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ON THE SELF-ORGANIZING FEATURE MAPS 
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LEHAIKHOI 

Institute of Information Technology VAST, Ha Noi, Viet Nam 

Abstract 

Recent development of Self-Organizing Feature Maps (hereafter SOFMs) algorithm becomes 

more and more interesting in many fields such as: pattern recognition, clustering, and function 

approximation, data- and web-mining. This paper will cover issues about the SOFM its self as well 

as some of its variances like Neural Gas, Growing Neural Gas, Growing Cell Structures, etc and 

they are all the kind of unsupervised competitive learning algorithms. 

This paper will be organized into 5 parts. After the introduction to the SOFM algorithm and some 

discussion on the motivations that led to the origin is given in part 1, in part 2, the goodness as 

well as the weakness of this model is discussed. In part 3, the details about the variances most 

noticeable are discussed in part 2. Exploring the variances of the original SOFM algorithm 

mentioned in that part will do it. Part 4 gives some discussion on the general of the applications of 

this model in author's opinions. A conclusion in part 5 is given to conclude this paper. 

1. Introduction 

In this paper, we are investigating a kind of neural network called Self-Organizing 

Maps (SOMs or Self-Organizing Feature Maps, SOFMs). This kind of network 

operates based on competitive learning in which the output neurons will compete 
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to be activated or fired. The neuron that won the competition by having the 

minimum value at some measurement method (e.g. Euclidean distance) is called 

winning neuron. It is some times called winner-takes-all neuron. 

In an SOM, the neurons are arranged into the nodes of a lattice that is shown in 

the Figure 1. 

AUnit (neuron) 

The Lattice 

Synaptic 

Input units 

Figure 1: Graphical presentation ala SOM 

The lattice is usually one or two-dimensional. Higher dimensional maps are 

possible but not as common because it is limited by the visualization ability and 

also the applications of this kind of network. Moreover, this kind of network is 

designed mainly based on the inspiration of an interesting feature of the human 

brain's cerebral cortex. The training process will make the neurons becomes 

selectively tuned to various input patterns or classes of input patterns, known as 

stimuli. A distinct feature of human brain inspires the development of SOMs as a 

neural model. This is because the cerebral cortex in the human brain maps 

different sensory inputs onto corresponding areas of the cerebral cortex in an 

orderly fashion [19]. 

In the literature, we can find 2 basically different feature-mapping models based 

on the neurobiological inspiration. DJ Willshaw and C. von der Malsburg [26] 

proposed the first model and the second was the pioneer research work of Teuvo 
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Kohonen [25]. The later is more general than the former in the characteristic of 

data compression. Because it can be used to map the distribution of the input data 

of arbitrary dimension into lower dimensional outputs, thus can be used in data 

compression. Hereafter, we will mainly discuss about the Kohonen's model that is 

involved in many researches until recently. 

The main goal of the SOFM is to transform an input signal pattern of arbitrary 

dimension into a lower (1, 2 or 3 dimensions) dimensional discrete map and to 

perform this transformation adaptively in a topological orderly fashion. 

The SOFM algorithm starts by randomly initializing the synaptic weights in the 

network. That is, no prior order is imposed on the network in the initialization 

operation. After that, there are 3 major activities involved in the formation of the 

SOM. They are the followings: 

1. Competition 

2. Cooperation 

3. Adaptation of synaptic weights. 

1.1. Competition 

For each input pattern, the neurons in the network will compute their respective 

values of a discriminate function based on the input. This function provides the 

basis for competition among the neurons. The neuron with the smallest value of 

the discriminate function (usually in Euclidean space: Euclidean distance) is 

declared as the winning neuron. 

To understand which is the distance measurement used III that discriminate 

function, we will briefly describe it below. 

Assume that m is the dimension of the INPUT FEATURES (or input space) and v 

denotes an input pattern vector., i.e. v = [vj, v2, ... , vmt The synaptic weight 

vector has the same dimension as the input space. Let the synaptic weight vector 

of neuron i denotes by Wi = [Wil, Wi2, ... , Wimt To find the best match of the input 

vector v with the synaptic weight vector Wi, compare the distance of the input 

vector with all the synaptic weight vectors for i = 1, .,. N, where N is the total 
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number of neurons, and select the smallest. The selection of the best matching or 

winning neuron k as, 

k = arg min Ilv - Wi II, where i = 1, ... , N 
i 

1.2. Cooperation 

The winning neuron k determines the spatial location of a topological 

neighborhood of excited neurons, I.e. determines all the neurons that in the 

"neighborhood area" of the winning neuron. According to neurobiological 

evidence (lateral inhibition or some times called on-center-off-surround), a neuron 

that is firing tends to excite the neurons in its neighborhood more than those far 

away from it. This observation leads the SOFM algorithm to define the 

topological neighborhood around the winning neuron k as explained below. 

Let dik be the lateral distance between the winning neuron k and the excited 

neuron i. We can define the topological neighborhood hik as a uni-modal function 

with the following two requirements: 

1) It is symmetric about the maximum point defined by dik = O. 

2) Its amplitude decreases monotonically to zero with increasing lateral distance 

dik. A typical choice of hik that satisfies this requirement is the Gaussian 

function: 

h _ d i; 

ik - 28 2 ' 

where (j is the width of the topological neighborhood. When using SOFM, some 

times (j is shrinked with time. An exponential decay function is a popular choice 

for this. The (j reduction scheme ensures that the map actually approaches a 

neighborhood preserving the final structure, assumed that such a structure exists. 

If the topology of the output space does not match that of the data manifold, 

neighborhood violations is inevitable. 

An example of such a reduction scheme is provide below: 
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0 0 0 0 0 0 0 -
0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 OiO 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

Figure 2: A sample reduction scheme of 8 

where n indicates the number of sequence, 60 is the beginning value of 6, and TI is 

the time parameter used to reduce the value of the width of the topological 

neighborhood. 

