

Title	AIR QUALITY MONITORING IN QUANG NINH COAL MINE IN VIETNAM
Author(s)	Nguyen, Thi Phuong Thao; Maeda, Yasuaki; Kaga, Akikazu et al.
Citation	Annual Report of FY 2003, The Core University Program between Japan Society for the Promotion of Science (JSPS) and National Centre for Natural Science and Technology (NCST). 2004, p. 75-80
Version Type	VoR
URL	https://hdl.handle.net/11094/12988
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

AIR QUALITY MONITORING IN QUANG NINH COAL MINE IN VIETNAM

Nguyen Thi Phuong Thao¹, Yasuaki Maeda², Akitazu Kaga³, Akira Kondo³,
Nguyen Tuyet Van¹, Nguyen Thi Minh Phuong¹

Institute of Environmental Technology, NCST, Vietnam

² *Osaka Prefecture University, Japan*

³ *Osaka University, Japan*

Abstract

Quang Ninh is a mountainous province in the North-East of the Socialist Republic Vietnam, which has a diverse economic potentiality, many development advantages and the key territory in the strategy of the national socio-economic development. Being the biggest center of coal exploitation in Vietnam, the province possesses a coal deposit of more than 3 thousand million tones, and has gained the great profits from this mineral resource. However, the residents of this area have been facing the air environmental pollution caused by the industrial activities. This report presents some results on the ambient air quality monitoring on NO₂, SO₂, NH₃, CO and Suspended Particulate Matters in 27 target sampling points in Quang Ninh coal mine by diffusion passive samplers. The concentration conversion coefficients α_{NO_x} , α_{SO_2} , α_{NH_3} are identified by using activated method with pumping sampler in Quang Ninh province. The results have also proved that the diffusion passive samplers produced by the Institute of Environmental Technology, NCST, Vietnam could be used for air quality monitoring in exploitation in mine area and bring about similar efficiency as other methods. It has been indicated that ambient air quality of Quang Ninh coal mine are polluted by SPM, SO₂, NO₂ and CO.

Key words: Air quality, coal mine, passive samplers, NO₂, SO₂, NH₃, CO, SPM.

Introduction

Quang Ninh province^[1] is bordered in the North East by the province Kouang-Si (China), in the North and West by the provinces Lang Son, Ha Bac, Hai Hung and Hai Phong town, in the South by the Tonkin Bay, with 250 km of coastal length. Its natural area reaches 5,938 km². The climate is mild, rainy and divided into two distinct seasons: the hot season begins from April to October, the cold from November to March. The annual average temperature is 23⁰C, that of hot season is 28⁰C, coal season is 16⁰C. Average of rainfall is 2,000 - 2,500mm and humidity is 83%. Quang Ninh has 2 principal tourism centers: Ha Long Bay and Tra Co. Ha Long Bay is one of World Heritages Place (by UNESCO).

The annual production of Quang Ninh ranges between 5 and 6 millions tones of coal, of which 1.5 million tones are reserved for export. The quantity of exploited coal is expected to reach 8-10 million tones. With the economic development, the Quang Ninh peoples are faced and facing to air pollutants of many kind of gases, such as CO, CO₂, NO_x, SO₂, NH₃, SPM and CH₄.

In order to control the quality of environmental ambient air in Quang Ninh coal mine, more than 60 target sampling points of this area were selected for air monitoring, 27 points of which were for measuring the concentrations of NO₂, SO₂, and NH₃ gases by diffusion passive samplers. In other points, samplers were taken by activated methods. The concentrations of CO gas and SPM were sampled by active methods, too.

The identification of concentration of those gases was carried out in Laboratory of Analytical Chemistry, IET and NCST, Vietnam.

