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 Synopsis 

      Thermodynamic properties of ferromagnet with impurities are 

 discussed and in particular those in the critical region are investi-

 gated. The critical temperature, the critical concentration and the 

 critical exponent for dilute ferromagnets and magnetic solid solutions 

 are calculated on the basis of the Ising model. Ther 'are four kinds of 

 models in the statistical problem of random system, the annealed bond, 

 the annealed site, the quenched bond and the quenched site models. 

 The grand partition functions of annealed bond models for the dilute, 

 ferromagnets and the magnetic solid solutions are exactly calculated 

 and the expressions for the critical temperature, the critical 

 concentration and the critical exponents are obtained. The critical 

 temperature decreases monotonically in the dilute ferromagnet as the 

 concentration of impurities increases and vanishes at the critical 

 concentration. Several types of variation of the critical 

 temperature are obtained in the magnetic solid solutions, depending 

 on the exchange coupling of impurities. The specific heat has the 

 cusp singularity in contrast with-the logarithmic singularity in the,, 

 two-dimensional Ising Model solved by Onsager. The renormalized 

 exponents are constant in the annealed bond model. 

      In the case of the quenched bond and the quenched site models, 

 the zero.field susceptibilities are calculated by the high temperature 

 series expansion,and the critical temperature and the critical exponent 

 are obtained by the ratio method. The critical temperature versus 

 concentration curves are similar to those-of the annealed models both 

 in the dilute ferromagnet and in the magnetic solid solution. The 

 numerical results of the above calculations are investigated. in compa-

 rison with the rigorous theorems. As for the critical exponent of the 

 dilute ferromagnet vie present, other two. models for which the rigorous



                                                      ii 

resultcan bb obtained. The critical expdnents of the above 

radcels satisfy 'the scaling relation.. ThJ size-effect on the critical 
r 

1 tettiperature is discussed for the quenched site model, considering 

n4layer Ising stems of the square lattice, where n = li2,...,6 

        A dial file relation between shift of the critical 

~o+fpei-iturb anal n is obtained:
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Chapter I Introduction 

     Thermodynamic properties of ferromagnet with impurities are 

discussed, putting stress on the critical phenomena or phase transition 

temperature, critical exponent, specific heat and so, on. 

The investigation of physical systems with an 'i.mpurity. ,arised from the, 

study for excitation modes of lattice vibration by ifshitz`} Recently 

the coherent potential approximation 2\1 is used in order to investigate 

a number of physical systems. There are many other methods for the 

study of physical systems with an impurity. The-purpose and the 

situation of this paper as well as some related methods are explained 

briefly, 

  g 1-1 'resent, situation of the impurity problem 

     There are many investigations on a system with a single impurity.} 

Though a single impurity has no effect on .the thermodynamic properties, 

it is important to study the microscopic mechanism of the interaction 

of host atoms and an impurity and to study elementary excitations in 

the system with an impurity. And it may be possible to develop an 

exact formalism in the single impurity system: There exists also the 

study of localized and resonance levels induced in systems with an 
                                                                                         e ~ 

i~~;npurity, for example, many-electron problem 2 lattice vibration.1 

------- -------------

     } In this paper we: focus our discussions upon the mixtured 

crystal with the substituted impurities and will not discuss glassic 

solids, liquid metal; etc. 

    `) There are many discussions concerning the distribution of 

energy levels and locay inability of wave function. For example, 

Tanaka, Terakawa and MMi.,yazima calculated the energy and the wave function 

of localized spin wave in one-dimensional magnetic systems.



  and magnon in crystalsJ1with an impurity. And the experimental 

  investigations by the Eaman scattering, far-infrared absorption and 

  the neutron scattering` have been developed and have obtained 

  the informations with regard to the impurity'level. 

       There exist also some advanced investigations for the system with 

  many impurities. In this case, however, the exact treatments in the 

  mathematical form are very difficult. As for the investigation of 

  magnetic insulator with two impurities, there have been three reports,. 

  that is, Frikkee's study for the fcc ferromagnet5) Miyazima and Okiji's 

  one for the bee antiferromagnet6)and Tonegawa's one for the one-

  dimensional f erromagnet7) 

       There is a new method o-f CPA2)(coherent potential approximation) 

  by which many-impurity problem can be treated, even thojZgh the 

  mathematical exactness recedes a little. This method has been formulated 

  by Soven, and analyzed to be nearly equivalent to the molecular field 

  approximation. The Hamiltonian H consists of two parts, 

                       H=Ho +V 

  where Ho is an unperturbed Hamiltonian for a certain regular system . 

  and V is assumed to have only the diagonal randomness. If the Green's 

  function for the unperturbed system is given by 

              Gij "` a. _ ~. . a , (1.2) 
                     E H 0 

  where <A> = tr A e'Ho/kT/tre-Ho,kT . Then the Green's function for 

  the 'total system is expressed by. 