Or another simple method used to decrease the 6 is just multiple it by a value that 

is less than 1, say, 0.9. These two methods are similar to the simulated annealing 

scheme with the following note: 

The spread of the neighborhood function should initially include all neurons for 

any winning neuron and during the ordering phase should be slowly reduced to 

eventually include only a few neurons in the winner's neighborhood. During the 

convergence phase, the neighborhood function should include only the winning 

neuron. 

Example of a 2-D Gaussian neighborhood function for a 40 30 neuronal lattice 

is given in Figure 3. 
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Figure 3: 2-D Gaussian neighborhoodfunction 

1.3. Adaptation of synaptic weights 

For the network to be self-organizing, the synaptic weight vector Wi of neuron i is 

required to change in relation to the input vector v. This is a kind of un-supervised 

learning, so we can use a modified version of Hebbian learning by including a 

forgetting term g(yJ that is used to keep the weight from growing large, where 

g(yJ is some positive scalar function of the response of the networkYi. So, we can 

define the change to the weight vector as: 

!::J" Wi = rtYiV - g(yJWi, where rt is the learning rate. 

Further more, we can define g(yJ as a linear function of Yi, say, g(yJ = rtYi and 

setting Yi = hik. So we can simplify above equation to the following: 

!::J"Wi = rthik(v - wJ. 

Using discrete time formalism, we can derive the final formula for the weight 

update procedure: 

Wi(n+ 1) = wln) +rt(n) hidn) [v(n) - w/n)], 

where n denotes the times step updating the weight. 
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This above equation will be applied to all the neurons that lie inside the 

neighborhood of the winning neuron (other neurons are also updated but the 

weight change is zero caused by the value of the neighborhood function). Upon 

repeated presenting training data, the synaptic weight tends to follow the 

distribution of the input data due to neighborhood updating, which causes the 

adaptation of the weight vectors to the input. The neighborhood updating also 

makes the weights between neighbor neurons have the similar values to each other 

[11]. Therefore, the SOFM algorithm leads to a topological ordering of the feature 

map in the input space in the sense that neurons that are adjacent in the lattice will 

tend to have similar synaptic weight vectors. The SOFM basic algorithm is 

presented in Table 1. 

Table 1: Basic SOFM Algorithm 

Step 1: Choose random value for the weight vectors w/O). It is recommended 

that all the vectors should be different to each other. 

Step 2: Select an input pattern v from the input space randomly 

Step 3: Find the best matching or winning neuron k at time step n by using the 

Euclidean minimum-distance criterion: 

k = arg min Ilv(n) - w;(n)ll, where i = 1, ... ,N 
I 

Step 4: Update the synaptic weight vectors of all the neurons using: 

wi(n+ 1) = w/n) +1J{n) hik{n) [v{n) - w/n)] 

where both 1J{n) and hik{n) are varied dynamically through time. For example: 

n n 
8(n) =8 0 exp(--) and 11(n) =110 exp(--) or so. 

l1 l2 

Step 5: Repeat Step 1 Step 4 until there is no noticeable changes in the feature 

map are observed. 

The adaptation of the weight vector may be decomposed into two phases 

i) Self-organizing or ordering phase: topological ordering of the weight vectors. 

This phase occurs at early in the beginning when the step size 1J{n) and 

neighborhood size hik{n) are large. Some times it is called coarse search since at 

the beginning, the algorithm will try to spread the affect of activated neuron to 

-277-



most of the neurons. 

ii) Convergence phase: after ordering, for accurate statistical quantification of the 

input space. This phase will happen when the step size IJ{n) and neighborhood size 

hidn) are reduced to a small value. This can be taken as refinement search. 

2. Desire and the weakness properties of SOMs 

2.1. Desire Properties 

Once the SOFM algorithm has converged, the feature map computed by the 

algorithm, displays important statistical characteristics of the inputs. If we denote 

the spatially. continuous input space by X and the topology of which is defined by 

the metric relationship of the vectors x E X. Let A denotes a spatially discrete 

output space, the topology of which is endowed by arranging a set of neurons as 

the computation nodes of a lattice. Let <D denotes a nonlinear transformation 

called a feature map, which maps the input space X onto the output space A, as 

shown by: <D: X ~A. 

Given an input vector x, the SOFM algorithm proceeds by first identifying a best 

matching or winning neuron i(x) in the output space A, in accordance with the 

feature map <D. The synaptic weight vector Wi then maybe viewed as a pointer for 

that neuron into the input space X. 

In detail, the SOFM algorithm has some important properties as described below: 

2.1.1. Approximation of the input space 

The Self-Organizing Feature Map <P, represented by the set of synaptic weight 

vectors {Wi I i = 1,2, ... , N}, in the output space A, provides a good approximation 

to the input space X. 

The SOFM algorithm's basic aim is to store a large set of input vectors by finding 

a smaller set of prototypes, so as to provide "good" approximation to the original 

input space. It is in fact a vector quantization algorithm, which provides us the 

approximation on the input space X. 

2.1.2. Topological Ordering 

The feature map <D computed by the SOFM algorithm is topologically ordered in 
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the sense that the spatial location of a neuron in the lattice conesponds to a 

particular domain or feature of input patterns. 

This property is a direct consequence of the update of synaptic weight that forces 

the synaptic weight vectors of the winning neuron to move toward the input vector. 

It also has the effect of moving the weight vectors of neighbor neurons of winning 

neuron. The overall aim of the algorithm thus is stated below: 

Approximate the input space X by pointers or prototypes in the form of synaptic 

weight vectors Wi in such a way that the feature map CD provides a faithfitl 

representation of the important feature that characterize the input vectors in X 

The feature map CD is usually displayed in the input space X. For example, if the 

input space has 3 dimensions, then the feature map is displayed in the 3-D space 

respectively. The synaptic weight vectors are presented by dots and the pointers of 

neighboring neurons are connected with lines in accordance with the topology of 

the lattice. In particular, we observed that the algorithm (after converged) captures 

the underlying topology of the uniform distribution at the input. 

