Title	Characteristic Cauchy problem for first-order quasilinear equations
Author(s)	Ha, Tien Ngoan
Citation	Annual Report of FY 2007, The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST). 2008, p. 523-528
Version Type	VoR
URL	https://hdl. handle. net/11094/13113
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. Library.osaka-u.ac.jp/
Osaka University

Characteristic Cauchy problem for first-order quasilinear equations

Ha Tien NGOAN *
Hanoi Institute of Mathematics
18 Hoang Quoc Viet, 10307 Hanoi Vietnam

1. Cauchy problem

Consider following first-order quasilinear equation

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}(x, u) \frac{\partial u}{\partial x_{j}}=a(x, u) \tag{1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega \subset R^{n}$.
Suppose there given a smooth (n -1)-dimensional surface $\gamma \subset R^{n}$

$$
\begin{equation*}
\gamma \equiv\left\{x=x^{0}\left(y^{\prime}\right) \in R^{n} ; y^{\prime} \equiv\left(y_{1}, y_{2}, \ldots, y_{n-1}\right) \in \omega \subset R^{n-1}\right\} \tag{2}
\end{equation*}
$$

where ω is a neighbourhood of some fixed point $y^{\prime 0} \in R^{n-1}$,

$$
x^{0}\left(y^{\prime}\right)=\left(x_{1}^{0}\left(y^{\prime}\right), x_{2}^{0}\left(y^{\prime}\right), \ldots, x_{n}^{0}\left(y^{\prime}\right)\right)
$$

and

$$
\operatorname{rank}\left[\begin{array}{cccc}
\frac{\partial x_{1}^{0}\left(y^{\prime}\right)}{\partial y_{1}} & \frac{\partial x_{1}^{0}\left(y^{\prime}\right)}{\partial y_{2}} & \ldots & \frac{\partial x_{1}^{0}\left(y^{\prime}\right)}{\partial y_{n}-1} \tag{3}\\
\frac{\partial x_{2}^{2}\left(y^{\prime}\right)}{\partial y_{1}} & \frac{\partial x_{2}^{0}\left(y^{\prime}\right)}{\partial y_{2}} & \ldots & \frac{\partial x_{2}^{0_{2}\left(y^{\prime}\right)}}{\partial y_{n-1}} \\
\frac{\partial x_{n}^{\circ}\left(y^{\prime}\right)}{\partial y_{1}} & \frac{\partial x_{n}^{0}\left(y^{\prime}\right)}{\partial y_{2}} & \ldots & \frac{\partial x_{n}^{0}\left(y^{\prime}\right)}{\partial y_{n-1}}
\end{array}\right]=n-1, \quad \forall y^{\prime} \in \omega .
$$

Cauchy problem Look for a solution $u(x) \in C^{1}(\Omega)$ such that

$$
\begin{equation*}
\left.u(x)\right|_{x=x^{0}\left(y^{\prime}\right)}=u_{0}\left(y^{\prime}\right), \tag{4}
\end{equation*}
$$

where $u_{0}\left(y^{\prime}\right)$ is a given smooth function.

2. Noncharacteristic condition

Definition 1. We say that the Cauchy problem (1), (4) is not characteristic if the following condition holds

$$
A\left(y^{\prime}\right) \equiv\left|\begin{array}{ccccc}
\frac{\partial x_{1}^{0}\left(y^{\prime}\right)}{\partial y_{1}} & \frac{\partial x_{1}^{0}\left(y^{\prime}\right)}{\partial y_{2}} & \ldots & \frac{\partial x_{1}^{0}\left(y^{\prime}\right)}{\partial y_{n}} & a_{1}\left(x^{0}\left(y^{\prime}\right), u_{0}\left(y^{\prime}\right)\right) \tag{5}\\
\frac{\partial x_{2}^{0}\left(y^{\prime}\right)}{\partial y_{1}} & \frac{\partial x_{2}^{0}\left(y^{\prime}\right)}{\partial y_{2}} & \ldots & \frac{\partial x_{2}^{0}\left(y^{\prime}\right)}{\partial y_{n-1}} & a_{2}\left(x^{0}\left(y^{\prime}\right), u_{0}\left(y^{\prime}\right)\right) \\
\frac{\partial x_{n}^{0}\left(y^{\prime}\right)}{\partial y_{1}} & \frac{\partial x_{n}^{0}\left(y^{\prime}\right)}{\partial y_{2}} & \ldots & \frac{\partial x_{n}^{o}\left(y^{\prime}\right)}{\partial y_{n-1}} & a_{n}\left(x^{0}\left(y^{\prime}\right), u_{0}\left(y^{\prime}\right)\right)
\end{array}\right| \neq 0, \quad \forall y^{\prime} \in \omega
$$