             Gi j `` `°.ai E-H a Go j + Go, V 1 GOl j li (1-3) 

                                                                                                                                                         . • t 

                                            J? 
                                   + 

;l G11 1G d 11' 1' l' j '
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where ai and al are the annihilation and creation opdrators of some 
kind of excitons. Now if w e put 

         t1 : Vl + V1Go1V1 + V1Go1V1Go Vl ~... 
                                                                       (1--4)           = V1/(1 _ G11V1) , 

we obtain 

       Gig to + Gol t1 God 

o 

                                                                                                                                  + . .                  + 
li' Gil Vl G11' Vl' Gl'j + 

Here if we determine H such as 

0 

                < tl'c C (1-6)                           = r 

then 

      ~G. = G° + Z G°. (G o G,o )2G <t~} +... (`l-7)          i.j c ij 141,, ii 11' 1.' 1 1j 1 G ' 

where < >c means the summation over all the configurations. As shown 

in (1-7)v the first correction term to GoJ is the fourth order of 

ti And it is possible to make the correction term smaller. In CPA 

it is important to choose the unperturbed Hamiltonian so that the 

local t-matrix comes to be zero. In the virtual-crystal approximation, 

the average potential is chosen as a part of unperturbed Hamiltonian. 

This method is utilized successfully to calculate the density of states, 

the dispersion relation and so on in the alloy. When impurities with 

finite concentration are substituted in, there appear some effects on 

the critical phenomena. However there are. no trials to calculate 

the phase transition temperature by CPA. This is one of problems in 

the future.



                                                                                                                                                                                            4. 

      1-2 erroma not with impurities 

     We confine ourselves to the ising model with impurities, where 

non-magnetic, ferro iagnet .c and antiferromagnetic impurities can be 

treated. Exact expre' lions of the critical temperature and the critical 

concentration, at which the critical temperature vanishes, have been 

obtained by Syozi, Miyazima and Kasai for several models) These are 

explained in chapters 1I and III. 

     In 1959 Hrout) gave the mathematical expressions for the two 

systems of dilute ferromagnet, i. e. an annealed system and a 

quenched system. The free energy of the two systems is given by 

        -kT (ln (exp(_H/kT))50 ).for the quenched system (1-8) 
and 

         -kT lnKKexp(_H/kT)>s/c for th'e annealed system , (1-9) 

where H is the Hamiltonian for the Ising spin system with impurities 

k is the Boltzmann factor and T is the absolute temperature. 

and .< mean the average over the spin states and the configurations 

of impurities respectively. 

     At first the appearance of long range order in the dilute ferro-

magnet is explained qualitatively. The general proof of the, existence 

                                                                                                                                                                                                                  .dq k7 of ferromagnetic long range order is given ~+y 6Jy *.i ~~r.E.. ~fd. J.th and iJW{~'4s iXd. ld p'{~p,{~pry.{. ) 

z and the critical temperature for the two-dimensional Isin g model is 

actually calculated in chapters II and III. When many impurities are 

substituted in and the concentration of magnetic ions p is smaller 

than 1/z , where z is the number of nearest neighbor lattice point 

the state of long range order is impossible. For it is impossible 

to link all neighbors into macroscopically long chains in the random



situation. When p is slightly greater than 1/z there is a finite 

probability of forming infinite clusters and making ferromagnetism 

possible. 

     Brout calculated' the critical temperature of quenched system by 

the cummulant expansion method as follows, 

             z tank (J/kT0) = 1/p (1-10) 

In the equation (1-10), there is no solution of Tc for p <_ 1/z , 

which is equivalent qualitatively to the above-mentioned discussion. 

     Now w e explain the Syo zi model for dilute f erromagnet which is 

the only one exactly soluble model of dilute f erromagnet at the present 

time. As this model will be discussed in ~ 2-1, even though a little 

modification is added, we only give an introduction of the Syozi. model. 

Consider a decorated Ising square lattice. There is an Icing spin at 

each matrix lattice point which is represented by the variable 

where the upper .sign corresponds to the. up spin and the low sign 

does to the down spin. The variable d (= 1 and 0) is introduced 

at each decorating lattice point. tS : 1 correspond to the up 

and , down spins respectively and ~S = 0 corresponds to no spin at the 

decorating lattice point. Either magnetic or non-magnetic ion can 

occupy the decorating lattice point in the present model. This 

decorating Icing lattice is reduced to the ordinary Icing lattice 

solved by Onsager;l~ utilizing the extended iteration transformation 

introduced by-Syozi. Thus the exact expressions for several thermo-

dynamic quantities can be obtained. In particular the critical 

concentration and the cusp type specific heat which forms a striking 

contrast with the logarithmic divergence must be noted.
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     In this paragraph we discuss the percolation problem which is 

