
Title SOME REMARKS ON THE SELF-ORGANIZING FEATURE MAPS

Author(s) Tran, Duc Minh; Le, Hai Khoi

Citation

Annual Report of FY 2004, The Core University
Program between Japan Society for the Promotion
of Science (JSPS) and Vietnamese Academy of
Science and Technology (VAST). 2005, p. 271-304

Version Type VoR

URL https://hdl.handle.net/11094/13063

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

SOME REMARKS
ON THE SELF-ORGANIZING FEATURE MAPS

TRAN Duc MINH

Visiting Researcher at Graduadte School of Information, Production and Systems,

Waseda University, Japan

LEHAIKHOI

Institute of Information Technology VAST, Ha Noi, Viet Nam

Abstract

Recent development of Self-Organizing Feature Maps (hereafter SOFMs) algorithm becomes

more and more interesting in many fields such as: pattern recognition, clustering, and function

approximation, data- and web-mining. This paper will cover issues about the SOFM its self as well

as some of its variances like Neural Gas, Growing Neural Gas, Growing Cell Structures, etc and

they are all the kind of unsupervised competitive learning algorithms.

This paper will be organized into 5 parts. After the introduction to the SOFM algorithm and some

discussion on the motivations that led to the origin is given in part 1, in part 2, the goodness as

well as the weakness of this model is discussed. In part 3, the details about the variances most

noticeable are discussed in part 2. Exploring the variances of the original SOFM algorithm

mentioned in that part will do it. Part 4 gives some discussion on the general of the applications of

this model in author's opinions. A conclusion in part 5 is given to conclude this paper.

1. Introduction

In this paper, we are investigating a kind of neural network called Self-Organizing

Maps (SOMs or Self-Organizing Feature Maps, SOFMs). This kind of network

operates based on competitive learning in which the output neurons will compete

271-

to be activated or fired. The neuron that won the competition by having the

minimum value at some measurement method (e.g. Euclidean distance) is called

winning neuron. It is some times called winner-takes-all neuron.

In an SOM, the neurons are arranged into the nodes of a lattice that is shown in

the Figure 1.

AUnit (neuron)

The Lattice

Synaptic

Input units

Figure 1: Graphical presentation ala SOM

The lattice is usually one or two-dimensional. Higher dimensional maps are

possible but not as common because it is limited by the visualization ability and

also the applications of this kind of network. Moreover, this kind of network is

designed mainly based on the inspiration of an interesting feature of the human

brain's cerebral cortex. The training process will make the neurons becomes

selectively tuned to various input patterns or classes of input patterns, known as

stimuli. A distinct feature of human brain inspires the development of SOMs as a

neural model. This is because the cerebral cortex in the human brain maps

different sensory inputs onto corresponding areas of the cerebral cortex in an

orderly fashion [19].

In the literature, we can find 2 basically different feature-mapping models based

on the neurobiological inspiration. DJ Willshaw and C. von der Malsburg [26]

proposed the first model and the second was the pioneer research work of Teuvo

-272

Kohonen [25]. The later is more general than the former in the characteristic of

data compression. Because it can be used to map the distribution of the input data

of arbitrary dimension into lower dimensional outputs, thus can be used in data

compression. Hereafter, we will mainly discuss about the Kohonen's model that is

involved in many researches until recently.

The main goal of the SOFM is to transform an input signal pattern of arbitrary

dimension into a lower (1, 2 or 3 dimensions) dimensional discrete map and to

perform this transformation adaptively in a topological orderly fashion.

The SOFM algorithm starts by randomly initializing the synaptic weights in the

network. That is, no prior order is imposed on the network in the initialization

operation. After that, there are 3 major activities involved in the formation of the

SOM. They are the followings:

1. Competition

2. Cooperation

3. Adaptation of synaptic weights.

1.1. Competition

For each input pattern, the neurons in the network will compute their respective

values of a discriminate function based on the input. This function provides the

basis for competition among the neurons. The neuron with the smallest value of

the discriminate function (usually in Euclidean space: Euclidean distance) is

declared as the winning neuron.

To understand which is the distance measurement used III that discriminate

function, we will briefly describe it below.

Assume that m is the dimension of the INPUT FEATURES (or input space) and v

denotes an input pattern vector., i.e. v = [vj, v2, ... , vmt The synaptic weight

vector has the same dimension as the input space. Let the synaptic weight vector

of neuron i denotes by Wi = [Wil, Wi2, ... , Wimt To find the best match of the input

vector v with the synaptic weight vector Wi, compare the distance of the input

vector with all the synaptic weight vectors for i = 1, .,. N, where N is the total

-273-

number of neurons, and select the smallest. The selection of the best matching or

winning neuron k as,

k = arg min Ilv - Wi II, where i = 1, ... , N
i

1.2. Cooperation

The winning neuron k determines the spatial location of a topological

neighborhood of excited neurons, I.e. determines all the neurons that in the

"neighborhood area" of the winning neuron. According to neurobiological

evidence (lateral inhibition or some times called on-center-off-surround), a neuron

that is firing tends to excite the neurons in its neighborhood more than those far

away from it. This observation leads the SOFM algorithm to define the

topological neighborhood around the winning neuron k as explained below.

Let dik be the lateral distance between the winning neuron k and the excited

neuron i. We can define the topological neighborhood hik as a uni-modal function

with the following two requirements:

1) It is symmetric about the maximum point defined by dik = O.

2) Its amplitude decreases monotonically to zero with increasing lateral distance

dik. A typical choice of hik that satisfies this requirement is the Gaussian

function:

h _ d i;

ik - 28 2 '

where (j is the width of the topological neighborhood. When using SOFM, some

times (j is shrinked with time. An exponential decay function is a popular choice

for this. The (j reduction scheme ensures that the map actually approaches a

neighborhood preserving the final structure, assumed that such a structure exists.

If the topology of the output space does not match that of the data manifold,

neighborhood violations is inevitable.

An example of such a reduction scheme is provide below:

-274-

0 0 0 0 0 0 0 -
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 OiO 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Figure 2: A sample reduction scheme of 8

where n indicates the number of sequence, 60 is the beginning value of 6, and TI is

the time parameter used to reduce the value of the width of the topological

neighborhood.

Or another simple method used to decrease the 6 is just multiple it by a value that

is less than 1, say, 0.9. These two methods are similar to the simulated annealing

scheme with the following note:

The spread of the neighborhood function should initially include all neurons for

any winning neuron and during the ordering phase should be slowly reduced to

eventually include only a few neurons in the winner's neighborhood. During the

convergence phase, the neighborhood function should include only the winning

neuron.

Example of a 2-D Gaussian neighborhood function for a 40 30 neuronal lattice

is given in Figure 3.