The topological ordering property of the SOFM algorithm, coupled with its 

computational tractability, makes it a valuable tool for the simulation of 

computational maps in the brain. Indeed, the SOFMs are perhaps the simplest 

model that can account for the adaptive formation of such topographic 

representations (Ritter et aI., 1992). 

2.1.3. Density Matching 

The feature map CD reflects variations in the statistics of the input distribution: 

regions in the input space X from which sample vectors are drawn with a high 

probability of occunence are mapped onto larger domains of the output space A, 

and therefore with better resolution than regions in X from which sample vectors 

are drawn with lower probability of occunence. 

As a general rule, the feature map computed by the SOFM algorithm tends to 
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over-represent regions of low input density and under-represent regions of high 

input density. One way to improve the density-matching property of the SOFM 

algorithm is to add heuristic to the algorithm, which force the distribution 

computed by the algorithm to match the input distribution more closely. Another 

way is to use the information-theoretic approach for the computation of the 

SOFM. 

2.2. Problems associated with basic SOM algorithm 

Although there is many applications of SOFM can be recognized in the literature 

such as: data analysis, data- and web-mining, function approximation, discovering 

similarities in data, etc, the SOFM algorithm has some limitations. For example, 

in the Kohonen's model, the neighborhood relations between neurons have to be 

defined in advance. Also the topology of the input space has to match the 

topology of the output space, which is to be represented. That is the property of 

neighborhood preservation, which distinguishes self-organizing maps from other 

neural network paradigms, depends on the choice of the output space map 

topology. However, in real world data sets, the proper dimensionality required by 

the input space is usually not known a priori, yet the output grid of the lattice has 

to be specified prior to learning. To tackle this problem, one can use an advanced 

learning scheme, which adapts not only the weight vectors of the neurons, but also 

the topology of the output space itself. Some samples of such algorithms include 

topology representing network [20], the growing cell structure algorithm [2], SPA 

neural tree algorithm [16] and the growing hypercubical output space algorithm 

[1 ]. 

In addition, the dynamics of the SOFM algorithm cannot be described as a 

stochastic gradient descent on any energy function. The only solution for this 

problem currently, is to describe the dynamics of the algorithm as a set of energy 

functions, one for each weight vector [10]. 

There are also other problems that unsuitable for the Kohonen net as below: 

• Kohonen nets work by clustering 

& Nearby data points are expected to behave similarly, e.g. have similar outputs. 

G Parity-like problems such as the XOR do not have this propeliy. There would be 
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unstable for solution by a Kohonen net. 

3. Variance of basic SOM algorithm 

We can see that basic SOFM algorithm defines a non-parametric regression 

solution to a class of vector quantization problems and in that sense, it does not 

need any modification because this model that was initially proposed by Kohonen 

for this task. However, there exist other problems that SOFM can be applied in 

various ways, as an example, pattern classification tasks rather than just using it as 

a vector quantization machine. 

There seems to exist a number of ways to define the matching of an input 

occurrence with the internal representation (e.g. different metrics) and even the 

neighborhood of a neuron can be defined in many ways without affect the 

performance of the network [10]. Regarding the definitions of neighborhood, 

authors suggested that the formulation of hik should be depended on the 

intermediate results. 

In the following sections, we will investigate briefly about some well-known 

variances of the Kohonen SOFM algorithm. 

3.1. Batch Update: LBG 

The LBG (or generalized Lloyd) algorithm ([28]; [29]; [30)) works by repeatedly 

moving all reference vectors to the arithmetic mean of their Voronoi sets. The 

theoretical foundation for this is that it can be shown ([31)) that a necessary 

condition for a set of reference vectors {w x I x E A} to minimize the distortion 

error 

is that each reference vector w"fulfills the centroid condition. In the case of a 

finite set of input signals and the use of the Euclidean distance measure the 

centroid condition reduces to 
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1 L; ~ W =- 11 
x IR I x SERx 

whereby Rx is the Voronoi set of unit x. 

The complete LBG algorithm is the following: 

1. Initialize the set A to contain N (N« M) units Xi 

A = {x p x2 , ••• ,XN } 

with reference vectors w
X

; E RJ1 chosen randomly (but mutually 

different) from the finite data set D. 

2. Compute for each unit x E A its Voronoi set Rx. 

3. Move the reference vector of each unit to the mean of its Voronoi set: 

I L;-w =- 11 
x IR I x ~ERx 

4. Ifin step 3 any of the Wx did change, continue with step 2. 

5. Return the current set of reference vectors. 

The steps 2 and 3 together form a so-called Lloyd iteration, which is guaranteed to 

decrease the distortion error or leave it at least unchanged. LBG is guaranteed to 

converge in a finite number of Lloyd iterations to a local minimum of the 

distortion error function. 

An extension of LBG, called LBG-U [8], is often able to improve on the local 

minima found by LBG. LBG-U performs non-local moves of single reference 

vectors which do not contribute much to error reduction (and are, therefore, not 

useful, thus the "U" in LBG-U) to locations where large quantization error does 

occur. Thereafter, normal LBG is used to find the nearest local minimum of the 

distortion error function. This is iterated as long as the LBG-generated local 

minima improve. LBG-U requires a finite data set, too, and is guaranteed to 

converge in a finite number of steps. 

3.1. Growing Self-Organizing Map (GSOM) 

Bauer et al. [I] proposed a grow algorithm called Growing Self-Organizing Map 

(GSOM), which can adapt both output space topology as well as the weight 

vectors. GSOM starts with 2 neurons configuration, learning using basic SOFM 
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algorithm, adds neurons to the output space according to a criterion, learns again 

and keeps on repeating the above operations until a pre-specified maximum 

number of neurons is reached. The growth can be achieved either by adding 

neurons in one of the directions which is already spanned by the output space or 

by adding a new dimension which is decided on the basis of the fluctuations 

within the masked Voronoi cells of the neurons. In this model, the author 

decomposes the re-construction error (i.e. v - wD along the different directions, 

which result from projecting back the output space onto the input space. This 

reconstruction error is used as the criterion in the growth algorithm to add neurons 

in the direction, which has on average the largest error amplitude. The GSOM 

algorithm restricts the output space structure to the shape of a general hypercube 

with the overall dimensionality of the grid and its extension along the different 

directions being subject to adaptation. Details of the algorithm can be found on 

[32] where the authors modify the original GSOM algorithm and use it with 

spread factor to control the growth process applied in knowledge discovery. 

