Title	Controllability of Linear Systems with Generalized Invertible Operators
Author(s)	Nguyen, Van Mau
Citation	Annual Report of FY 2007, The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST). 2008, p. 501-522
Version Type	VoR
URL	https://hdl.handle.net/11094/13009
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/
Osaka University

Controllability of Linear Systems with Generalized Invertible Operators

Nguyen Van Mau
Hanoi University of Science, VNUH

1 Controllability of first order linear systems with right invertible operators

Let X, Y and U be linear spaces (all over the same field \mathcal{F}, where $\mathcal{F}=\mathbb{R}$ or $\mathcal{F}=\mathbb{C}$). Suppose that $D \in R(X)$, dim ker $D \neq 0, F \in \mathcal{F}_{\mathcal{D}}$ corresponds to an $R \in \mathcal{R}_{\mathcal{D}}, A \in L_{0}(X), A_{1} \in L_{0}(X \rightarrow Y), B \in L_{0}(U \rightarrow X), B_{1} \in L_{0}(U \rightarrow Y)$ (cf. Section 1). By a first order linear system (shortly: $(L S)$) we mean the system

$$
\begin{gather*}
D x=A x+B u, \quad R B U \oplus\left\{x_{0}\right\} \subset(I-R A)(\operatorname{dom} D) \tag{1.1}\\
F x=x_{0}, x_{0} \in \operatorname{ker} D \tag{1.2}\\
y=A_{1} x+B_{1} u . \tag{1.3}
\end{gather*}
$$

The spaces X and U are called the space of states and the space of controls, respectively. The element $x_{0} \in \operatorname{ker} D$ is called an initial state. A pair $\left(x_{0}, u\right) \in$ $(\operatorname{ker} D) \times U$ is called an input. The space $(\operatorname{ker} D) \times U$ is called the input space, and the corresponding set of y^{\prime} s in Y the output space. Very often there are considered linear systems with $A_{1}=I$ and $B_{1}=0$, i.e. with $Y=X$ and the output $y=x$. We shall denote such systems by $(L S)_{0}$.

The properties of linear systems depend on the properties of the resolving operators $I-R A$ and $I-A R$, respectively. In a series of papers (cf. [54-56]) Nguyen Dinh Quyet studied some properties of linear systems in the case $I-R A$ invertible. His results concerning controllability were generalized by Pogorzelec [84-85] in the case $I-R A$ and $I-A R$ either left or right invertible, and in the case $I-A R$ invertible.

Hence, there are six cases to deal with:
(i) $I-R A \in R(X)$, (ii) $I-R A \in \mathbb{L}(X)$, (iii) $I-R A$ is invertible,
(iv) $I-A R \in R(X)$, (v) $I-A R \in \mathbb{L}(X)$, (vi) $I-A R$ is invertible.

We show that $I-R A$ is right invertible (left invertible, invertible) if and only if so is $I-A R$, i.e. it is sufficient to consider the first three cases. On the other hand, since every one-sided invertible operator and every invertible operator are generalized almost invertible, we can reduce those cases to the case of $I-R A$ being generalized almost invertible.

Suppose that we are given a linear system $(L S)_{0}$. The initial value problem (1.1)-(1.2) is equivalent to the equation

$$
\begin{equation*}
(I-R A) x=R B u+x_{0} . \tag{1.4}
\end{equation*}
$$

Hence, the inclusion

$$
\begin{equation*}
R B U \oplus\left\{x_{0}\right\} \subset(I-R A)(\operatorname{dom} \mathrm{D}) \tag{1.5}
\end{equation*}
$$

is a necessary and sufficient condition for the problem (1.1)-(1.2) to have solutions for every $u \in U$.

Denote by $G_{i}(i=1,2,3,4)$ following sets defined for every $x_{0} \in \operatorname{ker} D$, $u \in U$:
(i) If $I-R A \in R(X)$ and $T_{1} \in \mathcal{R}_{\mathcal{I}-\mathcal{R A}}$, then

$$
\begin{equation*}
G_{1}\left(x_{0}, u\right):=\left\{x=R_{1}\left(R B u+x_{0}\right)+z: \quad z \in \operatorname{ker}(I-R A)\right\} . \tag{1.6}
\end{equation*}
$$

(ii) If $I-R A \in \mathbb{L}(X)$ and $T_{2} \in \mathrm{~L}_{I-R A}$, then

$$
\begin{equation*}
G_{2}\left(x_{0}, u\right):=\left\{x=T_{2}\left(R B u+x_{0}\right)\right\} . \tag{1.7}
\end{equation*}
$$

(iii) If $I-R A$ is invertible, then

$$
\begin{equation*}
G_{3}\left(x_{0}, u\right):=\left\{x=T_{3}\left(R B u+x_{0}\right)\right\}, \quad T_{3}=(I-R A)^{-1} \tag{1.8}
\end{equation*}
$$

(iv) If $I-R A \in W(X)$ and $T_{4} \in \mathcal{W}_{\mathcal{I}-\mathcal{R A}}$, then

$$
\begin{equation*}
G_{4}\left(x_{0}, u\right):=\left\{x=T_{4}\left(R B u+x_{0}\right)+z: \quad z \in \operatorname{ker}(I-R A)\right\} . \tag{1.9}
\end{equation*}
$$

Note that the G_{i} are the sets of all solutions of the problem (1.1)- (1.2) in the corresponding cases. Therefore, to every fixed input $\left(x_{0}, u\right)$ there corresponds an output $x \in G_{i}\left(x_{0}, u\right)$ for each case.
Definition 1.1. Suppose that we are given a system $(L S)_{0}$ and the sets $G_{i}\left(x_{0}, u\right)$ of the forms (1.6)-(1.9). A state $x \in X$ is said to be (i)-reachable ($i=1,2,3,4$) from an initial state $x_{0} \in \operatorname{ker} D$ if for every $T_{i}\left(T_{1} \in \mathcal{R}_{\mathcal{I}-\mathcal{R A}}\right.$, $\left.T_{2} \in \mathrm{E}_{I-R A}, T_{3}=(I-R A)^{-1}, T_{4} \in \mathcal{W}_{\mathcal{I}-\mathcal{R A}}\right)$ there exists a control $u \in U$ such that $x \in G_{i}\left(x_{0}, u\right)$.

Write

$$
\operatorname{Rang}_{U, x_{0}} G_{i}=\bigcup_{u \in U} G_{i}\left(x_{0}, u\right), \quad x_{0} \in \operatorname{ker} D(i=1,2,3,4)
$$

It is easy to see that $\operatorname{Rang}_{U, x_{0}} G_{i}$ is (i)- reachable from $x_{0} \in \operatorname{ker} D$ by means of controls $u \in U$ and it is contained in dom D.
Lemma 1.1. Suppose that $T_{i}(i=1,2,3,4)$ are defined as in (1.6)- (1.9). Then

$$
\begin{equation*}
T_{i}\left(R B U \oplus\left\{x_{0}\right\}\right)+\operatorname{ker}(I-R A)=T_{i} R B U \oplus\left\{T_{i} x_{0}\right\} \oplus \operatorname{ker}(I-R A) \tag{1.10}
\end{equation*}
$$

Remark 1.1. If either $I-R A \in \mathbb{L}(X)$ or $I-R A$ is invertible then $\operatorname{ker}(I-$ $R A)=\{0\}$, and (1.10) takes the form $T_{i}\left(R B U \oplus\left\{x_{0}\right\}\right)=T_{i} R B U \oplus\left\{T_{i} x_{0}\right\}$.

The formulae (1.5)-(1.9) imply
Corollary 1.1.

$$
\begin{equation*}
\text { Rang }_{U, x_{0}} G_{i}=T_{i} R B U \oplus\left\{T_{i} x_{0}\right\} \oplus \operatorname{ker}(I-R A) \tag{1.11}
\end{equation*}
$$

Corollary 1.2. A state x is (i)-reachable from a given initial state $x_{0} \in \operatorname{ker} D$ if and only if

$$
\begin{equation*}
x \in T_{i} R B U \oplus\left\{T_{i} x_{0}\right\} \oplus \operatorname{ker}(I-R A), \quad i=1,2,3,4 \tag{1.12}
\end{equation*}
$$

Lemma 1.2. Write

$$
E_{i}:=T_{i} R B, \quad X_{i}:=T_{i}(I-R A)(\operatorname{dom} \mathrm{D})-\left\{\mathrm{x}_{0}\right\} .
$$

Then the operator E_{i} maps U into X_{i}.
Proof. By our assumption, $R B U \oplus\left\{x_{0}\right\} \subset(I-R A)$ (dom D), thus for every $u \in U$ there exist $v \in X$ and $x_{1} \in \operatorname{ker} D$ such that

$$
R B u+x_{0}=(I-R A)\left(R v+x_{1}\right)
$$

i.e. $T_{i} R B u=T_{i}\left[(I-R A)\left(R v+x_{1}\right)-x_{0}\right]$.