-275-

2-D Gaussian neig-b::tJrh:xxJ function

.. '
·······t····. ".

.... ". " . : . ~.
.. ' .'.

: 'f.
" .

.. ' .. ' " . -" ~.
. '.

".
-", .

.... I

". '~ .. : .'.
" .

...... .L

o 0

Figure 3: 2-D Gaussian neighborhoodfunction

1.3. Adaptation of synaptic weights

For the network to be self-organizing, the synaptic weight vector Wi of neuron i is

required to change in relation to the input vector v. This is a kind of un-supervised

learning, so we can use a modified version of Hebbian learning by including a

forgetting term g(yJ that is used to keep the weight from growing large, where

g(yJ is some positive scalar function of the response of the networkYi. So, we can

define the change to the weight vector as:

!::J" Wi = rtYiV - g(yJWi, where rt is the learning rate.

Further more, we can define g(yJ as a linear function of Yi, say, g(yJ = rtYi and

setting Yi = hik. So we can simplify above equation to the following:

!::J"Wi = rthik(v - wJ.

Using discrete time formalism, we can derive the final formula for the weight

update procedure:

Wi(n+ 1) = wln) +rt(n) hidn) [v(n) - w/n)],

where n denotes the times step updating the weight.

-276-

This above equation will be applied to all the neurons that lie inside the

neighborhood of the winning neuron (other neurons are also updated but the

weight change is zero caused by the value of the neighborhood function). Upon

repeated presenting training data, the synaptic weight tends to follow the

distribution of the input data due to neighborhood updating, which causes the

adaptation of the weight vectors to the input. The neighborhood updating also

makes the weights between neighbor neurons have the similar values to each other

[11]. Therefore, the SOFM algorithm leads to a topological ordering of the feature

map in the input space in the sense that neurons that are adjacent in the lattice will

tend to have similar synaptic weight vectors. The SOFM basic algorithm is

presented in Table 1.

Table 1: Basic SOFM Algorithm

Step 1: Choose random value for the weight vectors w/O). It is recommended

that all the vectors should be different to each other.

Step 2: Select an input pattern v from the input space randomly

Step 3: Find the best matching or winning neuron k at time step n by using the

Euclidean minimum-distance criterion:

k = arg min Ilv(n) - w;(n)ll, where i = 1, ... ,N
I

Step 4: Update the synaptic weight vectors of all the neurons using:

wi(n+ 1) = w/n) +1J{n) hik{n) [v{n) - w/n)]

where both 1J{n) and hik{n) are varied dynamically through time. For example:

n n
8(n) =8 0 exp(--) and 11(n) =110 exp(--) or so.

l1 l2

Step 5: Repeat Step 1 Step 4 until there is no noticeable changes in the feature

map are observed.

The adaptation of the weight vector may be decomposed into two phases

i) Self-organizing or ordering phase: topological ordering of the weight vectors.

This phase occurs at early in the beginning when the step size 1J{n) and

neighborhood size hik{n) are large. Some times it is called coarse search since at

the beginning, the algorithm will try to spread the affect of activated neuron to

-277-

most of the neurons.

ii) Convergence phase: after ordering, for accurate statistical quantification of the

input space. This phase will happen when the step size IJ{n) and neighborhood size

hidn) are reduced to a small value. This can be taken as refinement search.

2. Desire and the weakness properties of SOMs

2.1. Desire Properties

Once the SOFM algorithm has converged, the feature map computed by the

algorithm, displays important statistical characteristics of the inputs. If we denote

the spatially. continuous input space by X and the topology of which is defined by

the metric relationship of the vectors x E X. Let A denotes a spatially discrete

output space, the topology of which is endowed by arranging a set of neurons as

the computation nodes of a lattice. Let <D denotes a nonlinear transformation

called a feature map, which maps the input space X onto the output space A, as

shown by: <D: X ~A.

Given an input vector x, the SOFM algorithm proceeds by first identifying a best

matching or winning neuron i(x) in the output space A, in accordance with the

feature map <D. The synaptic weight vector Wi then maybe viewed as a pointer for

that neuron into the input space X.

In detail, the SOFM algorithm has some important properties as described below:

2.1.1. Approximation of the input space

The Self-Organizing Feature Map <P, represented by the set of synaptic weight

vectors {Wi I i = 1,2, ... , N}, in the output space A, provides a good approximation

to the input space X.

The SOFM algorithm's basic aim is to store a large set of input vectors by finding

a smaller set of prototypes, so as to provide "good" approximation to the original

input space. It is in fact a vector quantization algorithm, which provides us the

approximation on the input space X.

2.1.2. Topological Ordering

The feature map <D computed by the SOFM algorithm is topologically ordered in

-278-

the sense that the spatial location of a neuron in the lattice conesponds to a

particular domain or feature of input patterns.

This property is a direct consequence of the update of synaptic weight that forces

the synaptic weight vectors of the winning neuron to move toward the input vector.

It also has the effect of moving the weight vectors of neighbor neurons of winning

neuron. The overall aim of the algorithm thus is stated below:

Approximate the input space X by pointers or prototypes in the form of synaptic

weight vectors Wi in such a way that the feature map CD provides a faithfitl

representation of the important feature that characterize the input vectors in X

The feature map CD is usually displayed in the input space X. For example, if the

input space has 3 dimensions, then the feature map is displayed in the 3-D space

respectively. The synaptic weight vectors are presented by dots and the pointers of

neighboring neurons are connected with lines in accordance with the topology of

the lattice. In particular, we observed that the algorithm (after converged) captures

the underlying topology of the uniform distribution at the input.

The topological ordering property of the SOFM algorithm, coupled with its

computational tractability, makes it a valuable tool for the simulation of

computational maps in the brain. Indeed, the SOFMs are perhaps the simplest

model that can account for the adaptive formation of such topographic

representations (Ritter et aI., 1992).

2.1.3. Density Matching

The feature map CD reflects variations in the statistics of the input distribution:

regions in the input space X from which sample vectors are drawn with a high

probability of occunence are mapped onto larger domains of the output space A,

and therefore with better resolution than regions in X from which sample vectors

are drawn with lower probability of occunence.

As a general rule, the feature map computed by the SOFM algorithm tends to

-279-

over-represent regions of low input density and under-represent regions of high

input density. One way to improve the density-matching property of the SOFM

algorithm is to add heuristic to the algorithm, which force the distribution

computed by the algorithm to match the input distribution more closely. Another

way is to use the information-theoretic approach for the computation of the

SOFM.

