonon interactions of doped
CuAlO,. The radius of circle displays the magnitude of partial electron-

phonon interaction A,q. The definition is explained in the text.
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Chapter 6

Conclusion of this thesis

The strong coupling theory enables us to quantitatively calculate the super-
conducting critical temperature of phonon-mediated superconductors. This
is useful for the prediction of critical temperature under unresearched con-
dition and the determination of whether the material is phonon-mediated
superconductors. In this study, we predicted the critical temperature of
CaSi, in AlB, structure, phosphorus in incommensurate structure, NaCoAs,
NaNiAs, and doped CuAlO,. In addition, we determined NaFeAs is not
phonon-mediated superconductor by comparing results of electron-phonon
calculation with experimental data.

In CaSiy and CuAlO,, the directions of phonon oscillation and electronic
bonding are important for the superconductivity. When these directions
agree, the electron-phonon interaction and the critical temperature increase.
In addition, as stated in chapter of NaFeAs and CuAlQ,, it is also impor-
tant that the covalent bonding bands locate at the Fermi level, because the
covalent bondings make the hard lattice and this makes the strong electron-
phonon interaction.

The results of this thesis suggest two policies: 1)The direction of covalent
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bonding agrees with that of the lattice oscillation and 2)The covalent bonding
bands locate at Fermi level. Following these policies, we will be able to design

the superconductor with higher 7.
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Appendix A

Strong coupling theory

We write the strong coupling theory of superconductor and explain how to
calculate the superconducting critical temperature. In this chapter, Hartree

atomic unit is employed and Boltzmann constant kg = 1.

A.1 Eliashberg equation

In this section, we show the formulation of Eliashberg equation. The Eliash-
berg equation is an expansion of Dyson equation of normal-conductivity for
superconductivity.

Within the first order approximation of ion displacement, the Hamilto-

nian which represents the electron-phonon interaction is as follows.

Helfph = Z MkJ’,q’k(a/q + &T_q)CLJquCkU. (Al)
kqo

Here, cl, and ¢, are creation and annihilation operators of electrons with

I'and a! and a, are creation and an-

wave number vector k and spin o .

Iband index i is included in wave number vector k and omitted.
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nihilation operators of phonons with wave number vector q. 2 We define

bq = (g +al ).
M1 q 1 is the electron-phonon interaction when an electron is scattered

from k to k + g by a phonon with q.

1

Mk k = T/
" \/ 2Ncelleq

Neen is a number of unit cell, M is a mass of ion, wg is frequency of

(k+qng - VU|E). (A.2)

phonon, U is an ion potential and ng4 is a polarization vector of phonon.

The total Hamiltonian is as follows.

H = Z §kcLUcka + Z wqaflaq + Z Mk+q7k¢ch+qacka. (A.3)
ko q

kqo
&k is the energy of the electron. The electron Green’s function is as

follows.

Gk, 7—1)
= —(Tew(r)cky (7))
= —(em(r)cky (F)O(r = ') = i (T)Tery ()O(7' = 7). (A4)

Here, (A) is a thermal average of A. When we set (3 reverse temperature,

tr(e P A)

W= ey

(A.5)

T is the operator of time ordered product. The following holds for oper-
ators A(7) and B(7'),

2phonon mode index v is included in wave number vector g and omitted.
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(A.6)

(—:Fermion, +:Boson). Here, A(T) = e"" Ae~7". For getting the equation of

motion for Green’s function, we differentiate the Green’s function by 7,

|
2
-
\1

|
ﬂ\
I

—(0(r = 7")ewy (1), €l (T)] + TTH, exy (7)] ey (7). (ALT)

[H,cu(1)] = €"[H, cryle™
= el Z e [CL/Uck/U, ckT]e_HT
ko
+ehtT Z My gk g [CTk/+qgck’U> CkT]efHT
k'qo
— _erfkckTefHT o eHT Z Mk,qu¢qcquT67HT
q

