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Synopsis

Thermodynamic properties of ferromaghét with impurities are
Vdiacussed and in particular fhose in the critical region are investi-
gated. The critical temperature, the critical concentration and the
critical exponent for dilute ferromagnets and @agneti& solid solutions
are calculated on the basisa of the Ising model. Ther are four.kinde_of
models in the statistical problem of random system, the anneaied bond,
~ the annealed site, the quehched bond and the quenched site models.
The grand partition fuﬁctions of annealed bond models for the dilute,
ferromagnets and the magnetic sclid solutions aré*exactly calculated
and the expressions for the critical temperature, the critical
aoncentratioﬁ and the critical exponents are obtained. The critical
temperature decreases monotonically in the dilute ferromagnet as the
concentration of impurities increasés and vanishes at the critical
concentration. Several types of variation of the critical
temperature éie obtained in the'mégnetic solid solutions, depending
on the exchange coupling of impurities. The specific heat has the:
cusp singularity in contrast with the logarithmic singularity in the-
two~dimensional Ising Model solved by Onsager.‘ The renormaliged
exponents'are'constant in the annealed bond model.

In thé case of the guenched bond and the'quenched site modeis,'
~ the zero field susceptibilities are calculated by the high temperature
series expansion,andcthe critical temperature and the critical exponent
are obtained by the ratic method. The critical temperature versus
concentration curves are similar to those of the annealed wmodels both
in the dilute ferromagnet and in the magnetic solid solution. The
numerical results of fhe above calculations are investigated in compa=~
rison with the rigoreﬁa theorems. As for the critical exponent of the

dilute ferromagnet we present other two. models for which the rigorous



ii
resultcan b oﬁtai.neds The critical expd'hents of the above
mdaels sﬁhtléfy }{:he scaling reldtion. Thd size-effect on the critical
téfhperaﬁure is discussed for the quenched{ site model, cohsidering
nilayet Ising g&étems’ of the square lattice, where n = 142,...,6
ahli oo s A Sirﬂﬁie relation between shift of the critical
{empertturb atid n is obtained:
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Chapter I Introduction

Thermodynamic properties of ferromagnet with impurities are
discussed, putting stress on the critical phenomena or phase transiticn
temperature, critical exponent, specific heat and so,on.

The investigation of physical systems with an dmpurity arised from the

study for excitation modes of lattice vibration by 3ifshitz%) Recently

: \
the coherent potential approximation2’

is used in order to investigate
a number of physical systems. Thére are many other methods for the
-study of physical systems with an impurity. The*purpcée and the
gituation of this paper as well as some related methods are éxplained

briefly.

§1-1 DPresent situation of the impurity problen

»

There are many investigations on a system’with a singlé impurity;>
Though & single impurity has no effect on the thermodynamic prOpefties,
it is important to study the microécopic mechanism of the'intergption
of host atoms and an impurity and to study elementary excitations in
the syétem with an impurity. And it may be possible tovdevéloﬁ an
exact formalism in the single impurity system. There existé also the

%)

induced in systems with an

. kY . l Y
impurity, for example, many-electron prcblemzi lattice vibratzan,’

. ’ : X
gtudy of localized and resonance levels

*) In this paper we focus our discussions upon‘the mixtured
crystal with the substituted impurities and will not discuss glassic
solids, liguid metals etc. '

D) There are many discussions concerning - . the'&istributian Qf
energy levels and localizability of wave function. Fér example,
Tanaka, Terakawa and Miyazima calculated thé‘energy5and the wave function

of localized spin wave in one-dimensional maghetic systems.



and magnon in crystalajiwith an impurity. And‘the experimental
investigations by the Réman scattering, far-infrared absorption and
the neutron scattering4> have been developed and have obtained
the informations with regard to the impurity level. .

There exist also some advanced investigations for the system with
- many impurities. In this case, however, the exact treatments in the
mathematical form are very difficult. As for the investigation of
magnetic insulator with two impurities, there have been three reports, -
that is, Frikkee's study for the fcc ferromagnet?) Miyazima and Okiji's

6)

one for the bece antiferromagnet” "and Tonegawa's one for the one-

dimensional ferromagnet7>
There is a new method of CPAZ)(coherent potential approximation)

by which many-impurity problem can be treated, even though the

mathematical exactness recedes‘a little. This method has been formulated

by Soven, and analyzéd to be nearly equivélent to the molecular~field

‘approximation. The Hamiltonian H consists of two parts),
H=H +Vv , . | o (1-1)

where H, is &n unperturbed Hamiltonian for a certain regular system
and V is assumed to have only the diagonal randomness. If the Green's

function for the unperturbéd system is given by

<a

j > y | | {(1-2)

where (A =1trA e"Ho/kT/tre“Ho/kT . Then the Green's fﬁnction for

the total system is expressed by

— 1N o] 0 ©
G13=-“_<&i E-H a’j> = Gy * 1.65y vy 61 (1-3)

+ ) 0 0 ’ .30.
1§ VG Y 6Ty e



- -+ . , ' . . iy ,
where a, and ai are the annihilation and creation opérators of some

kind of excitons. Now if we put

= V, + V,6%.v. + v. 6% v.6%.v, +...

! 1Y 1%t ViVt
' o : . (1-4)
= Vl/(l -~ Gllvl) ,
we Sbtain
O .o o~n0 (o]
Gy = By  + % 61 8y Gy
«oab o - o .. K (1-'5}‘
* oy B Vg Gaae Voo Gy e e
Here if we determihne Ho such aé
- (1-6
{ide= 0 | )
theﬁ
.0 . 0 0 n 0 12 2\2 .. (1-7)
{Gi30e = G35+ 18y G31(6y706707)%6 ot +os |

where ( :E means the summation over all the configurations. As shown
in 1-7), the first correction term to ng is the fburth order of

tl . And it is possible to make the correctioh terst smaller. In CPA

it is important to choose the unperturbed Hamiltpnian 80 tﬁat the

local t-matrix comeés to be zero., In the virtual-brystal'apprcximation,
the average potential is chosen as a part of unperturbed Hémiltonian,
This method is utilized successfully to calculate the density of states,
the dispersion relation and so on in the alloy. When impurities with
finite concentration afe substitutedin, there appear some effects on
the critical phenomena. However there are no trials to caiculate

the phase transition temperature by CPA. This is one of problems in

the future.



§‘1~2 Ferromagnet with impurities

We confine ourselves to the Ising model with impurities, Wheré'
non-magnetic, ferromagnetic and antiferromagnetic impurities can be
treated. Exact expressions of the oritical tgmperatﬁre ahd the critical
concentration, at which the critical temperature %anishes,»ha&e'been

8)

obtained by Syozi, Miyazima and Kasai for several models. These are
explained in chapters IJ and IIT.

In 1959 Brout9> gave the mathematical exprgﬁsions.for the two -
systems of dilute ferromagnet, i.e. an annealed system and a

quenched system. The free energy of the two systems is given by

-kT_<1n.<exp(~H/kT)>s>% for the quenched system" (1-8)
and

~kT 1n <§xp(—H/kT)>9>c for the annealed system , (1-9)

B
where H is the Hamiltonian for the Ising spin system with imﬁurities
'k is the‘Boltzmann-facter and T is the absolute temperature. < >s |
and { ). mean the average over the spin states and the cénfiguraticns
of impuritieé respectively.

At first the appearance of long range order in the dilute ferro-
magnet is explained gualitatively. The general proof of the existence
of ferromagnetic 10#@ range or&er‘is given by Griffiths and Eebewitzlc}
and the critical temperature for the two-dimensional Ising model is
actually calculated in chapters II and III. When many impurities are
substituted in and the concentration of magneﬁié ions p is smaller
than 1/z , whefe 2z 18 the number of nearest neighbar'lattiae point,
the state of long range order is impossible. For it is impossible

to link all neighbors into macroscopically long chains in the random



[}

gituation. When p is slightly greater than 1/z there is a finite
probability of forming infinite clusters and making ferromagnetism
possible.

