

Title	On the dynamics of the discrete delay models of Glucose-Insulin systems
Author(s)	Dinh, Cong Huong
Citation	Annual Report of FY 2005, The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST). 2006, p. 363-370
Version Type	VoR
URL	https://hdl.handle.net/11094/13111
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

On the dynamics of the discrete delay models of Glucose-Insulin systems

Dinh Cong Huong

Ha Noi University of Science, 334 Nguyen Trai-Thanh Xuan-Ha Noi Quy Nhon University, 170 An Duong Vuong-Quy Nhon-Binh Dinh*

e-mail: (dconghuong@yahoo.com)

Abstract.

In this paper, we study the dynamics of the discrete delay models of Glucose-Insulin systems

$$G_{n+1} = \alpha G_n - \beta G_n I_{n-m_n} + \Gamma \tag{0.1}$$

$$I_{n+1} = \lambda I_n + \Delta f(G_{n-m_g}). \tag{0.2}$$

We are interested in providing sufficient conditions guaranteeing the fact that all positive solutions of this systems converge to the positive equilibrium.

2000 AMS Subject Classification: 39A12.

Keyword and phrases: Delay difference equations, ω -limit set of a persistent solution, full time solution.

^{*} Permanent address.

Introduction and Preliminaries

Our main motivation in studying the dynamics of the systems (0.1-0.2) is the dynamics of the differential version systems of (0.1-0.2), namely of the system

$$\dot{G}(t) = -K_{xg}G(t) - K_{xgi}G(t)I(t-\tau_i) + \frac{T_{gh}}{V_C}$$
 (0.3)

$$\dot{I}(t) = -K_{xi}I(t) + \frac{T_{iGmax}}{V_I}f(G(t-\tau_g))$$
(0.4)

invertigated in [3].

However, it is very interesting to see the connection of (0.3-0.4) to (0.1-0.2). In practice, when formulating (0.3-0.4), we actually replace the first derivative $\dot{G}(t)$ and $\dot{I}(t)$ of G and I at t by their first right approximation

$$\frac{\tilde{G}(t+h)-\tilde{G}(t)}{h}, \quad \frac{\tilde{I}(t+h)-\tilde{I}(t)}{h}$$

for h > 0 sufficient small. Thus, formally, system (0.3-0.4) comes from

$$\begin{split} \frac{\tilde{G}(t+h) - \tilde{G}(t)}{h} &= -K_{xg}G(t) - K_{xgi}G(t)I(t-\tau_i) + \frac{T_{gh}}{V_G} \\ \frac{\tilde{I}(t+h) - \tilde{I}(t)}{h} &= -K_{xi}I(t) + \frac{T_{iGmax}}{V_I}f(G(t-\tau_g), \end{split}$$

for small h. If we set

$$G_h(t) := \tilde{G}(ht), \quad I_h(t) := \tilde{I}(ht), \quad t = nh, \frac{\tau_i}{h} = m_i, \frac{\tau_g}{h} = m_g,$$

then preceding system becomes

$$G_h(n+1) = \alpha G_h(n) - \beta G_h(n) I_h(n-m_i) + \Gamma$$

$$I_h(n+1) = \lambda I_h(n) + \Delta f(G_h(n-m_g)),$$

Or

$$G_{n+1} = \alpha G_n - \beta G_n I_{n-m_i} + \Gamma$$

$$I_{n+1} = \lambda I_n + \Delta f(G_{n-m_g}),$$

where

$$\alpha = 1 - hK_{xg}, \beta = hK_{xgi}, \Gamma = h\frac{T_{gh}}{V_G}, \lambda = 1 - hK_{xi}, \Delta = h\frac{T_{iGmax}}{V_I}.$$

2. The results

We consider the following discrete system of Glucose and Insulin

$$G_{n+1} = \alpha G_n - \beta G_n I_{n-m_i} + \Gamma \tag{0.5}$$

$$I_{n+1} = \lambda I_n + \Delta f(G_{n-m_g}), \qquad (0.6)$$

where

$$f(G) = \frac{G^{\gamma}}{G^{\gamma} + G_{*}^{\gamma}}$$

defined on positive reals, $\alpha, \lambda \in (0,1)$ and $\beta, \Gamma, \lambda, \Delta$ are positive parameters. The derivative of f is

$$f'(G) = \frac{\gamma G_*^{\gamma} G^{\gamma - 1}}{(G^{\gamma} + G_*^{\gamma})^2} > 0,$$