3. Problem statement

Suppose

$$
\begin{gather*}
A\left(y^{\prime 0}\right)=0 \tag{6}\\
A\left(y^{\prime}\right) \neq 0, \forall y^{\prime} \in \omega, y^{\prime} \neq y^{\prime 0} . \tag{7}
\end{gather*}
$$

The question: What we can say about the existence of solution to the charateristic problem (1), (4) in a neighbourhood, or even in a semineighbourhood, of the point $x^{0}\left(y^{\prime 0}\right)$?
4. A relation of the equation (1) with a linear homogenouse first-order equation

Theorem 1. Suppose $\varphi(x, u) \in C^{1}$ is a solution of the following linear homogenouse first-order equation:

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}(x, u) \frac{\partial \varphi}{\partial x_{j}}+a(x, u) \frac{\partial \varphi}{\partial u}=0,(x, u) \in P \subset R_{x, u}^{n+1} \tag{8}
\end{equation*}
$$

such that for some point $\left(x^{0}, u^{0}\right) \in P$ the following conditions hold

$$
\begin{gather*}
\varphi\left(x^{0}, u^{0}\right)=0 \\
\frac{\partial \varphi\left(x^{0}, u^{0}\right)}{\partial u} \neq 0 . \tag{9}
\end{gather*}
$$

Then the relation

$$
\begin{equation*}
\varphi(x, u)=0 \tag{10}
\end{equation*}
$$

defines a C^{1}-solution $u(x)$ of the equation (1) in a neighbourhood of x^{0}, such that $u\left(x^{0}\right)=u^{0}$.

5. An extended surface

To consider the Cauchy problem for the equation (8), we extend the (n-1)-dimensional surface $\gamma \subset R_{x}^{n}$ to an n-dimensional surface $\Gamma \subset P \subset R_{x, u}^{n+1}$.
Denote $y=\left(y^{\prime}, y_{n}\right)$. We define the surface Γ by following equations:

$$
\left\{\begin{array}{l}
x=X^{0}(y) \equiv x^{0}\left(y^{\prime}\right)+y_{n} \frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{1}} \times \frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{2}} \times \ldots \times \frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{n-1}}, \tag{11}\\
u=U^{0}(y) \equiv u_{0}\left(y^{\prime}\right)+A\left(y^{\prime}\right) y_{n},
\end{array}\right.
$$

where the vector product $\frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{1}} \times \frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{2}} \times \ldots \times \frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{n-1}}$ is a vector in R_{x}^{n} and is defined by the following formula

$$
\frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{1}} \times \frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{2}} \times \ldots \times \frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{n-1}} \equiv\left|\begin{array}{cccc}
e_{1} & e_{2} & \ldots & e_{n} \tag{12}\\
\frac{\partial x_{1}^{0}\left(y^{\prime}\right)}{\partial y_{1}} & \frac{\partial x_{2}^{0}\left(y^{\prime}\right)}{\partial y_{1}} & \ldots & \frac{\partial x_{n}^{0}\left(y^{\prime}\right)}{\partial y_{1}} \\
\frac{\partial x_{1}^{y_{1}\left(y^{\prime}\right)}}{\partial y_{2}} & \frac{\partial x_{2}^{\left(y^{\prime}\right)}}{\partial y_{2}} & \ldots & \frac{\partial x_{n}^{0}\left(y^{\prime}\right)}{\partial y_{2}} \\
\frac{\partial x_{1}^{0}\left(y^{\prime}\right)}{\partial y_{n-1}} & \frac{\partial x_{2}^{0}\left(y^{\prime}\right)}{\partial y_{n-1}} & \ldots & \frac{\partial x_{n}^{0}\left(y^{\prime}\right)}{\partial y_{n-1}}
\end{array}\right|,
$$

$e_{1}, e_{2}, \ldots, e_{n}$ are canonical unit vectors in R_{x}^{n}.
Theorem 2. Suppose (3) holds. Then the surface $\Gamma \subset R^{n+1}$ is an n-dimensional surface, i.e.