2.2. Problems associated with basic SOM algorithm

Although there is many applications of SOFM can be recognized in the literature

such as: data analysis, data- and web-mining, function approximation, discovering

similarities in data, etc, the SOFM algorithm has some limitations. For example,

in the Kohonen's model, the neighborhood relations between neurons have to be

defined in advance. Also the topology of the input space has to match the

topology of the output space, which is to be represented. That is the property of

neighborhood preservation, which distinguishes self-organizing maps from other

neural network paradigms, depends on the choice of the output space map

topology. However, in real world data sets, the proper dimensionality required by

the input space is usually not known a priori, yet the output grid of the lattice has

to be specified prior to learning. To tackle this problem, one can use an advanced

learning scheme, which adapts not only the weight vectors of the neurons, but also

the topology of the output space itself. Some samples of such algorithms include

topology representing network [20], the growing cell structure algorithm [2], SPA

neural tree algorithm [16] and the growing hypercubical output space algorithm

[1].

In addition, the dynamics of the SOFM algorithm cannot be described as a

stochastic gradient descent on any energy function. The only solution for this

problem currently, is to describe the dynamics of the algorithm as a set of energy

functions, one for each weight vector [10].

There are also other problems that unsuitable for the Kohonen net as below:

• Kohonen nets work by clustering

& Nearby data points are expected to behave similarly, e.g. have similar outputs.

G Parity-like problems such as the XOR do not have this propeliy. There would be

-280-

unstable for solution by a Kohonen net.

3. Variance of basic SOM algorithm

We can see that basic SOFM algorithm defines a non-parametric regression

solution to a class of vector quantization problems and in that sense, it does not

need any modification because this model that was initially proposed by Kohonen

for this task. However, there exist other problems that SOFM can be applied in

various ways, as an example, pattern classification tasks rather than just using it as

a vector quantization machine.

There seems to exist a number of ways to define the matching of an input

occurrence with the internal representation (e.g. different metrics) and even the

neighborhood of a neuron can be defined in many ways without affect the

performance of the network [10]. Regarding the definitions of neighborhood,

authors suggested that the formulation of hik should be depended on the

intermediate results.

In the following sections, we will investigate briefly about some well-known

variances of the Kohonen SOFM algorithm.

3.1. Batch Update: LBG

The LBG (or generalized Lloyd) algorithm ([28]; [29]; [30)) works by repeatedly

moving all reference vectors to the arithmetic mean of their Voronoi sets. The

theoretical foundation for this is that it can be shown ([31)) that a necessary

condition for a set of reference vectors {w x I x E A} to minimize the distortion

error

is that each reference vector w"fulfills the centroid condition. In the case of a

finite set of input signals and the use of the Euclidean distance measure the

centroid condition reduces to

-281-

1 L; ~ W =- 11
x IR I x SERx

whereby Rx is the Voronoi set of unit x.

The complete LBG algorithm is the following:

1. Initialize the set A to contain N (N« M) units Xi

A = {x p x2 , ••• ,XN }

with reference vectors w
X

; E RJ1 chosen randomly (but mutually

different) from the finite data set D.

2. Compute for each unit x E A its Voronoi set Rx.

3. Move the reference vector of each unit to the mean of its Voronoi set:

I L;-w =- 11
x IR I x ~ERx

4. Ifin step 3 any of the Wx did change, continue with step 2.

5. Return the current set of reference vectors.

The steps 2 and 3 together form a so-called Lloyd iteration, which is guaranteed to

decrease the distortion error or leave it at least unchanged. LBG is guaranteed to

converge in a finite number of Lloyd iterations to a local minimum of the

distortion error function.

An extension of LBG, called LBG-U [8], is often able to improve on the local

minima found by LBG. LBG-U performs non-local moves of single reference

vectors which do not contribute much to error reduction (and are, therefore, not

useful, thus the "U" in LBG-U) to locations where large quantization error does

occur. Thereafter, normal LBG is used to find the nearest local minimum of the

distortion error function. This is iterated as long as the LBG-generated local

minima improve. LBG-U requires a finite data set, too, and is guaranteed to

converge in a finite number of steps.

3.1. Growing Self-Organizing Map (GSOM)

Bauer et al. [I] proposed a grow algorithm called Growing Self-Organizing Map

(GSOM), which can adapt both output space topology as well as the weight

vectors. GSOM starts with 2 neurons configuration, learning using basic SOFM

282

algorithm, adds neurons to the output space according to a criterion, learns again

and keeps on repeating the above operations until a pre-specified maximum

number of neurons is reached. The growth can be achieved either by adding

neurons in one of the directions which is already spanned by the output space or

by adding a new dimension which is decided on the basis of the fluctuations

within the masked Voronoi cells of the neurons. In this model, the author

decomposes the re-construction error (i.e. v - wD along the different directions,

which result from projecting back the output space onto the input space. This

reconstruction error is used as the criterion in the growth algorithm to add neurons

in the direction, which has on average the largest error amplitude. The GSOM

algorithm restricts the output space structure to the shape of a general hypercube

with the overall dimensionality of the grid and its extension along the different

directions being subject to adaptation. Details of the algorithm can be found on

[32] where the authors modify the original GSOM algorithm and use it with

spread factor to control the growth process applied in knowledge discovery.

3.2 Clustering algorithms (K-meansNQ)

A common self-organizing principle is to search for clusters in the input data

distribution. In this context the data is not coded in terms of projections, as in the

principal component case, but in terms of radial basis functions. The idea is to

find the set of center locations Wk, or cluster centers, that best describe the data set.

This is done by minimizing, e.g. the reconstruction error:

(+)

subjects to the constraint that K« N (K can be either fixed or adaptive).

Here Ak[x(n)] is a membership function that takes the values

Gradient descent on (+) leads to the updating equation
N

wk (n + 1) = wk (n) +YJLAk [x(n)][x(n) - wk]

11=1

which is the K-means algorithm. It is also sometimes called vector quantization

-283-

(VQ).

The K-means algorithm (actually the on-line form of it) is listed in Table 2. For

this algorithm to really converge, it is necessary to let the learning rate (or step

length) 11 decrease with time.

Once all the center locations, or codebook vectors, Wk have converged to stable

locations, then we can use them to code the data. The simplest coding would be to

replace the observation x(n) with (the index of) its closest matching code-book

vector. Another, slightly more complicated, is to replace x(n) with the indices of

the L closest code-book vectors, and the distance to them. This information can

then be used to "triangulate" and thereby reproduce the observation with a higher

precision than if only the winning unit is used. For more details on k-means

algorithm, refer to [3].

TABLE 2: K-means Algorithm

1. Start with initial values for Wk, k = 1, ... K, e.g. random.

2. Repeat until the reconstruction error defined in (+) is below some pre-specified value, or until

the weight

changes are very small.

