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Determination of Dipolar Sources for Three-dimensional Poisson Equation 

Hirokazu Inui and Kohzaburo Ohnaka 

Department of Applied Physics, Graduate School of Engineering, Osaka University 
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan 

Abstract We consider an identification problem for dipolar sources for three­
dimensional Poisson equation. Unknowns are locations, moments, and number of 
dipoles. We propose a reliable identification method under the condition that the 
potential can be observed on the boundary. Our method is based on the weighted 
integral using harmonic functions as weighting functions. The effectiveness of our 
method is shown by numerical examples. 

Keywords: Inverse source problem; Poisson equation; dipole; numerical method; weighted integral 

Introduction 

Inverse problems for partial differential equations have attracted the attention of many researchers 
in the last two decades [1]. Investigation of reliable numerical method for inverse problems becomes 
very important. The identification targets of these problems are classified into several categories such 
as source term, boundary and/or initial conditions, shape of domain, and coefficients in governing 
equation. Especially, inverse source problem appears in various fields of science and engineering, such 
as heart conduction, air pollution, cracks in structure, and electrical activity of human brain, and so 
on [2, 4, 6, 7]. 

Inverse source problem is to identify unknown source term from given or observed data on the 
boundary or in the outside of domain. A usual numerical approach is the combination of forward 
analysis and least squares method. However this approach needs a priori information for unknown 
parameters and requires much computation time. 

In this paper, we consider an identification problem for three-dimensional Poisson equation where 
the source term is expressed by sum of dipoles. Our aim is to identify locations, moments, and number 
of dipoles from the data on the boundary. We propose a reliable identification method for the above 
inverse source problem without using a priori information about unknowns. Our approach is based on 
the weighted integral on the boundary using harmonic functions as weighting functions [3]. We give 
the mathematical expression for the approximation of locations and moments, and also show these 
practical error bounds and the proper choice of weighting functions. The effectiveness of our method 
is illustrated by numerical examples. 

Mathematical Formulation 

Let n c ~3 be a bounded convex domain with smooth boundary f. We consider the following 
inverse source problem for the Poisson equation: 

{
~U(x) !(x), 

u(x) u(x), 

u(x) -+ 0, 

supp! en, 
x E f, 

Ixl -+ +00. 
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(1) 



Here, f (x) denotes unknown source term expressed as 

N a8 
f(x) = ~ ami (x - Pi), Pi E n, mi E ]R3, Imil i- 0, (2) 

where N is the number of dipoles, and Pi and mi are the location and moment of the i-th dipole. We 
assume that u(x) is given or observed at discrete points on r. Our purpose is to identify Pi and mi 

(i = 1,2, ... ,N) from the data of u(x) on r. 

Weighted Integral 

Multiply both sides of Llu(x) = f(x) by a given weighting function w(x), then we have 

In w(x)Llu(x)dn = In w(x)f(x)dn. (3) 

Using a harmonic function as w(x) and applying Green's formula, eq.(3) becomes 

I(w) == i (w(x) ~~ (x) (4) 

where n denotes the outward unit normal vector to r. The boundary integral I(w) can be determined 
using only u(x), since u(x) is unique in the outside of n [7]. We compute I(w) applying the charge 
simulation method. The outline of the calculation of I(w) is shown in [3, 5]. 

Let {eo,el,e2} be an orthonormal basis such that eo' el = 0 and e2 = eo x el. In the following, 
each component of Pi' and mi is denoted by 

Pij=Pi·ej, mij=mi·ej, 

For the components Pkj and mkj, we assume the conditions: 

(i) PkO - maXPiO > 0. 
i# 

j = 0, 1,2. 

Under the above conditions, we consider the identification of Pk and mk using I(w). 

Identification of Location 

vVe divide our problem into two-dimensional problems on eoel-plane and eoe2-plane, and use the 
following weighting functions with parameter A > 0: 

Let 

Wle(X) = e),(:n·eo) COS{A(X' ee)}, 

wu(x) = e),(:n·eo) sin{A(x· ee)}, 

W3£(X) = (x· eo)wl£(x) - (x· ee)W2e(X), 

W4e(X) = (x· eo)'wu(x) + (x· ee)Wl£(X), 

S _ I(Wlf) 
1£ - A ' S 

_ I(w2e) 
2£ - A ' 

S _ I(W3£) - Su. 
3£ - A ' 
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for Ji. = 1,2. (5) 

(6) 



Using the above notation, the k-th dipole's location on eoee-plane (£ = 1,2) is approximated by 

(7) 

For the errors ae == PkO - Pi~ and be == Pke Pke, the following inequality is obtained: 

Under the conditions (i) and (ii), E~~ exponentially converges to 0 as A -+ 00. Then, we have the 
approximation for Pk as follows: 

;::(1) ;::(2) 
~ PkO + PkO ~ ~ ~ ~ ~ 
Pk = 2 eo + Pkl el + Pk2 e2 == PkOeO + Pkl el + Pk2e2· 

Finally, we can obtain the following estimate for IPk - Pkl: 

Identification of Moment 

Using eq.(6), the k-th dipole's moment on eoee-plane (£ = 1,2) is approximated by 

mkO ~ e-Aiho(Sl£ cos APkC + S2e sin APkC) == mk~' 
mk£ ~ e-Xiho (S2C cos APkC SIR sin Apkf) == mkc· 

Then, we have the approximation for mk as follows 

Finally, we can obtain the following estimate for Imk - mkl: 

( (1))2+( (2))2+~1~(1)_~(2)1 
a mk a mk 2 m kO m kO 

Here E(e) and a(C) are given by 
'mk mk 

(8) 

(9) 

(10) 

We have the identification of the k-th dipole's location and moment for an orthonormal basis 
{eo,el,e2} satisfying the conditions (i) and (ii). The other dipoles can be identified by changing 
{eo,el,e2} properly. For the dipoles not to satisfy the conditions for any {eO,el,e2}, it is necessary 
to remove the information of already identified dipoles fi.-om u( x). We call this process deflation. The 
derivation of eqs.(7)-(10) and deflation are shown in Inui, Yamatani and Ohnaka [3]. 

