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Abstract

Following the principle of self-organizations, we shall propose a
mathematical model for mangrove forest dynamics by introducing
trees and soils which are considered as the constituent element and
the conductor of the ecosystem respectively in cooperative relations.
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1 Introduction

In the study of forest growth dynamics numerical simulations on the basis of
mathematical models are becoming one of indispensable methods. Observa-
tions of forest dynamics require us extremely long time and experiments cost
immensely. It is a very important problem to build models which are suitable
for the objectives from knowledge and information obtained by observations.
This report tries to present a mathematical model describing the growth
process of a mangrove forest in order to study its mechanism theoretically

and numerically.
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2 Some existing models for forest dynamics

In this section we shall review some existing mathematical models which
have been presented for describing the growth process of forests.

2.1 Individual-Based Model.

The JABOWA model which has been presented by Botkin et al. (1972) may
be the first and most basic model for forest growth dynamics. Their model
consider a unit area of 100m? ~ 300m? called a plot. A certain number oft
ee.s:co sifered individually in the plot. The growth of each tree per a year is
described by the formula

AD?H = R.(LA)(1 ~ DH/DmaxHumax)

where D denotes the diameter of tree at the breast height, H denotes the
height of tree (so D?H corresponds to the volume of tree), LA denotes the
area of leaves, Dy and H,,,, denote the possible maximum diameter and
height respectively which the tree can attain, and R is a parameter depending
on various environmental conditions. To these growth equations of trees, the
effect of interaction of is also incorporated. The higher trees can absorb more
light and grow more swiftly, and just one tree dominates the plot. Then the
tree dies down, and the plot is again full of room called a gap.

2.2 Individual-Based Continuous Space Model

On the basis of the JABOWA model, many authors have afterward pre-
sented spatially continuous models. Pacala et al. (1996) have presented an
individual-based continuous space model called the SORTIE model. They
formulated a growth equation of each tree spread in a wide area by

AD = D.G1.(GLI){G1/Gs + (GLI)}

where GLI denotes global light index and indicates the interaction with
trees in its neighborhood. They considered also the seed production and
dispersion.
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2.3 Age-Structured Model

When we are concerned with dynamics of forest ecosystems, age-dependent
tree relationship is often more interesting than the individual growth of trees.
From this viewpoint many age-structured models have been presented. For
example, Antonovsky et al. (1983) considered a very simple ecosystem of a
mono-species and with only two age classes. Their growth equations are the
written as

= pv—yv)u— fu
U= fu—hv

where u and v are trees densities of young and old age classes; p, f and h are
coefficients of reproduction, ageing and mortality of old trees respectively,
while y(v) denotes a mortality of old trees. It is assumed that there exists
some optimal value of old tree density under which the recruitment of young
trees is maximal. The typical form of y(v) is given by

yw)=alv—b)?+c

with some positive constants a, band c.

2.4 Age-Structured Continuous Space Model

More recently Kuznetsov, Antonovsky, Biktashev and Aponina (1994) gener-
alized the age-structured model to a continuous space model by taking seed
dynamics into account. Their new growth equations are described by

u = 60v —v(v)u — fu
v = fu—hv
wy = av — fv + dAw

where w is a seed density, a v and ¢ are seed production, deposition and
establishment rates respectively, and d is the diffusion coefficient of seeds.

3 Results and Discussion
On the basis of the age-structured continuous space model due to Kuznetsov

et al., we intend to present a model describing mangrove forest growth dy-
namics. We take in addition soil dynamics into account. Following to the

— 221 —



principle of the theory of selforganizations due to Haken (1983, 2000), we
consider trees as the constituent elements of an ecosystem and soil as a con-
ductor of dynamics. Soil leads trees to spread in a mangrove forest and is
produced by trees. More appropriately, the roots of trees accumulate soil.

In this sense soil and trees are in cooperative relation. Precisely we assume
the following conditions:

1. The ecosystem consists of a mono-species, and only two age classes are
considered. They obey the growth equations due to Kuzunetsov et as.