2.1 Present a pattern x(n).

2.2 Find the center location Wk that lies closest to the presented pattern. That is, the weight

vector W k that fulfills

the condition: I Ix(n)-wkl I < IIx(n)-wjll V j * k. Denote this center location as the "winner".

3.3. Neural Gas Algorithm

Martinetz et al proposed the Neural Gas (NG) network algorithm for vector

quantization, prediction and topology representation. This algorithm has some

advantage as compare with other algorithms: 1) converges quickly to a low

distortion errors, 2) reachs a distortion error lower than resulting from K-means

clustering, maximum-entropy clustering and Kohonen's SOFM, 3) obeys a

gradient descent on an energy surface. Similar to SOFM algorithm, NG uses a

soft-max adaptation rule (i.e. not only update the winning neuron, but also affects

all the neurons denpending on their proximity to the input signal). This is mainly

to generate the topographic map and also to aviod confinement to local minima

-284

during the adaptation process.

In the NG algorithm, the synaptic weights are adapted without any fixed

topological arrangement of the neural units within the network. Instead, it utilizes

a neighborhood-ranking scheme for the synaptic weight vectors for a given data

vector. The synaptic weight changes are not determined by the relative distances

between the units within a topologically prestructure lattice, but by the relative

distances between the units within input space: hence the name Neural Gas

network.

Information about the arrangement of the receptive fields within the input space is

implicitly given by a set of distortions, Dx = {llx - wkl [, k = 1,2, ... , N}, associate

with each x, where N is the total number of units in the network[21]. Each time,

an input signal x is presented to the network, the ordering of the elements of the

set Dx is necessary to determine the adjustment of the synaptic weight Wk. This

ordering has a time complexity of O(NlogN) in its sequential implementation. The

resulting adaptation rule can be described as a winner-takes-most instead of

winner-takes-all rule.

The neural gas algorithm is an approach to avoid the assumption of the topology

of the SOM, and let the algorithm discover the topology itself. However, the

algorithm uses a fixed number of units.

The neighborhood function is

A. =exp __ 1
[
-k]

11 ,6.

where k;. is the ranking that node j has in relation to the input signal x.

The winning node (i.e. the node closest to x) is given the ranking kj* = O. The

second closest node is given the rank 1, and so on. The weights Wj are then

updated according to:

Wj = Wj + 11 exp[-k/,6.](x(n) - Wj).

The topology of the map is constructed using a connectivity matrix C with the

elements 0 or 1

-285-

{
I ifnodes j and k are neighbors

C k =
j 0 otherwise

The connection elements qk are then given an age, i.e. the ages for all elements C

increase by one every iteration by the algorithm. If the age for a connection is

above some threshold, then that connection is set ot O. The connection element

Cjj* connecting the winning node with the second closest node is set to 1 at every

iteration, and the age for the connection is set to zero.

The algorithm is described in the Table 3.

TABLE 3: Self-organizing "neuron gas"

1. Choose how many cluster centers to use.

2. Initiate all wij randomly. Set Cjk = 0 for all} and k. Set the age of all connections to Tjk = O.

3. Repeat until all Wj and Cjk have converged (i.e. when they do not change much anymore):

3.1 Select a random input pattern x(n) from the data set X.

3.2 Find the winning node yAn) and give it the rank ~* = O. Rank the remaining nodes by 's- =

1,2,3, ...

depending on how close they are to the input pattern.

3.3 Update the weights according to:

wit+ 1) = Wit)+l1 exp[-k/~][x(n)-wit)].

You must let the step length 11 -';> 0 as the algorithm converges. It is also common to let the

neighborhood

function's ~ -';> O.

3.4 Update the ages Tik = Tjk + 1 for all} and k. Set the connection Cjj* = 1 between the winning

node and the

3.4. Competitive Hebbian Learning

This method (Martinetz and Schulten, 1991 [22]; Martinetz, 1993 [23]) is usually

not used on its own but in conjunction with other methods. It is, however,

instructive to study competitive Hebbian learning on its own. The method does

not change reference vectors at all (which could be interpreted as having a zero

-286

learning rate). It only generates a number of neighborhood edges between the

units of the network. It was proved by Martinetz (1993) [23] that the so generated

graph is optimally topology-preserving in a very general sense. In particular each

edge of this graph belongs to the Delaunay triangulation corresponding to the

given set of reference vectors. The complete competitive Hebbian learning

algorithm is the following:

TABLE 4: Competitive Hebbian Learning

1. Initialize the set A to contain N units Xi:

A = {x], ... , Xn}

with reference vectors w E R" chosen randomly. Initialize the connection set C,
Xi

C c A x A, to the empty set:

C=0

2. Generate at random an input signal x.

3. Determine units s]and S2 (s], S2 E A) such that

S I = arg min eEA Ilx - we II

and

4. If a connection between s]and S2 does not exist already, create it:

C= Cu {(Sf, S2)}

5. Continue with step 2 unless the maximum number of signals is reached.

3.5. Neural Gas plus Competitive Hebbian Learning

This method [19,20] is a straight-forward superposition of neural gas and

competitive Hebbian learning. It is sometimes denoted as "topology-representing

networks" [20]. This term, however, is rather general and would apply also to the

growing neural gas model described later.

At each adaptation step a connection between the winner and the second-nearest

unit is created (this is competitive Hebbian learning). Since the reference vectors

are adapted according to the neural gas method a mechanism is needed to remove

edges which are not valid anymore. This is done by a local edge aging mechanism.

-287-

The complete neural gas with competitive Hebbian learning algorithm is in the

following Table:

TABLE 5: Neural Gas plus Competitive Hebbian Learning algorithm

1. Initialize the set A to contain N units Xi:

A = {Xi, ... , Xn}

with reference vectors W
Xj

E R" chosen randomly.

Initialize the connection set C, C c A X A, to the empty set:

C=0
Initialize the time parameter t:

t= °
2. Generate at random an input signal x.

3. Order all elements of A according to their distance to X, i.e., find the sequence

of indices (io, iJ, ... , iN-i) such that Wio is the reference vector closest to X, Wit is

the reference vector second-closest to X and w, k = O, .. N -1 is the reference
"

vector such that k vectors Wj exist with Ilx-wjll < Ilx-wkll. Following

Martinetz et al. (1993) [24] we denote with ki(x, A) the number k associated with

4. Adapt the reference vectors according to

/),.wi =:~).h)Jki(X,A)).(X-Wi)

with the following time-dependencies:

A _I

A(t) = \ (:.)1",,,,
,

k
h'A (k) = exp(---).

