

Title	Controllability of Linear Systems with Generalized Invertible Operators
Author(s)	Nguyen, Van Mau
Citation	Annual Report of FY 2007, The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST). 2008, p. 501-522
Version Type	VoR
URL	https://hdl.handle.net/11094/13009
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Controllability of Linear Systems with Generalized Invertible Operators

Nguyen Van Mau

Hanoi University of Science, VNUH

1 Controllability of first order linear systems with right invertible operators

Let X , Y and U be linear spaces (all over the same field \mathcal{F} , where $\mathcal{F} = \mathbb{R}$ or $\mathcal{F} = \mathbb{C}$). Suppose that $D \in R(X)$, $\dim \ker D \neq 0$, $F \in \mathcal{F}_D$ corresponds to an $R \in \mathcal{R}_D$, $A \in L_0(X)$, $A_1 \in L_0(X \rightarrow Y)$, $B \in L_0(U \rightarrow X)$, $B_1 \in L_0(U \rightarrow Y)$ (cf. Section 1). By a first order linear system (shortly: (LS)) we mean the system

$$Dx = Ax + Bu, \quad RBU \oplus \{x_0\} \subset (I - RA)(\text{dom } D), \quad (1.1)$$

$$Fx = x_0, \quad x_0 \in \ker D, \quad (1.2)$$

$$y = A_1x + B_1u. \quad (1.3)$$

The spaces X and U are called the space of states and the space of controls, respectively. The element $x_0 \in \ker D$ is called an initial state. A pair $(x_0, u) \in (\ker D) \times U$ is called an input. The space $(\ker D) \times U$ is called the input space, and the corresponding set of y 's in Y the output space. Very often there are considered linear systems with $A_1 = I$ and $B_1 = 0$, i.e. with $Y = X$ and the output $y = x$. We shall denote such systems by $(LS)_0$.

The properties of linear systems depend on the properties of the resolving operators $I - RA$ and $I - AR$, respectively. In a series of papers (cf. [54-56]) Nguyen Dinh Quyet studied some properties of linear systems in the case $I - RA$ invertible. His results concerning controllability were generalized by Pogorzelec [84-85] in the case $I - RA$ and $I - AR$ either left or right invertible, and in the case $I - AR$ invertible.

Hence, there are six cases to deal with:

- (i) $I - RA \in R(X)$, (ii) $I - RA \in \mathbb{L}(X)$, (iii) $I - RA$ is invertible,
- (iv) $I - AR \in R(X)$, (v) $I - AR \in \mathbb{L}(X)$, (vi) $I - AR$ is invertible.

We show that $I - RA$ is right invertible (left invertible, invertible) if and only if so is $I - AR$, i.e. it is sufficient to consider the first three cases. On the other hand, since every one-sided invertible operator and every invertible operator are generalized almost invertible, we can reduce those cases to the case of $I - RA$ being generalized almost invertible.

Suppose that we are given a linear system $(LS)_0$. The initial value problem (1.1)-(1.2) is equivalent to the equation

$$(I - RA)x = RBu + x_0. \quad (1.4)$$

Hence, the inclusion

$$RBU \oplus \{x_0\} \subset (I - RA)(\text{dom } D) \quad (1.5)$$

is a necessary and sufficient condition for the problem (1.1)-(1.2) to have solutions for every $u \in U$.

Denote by G_i ($i = 1, 2, 3, 4$) following sets defined for every $x_0 \in \ker D$, $u \in U$:

- (i) If $I - RA \in R(X)$ and $T_1 \in \mathcal{R}_{\mathcal{I}-\mathcal{R}\mathcal{A}}$, then

$$G_1(x_0, u) := \{x = R_1(RBu + x_0) + z : z \in \ker(I - RA)\}. \quad (1.6)$$

- (ii) If $I - RA \in \mathbb{L}(X)$ and $T_2 \in \mathbb{L}_{I-RA}$, then

$$G_2(x_0, u) := \{x = T_2(RBu + x_0)\}. \quad (1.7)$$

- (iii) If $I - RA$ is invertible, then

$$G_3(x_0, u) := \{x = T_3(RBu + x_0)\}, \quad T_3 = (I - RA)^{-1}. \quad (1.8)$$

- (iv) If $I - RA \in W(X)$ and $T_4 \in \mathcal{W}_{\mathcal{I}-\mathcal{R}\mathcal{A}}$, then

$$G_4(x_0, u) := \{x = T_4(RBu + x_0) + z : z \in \ker(I - RA)\}. \quad (1.9)$$

Note that the G_i are the sets of all solutions of the problem (1.1)-(1.2) in the corresponding cases. Therefore, to every fixed input (x_0, u) there corresponds an output $x \in G_i(x_0, u)$ for each case.

Definition 1.1. Suppose that we are given a system $(LS)_0$ and the sets $G_i(x_0, u)$ of the forms (1.6)-(1.9). A state $x \in X$ is said to be (i) -reachable ($i = 1, 2, 3, 4$) from an initial state $x_0 \in \ker D$ if for every T_i ($T_1 \in \mathcal{R}_{\mathcal{I}-\mathcal{R}\mathcal{A}}$, $T_2 \in \mathbb{L}_{I-RA}$, $T_3 = (I - RA)^{-1}$, $T_4 \in \mathcal{W}_{\mathcal{I}-\mathcal{R}\mathcal{A}}$) there exists a control $u \in U$ such that $x \in G_i(x_0, u)$.

Write

$$\text{Rang}_{U,x_0} G_i = \bigcup_{u \in U} G_i(x_0, u), \quad x_0 \in \ker D \quad (i = 1, 2, 3, 4).$$

It is easy to see that $\text{Rang}_{U,x_0} G_i$ is (i) -reachable from $x_0 \in \ker D$ by means of controls $u \in U$ and it is contained in $\text{dom } D$.

Lemma 1.1. Suppose that T_i ($i = 1, 2, 3, 4$) are defined as in (1.6)- (1.9). Then

$$T_i(RBU \oplus \{x_0\}) + \ker(I - RA) = T_iRBU \oplus \{T_i x_0\} \oplus \ker(I - RA). \quad (1.10)$$

Remark 1.1. If either $I - RA \in \mathbb{L}(X)$ or $I - RA$ is invertible then $\ker(I - RA) = \{0\}$, and (1.10) takes the form $T_i(RBU \oplus \{x_0\}) = T_iRBU \oplus \{T_i x_0\}$.

The formulae (1.5)-(1.9) imply

Corollary 1.1.

$$\text{Rang}_{U,x_0} G_i = T_iRBU \oplus \{T_i x_0\} \oplus \ker(I - RA). \quad (1.11)$$

Corollary 1.2. A state x is (i) -reachable from a given initial state $x_0 \in \ker D$ if and only if

$$x \in T_iRBU \oplus \{T_i x_0\} \oplus \ker(I - RA), \quad i = 1, 2, 3, 4. \quad (1.12)$$

Lemma 1.2. Write

$$E_i := T_iRB, \quad X_i := T_i(I - RA)(\text{dom } D) - \{x_0\}.$$

Then the operator E_i maps U into X_i .

Proof. By our assumption, $RBU \oplus \{x_0\} \subset (I - RA)(\text{dom } D)$, thus for every $u \in U$ there exist $v \in X$ and $x_1 \in \ker D$ such that

$$RBu + x_0 = (I - RA)(Rv + x_1),$$

i.e. $T_iRBu = T_i[(I - RA)(Rv + x_1) - x_0]$.