= =&l (T) = D Mo —qq(T) Cromgy (7). (A.8)

In addition, if we change —q — g and assume ¢_4 = ¢4, (A.7) becomes as

follows.

gG(kz, T—7) = =5(r—-7)+ fk(TCkT(T)CLT(T/»

or
+ %: Mp ks q{T bg(T)Crqr (T)CLT (). (A9)
Here, we define
(g k,7,7",7') = ~(Tq(r)crrqr (T")cky (7)) (A.10)
and rewrite as follows.
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[—% — fk] Glk,7—7)=66(r—7")+ Z My gl (g, k7,7, 7'). (A11)
q

Next, in order to get the expression of I', we calculate the equation of
motion for T’
In the preparation, we calculate the equations of motion for afl, a_q and

¢q- We differentiate af] by 7.

0
Soah(r) = [H.al(7)
— 6HT[H,GL]67HT

= Y wy [afl,aq/, aE]e‘HT
q/

HT T i —HT
+e Z Mk+q/7k[(a¢J’ + a—q’)? az]ck-l—qcrckffe
kq'o
— N Te=HT Hr i —HT
= eTwgage +e Z Mk+q7kck+qackae
ko

= wqal(7) + ; Mit g ks o (T)ho (7). (A.12)

As for agq, we calculate in a similar way.

0
5.%a(T) = —wqaq(7) — ; Mi— g1l g0 (T) ko (7). (A.13)
In this formula, if we exchange ¢ — —g, assume w_4 = wq4 and rearrange

the expression, the equations of motion for aII and a_q become as follows.

[% - wq] aL(T) = ZMkJrq,kcLJrqa(T)cka(T), (A.14)
la% + wq] a-q(7) = = MiiquChigo(T)cro (7). (A.15)
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If we apply [ + wq] to (A.14), apply [% — wq] to (A.15) and sum up

these, we obtain 2

2
[% — wi] 0q(T) = 2wq Z MkJrq’kcLJrqa(T)cka(T), (A.16)

ko

From this formula and (A.10), we calculate the equation of motion for I'.
92

[— —w ] I'(q,k,7,7",7")
-

= 24> Mirrqu (Tl ygo(T)eko(T)crrq (T")ely (7). (ALT)

k'c
We use the phonon Green’s function to solve this equation. The phonon

Green’s function is as follows.

D(q,7—7") = —(Toq(T)p_q(7")). (A.18)
This yields the equation of motion for phonon Green’s function. If we

differentiate the phonon Green’s function by 7 twice,

%D(q, T—1)

= 2 0a(M)6-a( T — )+ 6l )a(r)O 7))

= %84 o()  ([0ulr), 6-glr (7 —7)

= 1 %55 o), (A19)
aa;D(q,T —7)

32% 94

= AT 0-o(m) = {57 d-a(T)o(r —7)
= —wq<T¢q(7)¢fq(T’) - 2wq D~ Mt qiel Tl qo (7)o (1) S—g (7))

ko

—wa([(al(r) = a_q(r)) , d_g(N)o(r — 7

= WZD(qa T = 7—/) - 2("Jq Z Mk+q,k<Tchrc+qa(7—)cka(T)¢fq(7/)>
ko

+2wqd (T — 7). (A.20)

SWe use ¢q = a:fl + a_q because we assume ¢_q = ¢4 as mentioned above.
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If we approximate the second term of right-hand side to be 0, the equation

of motion for the phonon Green’s function is as follows.

62
l——wﬂ D(q,7—7") = 2wgd(r—1').
-

From this and (A.17), we get the expression of I'.