Brout calculated the critical temperature of quénched system by

the cummulant expansion method as follows,
z tanh (J/kT ) = 1/p . (1-10)

In the equation (1-10), there is no solution ofE‘c for p £ 1/2 ,
which is equivalent qualitaiively to the above-mentioned discussion.

Now we explain the Syozi modél for dilute ferromagnet which is
the only one exactiy goluble model of dilute ferromagnet at the present
time. As this model will be discussed in § 2-1, even though a little
modification is added, we only give an introduction of the Syozi model.
Congider a decorated Ising square lattice. There is an Ising spin at
each matrix lattlue polnt Whluh is represented by the variable JA = & 1 ,
where the upper sign corresponds to the up spin and the low sign
does to the dcwh epin. The variable <& (= 2 1 and 0) is introduced
at each decorating latiice point. S = ¥ 1 cérrespcnd tO»the‘up
and down spins respectively and & = O corresponds 1o no spin at the
decorating lattice point. Either magnetic or non-magnetic ion can
occupy the decorating lattice point in the present model. This
decorating Ising lattice is reduced to the ordinary Ising lattice
solved by Onsager}l) utilizing the extended iteration transformation
introduced by Syozi. Thus the exact expressions for several thermo-
dynamic quantities can be obtained. In particular the critical
concentration and thé cusp type specific heat whiéh forms a stfiking.

contrast with the logarithmic divergence must be noted.



In thig paragraph we discuss the percolation problem which is
closely related with the dilute ferromagnet, following to Broadbent and

2)

Hammersley'sl paper. A system introduced in the perooiation problem
consigts of lattice points and bonds connecting two lattice poinfsg
being satisfied with certain conditions. Two particles are connected
by a bond, if they are put at the nearest neighboring sites: And thus
a large cluster can be made. The magnitude of clusteré depends on
the ratio p of particles to total lattice point. It is app#rent that
the total lattice points become a cluster when p = 1 in the systenm
with finite lattice points. There is a possibility of occurrence of
infinite large cluster in an infinite éystem. The critical concent-
ration (probability) p, is defined as follows. If a particle which
occupies a lattice point belongs to an infinitely large cluster with the
probability P(p), P{p) becoumes non-zero and finite at p w'pc , which
ig called the critical probability. There areclose correspondences
between the percelation problem and the dilute ferromagnet which are
diccussed in § 5-2.

Other related problens are the lattice gas and the binary alloys.
These wodels may be used ¢ investigate the distribution of gr&in

' 13) '

size in sands and proteographic emulsions, These theories as mentioned
& ] " ~

~

¢

i

above put stress on the subsystem of the lattice points in the
percdlation problem, which ia’called the site percolation problen.
On the other hand we have a following problém which lays stresgs on
the bond rather than the lattice point, whicﬁ is called the bond
percolation problem. |

A bornd has the function as a pipe which'flaws water from an edge

f the bond to another edge. Adding bonds to a considered lattice



7

and flowing water, then many lattice points become wet and at last
the infinite number of lattice points become wet at the critical
concentration p, of bonds. Otherwise the cluster of lattice points
is called the maze. According to the approximate calculations the
critical concentration is about 0.58 for the square lattice and about
2/z for the three-dimensional lattices.

As an application of the bond percolation problem, the conductor-

insulator transition was discussed by Ziman%4) The bond between two

lattice sites is sﬁpposed t0 be open or closed tg a classical electron,
with the probability v of an Open‘bond depending on the energy of the
electron. When p <P, the electrons can only migrate locally but
when p > P, the crystal becomes conducting. As other bond problenms

there are, for example, the gelation of polymers and the infection of

the disease in an orchard.



Chapter Il The dilute ferromagnetism

In this part we discuss the magnetic properties in the ferro-
magnetic substances which contain non-magnetic impurities. As
discussed in the introduction we have two differnt systems, annealed
and quenched systems. And we have two differnt appro&éhes to these
random magnets, that is, considering as a bond problem and as a site
problem. The latter classification has not only mathematical means
but also physical corfespondences. In the Casayof sdiid solution

L~X)2. 2
the contrary it is better ito consider it as a site problem in the case

Mn(Ol%Br, 2H,0 it is better to consider it as a bond problerx. O:

of Mani(l_x)012~ 2H20 .
As a result we can treat the dilute ferromagnetism as the
following four models, annealed bond, quenched bond, annealed site

and gquenched site models.
§ 2-1 The Syozi model (annealed bond model)

In 1965 Sjozi proposed a decorated Ising iattioe as a model of the
dilute ferromagnetism which was exactly soluble by using the extendea
iteration ‘transformation. The spin variables M (z'x.l) at the matrix
lattice points correspond to up and down étate of spin and those

G = %1 and O at the decorating lattice points correspond to up, down spius
and existence of non-magnetic impurity on the bond, Which means no |
exchange interaction between two spins at the vertices of bond. “he
Syozi model for the dilute ferrcmagnet;ém gave the exact expression
of the phase transition temperature, the critical concentration and
other thermodynamic quantities.

The Syozi model ie the intermediate model of the site and bond
problems. Here we give the brief explanation of ﬁhis model with &

modification, where it is treated as a pure bond problem, but the



essential points are same as the Syozi model. A part of bond

configurations is represented in lfig. 2~1.

Fig.2-1 One of the bond configurations in the bond
problem for the dilute ferromagnet is represented.
The bond means the exchange interaction between

a pair of spins at the vertices.

Assuming the exchange integral between & pair of nearest

neighbbring spins, The Hamiltonian is expressed as
He ~-Jd Z M C.. U ' (2-1)
(ijfﬁ ij fﬁ ’ ’

where /Aj( = % 1) is an Ising spin variable and d&j ( =1 and 0) is
introduced in order to express whether a bond between the i-th and
j-th lattice points exists or not. The summation is over all the

nearest neighboring pairs. By using the~parameter § y the grand



canonical partition function is given by

S22 U exol TUO M +E0, ) (2-2)
e ‘Mg,(i‘j}“” /Ml 1373 i '

where 1 = J/kT , the first summation is over all spin configurations
and the second one is over all bond configurations.

At first summing over all bond configurationsin (2-2) we obtain

~ Nz/2 .. h
= A7 z exp( KM, M.) . : (2-3)

-

where N is the total number of lattice points, z is the coordination

‘number and A and K are given by the following equation,

it

b b
A% = (1 + ™5 (1 v 7S (2-4)
: SLet , o
Koy ot (L + &R . {2-5)

Now the second factor in (2-3) is the partition function ZO(K} for
the matrix Ising wodel with the exchange coupling constant X. Thus

—_ N , . . . .
~ = A 2/2 (ﬁg(k‘:) “ _ ) (2_,&‘}

From this grand partition function, .the average number of bonds

ggfia calculated derivating by 5,

7 N wblngmzN 21n A BIII?Z(K) ¥ /A
2p’" a% "' o 3& ' + aKn ‘m‘g ? ‘\d""?)
Eliminating.é by (2-5), we have
1 1-e'2K (2L , 2K,
p3gr LT A8+ - e ), (2-8)
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where ¢ is the correlation function for a pair of the nearest

neighboring Ising spins given by

_ 2 2ln_2q(XK) '
8— ~ zN 2 K * * (2-9)

Now if we utilize the critical.values for the square lattice
exp(-2K ) =/2 -1 , & =[2/2 (2-10)

and (2-7), we obtain the critical temperature for the present dilute

ferromagnet,

e 2Pe = 1+ J2/(2p-1) . S (2-11)

The-behavior.of critical tempe~
rature given by (2-11) is repre-
sented byv?ig.2-2. As shéwn in
Fig.2-2, the critical temperature
KQ vanishes at p = 0.9 for the
24 square lattice. The concentra-

tion at which

0.5

Fig. 2~2 The critical tempera-
tures of the annealed wodel
fdr the dilute ferromagriet in

the square lattice versus the

) : , concentration of @agnetic
0.25 - 0.5 = - 0.75"° 1 '

p ) : .-. » | ,

gtoms.
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the critical temperature vanishes is called the critical concentration.
It is also shown by Syozi that 1if P, is the critical concentratiocn for
an Ising lattice, then the critical concentration of its dual lattice

pz is given by

p. =1 =D, . (2-12)

