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Controllability of Linear
Systems with Generalized
Invertible Operators

Nguyen Van Mau
Hanoi University of Science, VNUH

1 Controllability of first order linear systems
with right invertible operators

Let X, Y and U be linear spaces (all over the same field F, where F = R or
F = C). Suppose that D € R(X), dimker D # 0, F' € Fp corresponds to an
ReRp, A€ Lo(X) Ay € Lo(X — Y), Be Lo(U - X), By € Lo(U - Y)
(cf. Section 1). By a first order linear system (shortly: (LS)) we mean the
system

Dz = Az + Bu, RBU @ {z¢} C (I — RA)(dom D), (1.1)
Fr=mxy, z¢ € kerD, (1.2)
y = Az + Bu. (1.3)

The spaces X and U are called the space of states and the space of controls,
respectively. The element 2o € ker D is called an initial state. A pair (zo,u) €
(ker D) x U is called an input. The space (ker D) x U is called the input
space, and the corresponding set of ¢'s in Y the output space. Very often
there are considered linear systems with A; = [ and B; =0, i.e. withY = X
and the output y = z. We shall denote such systems by (LS)o.

The properties of linear systems depend on the properties of the resolving
operators I — RA and I — AR, respectively. In a series of papers (cf. [54-56])
Nguyen Dinh Quyet studied some properties of linear systems in the case
I — RA invertible. His results concerning controllability were generalized by
Pogorzelec [84-85] in the case / — RA and I — AR either left or right invertible,
and in the case I — AR invertible.

Hence, there are six cases to deal with:
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(i) I — RA € R(X), (ii) I — RA € L(X), (iii) I — RA is invertible,

(iv) I — AR € R(X), (v) I — AR € L(X), (vi) I — AR is invertible.

We show that 7 — RA is right invertible (left invertible, invertible) if and
only if so is I — AR, i.e. it is sufficient to consider the first three cases. On
the other hand, since every one-sided invertible operator and every invertible
operator are generalized almost invertible, we can reduce those cases to the
case of I — RA being generalized almost invertible.

Suppose that we are given a linear system (LS)o. The initial value prob-
lem (1.1)-(1.2) is equivalent to the equation

(I — RA)z = RBu + . (1.4)
Hence, the inclusion
RBU & {zo} C (I = RA)(dom D) (1.5)

is a necessary and sufficient condition for the problem (1.1)-(1.2) to have
solutions for every u € U.

Denote by G; (i = 1,2,3,4) following sets defined for every zy € ker D,
ue U

(i) f I — RA € R(X) and T\ € Rz_gru4, then

Gi(zo,u) '={x = Ri(RBu+zo) +z: z € ker(I — RA)}. (1.6)
(ii) If I — RA € L(X) and Ty € L;_ga4, then
Ga(zo,u) := {z = To(RBu + z0)}. (1.7)
(i) If I — RA is invertible, then
G3(zo,u) :={z = T3(RBu+ o)}, Tz = (I — RA)™". (1.8)
(iv) If I — RA € W(X) and Ty € Wr_r., then
Ga(mo,u) == {o =Ty(RBu+ o) +2: z€ker(I — RA)}. (1.9)

Note that the G; are the sets of all solutions of the problem (1.1)- (1.2)
in the corresponding cases. Therefore, to every fixed input (zg,u) there
corresponds an output x € G;(zo, u) for each case.

Definition 1.1. Suppose that we are given a system (LS)o and the sets
Gi(zo,u) of the forms (1.6)-(1.9). A state z € X is said to be (i)-reachable
(¢ =1,2,3,4) from an initial state zo € ker D if for every T; (T} € Rz_ra,
Ty € Li—ga, T3 = (I — RA)™Y, Ty € Wr_r4) there exists a control u € U
such that = € Gi(zo, u).
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Write

Rangy, , Gi = U Gi(zo,u), o €kerD (1=1,2,3,4).
uelU

It is easy to see that Rang, G; is (i)- reachable from zq € ker D by
means of controls v € U and it is contained in dom D.

Lemma 1.1. Suppose that T; (z = 1,2,3,4) are defined as in (1.6)- (1.9).
Then

T:(RBU & {z}) + ker(] — RA) = T,RBU @ {Tizo} @ ker(/ — RA). (1.10)

Remark 1.1. If either ] — RA € L(X) or I — RA is invertible then ker(] —
RA) = {0}, and (1.10) takes the form T;(RBU & {zo}) = T;RBU & {T;xo}.
The formulae (1.5)-(1.9) imply

Corollary 1.1.

Rang;; , Gi = T;RBU & {Tizo} @ ker(] — RA). (1.11)

Corollary 1.2. A state z is (¢)-reachable from a given initial state 2o € ker D
if and only if

z € T;RBU & {Tixo} @ ker(I — RA), 1=1,2,3,4. (1.12)

Lemma 1.2. Write
E;:=T,RB, X;:=T;(I —RA)(domD) — {xo}.

Then the operator F; maps U into X;.
Proof. By our assumption, RBU @ {zo} C (I — RA)(dom D), thus for every
u € U there exist v € X and z; € ker D such that

RBu+ o= (I —~ RA)Rv + z1),

i.e. TiRBu = T;[(I — RA)(Rv + 21) — o).