so f is increasing. We have

$$\sup_{G\geqslant 0} f(G) = 1$$

and

$$f''(G) = 2G_*^{\gamma}G^{\gamma-2}\frac{(\gamma-1)G_*^{\gamma} - (\gamma+1)G^{\gamma}}{(G^{\gamma} + G_*^{\gamma})^2},$$

so, if $\gamma \leq 1$, f' is decreasing, and if $\gamma > 1$, f' is unimodal. Thus,

$$\sup_{G\geqslant 0} f'(G) = f'(G_0) = \frac{(\gamma+1)^2(\gamma-1)}{4\gamma G_0}, \quad \text{if } \gamma > 1, \quad \text{where } G_0 = \sqrt[\gamma]{\frac{\gamma-1}{\gamma+1}} G_*,$$

$$\sup_{G\geqslant 0} f'(G) = f'(0) = \frac{1}{G_*}, \quad \text{if } \gamma = 1,$$

$$\sup_{G\in [\overline{G}, \infty)} f'(G) = \infty, \quad \text{if } \gamma < 1,$$

$$\sup_{G\in [\overline{G}, \infty)} f'(G) = f'(\overline{G}), \quad \text{if } \gamma < 1.$$

System (0.5-0.6) has a unique positive equilibrium $(\overline{G}, \overline{I})$, which consists of the basal levels of glucose and insulin concentrations. These levels satisfy the following system

$$\overline{G}(1-\alpha+\beta\overline{I}) = \Gamma$$

$$\overline{I} = \frac{\Delta}{1-\lambda}f(\overline{G}).$$

We now let

$$G_m = \liminf_{n \to \infty} G_n, \quad G_M = \limsup_{n \to \infty} G_n, \quad I_m = \liminf_{n \to \infty} I_n, \quad I_M = \limsup_{n \to \infty} I_n.$$

Proposition. For every persistent solution (G_n, I_n) of the system (0.5-0.6), we have

$$I_m \leqslant \overline{I} \leqslant I_M \leqslant \frac{\Delta}{1 - \lambda} \sup_{G \geqslant 0} f(G)$$

$$G_m \leqslant \overline{G} \leqslant G_M \leqslant \frac{\Gamma}{1 - \alpha + \beta I_m}.$$

Proof. First, we construct four full time solutions $(\tilde{G}_n, \tilde{I}_n)$, $(\tilde{\tilde{G}}_n, \tilde{\tilde{I}}_n)$, $(\tilde{\tilde{G}}_n, \tilde{\tilde{I}}_n)$, $(\tilde{\tilde{G}}_n, \tilde{\tilde{I}}_n)$ such that

$$\begin{split} \tilde{I}_0 &= I_M, \quad \tilde{I}_n \geqslant I_m, \quad G_m \leqslant \tilde{G}_n \leqslant G_M, \quad \forall n \in \mathbb{Z}, \\ \tilde{\tilde{G}}_0 &= G_m, \quad \tilde{\tilde{G}}_n \leqslant G_M, \quad I_m \leqslant \tilde{\tilde{I}}_n \leqslant I_M, \quad \forall n \in \mathbb{Z}, \\ \tilde{\tilde{I}}_0 &= I_m, \quad \tilde{\tilde{I}}_n \leqslant I_M, \quad G_m \leqslant \tilde{\tilde{G}}_n \leqslant G_M, \quad \forall n \in \mathbb{Z}, \\ \tilde{\tilde{\tilde{G}}}_0 &= G_M, \quad \tilde{\tilde{\tilde{G}}}_n \geqslant G_m, \quad I_m \leqslant \tilde{\tilde{\tilde{I}}}_n \leqslant I_M, \quad \forall n \in \mathbb{Z}. \end{split}$$

We have the following inequality

$$\begin{split} I_{M} &= \tilde{I}_{0} &= \lambda \tilde{I}_{-1} + \Delta f(\tilde{G}_{-1-m_{g}}) \leqslant \alpha \tilde{I}_{0} + \Delta f(\tilde{G}_{-1-m_{g}}) \\ I_{M} &= \tilde{I}_{0} &\leqslant \frac{\Delta}{1-\lambda} f(\tilde{G}_{-1-m_{g}}). \end{split}$$

If $\tilde{G}_{-1-m_g} < \overline{G}$, then $G_m < \overline{G}$ and

$$I_M \leqslant \frac{\Delta}{1-\lambda} f(\widetilde{G}_{-1-m_g}) < \frac{\Delta}{1-\lambda} f(\overline{G}) = \overline{I}.$$