Theorem 1.1. Suppose that $B \in L_0(U \rightarrow X, X' \rightarrow U')$, $D \in L(X, X')$, $R \in L_0(X, X')$ and $T_i \in L_0(X, X')$ ($i = 1, 2, 3, 4$). Then the generalized Kalman condition

$$\ker B^* R^* T_i^* = \{0\} \quad (1.13)$$

holds if and only if for every initial state $x_0 \in \ker D$, every state $x \in RX \oplus \{x_0\} + \ker(I - RA)$ is (i)-reachable from x_0 .

Proof. By Lemma 1.2, the condition (1.13) holds if and only if for every $x_1 \in \ker D$ and $v \in X$ there exists $u \in U$ such that $RBu + x_0 = (I - RA)(Rv + x_1)$. This means that for every $x_1 \in \ker D$, $v \in X$ and $z \in \ker(I - RA)$ there exists $u \in U$ such that

$$T_i(RBu + x_0) + z = T_i(I - RA)(Rv + x_1) + z. \quad (1.14)$$

It is sufficient to consider $i = 4$, i.e. the case when $(I - RA)$ is generalized almost invertible. Write $F' := I - T_4(I - RA)$. It is easy to check that $(I - RA)F' = 0$, $F'_2 = F'$ and $F'X = \ker(I - RA)$. Choosing $x_1 := x_0$, $z := F'(Rv + x_1) \in \ker(I - RA)$, we get from (1.14) the equalities

$$T_4(RBu + x_0) + z = (I - F')(Rv + x_0) + F'(Rv + x_0) = Rv + x_0.$$

This means that for every $v \in X$, $z_1 \in \ker(I - RA)$ there exist $z' = z_1 + F'(Rv + x_0) \in \ker(I - RA)$ and $u \in U$ such that

$$T_4(RBu + x_0) + z' \in RX \oplus \{x_0\} + \ker(I - RA),$$

i.e.

$$\text{Rang}_{U,x_0} G_4 = RX \oplus \{x_0\} + \ker(I - RA).$$

Note that the generalized Kalman condition (1.13) in the case of $(I - RA)$ invertible was introduced and applied by Nguyen Dinh Quyet [54-56]. Theorem 1.1 in the case of $I - RA$ one-sided invertible was obtained by Pogorzelec [84].

Now we give another condition for every state $x \in RX + \{T_i x_0\} + \ker(I - RA)$ to be (i)-reachable from any $x_0 \in \ker D$. To begin with, note that

$$T_i RX \subset RX \quad (i = 1, 2, 3, 4). \quad (1.15)$$

Indeed, there exist T'_i ($i = 1, 2, 3, 4$) such that $T_i = I + RT'_i A$. Thus

$$T_i RX = (I + RT'_i A)RX = R(I + T'_i A R)X \subset RX.$$

Therefore, $T_i RB$ map U into RX . Corollary 6.1 gives the following

Theorem 1.2. A necessary and sufficient condition for every element

$$x \in RX + \{T_i x_0\} + \ker(I - RA)$$

to be (i)-reachable from any initial state $x_0 \in \ker D$ is that $T_i RBU = RX$.

Definition 1.2. Let there be given a linear system $(LS)_0$ of the form (1.1)-(1.2). Let $F_i \in \mathcal{F}_D$ ($i = 1, 2, 3, 4$) be arbitrary initial operators (not necessarily different).

- (i) A state $x_1 \in \ker D$ is said to be F_i -reachable from an initial state $x_0 \in \ker D$ if there exists a control $u \in U$ such that $x_1 \in F_i G_i(x_0, u)$. The state x_1 is then called a final state.
- (ii) The system $(LS)_0$ is said to be F_i -controllable if for every initial state $x_0 \in \ker D$,

$$F_i(\text{Rang}_{U,x_0} G_i) = \ker D. \quad (1.16)$$

- (iii) The system $(LS)_0$ is said to be F_i -controllable to $x_1 \in \ker D$ if

$$x_1 \in F_i(\text{Rang}_{U,x_0} G_i) \quad (1.17)$$

for every initial state $x_0 \in \ker D$.

Lemma 1.3. Let there be given a linear system $(LS)_0$ and an initial operator $F_i \in \mathcal{F}_D$. Suppose that the system $(LS)_0$ is F_i -controllable to zero and that

$$F_i(T_i \ker D + \ker(I - RA)) = \ker D. \quad (1.18)$$

Then every final state $x_1 \in \ker D$ is F_i -reachable from zero.

Theorem 1.3. Suppose that all assumptions of Lemma 1.3 are satisfied. Then the system $(LS)_0$ is F_i -controllable.

Proof. Suppose that $I - RA \in W(X)$. By our assumption, there exist $u_0 \in U$ and $z_0 \in \ker(I - RA)$ such that

$$F_4[T_4(RBu_0 + x_0) + z_0] = 0. \quad (1.21)$$

By Lemma 1.3, for every $x_1 \in \ker D$ there exist $u'_0 \in U$ and $z_1 \in \ker(I - RA)$ such that

$$F_4(T_4RBu'_0 + z_1) = x_1. \quad (1.22)$$

Add (1.21) and (1.22) to find

$$F_4\{T_4[RB(u_0 + u'_0) + x_0] + (z_0 + z_1)\} = x_1,$$

i.e. x_1 is F_4 -reachable from x_0 , which was to be proved.

Corollary 1.4 (cf. Pogorzelec [84]). Let $T'_1 \in \mathcal{R}_{I-AR}$, $T'_2 \in \mathcal{L}_{I-AR}$, $T'_3 = (I - AR)^{-1}$ and $T'_4 \in \mathcal{W}_{I-AR}$ for $I - AR \in R(X)$, $I - AR \in \mathbb{L}(X)$, $I - AR$ invertible and $I - AR \in W(X)$, respectively. If the system $(LS)_0$ is F_i -controllable to zero and

$$F_i(I + RT'_i A)(\ker D) = \ker D, \quad (1.23)$$

then $(LS)_0$ is F_i -controllable.

Indeed, by (6.10)-(6.12), $I + RT'_i A = T_i$. Therefore (1.23) takes the form $F_i T_i(\ker D) = \ker D$ and we get a sufficient condition for F_i -controllability.

Corollary 1.5 (cf. Pogorzelec [84-85]). If the system $(LS)_0$ is F_i -controllable to zero and $F_i T_i(\ker D) = \ker D$, then $(LS)_0$ is F_i -controllable.

So the conditions $F_i T_i(\ker D) = \ker D$ and $F_i(I + RT'_i A)(\ker D) = \ker D$, found by Pogorzelec for the one-sided invertible resolving operators, are identical.

Theorem 1.4. Let a linear system $(LS)_0$ of the form (1.1)-(1.2) and an initial operator $F_i \in \mathcal{F}_D$ be given. Let $T_1 \in \mathcal{R}_{\mathcal{I}-\mathcal{R}\mathcal{A}}$ if $I - RA \in R(X)$ is invertible,

$T_2 \in \mathcal{L}_{I-RA}$ if $I - RA$ is left invertible,

$T_3 = (I - RA)^{-1}$ if $I - RA$ is invertible and

$T_4 \in \mathcal{W}_{\mathcal{I}-\mathcal{R}\mathcal{A}}$ if $I - RA$ is generalized almost invertible.