$$
\operatorname{rank}\left[\begin{array}{cccc}
\frac{\partial X_{1}^{0}(y)}{\partial y_{1}} & \frac{\partial X_{1}^{0}(y)}{\partial y_{2}} & \ldots & \frac{\partial X_{1}^{0}(y)}{\partial y_{n}} \\
\frac{\partial X_{2}^{0}(y)}{\partial y_{1}} & \frac{\partial X_{2}^{0_{2}}(y)}{\partial y_{2}} & \ldots & \frac{\partial X_{2}^{0}(y)}{\partial y_{n}} \\
\frac{\partial X_{n}^{0_{n}^{(}(y)}}{\partial y_{1}} & \frac{\partial X_{n}^{0}(y)}{\partial y_{2}} & \cdots & \frac{\partial X_{n}^{0}(y)}{\partial y_{n}} \\
\frac{\partial U_{0}(y)}{\partial y_{1}} & \frac{\partial U_{0}(y)}{\partial y_{2}} & \ldots & \frac{\partial U_{0}(y)}{\partial y_{n}}
\end{array}\right]=n, \quad \forall y \in Q,
$$

where Q is some neighbourhood of the point $y^{0}=\left(y^{\prime 0}, 0\right) \in R_{y}^{n}$.

6. An Cauchy problem for the equation (8)

We are looking for solution $\varphi(x, u)$ of (8) such that

$$
\begin{equation*}
\left.\varphi(x, u)\right|_{x=X^{\circ}(y), u=U^{\circ}(y)}=y_{n} \tag{13}
\end{equation*}
$$

Theorem 3. The Cauchy problem (8), (13) is noncharacteristic if the following condition holds

$$
\tilde{A}\left(y^{\prime}\right) \equiv\left|\begin{array}{cccccc}
\frac{\partial x_{1}^{0}\left(y^{\prime}\right)}{\partial y_{1}} & \frac{\partial x_{1}^{0}\left(y^{\prime}\right)}{\partial y_{2}} & \ldots & \frac{\partial x_{1}^{0}\left(y^{\prime}\right)}{\partial y_{n}-1} & v_{1}\left(y^{\prime}\right) & a_{1}\left(x^{0}\left(y^{\prime}\right), u_{0}\left(y^{\prime}\right)\right) \tag{14}\\
\frac{\partial x_{2}^{0}\left(y^{\prime}\right)}{\partial y_{1}} & \frac{\partial x_{2}^{0}\left(y^{\prime}\right)}{\partial y_{2}} & \ldots & \frac{\partial x_{2}^{0}\left(y^{\prime}\right)}{\partial y_{n-1}} & v_{2}\left(y^{\prime}\right) & a_{2}\left(x^{0}\left(y^{\prime}\right), u_{0}\left(y^{\prime}\right)\right) \\
\frac{\partial x_{n}^{\circ}\left(y^{\prime}\right)}{\partial y_{1}} & \frac{\partial x_{n}^{\ddot{n}\left(y^{\prime}\right)}}{\partial y_{2}} & \ldots & \frac{\partial x_{n}^{\dot{o}\left(y^{\prime}\right)}}{\partial y_{n-1}} & \ldots & v_{n}\left(y^{\prime}\right) \\
\frac{\partial u_{0}\left(y^{\prime}\right)}{\partial y_{1}} & \frac{\partial u_{0}\left(y^{\prime}\right)}{\partial y_{2}} & \ldots & \left.\frac{\partial u_{0}\left(y^{0}\left(y^{\prime}\right)\right.}{\partial y_{n-1}}\right) & A\left(y^{\prime}\right) & a\left(x_{0}\left(y^{\prime}\right)\right) \\
\left.y^{\prime}\left(y^{\prime}\right), u_{0}\left(y^{\prime}\right)\right)
\end{array}\right| \neq 0, \quad \forall y^{\prime} \in \omega,
$$

where $v\left(y^{\prime}\right) \equiv\left(v_{1}\left(y^{\prime}\right), v_{2}\left(y^{\prime}\right), \ldots, v_{n}\left(y^{\prime}\right)\right)=\frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{1}} \times \frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{2}} \times \ldots \times \frac{\partial x^{0}\left(y^{\prime}\right)}{\partial y_{n-1}}$.