Theorem 1.1. Suppose that B € Lo(U — X, X' — U’'), D € L(X,X')
R e Lo(X,X') and T; € Lo(X,X') (1 = 1,2,3,4). Then the generalized
Kalman condition

ker B*R*T; = {0} (1.13)
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holds if and only if for every initial state zg € ker D, every state © € RX @
{zo} + ker(I — RA) is (i)-reachable from z.

Proof. By Lemma 1.2, the condition (1.13) holds if and only if for every z; €
ker D and v € X there exists u € U such that RBu+xzq = (I — RA)(Rv+x1).
This means that for every z; € ker D, v € X and z € ker(I — RA) there
exists 4 € U such that

Ti(RBu + zo) + z = T;(I — RA)(Rv + z1) + = (1.14)

It is sufficient to consider ¢ = 4, i.e. the case when (I — RA) is generalized
almost invertible. Write F' := I — Ty(I — RA). It is easy to check that
(I — RA)F' =0, Fjy = F' and F’X = ker(I — RA). Choosing x; := =,
z:= F'(Rv+ ) € ker(I — RA), we get from (1.14) the equalities

Ty(RBu+ o) + 2z = (I — F')(Rv + z0) + F'(Rv + z9) = Rv + .

This means that for every v € X, z; € ker(/ — RA) there exist 2/ = 2, +
F'(Rv + o) € ker(] — RA) and u € U such that

Ty(RBu + xo) + 2’ € RX @ {zo} + ker(I — RA),

ie.
Rangy ,, G4 = RX @ {20} + ker(I — RA).

Note that the generalized Kalman condition (1.13) in the case of (I —
RA) invertible was introduced and applied by Nguyen Dinh Quyet [54-56].
Theorem 1.1 in the case of ] — RA one-sided invertible was obtained by
Pogorzelec [84].

Now we give another condition for every state 2 € RX +{Tjzo} +ker(] —
RA) to be (i)-reachable from any zo € ker D. To begin with, note that

T.RX C RX (i =1,2,3,4). (1.15)
Indeed, there exist T} (i = 1,2,3,4) such that T; = I + RT]A. Thus
T.RX = (I + RT/A)RX = R(I + T'AR)X C RX.

Therefore, T; RB map U into RX. Corollary 6.1 gives the following

Theorem 1.2. A necessary and sufficient condition for every element
z € RX +{Tizo} + ker(I — RA)

to be (i)-reachable from any initial state x¢ € ker D is that T;RBU = RX.
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Definition 1.2. Let there be given a linear system (LS)o of the form (1.1)-
(1.2). Let F; € Fp (i = 1,2,3,4) be arbitrary initial operators (not neces-
sarily different).

(i) A state z; € ker D is said to be Fj-reachable from an initial state
xo € ker D if there exists a control u € U such that x; € F;Gi(zo,u). The
state 1 is then called a final state.

(i) The system (LS)g is said to be Fi-controllable if for every initial state
o € ker D,

Fi( Rangy,, Gi) = ker D. (1.16)

(iii) The system (LS)g is said to be Fi-controllable to z; € ker D if
z; € F;( Rangy, Gi) (1.17)

for every initial state x¢ € ker D.

Lemma 1.3. Let there be given a linear system (LS)o and an initial operator

F; € Fp. Suppose that the system (LS)g is Fi-controllable to zero and that
Fi(Tiker D +ker(I — RA)) = ker D. (1.18)

Then every final state z; € ker D is Fi-reachable from zero.

Theorem 1.3. Suppose that all assumptions of Lemma 1.3 are satisfied.
Then the system (LS)g is Fj-controllable.

Proof. Suppose that [ — RA € W(X). By our assumption, there exist
up € U and zg € ker(I — RA) such that
F4[T4(RBUO -+ flJ()) -+ Zo} = 0. (1.21)

By Lemma 1.3, for every z; € ker D there exist uy, € U and z; € ker(I —
RA) such that
Fy(TyRBugy + 1) = 1. (1.22)

Add (1.21) and (1.22) to find
F4{T4[RB<U0 + u()) + 7)0] + (ZQ + 21)} = Iy,

ie. xy is Fy-reachable from g, which was to be proved.

Corollary 1.4 (cf. Pogorzelec [84]). Let T] € Rr_ar, Ty € Li_ar, T3 =
(I—-AR) P and Ty e Wr_ar for  — AR € R(X), I — AR e L(X), I - AR
invertible and I — AR € W(X), respectively. If the system (LS)o is Fi-
controllable to zero and

F,(I + RT}A)(ker D) = ker D, (1.23)
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then (LS), is Fi-controllable.
Indeed, by (6.10)-(6.12), I + RT{A = T;. Therefore (1.23) takes the form
FT;(ker D) = ker D and we get a sufficient condition for Fj-controllability.

Corollary 1.5 (cf. Pogorzelec [84-85]). If the system (LS)g is Fi-controllable
to zero and FiT;(ker D) = ker D, then (LS)g is Fi-controllable.

So the conditions F;T;(ker D) = ker D and F;(I + RT}A)(ker D) = ker D,
found by Pogorzelec for the one-sided invertible resolving operators, are iden-
tical.

