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Characteristic Cauchy problem 
for first-order quasilinear equations 

Ha Tien NGOAN * 
Hanoi Institute of Mathematics 

18 Hoang Quoc Viet, 10307 Hanoi Vietnam 

1. Cauchy problem 

Consider following first-order quasilinear equation 

n ou 
.L:;aj(x,u)", =a(x,u), 
J=l UXj 

where x = (X1,X2, ... ,Xn) ED eRn. 
Suppose there given a smooth (n-1)-dimensional surface ~( c Rn 

~ = {, _ O( ') Rn.' = ( .) Rn-1} y - x - x Y E , Y - Y!' Y2, ... , Yn-1 Ewe , 

where w is a neighbourhood of some fixed point y,O E Rn-1, 

and 
[ °"1(,') 8x~(y') 

M(y') 1 ~ ---ay:;- 8Yn-l 
8xg(y') 8x~(y') 8xg(y') 

Vy' E w. rank ~~.l ay:;- 8Yn-l =n 1, 

8x~(y') 8x~'(y') 8x~'(y') 
~ ---e:;;;- 8Yn-l 

Cauchy problem Look for a solution u(x) E C 1 (D) such that 

u(X)i = uo(y'), 
x=xO(y') 

where uo(y') is a given smooth function. 

Keywords: quasi linear equations, characteristic Cauchy problem. 
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2. Noncharacteristic condition 

Definition 1. We say that the Cauchy problem (1), (4) is not characteristic if the 
following condition holds 

BX~(y/) BX~(Y') BX~(Y') 
al (xO (y'), uo (y')) 

BYl BY2 BYn-l 

A(y') == 
BX~(Y') BX~(Y') BX~(Y') a2 (xO (y'), uo (y')) #0, Yy' E W (5) --ay-;- BY2 BYn-l 

BX~'(yl) BX~'(yl) 
an (xO (y'), uo (y')) 

BYl ---a:y;-

3. Problem statement 

Suppose 

(6) 

A(y') # 0, Yy' E w, y' # yin. (7) 

The question: What we can say about the existence of solution to the charateristic 
problem (1), (4) in a neighbourhood, or even in a semineighbourhood, of the point 
xO(y'o) ? 

4. A relation of the equation (1) with a linear homogenouse first-order 
equation 

Theorem 1. Suppose cp(x, u) E C 1 is a solution of the following linear homogenouse 
first-order equation: 

n . (, ) acp (, ) acp _ (,) n+ 1 .~ aJ x,u -;::;-- +a x,u ~ - 0, x,u E P c Rxu 
J=1 UXj uU ' 

such that for some point (xO, un) E P the following conditions hold 

Then the relation 

cp(XO, un) = 0, 

acp(~: un) # O. 

cp(x, u) = 0 

(8) 

(9) 

(10) 

defines a C 1 -solution u(x) of the equation (1) in a neighbourhood of xO, such that 
u(xO) = u O, 
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5. An extended surface 

To consider the Cauchy problem for the equation (8), we extend the (n-l)-dimensional 
surface I C R~ to an n-dimensional surface reP c R~:;}. 
Denote y = (y', Yn). We define the surface r by following equations: 

{ 
° _ 0' [)xo (y') [)xo (y') [)xO (y') 

x = X (y) = x (y) + Yn [) X [) X ... x [) , 
Yl Y2 Yn-l 

u = UO(Y) == uo(Y') + A(y')Yn, 

(11) 

fh'O( ') axo( ') axo( ') . . . where the vector product -'-Y- x --Y- x ... x --Y- IS a vector 111 Rn and IS defined 
aYl aY2 aYn-l x 

by the following formula 

el, e2, ... , en are canonical unit vectors in R~. 

Theorem 2. 
surface, i. e. 

Suppose 

rank 

(3) holds. Then the 

axf(y) aXf(y) 
----ay;- aY2 
axg(y) axg(y) 
----ay;- aY2 

ai~'(y) ai~'(y) 
----ay;- ------ay;-
auo(y) auo(y) 
~ ---ay;-

surface r c R n+1 is 

axf(y) 
---ay;:-
axg(y) 
---ay;:-

Vy E Q, 
ai~'(y) 

=n, 

---ay;:-
auo(y) 

ay" 

where Q is some neighbourhood of the point yO = (y'O, 0) E R~. 
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6. An Cauchy problem for the equation (8) 

We are looking for solution <p(x, u) of (8) such that 

<p(x.u)1 =Yn' 
, x=XO(y),u=UO(y) 

(13) 

Theorem 3. The Cauchy problem (8), (13) is noncharacteristic if the following con­
dition holds 

3x~(y') 3x~(y') 3x?(y') VI (Y') al (xO(Y'), uo(y'» 
3Yl 3Y2 3Yn-l 

3xg(y') 3x~(y') 3xg(y') V2(Y') a2(XO(y'), UO(y'» 
A(y') == 

3Yl 8Y2 3Yn-l 

3x~:(y') 3x~'(y') 3x~:(y') 
#0, 

Vn(y') an(xO(y'), UO(y'» 
3Yl 3Y2 3Yn-l 

3uo(y') 3uo(y') 3uo(y') A(y') a(xO (y'), Uo (y'» ----ay;- ay:;- 3Yn-l 

where v(y') == (VI(y'), V2(y'), ... , vn(y'» 
3xo(y,) 3xo(y,) 

X 3Y2 X ... X 3Yn-l . 