A(t)

5. If a connection between io and i1 does not exist already, create it:

-288

c= Cu {(io, i,)}

Set the age of the connection between io and i, to zero ("refresh" the edge):

age« <) = 0 10,1,

6. Increment the age of all edges emanating from io:

age« <) = af!e« <) + 1 (Vi EN)
~,l ~ ~,l ~

Thereby, Nx is the set of direct topological neighbors of x.

7. Remove edges with an age larger than the maximal age T(t) whereby

_ (TJ]III","
T(t) - 1; T

1

8. Increase the time parameter t:

t= t+ 1

9. If t < tmax continue with step 2.

F or the time-dependent parameters suitable initial values CAi' 8 i' 1;) and final

values (Ie J' 8 J' TJ) have to be chosen.

3.6. Growing Neural Gas

This method ([5], [6]) is different from the previously described models since the

number of units is changed (mostly increased) during the self-organization

process. The growth mechanism from the earlier proposed growing cell structures

([2]) and the topology generation of competitive Hebbian learning ([21]) are

combined to a new model. Starting with very few units new units are inserted

successively. To determine where to insert new units, local error measures are

gathered during the adaptation process. Each new unit is inserted near the unit

which has accumulated most error. The complete growing neural gas algorithm is

the following:

TABLE 6: Growing Neural Gas Algorithm

1. Initialize the set A to contain two units Xl and X2

A = {x, ,X2}

with reference vectors chosen randomly.

-289-

Initialize the connection set C, C c A X A, to the empty set:

C=0
2. Generate at random an input signal x.

3. Determine the winner SI and the second-nearest unit S2 (S/, S2 E A) such that

and

4. If a connection between sland S2 does not exist already, create it:

C=Cu {(S/,S2)}

Set the age of the connection between sland S2 to zero ("refresh" the edge):

age =0 (s, ,s,)

5. Add the squared distance between the input signal and the winner to a local

error variable:

6. Adapt the reference vectors of the winner and its direct topological neighbors

by fractions Sb and Sn, respectively, of the total distance to the input signal:

L1W =: 2I.(x- W)
'Sl "1J" Sl

L1W; =:4-(x-w;) (Vi E N s) ,

Thereby N" is the set of direct topological neighbors of 81.

7. Increment the age of all edges emanating from 81:

age(s,J) = agecs,,;) + 1 (Vi ENs,)

8. Remove edges with an age larger than amax. If this results in units having no

more emanating edges, remove those units as well.

9. If the number of input signals generated so far is an integer multiple of a

parameter insert a new unit as follows:

" Determine the unit q with the maximum accumulated error:

q = arg max X EA Ex

-290-

e Determine among the neighbors of q the unit f with the maXImum

accumulated error:

f= arg max X E Nq Ex

e Add a new unit r to the network and interpolate its reference vector from q

and!

A=Au{r},

'III Insert edges connecting the new unit r with units q and f, and remove the

original edge between q and!

C= Cu {(r, q), (r,j)}, C= C¥ {(q,j)}

'III Decrease the error variables of q andfby a fraction a:

'III Interpolate the error variable ofr from q and!

Er = (Eq + Ej) / 2

10. Decrease the error variables of all units:

~Ex = -~Ex (Vx E A)

11. If a stopping criterion (e.g., net size or some performance measure) is not

yet fulfilled continue with step 2.

3.7. Growing Cell Structures

This model [2] is rather similar to the growing neural gas model. The mam

difference is that the network topology is constrained to consist of k-dimensional

simplices whereby k is some positive integer chosen in advance. The basic

building block and also the initial configuration of each network is a

k-dimensional simplex. This is, e.g., a line for k=l, a triangle for k=2, and a

tetrahedron for k=3.

For a given network configuration a number of adaptation steps are used to update

the reference vectors of the nodes and to gather local error information at each

node.

This error information is used to decide where to insert new nodes. A new node is

always inserted by splitting the longest edge emanating from the node q with

maximum accumulated error. In doing this, additional edges are inserted such that

the resulting structure consists exclusively of k-dimensional simplices again.

The growing cell structures learning procedure is described in the following

-291

Table:

TABLE 7: Growing Cell Structures Algorithm

1. Choose a network dimensionality k.

Initialize the set A to contain k+ 1 units Xi

A = {Xl, ... , xk+d

with reference vectors w,' E R" chosen randomly.

Initialize the connection set C, C c A X A, such that each unit is connected to

each other unit, i.e., such that the network has the topology of a k-dimensional

simplex.

2. Generate at random an input signal x.

3. Determine the winner s

sex) = argmineEAllx - well

4. Add the squared distance between the input signal and the winner unit s to a

local error variableEs :

5. Adapt the reference vectors of s and its direct topological neighbors towards X

by fractions eb and en, respectively, of the total distance:

~ws = eb (x - ws)

~Wi = en (x - Wi) (Vi ENs)

Thereby, we denote with Ns the set of direct topological neighbors of s.

6. If the number of input signals generated so far is an integer multiple of a

parameter insert a new unit as follows:

'III Determine the unit q with the maximum accumulated error:

q = arg max C E A Ec

'lI Insert a new unit r by splitting the longest edge emanating from q, sayan

edge leading to a unit f Insert the connections (q,r) and (r j) and remove the

original connection (qj). To re-build the structure such that it again consists

only of k-dimensional simplices, the new unit r is also connected with all

common neighbors of q andf, i.e., with all units in the set Nq (\ Nf.

'III Interpolate the reference vector of r from the reference vectors of q and!

Wr = (Wq + wf) / 2

292-

III Decrease the error variables of all neighbors of r by a fraction which depends

on the number of neighbors of r:
a

~Ei = -INri Ei
III Set the error variable of the new unit r to the mean value of its neighbors:

1
E,. =-1 ILEi Nr iENr

7. Decrease the error variables of all units:

i1Ec = -~Ec (Ve E A)
8. If a stopping criterion (e.g., net size or some performance measure) is not yet

fulfilled continue with step 2.

3.8. Growing Grid

Growing grid is another incremental network. The basic principles used also in

growing cell structures and growing neural gas are applied with some

modifications to a rectangular grid. Alternatively, growing grid can be seen as an

incremental variant of the self-organizingfeature map.

The model has two distinct phases, a growth phase and a fine-tuning phase.

During the growth phase a rectangular network is built up starting from a minimal

size by inserting complete rows and columns until the desired size is reached or

until a performance criterion is met. Only constant parameters are used in this

phase. In the fine-tuning phase the size of the network is not changed anymore

and a decaying learning rate is used to find good final values for the reference

vectors.