On the other hand,

$$G_{m} = \tilde{\tilde{G}}_{0} = \alpha \tilde{\tilde{G}}_{-1} - \beta \tilde{\tilde{G}}_{-1} \tilde{\tilde{I}}_{-1-m_{i}} + \Gamma$$

$$\geqslant \alpha \tilde{\tilde{G}}_{0} - \beta \tilde{\tilde{G}}_{0} \tilde{\tilde{I}}_{-1-m_{i}} + \Gamma$$

$$\tilde{\tilde{G}}_{0} (1 - \alpha + \beta \tilde{\tilde{I}}_{-1-m_{i}}) \geqslant \Gamma$$

$$G_{m} (1 - \alpha + \beta \tilde{\tilde{I}}_{-1-m_{i}}) \geqslant \Gamma.$$

But in this case $G_m < \overline{G}$ and $I_M < \overline{I}$, so we have

$$\Gamma \leqslant G_m(1-\alpha+\beta\tilde{I}_{-1-m_i}) < \overline{G}(1-\alpha+\beta\overline{I}) = \Gamma,$$

which is a contradiction. Therefore, the hypothesis that $\tilde{G}_{-1-m_g} < \overline{G}$ is false. So we have $\tilde{G}_{-1-m_g} \geqslant \overline{G}$, and consequently, $I_M \geqslant \overline{I}$ and $G_M \geqslant \overline{G}$. By using two full time solutions $(\tilde{\bar{G}}_n, \tilde{\bar{I}}_n)$, $(\tilde{\bar{G}}_n, \tilde{\bar{I}}_n)$ we will get $I_m \leqslant \overline{I}$ and $G_m \leqslant \overline{G}$. The proof is complete.

Theorem 1. Assume that (G_n, I_n) is a persistent solution of the system (0.5-0.6). If one of $\{G_n\}_n$ and $\{I_n\}_n$ does not oscillte around its basal level, then both of them converge to their basal levels.

Proof. From the proof of Proposition 1 we have

$$\frac{\Delta}{1-\lambda}f(G_m) \leqslant I_m \leqslant \overline{I} \leqslant I_M \leqslant \frac{\Delta}{1-\lambda}f(G_M)$$

$$G_M(1-\alpha+\beta I_m) \leqslant \Gamma \leqslant G_m(1-\alpha+\beta I_M).$$

From the inequality $\Gamma \leqslant G_m((1-\alpha+\beta I_M))$, it follows that if $I_M=\overline{I}$, then $\Gamma=\overline{G}(1-\alpha+\beta \overline{I})\leqslant G_m(1-\alpha+\beta \overline{I})$, this implies $\overline{G}\leqslant G_m$. Therefore $G_m=\overline{G}$. Now, the inequality $\frac{\Delta}{1-\lambda}f(G_m)\leqslant I_m$ will give $\overline{I}\leqslant I_m$ so that $I_m=\overline{I}$, that is $\lim_{n\to\infty}I_n=\overline{I}$. Again by $G_M(1-\alpha+\beta I_m)\leqslant \Gamma$ we have $G_M=\overline{G}$, or equivalently, $\lim_{n\to\infty}G_n=\overline{G}$.

Similarly, if $I_m = \overline{I}$, then $G_M = \overline{G}$. We can conclude that both $\{I_n\}_n$ and $\{G_n\}_n$ converge to their basal levels. The proof is complete.

Now, we let (G_n, I_n) be an oscillated solution of the system of equation (0.5-0.6). Here, the oscillation means the oscillation around the basal levels.

Theorem 2. Put

$$L_1 = \frac{\Delta}{1 - \lambda} \sup_{\overline{G}, \infty)} f'(G), \quad L_2 = \frac{\Delta}{1 - \lambda} \sup_{G \in [0, \overline{G}]} f'(G),$$

$$L_3 = \frac{\Gamma \beta}{(1 - \alpha + \beta \overline{I})(1 - \alpha + \beta I_M)}, \quad L_4 = \frac{\Gamma \beta}{(1 - \alpha + \beta \overline{I})(1 - \alpha + \beta I_m)}.$$

If $L_1L_2L_3L_4 < 1$, then every positive solution of the (0.5-0.6) converge to the positive equilibrium, or equivalently, their basal levels are globally attractive.

