

Title	Characteristic Cauchy problem for first-order quasilinear equations
Author(s)	Ha, Tien Ngoan
Citation	Annual Report of FY 2007, The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST). 2008, p. 523-528
Version Type	VoR
URL	https://hdl.handle.net/11094/13113
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Characteristic Cauchy problem for first-order quasilinear equations

Ha Tien NGOAN *
Hanoi Institute of Mathematics
18 Hoang Quoc Viet, 10307 Hanoi Vietnam

1. Cauchy problem

Consider following first-order quasilinear equation

$$\sum_{j=1}^n a_j(x, u) \frac{\partial u}{\partial x_j} = a(x, u), \quad (1)$$

where $x = (x_1, x_2, \dots, x_n) \in \Omega \subset R^n$.

Suppose there given a smooth $(n-1)$ -dimensional surface $\gamma \subset R^n$

$$\gamma \equiv \{x = x^0(y') \in R^n; y' \equiv (y_1, y_2, \dots, y_{n-1}) \in \omega \subset R^{n-1}\}, \quad (2)$$

where ω is a neighbourhood of some fixed point $y^0 \in R^{n-1}$,

$$x^0(y') = (x_1^0(y'), x_2^0(y'), \dots, x_n^0(y'))$$

and

$$\text{rank} \begin{bmatrix} \frac{\partial x_1^0(y')}{\partial y_1} & \frac{\partial x_1^0(y')}{\partial y_2} & \dots & \frac{\partial x_1^0(y')}{\partial y_{n-1}} \\ \frac{\partial x_2^0(y')}{\partial y_1} & \frac{\partial x_2^0(y')}{\partial y_2} & \dots & \frac{\partial x_2^0(y')}{\partial y_{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n^0(y')}{\partial y_1} & \frac{\partial x_n^0(y')}{\partial y_2} & \dots & \frac{\partial x_n^0(y')}{\partial y_{n-1}} \end{bmatrix} = n-1, \quad \forall y' \in \omega. \quad (3)$$

Cauchy problem Look for a solution $u(x) \in C^1(\Omega)$ such that

$$u(x) \Big|_{x=x^0(y')} = u_0(y'), \quad (4)$$

where $u_0(y')$ is a given smooth function.

Keywords: quasilinear equations, characteristic Cauchy problem.

* Supported in part by the National Basic Research Program in Natural Sciences (Vietnam).

2. Noncharacteristic condition

Definition 1. We say that the Cauchy problem (1), (4) is not characteristic if the following condition holds

$$A(y') \equiv \begin{vmatrix} \frac{\partial x_1^0(y')}{\partial y_1} & \frac{\partial x_1^0(y')}{\partial y_2} & \dots & \frac{\partial x_1^0(y')}{\partial y_{n-1}} & a_1(x^0(y'), u_0(y')) \\ \frac{\partial x_2^0(y')}{\partial y_1} & \frac{\partial x_2^0(y')}{\partial y_2} & \dots & \frac{\partial x_2^0(y')}{\partial y_{n-1}} & a_2(x^0(y'), u_0(y')) \\ \frac{\partial x_n^0(y')}{\partial y_1} & \frac{\partial x_n^0(y')}{\partial y_2} & \dots & \frac{\partial x_n^0(y')}{\partial y_{n-1}} & a_n(x^0(y'), u_0(y')) \end{vmatrix} \neq 0, \quad \forall y' \in \omega \quad (5)$$

3. Problem statement

Suppose

$$A(y'^0) = 0, \quad (6)$$

$$A(y') \neq 0, \quad \forall y' \in \omega, y' \neq y'^0. \quad (7)$$

The question: What we can say about the *existence* of solution to the characteristic problem (1), (4) in a neighbourhood, or even in a semineighbourhood, of the point $x^0(y'^0)$?

4. A relation of the equation (1) with a linear homogenous first-order equation

Theorem 1. Suppose $\varphi(x, u) \in C^1$ is a solution of the following linear homogenous first-order equation:

$$\sum_{j=1}^n a_j(x, u) \frac{\partial \varphi}{\partial x_j} + a(x, u) \frac{\partial \varphi}{\partial u} = 0, \quad (x, u) \in P \subset R_{x,u}^{n+1} \quad (8)$$

such that for some point $(x^0, u^0) \in P$ the following conditions hold

$$\begin{aligned} \varphi(x^0, u^0) &= 0, \\ \frac{\partial \varphi(x^0, u^0)}{\partial u} &\neq 0. \end{aligned} \quad (9)$$

Then the relation

$$\varphi(x, u) = 0 \quad (10)$$

defines a C^1 -solution $u(x)$ of the equation (1) in a neighbourhood of x^0 , such that $u(x^0) = u^0$.

