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Abstract. First, we systematize earlier results on the global stability of discrete 
model An+1 = AAn + F(An-m) of population growth. Second, we invent the 
effect of delay m when F is unimodal. New, deep and strong results are discussed 
in Section 4, although theorems 3-5 (Section 3) are still freshly new. This 
paper may be considered as discrete version of our earlier work on the model 
x(t) = -J.lx(t) + J(::r;(t - T)) [lJ. We are mainly using w-limit set of persistent 
solution, which is discussed in more general by P. Walters [7J. 
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Introduction 

Earlier, several authors study delay models x(t) = -J-lx(t) + f(x(t - r)) and 
An+! = AAn + F(An-m) of population growth. They find several conditions for 
the global stability without effect of delay. Recently, we just invent the effect of 
delay in the continuous time model x(t) = -J-lx(t) + f(x(t-r)) [1]. In this paper 
we will study the delay-effect in the model An+! = AAn + F(An-m). But first 
we should systematize earlier results of several authors involving this model. 

L The extinction 
Consider the difference equation 

1.1 

for n = 0,1,2,···, where F : [0,00) --+ [0,00) is a continuous function, and 
m ~ ° is a fixed integer. The positive initial values A-m' A_m+!,···, Ao are 
given. And A E (0,1) is given parameter. The constant variation formula is 
read as 

n 

An+! = An+! Ao + L:An-iF(Ai_m) forn 0,1,2,···. 1.2 
i=O 

This is proved very easily by using induction according to n. The following 
theorem gives a sufficient and necessary condition for extinctive populations. 

THEOREM 1 ( ) F(u) < 
(1 A)U U> 0 

Remark, Theorem 1 may be read in [2] with other proof. Our proof looks 
simpler, so we present here for the sake of complete. 

2. The Persistence and the Periodicity 
A positive solution {An}n is called persistent if 

0< liminf An ::; lim sup An < 00. 
n-+oo n-+oo 

The following theorem gives a sufficient condition for persistent (non-extinctive) 
populations. 
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THEOREM 2 
[0,00) 

F(x) = H(x, x) H(x,y): [O,oo)x[O,oo)-t 
x y H(x,y) > 

° x,Y > ° 
limsllp H(x, y) <: 1 - A 

x ' x,y-+oo 

1· . f H(x,y) 1 \ Imm > - /\. 
x,y-+o+o X 

2.1 

2.2 

Remark. Theorem 2 may be found in [3] with some restrictions on the function 
F. Our proof is good for larger class of function F so we present here for the 
sake of complete. 

For a persistent solution {An} we let w(A) C R:;+1 be the set of all limit­
points of the sequence of vectors {1!.n = (An- m, An- m+1,' . " An)}n. This set is 
compact and invariant under the map T : R:;+1 -t R:;+1 defining by T1!.o = 1!.1' 
Here, Vo is vector of initial data, which is running in the positive quarter of 
Rm+1. The map T takes the initial data to the next data. This map is well­
defined. If the solution {An} is periodic, the w-lilnit set w(A) is of finite points. 
Conversely, if the w-limit set is of finite points, itself should be a periodic solution 
[7]. Moreover, the map T maps w(A) (surjectively) itself. Hence, there are 
two sequences {Pn}~=-oo and {Qn}~=-oo (the initial values are chosen from 
the w-limi t set) satisfying equation (1.1) for all n such that 

lim sup An = Po liminf An = Qo 
n-+oo n->oo 

and 
Qo ::; Qs ::; Po (-00 < S < 00). 

We have 

Qo = AQ-l + F(Q-m-d 

and consequently, 

R < F(P_m - 1 ) 

0_ I-A' 

From this formula it follows that 

1
1 \ . inf F(:r) ::; liminfAn ::; lim sup An ::; 11 \ . supF(x). 
- /\ x>O n->oo n->oo - /\ x>O 

Several authors mention the sequences {Pn}~=-oo and {Qn}~=-oo as full lim­
iting sequences [3]. We are better calling them as full time solutions, because 
they remind us to the past time (the ancestors of population in our model). 
We are mainly using them in the following sections, so we emphasize that the 
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existence of them is well-known in references. Here, we just outline the proof 
via w-limit set for the sake of complete. 

3. Stability with all delay 
From now we always assume that the algebraic equation 

x = AX + F(x) 

has unique solution x = x in (0,00). Authors call x the only positive equilibrium 
of our model. 

THEOREM 3 

THEOREM 4 

x. 