Theorem 1.1. Suppose that $B \in L_{0}\left(U \rightarrow X, X^{\prime} \rightarrow U^{\prime}\right), D \in L\left(X, X^{\prime}\right)$ $R \in L_{0}\left(X, X^{\prime}\right)$ and $T_{i} \in L_{0}\left(X, X^{\prime}\right)(i=1,2,3,4)$. Then the generalized Kalman condition

$$
\begin{equation*}
\operatorname{ker} B^{*} R^{*} T_{i}^{*}=\{0\} \tag{1.13}
\end{equation*}
$$

holds if and only if for every initial state $x_{0} \in \operatorname{ker} D$, every state $x \in R X \oplus$ $\left\{x_{0}\right\}+\operatorname{ker}(I-R A)$ is (i)-reachable from x_{0}.
Proof. By Lemma 1.2, the condition (1.13) holds if and only if for every $x_{1} \in$ ker D and $v \in X$ there exists $u \in U$ such that $R B u+x_{0}=(I-R A)\left(R v+x_{1}\right)$. This means that for every $x_{1} \in \operatorname{ker} D, v \in X$ and $z \in \operatorname{ker}(I-R A)$ there exists $u \in U$ such that

$$
\begin{equation*}
T_{i}\left(R B u+x_{0}\right)+z=T_{i}(I-R A)\left(R v+x_{1}\right)+z . \tag{1.14}
\end{equation*}
$$

It is sufficient to consider $i=4$, i.e. the case when $(I-R A)$ is generalized almost invertible. Write $F^{\prime}:=I-T_{4}(I-R A)$. It is easy to check that $(I-R A) F^{\prime}=0, F_{2}^{\prime}=F^{\prime}$ and $F^{\prime} X=\operatorname{ker}(I-R A)$. Choosing $x_{1}:=x_{0}$, $z:=F^{\prime}\left(R v+x_{1}\right) \in \operatorname{ker}(I-R A)$, we get from (1.14) the equalities

$$
T_{4}\left(R B u+x_{0}\right)+z=\left(I-F^{\prime}\right)\left(R v+x_{0}\right)+F^{\prime}\left(R v+x_{0}\right)=R v+x_{0} .
$$

This means that for every $v \in X, z_{1} \in \operatorname{ker}(I-R A)$ there exist $z^{\prime}=z_{1}+$ $F^{\prime}\left(R v+x_{0}\right) \in \operatorname{ker}(I-R A)$ and $u \in U$ such that

$$
T_{4}\left(R B u+x_{0}\right)+z^{\prime} \in R X \oplus\left\{x_{0}\right\}+\operatorname{ker}(I-R A)
$$

i.e.

$$
\operatorname{Rang}_{U, x_{0}} G_{4}=R X \oplus\left\{x_{0}\right\}+\operatorname{ker}(I-R A) .
$$

Note that the generalized Kalman condition (1.13) in the case of (I $R A$) invertible was introduced and applied by Nguyen Dinh Quyet [54-56]. Theorem 1.1 in the case of $I-R A$ one-sided invertible was obtained by Pogorzelec [84].

Now we give another condition for every state $x \in R X+\left\{T_{i} x_{0}\right\}+\operatorname{ker}(I-$ $R A)$ to be (i)-reachable from any $x_{0} \in \operatorname{ker} D$. To begin with, note that

$$
\begin{equation*}
T_{i} R X \subset R X \quad(i=1,2,3,4) \tag{1.15}
\end{equation*}
$$

Indeed, there exist $T_{i}^{\prime}(i=1,2,3,4)$ such that $T_{i}=I+R T_{i}^{\prime} A$. Thus

$$
T_{i} R X=\left(I+R T_{i}^{\prime} A\right) R X=R\left(I+T_{i}^{\prime} A R\right) X \subset R X
$$

Therefore, $T_{i} R B$ map U into $R X$. Corollary 6.1 gives the following
Theorem 1.2. A necessary and sufficient condition for every element

$$
x \in R X+\left\{T_{i} x_{0}\right\}+\operatorname{ker}(I-R A)
$$

to be (i)-reachable from any initial state $x_{0} \in \operatorname{ker} D$ is that $T_{i} R B U=R X$.

Definition 1.2. Let there be given a linear system $(L S)_{0}$ of the form (1.1)(1.2). Let $F_{i} \in \mathcal{F}_{\mathcal{D}}(i=1,2,3,4)$ be arbitrary initial operators (not necessarily different).
(i) A state $x_{1} \in \operatorname{ker} D$ is said to be F_{i}-reachable from an initial state $x_{0} \in \operatorname{ker} D$ if there exists a control $u \in U$ such that $x_{1} \in F_{i} G_{i}\left(x_{0}, u\right)$. The state x_{1} is then called a final state.
(ii) The system $(L S)_{0}$ is said to be F_{i}-controllable if for every initial state $x_{0} \in \operatorname{ker} D$,

$$
\begin{equation*}
F_{i}\left(\operatorname{Rang}_{U, x_{0}} G_{i}\right)=\operatorname{ker} D . \tag{1.16}
\end{equation*}
$$

(iii) The system $(L S)_{0}$ is said to be F_{i}-controllable to $x_{1} \in \operatorname{ker} D$ if

$$
\begin{equation*}
x_{i} \in F_{i}\left(\operatorname{Rang}_{U, x_{0}} G_{i}\right) \tag{1.17}
\end{equation*}
$$

for every initial state $x_{0} \in \operatorname{ker} D$.
Lemma 1.3. Let there be given a linear system $(L S)_{0}$ and an initial operator $F_{i} \in \mathcal{F}_{\mathcal{D}}$. Suppose that the system $(L S)_{0}$ is F_{i}-controllable to zero and that

$$
\begin{equation*}
F_{i}\left(T_{i} \operatorname{ker} D+\operatorname{ker}(I-R A)\right)=\operatorname{ker} D . \tag{1.18}
\end{equation*}
$$

Then every final state $x_{1} \in \operatorname{ker} D$ is F_{i}-reachable from zero.
Theorem 1.3. Suppose that all assumptions of Lemma 1.3 are satisfied. Then the system $(L S)_{0}$ is F_{i}-controllable.
Proof. Suppose that $I-R A \in W(X)$. By our assumption, there exist $u_{0} \in U$ and $z_{0} \in \operatorname{ker}(I-R A)$ such that

$$
\begin{equation*}
F_{4}\left[T_{4}\left(R B u_{0}+x_{0}\right)+z_{0}\right]=0 \tag{1.21}
\end{equation*}
$$

By Lemma 1.3, for every $x_{1} \in \operatorname{ker} D$ there exist $u_{0}^{\prime} \in U$ and $z_{1} \in \operatorname{ker}(I-$ $R A$) such that

$$
\begin{equation*}
F_{4}\left(T_{4} R B u_{0}^{\prime}+z_{1}\right)=x_{1} . \tag{1.22}
\end{equation*}
$$

Add (1.21) and (1.22) to find

$$
F_{4}\left\{T_{4}\left[R B\left(u_{0}+u_{0}^{\prime}\right)+x_{0}\right]+\left(z_{0}+z_{1}\right)\right\}=x_{1},
$$

i.e. x_{1} is F_{4}-reachable from x_{0}, which was to be proved.

Corollary 1.4 (cf. Pogorzelec [84]). Let $T_{1}^{\prime} \in \mathcal{R}_{\mathcal{I}-\mathcal{A R}}, T_{2}^{\prime} \in \mathrm{E}_{I-A R}, T_{3}^{\prime}=$ $(I-A R)^{-1}$ and $T_{4}^{\prime} \in \mathcal{W}_{\mathcal{I}-A \mathcal{A}}$ for $I-A R \in R(X), I-A R \in \mathbb{L}(X), I-A R$ invertible and $I-A R \in W(X)$, respectively. If the system $(L S)_{0}$ is F_{i} controllable to zero and

$$
\begin{equation*}
F_{i}\left(I+R T_{i}^{\prime} A\right)(\operatorname{ker} D)=\operatorname{ker} D, \tag{1.23}
\end{equation*}
$$

then $(L S)_{0}$ is F_{i}-controllable.
Indeed, by (6.10)-(6.12), $I+R T_{i}^{\prime} A=T_{i}$. Therefore (1.23) takes the form $F_{i} T_{i}(\operatorname{ker} D)=\operatorname{ker} D$ and we get a sufficient condition for F_{i}-controllability.
Corollary 1.5 (cf. Pogorzelec [84-85]). If the system $(L S)_{0}$ is F_{i}-controllable to zero and $F_{i} T_{i}(\operatorname{ker} D)=\operatorname{ker} D$, then $(L S)_{0}$ is F_{i}-controllable.

So the conditions $F_{i} T_{i}(\operatorname{ker} D)=\operatorname{ker} D$ and $F_{i}\left(I+R T_{i}^{\prime} A\right)(\operatorname{ker} D)=\operatorname{ker} D$, found by Pogorzelec for the one-sided invertible resolving operators, are identical.

Theorem 1.4. Let a linear system $(L S)_{0}$ of the form (1.1)-(1.2) and an initial operator $F_{i} \in \mathcal{F}_{\mathcal{D}}$ be given. Let $T_{1} \in \mathcal{R}_{\mathcal{I}-\mathcal{R} . A}$ if $I-R A \in R(X)$ is invertible,
$T_{2} \in \mathrm{~L}_{I-R A}$ if $I-R A$ is left invertible,
$T_{3}=(I-R A)^{-1}$ if $I-R A$ is invertible and
$T_{4} \in \mathcal{W}_{\mathcal{I}-\mathbb{R A}}$ if $I-R A$ is generalized almost invertible.
Suppose that $B \in L_{0}\left(U \rightarrow X, X^{\prime} \rightarrow U^{\prime}\right), D \in L\left(X, X^{\prime}\right), A, R \in$ $L_{0}\left(X, X^{\prime}\right)$. Then the system $(L S)_{0}$ is F_{i}-controllable if and only if

$$
\begin{equation*}
\operatorname{ker} B^{*} R^{*} T_{i}^{*} F_{i}^{*}=\{0\} \tag{1.24}
\end{equation*}
$$

Theorem 1.5. Let there be given a linear system $(L S)_{0}$ and an initial operator $F_{i} \in \mathcal{F}_{\mathcal{D}}$. Then the system $(L S)_{0}$ is F_{i}-controllable if and only if it is F_{i}-controllable to every element $v^{\prime} \in F_{i} T_{i} R X$.