Suppose that $B \in L_0(U \rightarrow X, X' \rightarrow U')$, $D \in L(X, X')$, $A, R \in L_0(X, X')$. Then the system $(LS)_0$ is F_i -controllable if and only if

$$\ker B^* R^* T_i^* F_i^* = \{0\}. \quad (1.24)$$

Theorem 1.5. Let there be given a linear system $(LS)_0$ and an initial operator $F_i \in \mathcal{F}_D$. Then the system $(LS)_0$ is F_i -controllable if and only if it is F_i -controllable to every element $v' \in F_i T_i RX$.

Corollary 1.6. The system $(LS)_0$ is F_i -controllable if and only if it is F_i -controllable to every element $v_0 \in F_i RX$.

Indeed, it is easy to check that $T_i RX \subset RX$. Thus $F_i T_i RX \subset F_i RX$.

Theorem 1.6. Suppose that the system $(LS)_0$ is F_i -controllable. Then it is F'_i -controllable for every initial operator $F'_i \in \mathcal{F}_D$.

Proof. Let $R_i \in \mathcal{R}_D$ be the right inverse of D corresponding to F_i , i.e. $F_i R_i = 0$. For every $x_1 \in \ker D$ and $v \in X$ there exists $x_2 \in \ker D$ such that $x_1 = x_2 + F'_i R_i v$. By the assumption, the system $(LS)_0$ is F_i -controllable.

Hence for every $x_0, x_2 \in \ker D$ there exist $u \in U$ and $z \in \ker(I - RA)$ such that $F_i[T_i(RBu + x_0) + z] = x_2$, or equivalently

$$T_i(RBu + x_0) + z = x_2 + R_i v$$

for some $v \in X$. Thus

$$F'_i[T_i(RBu + x_0) + z] = x_2 + F'_i R_i v = x_1.$$

The arbitrariness of $x_0, x_1 \in \ker D$ implies the assertion.

Example 1.1. Let $X = (s)$ be the space of all real sequences. Write

$$\begin{aligned} \{e_n\} &= \{1, 1, 1, \dots\}, \quad \{0_n\} = \{0, 0, 0, \dots\}, \\ D\{x_n\} &:= \{x_{n+1} - x_n\}, \quad F\{x_n\} := x_1\{e_n\}, \\ R\{x_n\} &:= \{y_n\}, \quad y_1 := 0, \quad y_n = \sum_{j=1}^{n-1} x_j \quad (n = 2, 3, \dots), \\ A\{x_n\} &:= \{z_n\}, \quad z_1 := 2x_2 - x_1, \quad z_n := x_{n+1} - x_n \quad (n = 2, 3, \dots), \\ B &:= \beta I, \quad \text{where } \beta \in \mathbb{R}, \\ U &:= \{\{u_n\} : u_n = 0 \text{ for } n = 2, 3, \dots\}. \end{aligned}$$

It is easy to check that $D \in R(X)$, $\text{dom } D = X$, $R \in \mathcal{R}_D$ and F is an initial operator for D corresponding to R . Moreover, $\ker D = \{ce_n : c \in \mathbb{R}\}$.

Consider the following linear system $(LS)_0$

$$Dx = Ax + Bu, \quad Fx = x'_0, \quad x'_0 \in \ker D. \quad (1.30)$$

Since $(I - RA)\{x_n\} = \{x_1 + x_2, x_3, x_3, \dots\}$, we conclude that $\ker(I - RA) \neq \{0\}$, $(I - RA)X \neq X$. Therefore, $I - RA$ is not one-sided invertible. Write $T_4\{x_n\} := \{x_1, 0, x_3, 0, 0, \dots\}$. Then

$$T_4(I - RA)\{x_n\} = T_4\{x_1 + x_2, x_3, x_3, \dots\} = \{x_1 + x_2, 0, x_3, 0, 0, \dots\},$$

$$(I - RA)T_4(I - RA)\{x_n\} = \{x_1 + x_2, x_3, x_3, \dots\},$$

i.e. $(I - RA)T_4(I - RA) = I - RA$. Hence, the resolving operator is generalized almost invertible, but it is neither invertible nor one-sided invertible.

Let $x'_0 = \{be_n\} \in \ker D$. Then

$$RBU \oplus \{x'_0\} = \{\{x_n\} : x_1 = b, x_k = b + c \ (k \geq 2), c \in \mathbb{R}\}. \quad (1.31)$$

Hence $RBU \oplus \{x'_0\} \subset (I - RA)(\text{dom } D)$, i.e. the system (1.30) has solutions for every control $u \in U$.

If $x'_1 = \{se_n\}$, $v = \{v_1, v_2, \dots\} \in X$ then

$$(I - RA)(Rv + x'_1) = \{2s, s + v_1 + v_2, s + v_1 + v_2, \dots\}. \quad (1.32)$$

Now (1.31) and (1.32) together imply $\ker B^* R^* T_4^* \neq \{0\}$, i.e. not every state x in $(RX \oplus \{x'_0\}) + \ker(I - RA)$ is reachable from x'_0 .

By simple calculation, we also have

$$T_4RBU = \{\{0, 0, c, 0, 0, \dots\} : c \in \mathbb{R}\},$$

$$RX + \ker(I - RA) = \{\{\beta, x_1 - \beta, x_1 + x_2 - \beta, y_4, y_5, \dots\} : \beta \in \mathbb{R}, x = \{x_n\} \in X, y_k = x_1 + \dots + x_{k-1} (k \geq 4)\}.$$

Hence $T_4 RBU \neq RX + \ker(I - RA)$. By Theorem 1.2, there is

$$x \in RX + \{x'_0\} + \ker(I - RA),$$

which is not reachable from x'_0 .

Let $F_4\{x_n\} = x_3\{e_n\}$. Then

$$F_4 T_4(\ker D) = \{\beta, \beta, \dots\},$$

i.e. $F_4 T_4(\ker D) = \ker D$. Corollary 1.5 implies that the system (1.30) is F_4 -controllable.

If we put $F'_4\{x_n\} = x_2\{e_n\}$, then $F'_4 T_4(\ker D) = \{0\}$. Hence $F'_4 T_4(\ker D) \neq \ker D$. However, $F'_4(\ker(I - RA)) = \ker D$, so that

$$F'_4 T_4(\ker D) + \ker(I - RA) = \ker D.$$

By Theorem 1.3, the system (1.30) is F'_4 -controllable.

Example 1.2. Suppose that X, D, R, F are defined as in Example 1.1 and that

$$A\{x_n\} := \{0, x_3, x_4 - x_3, x_5 - x_4, \dots\}, \quad U := X, \quad B := I.$$

It is easy to check that

$$(I - RA)\{x_n\} = \{x_1, x_2, 0, 0, \dots\}. \quad (1.33)$$

Hence $I - RA$ is a projection, and so it is not one-sided invertible, but it is generalized almost invertible. The kernel of $I - RA$ is

$$\ker(I - RA) = \{\{0, 0, x_3, x_4, x_5, \dots\} : x_n \in \mathbb{R} (n \geq 3)\}. \quad (1.34)$$

Fix $x'_0 = \{be_n\} \in \ker D$. Then

$$RBU \oplus \{x'_0\} = RX \oplus \{x'_0\}. \quad (1.35)$$

Since $(I - RA)^2 = I - RA$, we get $T_4 = I \in \mathcal{W}_{\mathcal{I}-\mathcal{R}\mathcal{A}}$, and

$$T_4 RBU = RX. \quad (1.36)$$

Now (1.34) and (1.36) yield

$$T_4 RBU = RX + \ker(I - RA).$$

Theorem 1.2 implies that every state $x \in RX + \{T_4x'_0\} + \ker(I - RA)$ is (4)-reachable from $x_0 \in \ker D$.