It is also important that the logarithmic singularity of the specific
heat in the ordinary Ising model reduces to the cusyp singulariﬁy wifh
finite value at the critical temperature. This is shown in a following
way. The specific heat per bond C(= kila € /dL) is calculated as

following,

| .
e [ R (; - -g;'\. I I - . ‘\ , -
¢ = k“2tgf’%i - (1~ %%}GOSQK~'K7(€COBhK - sinhK) + sinh(L-X) -
ax { hK N (4 ) s o . s
&% "(Esinbk - cosh? + T§008hﬂ)}/51nh3 + sinh(L-K)fcosh¥ -

N

sinhK)coshl / sinh<m

(2-13)

wnere

Q)i jo3
i
e~
N
o}

t
Py
[

i
¢e]

"1 v ) e‘iﬁ'{e’2K{ez“(l +e) + 21 E}k
. [
e L R Y A

In the case of the sguare lattice,

& = coth 2K ( n/2 + k'K(k))/x - (2-1%)



C/k :
1 0.8

0.3 i~

0.7

0.2 b~

0.1

0.4

/L

s P . _ . -
“ig. 2-3{a) The specific heats of the annealed model for the dilute
ferromagnet in the square lattice are given. The numbers

are the concentrations,
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(.

and
d%‘ . 2 { 1% \‘ S \ R rf. verf \,; AN
GF = coth2k | 2K(k) - 2E(k) - (1-k')(5 +k p(xb}/m ,  (2-16)
where

2_sinh2¥ + (1-x2)1/2, 2 1

K = WA__.,. y K' = 2tanh 2K - (2“"17\/

and (k) and E(k) are the first and secdond complete elliptic‘intégrals
respectively. The specific heat © versus 1/T is plotted in Fig.2-3(a).
It is clearly shown in Fig.2-3(a) that the logarithmic singularity at

p = 1 reduces to the cusp singularity for 0.9<p<1l. In the Fig.2-3(v)

the specific heat of MHXMg(l_x)(HCOO)z is shown,

§2~2 A quenched model for the dilute ferromagnet

in the previous section we discussed the annealedvbondzmodel Yo
the dilute ferromaghetism. In this section we discuss the guenchec
site and bond models by the series expansion of the zero field
susceptibility. The critical phenomena are secmed to depend on the
dimensionality, the interaction range and the type of interaction. 'n
order ito investigate the effect of dimensionality to the critical

er

£

phenomena which is called hereafter size-effect simply, we consi
two~dimensional layer lsing lattices, i.e. single-layer, two-layer,
three-layer, -+, and siwple cubic lattices. Of course the dilution
brings the similar, not the same, effects of change of dimensionality.
A complex effect of the dilution and size is also found.

The Hamiltonian of the present model in the presence of magnetic

field H ise given by




where mand H_ dernote ihe magnetic moment per spin and the field.
.0 ) :
The zero field susceptibility X (= limey 4y , where M is the
_ “ o
s U T A
magnetization) can be expressed as
e

/2N N oy N S C {(p=]c
(kT/m") X = 1 + o a (p) v, : (2-19)

where v = tanh J/kT and ar(p) ig the number of graphs of r-th order
s NPT Jig . o . e
with probability p~ . Here k is the number of sites for the considered

*
magnetic graph in the casce of site problem and k ig the number of

bonds in the case of bond problem., p is the probability that a site
18 occupied with an Ising gpin in the site problem and that two ends
of a bond are occupied with two Igsing spins in the bond problem,
respectively. ar(p) for the guenched site hodel and the quenched bond
model are given in Table 1 and Table 2 respectively. 1In the case of
no impurity, that is, p = 1, these coefficients are same as thosé
calculated by Ballemtinel?) and Allan%8) -

From this series, the critical temperature and the critical
exponent ¥ can be estimated by the ratio method.

When we assume that a, = ar(p)vx‘P(r)/vZ in (2-19), where

1im f@(xﬁ}l/r.x 1, . {2=20)

- T erea -

and v = tanh J/kT , we can fit P(r) by an expression of the fomnm

d(r) ~ 4 r€,

P
&
»
™
[

N

A e ou e o B s T

) This terminology was introduced by Oguch119>and this high
temperature counting problem was discussed by Fisher and Sykeﬁgg)in

’ \
detail. See also Domb's review article?l}
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At

and we should obtain a straight line of plotting ar/ar versus 1/T

-1
whose intersection with 1/r = 0 determines vc y and whose slope

14

determines g . This means that the singularity in the susceptibility
at the Curie point is of the form (1 - Tc/Tﬁmlmg. 22)

Some parts of ar/arul ~ 1/r curves for the guenched site model
are shown Fig. 2-4 . The critical temperatures estimated by these

plots are shown in Fig.2-% . The critical temperature curve for n = 1

A

T —~

shows a good fit with that for the Syozi model. As seen in #ig.2-9% ,
P. for the square lattice and s.c. lattice in the present calculation
are a little larger than those values in the Syozi model. The initial
gradients of TC - p curves in the present modei are larger than those
in the Syozi model. These are natural differences which oceur between

the site problem and the bond problem. Such inclinations are explained
P P P

in the chapter V.

3}  The

PO

~The critical exponent Yy is plotted in Fig.2-~6 against p
variation of critical exponent in the present model is different from
that in the Syozi model. The critical exponent increases as p decreases.
This result might be acceptable from the following two Tacts.

One is the decrease of effective dimensionality by zhe dilution. The

other is that the critical exponent for two-dimensional Ising laiiice

i

is 7/4 and that fQr three-dimensional lattice is 9/4 . The same kinde

@

¢

N

m

of behaviors can be seen i1n the other systems. The critical exponent

in the Syozi model will be discussed in chapter LV, and they are shown

) M.

to be comstant for 0 pp, and to have gaps at p = 1. The

5

present results by high tewmperature series expansion contrdict with
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Fig.2=59 The critical
temperature for the
queriched site model
versus the concent-
ration of magnetic

atoms is represented.
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Fi T, Y e d} o v B IO A S V 14 3\ e
g 2-4 The ratio &T(p//ar_jipz of a

simple cubic lattice 1s given against
1/r . The number in the figure means

the concentration of magnetic atoms.
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fipg.2-6 The critical eyporent
¢ of the susceptibility for the
quenched site model 1s

. . 7
represented against the

concentration of magnetic atoms.

0

.

.5 0.75 .

Pig.2~7  The critical

temperature obtained
from the high tempe-
rature series expansion
for the quenched bvond

model is represented.
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those of the Syozi model, but cannot deny the existence of the above
discontinuity because the number ol terms in series is ocmall.

In the case of the quenched bond model, the critical temperature
is represented in Fig.2-7, where the general trend is the same as in
the quenched site model. Itfis natural that the initial gradients. ang
the critical concentrations for the n-layer lattices are smaller than

those for the corresponding quenched site models respectively.

§ 2-3  Size-cffect on the critical temperature

~

In order to investigate the size~ef1éct on the critical
temperature; v, 18 plotted s a function of n")\()\x 1,25) in
Pig. 2-8 . This analysis has been carried out for
the Ising model by Allan and for the Heisenberg model by Hitehie and
Fishef%i)They obtained A = 1.27 and ‘A = l.l , respectively. It is
for the Tirst time that the size-effect in the dilute ferromagnet is
analized and the dependence of A on p is found as follows, A= 1.29
for p =1, A =1.44 for p = 0.8 and A = 1.7% for p = 0.7 . It is
difficult to estimate & relation between A and p from these few data.

. %)

“ ; ‘ . .2t
e-effect has been given by Abe, who

b

Similar analysis of si
proposed n-layer Ising lattice with intra-layer exchange coupling J
and inter-layer one C? J. The critical temperatures are calculated

by the perturbation theory as follows

’ 5 ¢ > { ' - n
(&) -1 (&= 0) =AC;1/ , (2-22)
where A is a constant. Ishikawa and Oguchi25) have investigated the
same problem in more general models by the high temperature series

expansion of susceptibility.



