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ABSTRACT 

The ~ingle-stage gitrogen removal using ~nammox and ,QaIiial nitritation (SNAP) 

process was developed as an economical nitrogen removal option for ammonium rich 

wastewaters. Experimental studies for the evaluation of SNAP treatment performances were 

conducted using a novel fixed bed reactor employing net-type acrylic-fiber biomass canier. 

SNAP process could be successfully applied for the treatment of synthetic wastewater 

containing high NH4-N of 500mg/L and maximum T-N removal rate of 0.86kg-N/m3/d was 

obtained. Influent TOC of 30 mg/L did not give bad effect on nitrogen removal performances 

of SNAP process. Influent wastewater containing IOg-Cr/L caused 35% of inhibition to 

nitrogen removal capabilities and the T-N removal efficiencies decreased from 80% to 52% 

under T-N loading rate of 0.5 kg-N/m3/d. SNAP treatment capabilities were decreased under 

operational temperature of 25°C. Reactor DO concentrations ranging from 2 to 3mg/L were 

proved to be favorable for SNAP treatment. 
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INTRODUCTION 

Anammox reaction, which is the recent addition to traditional nitrogen cycle, was 

confirmed by researchers of Delft University of Technology on 1995(1). Many research works 

had been focused on the cultivation of extremely slow growing anammox bacteria. Successful 

establishment of anammox processes were shown to be possible experimentally using 

sequential batch reactor (SBRP\ fluidized bed reactor(3) and fixed bed reactor(4). Three actual 

anammox plants combining paIiialnitiritation reactor were constructed in Netherland for the 

treatment of ammonium rich wastewaters.(5) Combining partial nitritation and anammox 

reactions, ammonium is converted ultimately to gaseous nitrogen by two sequential 

reactions(6): partialnitritation (Eq. 1) and aI1ammox (Eq. 2). 

2 NH/ + 1.5 O2 -? NH/ + N02' + H20 + 2 H+ 

I NH/ + 1.32 N02' -? 1.02 N2 + 0.26 N03' + 2 H20 
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(Eq.I) 

(Eq.2) 



(Eq.3) 

The combination of two conversion steps (Eq.3) can be done in separate reactors or in 

a single reactor. Typical systems with separate reactors include Sharon-anammox(7) and partial 

nitritation-anammox. In order to reduce the footprint of reactors and operational costs for 

separate process, single-stage nitrogen removal processes such as OLAND(S) and CANON(9) , 

in which anammox and partial nitiritation occurred in single reactor, were developed recently. 

During our experiments on separate partial nitritation process using an 

attach-immobilized reactor packed with a net type acryl resin fiber carrier, an unexpected 

nitrogen removal was observed. We named this new annmonium removal process as SNAP 

(~ingle-stage l'iitrogen removal using Anammox and Eartial nitritation)(lO). In order to 

elucidate the treatment performances of this SNAP process, treatment capabilities under 

different operational conditions were evaluated experimentally. 

MATERIALS AND METHODS 

1) Experimental set-up 

The SNAP treatment performances were studied in a reactor system that was designed 

for control of pH, temperature and aeration rate, as shown in Fig. 1. The reactor was made 

from acryl resin and had a liquid volume of 4.65 L. A hydrophilic net-type acryl resin fiber 

material (BX, NET Co., Ltd.; Japan), shown in Fig. 2, was used as the biomass carrier. Some 

properties of the BX material are shown in Table 1. 10-11 g of BX was stretched on aluminum 

pipe as shown in Fig. 2 and was set in the reactor. 

Table 1 Properties of acryl-fiber biomass carrier 
Parameter 
Specific yam length 
Specific surface area 
Yam diameter 
Specific weight 
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Fig. 1 Schematic diagram of reactor. 

10 

Unit 

mm 
kg/m3 

(I) Influent tank (2) NaHC03 solution (3) pH controller 
(4) NaHC03 pump (5) Influent pump (6) Airflow 
meter (7)Reactor (8) Air pump (9) Temp. controller 
(10)Effluent 
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Value 
23,324 
146,5 
2 
980 

Fig. 2 Photograph of acryl resin 
biomass carrier. 



2) Seed Sludge 

The reactor was seeded with 5g (as MLSS) of nitrifying activated sludge. This sludge 

had been cultivated using a synthetic medium (containing peptone, meat extract, NaHC03, 

MgS04, CaCh, NaCI, and KCI) by the fill-and-draw method for a long time under total 

oxidation conditions. The seed sludge was rich in heterotrophic bacteria and nitrifiers. The 

reactor was fed with an inorganic medium containing NH4CI (76.3-1145 mg/L) , NaHC03 

(126 mglL), KH2P04 (44 mg/L), and a micro-mineral solution (1 mLlL) during start-up. The 

micro-mineral solution consisted of NaCI (1.0 giL), KCI (1.4 giL), CaCh.2H20 (1.9 gIL) and 

MgS04.7H20 (2.0 giL). During the stmi-up phase (before day 67), the nitrogen loading rate 

was increased stepwise by increasing the influent concentration and decreasing HRT. 