Let $F_4 \in \mathcal{F}_D$, $F_4\{x_n\} := x_3\{e_n\}$. Then $F_4T_4(\ker D) = \ker D$. Hence, by Corollary 1.5, the system (1.30) is F_4 -controllable.

Suppose now that $T'_4 = I - RA$. Then $I - RA \in \mathcal{W}_{\mathcal{I}-\mathcal{R}A}$ since $(I - RA)^3 = I - RA$. In this case, we obtain

$$T_4RB\mathcal{U} = \{0, \beta, 0, 0, \dots\}, \quad T_4(\ker D) = \{\{\beta, \beta, 0, 0, \dots\} : \beta \in \mathbb{R}\},$$

$$F_4T_4(\ker D) = \{\{\beta, \beta, 0, 0, \dots\} : \beta \in \mathbb{R}\}$$

and $F_4(T_4(\ker D) + \ker(I - RA)) = \{\{ce_n\} : c \in \mathbb{R}\}$. Thus $F_4T_4(\ker D) \not\subseteq \ker D$. However,

$$F_4(T_4(\ker D) + \ker(I - RA)) = \ker D.$$

Theorem 1.3 implies that the system (1.30) is F'_4 -controllable for the given generalized almost inverse $T_4 = I - RA$.

2 Controllability of general systems with right invertible operators

Let X, Y and U be linear spaces (all over the same field \mathcal{F} , where $\mathcal{F} = \mathbb{C}$ or $\mathcal{F} = \mathbb{R}$). Let $D \in R(X)$, $R \in \mathcal{R}_D$ and let F be an initial operator corresponding to R . Write

$$X_k := \text{dom } D^k, \quad Z_k := \ker D^k \quad (k \in \mathbb{N}). \quad (2.0)$$

Suppose that we are given $A_1 \in L_0(X \rightarrow Y)$, $B \in L_0(U \rightarrow X)$, $B_1 \in L_0(U \rightarrow Y)$.

Definition 2.1. A linear system (shortly (LS)) is any system

$$Q[D] = Bu, \quad FD^j x = x_j, \quad x_j \in \mathbb{Z}_1 \quad (j = 0, \dots, M + N - 1), \quad (2.1)$$

$$y = A_1x + B_1u, \quad (2.2)$$

where

$$Q[D] := \sum_{m=0}^M \sum_{n=0}^N D^m A_{mn} D^n, \quad (2.3)$$

$A_{mn} \in L(X)$, $A_{mn}X_{M+N-n} \subset X_m$ ($m = 0, \dots, M$; $n = 0, \dots, N$; $m + n < M + N$), $A_{MN} = I$.

Herein we assume that

$$R^{M+N}BU \oplus \{x^0\} \subset (I + Q)X_{M+N}, \quad (2.4)$$

where

$$x^0 := \sum_{j=0}^{M+N-1} R^j x_j \in Z_{M+N}, \quad (2.5)$$

$$Q := \sum_{m=0}^M \sum_{n=0}^N R^{M+N-m} B_{mn} D^n, \quad (2.6)$$

where

$$B_{mn} := \begin{cases} A'_{0n} & \text{if } m = 0, \\ A'_{mn} - \sum_{\mu=m}^M FD^{\mu-m} A'_{\mu n} & \text{otherwise,} \end{cases}$$

$$A'_{mn} := \begin{cases} 0 & \text{if } m = M \text{ and } n = N, \\ A_{mn} & \text{otherwise } (m = 0, \dots, M; n = 0, \dots, N). \end{cases}$$

The assumption (2.4) is a necessary and sufficient condition for the initial value problem (2.1) to have solutions for every $u \in U$.

If $A_1 = I$ and $B_1 = 0$ then we shall denote the system (2.1)-(2.2) by $(LS)_0$.

Definition 2.2. The linear system (2.1)-(2.2) is said to be well-defined if for every fixed $u \in U$ the corresponding initial value problem (2.1) is well-posed. If there is $u \in U$ such that the initial value problem (2.1) is ill-posed, then the linear system is said to be ill-defined.

Theorem 2.1. Suppose that the condition (2.4) is satisfied. Then the system (2.1)-(2.2) is well-defined if and only if the corresponding resolving operator $I + Q'$, where

$$Q' := \sum_{m=0}^M \sum_{n=0}^N R^{M-m} B_{mn} R^{N-n} \quad (2.7)$$

is either invertible or left invertible.

Indeed, if $I + Q'$ is either invertible or left invertible, then for every $u \in U$, the initial value problem (2.1) has a unique solution of the form $x = G(x^0, u)$, where

$$G(x^0, u) = E_Q(R^{M+N}Bu + x^0), \quad (2.8)$$

$$E_Q := \begin{cases} I - R^N E_{Q'} Q_1 & \text{if } I + Q' \text{ is invertible,} \\ I - R^N L_{Q'} Q_1 & \text{if } I + Q' \text{ is left invertible,} \end{cases} \quad (2.9)$$

$$E_{Q'} := (I + Q')^{-1}, \quad L_{Q'} \in \mathbb{L}_{I+Q'},$$

$$Q_1 := \sum_{m=0}^M \sum_{n=0}^N R^{M-m} B_{mn} D^n. \quad (2.10)$$

So, according to (2.2), the output y is uniquely determined by any $u \in U$ and $x^0 \in Z_{M+N}$, and is of the form $y = A_1 G(x^0, u) + B_1 u$. If we consider a linear system $(LS)_0$, then $y = x = G(x^0, u)$.

Definition 2.3. Write

$$G_0 := A_1 E_Q, \quad G_1 := G_0 R^{M+N} B + B_1, \quad (2.11)$$

where E_Q is defined by (2.9). The matrix operator $G^0 = (G_0, G_1)$ defined on the input space $Z_{M+N} \times U$ is said to be the transfer operator for the linear system with the resolving operator $I + Q'$ invertible.

Therefore, to every input (x^0, u) there corresponds a uniquely determined output y , which can be written as

$$y = G_0(x^0, u) = G_0 x^0 + G_1 u.$$

Consider now the linear system $(LS)_0$, i.e. the system (2.1)-(2.2) with $A_1 = I$, $B_1 = 0$:

$$Q[D]x = Bu, \quad FD^j x = x_j, \quad x_j \in Z_1 \quad (j = 0, \dots, M+N-1), \quad (2.12)$$

$$R^{M+N} BU \oplus \{x^0\} \subset (I + Q)X_{M+N}. \quad (2.13)$$

Write this system in an equivalent form

$$(I + Q)x = R^{M+N} Bu + x^0. \quad (2.14)$$

Denote by H_i ($i = 1, 2, 3, 4$) the following sets defined for any $x^0 \in Z_{M+N}$, $u \in U$.

(1) If $I + Q' \in R(X)$, then

$$H_1(x^0, u) := \{T_1(R^{M+N} Bu + x^0) + z : z \in \ker(I + Q)\}, \quad (2.15)$$

where

$$T_1 := I - R^N R_{Q'} Q_1, \quad R_{Q'} \in \mathcal{R}_{I+Q'}, \quad (2.16)$$

Q_1 is given by (2.10).