Theorem 1.4. Let a linear system (LS)o of the form (1.1)-(1.2) and an
initial operator F; € Fp be given. Let 77 € Rz_ra if [ — RA € R(X) is
invertible,

Ts € Ly_pa if I — RA is left invertible,

T3 = (I — RA)"' if I — RA is invertible and

Ty € Wyr_ra if I — RA is generalized almost invertible.

Suppose that B € Lo(U — X, X' — U'), D € L(X,X"), AR €
Lo(X, X'). Then the system (LS)g is Fj-controllable if and only if

ker B*R*T; F} = {0}. (1.24)

Theorem 1.5. Let there be given a linear system (LS)y and an initial
operator F; € Fp. Then the system (LS)g is Fi-controllable if and only if it
is Fi-controllable to every element v’ € F;T;RX.

Corollary 1.6. The system (LS)g is Fi-controllable if and only if it is F;-
controllable to every element vy € F;RX.
Indeed, it is easy to check that T;RX C RX. Thus F;IRX C F;RX.

Theorem 1.6. Suppose that the system (LS)g is Fi-controllable. Then it is
Fl-controliable for every initial operator F; € Fp.

Proof. Let R; € Rp be the right inverse of D corresponding to Fj, i.e.
F;R; = 0. For every z; € ker D and v € X there exists 25 € ker D such that
x1 = 22 + F/Ryuv. By the assumption, the system (LS)o is Fi-controllable.

Hence for every zo, 22 € ker D there exist u € U and z € ker(J] — RA)
such that F;[Ti(RBu + xo) + 2| = 22, or equivalently

Ti(RBu+ xg) + 2 = x5 + Ry
for some v € X. Thus
F/[Ti(RBu+ mo) + 2] = 22 + F/ Riv = 3.

The arbitrariness of xg, z1 € ker D implies the assertion.
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Example 1.1. Let X = (s) be the space of all real sequences. Write

{en} ={1,1,1,...}, {0,} ={0,0,0,...},
D{z,} :=A{ans1 — zn}, F{za} = z1{en},

n—1
R{ln} = {yn}v Uy = 0, yn= Z-Tj (72 =2,3,.. )
j=1

Afz,} = {2}, 21:=223 — 21, 2n = Tps1 —Tn (Rn=2,3,...),
B:=p3I where Je€R,
Ui={{un}: up=0 for n=2,3,...}.

It is easy to check that D € R(X), dom D = X, R € Rp and F'is an initial
operator for D corresponding to R. Moreover, ker D = {{ce,}: ¢ € R},
Consider the following linear system {L.S)g

Dz = Az + Bu, Fz =1y, ;€ ker D. (1.30)

Since (I — RA){zn} = {21 + x2,23,23,...}, we conclude that ker (I —
RA) # {0}, (I — RA)X # X. Therefore, I — RA is not one-sided invertible.
Write Ty{zy} := {21,0,25,0,0,...}. Then

T4(I - RA){Z‘,L} = T4{SL‘1 + ZTo,23,Z3, .. } = {l‘l + Zq, 0,25,0,0,.. .}7

(I - RA)T4(] — RA){Z’n} = {lel + X9, 3,23, . . .}3

ie. (I — RAYTy(I — RA) =1 — RA. Hence, the resolving operator is gener-
alized almost invertible, but it is neither invertible nor one-sided invertible.
Let 2 = {be,} € ker D. Then

RBU & {zy} ={{zn}: z1=0b, z=0b+c (k>22), ce R}. (1.31)

Hence RBU & {z} C (I — RA)(dom D), i.e. the system (1.30) has
solutions for every control v € U.
If o) = {sen}, v = {v1,v9,...} € X then

(I —RAY(Rv+1z))=1{2s,s+v1+v2,5+v1+vs,...} (1.32)

Now (1.31) and (1.32) together imply ker B*R*T; # {0}, i.e. not every
state z in (RX @ {z(} +ker(I — RA) is reachable from xj,.
By simple calculation, we also have

T,RBU = {{0,0,¢,0,0,...} : c€ R},



RX +ker(] — RA)y={{f, 21— B, 21+ 22— B, ys.95,.. .} : BER,
e={z} X, p=m1+ - +az (24}
Hence TyRBU # RX + ker(I — RA). By Theorem 1.2, there is

z € RX + {zy} + ker(I — RA),

which is not reachable from zj,.
Let Fy{z,} = z3{en}. Then

F4T4(ker D) = {/3[)). .. .},

ie. FyTy(ker D) = ker D. Corollary 1.5 implies that the system (1.30) is
Fj-controllable.

If we put Fi{an} = xo{en}, then F;Ty(ker D) = {0}. Hence F;Ty(ker D) #
ker D. However, Fj(ker(I — RA)) = ker D, so that

FyTy(ker D) + ker(I — RA) = ker D.

By Theorem 1.3, the system (1.30) is Fj-controllable.

Example 1.2. Suppose that X, D, R, F' are defined as in Example 1.1 and
that
A{xn} ={0,23,24 — 3,05 — 24,...}, U:=X, B:=1.