3) SNAP operation 

SNAP reactor was firstly operated to achieve partial nitritation. Suitable operational 

condition for partial nitritation was determined to be temperature 35°C, pH 7.5-7.7, DO 

2-3mg/L under T-N loading rate of 0.5kg-Nhn3/d(ll). Nitrite oxidizing bacteria (NOB) were 

selectively inhibited under this operational condition. Favorable environmental condition for 

anammox bacteria enables the proliferation of anammox bacteria inside thick biomass carrier 

and SNAP process is established. All SNAP experiments were carried out under upper 

mentioned operational condition. 

RESULTS AND DISCUSSION 

1) Treatment performances under high influent NH4-N concentration 

SNAP process was discovered during the partial nitritation treatment experiments for 

influent NH4-N concentration of 1 OOmg/L (II). In order to asceliain the treatment capability of 

SNAP reactor receiving high influent 

NH4-N of 500mg/L was evaluated 

under operational condition of 35°C, 

pH7.5, HRT 12hours and T-N 

loading rate of 1.0kg-Nlm3/d. Daily 

changes in T-N removal rates were 

shown in Fig. 3. Effluent N02-N 

concentrations were less than 
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20mg/L during experiment. T-N Fig. 3 Daily changes in T-N removal rates 

50 

removal rate was decreased from 83% to 58% on day 25. The reason of this decrease in T-N 

removal rate was the worse liquid circulation condition caused by the massive growth of SNAP 

sludge in the reactor. Excess sludge was withdravvn from the reactor on day 35. 

T-N removal rate was recovered to about 80% after day 40. During 50 days of 

continuous SNAP treatment under high loading rate of 1.0kg-Nhn3/d, average T-N removal 

efficiencies of 65% was obtained. Maximum T-N removal rate of 0.86kg-N/m3/d was 

achieved in this experiment. From this experimental result, our developed SNAP process was 

proved to be applied for high NH4-N containing wastewaters such as landfill leachate and 
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anaerobic digester supernatant. This obtained T-N removal rate of 0.86kg-N/m3/d was proved 

to be comparable with reported T-N removal rates of another single stage nitrogen removal 

process of CANON(l2) and OLAND(l3) processes. 

2) Effect of organic matter on SNAP treatment 

Both nitrifying and anammox bacteria are autotrophic, so that organic carbon contained 

in influent wastewater may affect the on SNAP performances. Landfill leachate contains 

organic carbon except high NH4-N. Potassium hydrogen phthalate (KHP) and humic acid 

were used as organic carbon additives to simulate leachate. A concentration ratios of KHP : 

humic acid 10:1 was selected to give BOD/COD of about 0.35. Using this synthetic landfill 

leachate, effect of influent organic carbon on SNAP process was investigated under 

operational condition of35°C, pH 7.6-7.8 and aeration rate of 0.06-0.1 Ovvm. 

Fig. 4 shows the treatment performances of the SNAP process before and after adding 

organic carbon to the influent with a TOC/N~-N ratio of 0.10-0.15 under T-N loading rate of 

0.6 kg-N/m3/d. This result showed that both ammonium conversion and nitrogen removal 

efficiencies increased after addition of organic carbon to the influent. The average ammonium 

conversion and nitrogen removal efficiencies during the last 60 days of operation were 93.7 ± 

5.6 % and 84.4 ± 6.9 %, respectively. TOC removal profiles were shown in Fig. 5. The 

average influent TOC was 30.0 ± 2.5 mg/L and average effluent TOC was 7.3 ± 0.7 mg/L, 

resulting in an average TOC removal of75.7%. 
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Fig. 4 Treatment performances of SNAP process before and after adding 
organic carbon to the influent. 

An important observation was that effluent nitrate concentrations were almost 

unchanged after organic carbon addition. This indicates that denitrification did not occur and 

the anammox reaction was maintained stably. Thus, the increase in nitrogen removal might be 

attributed to normal heterotrophic denitritation. From this result, high applicability of SNAP 

process to actual wastewater was demonstrated. 
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3) Effect of salts concentration 

Usually, the target wastewater for SNAP process such as landfill leachate and anaerobic 

40 

•• 

digester liquor contain high chloride 

components. In general, fresh water 

bacteria are apt to decrease their 

activities under high cr concentrations 

over 10g/L. In order to know the effect 

of cr on SNAP performances, 

continuous SNAP treatment experiments 

using synthetic influent containing high 

cr components were carried out. 
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The cr concentration of synthetic 

wastewater was only O.72g-Cr/L. The 

continuous SNAP treatment experiments 

0---------,------------------
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Time (days) 

of synthetic wastewater containing 

109-CriL were conducted. Figs. 6 and 7 

showed the daily changes in nitrogen 

concentrations and T-N removal 

efficiencies during 90 days of SNAP 

treatment, respectively. 