Methods and equipment

- Air quality monitoring methods
- Diffusion Passive samplers of NO₂, SO₂, NH₃ gases made by Institute of Environmental Technology (IET), NCST.
- Activated pump samplers of CO, CO₂, SPM, CH₄ (Kimoto, Handy Sampler HS-7)
- Flow rate of air sampler, Japan
- Spectrophotometer UV-VIS, Jenway, British
- Ion Chromatography IC, Alltech, American
- Analytical balance, 10⁻⁵

Results and discussion

Passive sampler, prepared by Institute of Environmental Technology (IET), is based on Martin Ferm principle^[2] and Yasakawa model^[3]. One of the most important factors in using passive samplers is concentration conversion coefficient α of gases. Because all the diffusion passive samplers always have a constant diffusion length (L), and an area of filtration paper (A), the coefficient α depends on such climate conditions as humidity, temperature and wind speed of each area. The concentration C_x of gas polluted x is identified, as follows:

$$C_x(\text{ppb}) = \alpha \frac{m}{t}$$

where t is the sampling time (in hour)

m is the amount of pollutant gas (in μg),

α is the concentration conversion coefficients, which is determined by both active and passive equipment (ppb.h/ μg)

The concentration conversion coefficients α of SO₂, NO₂, NH₃ gases depicted in table 1 were measured in Hon Gai town, Quang Ninh province, with average α SO₂ is 607.96 ppb.h/ μg , α NO₂ is 482.46 ppb.h/ μg , α NH₃ is 1701.88 ppb.h/ μg .

Table 1. The concentration conversion coefficient α SO₂, α NO₂, α NH₃ gases
(Duration: 10-17 March 2003 and 25 -29 March 2003)

No	T°C	H (%)	t (hour) sampling	α SO ₂ (ppb.h/ μg)	α NO ₂ (ppb.h/ μg)	α NH ₃ (ppb.h/ μg)
1	22	84	161	612.40	601.65	1514.96
2	26	78	160	603.12	387.62	1754.12
3	25	75	160	605.32	540.78	1825.13
4	28	78	165	614.02	403.21	1452.32
5	29	76	163	604.98	479.08	1962.90
Average				607.96	482.46	1701.88

Table 2 provides the results of monitoring the pollution of NO₂, SO₂, NH₃ gases in air environment of 27 target points in numerical order in the list of sampling points.

The list of sampling points

1	Deo Nai mine's office	15	Mine chemical factory office
2	Cua Ong post office	16	T-junction of Mong Duong -Cau Ngam
3	Ground 28 in Ha Lam mine	17	Ground 26 in Tan Lap mine
4	Landfill of Deo Nai mine	18	Dien Cong port
5	T-junction in road 18 of Cao Son mine	19	Nam Cau Trang selection yard
6	Mao Khe screening yard	20	Screening workshop 1 in stake 6
7	T-junction in 18 road of Mao Khe mine	21	Hon Gai center
8	T-junction in 18-86 road	22	Mao Khe mechanic cross-road
9	T junction of Cau Go market near Tan Lap mine	23	Mao Khe residential area
10	Six stake mine's office	24	Pit-door 42 of Thong Nhat mine
11	Cao Son mine's office	25	Khe Ngat coal store
12	Transportation of Six stake mine	26	Uong Bi center
13	Ben Bang port	27	Giap Khau coal store
14	Ha Tu Port		

Table 2. The results of air pollution caused by SO₂, NO₂ and NH₃ gases in 27 target points of Quang Ninh coal mine's areas by passive samplers of Vietnam (from 10 to 29 March 2003)