[} )

There are some maghetic materials which shiow one or two-

y

dimensional orderings. DBut in ithe lowest temperature they show ihree=~
dimensional properties. Therelore the above analyses are important
to investigate magnetic properties, in particular behaviors of the

critical exponents ¥ in the intermediate temperature.

* 1
F
w,«»*”pia,:@
Y
Lt i it
0 0.5 0
n=e 654 3 r4 » H
ﬂ".g &25
#ig. 2-8 The critical values v, = tanh J/kT _ versus n 97 are

c
plotted. The solid lines connect the two points at n = 1
and n = oo . The dashed lines connect the calculated values

from ‘the high temperdature expansion.



Chapter 111 Magnetic properties in soldid solutions

in this chapter we.discuss the magnetic properties of solid
solutions which consist of iwo components of magnetic substances.
Annealed systems are discussed in § 3-1 exactly and quenched systems
are in § 3~2 by the high temperature approximation. Ektensiqn to .

systems with many components is straightforwardly possible.

§3*1 Extended Syozi model

The model for the dilute ferromagnet discussed in § 2-1 can be

extended to a following model for solid solutions with random

arrangements of two kinds of exchange integrals, which'is shown in
Fig.3-1. The‘variables }Ai (= 1) and Nj (= %1) represent the two
states of the up and the down Ising spins at i- and j-th sites. The
variables O, (=0, 1) and _‘5ij (=0, 1) are introduced to represent
the absence and the presence of a bond with first kind of exchange
integral J and the second kind of exchange integfal J‘(sz) between

g - aﬁd j=th sites respectively.

o L - Fig.3-=1 One of the bond configurations

of the bond model for the magnetic

-~

—
v
-

solid solutions is given. The solid

et s bond means the existence of an ex-

eee]eee|wmwlod.. - change interaction J between & pair

of spins . The dashed bond means

{ the existence of another exchange

N b
" _'*I interaction J'.



a
The Hamiltonian can be expressed S
{ = = NN TR G SRR P L AU I Vo B : -1) -
H T B MU+ ®a ) A (3-1)

The grand canonical partition function is given by introducing.% and

é‘ as follows,

o= :,55 if:‘ e}{pgi}é} L /ui(dij"-“ 613)};{3

(3-2)
By applying the extended iteration transformation,.
2= a2 (x) o C(3-3)
where :
22 = Qb+i¢gﬂh*€)r €L+é*_5un+g) p (3-4)

‘ T o o el
o2 o (P 5, ML tE )/( &™E *g, e Y +8) . (3-3)

In the similar wzy as in § 2-1, the’'average concentration of. bonds with

first kind'of exchange integral is given by

inh(an-K) T, . . o
p =3 el {2 46 P ~£>}., (3-6)
e’ Tsinh(al-L) :

Other bonds of which concentration is given by p' = 1 - p have the
second kind of exchange integral J'. Here if we utilize the critical

values for the square lattice obtained by Onsager '



[ 8]
i .
~3

o K = Jex 1, EC = % 2 . . (

we can calculate.the critical temperature by (3-6). In (3-7) the
critical values with the upper signs are used for the ferromagnetic
_phase transition and those with the lower signs are used fof the
antiferromagnet;c phase transition, Pig.3-2 répresents the critical
temperatures of solid solutions with two kinds of antiferromagnetic
exchange intégral, that is, <0 and J'(= aJ)<;9‘fof several values of
«. The curve ih the case of @ = 0 is equivalent to that of the dilute
ferromagnet discussed in § 2-1 . Fig. 3-3 represents the critical
témperature in the case of J> 0 and « = ~1, In this éase the ferro-

2

magnetic ordered state &mpeafs for (pvs 1 and the antiferro~

magnetic one does i‘or 0<p (f £°, where £é=f§/2. '_F'o'r, S P =S /“"5:‘

Fig.3-2 The critical

tempe:aturas'af the
'annéaled model for the
megnetic solid solutions
are piotted versus the

concentration p of bonds,
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here is ne phase transition.

24d
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\ bodm -1 2
oi=0.5\
A
| ‘%%.
L i i i & L ! T
0 0.1465 . 0.5 0,8535 1
o :

fig. 3-3 The critical temperatures of the annealed model of the
magnetic solid solution are plotted versus the concentration .
p of bonds with the exchange integral J. Here'J is assumed
to be pa&%tivg’amd J' is negativé Tc and TN are the Curie

temperature and the Neél temperature respectively.



The specific heat at the constant concentration p is

C z'klz[éé Qﬁ + (o ~1)['“v -~ 1)cosh(K ~n){31nh(a -K) +

H=

4t di

& cosh(K»aL)}‘+ sinh(Knh}{(a- %%}cosh(ah—x) * R

cosh( (=0t7) +§ Slnh(ﬁf'f'fn}(-’-r - }/dﬁnh(tx“-L)

-(a-l}z\sinh(!(—ﬁ\f{sinh(ﬁ"ﬁ—}{') +§ cosh( Z«T’-—%)} cosh(alL-L})/

2

sinh‘?(oc‘;r-n )} ‘ ' ( 3"'8)
‘where

dK . S
i =[p(l-a)cosh(mL~n} + acosh(aumi)%eosh(LwK? +<EBinh(L§K)}
+ sinh(mL—K)ésinh(@-K) +E.cosh(LmK)H/[cosh(dL—K)icosh(L-K).

+ ¢ sinh(L-K) '3’ + sinh( 0!5-»’&)( sinh{L-K)- Es:x,nh( L-K)+§cosh{ L-K }}}
(3-9)

This is shown in Fig.3-4. 1In this model, the specific heat at the
critical temperature remains finite as far as p £# 0 or 1. The same
renormelization in the critical exponents as the dilute ferromagnet

can be easily understood from (3-9).
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} 3-2 A quenched model for magnetic solid solutions

A quenched model [or magnetic solid solutions which consiot of

two component is considered. In a guenched site model, one of 1wo w .

.

of atoms A or B can occupy & lattice site. Therefore three kinds ol
exchange integrals JAA’ JBE anad JAB’ which are exchanée integrals
between a pair of atoms A, a pair of atoms B and a pair of atoms 4 and
B respectively, must be introduced. JAB is not &leVJ the average

of J,, and JBB , but 1t can take the larger or smaller value than

cases 1t is interesting to investigate the

»-qd
furd
\’3

J 44 and ;BB . Iin
behavior of critical temperature as the concentration of atoms A
changea. On the other hand we introduce only two kinds of exchange
integrals JA and JB in a quenched bond model.

The zero field susceptibility in the quenched site model can be
expanded as discussed in % 2-2 . The number of magnetic graphs is
came as before for the every order. However the weight for eadﬁ
magnetic graph is diflferent from the dilute ferromagnetic model.

As an example, we congsider a magnetic graph such as

{ { L

-~

Two xinds of atoms A and b occupy the three sites, so we have 2

different configurations such as

: S S § | 0 % @ & L S S —
| CUNPUNIES S NS S SUIIS S Y

, Where o and e meananl atom and a B atom respectively, and each

2
graph has the following weight vy, , VAAVAB viB v VaaVas 0+ VanVen o
VAR
and vpp = tanh JBB/KT . Thus 12p-v

5 2 - m 5 - Fass
-V g ¥y = & i - =ohanh J /KL
VipVpp 8R4 vgy » where v, tanh JAA/kL v Vpg tanh J,./k

32 in Table 1 is replaced by 12X



¢

-

o) . < A" o+ (D | - 2 yoq? + 2 ¢
v (2vyvag * VapleTa v (2vgpvag o+ Vip)pa® v vpga

3

i

(.2 3 .