Corollary 1.6. The system $(L S)_{0}$ is $F_{i^{-}}$-controllable if and only if it is $F_{i^{-}}$ controllable to every element $v_{0} \in F_{i} R X$.

Indeed, it is easy to check that $T_{i} R X \subset R X$. Thus $F_{i} T_{i} R X \subset F_{i} R X$.
Theorem 1.6. Suppose that the system $(L S)_{0}$ is F_{i}-controllable. Then it is F_{i}^{\prime}-controllable for every initial operator $F_{i}^{\prime} \in \mathcal{F}_{\mathcal{D}}$.
Proof. Let $R_{i} \in \mathcal{R}_{\mathcal{D}}$ be the right inverse of D corresponding to F_{i}, i.e. $F_{i} R_{i}=0$. For every $x_{1} \in \operatorname{ker} D$ and $v \in X$ there exists $x_{2} \in \operatorname{ker} D$ such that $x_{1}=x_{2}+F_{i}^{\prime} R_{i} v$. By the assumption, the system $(L S)_{0}$ is F_{i}-controllable.

Hence for every $x_{0}, x_{2} \in \operatorname{ker} D$ there exist $u \in U$ and $z \in \operatorname{ker}(I-R A)$ such that $F_{i}\left[T_{i}\left(R B u+x_{0}\right)+z\right]=x_{2}$, or equivalently

$$
T_{i}\left(R B u+x_{0}\right)+z=x_{2}+R_{i} v
$$

for some $v \in X$. Thus

$$
F_{i}^{\prime}\left[T_{i}\left(R B u+x_{0}\right)+z\right]=x_{2}+F_{i}^{\prime} R_{i} v=x_{1} .
$$

The arbitrariness of $x_{0}, x_{1} \in \operatorname{ker} D$ implies the assertion.

Example 1.1. Let $X=(s)$ be the space of all real sequences. Write

$$
\begin{gathered}
\left\{e_{n}\right\}=\{1,1,1, \ldots\}, \quad\left\{0_{n}\right\}=\{0,0,0, \ldots\}, \\
D\left\{x_{n}\right\}:=\left\{x_{n+1}-x_{n}\right\}, F\left\{x_{n}\right\}:=x_{1}\left\{e_{n}\right\}, \\
R\left\{x_{n}\right\}:=\left\{y_{n}\right\}, y_{1}:=0, y_{n}=\sum_{j=1}^{n-1} x_{j}(n=2,3, \ldots), \\
A\left\{x_{n}\right\}:=\left\{z_{n}\right\}, z_{1}:=2 x_{2}-x_{1}, z_{n}:=x_{n+1}-x_{n}(n=2,3, \ldots), \\
B:=\beta I, \text { where } \beta \in \mathbb{R}, \\
U:=\left\{\left\{u_{n}\right\}: u_{n}=0 \text { for } n=2,3, \ldots\right\} .
\end{gathered}
$$

It is easy to check that $D \in R(X)$, $\operatorname{dom} D=X, R \in \mathcal{R}_{\mathcal{D}}$ and F is an initial operator for D corresponding to R. Moreover, $\operatorname{ker} D=\left\{\left\{c e_{n}\right\}: c \in \mathbb{R}\right\}$.

Consider the following linear system $(L S)_{0}$

$$
\begin{equation*}
D x=A x+B u, \quad F x=x_{0}^{\prime}, x_{0}^{\prime} \in \operatorname{ker} D . \tag{1.30}
\end{equation*}
$$

Since $(I-R A)\left\{x_{n}\right\}=\left\{x_{1}+x_{2}, x_{3}, x_{3}, \ldots\right\}$, we conclude that ker $(I-$ $R A) \neq\{0\},(I-R A) X \neq X$. Therefore, $I-R A$ is not one-sided invertible. Write $T_{4}\left\{x_{n}\right\}:=\left\{x_{1}, 0, x_{3}, 0,0, \ldots\right\}$. Then

$$
\begin{gathered}
T_{4}(I-R A)\left\{x_{n}\right\}=T_{4}\left\{x_{1}+x_{2}, x_{3}, x_{3}, \ldots\right\}=\left\{x_{1}+x_{2}, 0, x_{3}, 0,0, \ldots\right\}, \\
(I-R A) T_{4}(I-R A)\left\{x_{n}\right\}=\left\{x_{1}+x_{2}, x_{3}, x_{3}, \ldots\right\},
\end{gathered}
$$

i.e. $(I-R A) T_{4}(I-R A)=I-R A$. Hence, the resolving operator is generalized almost invertible, but it is neither invertible nor one-sided invertible.

Let $x_{0}^{\prime}=\left\{b e_{n}\right\} \in \operatorname{ker} D$. Then

$$
\begin{equation*}
R B U \oplus\left\{x_{0}^{\prime}\right\}=\left\{\left\{x_{n}\right\}: x_{1}=b, x_{k}=b+c(k \geqslant 2), c \in \mathbb{R}\right\} . \tag{1.31}
\end{equation*}
$$

Hence $R B U \oplus\left\{x_{0}^{\prime}\right\} \subset(I-R A)$ (dom D), i.e. the system (1.30) has solutions for every control $u \in U$.

If $x_{1}^{\prime}=\left\{s e_{n}\right\}, v=\left\{v_{1}, v_{2}, \ldots\right\} \in X$ then

$$
\begin{equation*}
(I-R A)\left(R v+x_{1}^{\prime}\right)=\left\{2 s, s+v_{1}+v_{2}, s+v_{1}+v_{2}, \ldots\right\} . \tag{1.32}
\end{equation*}
$$

Now (1.31) and (1.32) together imply ker $B^{*} R^{*} T_{4}^{*} \neq\{0\}$, i.e. not every state x in $\left(R X \oplus\left\{x_{0}^{\prime}\right\}+\operatorname{ker}(I-R A)\right.$ is reachable from x_{0}^{\prime}.

By simple calculation, we also have

$$
T_{4} R B U=\{\{0,0, c, 0,0, \ldots\}: c \in \mathbb{R}\},
$$

$$
\begin{gathered}
R X+\operatorname{ker}(I-R A)=\left\{\left\{\beta, x_{1}-\beta, x_{1}+x_{2}-\beta, y_{4}, y_{5}, \ldots\right\}: \beta \in \mathbb{R},\right. \\
\left.x=\left\{x_{n}\right\} \in X, y_{k}=x_{1}+\cdots+x_{k-1}(k \geqslant 4)\right\} .
\end{gathered}
$$

Hence $T_{4} R B U \neq R X+\operatorname{ker}(I-R A)$. By Theorem 1.2, there is

$$
x \in R X+\left\{x_{0}^{\prime}\right\}+\operatorname{ker}(I-R A)
$$

which is not reachable from x_{0}^{\prime}.
Let $F_{4}\left\{x_{n}\right\}=x_{3}\left\{e_{n}\right\}$. Then

$$
F_{4} T_{4}(\operatorname{ker} D)=\{\beta, \beta, \ldots\},
$$

i.e. $F_{4} T_{4}(\operatorname{ker} D)=\operatorname{ker} D$. Corollary 1.5 implies that the system (1.30) is F_{4}-controllable.

If we put $F_{4}^{\prime}\left\{x_{n}\right\}=x_{2}\left\{e_{n}\right\}$, then $F_{4}^{\prime} T_{4}(\operatorname{ker} D)=\{0\}$. Hence $F_{4}^{\prime} T_{4}(\operatorname{ker} D) \neq$ $\operatorname{ker} D$. However, $F_{4}^{\prime}(\operatorname{ker}(I-R A))=\operatorname{ker} D$, so that

$$
F_{4}^{\prime} T_{4}(\operatorname{ker} D)+\operatorname{ker}(I-R A)=\operatorname{ker} D .
$$

By Theorem 1.3, the system (1.30) is F_{4}^{\prime}-controllable.
Example 1.2. Suppose that X, D, R, F are defined as in Example 1.1 and that

$$
A\left\{x_{n}\right\}:=\left\{0, x_{3}, x_{4}-x_{3}, x_{5}-x_{4}, \ldots\right\}, U:=X, \quad B:=I .
$$

It is easy to check that

$$
\begin{equation*}
(I-R A)\left\{x_{n}\right\}=\left\{x_{1}, x_{2}, 0,0, \ldots\right\} \tag{1.33}
\end{equation*}
$$

Hence $I-R A$ is a projection, and so it is not one-sided invertible, but it is generalized almost invertible. The kernel of $I-R A$ is

$$
\begin{equation*}
\operatorname{ker}(I-R A)=\left\{\left\{0,0, x_{3}, x_{4}, x_{5}, \ldots\right\}: x_{n} \in \mathbb{R}(n \geqslant 3)\right\} \tag{1.34}
\end{equation*}
$$

Fix $x_{0}^{\prime}=\left\{b e_{n}\right\} \in \operatorname{ker} D$. Then

$$
\begin{equation*}
R B U \oplus\left\{x_{0}^{\prime}\right\}=R X \oplus\left\{x_{0}^{\prime}\right\} . \tag{1.35}
\end{equation*}
$$

Since $(I-R A)^{2}=I-R A$, we get $T_{4}=I \in \mathcal{W}_{T-\mathcal{R A}}$, and

$$
\begin{equation*}
T_{4} R B U=R X \tag{1.36}
\end{equation*}
$$

Now (1.34) and (1.36) yield

$$
T_{4} R B U=R X+\operatorname{ker}(I-R A)
$$

Theorem 1.2 implies that every state $x \in R X+\left\{T_{4} x_{0}^{\prime}\right\}+\operatorname{ker}(I-R A)$ is (4)-reachable from $x_{0} \in \operatorname{ker} D$.