Proof. We construct two full time solutions $(\tilde{G}_n, \tilde{I}_n)$, $(\tilde{\tilde{G}}_n, \tilde{\tilde{I}}_n)$ such that

$$\tilde{I}_0 = I_M, \quad \tilde{I}_n \geqslant I_m, \quad G_m \leqslant \tilde{G}_n \leqslant G_M, \quad \forall n \in \mathbb{Z},$$
 $\tilde{\tilde{G}}_0 = G_m, \quad \tilde{\tilde{G}}_n \leqslant G_M, \quad I_m \leqslant \tilde{\tilde{I}}_n \leqslant I_M, \quad \forall n \in \mathbb{Z}.$

As before, we have

$$I_M = \tilde{I}_0 \leqslant \frac{\Delta}{1-\lambda} f(\tilde{G}_{-1-m_g}).$$

It follows that

$$I_M - \overline{I} \leqslant \frac{\Delta}{1 - \lambda} \Big(f(\widetilde{G}_{-1 - m_g}) - f(\overline{G}) \Big) \leqslant L_1(G_M - \overline{G}),$$

and

$$\overline{I} - I_m \leqslant \frac{\Delta}{1-\lambda} \Big(f(\overline{G}) - f(G_m) \Big) \leqslant L_2(\overline{G} - G_m).$$

On the other hand,

$$\overline{G} - G_m \leqslant \frac{\Gamma}{1 - \alpha + \beta \overline{I}} - \frac{\Gamma}{1 - \alpha + \beta I_M} \leqslant L_3(I_M - \overline{I}),$$

and

$$G_M - \overline{G} \leqslant \frac{\Gamma}{1 - \alpha + \beta I_m} - \frac{\Gamma}{1 - \alpha + \beta \overline{I}} \leqslant L_4(\overline{I} - I_m).$$

Therefore, we get

$$I_M - \overline{I} \leqslant L_1 L_2 L_3 L_4 (I_M - \overline{I}),$$

 $G_M - \overline{G} \leqslant L_1 L_2 L_3 L_4 (G_M - \overline{G}),$

so $I_M = \overline{I} = I_m$, $G_M = \overline{G} = G_m$ and this completes the proof.

Remark. Theorem 2 is still true in the case $\alpha = 1$. Indeed, in this case the system (0.5-0.6) becomes

$$G_{n+1} = G_n - \beta G_n I_{n-m_i} + \Gamma$$

$$I_{n+1} = \lambda I_n + \Delta f(G_{n-m_g}),$$

and the basal levels satisfy the following system

$$\overline{G}\beta\overline{I} = \Gamma$$

$$\overline{I} = \frac{\Delta}{1-\lambda}f(\overline{G}).$$

It is proved in [3] that if

$$\gamma > \frac{G_*^{\gamma} + (\overline{G})^{\gamma}}{G_*^{\gamma}},$$

there are m_* an M_* such that $m_* < \overline{G} < M_*$ and

$$m_*f(M_*)=M_*f(m_*)=\overline{G}f(\overline{G}).$$

Moreover, we conclude that

$$\begin{split} & m_* \leqslant G_m \leqslant \overline{G} \leqslant G_M \leqslant M_*, \\ & \overline{I} \cdot \overline{G} \frac{1}{M_*} \leqslant I_m \leqslant \overline{I} \leqslant I_M \leqslant \overline{I} \cdot \overline{G} \frac{1}{m_*}. \end{split}$$

Since

$$\frac{G_m}{\overline{G}} \geqslant \frac{\overline{I}}{\overline{I}_{1,m}} \geqslant \frac{\overline{I}}{I_M},$$

SO

$$\overline{G} - G_m = \overline{G} \left(1 - \frac{G_m}{\overline{G}} \right) \leqslant \overline{G} \left(1 - \frac{\overline{I}}{I_M} \right) \leqslant \frac{\overline{G}}{I_M} (I_M - \overline{I}) \leqslant \frac{\overline{G}}{\overline{I}} (I_M - \overline{I}).$$

On the other hand, we have

$$G_M - \overline{G} \leqslant M_* - \overline{G} = \frac{M_*}{\overline{I}} \left(\overline{I} - \frac{\overline{I} \cdot \overline{G}}{M_*} \right) \leqslant \frac{M_*}{\overline{I}} (\overline{I} - I_m).$$

Therefore, if

$$\frac{\overline{G}}{\overline{I}} \cdot \frac{M_*}{\overline{I}} < 1,$$

then $G_M = \overline{G} = G_m$. So, the proof is complete.

References

- Dang Vu Giang and Dinh Cong Huong, Extinction, Persistence and Global stability in models of population growth, J. Math. Anal. Appl. 308 (2005), 195-207.
- [2] Dang Vu Giang and Dinh Cong Huong, Nontrivial periodicity in discrete delay models of population growth, J. Math. Anal. Appl. 305 (2005), 291-295.
- [3] P. Palumbo, S. Panuzi and A. Gaetano, Qualitative Properties of solutions for two delay-differntial models of glucose-insulin system, Preprint of Institute of System analysis and information, Roma, Italy, November 2004.