F(x) 

limsup F(x) < 1 - A, 
x-+oo x 

1· . f F(x) 1 \ Imm -- > -/\. 
x-+o X 

F(x) 

j(x) 

a = j((3), 

a=(3 x 

F(x) 
1- A' 

(3= j(a) 

From now we assume that for some Yo > 0, we have 

F(yo) = maxF(x) 
y2':o 

3.1 

3.2 

and F(x) is increasing in [O,Yo] and decreasing in (Yo, 00). This function F(x) 
is called unimodal. Let 

F(x) 
j(x) = (1- A)" 
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Suppose further that {An} is a persistent solution of 1.1. Let {Pn}~=-oo and 
{Qn}~=-oo be the full limiting sequences satisfying equation 1.1 for all n such 
that 

Hence, 

THEOREM 5 
{An}~=_m 

lim sup An = Po, 3.6 
n-+oo 

Pr < F(P-m-d < F(yo) = f( ). 
o - 1 _ A - 1 _ A Yo 3.7 

From now we assume that f(yo) > Yo. Let I be the interval [0, f(Yo)J. 
Clearly, the function f maps I into itself. From (3.7) we have An E I for all 
but finite n. Let fn denote the nth iteration of f. These facts give 

LEMMA 1 

LEMMA 2 

f 

limn -+oo fn (x) = x 
x. 

1 f'(x) I::; 1 

xEI 

Sf(x) = f"'(x) _ ~ (f"(X)) 2 

f'(X) 2 f'(x) 

I - {x} x E I The proof 

of this Lemma can be found in [5 and 6J. Lemmas 1 and 2 together give 

THEOREM 6' 

f 

1 f'(x) I::; 1 

_ f"'(x) 3 (f"(X))2 
Sf(x) - f'(x) - 2" f'(x) 

I {x} 

4. Effect of delay on the convergence and the periodicity 
In this section we will study the effect of delay on the global stability. Recall 

that f is unimodal function and f(yo) = m<1Xx~o f(x) > Yo. This implies that 
x> Yo. 

PROPOSITION 1 

Am
+1X < liminf An ::; X ::; lim sup An ::; f(yo). 

n-+oo n-+oo 
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To invent the effect of delay, we suppose further that 

o :::; f (x) - x :::; Ll (x - X) 
0:::; x - f(x) :::; L 2(x - x) 

for all x E [AmHx,x], 
for all ;c E [x, f(yo)]. 

We will prove that the global stability still holds in this case, if m is small 
enough. 

THEOREM 7 

AmH > 1- 1 . 
jL1L2 

Now we investigate the periodicity of our model. We have 

PROPOSITION 2 mo 2':: 0 

AmoH > 1- 1 . 
jL1L2 

m>mo ( ) {An} 1.1 
m-mo 

Remark. It follows directly from this proposition that no divisor of the m-mo 
could be a period of a periodic solution. 

5. Application 
Consider the following model of the bobwhite quail population 

Here, 

F(x) = j.LX 
1+ ' 

(0 < A < 1; j.L, k > 0). 

f( .) = F(x) 
x 1- A' 

If A + j.L :::; 1, using Theorem 1, we have limAn = O. From now let A + fl' > 1. 
Put j.Lx 

H (x, y) = 1 + yk . 

Using Theorem 2, we have 

o < lim inf An ::; lim sup An < 00. 
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On the other hand, 

F'(x) = .1+(1-k)x
k 

P, (1 + xk)2 ' 

so if k ~ 1, we have F/(x) > 0 and F(x) is increasing. Further, conditions 3.1 
and 3.2 of Theorem 3 are satisfied, so 

limAn =x, 

where the positive equilibrium 

_ ~)..+P,-1 x-- 1-)"· 

Now let k > 1. In this case using Theorem 4, we compute 

kfl 
Yo= V~' F( ) 

_ (k - 1)p, 
Yo - k Yo 

and we obtain that if 
k< P, 

- )..+p,-1' 

then F(yo) ~ (1 - )..)yo and consequently, limAn = x. From now let 

k 
/1, n> -,--__ _ 

)..+p,-1 

To apply Theorem 6, first we compute 

1 
f'(x) = -{p, - k()" + p, - 1)}. 

P, 

This should be no greater than 1 in absolute value. This holds exactly with 

k < 2p, 
- )..+p,-1 

We show that for k 2: 2, the Schwarzian Sf is negative on the interval [0, f(yo)]. 
Elementary computation gives 

k(k - l)xk{(k l)(k 2):rk + 2(k + 1)} 
Sf(·1:) = - 2x2{(k - l)xk - 1F 

Therefore, Sf(x) < 0 for all x > 0 if k 2: 2. Hence, every positive solution 
converges to x if 

k E (0, ).. +: _ 1] U [2, ).. +2;_ 1]. 
Note that in case 1 < k < 2, we must assume further that 

~ < k 2(k + 1) . _k_ 
1-).. - 2-k k-1 
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in order to get the global asymptotical stability of X. 

To invent the effect of delay, we find a positive number L such that 

If(x) - xl :s; Llx - xl for all x E [0, f(yo)]. 

An elementary calculus give 

L = L = L = ~. (k _1)2 
1 2 1-A 4k 

satisfying (4.1). Hence, if 

and if f(Am +1X ) ?:: x, i.e., if 

A + ,u - 1 1 - A m+1 
--'-,...--- > -:--...,-::-----:-:-;--,--:-;:-;--

1- A - Am +1 - A(m+1)k' 

then we have limn -+oo An = x for every positive solution {An}. 
In [4] the. authors proved that if 

2 
k< 

1- A+,u-1' 

then the positive equilibrium x is locally asymptotically stable. Our result is 
global asymptotic stability so it requires more conditions on parameters. 
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