7. The solution to the Cauchy problem (8), (13) 

The characteristic system for Cauchy problem (8), (13) is 

{ 

Xj(t) = aj(X(t), U(t»),.j = 1,2, ... , n, 

U'(t) = a(X(t), U(t»), 

<1>'(t) =0, 

with the following initial conditions 

{ 

X(O) = XO(y), 

U(O) = Uo(y), 

<1>(0) = Yn' 

Vy' E w, 

(14) 

(15) 

(16) 

We denote the solutions of the problem (15), (16) by X(y, t), U(y, t), <1>(y, t). We consider 
the following system of (n+ 1) equations with respect to (n+ 1) unknowns (YI, Y2, ... , Yn, t) 

{
X(YI)Y2""'Yn)t) X 

U(YI, Y2, ... , Yn, t) = u. 
(17) 

We denote the solutions of the system (17) by YI (x, u), Y2 (x, u), ... , Yn (x, u), T(x, u). 
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Theorem 4. The function Y;,(X, u) is a solution to the problem (8), (13). 

Remark 1. Suppose (14) holds. If we set 

W(y, t) = 

then 

aX1(y,t) 
aYl 

aX2 (y,t) 
aYl 

aX1(y,t) 
aY2 

aX2 (y,t) 
aY2 

aX1(y,t) 
aYn 

aX2 (y,t) 
aYn 

aXl(y,t) 
at 

aX2(y,t) 
at 

(18) 

W(Y(XO(yl), UO(yl)), T(XO(y'), UO(yl)) = A(y'), \/yl E W (19) 

and therefore W(Y(x, u), T(x, u)) =I- 0 in some neighbourhood of the point (xO(y1o), uo(y1o)). 

Theorem 5. Suppose (14) holds. Then the following formula holds 

3Yn (x,u) 1 
--'------'-- = - x 

3u W(Y(x, u), T(x, u)) 

~;11 (Y(x, u), T(x, u)) ~";; (Y(x, u), T(x, u)) a~~~l (Y(x, u), T(x, u)) 

~;12 (Y(x, u), T(x, u)) aX2 (Y(x. u). T(x. u)) aY2 .. . aax2 (Y(x, u), T(x, u)) 
Yn-l 

~;; (Y(x, u), T(x, u)) ~~; (Y (x, u), T (x, u) ) (Y(x, u), T(x, u)) 

Remark 2. From (6), (20) we have 

3Yn (xO (y1o), uo(y1o)) 
3u =0. 

8. Solvability of the Cauchy problem (1), (4) 

Suppose 
32Yn(XO(y'O), uo(y1o)) --i 0 

3u2 r . 

From the implicit function theorem it follows that the equation 

3Y;,(X, u) = 0 
3u 

defines a function u = 1jJ(x), that satisfies the condition 
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(20) 

al(x,u) 

a2(x, u) 

an(x,u) 

(21 ) 

(22) 

(23) 



We denote by L the n-dimensional surface in R~-:;/ that is defined by 

L == {(x,u) E Rn+\u = 1/J(x),x is in a neighbourhood of xO(y'o) Ene Rn}. (24) 

and by 1\11 the following (n-1 )-dimensional surface in R~t 1 
, 

M == {(x,u) E Rn+l;:t = xO(y'),u = uo(y')),y' E w} (25) 

Thenit is obvious ely that 

The surface L separates R~-:;/, locally at the point xO (y'o), into two parts L + and L - . 
Namely, 

We denote 
M+ == AlnL+, 

M- == MnL-. 

Proposition 1. Suppose (6), (7) hold and n ~ 3. Then either M+ = 0 or M- 0. 

Suppose, for definiteness, that 1\11+ =I- 0 and 1\11{, .Mi, ... , 1\11: are its connected com­
ponents. Each surface 1\Ilt, j = 1, 2, ... , k, determines in a semineighbourhood of the 

point xO(y'o) a classical C1-solution Uj(x) to Cauchy problem (1), (4). 

Theorem 6. Suppose n ~ 3 and all conditions (6), (7), (14) (22) hold. Then for 
solvability of the characteristic Cauchy problem (1), (4) in a semineighbourhood of the 

point xO(y'o), it is necessary and sufficient that all functions Uj(x), j = 1, 2, ... , k, 
coincide each to other in that semineighbourhood. 
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