closely related with the`dilu.te ferromagnet, following to Broadbent and 

Hammersley'sl2)paper. A system introduced in the percolation problem 

consists of lattice points and bonds connecting two lattice points; 

being satisfied withh certain conditions. Two particles are connected 

by a bond, if they are put at the nearest neighboring sites: And thus 

a large cluster car. be made. The magnitude of clusters depends on 

the ratio p of particles to total lattice point. It is apparent that 

the total lattice points become a cluster when p = 1 in the system 

with finite lattice points. There is a possibility of occurrence of 

infinite large cluster in an infinite system. The critical concent-

ration (probability) pc is defined as follows. If a particle which 

occupies a lattice point belongs to an infinitely large cluster with the 

probability p(p), F, p: j heco;Les non-zero and finite at p = pc , which 

is called the critical probability. There are close correspondences 

between the percolation problem and the dilute ferromagnet which are 

di'-I -messed, in -2, 

     Other related problems are the lattice gas and the binary alloys. 

These models may be used t 4c investigate the distributio A of grain 

        n eands and l~.~~. ,s .ons. 13) :.~.a..., ~~:.c~_~~~..x ~ic ~, sct~u      i These theories as mentioned 

above put stress on the subsystem of the lattice points in the 

percolation problem, which is called the site percolation problem. 

On the other hand we have a following problem which lays stress on 

the bond rather than the lattice point, which is called the bond 

percolation problem. 

  A bond has the 'function as a pipe which flows water from an edge 

of the bond to another edge. Adding bonds to a considered lattice
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and flowing water, then many lattice points become wet and at last 

the infinite number of lattice points become wet at the critical 

concentration pc of bonds. Otherwise the cluster of lattice points 

is called the maze. According to the approximate calculations the 

critical concentration is about 0.58 for the square lattice and about-

2/z for the three-dimensional lattices. 

     As an application of the bond percolation problem, the conductor-

insulator transition was discussed by Ziman1'4} The bond between two 

lattice sites is supposed to be open or closed to a classical electron, 

with the probability p of an open bond depending on the energy of the 

electron. When p <_ pC the electrons can only migrate locally but 

when p > pc the crystal becomes conducting. As other bond problems 

there are, for example, the gelation of polymers and the infection of 

the disease in an orchard.



8 

 Chapter II The dilute ferromagnetism 

      In this part we discuss the magnetic properties in the ferro-

 magnetic substances which contain non-magnetic impurities. As 

 discussed in the introduction We have two differnt systems, annealed 

 and quenched systems. And we have two differnt approaches to these 

 random magnets, that a .s, .considering as a bond problem and as a site 

 problem. The latter classification has not only mathematical means 

 but also physical correspondences. In the case , of solid solution 

Mn(Ol'Br1 _x)2• 2H20 it is better to consider it as a -bond prob.leA. 

the contrary it is better to consider it as a site problem in the casae 

 of MnxNi(1 -x)0.12 2H20 . 

      As a result we can treat the dilute ferromagnetism as the 

 following four models, annealed bond, quenched bond, annealed. site 

and quenched site models. 

    2-1 The Syozi model (annealed bond model) 

      In 1965 Syozi proposed a decorated .Ising lattice as a model of tale 

dilute' ferromagnetism which was exactly soluble by using the extender 

 iteration 'transformation. The spin variables 1A (= 't 1) at the matrix 

 :lattice points correspond to up and down state of spin and those 

a = ±1 and Oat the decorating lattice points correspond to up, downn spins 

and existence of no,n-magnetic impurity on the bond, which means no 

 exchange interaction between two spins at the vertices of bond. '°C 

Syozi model for the dilute ferromagnetism gave the. exact expression 

of the phase transition temperature, the critical concentration and. 

other thermodynamic quantities. 

      The Syozi model is the intermediate model of the site and bond 

problems. Here we give the brief explanation of this model with a 

modification, where -it is treated as a pure bond problem, but the
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essential points are same as the Syozi model.. A part of bond 

configurations is represented in Yig. 2-1. 

a 

     Fig.2-1 One of the bond configurations in the bond 

         problem, for the dilute ferromagnet is represented. 

         The bond means the exchange interaction between 

         a pair of spins at the vertices. 

     Assuming the exchange integral between a pair of nearest 

neighboring spins, The Hamiltonian is expressed as 

H                                       , (2-1)            = -- S Ji ~i Pi 

 where `U.j( = t 1) is an king spin variable and 
ij ( 1 and 0) is 

introduced in order , to expreso whether a bond between the i--th and 

j-th lattice points exists or not. The sUmmation is over ,l1 the 

nearest neighboring pairs. By using the parameter , the grand



canonical partition function is given by 

             -- Z' t e).P( L i ij . + ~ d ) (2.2) 

 where L = J/kT , tiic, first summation is over all spin configurations 

and the second one i s over all bond configurations. 