Let $F_{4} \in \mathcal{F}_{\mathcal{D}}, F_{4}\left\{x_{n}\right\}:=x_{3}\left\{e_{n}\right\}$. Then $F_{4} T_{4}(\operatorname{ker} D)=\operatorname{ker} D$. Hence, by Corollary 1.5, the system (1.30) is F_{4}-controllable.

Suppose now that $T_{4}^{\prime}=I-R A$. Then $I-R A \in \mathcal{W}_{I-R \mathcal{A}}$ since $(I-R A)^{3}=$ $I-R A$. In this case, we obtain

$$
\begin{gathered}
T_{4} R B U=\{0, \beta, 0,0, \ldots\}, T_{4}(\operatorname{ker} D)=\{\{\beta, \beta, 0,0, \ldots\}: \beta \in \mathbb{R}\}, \\
F_{4} T_{4}(\operatorname{ker} D)=\{\{\beta, \beta, 0,0, \ldots\}: \beta \in \mathbb{R}\}
\end{gathered}
$$

and $F_{4}\left(T_{4}(\operatorname{ker} D)+\operatorname{ker}(I-R A)\right)=\left\{\left\{c e_{n}\right\}: c \in \mathbb{R}\right\}$. Thus $F_{4} T_{4}(\operatorname{ker} D) \nsubseteq$ ker D. However,

$$
F_{4}\left(T_{4}(\operatorname{ker} D)+\operatorname{ker}(I-R A)\right)=\operatorname{ker} D .
$$

Theorem 1.3 implies that the system (1.30) is F_{4}^{\prime}-controllable for the given generalized almost inverse $T_{4}=I-R A$.

2 Controllability of general systems with right invertible operators

Let X, Y and U be linear spaces (all over the same field \mathcal{F}, where $\mathcal{F}=\mathbb{C}$ or $\mathcal{F}=\mathbb{R}$). Let $D \in R(X), R \in \mathcal{R}_{\mathcal{D}}$ and let F be an initial operator corresponding to R. Write

$$
\begin{equation*}
X_{k}:=\operatorname{dom} \mathrm{D}^{\mathrm{k}}, \mathrm{Z}_{\mathrm{k}}:=\operatorname{ker} \mathrm{D}^{\mathrm{k}}(\mathrm{k} \in \mathbb{N}) \tag{2.0}
\end{equation*}
$$

Suppose that we are given $A_{1} \in L_{0}(X \rightarrow Y), B \in L_{0}(U \rightarrow X), B_{1} \in$ $L_{0}(U \rightarrow Y)$.
Definition 2.1. A linear system (shortly $(L S)$) is any system

$$
\begin{gather*}
Q[D]=B u, F D^{j} x=x_{j}, x_{j} \in \mathbb{Z}_{1}(j=0, \ldots, M+N-1), \tag{2.1}\\
y=A_{1} x+B_{1} u \tag{2.2}
\end{gather*}
$$

where

$$
\begin{equation*}
Q[D]:=\sum_{m=0}^{M} \sum_{n=0}^{N} D^{m} A_{m n} D^{n}, \tag{2.3}
\end{equation*}
$$

$A_{m n} \in L(X), A_{m n} X_{M+N-n} \subset X_{m}(m=0, \ldots, M ; n=0, \ldots, N ; m+n<$ $M+N), A_{M N}=I$.

Herein we assume that

$$
\begin{equation*}
R^{M+N} B U \oplus\left\{x^{0}\right\} \subset(I+Q) X_{M+N}, \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
x^{0} & :=\sum_{j=0}^{M+N-1} R^{j} x_{j} \in Z_{M+N}, \tag{2.5}\\
Q & :=\sum_{m=0}^{M} \sum_{n=0}^{N} R^{M+N-m} B_{m n} D^{n}, \tag{2.6}
\end{align*}
$$

where

$$
\begin{gathered}
B_{m n}:= \begin{cases}A_{0 n}^{\prime} & \text { if } m=0, \\
A_{m n}^{\prime}-\sum_{\mu=m}^{M} F D^{\mu-m} A_{\mu n}^{\prime} & \text { otherwise },\end{cases} \\
A_{m n}^{\prime}:= \begin{cases}0 & \text { if } m=M \text { and } n=N, \\
A_{m n} & \text { otherwise }(m=0, \ldots, M ; n=0, \ldots, N) .\end{cases}
\end{gathered}
$$

The assumption (2.4) is a necessary and sufficient condition for the initial value problem (2.1) to have solutions for every $u \in U$.

If $A_{1}=I$ and $B_{1}=0$ then we shall denote the system (2.1)-(2.2) by $(L S)_{0}$.
Definition 2.2. The linear system (2.1)-(2.2) is said to be well-defined if for every fixed $u \in U$ the corresponding initial value problem (2.1) is well-posed. If there is $u \in U$ such that the initial value problem (2.1) is ill-posed, then the linear system is said to be ill-defined.

Theorem 2.1. Suppose that the condition (2.4) is satisfied. Then the system (2.1)-(2.2) is well-defined if and only if the corresponding resolving operator $I+Q^{\prime}$, where

$$
\begin{equation*}
Q^{\prime}:=\sum_{m=0}^{M} \sum_{n=0}^{N} R^{M-m} B_{m n} R^{N-n} \tag{2.7}
\end{equation*}
$$

is either invertible or left invertible.
Indeed, if $I+Q^{\prime}$ is either invertible or left invertible, then for every $u \in U$, the initial value problem (2.1) has a unique solution of the form $x=G\left(x^{0}, u\right)$, where

$$
\begin{gather*}
G\left(x^{0}, u\right)=E_{Q}\left(R^{M+N} B u+x^{0}\right), \tag{2.8}\\
E_{Q}:= \begin{cases}I-R^{N} E_{Q^{\prime}} Q_{1} & \text { if } I+Q^{\prime} \text { is invertible }, \\
I-R^{N} L_{Q^{\prime}} Q_{1} & \text { if } I+Q^{\prime} \text { is left invertible, }\end{cases} \tag{2.9}
\end{gather*}
$$

$$
\begin{align*}
E_{Q^{\prime}} & :=\left(I+Q^{\prime}\right)^{-1}, \quad L_{Q^{\prime}} \in \mathrm{L}_{I+Q^{\prime}} \\
Q_{1} & :=\sum_{m=0}^{M} \sum_{n=0}^{N} R^{M-m} B_{m n} D^{n} \tag{2.10}
\end{align*}
$$

So, according to (2.2), the output y is uniquely determined by any $u \in U$ and $x^{0} \in Z_{M+N}$, and is of the form $y=A_{1} G\left(x^{0}, u\right)+B_{1} u$. If we consider a linear system $(L S)_{0}$, then $y=x=G\left(x^{0}, u\right)$.
Definition 2.3. Write

$$
\begin{equation*}
G_{0}:=A_{1} E_{Q}, \quad G_{1}:=G_{0} R^{M+N} B+B_{1}, \tag{2.11}
\end{equation*}
$$

where E_{Q} is defined by (2.9). The matrix operator $G^{0}=\left(G_{0}, G_{1}\right)$ defined on the input space $Z_{M+N} \times U$ is said to be the transfer operator for the linear system with the resolving operator $I+Q^{\prime}$ invertible.

Therefore, to every input $\left(x^{0}, u\right)$ there corresponds a uniquely determined output y, which can be written as

$$
y=G_{0}\left(x^{0}, u\right)=G_{0} x^{0}+G_{1} u
$$

Consider now the linear system $(L S)_{0}$, i.e. the system (2.1)-(2.2) with $A_{1}=I, B_{1}=0$:

$$
\begin{gather*}
Q[D] x=B u, \quad F D^{j} x=x_{j}, x_{j} \in Z_{1}(j=0, \ldots, M+N-1), \tag{2.12}\\
R^{M+N} B U \oplus\left\{x^{0}\right\} \subset(I+Q) X_{M+N} . \tag{2.13}
\end{gather*}
$$

Write this system in an equivalent form

$$
\begin{equation*}
(I+Q) x=R^{M+N} B u+x^{0} . \tag{2.14}
\end{equation*}
$$

Denote by $H_{i}(i=1,2,3,4)$ the following sets defined for any $x^{0} \in Z_{M+N}$, $u \in U$.
(1) If $I+Q^{\prime} \in R(X)$, then

$$
\begin{equation*}
H_{1}\left(x^{0}, u\right):=\left\{T_{1}\left(R^{M+N} B u+x^{0}\right)+z: \quad z \in \operatorname{ker}(I+Q)\right\}, \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{1}:=I-R^{N} R_{Q^{\prime}} Q_{1}, \quad R_{Q^{\prime}} \in \mathcal{R}_{\mathcal{I}+\mathcal{Q}^{\prime}} \tag{2.16}
\end{equation*}
$$

Q_{1} is given by (21.10).
(2) If $I+Q^{\prime} \in \Lambda(X)$ and $L_{Q^{\prime}} \in \mathrm{E}_{I+Q^{\prime}}$, then

$$
\begin{equation*}
H_{2}\left(x^{0}, u\right):=\left\{T_{2}\left(R^{M+N} B u+x^{0}\right)\right\} \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{2}:=I-R^{N} L_{Q^{\prime}} Q_{1}, Q_{1} \quad \text { is defined by (2.10). } \tag{2.18}
\end{equation*}
$$

(3) If $I+Q^{\prime}$ is invertible, then

$$
\begin{equation*}
H_{3}\left(x^{0}, u\right):=\left\{T_{3}\left(R^{M+N} B u+x^{0}\right)\right\} \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{3}:=I-R^{N}\left(I+Q^{\prime}\right)^{-1} Q_{1} . \tag{2.20}
\end{equation*}
$$

(4) If $I+Q^{\prime} \in W(X)$ and $W_{Q^{\prime}} \in \mathcal{W}_{\mathcal{I}+\mathcal{Q}^{\prime}}$, then

$$
\begin{equation*}
H_{4}\left(x^{0}, u\right):=\left\{T_{4}\left(R^{M+N} B u+x^{0}\right)+z: \quad z \in \operatorname{ker}(I+Q)\right\} \tag{2.21}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{4}:=I-R^{N} W_{Q^{\prime}} Q_{1} . \tag{2.22}
\end{equation*}
$$

Note that $H_{i}(i=1,2,3,4)$ are the sets of all solutions of the system $(L S)_{0}$ in the respective cases.