5. An extended surface

To consider the Cauchy problem for the equation (8), we extend the (n-1)-dimensional surface $\gamma \subset R_x^n$ to an n-dimensional surface $\Gamma \subset P \subset R_{x,u}^{n+1}$.

Denote $y = (y', y_n)$. We define the surface Γ by following equations:

$$\begin{cases} x = X^0(y) \equiv x^0(y') + y_n \frac{\partial x^0(y')}{\partial y_1} \times \frac{\partial x^0(y')}{\partial y_2} \times \dots \times \frac{\partial x^0(y')}{\partial y_{n-1}}, \\ u = U^0(y) \equiv u_0(y') + A(y')y_n, \end{cases} \quad (11)$$

where the vector product $\frac{\partial x^0(y')}{\partial y_1} \times \frac{\partial x^0(y')}{\partial y_2} \times \dots \times \frac{\partial x^0(y')}{\partial y_{n-1}}$ is a vector in R_x^n and is defined by the following formula

$$\frac{\partial x^0(y')}{\partial y_1} \times \frac{\partial x^0(y')}{\partial y_2} \times \dots \times \frac{\partial x^0(y')}{\partial y_{n-1}} \equiv \begin{vmatrix} e_1 & e_2 & \dots & e_n \\ \frac{\partial x_1^0(y')}{\partial y_1} & \frac{\partial x_2^0(y')}{\partial y_1} & \dots & \frac{\partial x_n^0(y')}{\partial y_1} \\ \frac{\partial x_1^0(y')}{\partial y_2} & \frac{\partial x_2^0(y')}{\partial y_2} & \dots & \frac{\partial x_n^0(y')}{\partial y_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_1^0(y')}{\partial y_{n-1}} & \frac{\partial x_2^0(y')}{\partial y_{n-1}} & \dots & \frac{\partial x_n^0(y')}{\partial y_{n-1}} \end{vmatrix}, \quad (12)$$

e_1, e_2, \dots, e_n are canonical unit vectors in R_x^n .

Theorem 2. Suppose (3) holds. Then the surface $\Gamma \subset R^{n+1}$ is an n-dimensional surface, i.e.

$$\text{rank} \begin{bmatrix} \frac{\partial X_1^0(y)}{\partial y_1} & \frac{\partial X_1^0(y)}{\partial y_2} & \dots & \frac{\partial X_1^0(y)}{\partial y_n} \\ \frac{\partial X_2^0(y)}{\partial y_1} & \frac{\partial X_2^0(y)}{\partial y_2} & \dots & \frac{\partial X_2^0(y)}{\partial y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial X_n^0(y)}{\partial y_1} & \frac{\partial X_n^0(y)}{\partial y_2} & \dots & \frac{\partial X_n^0(y)}{\partial y_n} \\ \frac{\partial U_0(y)}{\partial y_1} & \frac{\partial U_0(y)}{\partial y_2} & \dots & \frac{\partial U_0(y)}{\partial y_n} \end{bmatrix} = n, \quad \forall y \in Q,$$

where Q is some neighbourhood of the point $y^0 = (y'^0, 0) \in R_y^n$.

6. An Cauchy problem for the equation (8)

We are looking for solution $\varphi(x, u)$ of (8) such that

$$\varphi(x, u) \Big|_{x=X^0(y), u=U^0(y)} = y_n. \quad (13)$$

Theorem 3. *The Cauchy problem (8), (13) is noncharacteristic if the following condition holds*