As for the self-organizing map, the network structure is a two-dimensional grid

(aij). This grid is initially set to 2x2 structure. Again, the distance on the grid is

used to determine how strongly a unit 1: = akm is adapted when the unit

s = aij is the winner. The distance measure used is the L]-norm

d1(r, s) = Ii - kl + if - ml for r = akm and s = aij

Also the function used to determine the adaptation strength for a unit r given that

s is the winner is the same as for the self-organizing feature map:

-293-

The width parameter !7, however, remams constant throughout the whole

simulation. It is chosen relatively small compared to the values usually used at the

beginning for the self-organizing feature map. One can note that as the growing

grid network grows, the Faction of all units which is adapted together with the

winner decreases. This is also the case in the self-organizing feature map but is

achieved there with a constant network size and a decreasing neighborhood width.

The complete growing grid algorithm is the following:

TABLE 8: Growing Grid Algorithm

Growth Phase

1. Set the initial network width and height:

NJ = 2,N2 = 2
Initialize the set A to contain N = NJ . N2 units Xi

A = {XJ, ... , XN}

with reference vectors W", E R" chosen randomly ..

Initialize the connection set C, C c A X A, to form a rectangular NJ x N2 grid.

Initialize the time parameter t:

t = 0
2. Generate at random an input signal x.

3. Determine the winner s(x) = s:

sex) = argmin eEA Ilx- Well

4. Increase a local counter variable of the winner:

rs = rs + 1
5. Increase the time parameter t:

t = t + 1
6. Adapt each unit r according to

Ll wr = E(t)hr".{x - W r)
whereby

E(t) = Eo

7. If the number of input signals generated for the current network size reaches a

multiple Ag of this network size, i.e., if

Af! . NJ . N2 = t

294

then do the following:

o Determine the unit q with the largest value of't:

q = arg max C E A 'te·
o Determine the direct neighbor f of q with the most distant reference vector:

f= arg maxe E Nq Ilwq - we II·
o Depending on the relative position of q and f continue with one of the two

following cases:

Case 1: q andfare in the same row of the grid, i.e.

q = a·· and (j= a·· or f= a· '-J) v v v
Do the following:

Insert a new column with NJ units between the columns of q and!

Interpolate the reference vectors of the new units from the reference vectors of

their respective direct neigbors in the same row.

Adjust the variable for the number of columns:

N2 =N2 + 1.
Case 2: q andfare in the same column of the grid, i.e.

q = ai,j and (j= ai+ I,) or f= ai-l,j)

Do the following:

Insert a new row with N2 units between the rows of q and!

Interpolate the reference vectors of the new units from the reference vectors of

their respective direct neigbors in the same columns.

Adjust the variable for the number of rows:

NJ = NJ + 1.
o reset all local counter values:

re = 0 (Ve E A)
o reset the time parameter:

t= O.
8. If the desired network size is not yet achieved, i.e. if

NJ • N2 < Nmin ,

then continue with step 2.

Fine-tuning Phase

9. Generate at random an input signal x.

10. Determine the winner sex) = s:

-295-

11. Adapt each unit r according to

~ W r = e(t)hrlx - w,)
whereby

with

tmax = Aj. NJ • N2
12. If t < tmax continue with step 9.

3.9. Other variances

Blackmore and Miikkulainen (1992) [13] let a irregular network grow on

positions in the plane which are restricted to lie on a two-dimensional grid.

Rodrigues and Almeida (1990) [14] increased the speed of the normal

self-organizing feature map by developing an interpolation method which

symmetrically increases the number of units in the network by interpolation. Their

method is reported to give a considerable speed-up but is not able to choose, e.g.,

different dimensions for width and height of the grid as the approach of Bauer and

Villmann (1995) [1] or the growing grid. Further approaches have been proposed,

e.g. by Jokusch (1990) [20] and Xu (1990) [17].

Several other models without a fixed network dimensionality are known. DeSieno

(1988) proposed a method [9] where frequent winners get a "bad conscience" for

winning so often and, therefore, add a penalty term to the distance from the input

signal. This leads eventually to a situation where each unit wins approximately

equally often (entropy maximization).

Kangas et al. (1990) [12] proposed to use the minimum spanning tree among the

units as neighborhood topology to eliminate the a priori choice for a topology in

some models.

Another interesting algorithm was Structure Parameter Adaptive (SPA) neural tree.

It was proposed by Li et al [13]. Tree structure classifiers have been widely used

in pattern recognition tasks. It has been shown excellent results in the literature.

The SPA neural tree can get adapt to a changing environment parametrically and

structurally. In this architecture, no structural constraints are specified for the

296-

neurons within the same level. That is, neurons in the same level are not ordered

as a one or two dimensional array. The SPA neural tree begins with an empty

structure and neurons are added to the tree when the error rate exceeds a threshold.

Some neurons are deleted if they remains inactive for a long period. It uses a

vigliance factor to controll the creation of new neurons and a threshold factor to

controll the splitting of the neurons into more neurons. An operational measure is

used to control the deletion of neurons from the tree. In the SPA neural tree

architecture, the neurons of a sub-tree have similar synaptic weight vectors, which

reflect that its architecture can be used as a hierachical classifier.

4. Applications

We can see the ability of mapping the arbitrary input space into a lower

dimensional output space in orderly fashion of SOFMs makes it the powerful tool

on image processing and signal processing. However, we can also use the SOFMs

for other applications such as: time-series prediction, functions approximation,

and so on. The process to apply SOFMs in image processing is clear since we can

use 2-D-2 model (i.e. 2-dimensional input space and form a 2-Dimensional output

space). In function approximation and time-series prediction, to apply SOFMs, we

simply use the "pair" (input, output) to form the stimulus to the network. Still, the

most important is the data and the ability of memory.

One of the earliest papers about the time-series prediction using a modification of

SOFM is the work ofT. Martinez [24]. The model was called Neural Gas (NG). In

the NG algorithm, the synaptic weights are adapted without any fixed topological

arrangement of the neural units within the network. Instead, it utilizes a

neighborhood-ranking scheme for the synaptic weight vectors for a given data

vector. The neighborhood ranking scheme and aging technique for the units that

are activated makes the Neural Gas works more efficiently than a standard SOFM.

Time-series prediction task can be taken as chaotic model building. Many

approaches have been developed for chaotic model building. Traditionally, they

have been categorized into local and global models. A global model is applicable

to all neighborhoods, while a local model varies from neighborhood to

neighborhood in the phase space. Most of the works trying to predict the future

-297

using SOFM followed the local approach since the adaptation rule is only done

within a neighborhood of activated unit.

A
~A 000000000

>000000000
00

8
000

00 00 000
----- 00 00 000

00 000
000000000

Figure 5: Feature Mapping

The SOFM has very interesting properties for time series modelling. Let <P, X, A

denote the SOFM mapping, input sample space and the discrete output space

respectively. When the network converges to its final stable state following a

successful learning process, it displays four major remarkable properties:

1. The SOFM map <P is a good approximation to the input space X. This property

is important since it provide a compact representation of the given input space.