(2) If $I + Q' \in \Lambda(X)$ and $L_{Q'} \in \mathbb{L}_{I+Q'}$, then

$$H_2(x^0, u) := \{T_2(R^{M+N} Bu + x^0)\}, \quad (2.17)$$

where

$$T_2 := I - R^N L_{Q'} Q_1, \quad Q_1 \text{ is defined by (2.10).} \quad (2.18)$$

(3) If $I + Q'$ is invertible, then

$$H_3(x^0, u) := \{T_3(R^{M+N} B u + x^0)\}, \quad (2.19)$$

where

$$T_3 := I - R^N (I + Q')^{-1} Q_1. \quad (2.20)$$

(4) If $I + Q' \in W(X)$ and $W_{Q'} \in \mathcal{W}_{\mathcal{I}+Q'}$, then

$$H_4(x^0, u) := \{T_4(R^{M+N} B u + x^0) + z : z \in \ker(I + Q)\}, \quad (2.21)$$

where

$$T_4 := I - R^N W_{Q'} Q_1. \quad (2.22)$$

Note that H_i ($i = 1, 2, 3, 4$) are the sets of all solutions of the system $(LS)_0$ in the respective cases.

As in Section 33, we need the following

Definition 2.5. A state $x \in X$ is said to be (i)-reachable ($i = 1, 2, 3, 4$) from an initial state $x^0 \in Z_{M+N}$ if for every T_i ($T_1 \in \mathcal{R}_{\mathcal{I}+Q}$, $T_2 \in \mathcal{L}_{I+Q}$, $T_3 = (I + Q)^{-1}$, $T_4 \in \mathcal{W}_{\mathcal{I}+Q}$) there exists a control $u \in U$ such that $x \in H_i(x^0, u)$.

In the following we only deal with the above four cases. Write

$$\text{Rang}_{U, x^0} H_i = \bigcup_{u \in U} H_i(x^0, u), \quad x^0 \in Z_{M+N}. \quad (2.23)$$

It is easy to see that $\text{Rang}_{U, x^0} H_i$ is (i)-reachable from x^0 by means of controls $u \in U$ and it is contained in X_{M+N} .

Lemma 2.1. Suppose that T_i ($i = 1, 2, 3, 4$) are given by (2.16), (2.18), (2.20) and (2.22), respectively. Then

$$\begin{aligned} & T_i(R^{M+N} B U \oplus \{x^0\}) + \ker(I + Q) \\ &= T_i R^{M+N} B U \oplus \{T_i x^0\} \oplus \ker(I + Q). \end{aligned} \quad (2.24)$$

Remark 2.1. If $I + Q'$ is either invertible or left invertible, the formula (2.24) is of the form

$$T_i(R^{M+N} B U \oplus \{x_0\}) = T_i R^{M+N} B U \oplus \{T_i x_0\}.$$

Corollary 2.1.

$$\text{Rang}_{U, x^0} H_i = T_i R^{M+N} B U \oplus \{T_i x^0\} \oplus \ker(I + Q). \quad (2.25)$$

Corollary 2.2. The state $x \in X_{M+N}$ is (i)-reachable from $x_0 \in Z_{M+N}$ if and only if

$$x \in T_i R^{M+N} B U \oplus \{T_i x^0\} \oplus \ker(I + Q).$$

Lemma 2.2. Write

$$\begin{aligned} E_i &:= T_i R^{M+N} B, \\ X_{0i} &:= T_i (R^N (I + Q') R^M X + (I + Q) Z_{M+N} - \{x^0\}). \end{aligned} \quad (2.26)$$

Then the operator E_i maps the space U into X_{0i} .

Theorem 2.3. Let there be given a system $(LS)_0$ described by (2.12)-(2.13). Suppose that $B \in L_0(U \rightarrow X, X' \rightarrow U')$, $D \in L(X, X')$, $T_i \in L_0(X_{M+N}, X'_{M+N})$, $i = 1, 2, 3, 4$; $R \in L_0(X, X')$. Then the generalized Kalman condition

$$\ker B^* (R^*)^{M+N} T_i^* = \{0\} \quad (2.28)$$

holds if and only if for every initial state $x^0 \in Z_{M+N}$, every state $x \in R^{M+N} X + x^0 + \ker(I + Q)$ is reachable from x^0 .

Definition 2.6. Let there be given a linear system $(LS)_0$ of the form (2.12)-(2.13) and let $F'_i \in \mathcal{F}_{D^{M+N}}$.

(i) The state $x^1 \in Z_{M+N}$ is said to be F_i -reachable from an initial state $x^0 \in Z_{M+N}$ if there exists a control $u \in U$ such that $x^1 \in F'_i H_i(x^0, u)$. The state x^1 is then called a final state.

(ii) The system $(LS)_0$ is said to be F_i -controllable if for every initial state $x^0 \in Z_{M+N}$,

$$F'_i(\text{Rang}_{U,x^0} H_i) = Z_{M+N}. \quad (2.30)$$

(iii) The system $(LS)_0$ is said to be F_i -controllable to $x^1 \in Z_{M+N}$ if

$$x^1 \in F_i(\text{Rang}_{U,x^0} H_i) \quad (2.31)$$

for every initial state $x^0 \in Z_{M+N}$.

Lemma 2.3. Let there be given a linear system $(LS)_0$ of the form (2.12)-(2.13) and an initial operator $F'_i \in \mathcal{F}_{D^{M+N}}$. Suppose that $(LS)_0$ is F'_i -controllable to zero and that

$$F'_i T_i Z_{M+N} = Z_{M+N}. \quad (2.32)$$

Then every final state $x^1 \in Z_{M+N}$ is F'_i -reachable from zero.

Proof. It is sufficient to deal with the case $i = 4$. Since the system is F'_4 -controllable to zero, there exists a control $u' \in U$ such that $0 \in F'_4 H_4(x^0, u')$,

i.e. there exists $z_0 \in \ker(I + Q)$ such that $F'_4(T_4(R^{M+N}Bu' + x^0) + z_0) = 0$, or equivalently

$$F'_4(T_4(R^{M+N}Bu' + z_0)) = -F'_4T_4x^0.$$

By the assumption (2.32), for every given state $x^1 \in Z_{M+N}$ we find $x^2 \in Z_{M+N}$ such that $-F'_4T_4x^2 = x^1$. Hence, there are $u \in U$ and $z_0 \in \ker(I + Q)$ such that

$$F'_4(T_4(R^{M+N}Bu) + z_0) = -F'_4T_4x^2 = x^1.$$

This proves that an arbitrary final state x^1 is reachable from the initial state 0.

Theorem 2.4. Suppose that all assumptions of Lemma 2.3 are satisfied. Then the linear system $(LS)_0$ is F'_i -controllable.

Proof. It is sufficient to deal with the case of a generalized almost invertible resolving operator. By the assumption, there exist $u_0 \in U$ and $z_0 \in \ker(I + Q)$ such

$$F'_4[T_4(R^{M+N}Bu_0 + x^0) + z_0] = 0. \quad (2.33)$$

On the other hand, by Lemma 2.3, for every given $x^1 \in Z_{M+N}$ there exist $u_2 \in U$, that $z_2 \in \ker(I + Q)$ such that

$$F'_4[T_4(R^{M+N}Bu_2 + 0) + z_2] = x^1. \quad (2.34)$$

If we add (2.33) and (2.34), we obtain $F'_4[T_4(R^{M+N}Bu_1 + x^0) + z_1] = x^1$, where $u_1 := u_0 + u_2 \in U$, $z_1 := z_0 + z_2 \in \ker(I + Q)$. Thus every final state $x^1 \in Z_{M+N}$ is F'_4 -reachable from the initial state $x^0 \in Z_{M+N}$.