It is easy to check that
(I — RAY{zn} = {21,22,0,0,...}. (1.33)

Hence I — RA is a projection, and so it is not one-sided invertible, but it
is generalized almost invertible. The kernel of I — RA is

ker(I — RA) = {{0,0, x5, 24,25,...} : zo, €R (n = 3)}. (1.34)
Fix 2 = {be,} € ker D. Then
RBU @ {z} = RX & {z}. (1.35)
Since (I — RA? =1~ RA, we get Ty = I € Wr_g4, and
TWRBU = RX. (1.36)
Now (1.34) and (1.36) yield

T4RBU = RX + ker(I — RA).
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Theorem 1.2 implies that every state © € RX + {Tuzy} + ker(I — RA) is
(4)-reachable from x¢ € ker D.

Let Fy € Fp, Fy{x,} = z3{en}. Then F,Ty(ker D) = ker D. Hence, by
Corollary 1.5, the system (1.30) is Fy-controllable.

Suppose now that T = I — RA. Then I — RA € Wr_g 4 since (I — RA)? =
I — RA. In this case, we obtain

TyRBU ={0,3,0,0,...}, Tulker D) ={{3,53.0,0,...}: BeR},

FlTikelD) {{B[)’OO }I BER}
and Fy(Ty(ker D) + ker(I — RA)) = {{cen} : ¢ € R}. Thus FyTy(ker D) €
ker D. However,

Fy(Ty(ker D) + ker(I — RA)) = ker D.

Theorem 1.3 implies that the system (1.30) is Fj-controllable for the given
generalized almost inverse Ty = I — RA.

2 Controllability of general systems with right
invertible operators
Let XY and U be linear spaces (all over the same field F, where F = C

or F = R). Let D € R(X), R € Rp and let F' be an initial operator
corresponding to R. Write

Xp:=dom D, Zy :=kerD" (k € N). (2.0)
Suppose that we are given A; € Lo(X — V), B € Ly(U — X), B, €
Definition 2.1. A linear system (shortly (L.S)) is any system

QD)= Bu, FD'z =z, 2;€Z, (j=0,...,M+ N —1), (2.1)

y = Az + Biu, (2.2)

where
,!‘V

}: > D" Ay D", (2.3)

m=0 n=0

Apn € LX), ApnXppsnn C X (m=0,..., M;n=0,...,.N;m+n <
Af—f*[V) Apn = 1.
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Herein we assume that

RMINBU @ {2°} ¢ (I + Q) Xren, (2.4)
where
M+N~-1
1'0 = Z Rj:l?j & ZA/[.{._[\?, (25)
j=0
M N
Q= Z Z R1\1+N—manDn? (26)
m=0 n=0
where
on if m=0,

M
A — Z FD'"MAL,  otherwise,

n=m

B mn ‘=

. 0 ifm=Mandn=N,
™) A otherwise (m=0,...,M;n=0,...,N).

The assumption (2.4) is a necessary and sufficient condition for the initial
value problem (2.1) to have solutions for every u € U.

If Ay = I and B; = 0 then we shall denote the system (2.1)-(2.2) by
(LS)o.

Definition 2.2. The linear system (2.1)-(2.2) is said to be well-defined if for
every fixed u € U the corresponding initial value problem (2.1) is well-posed.
If there is uw € U such that the initial value problem (2.1) is ill-posed, then
the linear system is said to be ill-defined.

Theorem 2.1. Suppose that the condition (2.4) is satisfied. Then the system
(2.1)-(2.2) is well-defined if and only if the corresponding resolving operator

I+ @', where
M N

Q/ — Z Z RM—manRN—n (27)
m=0 n=0
is either invertible or left invertible.

Indeed, if I+ @’ is either invertible or left invertible, then for every u € U,
the initial value problem (2.1) has a unique solution of the form z = G(z2% u),
where

G(2°,u) = Eg(RM™N Bu + 29), (2.8)

I —RNEqQ, if I+ Q is invertible,

Eo = 2.9
@ {I— R¥LoyQy  if I+ Q' is left invertible, (2:9)
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EQ/ == ([ + Ql)_:[: LQ' € L1+Q/,

M N
Qi:=> > RM™B,,D". (2.10)

m=0 n=0

So, according to (2.2), the output y is uniquely determined by any v € U
and z° € Zyr.n, and is of the form y = A;G(2% u) + Byu. If we consider a
linear system (LS)o, then y = z = G(2°,u).

Definition 2.3. Write
GO = AlEQ; Gl = GoRiw.*-NB -+ B1> (211)

where Eq is defined by (2.9). The matrix operator G° = (G, G1) defined on
the input space Zp.n X U is said to be the transfer operator for the linear
system with the resolving operator I + @ invertible.

Therefore, to every input (z°, u) there corresponds a uniquely determined
output y, which can be written as

y = Go(2% v) = Goz® + Giu.