As in Section 33, we need the following
Definition 2.5. A state $x \in X$ is said to be (i)-reachable ($i=1,2,3,4$) from an initial state $x^{0} \in Z_{M+N}$ if for every $T_{i}\left(T_{1} \in \mathcal{R}_{\mathcal{I}+\mathcal{Q}}, T_{2} \in \mathrm{~L}_{I+Q}, T_{3}=\right.$ $\left.(I+Q)^{-1}, T_{4} \in \mathcal{W}_{I+Q}\right)$ there exists a control $u \in U$ such that $x \in H_{i}\left(x^{0}, u\right)$.

In the following we only deal with the above four cases. Write

$$
\begin{equation*}
\operatorname{Rang}_{U, x^{0}} H_{i}=\bigcup_{u \in U} H_{i}\left(x^{0}, u\right), x^{0} \in Z_{M+N} \tag{2.23}
\end{equation*}
$$

It is easy to see that $\operatorname{Rang}_{U, x^{0}} H_{i}$ is (i)-reachable from x^{0} by means of controls $u \in U$ and it is contained in X_{M+N}.
Lemma 2.1. Suppose that $T_{i}(i=1,2,3,4)$ are given by (2.16), (2.18), (2.20) and (2.22), respectively. Then

$$
\begin{align*}
& T_{i}\left(R^{M+N} B U \oplus\left\{x^{0}\right\}\right)+\operatorname{ker}(I+Q) \\
= & T_{i} R^{M+N} B U \oplus\left\{T_{i} x^{0}\right\} \oplus \operatorname{ker}(I+Q) . \tag{2.24}
\end{align*}
$$

Remark 2.1. If $I+Q^{\prime}$ is either invertible or left invertible, the formula (2.24) is of the form

$$
T_{i}\left(R^{M+N} B U \oplus\left\{x_{0}\right\}\right)=T_{i} R^{M+N} B U \oplus\left\{T_{i} x_{0}\right\} .
$$

Corollary 2.1.

$$
\begin{equation*}
\operatorname{Rang}_{U, x^{0}} H_{i}=T_{i} R^{M+N} B U \oplus\left\{T_{i} x^{0}\right\} \oplus \operatorname{ker}(I+Q) . \tag{2.25}
\end{equation*}
$$

Corollary 2.2. The state $x \in X_{M+N}$ is (i)-reachable from $x_{0} \in Z_{M+N}$ if and only if

$$
x \in T_{i} R^{M+N} B U \oplus\left\{T_{i} x^{0}\right\} \oplus \operatorname{ker}(I+Q) .
$$

Lemma 2.2. Write

$$
\begin{gather*}
E_{i}:=T_{i} R^{M+N} B \\
X_{0 i}:=T_{i}\left(R^{N}\left(I+Q^{\prime}\right) R^{M} X+(I+Q) Z_{M+N}-\left\{x^{0}\right\}\right) . \tag{2.26}
\end{gather*}
$$

Then the operator E_{i} maps the space U into $X_{0 i}$.
Theorem 2.3. Let there be given a system $(L S)_{0}$ described by (2.12)(2.13). Suppose that $B \in L_{0}\left(U \rightarrow X, X^{\prime} \rightarrow U^{\prime}\right), D \in L\left(X, X^{\prime}\right), T_{i} \in$ $L_{0}\left(X_{M+N}, X_{M+N}^{\prime}\right), i=1,2,3,4 ; R \in L_{0}\left(X, X^{\prime}\right)$. Then the generalized Kalman condition

$$
\begin{equation*}
\operatorname{ker} B^{*}\left(R^{*}\right)^{M+N} T_{i}^{*}=\{0\} \tag{2.28}
\end{equation*}
$$

holds if and only if for every initial state $x^{0} \in Z_{M+N}$, every state $x \in R^{M+N} X$ $+x^{0}+\operatorname{ker}(I+Q)$ is reachable from x^{0}.

Definition 2.6. Let there be given a linear system $(L S)_{0}$ of the form (2.12)(2.13) and let $F_{i}^{\prime} \in \mathcal{F}_{\mathcal{D}^{\mathcal{M}+\mathcal{N}}}$.
(i) The state $x^{1} \in Z_{M+N}$ is said to be F_{i}-reachable from an initial state $x^{0} \in Z_{M+N}$ if there exists a control $u \in U$ such that $x^{1} \in F_{i}^{t} H_{i}\left(x^{0}, u\right)$. The state x^{1} is then called a final state.
(ii) The system $(L S)_{0}$ is said to be F_{i}-controllable if for every initial state $x^{0} \in Z_{M+N}$,

$$
\begin{equation*}
F_{i}^{\prime}\left(\operatorname{Rang}_{U, x^{0}} H_{i}\right)=Z_{M+N} . \tag{2.30}
\end{equation*}
$$

(iii) The system $(L S)_{0}$ is said to be F_{i}-controllable to $x^{1} \in Z_{M+N}$ if

$$
\begin{equation*}
x^{1} \in F_{i}\left(\operatorname{Rang}_{U, x^{0}} H_{i}\right) \tag{2.31}
\end{equation*}
$$

for every initial state $x^{0} \in Z_{M+N}$.
Lemma 2.3. Let there be given a linear system $(L S)_{0}$ of the form (2.12)(2.13) and an initial operator $F_{i}^{\prime} \in \mathcal{F}_{\mathcal{D}_{\mathcal{M}+\mathcal{N}}}$. Suppose that $(L S)_{0}$ is F_{i}^{\prime} controllable to zero and that

$$
\begin{equation*}
F_{i}^{\prime} T_{i} Z_{M+N}=Z_{M+N} . \tag{2.32}
\end{equation*}
$$

Then every final state $x^{1} \in Z_{M+N}$ is F_{i}^{\prime}-reachable from zero.
Proof. It is sufficient to deal with the case $i=4$. Since the system is $F_{4}^{\prime}-$ controllable to zero, there exists a control $u^{\prime} \in U$ such that $0 \in F_{4}^{\prime} H_{4}\left(x^{0}, u^{\prime}\right)$,
i.e. there exists $z_{0} \in \operatorname{ker}(I+Q)$ such that $F_{4}^{\prime}\left(T_{4}\left(R^{M+N} B u^{\prime}+x^{0}\right)+z_{0}\right)=0$, or equivalently

$$
F_{4}^{\prime}\left(T_{4}\left(R^{M+N} B u^{\prime}+z_{0}\right)=-F_{4}^{\prime} T_{4} x^{0} .\right.
$$

By the assumption (2.32), for every given state $x^{1} \in Z_{M+N}$ we find $x^{2} \in$ Z_{M+N} such that $-F_{4}^{\prime} T_{4} x^{2}=x^{1}$. Hence, there are $u \in U$ and $z_{0} \in \operatorname{ker}(I+Q)$ such that

$$
F_{4}^{\prime}\left(T_{4}\left(R^{M+N} B u\right)+z_{0}\right)=-F_{4}^{\prime} T_{4} x^{2}=x^{1}
$$

This proves that an arbitrary final state x^{1} is reachable from the initial state 0.

Theorem 2.4. Suppose that all assumptions of Lemma 2.3 are satisfied. Then the linear system $(L S)_{0}$ is F_{i}^{\prime}-controllable.
Proof. It is sufficient to deal with the case of a generalized almost invertible resolving operator. By the assumption, there exist $u_{0} \in U$ and $z_{0} \in \operatorname{ker}(I+Q)$ such

$$
\begin{equation*}
F_{4}^{\prime}\left[T_{4}\left(R^{M+N} B u_{0}+x^{0}\right)+z_{0}\right]=0 \tag{2.33}
\end{equation*}
$$

On the other hand, by Lemma 2.3, for every given $x^{1} \in Z_{M+N}$ there exist $u_{2} \in U$, that $z_{2} \in \operatorname{ker}(I+Q)$ such that

$$
\begin{equation*}
F_{4}^{\prime}\left[T_{4}\left(R^{M+N} B u_{2}+0\right)+z_{2}\right]=x^{1} . \tag{2.34}
\end{equation*}
$$

If we add (2.33) and (2.34), we obtain $F_{4}^{\prime}\left[T_{4}\left(R^{M+N} B u_{1}+x^{0}\right)+z_{1}\right]=x^{1}$, where $u_{1}:=u_{0}+u_{2} \in U, z_{1}:=z_{0}+z_{2} \in \operatorname{ker}(I+Q)$. Thus every final state $x^{1} \in Z_{M+N}$ is F_{4}-reachable from the initial state $x^{0} \in Z_{M+N}$.