3.2 Clustering algorithms (K-meansNQ) 

A common self-organizing principle is to search for clusters in the input data 

distribution. In this context the data is not coded in terms of projections, as in the 

principal component case, but in terms of radial basis functions. The idea is to 

find the set of center locations Wk, or cluster centers, that best describe the data set. 

This is done by minimizing, e.g. the reconstruction error: 

(+) 

subjects to the constraint that K« N (K can be either fixed or adaptive). 

Here Ak[x(n)] is a membership function that takes the values 

Gradient descent on (+) leads to the updating equation 
N 

wk (n + 1) = wk (n) +YJLAk [x(n)][x(n) - wk ] 

11=1 

which is the K-means algorithm. It is also sometimes called vector quantization 
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(VQ). 

The K-means algorithm (actually the on-line form of it) is listed in Table 2. For 

this algorithm to really converge, it is necessary to let the learning rate (or step 

length) 11 decrease with time. 

Once all the center locations, or codebook vectors, Wk have converged to stable 

locations, then we can use them to code the data. The simplest coding would be to 

replace the observation x(n) with (the index of) its closest matching code-book 

vector. Another, slightly more complicated, is to replace x(n) with the indices of 

the L closest code-book vectors, and the distance to them. This information can 

then be used to "triangulate" and thereby reproduce the observation with a higher 

precision than if only the winning unit is used. For more details on k-means 

algorithm, refer to [3]. 

TABLE 2: K-means Algorithm 

1. Start with initial values for Wk, k = 1, ... K, e.g. random. 

2. Repeat until the reconstruction error defined in (+) is below some pre-specified value, or until 

the weight 

changes are very small. 

2.1 Present a pattern x(n). 

2.2 Find the center location Wk that lies closest to the presented pattern. That is, the weight 

vector W k that fulfills 

the condition: I Ix(n)-wkl I < IIx(n)-wjll V j * k. Denote this center location as the "winner". 

3.3. Neural Gas Algorithm 

Martinetz et al proposed the Neural Gas (NG) network algorithm for vector 

quantization, prediction and topology representation. This algorithm has some 

advantage as compare with other algorithms: 1) converges quickly to a low 

distortion errors, 2) reachs a distortion error lower than resulting from K-means 

clustering, maximum-entropy clustering and Kohonen's SOFM, 3) obeys a 

gradient descent on an energy surface. Similar to SOFM algorithm, NG uses a 

soft-max adaptation rule (i.e. not only update the winning neuron, but also affects 

all the neurons denpending on their proximity to the input signal). This is mainly 

to generate the topographic map and also to aviod confinement to local minima 
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during the adaptation process. 

In the NG algorithm, the synaptic weights are adapted without any fixed 

topological arrangement of the neural units within the network. Instead, it utilizes 

a neighborhood-ranking scheme for the synaptic weight vectors for a given data 

vector. The synaptic weight changes are not determined by the relative distances 

between the units within a topologically prestructure lattice, but by the relative 

distances between the units within input space: hence the name Neural Gas 

network. 

Information about the arrangement of the receptive fields within the input space is 

implicitly given by a set of distortions, Dx = {llx - wkl [, k = 1,2, ... , N}, associate 

with each x, where N is the total number of units in the network[21]. Each time, 

an input signal x is presented to the network, the ordering of the elements of the 

set Dx is necessary to determine the adjustment of the synaptic weight Wk. This 

ordering has a time complexity of O(NlogN) in its sequential implementation. The 

resulting adaptation rule can be described as a winner-takes-most instead of 

winner-takes-all rule. 

The neural gas algorithm is an approach to avoid the assumption of the topology 

of the SOM, and let the algorithm discover the topology itself. However, the 

algorithm uses a fixed number of units. 

The neighborhood function is 

A. =exp __ 1 
[
-k ] 

11 ,6. 

where k;. is the ranking that node j has in relation to the input signal x. 

The winning node (i.e. the node closest to x) is given the ranking kj* = O. The 

second closest node is given the rank 1, and so on. The weights Wj are then 

updated according to: 

Wj = Wj + 11 exp[-k/,6.](x(n) - Wj). 

The topology of the map is constructed using a connectivity matrix C with the 

elements 0 or 1 
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{
I ifnodes j and k are neighbors 

C k = 
j 0 otherwise 

The connection elements qk are then given an age, i.e. the ages for all elements C 

increase by one every iteration by the algorithm. If the age for a connection is 

above some threshold, then that connection is set ot O. The connection element 

Cjj* connecting the winning node with the second closest node is set to 1 at every 

iteration, and the age for the connection is set to zero. 

The algorithm is described in the Table 3. 

TABLE 3: Self-organizing "neuron gas" 
-----------------------------
1. Choose how many cluster centers to use. 

2. Initiate all wij randomly. Set Cjk = 0 for all} and k. Set the age of all connections to Tjk = O. 

3. Repeat until all Wj and Cjk have converged (i.e. when they do not change much anymore): 

3.1 Select a random input pattern x(n) from the data set X. 

3.2 Find the winning node yAn) and give it the rank ~* = O. Rank the remaining nodes by 's- = 

1,2,3, ... 

depending on how close they are to the input pattern. 

3.3 Update the weights according to: 

wit+ 1) = Wit)+l1 exp[ -k/~][x(n)-wit)]. 

You must let the step length 11 -';> 0 as the algorithm converges. It is also common to let the 

neighborhood 

function's ~ -';> O. 