P i, Gther
iVAAp s i
coefficicents also must be replaced in the similar way. Ixpanding
tanh JAA/kT, tanh JB%/R?'und tanh JAB/kT in a power series of

1/kT, we obtain

(kT /Nn2) Ky =1+ I blaa,a)(1/kD)T {3100
= - '

y ¥ = b2 W g S 1 ; ‘..‘:l . a3 . y Cr e ¢ ] T4 \'5."-‘,#
where a, JAA y 85 JBB anid a3 JAB for the sake of siwmplicity
The coefficients br are given in Appendix A.

Applying the ratio mecthod to these series, we obtain the

[

critical temperatures which are represented in Fig's3-%(a), 3-9(b) a1

3-9{¢) for the cases of (al =1, a,

= 0.9, a, = 0.7%) and (a, =1, a, = 0.5, a, = 0.2%) for n-layer
, 3 1 2 3 :

Ising lattices (n = 1,2....6 and % ) respectively. The critical

= 0-51 a‘?) = 1'5)7 (aw = 1,

@

2

[

temperature shows the peak in the first case (a] = 1, a, = 0.9,
ay = 1.5) and has the minimum point in the third case (a, = 1, a, =
oda “.

By = 0.9) as expected. In the second case (al =1, a, = 0.5, ay =
the oritical‘température cecreases monotonically from a critical
temperature at p = 1 to that at p = 0 . The variations of phase
transition temperature\aimilar to the first case are found in the
2Z) '

s0lid solution of MnF? and FeF2

The critical exponents ¥ are represented in Iig.3-6. The

o
fad
0
ot
o
=
<t
o

]

caleulated value in the three-dimensional latitice is <

expected. Those values in other lattices show small fluctuations,

but it should be concluded to be constant. Further the values Tor ihu

n-layer lattice with finite n should be the value of the two-
dimensional lattice.
The susceptibility for the quenched bond wmodel is given by

<kT/Nm2);LO =1+ L o.ay,a,) (1/kD)7, (3-11)



Pig.3-9 The critical temperature,
of the quenched site model for
n-layer Ising lattice 1s given
against the concentration of

- magnetic atoms. (a) is for

.=1.9), {(b) for

3
(alzl,a2=o.5,a3zo.7b), and (c)

(alal,a2=0.5,a

for <a1=1,agzo.5,a3=o.25}.
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where the coefficients 0; are given in Appendix 8. The oriticid
temperatures of the various cases as in the quenched bond model nre

~

represented by ®ig.3-7. The critical exponents are shown in i"ig. -7

fig, 3-7 The critical temperatures of the guenched bond wodel

the magnetic s0lid solutions are given in the case of a, =

and 8, = 0.% + n is the number of layers of the square

lattices,
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"ig. 3-8 The critical exponents ¥ of n-layer Ising latti
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o

treated as the guencheG bond model are ghown in the casc of
al'z 1 and 8, = C.% + X , A , O and & arce for n = 1,2,3‘

and 00 respectively.



} 3-3  Sige-effect on the critical temperature

When the dimensionnlily changes from two- to three-dimenssionnl
lattices, the behavior of critical temperature is discussed. In
Fig.3-9, the shifﬂs ot critical values v, are représented aguinat
n"l'zb . .Tha calculated critical values v, show good it with lines

connecting the tWwo critical values for the two- and three-dimensional

lattices.
n .
o 654 3 2 1
L e B )
. ‘ - -1
%:
R I 0
0 0.5 1
n-‘i st
Fig. 3~9 The eritical values vV, = tanh J/'kfi‘C versus ﬁ"l'zj

are plotted.



Chapter IV Critical exponents and some rigorous results in random

The dimensionality of systems, the interaction range and the
type of interaction affect the critical exponents Wﬂlch characterize
thé singularities of the specific heat, the sus ¢entlbzxaty,t“b‘unrrela~
tion length and so on, Now we discuss the critical exponents in the
random ferromagnet, especially the dilute ferromagnets alrecady discussed
in chapter I1 and the magnetic solid solutions whichappeared in
chapter I711.

Some theorems concerning to the dilute ferromagnet (the percolation
problem) which have been proved by Griffiths;‘Lebowitz, figher and so
on are bfiefly explained. The existence of critical concentration

o

has be proved by Griffiths sand the critical concentration and

exponents have been actually calculated by Syozi in the annealed bond

model for the dilute ferromagnet.

é 4-1 Renormalization of the critical exponents

26),

Egsam and Garelick™ 'have discussed this problem in the Syozi

model with the magnetic field and obtained the folloWing results ior

~

a', B’ and ¥', which are %the critical exponents for tpe specific heat,

the spontaneous magnetization and “the susceptibility respectively,

/

\ 9] i - g 5 > v s 1 -
ot = af(1-a), B o= B/(1-a), ¥ o= V{10, PL<PLL s o407y

where , P and ¥ are the critical exponents for the original Ising
29)

model.. Rapaport™ 'als¢ has discussed the same problem in the annealed

8)

bond model modified by Kano and Miyazima™ 'and obtained the same results

as avove. This is explained briefly as follows.

, N
In the specific heat, essential part is > which in the three—
' ’ . T sk
dimensional Ising model has the form in the vicinity of the critical
point K ,

c



( [ e
DL Iy ! o= K ~iX . o< * y N
5% = A, V- )" A1 deee e K‘gﬂc 5 (4-27
C

where AO and Al are constant.

Integrating (2-14) with respect to K, and the result is found to be

m - X ) ( . . 1}‘ . . N
T-1 =pl-5 ) ¢ (1 -p) P, (1- BT el (4-3)

C <

ngglecting the term of higher order. ¢fand QZ can be shown to be

"%

positive when pc-< p <1 . Thus we obtain

. ‘ | % ~1/(1-a), T 1/(1-ao) e
1- ﬁq* {<1“ ) ¢§} / { T_“l ) / , (46=4
c ¢
and using (4-2) and (4-4) we get
w7 a/(1-a) L o
c?"" ‘q\’*lw ;3’2(’ ﬁiﬁm” 1 ) / ior T>TC . (‘-%""7)
. 194 :

When the leading term of susceptibility has a form,
e K \=Y S
Koo, (-5, (4-6)

we obtain for the dilute ferromagnet by (4-4),

b v/(1-a) . T .\ =r/(1- s
X o - p) g | I f T ey

The renormalized exponent for the spontaneous magnetization can be
obtained in the similar way as above. It must be noted that each

renorwalized exponent is constant for P, < P < 1 and has a gap at

p =1 , As shown in Fig.4-1 , Rapaport has calculated the critical
exponents ¥ for the susceptibility in the annealed bond and the
guenched bond models by wmeans of the high temperature series expansion.

The critical exponent ¥ increases gradually as p decreases and about

o

at p = 0.2 it is close 1o the expected value of 10/7. It appears tha

they continue to increase. This strange behavior obtained by studying
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1.3

5/4
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G 0.2 0.4 0.6 0.8 [
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e >

#1 « 4-1 An analysis of the critical exponent ¥ of the Syozi
model by the high temperature approximation are represented
for the fce lattice. AB, AS and Q5 mean the annealed bond,

M

the annealed site and the quenched site model respectively.

the erles expansion can be understood as the confluent singularity.

. R " . no. . - . . W .
if i e series [(z) = rie 9. 7 has the following behavior near the
4 i
clog st real singulariiy z_ , such asg
o, 7 e - AN ) ~ . /oG
Mz) ~ e (1- =077 4 ¢ (1~ £ )7/ for z<a_ (4-8)
L Ve & Z c <

[

wher A Z/UI - M, is small positive and the coefficients e. and e,
. N ' <.

£

A

are | similar magnitudc, the ratios rn7= dﬁ/dnw? will be expected
. 4

to h ve the form

. - l / $i k! L o+ i _f . - {50
- g & = , LOr nopd G )
Tan ™~ 2 V521 /) "1 vg (n-i )y 21, Ve

[\ T g P 7 ) . o
wher g = e, T Myile, A ﬁg? and | (x) is a function of x .-



& i3

iféﬁ“"" i . & - f? A
- Ml S, P
n nog o+ on

yow o(n”e) (4-10)

where M, = - Ag/{g+l) . Thus a new exponent iU, arises out of the
1 1 :

. ~ . \ - . P .
interference of the term @i{@~8j¢ Therefore 1t is difficult to

estimate the critical exponenis by the ratio method in the dilute

ferromagnet such as the annealed bond model because of the above

reason.
As seen in § 2-2, the critical exponent ¥ estimated by the series

for the gquenched model increases monotonically as p decreases.

is assumed to decrease when p decreases, we cannot find the true

A

critical exponent . We cannot decide if the present calculation

reveals the true behavior of the critical exponent.