2. The establishment rate §(¢) depends on the height of soil £.

3. The mobility of seeds consists of two factors: one is a natural diffusion
and the other is the directed movement in a sense that the seawater
carries them.

4. Soil is carried by the seawater and is trapped by the roots of mangrove.

Our proposed system is then written by

u = Bo(L)w — y(v)u — fu,

v = fu—hv

wy = av — fw + dyAw + 7 {w 7, (0)}
by = (v —P(L) + deNL

where £(—oco < £ < L) denotes the height of soil. The level £ = 0 corresponds
to the level of seawater in low tide and ¢ = L corresponds to that in high
tide. The function x () is a potential function of the flow of seeds, ¢(¢) is
an accumulation rate of soil, 1 (¢) is an erosion rate of soil by seawater. The
constant d, is the diffusion coefficient of soil.

The establishment rate ¢(¢) is an increasing function of —oco < £ < L.
A possible form may be §(¢£) = §~L~9 with some constant §. The potential
function x(£) is also an increasing function of co < £ < L. A possible form
may be x(£) = 0 for £ <0 x({) = M1 —{/L) for 0 < £ < L with some
positive constant A. The function 9 (£) is a decreasing function of ¢, possibly
w(l) = X for £ <0, and (¢) = A(1 — ¢/L) for 0 < £ < L with some positive
constant A. The function () is an increasing function of —oo < ¢ < L such
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that ¥(L) = 0.

We consider this system in a two-dimensional domain 2. As the boundary

conditions on Jf2, we impose on wan w and £ the Neumann conditions %% =
e _
& = 0.

Finally it may be very interesting to notice the similarity of this model
to the chemotaxis-growth model which describes the process of aggregating
pattern formation by biological individuals:

w = au(l — fu) + dyAu — 7. {u 7y (v)},
pr = Jfu—gpA,

see Osaki et al. (2002). Here, u denotes the density of biological individ-
uals and p denotes the concentration of a chemical substance which attracts
the amebas and which is produced by the amebas themselves. In this system
the amebas are constituent elements and the chemical substance plays a role
of the conductor. Aida et al. (2004) shows that this interaction-diffusion
system possesses some pattern solutions which have very good correlation
with experimental results due to Woodwart et al. and so on.

4 Conclusion

We reviewed some mathematical models presented for describing the forest’
growth process. On the basis of the age-structured continuous space model
we have presented a model for describing the growth process of a mangrove
forest by being led by the principle of the theory of self-organizations.

References

[1] Aida M., Yagi A. (2004), Target pattern solutions for chemotaxis-growth
system. Scientieae Mathematieae Japonieae 59.

[2] Antonovsky M. Ya., Korzukhin M. D. (1983) Mathematical modeling of
economic and ecological-economic process. Proc. International Symp.
“Integrated Global Monitoring of Enwvironmental Pollution ”, Tbilisi,
1981, Leningrad:Hydromet, 353-358.

—223—



3]

[4]

Botkin D. B., Janak J. F., Wallis J. R. (1972) Some ecological conse-
quences of a computer model of forest growth. J Ecol. 60, 849-872.

Haken H. (1983) Synergetics, An introduction. Springer, Berlin, Heidel-
berg.

Haken H. (2000) Information and self-organization, A macroscopic ap-
proach to complex system. Springer, Berlin, Heidelberg.

Kuznetsov Yu. A., Antonovsky M. Ya., Biktashev V. N., Aponina E. A.
(1994) A cross diffusion model of forest boundary dynamics, J Math.
Biol. 32,219-232.

Osaki K., Tsujikawa T., Yagi A., Mimura M. (2002) Exponential attrac-
tor for a chemo taxis-growth system of equations. Nonlinear Analysis
51,119-144.

Pacala S. W., Canham C. D., Saponara J. (1996) Forest models defined
by field measurements: estimation, error analysis and dynamics. Eeol.
Monogr. 66, 1-43.

Woodwart D. E.; Tyson R., Myerscough M. R., Murray J. D., Bu-
drene E. 0., Berg H. C. (1995) Spatio-temporal patterns generated by
Salmonella Typhimurium. Biophys. J 68,2181-2189.

—224—