     At first summing over all bond configura tions in (2-2) we obtain                   

, Nz/2 z exD( K 
i j (2-3) 

where N is the total number of lattice poi ts, is the coordination 

number and A and are given by the folio in , equation, 

                                           r v 

          A 2 (1 + e+L+ ) (1 + e-®L-r ~) (2-4) 

         52K = (1 + e+L a )/(1 + e°°L 

Now the second factor in (2-3) is the partition function Z0(K) for 

the matrix Ising model with the exchange coupling constant K. Thus 

               ANz12 z0(K) (2-6) 

  From this grand partition function, ..the average number of bonds 

     is calculated ' derivating by , 
z 

Eliminating by (2-5), w e have 

            --
+ E ( ) 21e '(1 )+ e(l - () ).             2 

e2~~ 1 p (2-8)
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  where E is the correlation function for a pair of the nearest 

  neighboring Ising spins given by 

                     •_2 3 In ZOI~ 
aK (2-g) 

       Now if we utilize the critical values for the square lattice 

           exp(-2K c ) = f 22 - 1 , ~. c = 11 / 2 (2-10) 

  and (2-7), we obtain the critical temperature for the present dilute 

  f erromagnet, 

                  e 2L0 = 1 + I/(2p-l) . (2-11) 

                                         The behavior of critical tempe-

                                        rature given by (2-11) is repre-

                                            sented by Fig.2-2. As shown in 

                                           Fig.2-2, the critical temperature 

                                     k7o vanishes at p = 0.5 for the 

                                       23 square lattice. The concentra-

                                         tion at which 

                                          0.5 

                                              Fig. 2-2 The critical 'tempera-
     PC ~ ' 

                                             Lures of the annealed modelL 

                                           fdr the dilute ferromagnet in. 

                                             the square lattice versus the 

0                                            concentration of m
agnetic 

0.25 0.5 0.75 1 atoms . 

            P '
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the critical temperature vani.-ohes is called the critical concentration. 

It is also shown by Syozi. that if pc is the critical concentration for 

an Ising lattice, then the critical concentration of its dual lattice 

PC is given by 

-A 

                        PC = 1. - PC . (2-12) 

It is also important that the logarithmic singularity of the specific 

heat in the ordinary Icing model reduces to the cusp singularity with 

finite value at the critical temperature. This is shown in a following 

way. The specific heat per bond ( kL2d e, /dL) is calculated as 

following, 

           r 2~d t dK f, K      C = k d dL - (1- ) cosh(:a-K) ~ coshK - sinh+ ainh('-,-:r ° . . 

        dK~               sinhK - cosh , + coslyy;.)J/sinhL + sinh(L-')(Ecosh?K;. -
          dT+ Q.i 

           sinhK)) co: h / sinh2L                                                              (2-113) 

where 

       K -2a 2 a} -2KS 2~" 2K      d°-°p,- =j2p e {e (1- +E) e (l° -

          + (e2K- l) ( - i (1 2) (1 - e_2 ) (e'2L_ e2K) dK
,;. (2-l4 i 

     In the case of the square lattice, 

               = co th 2T ( jt/2 + k'K(k))/si (2-5
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and 

          d _ ti L 2 ) - 2 ) L ) 0 "" t ~. f )             Coth 2k 2K(k) E(k 1 (1-k' J ~ +k L(x)1 s ~ 2-105 

~ where 

         k V 2 >i. nb2 °' , k' =. I (1-k )1/2= 2 tanh22K - 1                                                                      ~2-17i 
    cosh`2K 

and V(k) and E(k) are the first and second complete elliptic integrals 

respectively. The specific heat r versus 1/T, is plotted in                                                                                  p'i;.2- (to 

It is clearly shown in 2ig.2-3(a) that the logarithmic singularity a. 

p = 1 reduces to the cusp singularity for 0.5 < p <1. In the 

the specific heat of Win xlg(1 _X)(11C:00)2 is shown 16) 

   2-2 A quenched model for the dilute ferromagnet 

      In the previous section we discussed the annealed bond rode: f o,' 

the dilute ferromagnetism. In this section we discuss the qu-enc°.~ el                                                                                                  c~ 

site and bond models by the :=serf es expansion of the zero field 

susceptibility. The cr=itical phenomena are seemed to depend on tahc 

di.mensionality, the, interaction range and the type of interaction. i n 

order to investigate the effect of dimensionality to the critical 

phenomena which is called hereafter size-effect simply, we cons: er 

two-dimensional layer [.sing lattices, i.e. single-layer, two-layer, 

three-layer,.--, and simple cubic lattices. Of course the dilution 

brings the similar, not the same, effects of change of dime .-A. sJon.a.i:ity 

A complex effect of the dilution and size is also found. 