2. The feature map <P naturally forms a topologically ordered output space such

that the spatial location of a neuron in the lattice corresponds to a particular

domain in input space. The advantage of this feature is that it can simplify local

modeling of the input signal X embedded in the A space.

3. The feature map <P embodies a statistical law. In other words, the input with

more frequent occurrence occupies a larger output domain of the output space A.

This property helps to make the SOFM an optimum codebook of the given input

space.

4. A space dimension reduction is attained via the feature map <P. That is, the

continuous input space is mapped to a discrete output space with lower dimension.

This property makes the simple architecture of codebook representation feasible.

The straightforward way to take advantage of the above properties for time series

modeling is to create a SOFM from the input signal. Since such feature map

<P provides a faithful topologically organized output of the input vectors x E X,

298-

the local model fitting can then be performed over the compact codebook domain

A. The proposed non-linear modelling scenario follows three steps: a.

Reconstruction of the state space from the input signal; b. Embedding the state

space in the neural field; c. Estimation of the locally linear predictors.

* Reconstruction of the state space from the training signal. Following the

approach by Takens, a sequence of N+ I dimensional state vectors [x(nf, x(n +

1:)f is created from the given training time series, where x(n) = [x(n (N-I) 1:),

x(n - (N - 2) 1:), ... , x(n)] and 1: is the appropriate time delay where and D the

dimension of the underlying dynamical process.

* Embedding the state space in the neural field. This step is accomplished via the

Kohonen learning process. With each vector-scalar pair [x(n), x(n+I)] presented

as the input to the network, the learning process of Kohonen feature mapping

algorithm adaptively discretizes the continuous input space X C RN
+

1 into a set of

K disjoint cells A to construct the mapping <1>. This process continues until the

learning rate decreases close to zero and the neighborhood function covers about

one output unit. After learning, a neural field representation A of the input space X

via the constructed mapping relationship cD is formed in terms of a set of disjoint

units topologically organized in the output space.

* Estimation of the locally linear predictors. For each element its local linear

predictor in terms of [a/ , bi] is estimated based on which is a set of L elements in

the neighborhood of Ui including Ui itself. One example of ai E A is shown in Fig.

4. Each element Ui, has a corresponding weight vector [w/ , Wi(N+l)], where w/ =

[Wi(J), Wi(J), ... , Wi(N)]. The local prediction model [a/ , ba is fitted in the

least-square sense to the set of weights in ai , i.e.
- b T Wj(N+l) - + a Wi

To ensure a stable solution of the above equations, ai must have more than N+ 1

elements. Thereafter for each output unit Uj there corresponds a unique linearly

local model function)(aj(O), biO) in terms of the vector-scalar parameter pair [ai,

ba·

The global dynamics of the given process can be described by the set of all the

constructed local models pieced together. For an input state vector

x(n)=[x(n-N+ I), x(n-N+2), ... , x(n)f , the matched prototype element is found

-299-

based on the SOFM competition among all elements in A. The predicted value

x(n+ 1) is obtained by evaluating

}(a(), bO) at x(n)=[x(n-N+ 1), x(n-N+2), ... , x(n)f,

x(n + 1) = Aa(uio), b(UiO), x(n)) = b(UiO) + aT(uio) x(n)

In a similar manner, a K-step prediction x(n+K) based on x(n) can also be

obtained by iterative prediction, i.e. feeding the output back to the input,

x(n+K) = JKCJK-l(... !I(a(uio), b(UiO), x(n))))

where }j= Aa(uio), b(UiO), x(n)) is the prediction function at step}. That is, the

first prediction generates a new state, which is used to find the new local model

function. Evaluation of the new local model function at the new state produces in

tum a new prediction until the final K-step prediction. Compared with the direct

prediction, this recursive prediction has the advantage of higher accuracy.

Application in function approximation can be found on [15, 18] where the authors

used standard and a modification of SOFM algorithm. The approach is to use the

pairs of (x, y) as input for the network to form the distribution for the pairs.

However, the functions approximation application is somewhat similar to the

time-series prediction application where the later stands for the more general case.

Another important application of SOFMs is to use it as a tool for knowledge

discovering in Databases. One can find a very well known application that was

developed by group of researchers led by Teuvo Kohonen called WEBSOM [34].

This application used SOFM algorithm as a tool to explore knowledge from a

very large data on the Web. Another application can be found in [32], where the

SOFM is modified as a dynamic growing grid structure with controlled by spread

factor. It is shown that SOFM can be used as a tool for knowledge discovery in

database.

5. Concluding remarks

Neural network is a very special model for computation. It has many remarkable

abilities; especially in solving the problems that we know it has a solution existed

but requires many efforts to solve in normal way (i.e. using mathematical tools or

statistic mechanisms). However, it has a main drawback when compare with other

-300-

methods. It is the un-cleared reason why it came to the solution. It works as a

black box and we still cannot explain well why neural network come to the

solution. Many efforts tried to combine the neural network with other methods

forming the hybrid systems to over come this problem.

One of the research directions to modify the standard SOFM toward accelerating

the process to form the feature map [33] is to combine several techniques:

K-means algorithm to select the size of the feature map to be formed, cluster

centers from a data set; a heuristic assignment strategy is employed to organize

the selected data points into an neural anay so as to form an initial feature map; if

the initial map is not good enough, then it will be fine-tuned by the traditional

Kohonen self-organizing feature map (SOM) algorithm under a fast cooling

regime in the third stage. By using the combination of the three techniques, the

three-stage method, a topologically ordered feature map would be formed very

quickly instead of requiring a huge amount of iterations to fine-tune the weights

toward the density distribution of the data points, which usually happened in the

conventional SOM algorithm. This is one of many efforts to modify the SOFM for

other purposes using heuristic modifications.

In this paper, however, we just outline the SOFMs algorithm and its variances.

This will give more details about cunent situation of SOFM. One should note that

each variance of the SOFM algorithm might have good performance in some

problems but not all the others. However, when we deal with a problem, one

should consider carefully the feasible solutions, since SOFM and its modifications

are not the global solution for a real world problem. As noted earlier, it is not

suitable for:

• Kohonen nets work by clustering

• Nearby data points are expected to behave similarly, e.g. have similar outputs .

• Parity-like problems such as the XOR do not have this property. There would be

unstable for solution by a Kohonen network.

When we have to solve such the kind of problems, consider using other kinds of

networks such as: feed-forward neural networks with back-propagation learning

or Boltzmann Machine or Hopfield network or even the traditional methods which

do not have such limitations.