$$\tilde{A}(y') \equiv \begin{vmatrix} \frac{\partial x_1^0(y')}{\partial y_1} & \frac{\partial x_1^0(y')}{\partial y_2} & \dots & \frac{\partial x_1^0(y')}{\partial y_{n-1}} & v_1(y') & a_1(x^0(y'), u_0(y')) \\ \frac{\partial x_2^0(y')}{\partial y_1} & \frac{\partial x_2^0(y')}{\partial y_2} & \dots & \frac{\partial x_2^0(y')}{\partial y_{n-1}} & v_2(y') & a_2(x^0(y'), u_0(y')) \\ \frac{\partial x_n^0(y')}{\partial y_1} & \frac{\partial x_n^0(y')}{\partial y_2} & \dots & \frac{\partial x_n^0(y')}{\partial y_{n-1}} & v_n(y') & a_n(x^0(y'), u_0(y')) \\ \frac{\partial u_0(y')}{\partial y_1} & \frac{\partial u_0(y')}{\partial y_2} & \dots & \frac{\partial u_0(y')}{\partial y_{n-1}} & A(y') & a(x^0(y'), u_0(y')) \end{vmatrix} \neq 0, \quad \forall y' \in \omega, \quad (14)$$

where $v(y') \equiv (v_1(y'), v_2(y'), \dots, v_n(y')) = \frac{\partial x^0(y')}{\partial y_1} \times \frac{\partial x^0(y')}{\partial y_2} \times \dots \times \frac{\partial x^0(y')}{\partial y_{n-1}}$.

7. The solution to the Cauchy problem (8), (13)

The characteristic system for Cauchy problem (8), (13) is

$$\begin{cases} X'_j(t) = a_j(X(t), U(t)), j = 1, 2, \dots, n, \\ U'(t) = a(X(t), U(t)), \\ \Phi'(t) = 0, \end{cases} \quad (15)$$

with the following initial conditions

$$\begin{cases} X(0) = X^0(y), \\ U(0) = U_0(y), \\ \Phi(0) = y_n. \end{cases} \quad (16)$$

We denote the solutions of the problem (15), (16) by $X(y, t), U(y, t), \Phi(y, t)$. We consider the following system of $(n+1)$ equations with respect to $(n+1)$ unknowns $(y_1, y_2, \dots, y_n, t)$

$$\begin{cases} X(y_1, y_2, \dots, y_n, t) = x \\ U(y_1, y_2, \dots, y_n, t) = u. \end{cases} \quad (17)$$

We denote the solutions of the system (17) by $Y_1(x, u), Y_2(x, u), \dots, Y_n(x, u), T(x, u)$.

Theorem 4. *The function $Y_n(x, u)$ is a solution to the problem (8), (13).*

Remark 1. *Suppose (14) holds. If we set*

$$W(y, t) = \begin{bmatrix} \frac{\partial X_1(y, t)}{\partial y_1} & \frac{\partial X_1(y, t)}{\partial y_2} & \dots & \frac{\partial X_1(y, t)}{\partial y_n} & \frac{\partial X_1(y, t)}{\partial t} \\ \frac{\partial X_2(y, t)}{\partial y_1} & \frac{\partial X_2(y, t)}{\partial y_2} & \dots & \frac{\partial X_2(y, t)}{\partial y_n} & \frac{\partial X_2(y, t)}{\partial t} \\ \dots & \dots & \dots & \dots & \dots \\ \frac{\partial X_n(y, t)}{\partial y_1} & \frac{\partial X_n(y, t)}{\partial y_2} & \dots & \frac{\partial X_n(y, t)}{\partial y_n} & \frac{\partial X_n(y, t)}{\partial t} \\ \frac{\partial U(y, t)}{\partial y_1} & \frac{\partial U(y, t)}{\partial y_2} & \dots & \frac{\partial U(y, t)}{\partial y_n} & \frac{\partial U(y, t)}{\partial t} \end{bmatrix}, \quad (18)$$

then

$$W(Y(x^0(y'), u_0(y')), T(x^0(y'), u_0(y'))) = \tilde{A}(y'), \quad \forall y' \in \omega \quad (19)$$

and therefore $W(Y(x, u), T(x, u)) \neq 0$ in some neighbourhood of the point $(x^0(y'^0), u_0(y'^0))$.

