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Abstract. First, we systematize earlier results on the global stability of discrete
model A, 1 = A, + F(A,—n) of population growth. Second, we invent the
effect of delay m when F is unimodal. New, deep and strong results are discussed
in Section 4, although theorems 3-5 (Section 3) are still freshly new. This
paper may be considered as discrete version of our earlier work on the model
2(t) = —px(t) + f(z(t — 7)) [1]. We are mainly using w-limit set of persistent
solution, which is discussed in more general by P. Walters [7].
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Introduction

Earlier, several authors study delay models #(t) = —px(t) + f(z(t — 7)) and
Apr1 = A, + F(A,—n) of population growth. They find several conditions for
the global stability without effect of delay. Recently, we just invent the effect of
delay in the continuous time model £(¢) = —px(t)+ f(z(t—7)) [1]. In this paper
we will study the delay-effect in the model A, .1 = AA,, + F(A,_,). But first
we should systematize earlier results of several authors involving this model.

The extinction
Consider the difference equation

A1 =M, + F(Ap—m) 1.1
for n = 0,1,2,---, where F' : [0,00) — [0,00) is a continuous function, and
m > 0 is a fixed integer. The positive initial values A_,,, A i1, -+, Ag are

given. And A € (0,1) is given parameter. The constant variation formula is
read as

T
Ay = X" A+ > AR (Aiem) forn=0,1,2,---. 1.2
=0

This is proved very easily by using induction according to n. The following
theorem gives a sufficient and necessary condition for extinctive populations.

THEOREM 1 () Flu) <
(1-XNu u>0

Remark. Theorem 1 may be read in [2] with other proof. Our proof looks
simpler, so we present here for the sake of complete.

The Persistence and the Periodicity
A positive solution {A,}, is called persistent if

0 < liminf A,, < limsup A, < oo.

OO0 1=+ 00

The following theorem gives a sufficient condition for persistent (non-extinctive)
populations.
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THEOREM 2 F(z)=H(z,x) H(z,y) : [0,00)x[0,00) —

[0,00) z y  H(zy) >
0 =z,y>0
hmsupm <1-2, 2.1
Z,Y—+00 T
limint Z&Y) 1y 2.2
x,y—04+0 x*
Atz ()

Remark. Theorem 2 may be found in [3] with some restrictions on the function
F. Our proof is good for larger class of function F' so we present here for the
sake of complete.

For a persistent solution {A,} we let w(A4) C BT be the set of all limit-
points of the sequence of vectors {v,, = (An—m, An—m-+1, "5 An) tn. This set is
compact and invariant under the map 7' : RTT" — RTH" defining by T, = v;.
Here, vy is vector of initial data, which is running in the positive quarter of
R™*1, The map T takes the initial data to the next data. This map is well-
defined. If the solution {A,} is periodic, the w-limit set w(A) is of finite points.
Conversely, if the w-limit set is of finite points, itself should be a periodic solution
[7]. Moreover, the map T maps w(A) (surjectively) itself. Hence, there are
two sequences {Pp}o2 o and {Qn}52 _, (the initial values are chosen from
the w-limit set) satisfying equation (1.1) for all n such that

limsup 4, = P, liminf A, = Qo

n—rc0

and
QP <R, Q<Q<P (-o<s<oo)

We have
Py= APy + F(Pomot)y, Qo =A@t + F(Qumo1)

and consequently,

QO _>. F(Q-—m——l)'

F(P—m—l)
Py Tmee
0 1— X

— l—A 3

From this formula it follows that

1
-1 2) < limi <k < -8 €.
X BT <Rt <Enpds < 705 )

Several authors mention the sequences {P,}52 _ and {Q,}52 o, as full lim-
iting sequences [3]. We are better calling them as full time solutions, because
they remind us to the past time (the ancestors of population in our model).
We are mainly using them in the following sections, so we emphasize that the
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existence of them is well-known in references. Here, we just outline the proof
via w-limit set for the sake of complete.

Stability with all delay

From now we always assume that the algebraic equation
z =Xz + F(z)

has unique solution z = % in (0, 00). Authors call T the only positive equilibrium
of our model.