Consider now the linear system (LS)o, i.e. the system (2.1)-(2.2) with
A1 == I, Bl =0

QDlx = Bu, FD'z =z, 2;€ 27, (j=0,..., M+ N~1),  (2.12)
RM*NBU @ {2°} € (I + Q) Xy (2.13)

Write this system in an equivalent form
(I+Q)z=R"*"Bu+ 2" (2.14)

Denote by H; (i = 1,2,3,4) the following sets defined for any z° € Zyr v,
uelU.
(1) f I+ Q@ € R(X), then

Hi(2%u) = {Ty(RM* By + 2% + 2. 2z € ker(I +Q)}, (2.15)

where )
T =1—- RI\’RQIQL RQ/ € Rytgr, (2.16)
()1 is given by (21.10).
(2) fI+Q e A(X) and Lo € L]+Q/./ then

Hy(2% u) := {To(RM*N Bu + 2°)} (2.17)

3
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where

Ty:=1—R"LoQy, Q; is defined by (2.10). (2.18)
(3) If I + @’ is invertible, then
Hy (2 u) := {T3(R™ ™ Bu + 2%}, (2.19)
where
Ty :=1- RN(I+Q)'Q. (2.20)
(4) U I+ Q € W(X) and Wy € Wryo, then
Hy(z® u) = {Ty(R"*™"Bu+ 2% +2: zcker(I+Q)}, (2.21)
where
Ty:=1— R"WuQ. (2.22)

Note that H; (i = 1,2,3,4) are the sets of all solutions of the system (LS)o
in the respective cases.
As in Section 33, we need the following

Definition 2.5. A state z € X is said to be (i)-reachable (¢ = 1,2,3,4)

from an initial state 2° € Zyryn if for every T; (Th € Rzyg, 1o € Lig, Tz =

(I4+ Q)™ Ty € Wr,o) there exists a control u € U such that z € H;(«% u).
In the following we only deal with the above four cases. Write

Rangy; .0 H; = U Hi(2%u), 2° € Zaren. (2.23)
uelU

It is easy to see that Rangy; o H; is (¢)-reachable from 2 by means of controls
u € U and it is contained in Xarin.

Lemma 2.1. Suppose that T; (i = 1,2,3,4) are given by (2.16), (2.18), (2.20)
and (2.22), respectively. Then

Ty (RN BU @ {2°}) + ker( + Q)
=T, RM*NBU & {T;2°} @ ker(I + Q). (2.24)

Remark 2.1. If I + @' is either invertible or left invertible, the formula
(2.24) is of the form

Ty(RM™NBU & {x}) = T:RM™ BU @ {Tzo}.

Corollary 2.1.

Rangy o H; = TiRY ™ BU @ {Ti2°} @ ker(I + Q). (2.25)
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Corollary 2.2. The state © € Xyon is (i)-reachable from zg € Zpysn if

and only if
z € T,RM™NBU @ {Tix"} @ ker(I + Q).

Lemma 2.2. Write

R Ei = TiRM'*‘—"\"B:
Xoi = Ti(RN(I + Q)RMX + (I + Q) Zpron — {2°}).

Then the operator F; maps the space U into Xy;.

Theorem 2.3. Let there be given a system (LS)o described by (2.12)-
(2.13). Suppose that B € Lo(U — X, X' — U'), D € L(X.X"), T; €
Lo(Xyren: Xjpon)s @ = 1,2,3,4; R € Lo(X,X’). Then the generalized
Kalman condition

ker B*(R\)M*NTr = {0} (2.28)

holds if and only if for every initial state 2° € Zy/4n, every state 2 € RM+V X
+2° + ker(I + Q) is reachable from z°.

Definition 2.6. Let there be given a linear system (LS)o of the form (2.12)-
(2.13) and let F} € Fpman.

(i) The state 2 € Zy;,n is said to be Fi-reachable from an initial state
2% € Zyryw if there exists a control u € U such that ' € FH;(z% u). The
state z' is then called a final state.

(ii) The system (LS)g is said to be Fj-controllable if for every initial state
¥ e 2NN

F{(RangU’xoﬂi) = ZM%—;‘\“ (230)

(iii) The system (LS)o is said to be Fi-controllable to a* € Zyyyn if
z' € Fy(Rangy o H;) (2.31)

for every initial state 2° € Zyr y.

Lemma 2.3. Let there be given a linear system (LS)o of the form (2.12)-
(2.13) and an initial operator F] € Fpmsn. Suppose that (LS)o is F -
controllable to zero and that

FITi,Zyvon = Zaren. (2.32)

Then every final state x' € Zyr,n is F/ -reachable from zero.

Proof. It is sufficient to deal with the case ¢ = 4. Since the system is Fj—
controllable to zero, there exists a control v/ € U such that 0 € FyHy(2% v),
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i.e. there exists zy € ker(] + Q) such that Fj(Ty(RM+N Bu' + 2°%) + 2) = 0,
or equivalently )
E{(Ty (RN By + 2p) = — FyTya".

By the assumption (2.32), for every given state ' € Zyyn we find z* €
Zpr+n such that —FjTyz? = 2. Hence, there are u € U and zy € ker(I + Q)
such that

F{(Ty(RM*N Bu) + z) = — FiTya? = 2.

This proves that an arbitrary final state a! is reachable from the initial state
0.

Theorem 2.4. Suppose that all assumptions of Lemma 2.3 are satisfied.
Then the linear system (LS)g is F{-controllable.