No	Time	T	RH	NO ₂	NO ₂	NO ₂	SO ₂	SO ₂	SO ₂	NH ₃	NH ₃	NH ₃
				M(µg)	(ppb)	C(ppb)	M(µg)	C(ppb)	M(µg)	C(ppb)	C(ppb)	M(µg)
(h)	(°C)	(%)		Passive	Active		Passive	Active		Passive	Active	
1	141	25	74	1.694	6.58	5.86	10.03	49.54	43.4	10.41	139.16	90.19
2	145	20	84	3.246	12.25	12.03	4.285	20.57	30.83	6.19	80.43	98.89
3	121	30	60	7.642	31.24	30.87	3.159	18.17	31.92	4.38	68.20	116.00
4	142	23	78	2.35	9.03	12.16	5.74	24.56	22.41	8.17	108.44	125.80
5	142	26	65	3.89	15.01	15.34	3.27	13.99	18.05	6.62	87.85	117.50
6	143	29	64	5.612	19.41	28.04	10.75	52.20	36.43	6.71	88.37	116.50
7	143	30	61	7.164	27.39	30.81	16.84	81.84	36.52	11.28	148.58	109.40
8	140	25	66	5.434	21.19	21.79	7.740	33.60	44.7	12.57	169.16	104.28
9	126	28	62	8.238	32.34	27.98	6.634	32.00	30.16	8.26	123.50	75.56
10	144	23	81	2.235	8.48	12.16	3.343	14.11	15.57			
11	142	27	61	1.277	4.91	5.36	5.703	24.41	22.73	12.14	161.06	110.30
12	144	23	83	1.113	4.22	5.29	5.236	22.10	28.87	7.31	95.66	97.89
13	142	23	83	7.079	24.66	21.67	2.738	13.40	20.89	3.26	43.24	97.89
14	141	24	81	7.808	27.39	34.47	7.758	33.44	31.25	6.02	80.41	132.40
15	141	25	72	4.752	16.67	21.31				3.69	49.31	124.89
16	146	19	80	12.285	41.62	33.86	7.432	30.94	35.19	6.10	78.77	134.80
17	126	28	62	3.941	15.47	18.83	4.378	21.12	22.81	3.00	44.86	123.80
18	143	32	62	6.667	23.06	25.61	6.819	28.98	34.47	5.24	69.06	94.90
19	125	26	68	8.241	32.61	43.82	6.793	33.03	29.96	9.98	150.48	103.70
20	143	24	79	2.625	10.03	5.31	5.654	24.03	24.8	7.74	102.00	118.30
21	161	28	70	3.729	12.65	18.79	3.599	15.52	29.33	10.16	118.85	89.00
22	143	29	65	7.684	26.58	31.28	9.832	43.27	36.43	12.66	166.75	102.80
23	143	29	61	4.987	17.25	15.64	10.355	45.57	35.66	10.07	132.67	109.60
24	145	21	73	4.426	16.72	21.01	6.275	26.30	30.21	11.10	144.29	105.50
25	143	26	75	10.359	35.83	37.41	3.178	15.44	38.41	9.81	129.27	117.55
26	143	27	77	5.785	20.01	18.73	8.390	35.66	36.15	9.03	119.04	103.59
27	141	24	79							9.03	120.52	111.49
Ave. Conc. (ppb)				19.72	21.36		30.15	30.69		108.46	108.94	

The air quality monitoring of SO_2 , NO_2 and NH_3 gases were carried out from 10 March 2003 to 29 March 2003 for two times. The first time was from 10 to 17 March, and the second time was from 25 to 29 March 2003. The samples were continuously taken for 5 - 6 days all day night. The concentration of SO_2 was determined by Ion Chromatography (IC) and concentrations NO_2 and NH_3 were determined by Ion Chromatography and Spectrophotometer UV-VIS.

The results in table 2 show that we obtained the similar results applying either passive samplers or active samplers.

Comparison of the results provided by the two methods may give us little different results. Figures 1, 2, 3 illustrate more clearly the similar results of two sampling methods.

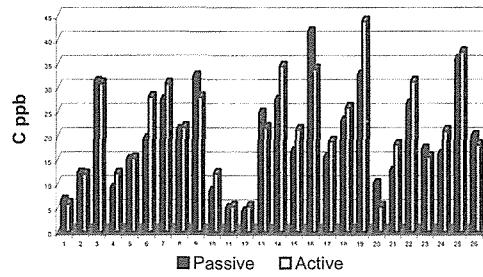


Figure 1. Monitoring results of NO_2 concentration in 26 points in Quang Ninh coal mine area by applying passive sampler and active sampler methods

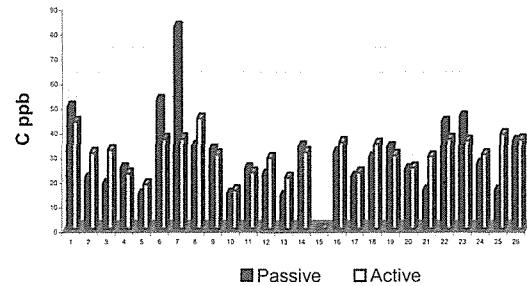


Figure 2. Monitoring results of SO_2 concentration in 26 points in Quang Ninh coal mine area by applying passive sampler and active sampler methods

According to the above tables and figures, the in-vessel concentrations of SO_2 , NH_3 , NO_2 in Quang Ninh are 30 ppb, 108 ppb, and 20 ppb respectively. Both passive and active sampler methods of SO_2 and NH_3 gave the coincident results in vessels. Nonetheless, 9 of 27 samplers showed apparent discrepancies in the case of NH_3 , i.e. 24.3% of the total samplers. 13/ 27 samplers (50% of the total) resulted quite differently, of which 8 measured by passive method gave smaller results whereas 6 others gave higher results than by active methods. The lowest measured concentration is 13.40 ppb; and the highest is 81.84 ppb, taken at the T-junction of road 18, Mao Khe mine where the impacts of exploitation area and transportation are rather serious. The second highest concentration of SO_2 was taken in Mao Khe screening yard, the place to select and screen coal.