Note that Theorem 2.4 was given by Nguyen Dinh Quyet [54-56] and Pogorzelec [84] for systems of the first order with invertible and one-sided invertible resolving operators (cf. Section 33). Theorem 2.4 can be generalized as follows:

Theorem 2.5. Let there be given a system $(L S)_{0}$ of the form (2.12)-(2.13) and an initial operator $F_{i}^{\prime} \in \mathcal{F}_{\mathcal{D}^{\mathcal{M}+\mathcal{N}}}$. Suppose that $(L S)_{0}$ is F_{i}^{\prime}-controllable to zero and that

$$
\begin{equation*}
F_{i}^{\prime}\left[T_{i}\left(Z_{M+N}+\operatorname{ker}(I+Q)\right]=Z_{M+N} .\right. \tag{2.35}
\end{equation*}
$$

Then $(L S)_{0}$ is F_{i}^{\prime}-controllable.
Note that the conditions of Theorem 2.4 and 2.5 are sufficient but not necessary.
Theorem 2.6. Let there be given a system $(L S)_{0}$ of the form (2.12)-(2.13) and an initial operator $F_{i}^{\prime} \in \mathcal{F}_{\mathcal{D}^{\mathcal{M}+\mathcal{N}}}$. Then $(L S)_{0}$ is F_{i}^{\prime}-controllable if and only if it is F_{i}^{\prime}-controllable to every element $v^{0} \in F_{i}^{\prime}\left(T_{i} R^{M+N} X_{M+N}\right)$.

Note that the operator $F_{i}^{\prime} T_{i} R^{M+N} B$ maps U into Z_{M+N}. The following theorem shows that this operator determines the properties of the system $(L S)_{0}$.

Theorem 2.7. Let a linear system $(L S)_{0}$ of the form (2.12)- (2.13) and an initial operator $F_{i}^{\prime} \in \mathcal{F}_{\mathcal{D}^{\mathcal{M}+\mathcal{N}}}$ be given. Suppose that $B \in L_{0}\left(U \rightarrow X, X^{\prime} \rightarrow\right.$ $\left.U^{\prime}\right), D \in L\left(X, X^{\prime}\right), R \in L_{0}\left(X, X^{\prime}\right)$ and $T_{i} \in L_{0}\left(X_{M+N}, X_{M+N}\right)$. Then $(L S)_{0}$ is F_{i}^{\prime}-controllable if and only if

$$
\begin{equation*}
\operatorname{ker} B^{*}\left(R^{*}\right)^{M+N} T_{i}^{*}\left(F_{i}^{\prime}\right)^{*}=\{0\} \tag{2.42}
\end{equation*}
$$

Theorem 2.7. Suppose that the system $(L S)_{0}$ is F_{i}^{\prime}-controllable. Then it is F^{\prime}-controllable for every initial operator $F^{\prime} \in \mathcal{F}_{\mathcal{D} \mathcal{M}+\mathcal{N}}$.

Example 2.1. Let $X:=\mathcal{C}[0,1]$ over \mathbb{C}. Let $D:=d / d t$,

$$
R:=\int_{t_{0}}^{t},(F x)(t):=x\left(t_{0}\right), \quad t_{0} \in[0,1] .
$$

Consider the system

$$
\begin{gather*}
{\left[D^{N}+P_{0}(D, I)+P_{1}(D, I) F^{\prime}+R^{k} P_{2}(D, I)\right] x=B u} \tag{2.46}\\
F D^{j} x=x_{j}, x_{j} \in \mathbb{C}(j=0, \ldots, N-1) \tag{2.47}
\end{gather*}
$$

where $F^{\prime} \in \mathcal{F}_{\mathcal{D}^{N}}, U=X, B \in L_{0}(X), k \in \mathbb{N}_{0}$,

$$
\begin{equation*}
P_{\mu}(t, s):=\sum_{i=0}^{N-1} a_{\mu} t^{i} s^{N-1-i}, a_{\mu i} \in \mathbb{C}(\mu=0,1,2) \tag{2.48}
\end{equation*}
$$

As before, we write

$$
\begin{aligned}
& Q_{1}:=P_{0}(D, I)+P_{1}(D, I) F^{\prime}+R^{k} P_{2}(D, I) \\
& Q:=R^{N} Q_{1}, \quad Q^{\prime}:=P_{0}(I, R)+R^{k} P_{2}(I, R)
\end{aligned}
$$

Since $R \in V(X)$, the resolving operator $I+Q^{\prime}$ is invertible (Theorem I in Section 6). On the other hand, it is easy to check that $Q^{\prime}=Q_{1} R^{N}$, so that by Theorem 2.1, $I+Q$ is also invertible, and

$$
\begin{equation*}
(I+Q)^{-1}=I-R^{N}\left(I+Q^{\prime}\right) Q_{1} \tag{2.49}
\end{equation*}
$$

Write the system (2.46)-(2.47) in the following equivalent form:

$$
\begin{equation*}
(I+Q) x=R^{N} B u+x^{0}, x^{0}=\sum_{j=0}^{N-1} R^{j} x_{j} . \tag{2.50}
\end{equation*}
$$

From (2.49), we conclude that $I+Q \in L_{0}\left(X_{N}\right)$ and $(I+Q)^{-1} X_{N} \subset X_{N}$. Hence, (2.50) has solutions for every $u \in X$. This means that the condition (2.13) is satisfied. A unique solution of the system (2.46)- (2.47) is

$$
\begin{equation*}
x=\left[I-R^{N}\left(I+Q^{\prime}\right)^{-1} Q_{1}\right]\left(R^{N} B u+x^{0}\right) \in X_{N} . \tag{2.51}
\end{equation*}
$$

Thus, every state $x \in\left[I-R^{N}\left(I+Q^{\prime}\right)^{-1} Q_{1}\right]\left(R^{N} B u \oplus\left\{x^{0}\right\}\right)$ is reachable from $x^{0} \in Z_{N}$.

Let $F_{1}^{\prime}, F_{2}^{\prime} \in \mathcal{F}_{\mathcal{D}^{N}}$ be initial operators for D^{N} given by

$$
F_{1}^{\prime}:=I-R_{1}^{N} D^{N}, \quad F_{2}^{\prime}:=I-R_{1} R^{N-1} D^{N} \text { on } \operatorname{dom} D^{N} \text {, }
$$

where $R_{1}:=\int_{t_{1}}^{t}, t_{1} \neq t_{0} ; t_{0}, t_{1} \in[0,1]$. Let $T_{3}:=(I+Q)^{-1}$. It is easy to check that $F_{1}^{\prime} R^{N} X=Z_{N}, F_{2}^{\prime} R^{N} X \neq Z_{N}$, so that for every $B \in L_{0}(X)$, we find

$$
F_{2}^{\prime}\left(I-R^{N}\left(I+Q^{\prime}\right)^{-1} Q_{1}\right) R^{N} B U=F_{2}^{\prime} R^{N}\left(I-\left(I+Q^{\prime}\right)^{-1} Q_{1} R^{N}\right) B X \neq Z_{N}
$$

i.e. ker $B^{*}\left(R^{*}\right)^{N} T_{3}^{*} F_{2}^{\prime *} \neq\{0\}$. This means that the system (2.46)- (2.47) is not F_{2}^{\prime}-controllable.

Let $B=I$. Since $I-\left(I+Q^{\prime}\right)^{-1} Q_{1} R^{N}$ is invertible because $I-R^{N}(I+$ $\left.Q^{\prime}\right)^{-1} Q_{1}$ is invertible, we conclude that

$$
\left[I-\left(I+Q^{\prime}\right)^{-1} Q_{1} R^{N}\right] X=X
$$

This implies

$$
\begin{gathered}
F_{1}^{\prime} T_{3} R^{N} B U=F_{1}^{\prime} T_{3} R^{N} X=F_{1}^{\prime}\left(I-R^{N}\left(I+Q^{\prime}\right)^{-1} Q_{1}\right) R^{N} X \\
=F_{1}^{\prime} R^{N}\left[I-\left(I+Q^{\prime}\right)^{-1} Q_{1} R^{N}\right] X=F_{1}^{\prime} R^{N} X=Z_{N}
\end{gathered}
$$

Hence $\operatorname{ker} B^{*}\left(R^{*}\right)^{N} T_{3}^{*} F_{1}^{*}=\{0\}$. Thus, by Theorem 2.7, the system (2.46)-(2.47) is F_{1}^{\prime} - controllable.