§4;2 Critical exponents of dilute ferromagnet with four-spin

interaction

In this section we give another exactly soluble eight-vertex

model and discuss the critical exponents of diluted eight-vertex

A\
model. The eight~vertex model which was solved Dby BaxterB? includes

31)

: PR
the Ising model, the Slater model for ferrocelectricity”y’ F-model for32’

antiferroelectricity and most of other exactly soluble model as special
cases. | |

The eight vertex modcl has an arrow on each bond of the square
lattice. An arrow takes two states, up and down direction on the
vertical bond and right and léft on the horizontal bond. Even
numbers of entering arrows at each vertex are permitted. There are
the following eight kinds of configurations of arrows witﬁ energies

€, » € » €3 and 64 as shown in Fig.4-2. The free energy is
< -~

oy : ? - b J | |
o sinh®[(t=A)n) {cosn(nA}~cosh(na3§ (4-11)
n=1 nsinh(2n7T)cosh(n\) RS

-¥Tf = -kT€3 + 2

4

where T= & Kl/Kl,, A= géfﬂlwg ® = K‘V/Kl‘ and '=(1- 1)-1/2‘ 1,
>and V are determined from él, Ez, éBHand 64. {see ref. 30) .

é .
I
{

A ) N A
I de s I
A \1 ¢ A

& 5} £, & rations of arrows about a

Plg.4-2 Allowed configu-

vertex with energy

}x J/ % | /k assignment.
}R»%%Jwéﬂjg
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Aoy
Kadanoff and Wegner J’showed that the eight-verter model 15

equivalent to a two-planar Ising model interacting with a four-opin

interaction, as shown in I'ig.4-3 , whose Hamiltonian is given by

Bo= =50 (Jﬁ,tj,k‘ﬂj%».},k~e~l+ Ti41x%k+1 " N Ok T+ 1k 413543k S ke 1.
' (4-12)

f1g. 4~3 A two-plannar Ising lattice which is equivalent to the

eight vertex model. The two square lattices with the
ordinary exchange interaction are represented by the solid

and mhe dashed lines. A unit cell of the dotted square

lattice represents the four-spin interaction.

The critical temperature of this system is determined by

e
Laz
N

EaaN
4
{

£ ooy ) . a fomrr N\ .
expl{2A j sink(2K ) =1 ,
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l: :J/K!JZ » /‘i:‘.‘;‘ )\/}{T *
The critical exponents are calculated in the weak coupling limmit.

Y/YO = D/V’O = V/vo = 1 = 4A/nkD : NETPY

C

where YO, ﬁo and ‘Vb are the exponents of the susceptibility, the

spontaneous magnetization and correlation lengih for the square lattice.
Now we investigate two cases of dilution Problem in this two-

planar lattice with four-spin interaction; in the first case only

ordinary spin interactions are diluted and in the sccond case unitu

of four-spin interactions are diluted. As following to ¥ 2-1 and¢3-1 we

introduce variables YV, « which take 1 and O, corresponding to whetlier

: y

an interaction unit exists or not. The partition functions of two

models are

- - , :
o= L lexp & K ., J. Lo+ K oo ., d, -
—l cr,‘vLeyE}J,k K Ty ik 341k 01 Vi 1k
. 'f‘"} vV -{«% ')/( 4/\‘ O’ o o/ d < 7 .
S1V5k 751 Vel kY +1k+1Y3+1k Sk+1) (4-15)
~ _ . 7 RS . ’
=2 O%Jprijég CU ki 1lk+l J*lxcﬁk+l
e N A Aol A
§ §9 f%k Ok ?‘1K+1é3+lk<%£+l\ﬁk)}J’ {(4-16)

" - - - . - - - PO . = B
where ¢ and i? are chemlcal potentials which are devided by itemperature.

Applying the iteravion transformation,
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~ 7 ) .
T o= 2 Al A, exp( K10 0. LS ,
S Tigy ekt P K 0% ke * M %41k
' 1
‘f‘/\ OJ Gj*’lk‘*‘ld;)'*lxd,}k"”l )) v (‘-f-v'_g"/ ;
512 = & :“h%Ag expl KO0 1ke1 ™ K911
IR AL Jk7j+1k+1 J+1k7 3k+1
. Py v 7 an
' /\“ﬁkdj+lk+1éj+1kcgk+1 !}, (4-18)
where '
AZ = {E‘X)(}‘ +§ > 'fl}{ex ("1!‘\ +é) _‘_1} [ e
1 : }: ) 1 p A 1 ? . Vg —d3d
exp{ 2K" ) = SL exp( X +€]) +1} / i exp(—K +'§l) +1} , (4-20)

[ ORI,

Ag = {eprﬁ +§2) +l} {exp(—/\+€2) + 1

In the same way as before, the critical temperature at p is calculated

from a set of equations for the first case,

exp@A) sinh2¥' = 1, (4-23)

2p + | explak') -1H1- €, (& A}
2p - i 1- exp(v-Z‘K')Hlﬂ»{j 2(_}{*,4)@’

exp(dKC> =

where &2 is the pair correlation in the two-planar Ising lattice

with the four-spin interaction., For the second case it is given by
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pr<2/\') ginn?2K = 1 .

exp{2MKT ) = 2p + {exp(2A) —.TLHl (“, ') (4-26)
o) T o DT —enn(-2A| [T 16, AV

where 84 is the four-upin corrciation.

or the variation ol critical exponent ¥ we have
C N ) Y(0,0){ 1o+ 4 A /QRT‘(p’O)} for the first case ,(4-27)
‘e

i
;

]

v(p

]

, { ' ) , .
!(p, )x) Y(0,0)E 1 - 4 /\<p9 A )/n} for the second case .{(4-28)

Other exponents P, V are renormalized in the similar way. Here it

1s noted that the avove exponent 7 increases or decreases wilth decrense
of the concentration p according A is positive or rnegative,since

the transition temperature TC decreases monotonically as p decreasas.

4\
. 4 . A . L. N
McToy and Wu3 "proposed an exactly solvyable quenched boéond modal ir

wanich the horizontal exchange energies are equal and all the vertical
5 4 Tf \ R
i

interaction J(j) between j~th and (j+1)st row are equal but J{j) is

J(j) are treated as independent raondom variables

allowed to depend on j. 3

and edch is described by the same temperature independent probability
density P(J). The speciflic heat is shown to have a singularity at a

it is nom-analytic but infinitely differentiablc.

certain TC, at which
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§ 4-3 Critical exponents in the percolation problem

Kasteleyn and Fertuiﬁﬁ%yoved the following analogices betlween the
percolation probiem and the Ising model,

pair connectedness -y pair correlation function,

mean number of clusters «— free energy,

percolation Probability P(p) ¢— magnetization

mean size of finite cluster S(p) ¢ =zero field susceptibility
Exﬁending this analoglies, they get that the fluctuation of mean
n@mber of cluster K(p) corresponds to the specific heat. When

P PZ , K{p), P(p) and $(p) behave as

vr -0t
#(p) ~ (p-mp) 'p
Plp) ~ (p-p )P (4-29)

S(p) ~ (p - pﬂ)"‘“{)

And the criticalﬂexponentaldﬁ, Bp'and 75- satisfy the inequality
Gp o+ 20p + Y%.Z 2 ' : o (4-30)
which is Tirst derived by Hushbrookéss)for the critical exponents for

the ferromagnet.
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§¢~4 igorous lheorems on the dilute ferromagnet
Although we have no exact solution of the site problem even 1in
the two-dimensional sguare lattice, following erxact results for this
andom model have been proved by Griffiths and Lebowitz%o>

I L GHE N - PR
(1Y Ti lej(r") | < u/r?% ; 0, £ >0, the limiting free energy

- g \ .
Tim v Zow(ve) w(v,6 (4-31)
(VI—re viey .

exists for a sequence of d«mimensional lattices of sufiicliently regular
shape and 1is a continuous function of the concentration p with the
usual convexity properties. Here ;t'i'j is the distance between sites
i and j, (V') is the probability that the vertices V' are occupied
and V-V' are unoccupied. If H(V',G) is the Hamiltonian,. the free cnergy

is given by

. i - { ]
- BE{V',G) = log tr e bHV,G)

e
. (4‘ o)

(2) JFor a ferromagneiic Ising interaction of finite range the

limiting free energy is analytic in p and HO for HO# O and 0 p(l.