Theorem 5. *Suppose (14) holds. Then the following formula holds*

$$\frac{\partial Y_n(x, u)}{\partial u} = -\frac{1}{W(Y(x, u), T(x, u))} \times \quad (20)$$

$$\begin{vmatrix} \frac{\partial X_1}{\partial y_1}(Y(x, u), T(x, u)) & \frac{\partial X_1}{\partial y_2}(Y(x, u), T(x, u)) & \dots & \frac{\partial X_1}{\partial y_{n-1}}(Y(x, u), T(x, u)) & a_1(x, u) \\ \frac{\partial X_2}{\partial y_1}(Y(x, u), T(x, u)) & \frac{\partial X_2}{\partial y_2}(Y(x, u), T(x, u)) & \dots & \frac{\partial X_2}{\partial y_{n-1}}(Y(x, u), T(x, u)) & a_2(x, u) \\ \dots & \dots & \dots & \dots & \dots \\ \frac{\partial X_n}{\partial y_1}(Y(x, u), T(x, u)) & \frac{\partial X_n}{\partial y_2}(Y(x, u), T(x, u)) & \dots & \frac{\partial X_n}{\partial y_{n-1}}(Y(x, u), T(x, u)) & a_n(x, u) \end{vmatrix}$$

Remark 2. *From (6), (20) we have*

$$\frac{\partial Y_n(x^0(y'^0), u_0(y'^0))}{\partial u} = 0. \quad (21)$$

8. Solvability of the Cauchy problem (1), (4)

Suppose

$$\frac{\partial^2 Y_n(x^0(y'^0), u_0(y'^0))}{\partial u^2} \neq 0. \quad (22)$$

From the implicit function theorem it follows that the equation

$$\frac{\partial Y_n(x, u)}{\partial u} = 0 \quad (23)$$

defines a function $u = \psi(x)$, that satisfies the condition

$$\psi(x^0(y'^0)) = u_0(y'^0).$$

We denote by L the n -dimensional surface in $R_{x,u}^{n+1}$ that is defined by

$$L \equiv \{(x, u) \in R^{n+1}; u = \psi(x), x \text{ is in a neighbourhood of } x^0(y'^0) \in \Omega \subset R^n\}. \quad (24)$$

and by M the following $(n-1)$ -dimensional surface in $R_{x,u}^{n+1}$

$$M \equiv \{(x, u) \in R^{n+1}; x = x^0(y'), u = u_0(y'), y' \in \omega\} \quad (25)$$

Then it is obviously that

$$(x^0(y'^0)), u_0(y'^0)) \in L \cap M.$$

The surface L separates $R_{x,u}^{n+1}$, locally at the point $x^0(y'^0)$, into two parts L^+ and L^- . Namely,

$$L^+ \equiv \{(x, u) \in R^{n+1}; u > \psi(x); x \text{ is in a neighbourhood of } x^0(y'^0) \in R^n\}. \quad (26)$$

$$L^- \equiv \{(x, u) \in R^{n+1}; u < \psi(x); x \text{ is in a neighbourhood of } x^0(y'^0) \in R^n\}. \quad (27)$$

We denote

$$M^+ \equiv M \cap L^+,$$

$$M^- \equiv M \cap L^-.$$

Proposition 1. Suppose (6), (7) hold and $n \geq 3$. Then either $M^+ = \emptyset$ or $M^- = \emptyset$.

Suppose, for definiteness, that $M^+ \neq \emptyset$ and $M_1^+, M_2^+, \dots, M_k^+$ are its connected components. Each surface M_j^+ , $j = 1, 2, \dots, k$, determines in a semineighbourhood of the point $x^0(y'^0)$ a classical C^1 -solution $u_j(x)$ to Cauchy problem (1), (4).

Theorem 6. Suppose $n \geq 3$ and all conditions (6), (7), (14) (22) hold. Then for solvability of the characteristic Cauchy problem (1), (4) in a semineighbourhood of the point $x^0(y'^0)$, it is necessary and sufficient that all functions $u_j(x)$, $j = 1, 2, \dots, k$, coincide each to other in that semineighbourhood.

REFERENCES

- [1] G. Darboux, *Leçons sur la théorie générale des surfaces*, tome 3, Gauthier-Villars, Paris, 1894.
- [2] J. Hadamard, *Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques*, Hermann, Paris, 1932.
- [3] Tran Duc Van, M. Tsuji, Nguyen Duy Thai Son, *The characteristic method and its generalizations for first-order nonlinear partial differential equations*, 101. Chapman & Hall/ CRC Press, Boca Raton, FL., 2000.