     The Hamil Ionian of the present model in the presence o ¢' 

field 1i is given by 

           H -d.z~ /A. -mH0 L/~i , x y 
                             i, i 

J



whore m and Ho denote -Uhe magnetic moment per spin and the field. 

     The zero field cusc eptibi.l i ty (= lima r where M is the 

0 magnetization) can be c pressed as 

         (kT/m2) 'o l 
ri:1 a (p yr , (2-19 ) 

where v :~ tanh J/kT and ar(p) is the number of graphs of r-th order 

with probability pk here k is the number of sites for the c .arid ered 

magnetic graph") In the case of site problem and k is the number o' 

bonds in the case of bond problem. p is the probability that a cite 

s occupied with an i sing spi i n in the site problem and that two ends 

of a, bond are occupied with two Icing spins in the bond problem, 

respectively. ar(p) for the quenched site madeL and the quenched bond 

model are given in Table 1 and Table 2 respectively. in the case o 

no impurity, that is, p = 1, these coefficients are same as those 

                              8) 
calculated by Ball el"I ine1{) and Allan~ 

     From this series, the critical temperature and the critical 

exponent i can 'bee estimated by the ratio method. 

     When we assume that ar = ar(p) (r)/v in (2-19), where 

c 

r nd vc= tanh J/kT4c, we can fit fi(r) by an expression of the fo*mm 

                              re-•. (2.21) 

   ~) This terminology was introduced by Oguchil9)and this high 

temperature counting problem was discussed by Fisher and Sykes20` in 

detail. See also I-Domb° s review article?l)
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if (2-21) is valid, 

    ar/ar_1 (1/V-) 1 + ) (2-22) 

and we should obtain a straight line of plotting a:c , /a r-l versus 1/r 
whose intersection with i/-r• = 0 determines v c , and whose plop e 
determines g . This means that the singularity in the susceptibility 

at the Curie point is of the form (1 - 0/2A-l- 22.) 

u 

      Some parts of arjan _1 - l/r curves for the,quenched site model 

are shown fig. 2-4 . The ci'i t ival temperatures estimated by these 

plots are shown in fig.2--5 . The critical temperature curve for n 1 

shows a good fit with that for the Syozi model. As seen in fig.2--5 , 

p for the square lattice and s. c. lattice in the present calculation   tI 

are a little larger than those values in the Syozi model. The in: ia 

gradients of Tc - p curves in the present model are larger than those 

in the Syozi model. These are natural differences which occur between 

the site problem and the bond problem. Such inclinations are explained 

in the chapter V. 

     The critical exponent d is plotted in fig.2-6 against p ) The 

variation of critical exponent in the present model is different from 

that in the Syozi model. The critical exponent increases as p deered se ;. 

This result might be acceptable from the following two facts. 

One is the decrease of effective di.mensionality by the dilution. The 

other i s that the critical exponent for two-dimensional icing lattice 

is 7/4 and that fqr three-dimensional lattice is 5/4 . The same kinds 

of behaviors can be seen in the other systems. The critical exponents 

in the Syozi model will be discussed in chapter -LV, and they are shown 

to be constant for O < p < p and to have gaps at p = 1. The 

present results by high temperature series expansion contrdact with
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those of the 8yozi model, but cannot deny the existence of the above 

discontinuity because the number of terms in series is small. 

     in the case of the quenched bond model, the critical temperature 

is represented in Fig-2-7, where the general trend is the same as in 

the quenched site model. IVIS natural that the initial gradients . and 

the critical concentrations for the n-layer lattices are smaller than 

those for the corresponding quenched site Models respectively. 

   2-3 Size-effect on the critical temperature 

     In order to investigate the size-effect on the cri t2cal 

temperature; vc as plotted as a function of n- (e\ m 1.2` ) ir, 
fig

. 2-8 . This analysis has been carried out for 

the !sing model by Allan and for the Heisenberg model by Ritchie and 

Fisher 4) They obtained = 1.27 and 1.1 , respectively. T t is 

for the first time that the size-effect in the dilute ferromagne v . s 

analized and the dependence of A ,on p is found as follows, J,= l.2,F 

for p-1 , 1.44 for p=0.8and ,4 =1.7°i for p~ 0.7 . t is 

difficult to estimate a relation between IV and p from these few da na. 
                                                    20      Si

milar analysis of size-effect has been given by Ab                                                                who 

proposed n--layer Icing lattice with infra-layer exchange coupling i 

and inter-layer one j. The critical temperature are calculated 

by the perturbation theory as follows 

T 
                   u (fir T ( - Ci -- A (2-23 

c where A is a constant. ishikawa and Oguchi.26) have investigated the 

same problem in more general models by the high temperature series 

expansion of susceptibility.