(3) for the nearest neighbor ferromagnetic Ising interaction on &
plane sguare or simple cubic lattice, the spontanecus magnetization

. . s

exists at sufficiently nigh concentration and low temperatures.

]
-

ey

-

obtained about 0.98% for the critical concentration Tor the plane
square lattice. This estiwation is not good. Our estimation of the
critical concentration [or the plane square lattice by the nigh
temperature series expansion is about 1/2.

(4) The existence and anailyticity of the correlation functions for

iy O and 0<Lp <1l are proved.
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.

{5Y  The sypoptaneous magnetization is monotonically increasing

function of p, 1/T and H. Thus TU(pF is also o monotonically

Fad

iricreasing function ol p.

(6) for nearest neighbor interactions, the concentration po'aﬁ
which the spontaneous magnetization appeare at T = 0 ig greater than

or equal to the critical concentration o, for the site proovlem.

The critical temperature {or « 7 1 as shown in fi1g.3-3 shows ithe strange
behavior and the Ising lattice has the spontaneéhs magnetization in

the intermcdiate temperature. These Ising lattices, including the
Ising models with the many phase transition temperatures, may have

any different ordering in the paramagnetic region at the lower

temperature and may have any correspondence each other.
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Chapter V Concluding Remuarks
%‘rd_ Conclusions

The annealed bond models lor the dilute ferromagnet and the mugnetic
solid solution are exactly solved and the expression of several thermo-
'dynamic quantities has been obltained, and the quenched site and the
quenched bond models are discussed by the bigh temperature series
expangsion. The critical temperature versus concentration curves have
similar character between these models. As the non-magnetic impuritics
are subgstituted in, the critical Lemperature begins to decrease linearly
depéndlng on p. The grudient of critical temperature near p = 1 dependas
on the number of the nearest neighbor sites in the site model. The
larger is the number of the nearcst neighbor sites, the steeper is the
gradient. Just above Py the behavior of the critical temperature is
expressed by ~'{10g(p - pc)}"l in the case of the annealed bond wocel.
This property is also found in the case of the quenched model. In
general thé gradient in the bond model is smaller than that in the
site wodel.

(B) , (8
SAFEN

An inequality for the critical concentrations p_ , Which

is proved in the next section, is also satisfied with the present bornd-

and site models. The critical exponents in the annealed model of tne

dilute [erromagnet are renormalized but constant as seen already. On
the other hand the critical exponent in the quenched model increases
with the decrease of p calculated from the high temperature series

of the zero field susceptibility. In order 1o establish this
increasing exponent in the quenched model for the dilute Terromagrol
it is necessary much longer series of susceptibility. In the case of
the magnetic s01id solution we obtdin‘the constant éxpopent in botuh

the annealed  and the quenched models.
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The size-efiect on the critical phenomena is discussed and a
simple relation between the shiit of critical temperature and criticac
concentration from three~-dimensional values and the number of layers
£ ~ rf”& is established. Ritchie and I'isher conjeétured that A~ /y
where V is the critical exponent of coherent length. Here we obtain
the p-dependent S\ . This is an evidence of the p-dependent critical
exponents, judging from the scaling law.

lthis also shown thal a pile of some'layerﬁ of two-dimensional
ising lattice which does not show any spontaneous magnetization for

&

P <P, has a possibility of having the spontaneous magnetization.
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} 5~2 The site problem and the bond problem

The percolation problem introduced in §1€Eis formulated in term
of the linear graph theory and the critical probabilities (which is
equivalent to the critical concentration in the dilute ferromagnet)
in the site and bond problems are discussed. |

Let's consider a general linear graph G = (V,E) with vertex set
V and edge set E. In the site problem the vertices of the graph are
the possible locations of a particle and an edggr [i,j]e?E is said
to be occupied if both its vertices are occupied by a parficle. Two
particles belong to the same cluster if there is a chain of occupied
edges connecting the vertices which they occupy. The subseth'g; vV
consisting of all the occupied vertices defines a sect;on graph
G' = (V', E') where E' consists of all edges of E with both vertices
in V'. If A(V',G) is a Tunction of the state of the system, its mean
value is | S

Ca6)> = & (V') A(v',6) (5-1
v

S

where n{V') is the probability that the vertices V' are occupied and
. ) I P - . ' > - -

V-V' are unoccupied. The probability that vertex i is occupled is

given by

p, = <Vy56 D S (5-2)

where '

i for 16 V'
V() = o
“ L 0 otherwise
if the vertices are occupied independently.
In the case of the bond problem the‘edges_Whigh are in one of
two states (open or closed for the water) define a partial graph
G' = (V’,.E') where I' is the open edges in E; In the similar way

mean value is defined as
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A6 > = 20 w(B') A(E',G) | (5-4)
E'sE '
where n(E') is the prdbability that the edges E' are open and

B - E' are closed.

The probability that the edge [i,j} is open is given hy
___. X .,1' ' / . \
P 5 *<Vij’u> } . o (95=%)

where
1 for [i;j] € B

O otherwise

The critical probability Po is defined by
sup P
(p)=0

o~

W
'
S

g

Pe p

where P(p) is the percolation probability which is defined in the
following paragraph. *

Now it islassumed that there is at least one infinitely long,
self—avoiding walk beginniﬁg at every vertex. In the following part,
we add the superscript B and S to the quantities of bond- and site
problems respectively. And let Sn(i) be the total number of n-stepped
self-avoiding walks beginning from the Vertex_i;‘-The pefcolation
probability in the bond problem is defined by

p(B)(y gB)(i

o~

X
3

e

' n - oo
where PgB)(i,p) is the probability that at least one of the §,(2) is
open. OSimilar definition is also given in the case of the site
problem.

Property 1.  The critical probability in the site problem is larger

than that in the bond probhlem,that is,



It can be shown that for any system and for all'il

(a3

and hence

S)

P( !(i$p}

-~

(B),. _\
< Py (i,p)

—

< P(B)(i,p)‘

therefore the above results is obtained.

Property 2.

log ¥V =
1 IL~y oo

. X B . . o -
A lower bound for p, 1is given by \)', where

-1
Sup lim Sup n ~ log S (i)

(5-10)

{5-11)

(5-12)

£ p(3,n) is the probability that exactly j of the walks Sn(i) are

open then

P (i,p) = 2 p(jm) <2jp(3,n) =8 (i) »p
2 -

i

S (1)
i

1lim

A~y

n

Pl =0
2 !

thus the lower bound is given as follows

(B)
v 2

Troperty 3.

for bond and site problems

Pn(ﬁ+}(i’P)
Thus

"

p (1) <

v“‘)

zZ PH(L)(i,p)

pc(L}

(9-12)

is the expected number of open n stepped walks from i.

(5-14)

(5-15)

If L is obtained from LV by removal of edges we have
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"isher has used (% -17 ) to show that p, does not decrease in going
from the triangular, to the plane square, to the honeycomb lattice
and also in going frow the face-centered cubic to the body-centered
cubic to the aimpl¢ cubic and finally to the diamqnd lattice,

Property 4. Bond-to~site transformation

Any bond problem can be transformed into an equivalent site
problem on a different graph called the covering graph.