Note that Theorem 2.4 was given by Nguyen Dinh Quyet [54-56] and Pogorzelec [84] for systems of the first order with invertible and one-sided invertible resolving operators (cf. Section 33). Theorem 2.4 can be generalized as follows:

Theorem 2.5. Let there be given a system $(LS)_0$ of the form (2.12)-(2.13) and an initial operator $F'_i \in \mathcal{F}_{D^{M+N}}$. Suppose that $(LS)_0$ is F'_i -controllable to zero and that

$$F'_i[T_i(Z_{M+N} + \ker(I + Q))] = Z_{M+N}. \quad (2.35)$$

Then $(LS)_0$ is F'_i -controllable.

Note that the conditions of Theorem 2.4 and 2.5 are sufficient but not necessary.

Theorem 2.6. Let there be given a system $(LS)_0$ of the form (2.12)-(2.13) and an initial operator $F'_i \in \mathcal{F}_{D^{M+N}}$. Then $(LS)_0$ is F'_i -controllable if and only if it is F'_i -controllable to every element $v^0 \in F'_i(T_iR^{M+N}X_{M+N})$.

Note that the operator $F'_i T_i R^{M+N} B$ maps U into Z_{M+N} . The following theorem shows that this operator determines the properties of the system $(LS)_0$.

Theorem 2.7. Let a linear system $(LS)_0$ of the form (2.12)- (2.13) and an initial operator $F'_i \in \mathcal{F}_{\mathcal{D}^{M+N}}$ be given. Suppose that $B \in L_0(U \rightarrow X, X' \rightarrow U')$, $D \in L(X, X')$, $R \in L_0(X, X')$ and $T_i \in L_0(X_{M+N}, X_{M+N})$. Then $(LS)_0$ is F'_i -controllable if and only if

$$\ker B^*(R^*)^{M+N} T_i^*(F'_i)^* = \{0\}. \quad (2.42)$$

Theorem 2.7. Suppose that the system $(LS)_0$ is F'_i -controllable. Then it is F' -controllable for every initial operator $F' \in \mathcal{F}_{\mathcal{D}^{M+N}}$.

Example 2.1. Let $X := \mathcal{C}[0, 1]$ over \mathbb{C} . Let $D := d/dt$,

$$R := \int_{t_0}^t, \quad (Fx)(t) := x(t_0), \quad t_0 \in [0, 1].$$

Consider the system

$$[D^N + P_0(D, I) + P_1(D, I)F' + R^k P_2(D, I)]x = Bu, \quad (2.46)$$

$$FD^j x = x_j, \quad x_j \in \mathbb{C} \quad (j = 0, \dots, N-1), \quad (2.47)$$

where $F' \in \mathcal{F}_{\mathcal{D}^N}$, $U = X$, $B \in L_0(X)$, $k \in \mathbb{N}_0$,

$$P_\mu(t, s) := \sum_{i=0}^{N-1} a_{\mu i} t^i s^{N-1-i}, \quad a_{\mu i} \in \mathbb{C} \quad (\mu = 0, 1, 2). \quad (2.48)$$

As before, we write

$$\begin{aligned} Q_1 &:= P_0(D, I) + P_1(D, I)F' + R^k P_2(D, I), \\ Q &:= R^N Q_1, \quad Q' := P_0(I, R) + R^k P_2(I, R). \end{aligned}$$

Since $R \in V(X)$, the resolving operator $I + Q'$ is invertible (Theorem I in Section 6). On the other hand, it is easy to check that $Q' = Q_1 R^N$, so that by Theorem 2.1, $I + Q$ is also invertible, and

$$(I + Q)^{-1} = I - R^N(I + Q')Q_1. \quad (2.49)$$

Write the system (2.46)-(2.47) in the following equivalent form:

$$(I + Q)x = R^N Bu + x^0, \quad x^0 = \sum_{j=0}^{N-1} R^j x_j. \quad (2.50)$$

From (2.49), we conclude that $I + Q \in L_0(X_N)$ and $(I + Q)^{-1}X_N \subset X_N$. Hence, (2.50) has solutions for every $u \in X$. This means that the condition (2.13) is satisfied. A unique solution of the system (2.46)- (2.47) is

$$x = [I - R^N(I + Q')^{-1}Q_1](R^N Bu + x^0) \in X_N. \quad (2.51)$$

Thus, every state $x \in [I - R^N(I + Q')^{-1}Q_1](R^N Bu \oplus \{x^0\})$ is reachable from $x^0 \in Z_N$.

Let $F'_1, F'_2 \in \mathcal{F}_{\mathcal{D}^N}$ be initial operators for D^N given by

$$F'_1 := I - R_1^N D^N, \quad F'_2 := I - R_1 R^{N-1} D^N \quad \text{on } \text{dom } D^N,$$

where $R_1 := \int_{t_1}^t$, $t_1 \neq t_0$; $t_0, t_1 \in [0, 1]$. Let $T_3 := (I + Q)^{-1}$. It is easy to check that $F'_1 R^N X = Z_N$, $F'_2 R^N X \neq Z_N$, so that for every $B \in L_0(X)$, we find

$$F'_2(I - R^N(I + Q')^{-1}Q_1)R^N B U = F'_2 R^N(I - (I + Q')^{-1}Q_1 R^N)B X \neq Z_N,$$

i.e. $\ker B^*(R^*)^N T_3^* F'_2^* \neq \{0\}$. This means that the system (2.46)- (2.47) is not F'_2 -controllable.

Let $B = I$. Since $I - (I + Q')^{-1}Q_1 R^N$ is invertible because $I - R^N(I + Q')^{-1}Q_1$ is invertible, we conclude that

$$[I - (I + Q')^{-1}Q_1 R^N]X = X.$$

This implies

$$\begin{aligned} F'_1 T_3 R^N B U &= F'_1 T_3 R^N X = F'_1(I - R^N(I + Q')^{-1}Q_1)R^N X \\ &= F'_1 R^N[I - (I + Q')^{-1}Q_1 R^N]X = F'_1 R^N X = Z_N. \end{aligned}$$

Hence $\ker B^*(R^*)^N T_3^* F'_1^* = \{0\}$. Thus, by Theorem 2.7, the system (2.46)-(2.47) is F'_1 -controllable.

Example 2.2. Let $X = (s)$ be the space of all real sequences. Write $\{e_n\} := \{1, 1, \dots\}$, $\{0_n\} := \{0, 0, \dots\}$. Define the following operators:

$$\begin{aligned} D\{x_n\} &:= \{x_{n+1} - x_n\}, \quad F\{x_n\} := x_1\{e_n\}, \\ R\{x_n\} &:= \{y_n\}, \quad y_1 := 0, \quad y_n := x_1 + \dots + x_{n-1} \quad (n \geq 2), \\ A\{x_n\} &:= \{x_2, x_3 - x_2, 0, 0, \dots\}, \quad B\{x_n\} = \{x_2, -x_2 - x_3, 0, 0, \dots\}, \\ C\{x_n\} &:= \{x_2 - x_1, 0, 0, \dots\}. \end{aligned}$$

Consider the system

$$\begin{aligned} (D^2 - AD - DB - C)x &= Bu, \\ Fx = x'_0, \quad FDx = x'_1, \quad x'_0, x'_1 \in \ker D, \end{aligned} \quad (2.52)$$

where $u \in U$, $U \subset X$, $B \in L_0(U, X)$. Write

$$Q_1 := RAD + B + RC, \quad Q := RQ_1, \quad Q' := RA + BR + RCR. \quad (2.53)$$