a 

  There are some magnetic materials which shop one or two--

dimensional orderings. But, in t e lowest temperature they show thr ee-

d.mensional properties. ThereIore the above analyses are -important. 

to investigate magnetic properties, in particular behaviors of                                                                            t<ie 

critical exponents Y in. the intermediate temperature. 
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Pig. 2-8 The critical values vc tanh JAI versus n- i.25 .re 

      plotted. The so: id lines connect the two p o its at n = 1 

      and n = oo The dashed lines connect the ca .cu:lated values 

      from the high te~mperatur e expansion. .



  Chapter III Magnetic properties in solid solutions 

        In this chapter we discuss the magnetic properties of solid 

   solutions which c6nsist of two components of magnetic substances. 

  Annealed systems are discussed in ~ 3-1 exactly and quenched systems 

  are in 3-2 by the high temperature approximation. Extension to 

   systems with many components is straightforwardly possible. 

      3-1 Extended Syozi model 

W 

        The model for the dilute f erromagnet discussed in } 2-1 can be 

   extended to a following model for solid solutions with random 

   arrangements of two kinds of exchange integrals, which is shown in 

  Fig-3-1. The variables i (= mil) and `4 (= ti) represent the two 

   states of the up and the down Ising spins at i-- and j-th sites. The 

  variables cT j (= O, 1) and dij (= O, 1) are introduced to represent 

   the absence and the presence of a bond with first kind of exchange 

  integral J and the second kind of exchange integral J5(.=aJ) between 

   i- and j-th sites respectively. 

                                  Fig-3-1 One of the bond configurations 

                                   of the bond model for the magnetic 
                   was ~os YYY aY 

  i i iILI-                                     solid solutions is given,. The solid 

                                       bond means the existence of an ex-
      s ~ i 

                                     change interaction J between a pair 

         # of spine . The dashed bond means 
                              x the existence of another exchange 

a 

            _
~ interaction J $ .



      The Hamiltonian can be expressed as 

                     j .4 04 \ 

The grand canonical partition function is given by introducing. and 

     as follows, 

                        ~~ exp ~. L t3' +cx c5 ) 

v 

                        + dij + g 
~ 
                                                          (3-2) 

By applying the extended iteration transformation, 

                     '/2 

0(K) 

y where 

            A2 ( oL °aL ~) ( e°L + e-aL + ~                                                } (3-4) 

                     e= c e L .- e  

.n the similar ,rw. + a n f 2-1, --he 'average concentration of.. bonds i th 

first kind of exchange integral is given by 

                       i tCTa 
       p -) E 2K                        {e2L(i + + e(l ) (3- )                  2 1a+P y 

Other bonds of which concentration is given by p' 1 -- p have the 

second kind of exchange integral J°. Here if we utilize the critic l 

values for the square lattice obtained by On ager°
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            e-2KC J T 1 = t , 3-7 

   we can calculate,the critical temperature by (3-6). Ir, (3-7) the 

   critical values with the upper signs are used for the ferromagnetic  

..phase transition and those with the lower signs are used for the 

   antiferromagnetie phase transition. Fig-3-2 represents the critical 

   temperatures of solid solutions with two kinds of antiferromagnetic 

   exchange integral, that, is, J < 0 and J'(- (YJ) < .0' for several values of 

   a. The curve in the case of !X = 0 is equivalent to that of the dilute 

   ferromagnet discussed in 4 2-1 . Fig. 3-3-represents the critical 

   temperature in the case of J > 0 and a In this case the ferro-

   magnetic ordered state appears for / +EC <p 1 and 'the antif erro 

   magnetic one does for 0 < p < t a , where E .c=J-2/2. For. < < f 

P 

                                                           Fig. 3-2 The' .critics.,: 

                    ot~~                                               t
emperatures of the 

                                               annealed model for the 

kT magnetic solid solutons'   o 
CV , 

                                                 are plotted versus the 

                                                   concentration p of b on, ds 

                                                     0.5 

0 

    Q .5
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i%ere is no phase h rca: i' _4.cnio 
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   t z~ The cri~;ical to peratures of the annealed model of the 

       magnetic solid solution are plotted versus the concentration 

       p of bonds with the exchange integral j. Here J is assumed 

       to be positive and J' is negative T
c and TN are the Curie 

      temperature and the Nebl temperature respectively.
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     The specific heat 'at the constant concentration p is 