Example 2.2. Let $X=(s)$ be the space of all real sequences. Write $\left\{e_{n}\right\}:=\{1,1, \ldots\},\left\{0_{n}\right\}:=\{0,0, \ldots\}$. Define the following operators:

$$
D\left\{x_{n}\right\}:=\left\{x_{n+1}-x_{n}\right\}, F\left\{x_{n}\right\}:=x_{1}\left\{e_{n}\right\},
$$

$$
R\left\{x_{n}\right\}:=\left\{y_{n}\right\}, y_{1}:=0, y_{n}:=x_{1}+\cdots+x_{n-1} \quad(n \geqslant 2)
$$

$$
A\left\{x_{n}\right\}=\left\{x_{2}, x_{3}-x_{2}, 0,0, \ldots\right\}, B\left\{x_{n}\right\}=\left\{x_{2},-x_{2}-x_{2}, 0,0, \ldots\right\}
$$

$$
C\left\{x_{n}\right\}=\left\{x_{2}-x_{1}, 0,0, \ldots\right\}
$$

Consider the system

$$
\begin{align*}
& \left(D^{2}-A D-D B-C\right) x=B u, \quad \tag{2.52}\\
& \quad F x=x_{0}^{\prime}, \quad F D x=x_{1}^{\prime}, \quad x_{0}^{\prime}, x_{1}^{\prime} \in \operatorname{ker} D,
\end{align*}
$$

where $u \in U, U \subset X, B \in L_{0}(U, X)$. Write

$$
\begin{equation*}
Q_{1}:=R A D+B+R C, Q:=R Q_{1}, \quad Q^{\prime}:=R A+B R+R C R . \tag{2.53}
\end{equation*}
$$

The system (2.52) is equivalent to the equation

$$
\begin{equation*}
(I-Q) x=R^{2} B u+x^{0}, x^{0}:=x_{0}+R x_{1} . \tag{2.54}
\end{equation*}
$$

It is easy to see that $I-Q^{\prime}$ is the resolving operator for the system (2.52) and $I-Q^{\prime}=I-Q_{1} R$. By easy calculations, we find

$$
\begin{gathered}
R A\left\{x_{n}\right\}=\left\{0, x_{2}, x_{3}, x_{3}, \ldots\right\}, B R\left\{x_{n}\right\}=\left\{x_{1},-x_{1},-x_{1}, 0,0, \ldots\right\}, \\
R C R\left\{x_{n}\right\}=\left\{0, x_{1}, x_{1}, x_{1}, 0,0, \ldots\right\},
\end{gathered}
$$

so that

$$
\begin{gather*}
\left(I-Q^{\prime}\right)\left\{x_{n}\right\}=\left\{0,0,0, y_{4}, y_{5}, \ldots\right\}, \tag{2.55}\\
y_{k}:=x_{k}-x_{1}-x_{3}(k=4,5, \ldots), \\
\operatorname{ker}\left(I-Q^{\prime}\right)=\left\{z=x_{1}, x_{2}, x_{3}, x_{1}+x_{3}, x_{1}+x_{3}, \ldots\right\}, \tag{2.56}\\
\Im\left(I-Q^{\prime}\right) \neq X . \tag{2.57}
\end{gather*}
$$

The formulae (2.55)-(2.57) imply that the resolving operator $I-Q^{\prime}$ is not one-sided invertible. However, since $\left(I-Q^{\prime}\right)\left(I-Q^{\prime}\right)=I-Q^{\prime}$, we conclude that $I-Q^{\prime}$ is generalized almost invertible and I is its generalized almost inverse.

By straightforward calculations, we find

$$
\begin{equation*}
\left(I-R Q_{1}\right)\left\{x_{n}\right\}=(I-Q)\left\{x_{n}\right\}=\left\{x_{1}, 0,0, x_{1}, y_{5}, y_{6}, \ldots\right\}, \tag{2.58}
\end{equation*}
$$

where $y_{k}:=x_{k}-(k-3) x_{k-1}+(k-4)\left(x_{3}-x_{2}+x_{1}\right)(k \geqslant 5)$.
Let $x_{0}^{\prime}:=0, x_{1}^{\prime}:=0$, i.e. let the initial conditions of the problem $(L S)_{0}$ be $F x=0, F D x=0$. Let $U=X$ and

$$
\begin{equation*}
B\left\{x_{n}\right\}=\left\{0,0,0,0, x_{1}, x_{2}, x_{3}, \ldots\right\} . \tag{2.59}
\end{equation*}
$$

It is easy to check that

$$
B U \oplus\left\{x_{0}\right\}=B X \subset(I-Q) X_{2}=(I-Q) X .
$$

Hence, the system (2.52) is solvable for every $u \in U$. From (2.54) we find

$$
x=\left(I+R Q_{1}\right) R^{2} B u=(I+Q) R^{2} B u .
$$

Therefore, every state $x \in(I+Q) R^{2} B U$ is reachable from zero.

3 Controllability of linear systems described by generalized almost invertible operators

Let X, Y, U be linear spaces over the same field \mathcal{F} (where $\mathcal{F}=\mathbb{C}$ or $\mathcal{F}=\mathbb{R})$. Suppose that $V \in W(X), W \in \mathcal{W}_{v}^{\infty}$ and $F^{(r)}, F^{(l)}$ are right and left initial operators for V corresponding to $W ; A \in L_{0}(X), A_{1} \in L_{0}(X \rightarrow Y), B \in$ $L_{0}(U \rightarrow X), B_{1} \in L_{0}(U \rightarrow Y)$.

By a linear system ($L S$) we now mean the following system:

$$
\begin{align*}
V x=A x+B u, u & \in U, \quad B U \subset(V-A)(\operatorname{dom} V) \tag{3.1}\\
F^{(r)} x & =x_{0}, x_{0} \in \operatorname{ker} V \tag{3.2}\\
y & =A_{1} x+B_{1} u \tag{3.3}
\end{align*}
$$

If $A_{1}=I, B_{1}=0$, i.e. $Y=X$ and $y=x$, then we denote the system (3.1)-(3.3) by $(L S)_{0}$.

Note that the properties of linear systems depend on the properties of the resolving operators $I-W A$ and $I-A W$. There are eight cases to deal with:
(i) $I-W A \in R(X)$, (ii) $I-W A \in \Lambda(X)$, (iii) $I-W A \in R(X) \cap \Lambda(X)$, (iv) $I-W A \in W(X)$, (v) $I-A W \in R(X)$, (vi) $I-A W \in \Lambda(X)$, (vii) $I-A W \in R(X) \cap \Lambda(X)$, (viii) $I-A W \in W(X)$.

It is sufficient to consider the first four cases (i)-(iv). Since both one-sided invertible and invertible operators are generalized almost invertible, we can reduce those cases to the case of $I-W A$ being generalized almost invertible.

Suppose that we are given a linear system $(L S)_{0}$. The initial value problem (3.1)-(3.2) has solutions if and only if

$$
\begin{equation*}
W B u+x_{0} \in(I-W A) X_{u} \subset(I-W A)(\operatorname{dom} \mathrm{V}) \tag{3.4}
\end{equation*}
$$

where

$$
X_{u}=\left\{x \in \operatorname{dom} V: \mathrm{F}^{(1)}(\mathrm{Ax}+\mathrm{Bu})=0\right\}, \quad u \in \mathrm{U},
$$

and $x_{0}=0$ if dim $\operatorname{ker} V=0$.
So the condition

$$
W B U+\left\{x_{0}\right\} \subset(I-W A) X_{u}
$$

is a necessary and sufficient condition for the initial value problem (3.1)-(3.2) to have solutions for every $u \in U$.

It is easy to check that the condition (3.5) is equivalent to the following: $B U \subset(V-A)$ dom V.

Suppose that $I-W A$ is generalized almost invertible.
Write
$G\left(x_{0}, u\right)=$
$=\left\{x=\left(I+W W_{A} A\right)\left(W B u+x_{0}\right)+z: W_{A} \in \mathcal{W}_{\mathcal{I}-\mathcal{A W}}, \ddagger \in \operatorname{ker}(\mathcal{I}-\mathcal{W} \mathcal{A})\right\}$.
Note that G is the set of all solutions of the problem (3.1)-(3.2). Therefore, to every fixed input (x_{0}, u) there corresponds an output $x=G\left(x_{0}, u\right)$.

Write

$$
\begin{equation*}
\operatorname{Rang}_{U, x_{0}} G=\bigcup_{x \in U} G\left(x_{0}, u\right), \quad x_{0} \in \operatorname{ker} V \tag{3.7}
\end{equation*}
$$

Definition 3.1. Suppose that we are given a linear system $(L S)_{0}$ and the set $G\left(x_{0}, u\right)$ of the form (3.6). A state $x \in X$ is said to be reachable from the initial state $x_{0} \in \operatorname{ker} V$ if for every $W_{A} \in \mathcal{W}_{I_{-\mathcal{A}} \mathcal{W}}$ there exists a control $u \in U$ such that $x \in G\left(x_{0}, u\right)$.

It is easy to see that the set is reachable from the initial state $x_{0} \in \operatorname{ker} V$ by means of controls $u \in U$ and this set is contained in dom V.

Lemma 3.1. Write

$$
\begin{equation*}
T=I+W W_{A} A, W_{A} \in \mathcal{W}_{\mathcal{I}-\mathcal{A W}}, \quad \mathcal{W} \in \mathcal{W}_{\mathcal{V}}^{\prime} \tag{3.8}
\end{equation*}
$$

Then the following equality holds:

$$
\begin{equation*}
T\left(W B U+\left\{x_{0}\right\}\right)+\operatorname{ker}(I-W A)=T W B U \oplus\left\{T x_{0}\right\} \oplus \operatorname{ker}(I-W A) \tag{3.9}
\end{equation*}
$$

Theorem 3.1. Suppose that

$$
B \in L_{0}\left(U \rightarrow X, X^{\prime} \rightarrow U^{\prime}\right), V \in L\left(X, X^{\prime}\right) \cap W(X), W \in L_{0}\left(X, X^{\prime}\right) \cap \mathcal{W}_{\mathcal{V}}^{\infty}
$$

and $T \in L_{0}\left(X, X^{\prime}\right)$, where T is defined by (3.8). Then the generalized Kalman condition

$$
\begin{equation*}
\operatorname{ker} B^{*} W^{*} T^{*}=\{0\} \tag{3.12}
\end{equation*}
$$

holds if and only if for every initial state $x_{0} \in \operatorname{ker} V$, every state

$$
x \in W V(\operatorname{dom} V)+\left\{\mathrm{x}_{0}\right\}+\operatorname{ker}(\mathrm{I}-\mathrm{WA})
$$

is reachable from x_{0}.
Now we give another condition for every state $x \in W X+\left\{T x_{0}\right\}+\operatorname{ker}(I-$ $W A)$ to be reachable from any initial state $x_{0} \in \operatorname{ker} V$.
Lemma 3.2. Let $V \in W(X), W \in L_{0}(X) \cap \mathcal{W}_{\mathcal{V}}^{\infty}$ and let T be given by (3.8). Then

$$
\begin{equation*}
T \in \mathcal{W}_{\mathcal{I}-\mathcal{W} \mathcal{A}}, \mathcal{T} \mathcal{W} \mathcal{X} \subset \mathcal{W X} \tag{3.14}
\end{equation*}
$$

