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Abstract.
~In this paper, we study the dynamics of the discrete delay models of
Glucose-Insulin systems

Cppr = aG, - Sgnfﬁ—m +T (0.1)
fﬁ;-{—! = AI + ﬁf( ﬁ-ﬁ;g) {3,2}

We are interested in providing sufficient ¢onditions guarenteeing the fact that
all positive solutions of this:systems converge to the positive equilibrium.

2000 AMS Subject Classification: 39A12,
Keyword end phrases: Delay difference cquations, w-limit set of & persistent
solution, full tire solution.
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Introduction and Preliminaries

Qur main motivation in studying the dynamics of the systems (0.1-0.2) is
the dynamics of the differential version systems of (§.1-0.2), namely of the
system

G(t) = —KuGlt) — KayGW)I(t - 1) + f,—g (0.3)
i) = —Kul(t) + T@’;‘“ f(G—1y) (0.4)

invertigated in [3].

However, it is very interesting to see the connection of {0.3-0.4) to {0.1-
0.2). In practice, when formulating {(0.3-0.4), we actually replace the first
derivative G{(t} and I(i) of G and I af ¢ by their first right approximation

Gi+h) —G@) It+n)-1I0)
h ’ h
for h > 0 sufficient small. Thus, formally, system (0.3-0.4) comes from

Gt +h) - C(t)

= —-K@G(ﬁ) - ngniG(t)I(i — Tg) + Tgf:

-~ h o VG
(R fz})z —0) | _krw+ g%@ Gl —,),
¥
for small k. If we sst
Gu(t) = G(ht), I(t) = I(ht), t=nh, % - m,-gfff =my,

then preceding system becomes

Gu(n+1) = aGu(n) — BGu(n)In(n —m;) +T
Liin+1) = Al(n) + Af(Gr(n —my)),

or

Gur1 = aGn—BGCnlpem, +T
M+ Af(Gaem,),

i

In—!—l
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where

A=1— hKy, A = priGmas.

=1 hKap, B = hEogs, T = h 22
Vi

Vo'
2. The results

We consider the following discrete system of Glucose and Insulin

Gpy1 = aGnp—PGulym, +T (0.5)
In-}—l = AI% + Af(Gn—-mg)’ (06)
h
e P
TG+ Gl

defined on positive reals, o, A € (0,1) and 5,T, A, A are positive parameters.
The derivative of f is

) 75”’6’”’“‘1
so f is increasing. We have
sup f(G) =1
G0
and
1 -2 (7 I)G (7 + 1)@7
fI(G) =2GIG" EEYAE ’

so, if ¥ € 1, f’ is decreasing, and if v > 1, f' is unimodal. Thus,

’ (r+1)*(r—1) . S Jr—1
scupof() f(Go) = #Go , ify>1, whereGy= 1/?+1G.,

Supf (G) = f'(0) = ify=1,
sup f(G) = oo, ify <1,
Ge[0,G]
sup f'(G) = f'(G), if y < 1.

Ge[G,00)
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System (0.5-0.6) has a unique pesitive equilibrium (@, T), which consists
of the basal levels of glucose and insulin concentrations. Thess lovels satisfy
the following system

Gl-a+pl) =T

7= 2 1@

We now let

Gm=lminfG,, Gy =IlimsupG,, I,=lIminfl,, I3y =limsupl,.
Pramcie Temp OO

300 000

ation (G, L)) of the system (0.5-0.6),

Proposition. For every p
we have

F&%%ii; First, we con
ii?gg,, f?ﬁ} Gucn

I(}‘“IH; Iﬁ;}}'m: Gmi’ééns;:Gﬁ, Vﬁeg,
C;Q““GM7 énQGM, fmifﬂgzﬁis X}’?EE%,
}ﬁ“fms itgfﬁffs Gmgéﬂggﬁﬁ ‘?’n@g,
éOmGMa éﬁ?Gms jmg}ﬂ\{}!ﬁ} VnelZ

We heve the following inequality

In=1Iy = M.+ Af(é—z-mg) <ealp+ Af(é~1-mg)
~ Ay -
Iy=1I < "‘jj;f(G~1~mg)~
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If G i-m, < G, then G, < G and