    C _ kL 2 d do + i.) cosh(K_L) j sinh(aL-K) + 

           cosh(K-(x.[,) + sinh(K_b) (a- car; cosh(a~,-n) + d3 dK 
                                     cL 

          cosh(K-(Y;:,) +E sinh(K- <<)(`; - ) /sinh((x',=L) 

          -(a-l) sinh(}~-e, i siran( -:) + cosh( "-r L) cosh(aL-L)/ 

         sinh`(aL-1, )) (3-8 ) 

where 

    dK     dL =[p(1-a) cosh(aL_;1) + acosh(aL . ) cosh( L-K) + 'sinh(L< ) 
         + sinh(aij-K) einh(L-K) + a cosh(L-K) J (cosh(«L-K)Lcosh(L-K) 

         + sinh(L-K)) + s .nh(aL-K) ' sinh(L-K)- cdKs±nh(L-K)+,cosh(L•-K )}] 
                                                         ( 3-9 ) 

This is shown in 'ig.3-4. In.this model, the specific heat at the 

critical temperature remains finite as far as p 4 0 or 1. The same 

renormalization in the critical exponents as the dilute ferromagnet 

can be easily understood from (3-9).
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    3-2 A quenched model for magnetic solid solutions 

      A quenched model for magnetic solid solutiono which aonwut o.-' 

two component is considered. i n a quenched site model, one of t,wo ; . vk: 

of atoms A or B can occupy a lattice site. Therefore three Winds oi' 

exchange integrals JAA, `I;tB and. JAB, which are exchange integral. 

between a pair of atoms A, a pair off atoms B and a pair of atoms A ami 

B respectively, must be introduced. JAB is not always the average 

o ` JAA and JBB I but i t can take the larger or smaller value than 

JAA and JBB a in these cases it is interesting to investigate the 

behavior of critical temperature as the concentration of atoms A 

changes. On the other hand we introduce only two kinds of exchange 

integrals JA and JB in a quenched bond model. 

     The zero field susceptibility in the quenched site model can be 

expanded as discussed in 2-2 . The number of magnetic graphs is 

same as before for the every order. However the weight for each 

magnetic graph is different from the dilute ferromagnetic model. 

As an example, we consider a magnetic graph such as 

Two kinds of atoms A and b occupy the three sites, so we have 23 

different configurations such as 

                         -°~--_o-_. _ -- -----o-- -----tz '~---.'--: - -w ~5----- -o~- --~mc 

  where 0 and mean an. A atom and a B atom respectively, and eachh 

graph has the following weight v` 2                                                                                                                                                              a; F graph has following                                       AA , vAAvAB , Av{]B , VAAVAB B , vk~>BvB,D 

vAB ' vABVBT and v .;~ where vAA " tanh JAA/kT , vAB " tank JAl3/kr 

and VBB = tuna JBB/kT . Thus 12p3v2 in Table 1 is replaced by z.2X



                                                                                                                                                                                                                                                                                                                                                        _..i 

 vAh"~ + (~.vAAvAB3 vAa3)p q + 2vB33vAB + vA B ipq vLI3q a, ° 1 Other 

 coefficients also must be replaced in the similar way. ExpanC.ink' 

 tank JAA/kT, tanh J .B4/kT. fund tanh JAi3/kT in a power series W.' 

 l/kT, we obtain 

       (k`1'/itim2) Xo 1 + i; hx(al,a2,a3)(l/kT)r , ;3-10 
                                r=l1 

where a l = J AA , a2 ~ = J,-B and a 3 - J AB for the sake of simplicity. 

The coefficients br are given in Appendix A. 

      Applying the ratio method to these series, we obtain the 

 critical temperatures which are represented in a;,. 

 3-1(c; ) for the cases of (a_~ = 1, a2 = 0.5, a3 = 1.5) , (a1 = it 

L 

 a7 - 0.5, a3 = 0.75) and ((a-, = 1, a2 - 0.5, a3 = 0.25) for n-iaye-r.° 

y 

 ising lattices (n = 1,2....6 and ao ) respectively. The critical 

 temperature shows the peak in the first case (al = 1, a2 = 0.5, 

 a3 = 1.5) and has the minimum point in the third case (a, _ 1, =a_ , C . ` . 

 a3 = 0.5) as expected. %n the second case (a1 = 1, a2 = 0.5, l̀ = .75', 

 the critical temperature decreases monotonically from a critical 

 temperature at p = I to that at p = 0 . The variations of phase 

 transition temperature similar to the first case are found inn the 

 solid solution of MnF2 and UP227) 

      The critical exponents Y are represented in 09-3-6. The 

 calculated value in the three-dimensional lattice is constant as 

 expected. Those values in other lattices show small fluctuations, 

 but it should be concluded to be constant. Further the values for tr ._ 

n-layer lattice with finite n should be the value of the two-

 dimensional lattice. 