The sampler of NO_2 measured by passive method showed lower value than that by active method. The locations with highest concentration are still Mao Khe screening yard and T-junction of road 18. The high concentration of NO_2 was also observed in Ground 28 of Ha Lam mine (3), Ha Tu coal port (14), Mong Duong - Cau Ngam t-junction (16), South Cau Trang coal selection yard (19), and Khe Ngat store (25), Mao Khe mechanic cross-road (22). At the above-mentioned locations, the two methods showed the same fluctuation. The above - given results are quite acceptable.

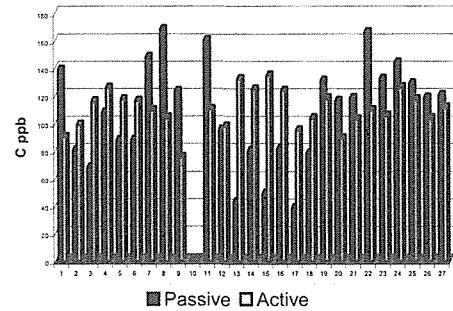


Figure 3. Monitoring results of NH_3 concentration in 27 points in Quang Ninh coal mine area by applying passive sampler and active sampler methods

The concentration conversion coefficient α is adjusted by the temperature and humidity changes in passive sampler method. The temperature during the measuring period fluctuated between 19 - 30.6°C with the difference of 11°C. Therefore, temperature had insignificant influence. Humidity ranged from 60% to 84%. Figures 4, 5 and 6 show the dependence of concentration of NO₂, SO₂ and NH₃ gases on temperature and humidity.

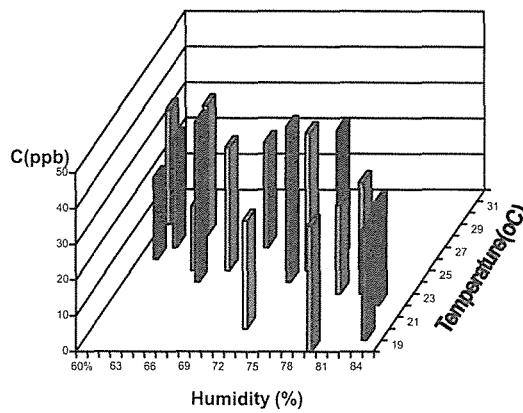


Figure 4. The distribution of SO₂ in 26 sampling points in Quang Ninh mine's area with Humidity and Temperature

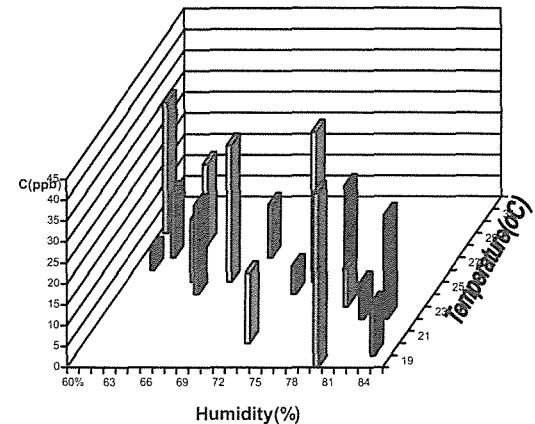


Figure 5. The distribution of NO₂ in 26 sampling points in Quang Ninh mine's area with Humidity and Temperature

It can be drawn from the above results (figures 4, 5 and 6) that:

- Normally, when temperature increases, humidity decreases. In Vietnam, however, humidity always remains high even if temperature increases due to the tropical monsoon climate. Nevertheless, humidity and temperature have quite little impact on passive sampler method so the concentrations of SO₂, NO₂, and NH₃ depend mainly on pollution levels of ambient air. This can be considered the great advantage of passive sampler method outlined in the research.