Lemma 3.2 implies that $F_{1}^{(r)} T W B$ maps U into $W X$. Corollary 3.1 yields Theorem 3.2. Consider a linear system $(L S)_{0}$ described by a generalized almost invertible operator V. Suppose that $W \in L_{0}(X) \cap \mathcal{W}_{\mathcal{V}}$ and T is defined by (3.8). Then a necessary and sufficient condition for every element $x \in W X+\left\{T x_{0}\right\}+\operatorname{ker}(I-W A)$ to be reachable from any initial state $x_{0} \in \operatorname{ker} V$ is that

$$
\begin{equation*}
T W B U=W X \tag{3.15}
\end{equation*}
$$

Definition 3.2. Let there be given a linear system $(L S)_{0}$ of the form (3.1)(3.2). Let $F_{1}^{(r)}$ be any right initial operator for V corresponding to $W_{1} \in \mathcal{W}_{\mathcal{V}}$.
(i) A state $x_{1} \in \operatorname{ker} V$ is said to be $F_{1}^{(r)}$ - reachable from an initial state $x_{0} \in \operatorname{ker} V$ if there exists a control $u \in U$ such that $x_{1} \in F_{1}^{(r)} G\left(x_{0}, u\right)$. The state x_{1} is then called a finite state.
(ii) The system $(L S)_{0}$ is said to be $F_{1}^{(r)}$ - controllable if for every initial state $x_{0} \in \operatorname{ker} V$, we have

$$
\begin{equation*}
F_{1}^{(r)}\left(\operatorname{Rang}_{U, x_{0}} G\right)=\operatorname{ker} V . \tag{3.16}
\end{equation*}
$$

(iii) The system $(L S)_{0}$ is said to be $F_{1}^{(r)}$ - controllable to $x_{1} \in \operatorname{ker} V$ if

$$
\begin{equation*}
x_{1} \in F_{1}^{(r)}\left(\operatorname{Rang}_{U, x_{0}} G\right) \tag{3.17}
\end{equation*}
$$

for every initial state $x_{0} \in \operatorname{ker} V$.
Lemma 3.3. Suppose that the system $(L S)_{0}$ is $F_{1}^{(r)}$ - controllable to zero and that

$$
\begin{equation*}
F_{1}^{(r)}[T(\operatorname{ker} V)+\operatorname{ker}(I-W A)]=\operatorname{ker} V . \tag{3.18}
\end{equation*}
$$

Then every final state $x_{1} \in \operatorname{ker} V$ is $F_{1}^{(r)}$ - reachable from zero.
Theorem 3.3. Suppose that all assumptions of Lemma (3.3) are satisfied. Then the linear system $(L S)_{0}$ is $F_{1}^{(r)}$ - controllable.
Proof. By our assumption, there exist $u_{0} \in U$ and $z_{0} \in \operatorname{ker}(I-W A)$ such that

$$
\begin{equation*}
F_{1}^{(r)}\left[T\left(W B u_{0}+x_{0}\right)+z_{0}\right]=0 \tag{3.21}
\end{equation*}
$$

By Lemma 3.3, for every $x_{1} \in \operatorname{ker} V$ there exist $u_{0}^{\prime} \in U$ and $z_{1} \in \operatorname{ker}(I-W A)$ such that

$$
\begin{equation*}
\left.F_{1}^{(r)}\left(T W B u_{0}^{\prime}+z_{1}\right)\right]=x_{1} . \tag{3.22}
\end{equation*}
$$

Now (3.21) and (3.22) imply $F_{1}^{(r)}\left[T\left(W B\left(u_{0}+u_{0}^{\prime}+x_{0}\right)+\left(z_{0}+z_{1}\right)=x_{1}\right.\right.$, i.e. x_{1} is $F_{1}^{(r)}$ - reachable from x_{0}, which was to be proved.

Corollary 3.4. If the system $(L S)_{0}$ is $F_{1}^{(r)}$ - controllable to zero and $F_{1}^{(r)} T(\operatorname{ker} V)=$ ker V, then it is $F_{1}^{(r)}$ - controllable.

Theorem 3.4. Let a linear system $(L S)_{0}$ of the form (3.1)-(3.2) and an initial operator $F_{1}^{(r)}$ for V be given. Let T be defined by (3.8) and let $B \in$ $L_{0}\left(U \rightarrow X, X^{\prime} \rightarrow U^{\prime}\right), V \in L\left(X, X^{\prime}\right), A, W \in L_{0}\left(X, X^{\prime}\right)$. Then $(L S)_{0}$ is $F_{1}^{(r)}$ - controllable if and only if

$$
\begin{equation*}
\operatorname{ker} B^{*} W^{*} T^{*}\left(F_{1}^{(r)}\right)^{*}=\{0\} \tag{3.23}
\end{equation*}
$$

Theorem 3.5. Let there be given a linear system $(L S)_{0}$ and an initial operator for $V \in W(X)$. Then the system $(L S)_{0}$ is $F_{1}^{(r)}$ - controllable if and only if it is $F_{1}^{(r)}$ - controllable to every $x^{\prime} \in F_{1}^{(r)} T W V(\operatorname{dom} V)$.
Theorem 3.6. Suppose that the system $(L S)_{0}$ is $F_{1}^{(r)}$-controllable. Then for an arbitrary right initial operator $F_{2}^{(r)}$ for V, this system is $F_{2}^{(r)}$-controllable.
Example 3.1. Let $X:=\mathcal{C}[-1,1], D:=d / d t, R:=\int_{0}^{t},(F x)(t):=x(0)$. Define $(P x)(t):=\frac{1}{2}[x(t)+x(-t)], Q:=I-P, X^{+}:=P X, X^{-}:=Q X$, i.e. $X=X^{+} \oplus X^{-}$. Consider the linear system

$$
\begin{gather*}
P(D+\beta I) x=A u, \quad u \in U=X^{+}, \tag{3.29}\\
(I-R P D) x=x_{0}, x_{0}=R Q y_{0}+z_{0} \in \operatorname{ker} P D, \tag{3.30}\\
x_{0} \in \operatorname{ker} D, \quad y_{0} \in X,
\end{gather*}
$$

where $A \in L_{0}\left(X^{+}\right), \beta \in \mathbb{R}$.
Putting $V=P D, W=R P$ we find $V W V=V, W V W=W$. The right initial operator $F^{(r)}$ for V corresponding to W is $F^{(r)}=I-R P D$. Hence, we can write the system (3.29)-(3.30) in the form

$$
\begin{equation*}
(V+\beta P) x=A u, \quad F^{(r)} x=x_{0} . \tag{3.31}
\end{equation*}
$$

This system is equivalent to the equation

$$
\begin{equation*}
(I+\beta R P) x=R P A u+x_{0} \tag{3.32}
\end{equation*}
$$

Since $(I+\beta R P)(I-\beta R P)=I-\beta^{2} R P R P=I-\beta^{2} R^{2} Q P=I$, we conclude that every state $x \in \operatorname{dom} \mathrm{D}$ is reachable from the initial state x_{0}, i.e. there exists $u \in U$ such that

$$
x=(I-\beta R P)\left(R P A u+x_{0}\right) .
$$

Hence

$$
\begin{equation*}
G\left(x_{0}, u\right)=\left\{x=(I-\beta R P)\left(R P A u+x_{0}\right)\right\} \tag{3.33}
\end{equation*}
$$

and since $R P R P=0$ we get

$$
\begin{equation*}
(I-\beta R P)\left(R P A U+x_{0}\right)=R P A U \oplus\left\{(I-\beta R P) x_{0}\right\} \tag{3.34}
\end{equation*}
$$

From (3.33)-(3.34) we obtain

$$
\operatorname{Rang}_{U, x_{0}} G=R P A U \oplus\left\{(I-\beta R P) x_{0}\right\} .
$$

Thus the system (3.29)-(3.30) is $F_{1}^{(r)}$-controllable for a right initial operator $F_{1}^{(r)}$ of V if and only if

$$
F_{1}^{(r)}\left(\operatorname{Rang}_{U, x_{0}} G\right)=\operatorname{ker}(P D) .
$$

It is easy to check that $\operatorname{ker}(P D)$ consists all even differentiable functions defined on $[-1,1]$.

References

[1] Przeworska-Rolewicz D., Algebraic Analysis, Amsterdam-Warsaw, 1988.
[2] Przeworska-Rolewicz D., Equations with transformed argument, An algebraic approach, Amsterdam-Warsaw, 1973.
[3] Nguyen Van Mau, On the generalized convolution for I-transform, Acta- Mat. Vietnamica. 18(2003), 135-145.

Nguyen Van Mau
Department of Analysis, Faculty of Math. Mech. and Informatics
University of Hanoi
334, Nguyen Trai Str., Hanoi, Vietnam
E-mail address: maunv@vnu.edu.vn.