L(g, k, 7,7, 7" /dﬁ (g, 7—m)

Z Mg 1q1 <Tck’+qa (T1)Cho (T1) Chqr (T ")CLT (7).

k'c

(A.21)

(A.22)

If we substitute this into (A.11), we get the equation of motion for the electron

Green’s function.
l—g - 54 Gk, —7)
S(r—1) Z/ dri My g qD(q, T — 11)

x> My iqw <Tck’+qa(Tl)ck’U(Tl)ckJrQT (T)CLT(T/»'

k'o
If the Mean field approximation is employed,
<TCTk’+qo' (T1)crro (1) Chergr (T) CLT (7))

= 01 k01 (Tt g1 () g g (TN Tt (1) g (7))

— O —k-ada (Tt gt (T)C-k-q (T)) (Tl (1)l (7).

The anomalous Green’s function is defined as follows.

Fik,7—1) = —<TCJr_kl(T)CLT(T,)>.

The equation of motion is expressed by using this.
0
[—— - fk] Gk, 7—1)
or
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g
= 5(7’—7”) _Z/ dTl‘Mk-l—q,k‘QD(q,T—Tl)
q 0
< [Glk +q.7 — )Gk — ) — F(h + q.7 =)k, — 7))
(A.26)

Let’s calculate the Fourier transform of this. The Fourier transform of

the Green’s function is
Gk, 7— 1) Ze_w" Gk, iw,). (A.27)

Here, w, is called Matsubara frequency. For integer n, it is defined by

(A.28)

Wn

(2n+ )nT  (Fermion),
2nnT (Boson).

Therefore,
B8
/ dnD(q,7—1)G(k+q,7—71)G(k,71 — T')

= /dﬁ 3ZD q, iw;)e" T
ﬁ Ilmn

><G(k: + g, iwn)e TG, iy, e (17T

= ﬁZ IE: et (witwm)T+iwn T’ D(q, Zu)l)
: . 1 8 ,
XG(k + q, Zwm)G(k, Zu)n)B / dTlez(Wl‘Hme—wn)Tl
0

1 4 ,
— 7 3 e~ @D (q, iwn — iwm )Gk 4 q,iwy,)G (K, iw,). (A.29)

The Fourier transform of FT is calculated in a similar way.

In addition, from

6] Gl 1) = (i ) G (A0
T

or—1)= 3 Z gmiwn(r=T) (A.31)
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(A.26) is
(iw — &)G(k, 7 —T)
= 1- TZ ‘MkJrq,k‘Q ZD(q, iwn - iwm)

q m

x |Gk + q,iwn)G(k, iw,) — F(k + q,iwn) F' (k,iw,)] . (A.32)
If we define k' = k + q and assume D(k' — k) = D(k — k'),
(iw—&)G(k, T —T")
= 1-T> |Mpi|*> DK —k,iw, — iw,y,)
K/ m

x |Gk iwn)G (K, iw,) — F (K iwy) F1 (K, iw,)] . (A.33)
The normal self-energy ¥ and anomalous self-energy 4 are defined by

Sn(kyiw,) = =T | My 1> D(k — K iw, — iw,)G(K iwy,),(A.34)

k'm

Salkyiw,) = T |Migl’D(k — K iw, — iwn,)F (K iwy). (A.35)

k'm

Therefore, the equation of motion is as follows.
[iwn — & — En (K, iw,)] Gk, iw,) — S alk,iw,) FT(k,iw,) = 1. (A.36)

In a similar way, we calculate the equation of motion for anomalous Green’s

function F.
liwn + &k + Sn (K, —iw,)] Fl(k, iw,) — 2% (K, iw,)G (K, iw,) = 0. (A.37)

The (A.34), (A.35), (A.36) and (A.37) are called the Eliashberg equa-
tions. Note that the vertex correction is neglected in this formulation. This

approximation is guaranteed by the Migdal’s theorem.[57]
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A.2 (Gap equation

In this section, we explain the gap equation to determinate the supercon-
ducting gap. T, can be calculated from the gap equation and the property
that the superconducting gap vanishes at 17" = T.. From this section, k and
1wy, are omitted except cases that they are important.