7. The solution to the Cauchy problem (8), (13)

The characteristic system for Cauchy problem (8), (13) is

$$
\left\{\begin{align*}
X_{j}^{\prime}(t) & =a_{j}(X(t), U(t)), j=1,2, \ldots, n \tag{15}\\
U^{\prime}(t) & =a(X(t), U(t)) \\
\Phi^{\prime}(t) & =0
\end{align*}\right.
$$

with the following initial conditions

$$
\left\{\begin{array}{l}
X(0)=X^{0}(y) \tag{16}\\
U(0)=U_{0}(y) \\
\Phi(0)=y_{n}
\end{array}\right.
$$

We denote the solutions of the problem (15), (16) by $X(y, t), U(y, t), \Phi(y, t)$. We consider the following system of ($\mathrm{n}+1$) equations with respect to $(\mathrm{n}+1)$ unknowns $\left(y_{1}, y_{2}, \ldots, y_{n}, t\right)$

$$
\left\{\begin{array}{l}
X\left(y_{1}, y_{2}, \ldots, y_{n}, t\right)=x \tag{17}\\
U\left(y_{1}, y_{2}, \ldots, y_{n}, t\right)=u
\end{array}\right.
$$

We denote the solutions of the system (17) by $Y_{1}(x, u), Y_{2}(x, u), \ldots, Y_{n}(x, u), T(x, u)$.

Theorem 4. The function $Y_{n}(x, u)$ is a solution to the problem (8), (13).

Remark 1. Suppose (14) holds. If we set

$$
W(y, t)=\left[\begin{array}{ccccc}
\frac{\partial X_{1}(y, t)}{\partial y_{1}} & \frac{\partial X_{1}(y, t)}{\partial y_{2}} & \ldots & \frac{\partial X_{1}(y, t)}{\partial y_{n}} & \frac{\partial X_{1}(y, t)}{\partial t} \tag{18}\\
\frac{\partial X_{2}(y, t)}{\partial y_{1}} & \frac{\partial X_{2}(y, t)}{\partial y_{2}} & \ldots & \frac{\partial X_{2}(y, t)}{\partial y_{n}} & \frac{\partial X_{2}(y, t)}{\partial t} \\
\frac{\partial X_{n}(y, t)}{\partial y_{1}} & \frac{\partial X_{n}(y, t)}{\partial y_{2}} & \ldots & \frac{\partial X_{n}(y, t)}{\partial y_{n}} & \frac{\partial X_{n}(y, t)}{\partial t} \\
\frac{\partial U(y, t)}{\partial y_{1}} & \frac{\partial U(y, t)}{\partial y_{2}} & \ldots & \frac{\partial U(y, t)}{\partial y_{n}} & \frac{\partial U(y, t)}{\partial t}
\end{array}\right],
$$

then

$$
\begin{equation*}
W\left(Y\left(x^{0}\left(y^{\prime}\right), u_{0}\left(y^{\prime}\right)\right), T\left(x^{0}\left(y^{\prime}\right), u_{0}\left(y^{\prime}\right)\right)=\tilde{A}\left(y^{\prime}\right), \quad \forall y^{\prime} \in \omega\right. \tag{19}
\end{equation*}
$$

and therefore $W(Y(x, u), T(x, u)) \neq 0$ in some neighbourhood of the point $\left(x^{0}\left(y^{\prime 0}\right), u_{0}\left(y^{\prime 0}\right)\right)$.
Theorem 5. Suppose (14) holds. Then the following formula holds

$$
\begin{equation*}
\frac{\partial Y_{n}(x, u)}{\partial u}=-\frac{1}{W(Y(x, u), T(x, u))} \times \tag{20}
\end{equation*}
$$

$$
\left|\begin{array}{ccccc}
\frac{\partial X_{1}}{\partial y_{1}}(Y(x, u), T(x, u)) & \frac{\partial X_{1}}{\partial y_{2}}(Y(x, u), T(x, u)) & \ldots & \frac{\partial X_{1}}{\partial y_{n}-1}(Y(x, u), T(x, u)) & a_{1}(x, u) \\
\frac{\partial X_{2}}{\partial y_{1}}(Y(x, u), T(x, u)) & \frac{\partial X_{2}}{\partial y_{2}}(Y(x, u), T(x, u)) & \ldots & \frac{\partial X_{2}}{\partial y_{n-1}}(Y(x, u), T(x, u)) & a_{2}(x, u) \\
\frac{\ldots X_{n}}{\partial y_{1}}(Y(x, u), T(x, u)) & \frac{\partial X_{n}}{\partial y_{2}}(Y(x, u), T(x, u)) & \ldots & \frac{\partial X_{n}}{\partial y_{n-1}}(Y(x, u), T(x, u)) & a_{n}(x, u)
\end{array}\right|
$$