Proof. 1t is sufficient to deal with the case of a generalized almost invertible
resolving operator. By the assumption, there exist ug € U and zp € ker(I+Q)
such

Fy[Ty(RM™ Bug 4 2%) 4+ 2] = 0. (2.33)

On the other hand, by Lemma 2.3, for every given z' € Zj,n there exist
uy € U, that 2o € ker(] + @) such that

Fi[Tég(RAI—*'NBUQ -+ 0) + ZQ:[ = 371. (234)

If we add (2.33) and (2.34), we obtain F}[Ty(RM*NBuy + 2°) + 2] = =z,
where uy = ug+ us € U, 21 1= 25 + 25 € ker(J + @). Thus every final state
a2t € Zyren is Fy-reachable from the initial state 2° € Zyon.

Note that Theorem 2.4 was given by Nguyen Dinh Quyet [54-56] and
Pogorzelec [84] for systems of the first order with invertible and one-sided in-
vertible resolving operators (cf. Section 33). Theorem 2.4 can be generalized
as follows:

Theorem 2.5. Let there be given a system (LS)o of the form (2.12)-(2.13)
and an initial operator F} € Fpmen. Suppose that (LS)e is F/-controllable
to zero and that

FTi(Zaren +ker(I + Q)] = Znrin. (2.35)
Then (LS)y is F}-controllable.

Note that the conditions of Theorem 2.4 and 2.5 are sufficient but not
necessary.

Theorem 2.6. Let there be given a system (LS)y of the form (2.12)-(2.13)
and an initial operator Fj € Fpam+n. Then (LS)o is Fj-controllable if and
only if it is Fj-controllable to every element v° € F/(T;RM*N X ).
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Note that the operator F/T;RM*N B maps U into Zyny. The following
theorem shows that this operator determines the properties of the system

(LS)o.
Theorem 2.7. Let a linear system (LS)o of the form (2.12)- (2.13) and an
initial operator F} € Fpmsn be given. Suppose that B € Lo(U — X, X' —
U’)7 De L(X, X’), Re LQ(X, X’) and T; € LO(XM—;—N;XM—HV)- Then (LS)O
is F/-controliable if and only if

ker B*(R*)M+NTx(F!)y* = {0}. (2.42)

Theorem 2.7. Suppose that the system (LS)o is Fj-controllable. Then it is
F’-controllable for every initial operator F' € Fparin.

Example 2.1. Let X :=CJ0, 1] over C. Let D := d/dt,

sz/:(F@@y:xu@,me[Qﬂ‘

Consider the system

[DY + Py(D,I) + Pi(D,I)F' + R*Py(D, I)]z = Bu, (2.46)
FDiz=ua; 2;€C (j=0,...,N ~1), (2.47)
where F' € Forn, U=X, Be LO(X) k € Ny,
N-1 ‘ ‘
P,(t,s) = Z aut's" 1 e, €C (p=0,1,2). (2.48)
=0

As before, we write
Q1 := Py(D,I)+ P(D,I)F' + R*Py(D, ),

Q:=R"Q., Q' :=P,(I,R)+R'P(I,R).

Since R € V(X), the resolving operator I + @' is invertible (Theorem I
in Section 6). On the other hand, it is easy to check that Q' = Q;R", so
that by Theorem 2.1, I + @ is also invertible, and

(I4+Q)t=1-RMI+Q)Q. (2.49)

Write the system (2.46)-(2.47) in the following equivalent form:

N-1
(I+Q)z=R"Bu+2a° 2°= Z Riz;. (2.50)
=0
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From (2.49), we conclude that I +Q € Lo(Xy) and (I + Q) ' Xy C Xn.
Hence, (2.50) has solutions for every u € X. This means that the condition
(2.13) is satisfied. A unique solution of the system (2.46)- (2.47) is

=[] -RN(I+ Q) 'Q)(RYBu+2°) € Xy. (2.51)

Thus, every state z € [I — RN (I +Q")7'Q1](RY Bu® {2°}) is reachable from
20 € ZN.
Let F}, Fy € Fp~ be initial operators for DV given by

F:=I—RYD", Fj:=I-RR""'D" on domDY,
t
where Ry := [, t1 5 to; to,t1 € [0,1]. Let T3:= (I +Q)~". It is easy to check
t1
that F{RYX = Zy, FyRNX # Zy, so that for every B € Lo(X), we find
Fy(I-RY(I+Q)'Q))RYBU = FyRN(I — (I + Q") 'Q:RY)BX # Zy,

i.e. ker B*(R")NTsFy" # {0}. This means that the system (2.46)- (2.47) is
not £y -controllable.

Let B = 1. Since I — (I + Q")"'Q,R" is invertible because I — R (I +
Q")~1Q; is invertible, we conclude that

I-(I+Q)'"RVIX =X.
This implies
F{TsRNBU = F{TsRNX = F{(I - RN (I + Q)~'Q)R"X

= F/RN[] — (I+ Q) 'Q1RV]X = F{R"X = Zy.

Hence ker B*(R*)NT3*F]" = {0}. Thus, by Theorem 2.7, the system
(2.46)-(2.47) is F}- controllable.