3.4 Update the ages Tik = Tjk + 1 for all} and k. Set the connection Cjj* = 1 between the winning 

node and the 

3.4. Competitive Hebbian Learning 

This method (Martinetz and Schulten, 1991 [22]; Martinetz, 1993 [23]) is usually 

not used on its own but in conjunction with other methods. It is, however, 

instructive to study competitive Hebbian learning on its own. The method does 

not change reference vectors at all (which could be interpreted as having a zero 
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learning rate). It only generates a number of neighborhood edges between the 

units of the network. It was proved by Martinetz (1993) [23] that the so generated 

graph is optimally topology-preserving in a very general sense. In particular each 

edge of this graph belongs to the Delaunay triangulation corresponding to the 

given set of reference vectors. The complete competitive Hebbian learning 

algorithm is the following: 

TABLE 4: Competitive Hebbian Learning 

1. Initialize the set A to contain N units Xi: 

A = {x], ... , Xn} 

with reference vectors w E R" chosen randomly. Initialize the connection set C, 
Xi 

C c A x A, to the empty set: 

C=0 

2. Generate at random an input signal x. 

3. Determine units s]and S2 (s], S2 E A) such that 

S I = arg min eEA Ilx - we II 

and 

4. If a connection between s]and S2 does not exist already, create it: 

C= Cu {( Sf, S2)} 

5. Continue with step 2 unless the maximum number of signals is reached. 

3.5. Neural Gas plus Competitive Hebbian Learning 

This method [19,20] is a straight-forward superposition of neural gas and 

competitive Hebbian learning. It is sometimes denoted as "topology-representing 

networks" [20]. This term, however, is rather general and would apply also to the 

growing neural gas model described later. 

At each adaptation step a connection between the winner and the second-nearest 

unit is created (this is competitive Hebbian learning). Since the reference vectors 

are adapted according to the neural gas method a mechanism is needed to remove 

edges which are not valid anymore. This is done by a local edge aging mechanism. 
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The complete neural gas with competitive Hebbian learning algorithm is in the 

following Table: 

TABLE 5: Neural Gas plus Competitive Hebbian Learning algorithm 

1. Initialize the set A to contain N units Xi: 

A = {Xi, ... , Xn} 

with reference vectors W
Xj 

E R" chosen randomly. 

Initialize the connection set C, C c A X A, to the empty set: 

C=0 
Initialize the time parameter t: 

t= ° 
2. Generate at random an input signal x. 

3. Order all elements of A according to their distance to X, i.e., find the sequence 

of indices (io, iJ, ... , iN-i) such that Wio is the reference vector closest to X, Wit is 

the reference vector second-closest to X and w, k = O, .. N -1 is the reference 
" 

vector such that k vectors Wj exist with Ilx-wjll < Ilx-wkll. Following 

Martinetz et al. (1993) [24] we denote with ki(x, A) the number k associated with 

4. Adapt the reference vectors according to 

/),.wi =:~).h)Jki(X,A)).(X-Wi) 

with the following time-dependencies: 

A _I 

A(t) = \ (:. )1",,,, 
, 

k 
h'A (k) = exp( ---). 

A(t) 

5. If a connection between io and i1 does not exist already, create it: 
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c= Cu {( io, i,)} 

Set the age of the connection between io and i, to zero ("refresh" the edge): 

age« <) = 0 10,1, 

6. Increment the age of all edges emanating from io: 

age« <) = af!e« <) + 1 (Vi EN) 
~,l ~ ~,l ~ 

Thereby, Nx is the set of direct topological neighbors of x. 

7. Remove edges with an age larger than the maximal age T(t) whereby 

_ (TJ]III"," 
T(t) - 1; T 

1 

8. Increase the time parameter t: 

t= t+ 1 

9. If t < tmax continue with step 2. 

F or the time-dependent parameters suitable initial values CAi' 8 i' 1; ) and final 

values (Ie J' 8 J' TJ) have to be chosen. 

3.6. Growing Neural Gas 

This method ([5], [6]) is different from the previously described models since the 

number of units is changed (mostly increased) during the self-organization 

process. The growth mechanism from the earlier proposed growing cell structures 

([2]) and the topology generation of competitive Hebbian learning ([21]) are 

combined to a new model. Starting with very few units new units are inserted 

successively. To determine where to insert new units, local error measures are 

gathered during the adaptation process. Each new unit is inserted near the unit 

which has accumulated most error. The complete growing neural gas algorithm is 

the following: 

TABLE 6: Growing Neural Gas Algorithm 

1. Initialize the set A to contain two units Xl and X2 

A = {x, ,X2} 

with reference vectors chosen randomly. 
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Initialize the connection set C, C c A X A, to the empty set: 

C=0 
2. Generate at random an input signal x. 

3. Determine the winner SI and the second-nearest unit S2 (S/, S2 E A) such that 

and 

4. If a connection between sland S2 does not exist already, create it: 

C=Cu {(S/,S2)} 

Set the age of the connection between sland S2 to zero ("refresh" the edge): 

age =0 (s, ,s,) 

5. Add the squared distance between the input signal and the winner to a local 

error variable: 

6. Adapt the reference vectors of the winner and its direct topological neighbors 

by fractions Sb and Sn, respectively, of the total distance to the input signal: 

L1W =: 2I.(x- W ) 
'Sl "1J" Sl 

L1W; =:4-(x-w;) (Vi E N s ) , 

Thereby N" is the set of direct topological neighbors of 81. 

7. Increment the age of all edges emanating from 81: 

age(s,J) = agecs,,;) + 1 (Vi ENs,) 

8. Remove edges with an age larger than amax. If this results in units having no 

more emanating edges, remove those units as well. 

9. If the number of input signals generated so far is an integer multiple of a 

parameter insert a new unit as follows: 

" Determine the unit q with the maximum accumulated error: 

q = arg max X EA Ex 
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e Determine among the neighbors of q the unit f with the maXImum 

accumulated error: 

f= arg max X E Nq Ex 

e Add a new unit r to the network and interpolate its reference vector from q 

and! 

A=Au{r}, 

'III Insert edges connecting the new unit r with units q and f, and remove the 

original edge between q and! 