‘The vertices of the Qovering graph G¢ of é'graph G are the middle
points of edges of G and the edges of Gconsist of the lines connecting
the pairs of edges which are adjacent in G. If G is a system L, and

+ G . .
L7 is the covering system then

r-ey o (B)ren ‘ -
(L) = p, oy : (7~18}

for example the

Pig. 9-1

Fig. 5-1 An exampnle of the site~bond transformation in the
percolation problem,where the dashed line means the site
percolation corresponding to the bond percolation

problem(written by the solid line).



§5~3 Related problems

In this chapter we discuss some problems'which are interesting
in this field of critical phenomena and éhould be discussed in the
future. |
1. On the dependence of critical exponents in the dilute ferromagnet
upon the concentration p. We have the exact analysis on the critical
exponents in the annealed bond model for the dilute ferromagnet, but
there is no such exact theory on the critical exponent in the quen@hed
site model for the dilute ferromagnet. As an approach to this problem
we can gohsider to calculate much longer series of high temperature
expansion of susceptibility, and to apply Kadanoff-Weger and Suzuki's
,pérturbational method to the dilute ferromagnet. The renormalization

group theory may give us imformations about critical exponents.

2. On the magnetic solid solutions which consist of ferromagn?tic
and antiferromagnetic substances. We discussed the ferromagné{ic
solid solutions in é 3?2, If we consider magnetic solid solutions
which consist of.ferromégnetic and antiferromagnetic substances, it
" might be interesting to calculate the critical exponents. For the
critical exponent ¥ of susceptibility is 7/4 in the tQOwdimensional
ferromagnetic lattice and that is O (logarithmic singularity) in the
two-dimensional antiferromagnetic latticé. Changes from 7/4 to O in
Y would be found in this system.
3. Relations between the magnetic,solid‘solution and the percolation
proﬁlem

The equivalencé of the dilute ferromégpet and the percolation

problem is .discussed by many authors. In a similar way there umay



exist some correspondences between the magnetic solid solution and the
percolation ﬁroblem. Adding an antiferromagnetic impurity to the
magnetic solid solution has the possibility to affect spin arrangement
in longer ranges as contrasted with local effects in the dilute
ferromagnet.
4. ‘Random magnetic system with different magnitudes of épin.
5. Magnetic solid solution with different types of spin-spin
interaction. » o |

For example we have NiXCol_y012 2H20, where N1012 2Hé0,has the
exchange interaction as the X-Y model and 00012»2H20 has that as the
Ising model. In this case it is interesting to calculate the

critical exponent as well as the critical temperature.
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Apperndix A

al(l) (alp2 + 2a,pq + angﬁ '

a2(13 {a§p3 +.(2a133 + ag)pzq + (arbaaz)pq + aqu% ’

a3(l) & %p4 + 2(a§a3 + alag) +'(2ala2a3 + 2a§ + ala§
+a2a§)p2q2 + 2(316ﬁ32)Pq3 + a§q4} ~%al(l> (aip2'+
Zégq + a2q 2y,

a4(l){ aipb + (2a§a3 + 3ala3)p q + (2al o83 + 4848 g +

aiag + 2a1a2a§ + ég)p3q2 + (are»az)p2q3 + (areqaz)pq4
+ ag 5} jaq(l)% (aia3 + alag + aé)p2q,+ (aie-a'

l(l){ b 6 + Z(afa3 + 2ala3)p q + (2& a2 3 + 7a2 §,+

2.

5 2 2 22
+ 2<a fpB3 * 8283 ¥ ApAnay * A

3+ 3& )p4 2

5
3a1a2a

K + (alh»ag)pq

2 2

ag + ajay + azaé + ag)p3q3 + (albﬁaz)p q
qu} - aa(l)i pt + 2(afa§)p3q + (alaza3 + alaza3 +

9 o) )
2ala2a§ + 2a3)p2q2 + 2(aleaa )pq3 + a2q4 *I% al(l) az
2 Y 5 2 4 2 2 4
+ 2a3pq + asq } 3 3(1){ -+ 2(a a3 + 2a1 3 *

2a3 + alaB)p q + (2al o83 *+ 2&1 gaB + 2a % 6a3 +

4 4. 2 2 / 3 Y 4
S+ 2a1a3 + 2a a3)p q- + 2\a1«+a )pq + 3a2q },

W
-ﬁ W

3
ala
1
8¢

- ada?
6
1P

.(l){ a + (2a 183 + 9&1 3)p q + (2ala2a3 + 4& Jasa 3
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8a£a§ + 6a§a§ + agag)p5q2,+ (2aiaga3+ Ba§a§&§ + 12a§a2a§ *
p 6
021222 3 * 6aja3 + aj + 2ajazal + Jafadln’e’ + (ajomy)n’e’
25 6 5

+ (a08,)0%0° + (a;¢0m,)p0%+ a5 7}- a2(1) { a%p’+ (alays

ta2 v adad + a%al)ptq + (22%a,83 + 2078 + a%d + aja

2a,a 3+ ajay ¢ ala3)p4

3.3

ag + ala2a§ + aja 3 + di a, 3)p q + (areea21p2q3+ (aey»av)v
qu4+ agqﬁ} - 46(1){ 6 4+ (a4 § + aia% + 2&1 3)p g+ 2(a éé
+ aiagag + ag)pqu + (éle;az)pq3+ iagq4}f’a (1)[ ig §p3+
ﬁ4 (31 3t &8 3) %aiag * %%agipzq * {al“*azkpq * %%agq3
a4(l) %agp5+ {%a%ag + 2(aga3+ aiag + afaé)}p4q+ i%(aiazag
+a§aga3+ alagag + aia gag + aiag) + %(a§a2a3+ alaeaé
 +ajay + a3) + 4aqa 3}p q
1(1\[a1p +{2(ala3+ 3a1a3)p o} +{2aza2a3+ S(aiazag + Zaiai
reeded) « alagfeSele ofadafnge sbaged + 2(adide] « ol

18(afa 2a§ ¥ 3132a3> ptqt *{ar**32}p3q5+{ar**a2§p2q6+{ar”*a2}’
pq7+ a2q8} - aga(l)[aZp6+ (a§a3+ Baiagn;.aiaé + aiég)p5§+
{a2a2a3+ aiagag +3(a§a§ *aiag) + alég + 2(a§a2a§.+ a%aijw
aiazag + aiaza§§p4q2+i2(aiaga§ + ala2a2'+ ag) + 3(ala§§*+
afa,al + ajagal v ajayal)s 22§ + alag}pBQB*fal**a2}?2qL*

{ I#aa2}p 4 +.{alé*32}Pq4;h%ag_f?
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- al(l)(azp2+ 2a§pq+ ang) - a3(l){ 1% Zp4+ 2{“Z(ala§ 4



- 2a v _2c 2d - e 2
where as ag ,a7“ and\a% are the partial coefficients of a%

which are given in Table 1, corresponding to the four magnetic

graphes. They all consist of the six verteces, and given in Table 3.
e s ~ W ; R . : g

The coefficients (aleA»&z) of p'q are obitained by interchanging

aq and 8, in the coefficients of pnqm .
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Appendix B

b} =~a1(l) a
by = ay(1) =2
oy = ay(1) &7 - .._%, a (1) 2’
b! = a,(1) B¥ - 4 a (1) 3 =
4 4 J 2
by = ai(l) @ - al(1) 37 a? v &8 (1) 27 - ay(1) 3 as
be = a%(l) a8 - aé’(:z.) at ? - e;g(l_} ae P .k sziﬁ w?{
%-5 {3.2(1) & “:5‘ o %.:—14(1) 3 (_15
oy = {af(1)-a2%()} A7 -[a22(1)+aP(1)4e 2002 }3% 2 - adn) TP
22 ety E At - 1, (ﬁ.;- 2l E as
7 31v 1 3 73
sfay) B’ -2l Et el sl w2 o
* %lag(l> a3 at ,
where
a = a;p + a,q
a? = afp+ 44
8”0 = alp + agq
ot = aéip +vagq.
;—‘; = afjp + &ZQ
aI}d
:s:‘? = a{{p + ag,rqa .
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