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Determination of Dipolar Sources for Three-dimensional Poisson Equation
Hirokazu Inui and Kohzaburo Ohnaka

Department of Applied Physics, Graduate School of Engineering, Osaka University
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract We consider an identification problem for dipolar sources for three-
dimensional Poisson equation. Unknowns are locations, moments, and number of
dipoles. We propose a reliable identification method under the condition that the
potential can be observed on the boundary. Our method is based on the weighted
integral using harmonic functions as weighting functions. The effectiveness of our
method is shown by numerical examples.
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Introduction

Inverse problems for partial differential equations have attracted the attention of many researchers
in the last two decades [1]. Investigation of reliable numerical method for inverse problems becomes
very important. The identification targets of these problems are classified into several categories such
as source term, boundary and/or initial conditions, shape of domain, and coefficients in governing
equation. Especially, inverse source problem appears in various fields of science and engineering, such
as heart conduction, air pollution, cracks in structure, and electrical activity of human brain, and so
on {2, 4, 6, 7].

Inverse source problem is to identify unknown source term from given or observed data on the
boundary or in the outside of domain. A usual numerical approach is the combination of forward
analysis and least squares method. However this approach needs a priori information for unknown
parameters and requires much computation time.

In this paper, we consider an identification problem for three-dimensional Poisson equation where
the source term is expressed by sum of dipoles. Our aim is to identify locations, moments, and number
of dipoles from the data on the boundary. We propose a reliable identification method for the above
inverse source problem without using a priori information about unknowns. Our approach is based on
the weighted integral on the boundary using harmonic functions as weighting functions [3]. We give
the mathematical expression for the approximation of locations and moments, and also show these
practical error bounds and the proper choice of weighting functions. The effectiveness of our method
is illustrated by numerical examples.

Mathematical Formulation
Let  C R® be a bounded convex domain with smooth boundary T'. We consider the following
inverse source problem for the Poisson equation:
Au(z) = f(x), suppf CQ, =R
u(e) =u(z), wel, (1)
u{x) — 0, |2| — +co.
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Here, f(x) denotes unknown source term expressed as

Z (~p;), €, m; eR3 |myl #0, (2)
aml

where N is the number of dipoles, and p; and m; are the location and moment of the i-th dipole. We
assume that w(x) is given or observed at discrete points on I. Our purpose is to identify p; and m;
(¢=1,2,...,N) from the data of T(z) on I

Weighted Integral

Multiply both sides of Au(z) = f(z) by a given weighting function w(x), then we have

/ w(@)Au(z)dQ = / w(@) f ()dL. (3)
Q Q
Using a harmonic function as w(x) and applying Green’s formula, eq.(3) becomes
du ow Y ow
1) =~ [ ()5 @) - i) g @)ar = 3 57 o) (@

where n2 denotes the outward unit normal vector to I'. The boundary integral I{w) can be determined
using only @(x), since u(x) is unique in the outside of Q [7]. We compute I{w) applying the charge
simulation method. The outline of the calculation of I(w) is shown in [3, 5].

Let {eg,e1, e2} be an orthonormal basis such that eg - e; = 0 and ez = €p X e1. In the following,
each component of p;, and m; is denoted by

Pij = Py €5, M5 = My - €5, i=0,1,2.
For the components py; and my;, we assume the conditions:
i — max p; > 0.
(i) pro g Pio
(ii) 4/miy+mi #0, m2, +m2, # 0.

Under the above conditions, we consider the identification of p, and my, using I{w).

Identification of Location

We divide our problem into two-dimensional problems on ege;-plane and eges-plane, and use the
following weighting functions with parameter A > 0

= M) cos{A(z - eg)},

wie(ax)
wale) = @ sin{A\(z ef)} for £=1,2. (5)
wmm=wemm@>< ed)we(x), ’
wyp(x) = (- eo)wa(z) + (T - eg)wie(z),
Let
Sy = I(?iuz)’ Syp = I(l;u); Sy = I(’wae))\— Sit g, = I(Wf)}\— Sae. ()
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Using the above notation, the k-th dipole’s location on egeg-plane (£ = 1,2) is approximated by

_ S1e53¢ + S2eSae _ (0 S10S4e — S2053¢

~ v = ~ = 51 . 7
Pko 2,7 5, DPros  DPre 52,7 52, Dkt (7

For the errors ay = pro — ﬁfﬁ? and by = pre — Pre, the following inequality is obtained:

lageo + beeg| = /a2 + b2

itk G"A(PkO’PiO)\/(pkO — pio)? + (pre — pie)? \/m;;o +m?, o
<

— p]z<'
~Apro. [ €2 2
e~ Proy /5%, + S35,

Under the conditions (i} and (ii), 5;? exponentially converges to 0 as A —» co. Then, we have the

approximation for p, as follows:

13(1) 73(2)
Py = %‘“@'60 + Dk1€1 + Prae2 = Pro€o + Pri€1 + Praea.