THEOREM 3 F(x)

h'msup—%7’--—56EZ <12 3.1

liminf M > 1 - A 3.2

22— T
{An} T
THEOREM 4 F(z)
N F(=)
f("L) - 1 _ }\'

a:f(ﬁ)7 /B:f(a)
a:ﬂzi . {An}

8l

From now we assume that for some yg > 0, we have

F(yo) = max F(z)

and F(z) is increasing in [0,yo] and decreasing in (yop, c0). This function F(z)
is called unimodal. Let
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Suppose further that {A4,} is a persistent solution of 1.1. Let {P,}2 _, and
{Qr}5° ., be the full limiting sequences satisfying equation 1.1 for all n such
that

limsup 4, = Py, Qo < P £ 5. 3.6
Hence,
F(P—m—l) F(yﬂ)
< < = . .
THEOREM 5 Flyo) <o
{A 32 limpeo An =T

From now we assume that f(yo) > wo. Let I be the interval [0, f(vo)]-
Clearly, the function f maps I into itself. From (3.7) we have A,, € I for all
but finite n. Let f™ denote the nth iteration of f. These facts give

LEMMA 1 limp—eo f(z) =% rel
LEMMA 2 | f(T) <1
o) 3 f”(m))2
st =275 -3 (75
f I—-{z} limy, oo fM(2) =% 2z € I The proof

of this Lemma can be found in [5 and 6]. Lemmas 1 and 2 together give

THEOREM 6 | F(®@) <1
I ONEYSUON
5“”“ﬁm>‘56mm>
o f 1-{z}
X

Effect of delay on the convergence and the periodicity

In this section we will study the effect of delay on the global stability. Recall
that f is unimodal function and f(yo) = max,>q f(x) > yo. This implies that
> Yo-

PROPOSITION 1 {A,}
AT < liminf A, <7 < limsup 4, < flyo)-

n—roo Nn—oo
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To invent the effect of delay, we suppose further that
0< f(2) =T < Ly(T—2) foralze AT, T,
0<ZT~ f(z) < Lo(z —T) for all z € [Z, f(yo)]-

We will prove that the global stability still holds in this case, if m is small
enough.

THEOREM 7
1
s 1 - .
VLI,
{An} z

Now we investigate the periodicity of our model. We have

PROPOSITION 2 mo 2 0

1
amotl 5 - .
v L1Ls
m > mg ( ) {A.} 11
m — Mg

Remark. It follows directly from this proposition that no divisor of the m—myg
could be a period of a periodic solution.

Application
Consider the following model of the bobwhite quail population
An+1:AAn+~M 0O<A<l; pk>0).
L+ A%, ’
Here, :
N L F(x)

If A+ p <1, using Theorem 1, we have im A, = 0. From now let A+ p > 1.
Put

752

Using Theorem 2, we have

0 < liminf A, <limsup 4, < co.
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On the other hand,
1+ (1—k)x"
(1+2k)2 2
so if k < 1, we have F'(z) > 0 and F(z) is increasing. Further, conditions 3.1
and 3.2 of Theorem 3 are satisfied, so

Fl(z)=p

lim A, =T,

where the positive equilibrium

_ At+p—1
V1o

Now let k£ > 1. In this case using Theorem 4, we compute

_k . (k - l)ﬂ
vo=4\r—7 FW=—"w
and we obtain that if
< —H
T A4+u—1
then F'(yo) < (1 — A)yo and consequently, lim A,, = Z. From now let
L
kol
>A+u—1

To apply Theorem 6, first we compute

. 1
f(@) = ;{M —k(A+p—1)}.
This should be no greater than 1 in absolute value. This holds exactly with

k< — 2B
T A4+p—-1

We show that for k& > 2, the Schwarzian S f is negative on the interval [0, f(yo)]-
Elementary computation gives

k(e = DaF{(k = Dk —2)2* +2(k + 1)}

Sf(z) = 222{(k — 1)z* — 1}2

Therefore, Sf(z) < 0 for all z > 0 if k¥ > 2. Hence, every positive solution

converges to T if
1 24
ve (0t ]ue 2],
6(0 Atp—1 Ad+p—1

Note that in case 1 < k < 2, we must asswme further that
. o/ 2(k+1) . k
1-A" 2—k k-1
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in order to get the global asymptotical stability of Z.
To invent the effect of delay, we find a positive number L such that

f@) -z SLlp—3  forallz e [0, f(yo)):
An elementary calculus give

12
Iy=Ly=1L= p_ (k-1)

1-A 4k
satisfying (4.1). Hence, if
1
)\m—i—l 1—=
T
and if f(A™MT) > 7, ie, if
Ad+p—1 1 —amti

1—X = )m+l Z )\(m+D)E’

then we have limp—eo An = T for every positive solution {An}.
In [4] the authors proved that if

2 I3
k .
ST Axa-1
then the positive equilibrium Z is locally asymptotically stable. Our result is
global asymptotic stability so it requires more conditions on parameters.
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