C= Cu {(r, q), (r,j)}, C= C¥ {(q,j)} 

'III Decrease the error variables of q andfby a fraction a: 

'III Interpolate the error variable ofr from q and! 

Er = (Eq + Ej) / 2 

10. Decrease the error variables of all units: 

~Ex = -~Ex (Vx E A) 

11. If a stopping criterion (e.g., net size or some performance measure) is not 

yet fulfilled continue with step 2. 

3.7. Growing Cell Structures 

This model [2] is rather similar to the growing neural gas model. The mam 

difference is that the network topology is constrained to consist of k-dimensional 

simplices whereby k is some positive integer chosen in advance. The basic 

building block and also the initial configuration of each network is a 

k-dimensional simplex. This is, e.g., a line for k=l, a triangle for k=2, and a 

tetrahedron for k=3. 

For a given network configuration a number of adaptation steps are used to update 

the reference vectors of the nodes and to gather local error information at each 

node. 

This error information is used to decide where to insert new nodes. A new node is 

always inserted by splitting the longest edge emanating from the node q with 

maximum accumulated error. In doing this, additional edges are inserted such that 

the resulting structure consists exclusively of k-dimensional simplices again. 

The growing cell structures learning procedure is described in the following 
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Table: 

TABLE 7: Growing Cell Structures Algorithm 

1. Choose a network dimensionality k. 

Initialize the set A to contain k+ 1 units Xi 

A = {Xl, ... , xk+d 

with reference vectors w,' E R" chosen randomly. 

Initialize the connection set C, C c A X A, such that each unit is connected to 

each other unit, i.e., such that the network has the topology of a k-dimensional 

simplex. 

2. Generate at random an input signal x. 

3. Determine the winner s 

sex) = argmineEAllx - well 

4. Add the squared distance between the input signal and the winner unit s to a 

local error variableEs : 

5. Adapt the reference vectors of s and its direct topological neighbors towards X 

by fractions eb and en, respectively, of the total distance: 

~ws = eb (x - ws) 

~Wi = en (x - Wi) (Vi ENs) 

Thereby, we denote with Ns the set of direct topological neighbors of s. 

6. If the number of input signals generated so far is an integer multiple of a 

parameter insert a new unit as follows: 

'III Determine the unit q with the maximum accumulated error: 

q = arg max C E A Ec 

'lI Insert a new unit r by splitting the longest edge emanating from q, sayan 

edge leading to a unit f Insert the connections (q,r) and (r j) and remove the 

original connection (qj). To re-build the structure such that it again consists 

only of k-dimensional simplices, the new unit r is also connected with all 

common neighbors of q andf, i.e., with all units in the set Nq (\ Nf. 

'III Interpolate the reference vector of r from the reference vectors of q and! 

Wr = (Wq + wf) / 2 
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III Decrease the error variables of all neighbors of r by a fraction which depends 

on the number of neighbors of r: 
a 

~Ei = -INri Ei 
III Set the error variable of the new unit r to the mean value of its neighbors: 

1 
E,. =-1 ILEi Nr iENr 

7. Decrease the error variables of all units: 

i1Ec = -~Ec (Ve E A) 
8. If a stopping criterion (e.g., net size or some performance measure) is not yet 

fulfilled continue with step 2. 

3.8. Growing Grid 

Growing grid is another incremental network. The basic principles used also in 

growing cell structures and growing neural gas are applied with some 

modifications to a rectangular grid. Alternatively, growing grid can be seen as an 

incremental variant of the self-organizingfeature map. 

The model has two distinct phases, a growth phase and a fine-tuning phase. 

During the growth phase a rectangular network is built up starting from a minimal 

size by inserting complete rows and columns until the desired size is reached or 

until a performance criterion is met. Only constant parameters are used in this 

phase. In the fine-tuning phase the size of the network is not changed anymore 

and a decaying learning rate is used to find good final values for the reference 

vectors. 

As for the self-organizing map, the network structure is a two-dimensional grid 

(aij). This grid is initially set to 2x2 structure. Again, the distance on the grid is 

used to determine how strongly a unit 1: = akm is adapted when the unit 

s = aij is the winner. The distance measure used is the L]-norm 

d1(r, s) = Ii - kl + if - ml for r = akm and s = aij 

Also the function used to determine the adaptation strength for a unit r given that 

s is the winner is the same as for the self-organizing feature map: 
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The width parameter !7, however, remams constant throughout the whole 

simulation. It is chosen relatively small compared to the values usually used at the 

beginning for the self-organizing feature map. One can note that as the growing 

grid network grows, the Faction of all units which is adapted together with the 

winner decreases. This is also the case in the self-organizing feature map but is 

achieved there with a constant network size and a decreasing neighborhood width. 

The complete growing grid algorithm is the following: 

TABLE 8: Growing Grid Algorithm 

Growth Phase 

1. Set the initial network width and height: 

NJ = 2,N2 = 2 
Initialize the set A to contain N = NJ . N2 units Xi 

A = {XJ, ... , XN} 

with reference vectors W", E R" chosen randomly .. 

Initialize the connection set C, C c A X A, to form a rectangular NJ x N2 grid. 

Initialize the time parameter t: 

t = 0 
2. Generate at random an input signal x. 

3. Determine the winner s( x) = s: 

sex) = argmin eEA Ilx- Well 

4. Increase a local counter variable of the winner: 

rs = rs + 1 
5. Increase the time parameter t: 

t = t + 1 
6. Adapt each unit r according to 

Ll wr = E(t)hr".{x - W r) 
whereby 

E(t) = Eo 

7. If the number of input signals generated for the current network size reaches a 

multiple Ag of this network size, i.e., if 

Af! . NJ . N2 = t 
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then do the following: 

o Determine the unit q with the largest value of't: 

q = arg max C E A 'te· 
o Determine the direct neighbor f of q with the most distant reference vector: 

f= arg maxe E Nq Ilwq - we II· 
o Depending on the relative position of q and f continue with one of the two 

following cases: 

Case 1: q andfare in the same row of the grid, i.e. 

q = a·· and (j= a·· or f= a· '-J) v v v 
Do the following: 

Insert a new column with NJ units between the columns of q and! 