Solving the Eliashberg equations (A.36) and (A.37) for G, F'T,

G 1
] Tiwn + €+ Sy(—iwn)][iwn — € — Sn(iwn)] — [Sal?
o | on T EF Evlmien) ) (A.38)
EA(iwn)

Here, Z, x and A are defined as follows.

%[EN(iwn) —3n(—iw,)] = dwy[l — Z(iwy)], (A.39)
%[EN(“’“) +Ov(—iwn)] = x(iwn), (A.40)
a4 = AZ (A.41)

The A is called superconducting gap.
By using these definitions, G and F' are expressed by

“ - ! nZ+ (€+)
Fit N (iwnZ)Q — (5 + X)Q _ (|A‘Z>2 AZ (A.42)

Because the iw,, dependence of x is small in general, we assume that x(0) =
¥(0) is included in the quasi-particle band £ and x is negligible compared
with iw,,.

From this, (A.34), (A.39) and (A.40), the normal self-energy ¥y is ob-

tained as follows.
ZN = an(l - Z)
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= T |Muw’D(k — K, iw, — iw,)G (K, iwn)

k'm
Mk, k' ,n—m) &+ iwnZ
= -7 . A.43
P R EA O N
Here,
Mk, k' ,n—m) = —N(0)| Mg |*D(k — K, iw, — iwp,). (A.44)

N(0) is the density of states at Fermi level. Note that many textbook define
A using the Eliashberg function o?F(k, k', Q) as follows.

o0 20)
— 2
koK n) = /O 420" F (k. K, 9) 5o, (A.45)
1
PF(k,K,Q) = —N(0)|Mpp|*~ImD(k — K', Q + in)
s
= N(O)‘Mkk/|25(9 - wk_k/). (A46)

Here, the second equation in (A.46) is obtained from assumption that the
phonons do not interact with each other.

Approximating the A to the average at Fermi surface:

Zkk’ )‘(k7 klv n)é(Gk)é(Gk/)

Mk, k' ,n) ~\n) = S 0 (en)3(er) : (A.A47)
and >, ~ N(0) [ d€, we obtained
iwa(1-2) = —T3 An—m) /md§€2+fzj(;°;’ AT
_ —T; A= m) TT’AMW - (A.48)

When T ~ T, the superconducting gap A is very small and negligible com-
pared with wy,.

wo(l=2) = —7T Y An-— m)‘u)—m‘ (A.49)
m wm
Defining s,, = sign(w,) = (2n + 1)/|2n + 1|, we solve the equation for Z.

1
12n + 1|

Z(iw,) =1+ D> An —m)sysm. (A.50)
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Calculating for anomalous self-energy >4 in a similar way,

Z (iwn) A(iwy,) —m)A(iwp,). (A.51)

Z |2m+ 1\

If we eliminate the Z from the two equation, we obtain the gap equation:

Aliw,,) Z \Qm ] An—m) — 6um Z A —m")spSmr | Aliwy,).
(A.52)
The superconducting critical temperature T, is the maximum value of tem-

perature where the equation has a non-trivial solution A # 0.

A.3 Coulomb interaction

As for the Coulomb interaction V., we neglect the vertex correction as same
as electron-phonon interaction. Here, you should note that the Migdal’s
theorem does not hold for the Coulomb interaction.

The self-energy has two type: normal self-energy ¥4, and anomalous self-
energy X4. The contribution of X4 is already included to the normal Green’s
function Gy.

We assume that the contribution of normal Green’s function Gy to self-
energy is already included. The remaining part X5 = [V.(G — Gy) is
negligible when T" ~ T,.. Therefore, we have to deal with only the following

equations.

Y(iw,) = =Y Vilk,K)F'(k,iw,) = V.o FT, (A.53)
km

‘/c(ka k/) = <k/ T> _k/ ‘V‘k T> —k \L>

- /dr/dr /dr”wk, () (r,r”)\lr” — r,|¢k(7')¢fk(7'/)-
(A.54)
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Here, € is the dielectric function.
We divide the range of w,, into (I) |w,| < we and (II) |wp,| > w., and

define V* as the effective interaction convolved with the contribution in (II).