Remark 2. From (6), (20) we have

$$
\begin{equation*}
\frac{\partial Y_{n}\left(x^{0}\left(y^{\prime 0}\right), u_{0}\left(y^{\prime 0}\right)\right)}{\partial u}=0 \tag{21}
\end{equation*}
$$

8. Solvability of the Cauchy problem (1), (4)

Suppose

$$
\begin{equation*}
\frac{\partial^{2} Y_{n}\left(x^{0}\left(y^{\prime 0}\right), u_{0}\left(y^{\prime 0}\right)\right)}{\partial u^{2}} \neq 0 . \tag{22}
\end{equation*}
$$

From the implicit function theorem it follows that the equation

$$
\begin{equation*}
\frac{\partial Y_{n}(x, u)}{\partial u}=0 \tag{23}
\end{equation*}
$$

defines a function $u=\psi(x)$, that satisfies the condition

$$
\psi\left(x^{0}\left(y^{\prime 0}\right)\right)=u_{0}\left(y^{\prime 0}\right)
$$

We denote by L the n-dimensional surface in $R_{x, u}^{n+1}$ that is defined by

$$
\begin{equation*}
L \equiv\left\{(x, u) \in R^{n+1} ; u=\psi(x), x \text { is in a neighbourhood of } x^{0}\left(y^{\prime 0}\right) \in \Omega \subset R^{n}\right\} . \tag{24}
\end{equation*}
$$ and by M the following (n-1)-dimensional surface in $R_{x, u}^{n+1}$

$$
\begin{equation*}
\left.M \equiv\left\{(x, u) \in R^{n+1} ; x=x^{0}\left(y^{\prime}\right), u=u_{0}\left(y^{\prime}\right)\right), y^{\prime} \in \omega\right\} \tag{25}
\end{equation*}
$$

Thenit is obviousely that

$$
\left.\left(x^{0}\left(y^{\prime 0}\right)\right), u_{0}\left(y^{0}\right)\right) \in L \cap M
$$

The surface L separates $R_{x, u}^{n+1}$, locally at the point $x^{0}\left(y^{0}\right)$, into two parts L^{+}and L^{-}. Namely,

$$
\begin{align*}
& \left.L^{+} \equiv\left\{(x, u) \in R^{n+1} ; u>\psi(x)\right) ; x \text { is in a neighbourhood of } x^{0}\left(y^{\prime 0}\right) \in R^{n}\right\} . \tag{26}\\
& \left.L^{-} \equiv\left\{(x, u) \in R^{n+1} ; u<\psi(x)\right) ; x \text { is in a neighbourhood of } x^{0}\left(y^{\prime 0}\right) \in R^{n}\right\} . \tag{27}
\end{align*}
$$

We denote

$$
\begin{aligned}
& M^{+} \equiv M \cap L^{+} \\
& M^{-} \equiv M \cap L^{-}
\end{aligned}
$$

Proposition 1. Suppose (6), (7) hold and $n \geq 3$. Then either $M^{+}=\emptyset$ or $M^{-}=\emptyset$.
Suppose, for definiteness, that $M^{+} \neq \emptyset$ and $M_{1}^{+}, M_{2}^{+}, \ldots, M_{k}^{+}$are its connected components. Each surface $M_{j}^{+}, \mathrm{j}=1,2, \ldots, \mathrm{k}$, determines in a semineighbourhood of the point $x^{0}\left(y^{\prime 0}\right)$ a classical C^{1}-solution $u_{j}(x)$ to Cauchy problem (1), (4).

Theorem 6. Suppose $n \geq 3$ and all conditions (6), (7), (14) (22) hold. Then for solvability of the characteristic Cauchy problem (1), (4) in a semineighbourhood of the point $x^{0}\left(y^{\prime 0}\right)$, it is necessary and sufficient that all functions $u_{j}(x), j=1,2, \ldots, k$, coincide each to other in that semineighbourhood.

References

[1] G. Darboux, Leçons sur la théorie générale des surfaces, tome 3, Gauthier-Villars, Paris, 1894.
[2] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris, 1932.
[3] Tran Duc Van, M. Tsuji, Nguyen Duy Thai Son, The characteristic method and its generalisations for first-order nonlinear partial differential equations, 101. Chapman \& Hall/ CRC Press, Boca Raton, FL., 2000.