The system (2.52) is equivalent to the equation

$$(I - Q)x = R^2Bu + x^0, \quad x^0 := x_0 + Rx_1. \quad (2.54)$$

It is easy to see that $I - Q'$ is the resolving operator for the system (2.52) and $I - Q' = I - Q_1R$. By easy calculations, we find

$$RA\{x_n\} = \{0, x_2, x_3, x_3, \dots\}, \quad BR\{x_n\} = \{x_1, -x_1, -x_1, 0, 0, \dots\},$$

$$RCR\{x_n\} = \{0, x_1, x_1, x_1, 0, 0, \dots\},$$

so that

$$\begin{aligned} (I - Q')\{x_n\} &= \{0, 0, 0, y_4, y_5, \dots\}, \\ y_k &:= x_k - x_1 - x_3 \quad (k = 4, 5, \dots), \end{aligned} \quad (2.55)$$

$$\ker(I - Q') = \{z = x_1, x_2, x_3, x_1 + x_3, x_1 + x_3, \dots\}, \quad (2.56)$$

$$\Im(I - Q') \neq X. \quad (2.57)$$

The formulae (2.55)-(2.57) imply that the resolving operator $I - Q'$ is not one-sided invertible. However, since $(I - Q')(I - Q') = I - Q'$, we conclude that $I - Q'$ is generalized almost invertible and I is its generalized almost inverse.

By straightforward calculations, we find

$$(I - RQ_1)\{x_n\} = (I - Q)\{x_n\} = \{x_1, 0, 0, x_1, y_5, y_6, \dots\}, \quad (2.58)$$

where $y_k := x_k - (k - 3)x_{k-1} + (k - 4)(x_3 - x_2 + x_1)$ ($k \geq 5$).

Let $x'_0 := 0$, $x'_1 := 0$, i.e. let the initial conditions of the problem $(LS)_0$ be $Fx = 0$, $FDx = 0$. Let $U = X$ and

$$B\{x_n\} = \{0, 0, 0, 0, x_1, x_2, x_3, \dots\}. \quad (2.59)$$

It is easy to check that

$$BU \oplus \{x_0\} = BX \subset (I - Q)X_2 = (I - Q)X.$$

Hence, the system (2.52) is solvable for every $u \in U$. From (2.54) we find

$$x = (I + RQ_1)R^2Bu = (I + Q)R^2Bu.$$

Therefore, every state $x \in (I + Q)R^2BU$ is reachable from zero.

3 Controllability of linear systems described by generalized almost invertible operators

Let X, Y, U be linear spaces over the same field \mathcal{F} (where $\mathcal{F} = \mathbb{C}$ or $\mathcal{F} = \mathbb{R}$). Suppose that $V \in W(X)$, $W \in \mathcal{W}_Y^\infty$ and $F^{(r)}, F^{(l)}$ are right and left initial operators for V corresponding to W ; $A \in L_0(X)$, $A_1 \in L_0(X \rightarrow Y)$, $B \in L_0(U \rightarrow X)$, $B_1 \in L_0(U \rightarrow Y)$.

By a linear system (LS) we now mean the following system:

$$Vx = Ax + Bu, \quad u \in U, \quad BU \subset (V - A)(\text{dom } V), \quad (3.1)$$

$$F^{(r)}x = x_0, \quad x_0 \in \ker V, \quad (3.2)$$

$$y = A_1x + B_1u. \quad (3.3)$$

If $A_1 = I$, $B_1 = 0$, i.e. $Y = X$ and $y = x$, then we denote the system (3.1)-(3.3) by $(LS)_0$.

Note that the properties of linear systems depend on the properties of the resolving operators $I - WA$ and $I - AW$. There are eight cases to deal with:

- (i) $I - WA \in R(X)$, (ii) $I - WA \in \Lambda(X)$, (iii) $I - WA \in R(X) \cap \Lambda(X)$,
- (iv) $I - WA \in W(X)$, (v) $I - AW \in R(X)$, (vi) $I - AW \in \Lambda(X)$, (vii) $I - AW \in R(X) \cap \Lambda(X)$, (viii) $I - AW \in W(X)$.

It is sufficient to consider the first four cases (i)-(iv). Since both one-sided invertible and invertible operators are generalized almost invertible, we can reduce those cases to the case of $I - WA$ being generalized almost invertible.

Suppose that we are given a linear system $(LS)_0$. The initial value problem (3.1)-(3.2) has solutions if and only if

$$WBu + x_0 \in (I - WA)X_u \subset (I - WA)(\text{dom } V), \quad (3.4)$$

where

$$X_u = \{x \in \text{dom } V : F^{(l)}(Ax + Bu) = 0\}, \quad u \in U,$$

and $x_0 = 0$ if $\dim \ker V = 0$.

So the condition

$$WBu + \{x_0\} \subset (I - WA)X_u \quad (3.5')$$

is a necessary and sufficient condition for the initial value problem (3.1)-(3.2) to have solutions for every $u \in U$.

It is easy to check that the condition (3.5') is equivalent to the following: $BU \subset (V - A)\text{dom } V$.

Suppose that $I - WA$ is generalized almost invertible.

Write

$$G(x_0, u) =$$

$$= \{x = (I + WW_A A)(WBu + x_0) + z : W_A \in \mathcal{W}_{\mathcal{I}-\mathcal{A}\mathcal{W}}, z \in \ker(\mathcal{I} - \mathcal{W}\mathcal{A})\}. \quad (3.6)$$

Note that G is the set of all solutions of the problem (3.1)-(3.2). Therefore, to every fixed input (x_0, u) there corresponds an output $x = G(x_0, u)$.

Write

$$\text{Rang}_{U, x_0} G = \bigcup_{x \in U} G(x_0, u), \quad x_0 \in \ker V. \quad (3.7)$$

Definition 3.1. Suppose that we are given a linear system $(LS)_0$ and the set $G(x_0, u)$ of the form (3.6). A state $x \in X$ is said to be reachable from the initial state $x_0 \in \ker V$ if for every $W_A \in \mathcal{W}_{\mathcal{I}-\mathcal{A}\mathcal{W}}$ there exists a control $u \in U$ such that $x \in G(x_0, u)$.

It is easy to see that the set is reachable from the initial state $x_0 \in \ker V$ by means of controls $u \in U$ and this set is contained in $\text{dom } V$.

Lemma 3.1. Write

$$T = I + WW_A A, \quad W_A \in \mathcal{W}_{\mathcal{I}-\mathcal{A}\mathcal{W}}, \quad \mathcal{W} \in \mathcal{W}'_{\mathcal{V}}. \quad (3.8)$$

Then the following equality holds:

$$T(WBU + \{x_0\}) + \ker(I - WA) = TWB\mathcal{U} \oplus \{Tx_0\} \oplus \ker(I - WA). \quad (3.9)$$

Theorem 3.1. Suppose that

$$B \in L_0(U \rightarrow X, X' \rightarrow U'), \quad V \in L(X, X') \cap W(X), \quad W \in L_0(X, X') \cap \mathcal{W}_{\mathcal{V}}^{\infty}$$

and $T \in L_0(X, X')$, where T is defined by (3.8). Then the generalized Kalman condition

$$\ker B^* W^* T^* = \{0\} \quad (3.12)$$

holds if and only if for every initial state $x_0 \in \ker V$, every state

$$x \in WV(\text{dom } V) + \{x_0\} + \ker(I - WA)$$

is reachable from x_0 .

Now we give another condition for every state $x \in WX + \{Tx_0\} + \ker(I - WA)$ to be reachable from any initial state $x_0 \in \ker V$.