%4 =Vio Fl, ;= Vo Ff. (A.55)

In the range (II), the contribution to X4 by the phonon is negligible compared
with w. Therefore, using (A.42), we approximate

EC
Fj, ~ A
Tt

= Ko X5. (A.56)
Then,
¥4 = VioF]+V.oF], (A.57)

VieF| = Vo +V.oK o

= V.oF/ +V,0 KoV*oF]. (A.58)
Therefore, the equation of V* is as follows.

Vi = V.+V.oKoV]. (A.59)

[

If we neglect the anisotropy and assume that V., and V. are constants,

|wm |>we |wm |>we

kz K = NO % /_F'e"bozgr%i62
~ N(0)In (%) (A.60)

The upper limit of [£|, € > w,, is thought to be of the order of band
width. We define = N(0)V. and p* = N(0)V.*. From (A.55) and (A.59),

‘W'm‘<wc *
c H t(1
>4 = T F A.61
A ,;:1 N(O) (k72wm)? ( 6 )
T a (A.62)

1+ pn(e/we)
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Adding this to (A.35) and solving the gap equations, we obtain

|wm | <we 1

(A.63)

A.4 McMillan’s formula

McMillan’s formula is the approximated solution of the gap equation and is
used to estimate T, of phonon-mediated superconductor.

For solving the gap equation, we use the square-well model. For the cut-
off frequency wp = 7(2N + 1)T¢, this model assumes that in the first term
in right-hand side,

A(n—m) = N(wp — |wn|)0(wp — |wm|), (A.64)
and in the third term in right-hand side,
A(n—m) = N(wp — |Wn—m])- (A.65)

Here, A = A\(0). Therefore,

00 2F(Q
A = 2/ a0 EE) (A.66)
0 Q
The equation becomes
twy) = 1 2 7\2m+1]' .

If we assume the solution A(iw,) = Af(wp — |w,|) and substitute into

the equation,

14\ ik |
A — p* a nzz:on—i—l/Q
- o(2Z 1) -
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1.13wp
~ 1 A.
Og( T. ) (A.68)
1+ A
T. = 1.13wpexp (— i ) (A.69)
A —p*

Here, 1(z) is the digamma function and + is the Euler’s constant (See next
section).

McMillan calculated this formula and corrected it to agree with the ex-
perimental T, data.[24] After his study, Allen and Dynes made the additional

correction and obtained the following formula.|[25]

Wiog —104(1 + /\)
T. = : A.
12 P </\ — (1 +0.62)) (A.70)
2 ’F
Wiog = €XP <X/dwa w(w) logw>. (A.71)

This is called McMillan’s formula (also called Allen-Dynes formula).

A.5 digamma function

Here, we explain the digamma function and the Euler’s constant (also called
Euler-Masheroni constant) used at (A.68). The definition of the digamma
function ¢ (z) is as follows.

diz log I'(2). (A.72)

P(z) =
Here, I'(2) is the gamma function.
The following formula is holds due to the property of the gamma function

[(z41) = 2I'(2).

Wz 4 1) = (z) + = (A73)

z
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If we change z — m + z and sum up m = 1 ~ n cases,

1
m+z

w(n—l—z—irl):w(zjtl)—l—zn:

m=1

For Stirling’s formula, if n is large,

Yntz+1) = P(n+1)

= Zlogn!
dn ogn

12

%(nlogn —n)

= logn.

The definition of the Euler’s constant is

"1
= li — —1 .
= (3 v
Therefore, at the limit for n — oo, (A.74) becomes

1/)(z+1):—7—i( L —i)

e\ +2 m

If z=-1/2,

v/ = — -2 (

Therefore, (A.68) holds.
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