Interpolate the reference vectors of the new units from the reference vectors of 

their respective direct neigbors in the same row. 

Adjust the variable for the number of columns: 

N2 =N2 + 1. 
Case 2: q andfare in the same column of the grid, i.e. 

q = ai,j and (j= ai+ I,) or f= ai-l,j) 

Do the following: 

Insert a new row with N2 units between the rows of q and! 

Interpolate the reference vectors of the new units from the reference vectors of 

their respective direct neigbors in the same columns. 

Adjust the variable for the number of rows: 

NJ = NJ + 1. 
o reset all local counter values: 

re = 0 (Ve E A) 
o reset the time parameter: 

t= O. 
8. If the desired network size is not yet achieved, i.e. if 

NJ • N2 < Nmin , 

then continue with step 2. 

Fine-tuning Phase 

9. Generate at random an input signal x. 

10. Determine the winner sex) = s: 
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11. Adapt each unit r according to 

~ W r = e(t)hrlx - w,) 
whereby 

with 

tmax = Aj. NJ • N2 
12. If t < tmax continue with step 9. 

3.9. Other variances 

Blackmore and Miikkulainen (1992) [13] let a irregular network grow on 

positions in the plane which are restricted to lie on a two-dimensional grid. 

Rodrigues and Almeida (1990) [14] increased the speed of the normal 

self-organizing feature map by developing an interpolation method which 

symmetrically increases the number of units in the network by interpolation. Their 

method is reported to give a considerable speed-up but is not able to choose, e.g., 

different dimensions for width and height of the grid as the approach of Bauer and 

Villmann (1995) [1] or the growing grid. Further approaches have been proposed, 

e.g. by Jokusch (1990) [20] and Xu (1990) [17]. 

Several other models without a fixed network dimensionality are known. DeSieno 

(1988) proposed a method [9] where frequent winners get a "bad conscience" for 

winning so often and, therefore, add a penalty term to the distance from the input 

signal. This leads eventually to a situation where each unit wins approximately 

equally often (entropy maximization). 

Kangas et al. (1990) [12] proposed to use the minimum spanning tree among the 

units as neighborhood topology to eliminate the a priori choice for a topology in 

some models. 

Another interesting algorithm was Structure Parameter Adaptive (SPA) neural tree. 

It was proposed by Li et al [13]. Tree structure classifiers have been widely used 

in pattern recognition tasks. It has been shown excellent results in the literature. 

The SPA neural tree can get adapt to a changing environment parametrically and 

structurally. In this architecture, no structural constraints are specified for the 
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neurons within the same level. That is, neurons in the same level are not ordered 

as a one or two dimensional array. The SPA neural tree begins with an empty 

structure and neurons are added to the tree when the error rate exceeds a threshold. 

Some neurons are deleted if they remains inactive for a long period. It uses a 

vigliance factor to controll the creation of new neurons and a threshold factor to 

controll the splitting of the neurons into more neurons. An operational measure is 

used to control the deletion of neurons from the tree. In the SPA neural tree 

architecture, the neurons of a sub-tree have similar synaptic weight vectors, which 

reflect that its architecture can be used as a hierachical classifier. 

4. Applications 

We can see the ability of mapping the arbitrary input space into a lower 

dimensional output space in orderly fashion of SOFMs makes it the powerful tool 

on image processing and signal processing. However, we can also use the SOFMs 

for other applications such as: time-series prediction, functions approximation, 

and so on. The process to apply SOFMs in image processing is clear since we can 

use 2-D-2 model (i.e. 2-dimensional input space and form a 2-Dimensional output 

space). In function approximation and time-series prediction, to apply SOFMs, we 

simply use the "pair" (input, output) to form the stimulus to the network. Still, the 

most important is the data and the ability of memory. 

One of the earliest papers about the time-series prediction using a modification of 

SOFM is the work ofT. Martinez [24]. The model was called Neural Gas (NG). In 

the NG algorithm, the synaptic weights are adapted without any fixed topological 

arrangement of the neural units within the network. Instead, it utilizes a 

neighborhood-ranking scheme for the synaptic weight vectors for a given data 

vector. The neighborhood ranking scheme and aging technique for the units that 

are activated makes the Neural Gas works more efficiently than a standard SOFM. 

Time-series prediction task can be taken as chaotic model building. Many 

approaches have been developed for chaotic model building. Traditionally, they 

have been categorized into local and global models. A global model is applicable 

to all neighborhoods, while a local model varies from neighborhood to 

neighborhood in the phase space. Most of the works trying to predict the future 
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using SOFM followed the local approach since the adaptation rule is only done 

within a neighborhood of activated unit. 
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Figure 5: Feature Mapping 

The SOFM has very interesting properties for time series modelling. Let <P, X, A 

denote the SOFM mapping, input sample space and the discrete output space 

respectively. When the network converges to its final stable state following a 

successful learning process, it displays four major remarkable properties: 

1. The SOFM map <P is a good approximation to the input space X. This property 

is important since it provide a compact representation of the given input space. 

2. The feature map <P naturally forms a topologically ordered output space such 

that the spatial location of a neuron in the lattice corresponds to a particular 

domain in input space. The advantage of this feature is that it can simplify local 

modeling of the input signal X embedded in the A space. 

3. The feature map <P embodies a statistical law. In other words, the input with 

more frequent occurrence occupies a larger output domain of the output space A. 

This property helps to make the SOFM an optimum codebook of the given input 

space. 

4. A space dimension reduction is attained via the feature map <P. That is, the 

continuous input space is mapped to a discrete output space with lower dimension. 

This property makes the simple architecture of codebook representation feasible. 