Lemma 3.2. Let $V \in W(X)$, $W \in L_0(X) \cap \mathcal{W}_{\mathcal{V}}^{\infty}$ and let T be given by (3.8). Then

$$T \in \mathcal{W}_{\mathcal{I}-\mathcal{W}\mathcal{A}}, \quad T\mathcal{W}\mathcal{X} \subset \mathcal{W}\mathcal{X}. \quad (3.14)$$

Lemma 3.2 implies that $F_1^{(r)}TWB$ maps U into WX . Corollary 3.1 yields

Theorem 3.2. Consider a linear system $(LS)_0$ described by a generalized almost invertible operator V . Suppose that $W \in L_0(X) \cap \mathcal{W}_V$ and T is defined by (3.8). Then a necessary and sufficient condition for every element $x \in WX + \{Tx_0\} + \ker(I - WA)$ to be reachable from any initial state $x_0 \in \ker V$ is that

$$TWB\mathcal{U} = WX. \quad (3.15)$$

Definition 3.2. Let there be given a linear system $(LS)_0$ of the form (3.1)-(3.2). Let $F_1^{(r)}$ be any right initial operator for V corresponding to $W_1 \in \mathcal{W}_V$.

(i) A state $x_1 \in \ker V$ is said to be $F_1^{(r)}$ - reachable from an initial state $x_0 \in \ker V$ if there exists a control $u \in U$ such that $x_1 \in F_1^{(r)}G(x_0, u)$. The state x_1 is then called a finite state.

(ii) The system $(LS)_0$ is said to be $F_1^{(r)}$ - controllable if for every initial state $x_0 \in \ker V$, we have

$$F_1^{(r)}(\text{Rang}_{U, x_0} G) = \ker V. \quad (3.16)$$

(iii) The system $(LS)_0$ is said to be $F_1^{(r)}$ - controllable to $x_1 \in \ker V$ if

$$x_1 \in F_1^{(r)}(\text{Rang}_{U, x_0} G) \quad (3.17)$$

for every initial state $x_0 \in \ker V$.

Lemma 3.3. Suppose that the system $(LS)_0$ is $F_1^{(r)}$ - controllable to zero and that

$$F_1^{(r)}[T(\ker V) + \ker(I - WA)] = \ker V. \quad (3.18)$$

Then every final state $x_1 \in \ker V$ is $F_1^{(r)}$ - reachable from zero.

Theorem 3.3. Suppose that all assumptions of Lemma (3.3) are satisfied. Then the linear system $(LS)_0$ is $F_1^{(r)}$ - controllable.

Proof. By our assumption, there exist $u_0 \in U$ and $z_0 \in \ker(I - WA)$ such that

$$F_1^{(r)}[T(WBu_0 + x_0) + z_0] = 0 \quad (3.21)$$

By Lemma 3.3, for every $x_1 \in \ker V$ there exist $u'_0 \in U$ and $z_1 \in \ker(I - WA)$ such that

$$F_1^{(r)}(TWBu'_0 + z_1) = x_1. \quad (3.22)$$

Now (3.21) and (3.22) imply $F_1^{(r)}[T(WBu_0 + u'_0 + x_0) + (z_0 + z_1)] = x_1$, i.e. x_1 is $F_1^{(r)}$ - reachable from x_0 , which was to be proved.

Corollary 3.4. If the system $(LS)_0$ is $F_1^{(r)}$ - controllable to zero and $F_1^{(r)}T(\ker V) = \ker V$, then it is $F_1^{(r)}$ - controllable.

Theorem 3.4. Let a linear system $(LS)_0$ of the form (3.1)-(3.2) and an initial operator $F_1^{(r)}$ for V be given. Let T be defined by (3.8) and let $B \in L_0(U \rightarrow X, X' \rightarrow U')$, $V \in L(X, X')$, $A, W \in L_0(X, X')$. Then $(LS)_0$ is $F_1^{(r)}$ - controllable if and only if

$$\ker B^*W^*T^*(F_1^{(r)})^* = \{0\}. \quad (3.23)$$

Theorem 3.5. Let there be given a linear system $(LS)_0$ and an initial operator for $V \in W(X)$. Then the system $(LS)_0$ is $F_1^{(r)}$ - controllable if and only if it is $F_1^{(r)}$ - controllable to every $x' \in F_1^{(r)}TWV(\text{dom } V)$.

Theorem 3.6. Suppose that the system $(LS)_0$ is $F_1^{(r)}$ - controllable. Then for an arbitrary right initial operator $F_2^{(r)}$ for V , this system is $F_2^{(r)}$ - controllable.

Example 3.1. Let $X := C[-1, 1]$, $D := d/dt$, $R := \int_0^t$, $(Fx)(t) := x(0)$. Define $(Px)(t) := \frac{1}{2}[x(t) + x(-t)]$, $Q := I - P$, $X^+ := PX$, $X^- := QX$, i.e. $X = X^+ \oplus X^-$. Consider the linear system

$$P(D + \beta I)x = Au, \quad u \in U = X^+, \quad (3.29)$$

$$(I - RPD)x = x_0, \quad x_0 = RQy_0 + z_0 \in \ker PD, \quad (3.30)$$

$$x_0 \in \ker D, \quad y_0 \in X,$$

where $A \in L_0(X^+)$, $\beta \in \mathbb{R}$.

Putting $V = PD$, $W = RP$ we find $VWV = V$, $WVW = W$. The right initial operator $F^{(r)}$ for V corresponding to W is $F^{(r)} = I - RPD$. Hence, we can write the system (3.29)-(3.30) in the form

$$(V + \beta P)x = Au, \quad F^{(r)}x = x_0. \quad (3.31)$$

This system is equivalent to the equation

$$(I + \beta RP)x = RPAu + x_0. \quad (3.32)$$

Since $(I + \beta RP)(I - \beta RP) = I - \beta^2 RPRP = I - \beta^2 R^2 QP = I$, we conclude that every state $x \in \text{dom } D$ is reachable from the initial state x_0 , i.e. there exists $u \in U$ such that

$$x = (I - \beta RP)(RPAu + x_0).$$

Hence

$$G(x_0, u) = \{x = (I - \beta RP)(RPAU + x_0)\}, \quad (3.33)$$

and since $RPRP = 0$ we get

$$(I - \beta RP)(RPAU + x_0) = RPAU \oplus \{(I - \beta RP)x_0\}. \quad (3.34)$$

From (3.33)-(3.34) we obtain

$$\text{Rang}_{U, x_0} G = RPAU \oplus \{(I - \beta RP)x_0\}.$$

Thus the system (3.29)-(3.30) is $F_1^{(r)}$ -controllable for a right initial operator $F_1^{(r)}$ of V if and only if

$$F_1^{(r)}(\text{Rang}_{U, x_0} G) = \ker(PD).$$

It is easy to check that $\ker(PD)$ consists all even differentiable functions defined on $[-1, 1]$.

References

- [1] Przeworska-Rolewicz D., *Algebraic Analysis*, Amsterdam-Warsaw, 1988.
- [2] Przeworska-Rolewicz D., *Equations with transformed argument, An algebraic approach*, Amsterdam-Warsaw, 1973.
- [3] Nguyen Van Mau, *On the generalized convolution for I- transform*, Acta- Mat. Vietnamica. 18(2003), 135- 145.

Nguyen Van Mau

Department of Analysis, Faculty of Math. Mech. and Informatics
University of Hanoi
334, Nguyen Trai Str., Hanoi, Vietnam
E-mail address: maunv@vnu.edu.vn.