Example 2.2. Let X = (s) be the space of all real sequences. Write
{en}:={1,1,...}, {0,} :={0,0,...}. Define the following operators:

D{z,} = {Zns1 — zn}, F{zn}:=z1{en},

R{'(En} = {yn}, 3/1 = 07 yn =21 + -+ Tp—1 (n 2 2),
A{zy} = {x2, 23 — 22,0,0,...}, Bi{wn} = {x2, —22 — 22,0,0,...},
C{zn} = {a9 — 21,0,0,...}.
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Consider the system

(D> — AD — DB — C)z = Bu,
Fx =2y, FDz =1, xg, €y € ker D,

where u e U, U C X, B € Lo(U, X). Write
Q1= RAD+B+RC, Q :=RQ,, Q' = RA+BR+RCR.  (2.53)

(2.52)

The system (2.52) is equivalent to the equation
(I -Q)r= R*Bu+2° 2°:=x+ Rx;. (2.54)

It is easy to see that I — @’ is the resolving operator for the system (2.52)
and [ — Q' = I — @1 R. By easy calculations, we find

RA{IEn} = {O, T2, T3,T3,-- } BR{CCn} = {331, —&y, —T1, O, 0, c. }
ROR{CCn} = {0,131,3}1;%1, O, O, . .},

o - @) = { )
I—C Tpp = 0.0,0,y4:y5.... N

’ ’ 2.55

Y =T —T1 — T3 (k=4,5,.‘.), ( )

ker(/ — Q') = {z = 1, %2, x3, 21 + 3,21 + T3, . . .}, (2.56)

S -Q) # X. (2.57)

The formulae (2.55)-(2.57) imply that the resolving operator I — @’ is not
one-sided invertible. However, since (I — Q')(I — Q') = I — @', we conclude
that I — Q' is generalized almost invertible and [ is its generalized almost
inverse.

By straightforward calculations, we find

(I = R ){zn} = (I = Q){@n} = {21,0,0, 21,95, %6, - - -} (2.58)

where yg ==z, — (k — 3)zpo1 + (K — 4)(as — 22+ 1) (k2 5).
Let zy := 0, 2} := 0, i.e. let the initial conditions of the problem (LS)o
be Fo =0, FDx =0. Let U = X and

B{z,} =1{0,0,0,0, 21,22, 23, ...} (2.59)
It is easy to check that
BU®{ze} =BX C(I-Q)Xo=(I—-Q)X.
Hence, the system (2.52) is solvable for every u € U. From (2.54) we find
z= (I +RQ:)R*Bu = (I + Q)R*Bu.

Therefore, every state z € (I + Q)R?BU is reachable from zero.
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3 Controllability of linear systems described
by generalized almost invertible operators

Let X, Y, U be linear spaces over the same field F (where F = C or F = R).
Suppose that V € W(X), W € W and F), FO are right and left initial
operators for V' corresponding to W; A € Lo(X), A1 € Ly(X = Y), B €
Lo(U — X) B e LO(U — Y)

By a linear system (LS) we now mean the following system:

Ve=Az+ Bu, ue U, BUC (V- A)(domV), (3.1)
Fg = g4, 20 € kerV, (3.2)

If Ay =1, By =0,ie. YV = X and y = z, then we denote the system
(3.1)-(3.3) by (LS)o.

Note that the properties of linear systems depend on the properties of
the resolving operators I — WA and I — AW. There are eight cases to deal
with:

(i) I-WAe R(X), (i) -WAe A(X), (iii) —-WA € R(X)NA(X),
(iv) I — WA € W(X), (v) I — AW € R(X), (vi) I — AW e A(X), (vii)
I — AW € R(X)NA(X), (viil) [ — AW € W(X).

It is sufficient to consider the first four cases (i)-(iv). Since both one-sided
invertible and invertible operators are generalized almost invertible, we can
reduce those cases to the case of I — W A being generalized almost invertible.

Suppose that we are given a linear system (LS)o. The initial value prob-
lem (3.1)-(3.2) has solutions if and only if

W Bu+ 0 € (I - WA)X, C (I — WA)(dom V), (3.4)

where
X,={redomV:FP(Ax +Bu) =0}, ueU,

and zo = 0 if dimkerV = 0.
So the condition

WBU + {z,} € (I - WA)X, (3.5

is a necessary and sufficient condition for the initial value problem (3.1)-(3.2)
to have solutions for every v € U.

It is easy to check that the condition (3.5%) is equivalent to the following:
BU C (V — A)dom V.
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Suppose that [ — WA is generalized almost invertible.
Write
G(IE(), u) =

= {LL = ([ + ‘/V{/VAA)(W—BU—F iE()) +z: Wa€Wrqmw, I € ker(I — W.A)}
(3.6)
Note that G is the set of all solutions of the problem (3.1)-(3.2). There-
fore, to every fixed input (zo,u) there corresponds an output z = G(zg, u).
Write
Rang;, G = U G(zo,u), xo € ker V. (3.7)

zel

Definition 3.1. Suppose that we are given a linear system (LS), and the
set G(zo,u) of the form (3.6). A state z € X is said to be reachable from
the initial state zg € ker V if for every W4 € Wr_ 4y there exists a control
u € U such that z € G(zo, u).

It is easy to see that the set is reachable from the initial state ¢ € ker V'
by means of controls u € U and this set is contained in dom V.