The straightforward way to take advantage of the above properties for time series 

modeling is to create a SOFM from the input signal. Since such feature map 

<P provides a faithful topologically organized output of the input vectors x E X, 

298-



the local model fitting can then be performed over the compact codebook domain 

A. The proposed non-linear modelling scenario follows three steps: a. 

Reconstruction of the state space from the input signal; b. Embedding the state 

space in the neural field; c. Estimation of the locally linear predictors. 

* Reconstruction of the state space from the training signal. Following the 

approach by Takens, a sequence of N+ I dimensional state vectors [x(nf, x(n + 

1:)f is created from the given training time series, where x(n) = [x(n (N-I) 1:), 

x(n - (N - 2) 1:), ... , x(n)] and 1: is the appropriate time delay where and D the 

dimension of the underlying dynamical process. 

* Embedding the state space in the neural field. This step is accomplished via the 

Kohonen learning process. With each vector-scalar pair [x(n), x(n+I)] presented 

as the input to the network, the learning process of Kohonen feature mapping 

algorithm adaptively discretizes the continuous input space X C RN
+

1 into a set of 

K disjoint cells A to construct the mapping <1>. This process continues until the 

learning rate decreases close to zero and the neighborhood function covers about 

one output unit. After learning, a neural field representation A of the input space X 

via the constructed mapping relationship cD is formed in terms of a set of disjoint 

units topologically organized in the output space. 

* Estimation of the locally linear predictors. For each element its local linear 

predictor in terms of [a/ , bi ] is estimated based on which is a set of L elements in 

the neighborhood of Ui including Ui itself. One example of ai E A is shown in Fig. 

4. Each element Ui, has a corresponding weight vector [w/ , Wi(N+l)], where w/ = 

[Wi(J), Wi(J), ... , Wi(N)]. The local prediction model [a/ , ba is fitted in the 

least-square sense to the set of weights in ai , i.e. 
- b T Wj(N+l) - + a Wi 

To ensure a stable solution of the above equations, ai must have more than N+ 1 

elements. Thereafter for each output unit Uj there corresponds a unique linearly 

local model function )( aj(O), biO) in terms of the vector-scalar parameter pair [ai, 

ba· 

The global dynamics of the given process can be described by the set of all the 

constructed local models pieced together. For an input state vector 

x(n)=[x(n-N+ I), x(n-N+2), ... , x(n)f , the matched prototype element is found 
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based on the SOFM competition among all elements in A. The predicted value 

x(n+ 1) is obtained by evaluating 

}(a(), bO) at x(n)=[x(n-N+ 1), x(n-N+2), ... , x(n)f, 

x(n + 1) = Aa(uio), b(UiO), x(n)) = b(UiO) + aT(uio) x(n) 

In a similar manner, a K-step prediction x(n+K) based on x(n) can also be 

obtained by iterative prediction, i.e. feeding the output back to the input, 

x(n+K) = JKCJK-l( ... !I(a(uio), b(UiO), x(n)))) 

where }j= Aa(uio), b(UiO), x(n)) is the prediction function at step}. That is, the 

first prediction generates a new state, which is used to find the new local model 

function. Evaluation of the new local model function at the new state produces in 

tum a new prediction until the final K-step prediction. Compared with the direct 

prediction, this recursive prediction has the advantage of higher accuracy. 

Application in function approximation can be found on [15, 18] where the authors 

used standard and a modification of SOFM algorithm. The approach is to use the 

pairs of (x, y) as input for the network to form the distribution for the pairs. 

However, the functions approximation application is somewhat similar to the 

time-series prediction application where the later stands for the more general case. 

Another important application of SOFMs is to use it as a tool for knowledge 

discovering in Databases. One can find a very well known application that was 

developed by group of researchers led by Teuvo Kohonen called WEBSOM [34]. 

This application used SOFM algorithm as a tool to explore knowledge from a 

very large data on the Web. Another application can be found in [32], where the 

SOFM is modified as a dynamic growing grid structure with controlled by spread 

factor. It is shown that SOFM can be used as a tool for knowledge discovery in 

database. 

5. Concluding remarks 

Neural network is a very special model for computation. It has many remarkable 

abilities; especially in solving the problems that we know it has a solution existed 

but requires many efforts to solve in normal way (i.e. using mathematical tools or 

statistic mechanisms). However, it has a main drawback when compare with other 
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methods. It is the un-cleared reason why it came to the solution. It works as a 

black box and we still cannot explain well why neural network come to the 

solution. Many efforts tried to combine the neural network with other methods 

forming the hybrid systems to over come this problem. 

One of the research directions to modify the standard SOFM toward accelerating 

the process to form the feature map [33] is to combine several techniques: 

K-means algorithm to select the size of the feature map to be formed, cluster 

centers from a data set; a heuristic assignment strategy is employed to organize 

the selected data points into an neural anay so as to form an initial feature map; if 

the initial map is not good enough, then it will be fine-tuned by the traditional 

Kohonen self-organizing feature map (SOM) algorithm under a fast cooling 

regime in the third stage. By using the combination of the three techniques, the 

three-stage method, a topologically ordered feature map would be formed very 

quickly instead of requiring a huge amount of iterations to fine-tune the weights 

toward the density distribution of the data points, which usually happened in the 

conventional SOM algorithm. This is one of many efforts to modify the SOFM for 

other purposes using heuristic modifications. 

In this paper, however, we just outline the SOFMs algorithm and its variances. 

This will give more details about cunent situation of SOFM. One should note that 

each variance of the SOFM algorithm might have good performance in some 

problems but not all the others. However, when we deal with a problem, one 

should consider carefully the feasible solutions, since SOFM and its modifications 

are not the global solution for a real world problem. As noted earlier, it is not 

suitable for: 

• Kohonen nets work by clustering 

• Nearby data points are expected to behave similarly, e.g. have similar outputs . 

• Parity-like problems such as the XOR do not have this property. There would be 

unstable for solution by a Kohonen network. 

When we have to solve such the kind of problems, consider using other kinds of 

networks such as: feed-forward neural networks with back-propagation learning 

or Boltzmann Machine or Hopfield network or even the traditional methods which 

do not have such limitations. 
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