-301-

REFERENCE

[1] Bauer, H., Villmann, T., Growing a hypercubical output space in a

self-organizing feature map, IEEE Transactions on Neural Networks, Vol. 8(2),

pp218-226, 1997.

[2] B. Fritzke. Growing Cell Structures - A Self-Organizing Network for

Unsupervised and Supervised learning. Neural Network, Vol. 7, No.9, pp

1441-1460, 1994.

[3] B. Fritzke, Samples of Competitive learning algorithms implementation, URL:

http://www.sund.de/netze/applets/ gng/full/GNG O.html

[4] B. Fritzke, "Come competitive learning method", URL:

http://www.neuroinformatik.ruhr-uni-bochum.de/iniNDM/research/gsn/JavaPaper

It.html, Draft from April 5, 1997.

[5] B. Fritzke. "Fast learning with incremental RBF networks.", Neural

Processing Letters, 1 (1):-5, 1994b.

URL:

http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/fritzke/papers/fritzk

e.incrementaIJbf.ps.gz

[6] B. Fritzke. "A growing neural gas network learns topologies.", In G. Tesauro,

D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information

Processing Systems 7, pages 625-632. MIT Press, Cambridge MA, 1995a.

URL:

http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLEIfritzke/papers/fritzk

e.nips94.ps.gz

[7] B. Fritzke. "Incremental learning of local linear mappings.", In F. Fogelman

and P. Gallinari, editors, ICANN'95: International Conference on Artificial Neural

Networks, pages 217-222, Paris, France, 1995b. EC2 & Cie.

URL:

http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/fritzke/papers/fritzk

e.icann95.ps.gz

[8] B. Fritzke. "The LBG-U method for vector quantization - an improvement

over LBG inspired from neural networks.", Neural Processing Letters, 5(1), 1997.

URL:

ftp:/ Iftp.neuroinformatik.ruhr -uni-bochum.de/pub/manuscripts/IRINl/irini97 -01 lir

ini97-01.ps.gz

-302-

[9] D. DeSieno. "Adding a conscience to competitive learning.", IEEE

International Conference on Neural Networks, volume 1, pages 117-124, New

York, 1988. (San Diego 1988) IEEE.

[10] E. Erwin, K. Obermayer, and K. Schulten. Self-Organizing Maps: Ordering,

Convergence properties and Energy Functions. Biological Cybernetics, 67:47-55,

1992.

[11] M.T. Hagan, H. Demuth and M. Beale, "Neural Network Design", PWS

Publishing, 1996.

[12] J. A. Kangas, T. Kohonen, and T. Laaksonen., "Variants of self-organizing

maps.", IEEE Transactions on Neural Networks, 1(1):-99, 1990.

[13] J. Blackmore and R. Miikkulainen. "Incremental grid growing: encoding

high-dimensional structure into a two-dimensional feature map", TR AI92-192,

University of Texas at Austin, Austin, TX, 1992.

[14] J. S. Rodrigues and L. B. Almeida., "Improving the learning speed in

topological maps of patterns.", Proceedings ofINNC, pages 813-816, Paris, 1990.

[15] J. Walter, H. J. Ritter, and K. J. Schulten. "Non-linear prediction with

self-organizing maps.", International Joint Conference on Neural Networks, pages

1.589-594, San Diego, 1990.

[16] Li, T., Y.Y. Tang, and L.Y. Fang, A structure parameter adaptive (SPA)

neural tree for the recognition of large character set,Voi. 28, No.3, pp. 315-329,

1995.

[17] L. Xu. ,"Adding learning expectation into the learning procedure of

self-organizing maps.", Int. Journal of Neural Systems, 1(3):-283, 1990.

[18] M. Aupetit, et aI., "C-SOM: A Continuous Self-Organizing Map For

Function Approximation", Proc. of Intelligent System and Control (ISC99),

Santa-Barbar, October 1999.

[19] S. Haykin, "Neural Networks: A Comprehensive Foundation", Prentice Hall,

New Jersey, 2nd Edition, 1999.

[20] S. Jokusch. "A neural network which adapts its structure to a given set of

patterns", In R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel

Processing in Neural Systems and Computers, pages 169-172. Elsevier Science

Publishers B.v., 1990.

[21] T. Martinetz and K. Schulten, A Neural Gas Learns Topologies, Artificial

Neural Networks, pp 397-402. Noth Holland, Amsterdam, 1991.

-303-

[22] T. Martinetz and K. Schulten, Topology Representing Network, Neural

Networks, Vol. 7 No.3, pp 507-522. 1994.

[23] T. M. Martinetz. "Competitive Hebbian learning rule forms perfectly

topology preserving maps.", ICANN'93: International Conference on Artificial

Neural Networks, pages 427-434, Amsterdam, 1993. Springer.

[24] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. "Neural-gas network

for vector quantization and its application to time-series prediction.", IEEE

Transactions on Neural Networks, 4(4):-569, 1993.

[25] T. Kohonen. "Self-organized formation of topologically correct feature

maps.", Biological Cybernetics, 43:-69, 1982.

[26] D. J. Willshaw and C. von der Malsburg., "How patterned neural connections

can be set up by self-organization.", Proceedings of the Royal Society London,

volume B194, pages 431-445, 1976.

[27] Bibliography of Self-Organizing Map (SOM) Papers: 1981-1997,

URL: http://www.cs.rhul.ac.uk/NCS/voI14.ps.gz

[28] E. Forgy., "Cluster analysis of multivariate data: efficiency vs. interpretanility

of classifications.", Biometrics, 21:, 1965. abstract.

[29] Y Linde, A. Buzo, and R. M. Gray., "An algorithm for vector quantizer

design.", IEEE Transactions on Communication, COM-28:-95, 1980.

[30] S. P. Lloyd., "Least squares quantization in pcm.", Technical note, Bell

Laboratories, 1957., published in 1982 in IEEE Transactions on Information

Theory.

[31] R. M. Gray., "Vector Quantization and Signal Compression.", Kluwer

Academic Press, 1992.

[32J D. Alahakoon, S. K. Halgamuge, and B. Srinivasan, "Dynamic Self-Organizing

Maps with Controlled Growth for Knowledge Discovery", IEEE TRANSACTIONS ON

NEURAL NETWORKS, VOL. 11, NO.3, pp 601-614, MAY 2000.

[33J Mu-Chun Su and Hsiao-Te Chang, "Fast Self-Organizing Feature Map Algorithm",

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO.3, pp 721-733, MAY

2000.

[34J K. Lagus, "Text mining with the WEBSOM", PhD dissertation, Helsinki University

of Technology, 2000.

-304-