Finally, we can obtain the following estimate for [p, — p.:
~ 1 1 2
o~ Bl < (52 + )2 + 1) ~ 321 = e ®)

Identification of Moment

Using eq.(6), the k-th dipole’s moment on egeg-plane (£ = 1,2) is approximated by

Mo = e“)‘ﬁ’*‘)(Su €08 APy + Sopsin Apre) = mi%),

Mg 22 € PE0( Sy c08 Ao — S1g8in Apre) = k.
Then, we have the approximation for my as follows

) —(2)
~ mm + My

my = 5 €g + Mpi1e1 + Mmpoey = Mypeo + My1e1 + Mises.

Finally, we can obtain the following estimate for jmy — myl:

= 7kl S /(€02 + €202 + 02 + 02D + Il — ) = e (10)
Here, 5(5) and affgc are given by

(Z) o ~Xpro—pi 2
Epe = Ze (Pro—pio) mi + m?é’

itk
£ ~ (£ ~(2
ot = w )z g, (e + 51080 -5 )

We have the identification of the k-th dipole’s location and moment for an orthonormal basis
{eq, e1, ez} satisfying the conditions (i) and (ii}. The other dipoles can be identified by changing
{eo, e1,e2} properly. For the dipoles not to satisfy the conditions for any {eg, e1, es}, it is necessary
to remove the information of already identified dipoles from u(x). We call this process deflation. The
derivation of eqs.(7)-(10) and deflation are shown in Inui, Yamatani and Ohnaka [3].
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Choice of eg

For the suitable choice of ey, we use additional weighting functions such that

wse(x) = {(z - e0)? — (z - e0)*Jwie(x) — 2(x - €0)(T - eg)wae(), for £ = 1.2 (1)
wee(z) = {(x - e0)® — (@ - er)’twar(z) + 2(z - €0)(z - e)wie(z), Y
and let

_ I{wse) — 283

I — 28.
Ssp = Ser = (wﬁe) 42‘

A ' A
Here, we introduce the following unit vectors

ey =egcosl —essinf, e} = egsind + e;cosb.

Using ej, and e}, instead of ey and e, in eq.(5), we obtain p); and p}, as the identified values of p - €],
and p - e). Let aj() = p- ey — By and bj(8) = p - €}, — pj;. For the approximation error of location,
the following expression holds:

E{(0) = aif0)eh + b(0)e).
= {a}(0) cos § + bj(6) sin 0} eq + {—ay(6) sin 6 + b,(6) cos 6} e,
Then, we have
oY
*-a—gi(O) = % {a}(6) cos b + by(6) sin 6} ] eg+ % {—a}(0)sin 6 + by(0) cosb} | e
0=0 0=0
da av, (13)
= {6—a(f(0) + be} eo + {ET(;(O) - ali} €

= ageq + Beee
Note that a; = a}(0) and by = bj(0). Using S5, and Seg, c¢ and f; are written by

510560 — S2eS5¢ (o)~ } Br= -2 [518558 + 520560

Qp = A — 2p;.
¢ { S+ S5 Phobre St + 83

#9)? +ﬁkﬂ .

We choose ey such that

oEY
i Bg (O)J =/aZ + 5.

is sufficiently small for both £ = 1,2. Unit vectors e; and eg are chosen under the condition (ii) using
my, instead of my.

Numerical Examples

Let = {@;|z| < 1}. The boundary condition %(x) is obtained at L points on the spherical surface
I' = {a;]z] = 1}. The arrangement of L points is approximately uniform, and %(z) is analytically
generated. For L = 248, 510, and 998, we use A = 12, 14, and 15, respectively.

We consider 25 examples in which the locations, moments, and number of dipoles are generated
by uniform random number under the following conditions:

o |pi| £0.7, |p; —p;| 203 (i # 7).
o 0.1< |my| <05
o Ne{2,3,4).
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Table 1 shows the number of examples for each NV in 25 examples. Table 2 shows the relation between
N and N, where N is the number of identified dipoles. For L = 510 and 998, N is equal to N in
all examples although N is not directly identified. For L = 248, the difference between N and N is
at most 1. Figure 1 shows the error estimations of p; and m; for L = 510 and 998, where &, and
Emi are calculated by using identification values instead of true values in eqs.(8) and (10). The error
estimations €,; and &.,; have more reasonable results for L = 998 than for L = 510. We consider that
these results are caused by the error of numerical integrations of I{w).

Conclusion

We show a reliable identification method for dipolar sources for three-dimensional Poisson equation.
Our approach is based on the weighted integral on the boundary. Numerical experiment shows that
the identified locations and moments are obtained reasonably, and that their error estimates give
practical error bounds. Furthermore, in almost all examples, the identified number of dipoles is equal
to the true one although our method does not directly identify the number of dipoles. The results
show that our method may be effective in dipolar source identification.
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Table 1. The number of examples for each N.

N=2

N =3

N =4

11

7

7

Table 2. The number of identified dipoles.

N=N+1 N=N N=N-1
L = 248 2 20 3
L =510 0 25 0
L = 998 0 25 0
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Figure 1. Error estimation of p; and m,;.
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