Lemma 3.1. Write
T=I+WWiA, WyeWr_an, WeW,,. (3.8)
Then the following equality holds:
T(WBU + {zo}) + ker(] — WA) =TWBU & {Tzo} @ ker(/ — WA). (3.9

Theorem 3.1. Suppose that
BeLyU—X, X' -U), Ve lX X)NW(X), W e L(X, X)) n Wy’

and T € Ly(X, X’), where T is defined by (3.8). Then the generalized
Kalman condition
ker B*W*T* = {0} (3.12)

holds if and only if for every initial state zg € ker V, every state
z € WV (dom V) + {xo} + ker(I — WA)

is reachable from zg.
Now we give another condition for every state € WX +{Txo} +ker(] —
W A) to be reachable from any initial state zo € ker V.

Lemma 3.2. Let V € W(X), W € Lo(X) N W5® and let T be given by
(3.8). Then
TeWrwa, TWX CWX. (314)
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Lemma 3.2 implies that F’ l(r)T W B maps U into WX. Corollary 3.1 yields

Theorem 3.2. Consider a linear system (LS)o described by a generalized
almost invertible operator V. Suppose that W € Lo(X) N Wy and T is
defined by (3.8). Then a necessary and sufficient condition for every element
z € WX + {Tzo} + ker(] — WA) to be reachable from any initial state
zg € ker V is that

TWBU = WX. (3.15)

Definition 3.2. Let there be given a linear system (LS), of the form (3.1)-
(3.2). Let F 1(” be any right initial operator for V corresponding to W; € Wy,

(i) A state z; € kerV is said to be Ff")‘ reachable from an initial state
zo € ker V if there exists a control v € U such that z; € Ff”G(m, u). The
state z1 is then called a finite state.

(i) The system (LS)o is said to be F{"- controllable if for every initial
state xg € ker V', we have

F1(7“)(Ra11gbf‘l,oG) = ker V. (3.16)

(iii) The system (LS)o is said to be F\")- controllable to 1 € ker V if
xp € Fl(r)(RavngU’wOG) (3.17)

for every initial state zy € ker V.

)_ controllable to zero

Lemma 3.3. Suppose that the system (LS)g is F\"
and that

FUT(ker V) + ker(I — WA)] = ker V. (3.18)
Then every final state 21 € ker V' is Fl(T>~ reachable from zero.

Theorem 3.3. Suppose that all assumptions of Lemma (3.3) are satisfied.
Then the linear system (LS) is FI(T)- controllable.

Proof. By our assumption, there exist ug € U and zp € ker(J — WA) such
that
FIIT (W Bug + o) + 2] = 0 (3.21)

By Lemma 3.3, for every z; € ker V' there exist uy, € U and z; € ker(/ —WA)
such that
FO(TW Buly + 21)] = 2. (3.22)

Now (3.21) and (3.22) imply F\V[T(W B(uo + uly + zo) + (20 + 21) = a1,
)

i.e. 1 is Fl(r - reachable from g, which was to be proved.
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Corollary 3.4. If the system (LS)o is F\"- controllable to zero and F\"/T(ker V) =
kerV, then it is F\")- controllable.

Theorem 3.4. Let a linear system (LS)g of the form (3.1)-(3.2) and an
initial operator F\" for V be given. Let T be defined by (3.8) and let B €
Lo(U — X, X' = U"), Ve L(X,X"), A, W € Lo(X,X’). Then (LS), is
F l(r)- controllable if and only if

ker B*W*T*(F)* = {0}. (3.23)

Theorem 3.5. Let there be given a linear system (LS)o and an initial
operator for V € W(X). Then the system (LS)o is F\" - controllable if and
only if it is F‘fr) - controllable to every 2’ € Fl(T)T WV (dom V).

Theorem 3.6. Suppose that the system (LS) is Fl(r) -controllable. Then for

an arbitrary right initial operator F\” for V, this system is F\" -controllable.
¢

Example 3.1. Let X := C[-1,1}, D := d/dt, R := [, (Fz)(t) := z(0).
0

Define (Pz)(t) := iz(t) + 2(~t)], Q == — P, Xt := PX, X~ := QX ie.
X = X+ @ X~. Consider the linear system

P(D+ Bz =Au, uelU= X", (3.29)
(I = RPD)x = zy, 29 = RQyo + 20 € ker PD, (3.30)

xo € ker D, yo € X,

where A € Ly(Xt), B e R.

Putting V = PD, W = RP we find VWV =V, WVW = W. The right
initial operator F(") for V corresponding to W is F(" = I — RPD. Hence,
we can write the system (3.29)-(3.30) in the form

(V +BP)x = Au, Fz =z, (3.31)

This system is equivalent to the equation
(I + BRP)x = RPAu + zo. (3.32)
Since (I +SRP)(I — 3RP) = I —B?RPRP = I — 3?R*QP = I, we conclude
that every state © € dom D is reachable from the initial state zg, i.e. there

exists u € U such that

x = (I — BRP)(RPAu + xy).
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Hence

G(zo,u) ={x = (I — BRP)(RPAu+ x¢)}, (3.33)
and since RPRP = 0 we get

(I — BRP)(RPAU + o) = RPAU @ {(I — BRP)xo)}. (3.34)
From (3.33)-(3.34) we obtain
Rangy, .G = RPAU & {(I — BRP)x.}.

Thus the system (3.29)-(3.30) is Fl(’") -controllable for a right initial operator
F") of V if and only if

F(Rangy,,,G) = ker(PD).

It is easy to check that ker(PD) consists all even differentiable functions
defined on [-1,1].
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