-306-



Choice of eo 

For the suitable choice of eo, we use additional weighting functions such that 

W5e(X) {(x· eo)2 - (x· ee)2}wl£(X) - 2(x· eo)(x· ee)W2e(X), 
for e = 1,2, 

W6e(X) = {(x· eo)2 - (x· ee?}W2e(X) + 2(x· eo)(x· ee)Wl£(X), 

and let 

8
- _ I(w5c) - 283c 
De - A ' 

Here, we introduce the following unit vectors 

e~ = eocose eesine, ee = eosine + ee cos e. 

(11) 

(12) 

Using e~ and ee instead of eo and ee in eq.(5), we obtain P£o and P£e as the identified values of p' e~ 
and P . eg. Let ag(e) = P . e~ - fHo and b;'(B) = P . e;' - P£t. For the approximation error of location, 
the following expression holds: 

E~~(e) == ae(e)e~ + b;,(e)ee. 

= {ag(e) cos e + b;,(e) sine} eo + { -a;,(e) sine + b;,(e) cos e} eg. 

Then, we have 

aE(e) a I a I 
at (0) = ae {a;,(e) cose + b;,(e) sine} 0=0 eo + ae {-a;,(e) sine + b;,(e) cose} 0=0 ee 

{ 
8al } { Obi } = a; (0) + be eo + a; (0) - ae ec 

(13) 

== o:eeo + (3eee 

Note that ae = a;'(O) and be = b;'(O). Using 85e and 8 6£, O:e and (3e are written by 

0:' \ [8u86e - 82e85£ _ 2:::;-(C)-] (3 __ \ [81e85e + 82£86£ (:::;-(C))2 -2] 
c /\ 8 2 +82 PkOPke, e- /\ 82 +82 PkO +PkC' 

1£ 2C It 2£ 

We choose eo such that 

is sufficiently small for both 1! = 1,2. Unit vectors el and e2 are chosen under the condition (ii) using 
mk instead of mk. 

Numerical Examples 

Let n = {Xi Ixl < I}. The boundary condition u(x) is obtained at L points on the spherical surface 
r = {Xi Ixl = I}. The arrangement of L points is approximately uniform, and u(x) is analytically 
generated. For L = 248, 510, and 998, we use A = 12, 14, and 15, respectively. 

We consider 25 examples in which the locations, moments, and number of dipoles arc generated 
by uniform random number under the following conditions: 

o Ipil:::; 0.7, Ipi - Pjl ~ 0.3 (i f. j). 
o 0.1:::; Imil :::; 0.5. 

o NE{2,3,4}. 

-307-



Table 1 shows the number of examples for each N in 25 examples. Table 2 shows the relation between 
N and iv, where N is the number of identified dipoles. For L = 510 and 998, N is equal to N in 
all examples although N is not directly identified. For L = 248, the difference between Nand N is 
at most 1. Figure 1 shows the error estimations of Pi and mi for L = 510 and 998, where epi and 
emi are calculated by using identification values instead of true values in eqs.(8) and (10). The error 
estimations epi and emi have more reasonable results for L = 998 than for L = 510. We consider that 
these results are caused by the error of numerical integrations of I (w). 

Conclusion 

We show a reliable identification method for dipolar sources for three-dimensional Poisson equation. 
Our approach is based on the weighted integral on the boundary. Numerical experiment shows that 
the identified locations and moments are obtained reasonably, and that their error estimates give 
practical error bounds. Furthermore, in almost all examples, the identified number of dipoles is equal 
to the true one although our method does not directly identify the number of dipoles. The results 
show that our method may be effective in dipolar source identification. 
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Table 1. The number of examples for each N. 

N=2 N=3 N=4 

11 7 7 

Table 2. The number of identified dipoles. 

N=N+l N N N=N-l 

L = 248 2 20 3 
L = 510 0 25 0 
L = 998 0 25 0 

10-1 10° 
x x 

10-2 10-1 

10-3 x 10-2 

w'i <J 
10-4 10-3 

x)( 
x x 

10-5 10-4 x x 

10-6 10-5 / 

10-6 10-5 10-4 10-3 10-2 10-1 10-5 10-4 10-3 10-2 10-1 10° 

Ipi-Pi l Imi-mil 

(a)L=510 

10-1 10° 
x x ;/ 10-2 x 10-1 

x 
x< 

XX x x 

10-3 10-2 x 

x ~0< 
W'" J 

x 

~ 

10-4 10-3 xxXX 
x% ~ 

x x 

10-5 10-4 'X 

x x 

10-6 10-5 // 
10-6 10-5 10-4 10-3 10-2 10-1 10-5 10-4 10-3 10-2 10-1 10° 

Ipi-Pil Imi-mi l 

(b) L = 998 

Figure 1. Error estimation of Pi and mi. 
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