- Coefficients α SO₂, α NO₂, α NH₃ during 24 hours' period by passive sampler equipment right at Quang Ninh coal exploitation area were defined and applied to calculate the pollution levels in the whole mine area.

There is also another troublesome matter involved with other pollutants such as the dust, total suspended particulate matter. According to table 3, the SPM concentrations in 26 mentioned points are 2 - 20 times higher than given in the Vietnam Standard (TCVN 5937-1995). SPM contamination is being studied by the Vietnamese concerning agencies to find out the treatment to minimize environmental pollution. The carbon dioxide contamination was also determined and their results are shown in table 3.

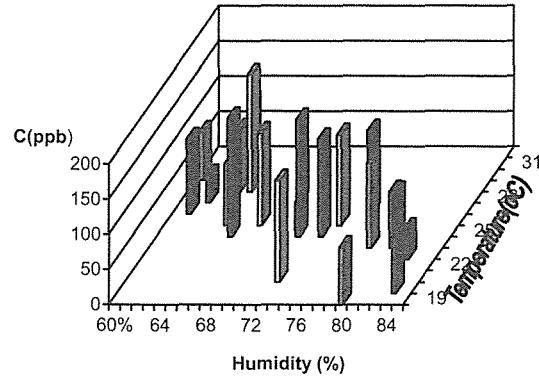


Figure 6. The distribution of NH₃ in 26 sampling points in Quang Ninh mine's area with Humidity and Temperature

Table 3. Result of CO and Total Particulate Matter monitoring
in Quang Ninh coal mine area (10 - 17 March 2003)

No	CO (mg/m ³)	TPM (mg/m ³)	No	CO (mg/m ³)	TPM (mg/m ³)
1	0.758		15	1.517	0.35
2	1.57		16	1.707	1.232
3	1.246	1.12	17	0.812	0.77
4	0.758	1.2	18	0.812	0.76
5	0.541	0.64	19	0.746	5.31
6	0.596	4.65	20	0.812	1.28
7	1.062	1.27	21	0.822	0.33
8	1.3	3.67	22	0.54	0.21
9	0.812	0.42	23	0.433	0.13
10	0.9	0.11	24	1.733	3.01
11	0.812	0.48	25	0.921	1.02
12	0.921	1.412	26	1.083	0.73
13	1.192	1.454	27	1.246	0.84
14	1.517	0.35			

Moreover, the content of CH₄ in the exploitation area is noticeably high, especially in the mine. There have been many explosions inside the mine, causing serious human and material losses. It is currently installed in mine regions the CH₄ measuring system that can notify when CH₄ exceeds the threshold. Due to the limited equipment, we cannot carry out the measurement of CH₄ parameters.

Conclusion

1. It is essential to carry out the air quality monitoring in Quang Ninh coal mine.
2. The measured results of SO₂, NO₂ and NH₃ are lower than the Vietnam Ambient Air Quality Standard TCVN 5937 - 1995*
3. Passive sampler equipment produced by Institute of Chemistry, NCST are quite applicable to monitor the air pollution in coal mine areas.
4. Regarding coal exploitation regions, there need be a long-term survey plan.

Reference

1. National political publishing economic & forecast review (state planning committee):
2. Investment project in Vietnam to the year 2000.
3. Ferm. *A sensitive diffusional sampler*. IVL-Report B-1020, Gothenburg. Sweden.
4. Technology of air pollution continuous monitoring in Japan - 1999
5. Technical manual for filter pack monitoring in East Asia , Osaka, Japan (In printing ,2002)
6. *Atmosphere concentration of sulfur dioxide and nitrogen dioxide in China and Korea measured by using the improved passive sampling method*. Munehiro Wasashima, Yasuaki Maeda, Institute of Public Health and Environmental Sciences, OSAKA city (1996)

The Vietnam Ambient Air Quality Standard TCVN 5937-1995:
Standard of NO₂ is 0.1 mg/m³ (appr. 48 ppb)
Standard of SO₂ is 0.3 mg/m³ (appr. 105 ppb)
Standard of NH₃ is 0.2 mg/m³ (appr. 263 ppb)
Standard of particulate matter is 0.2 mg/m³