Fig. 5 Daily changes in influent and effluent TOC 
concentrations during experiments of 
organic carbon addition 
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Fig. 6 Daily changes in effluent nitrogen concentrations. 
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Daily changes in T-N removal rates under high cr concentrations. 
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From day 20, cr concentration was increased to 10g/L. Acute inhibition caused by high 

influent cr concentration was not observed, but T-N removal efficiency of 80% at the 

beginning experiment decreased gradually and reached to 41 % on day 48. Interestingly, 

effluent N02-N concentrations were around 10mg/L during day 20 to 50 over which T-N 

removal efficiencies were decreasing. On the other hand, effluent NH4-N concentrations 

increased gradually from 20mg/L (before increasing cr concentration) to 100mg/L on day 48. 

This result demonstrates the selective inhibition of ammonium oxidizing bacteria 

underl Og-Cr/L. On the contrary, anammox bacteria did not get inhibition by salt 

concentrations wlder 10g-Cr/L. The decreasing in T-N removal efficiencies stopped on day 

50 and the average T-N removal efficiency form day 50 to 90 was 52%. From this experiment, 

degree of inhibition caused by 109-CriL was revealed to be about 35%. Therefore, application 

of SNAP process to the wastewater containing high salts concentration must be avoided. 

3) Effect oftemperature 

Anammox reaction was proved to show high activities at operational temperature 

between 20 to 43°C and its optimum temperature was 40°C(l4). Optimum temperature for 

partial nitritation was reported to 35°C(lI). In order to elucidate the effect of operational 

temperature on SNAP performances, SNAP reactor was operated at 25, 30 and 35°C under 

reactor pH of 7.7 and T-N loading rate of 0.4kg-N/m3/d. Fig. 8 showed the daily changes in 

T-N removal efficiencies under different operational temperatures. It was clear that T-N 

removal efficiencies increased with increase in operational temperature. From this result, it 

was evident that SNAP process should operate at more than 30°C for obtaining high T-N 

removal efficiencies. Therefore, temperature control is required for SNAP treatment in the 

winter season. 

4) Effect of DO 

Reactor DO affects the distribution of aerobic and anoxic zone inside SNAP biofilm. 

Effect of reactor DO on SNAP performances was studied by controlling aeration rate. Fig. 9 

showed the relationship between aeration rates, effluent nitrogen concentrations and T-N 

removal efficiencies. Under low aeration rate of 0.01 vvm, about 50% of influent NH4-N was 

detected in the effluent owing to the insufficient supply of DO to ammonium oxidizing 

bacteria (AOB). Effluent NH4-N concentrations decreased with increase in aeration rates, but 

100 

80 

". " +" 
60 

<1l 
0: 
E 40 <ll 

0: 

20 

0 

0 10 20 

* Removal Rate -

30 40 

Time(days) 

50 60 70 

Fig. 8 T-N removal under different operational temperatures. 
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Fig.9 Effect of aeration rate on effluent nitrogen concentrations 
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nitrification proceeded under aeration rate of 0.056vvm and high N03-N concentrations were 

detected in the effluent. Stable SNAP performances were obtained under aeration rates 

between 0.014 to 0.05vvm. Reactor DO concentrations ranging from 2.0 to 3.0mg/L were 

recorded under aeration rates between 0.012 to 0.056vvm. 

CONCLUSIONS 

Treatment performances of SNAP process under different operational conditions were 

evaluated experimentally and the following results were obtained. 

1) SNAP process was proved to be applied for the treatment of synthetic wastewater 

containing high NH4-N concentration of 500mg/L. Maximum T-N removal rate of 

0.86kg-Nhn3/d, which is comparable to that for another single stage nitrogen removal 

processes, was obtained. 

2) Through the continuous treatment of synthetic landfill leachate containing KHP and 

humic acid as organic carbon, it was revealed that influent TOC of 30 mg/L did not give 

the bad effect on nitrogen removal performances of SNAP process. 

3) Influent cr concentration of 10g-/L gave 35% of inhibition to nitrogen removal of SNAP 

process, and the T-N removal efficiency was decreased from 80% to 52%. This decrease 

in TN removal performances was supposed to be caused by the inhibition of AOB by Cr. 

4) SNAP treatment capability was decreased under operational temperature of 25°C. 

5) Reactor DO concentrations ranging from 2 to 3mg/L were proved to be favorable for 

proper SNAP treatment. 
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