Iy < i%f(Q-bmg) < f‘?"xf(ﬁ) =1
On the other hand,
Gp = E%'o = aé,_1 - /36:7‘_.;:;.,1_.@ +T
Géo - ﬁéo} —1emy + T
Gg(l o+ ﬁI...;._m,) >T
Gn(l -« +,6I«»1—-mg) =T

But in this case G,, < G and Iy < 1, so we have
?gam(z-a+;3§'_.l-m)<Z§(1—a+ﬁ'f)=r

which is a contradiction efare, the hypothesis that G_;_m., < G is false.
S0 ve have é_;%;e@ @é ently, Ing 21 and Gae 3 G. By using

two full time solutions {@’m‘iﬁ}s (@e%,.f&} we will get I, €7 and Gy, € G.
The proof is complete,

Theorem 1. Assume that (Gh, I} s o persisient solution of the system
{0.5-0.6). If one of {Grla ond {In}n does not pscillte around its basel level,
then both of them converge to their basal levels.

Proof. From the proof of Proposition 1 we have

LG < In < < I < 725 £(G)
LI'g

GM(l o+ Bl Gm(l —a+62'M)

From the inequality I' € Gp{(1 — & + BIx), it follows that if Iy = .§ tﬁeﬁ
P=Gl—-a+8D) < @ m(l — a + I, this implies G € Gm. There
Gp = G. Now, the inequality 125 f(Gm) < I will give T € I, 80 iiaat
I =1, that i8 imyse l, = 1. Again by Gl ~ o + 8I,) € I’ we bave
G = G, or equivalently, imy e G = G.

Similarly, if I, = 7, then Gy = G. We can conclude that both {I,}»
and {G,}. converge to their basal levels. The proof is complete.

1
r
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Now, we let (Gq,I;) be an oscillated solution of the system of eguation
{0.5-0.6). Here, the cscillation means the cacillation avound the bassl levels.

Theorem 2. Put

A A
L= sup f(G), Le=— sup f'(G),
L 1= A g ) 1"'\ae[omf( )
Ls I'p L I'p

T Q-a+fD(1l-c+fy) T U-a+BD)(1-a+ply)

If LyLaLghy < 1, then every positive solution of the ((1.6-0.6) converge to the
posttive eguilibrium, or eguivalently, their basal levels are globally ettraciive.

-

Proof. We construct two full time solutions (G, fﬂ), (ém }ﬁ) such that

fﬁle: fﬁ?-{m: Gmgéngg.&h Vﬁég,

n~
-

éﬁme3 Gn € Gy, Img}ngfﬂls Vn € Z.

As before, we have A

IM = fﬂ g 1 - }‘f(G"‘l‘-mg)’

It follows that
B

—-I<
e —I< 75

(£(Gromy) = 7@))< Ia(Gua - O,
and A
On the other hand,

r r

C—-Gn < ~ <
¢ l—a+pBl l-—a+fly

and

c r L < L(@-1In).

-0« -
G S1-a+pl, 1-a+p7

Therefore, we get
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Iy =1 € LyLyLyLy(Ine — 1),
Gu — G < Li L, L3 L4(Gy — G),

so Iy = I = I,, Gy = G = G, and this completes the proof.

Remark. Theorem 2 is still true in the case o = 1. Indeed, in this case
the system (0.5-0.6) becomes

Gﬂ+1 = Gn - ﬂGnIﬂ—m{ -+ F
Inyi = Mo+ Af(Grem,),

and the basal levels satisfy the following system

GBI =T
- A —
It is proved in [3] that if _
5 G+ (G)”
(e

there are m, anM, such that m, < G < M, and
m.f(M,) = M, f(m,) = Gf(G).
Moreover, we conclude that

m, < Gm <G <Gy < M,
T CL <I.<T<Iy<] “G“%-
Since _ -
Cmy, I ST
G Iim Iy
80
— —t Cm\_ = I\_G - _ G -
- = - = K< e K - g:w_- — .
G-G, G(l G)\G(l IM)\ (e =D < 2 =T)

— 369 —



On the other hand, we have

Therefore, if
then Gy = G = G- So, the proof is complete.
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