      The susceptibility for the quenched bond model is given by 

          (kT/Nm2) 0 _ 1 + 
ri a b (a1,a2) (1/kT)r,
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   treated as the quenched site model are shown in the case of 
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   for n = 1,2,3 and 00 respectively.
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       the magnetic solid solutions are giver. in the ease of a 
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    treated as the quenched bond model are shown in the c s of 

      al= land a =0.5 . , , 0 and ' arc for n -1,2,3 

     and 6o respectively.



 j 3-3 :size-effect: o:- .,he c:ri t 1.c.raI temperriturc 

      When the d i mera~ t,r i, L J l by t`to rikTes from two- to thrree-ci :i meno1 i o .rr:al 

lattices, the behavior of critical temperature i_c discussed. r~ 

.Pig.3-9, the shifts of .r:°i_tioal values vc are represernte~-' "grand, 

n1.25 The calculated crL itica l values v , show                                                     good fit with lines 

connecting the two c,ri ti cat values fbr the two- and three-dimensional' 

lattices, 
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 Fig- 3-9 The critical, values v . = tanh J/k'.L^ versus n-1.2>                                              u c 

        are plotted.
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Chapter -~- Critical exponents r, and some rigorous results                                                                         2nn random 

               systems 

      The dimensionaly ty of systems, the interaction range and the 

type of interaction affect the critical exponents which characterize 

the ingularities of the specific heat, the susceptibil.ity,th e correla-

tion length and so on, Now w e discuss the critical exponents e n the 

random ferromagnet, especially the dilute ferromagnet already discussed 

in chapter II and the magnetic solid solutions whichappeared in 

chapter 111. 

     Some theorems-concerning to the dilute f err omagnet (the percolation 

problem) which have been proved by Griff i ths, lebowitz, Fisher and so 

on are briefly explained. The existence of critical concentration 

has been proved by Gri::R iths and the critical concentration and 

exponents have been actually calculated by Syozi in the annealed bond 

model for the dilute °erromagnets 

   4-1 Renormalizat ion of the critical exponents 

     Essam and Grarelic 2h'haave discussed this problem in the Syozi 

model with ° he magnetic field and obtained the following results for 

       and r' , which are the critical exponents for the specific heat, 

the spontaneous magnetization and the susceptibility respectively, 

       CX° -- CK/(l-OC P0`<..p ti r (4 _.ii 

where 'x , and. Y are the critical exponents for the original Ig                                                                           cing, 

model. t s~. R£#,papor't< 29-) also discussed discussed the same problem .<":~. discussed .~ p~'oDl?ul in the annealed 

bond model modified by .o a£ o and Miya ima8 and obtained the same results 

as above. This is explainedd briefly as follows, 

                                               ~t s r ._ which ~ t _.         In the specific •.fw~'..,,a.'r',L.i:                                                                                ~'e three-

dimensional A.+.heat, ~~'.aa> sfw~' .., ,a. ' r',L. i:as part 't 'Is .arn Ising model has the form in the vicinity of the critical 

point K G,



             oK fC~ ti }_~x Al + .a~ K<K (4 - 2, 

G where A
p and Al are; constant. 

i-etegrating ( 2--14) with respect to K, and the result is round i o be 

                        e i. C 

n!glectin.g the term of higher order. 06 and C~7 can be shown to be 

positive when pc < p { 1 . Thus we obtain 

                                            _ } l/( l--(X) (~                       X _P _ Y2 -{.T 7 4                  1- X 

c and using (4-2) a.nd (4-4.) w e get 

                                   5( rv - 1 A.                                           } or 1 > T (mot -- 7 }                                                        -a,. .1 c c 

Cs-en the leading term of susceptibility has a form, 

c w e obtain for the d in lute t erromagnet by (4-4) , 

                                                                             `~ Yi(1 ~ ra 

c 

                                  tie spontaneous magnetization can be a he renormalized exponent for 

obtained in the similar way as above. it must be noted that each 

re orma2ized exponent is constant for pc { p and has a gap a ; 

p , ® As shown in x+i :?:.4-- _ , Rapaport has calculated the cri u 

exponents Y for the susceptibility in the annealed bond and the 

quenched bond models by means of the high temperature series v x7a:;~:ion. 

Tn he critical exponent / increases gradually as p decreases and about 

at p == 0.2 it i s close tc the expected value ok 10/7. It appears that 

they continue to increase. This strange behavior obtained by studying



a 

                  1.5 

                                               10/7 

x 

                              AS 

                                                    . 5/4 

               1.2 -

                          0.2 0.4 0.6 0.8 1 
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        4-1 An analysis o ' the critical exponent of the Syo.zi 

        model by the hi Ch i:,cm )erutur'o approximation are represented 

        for the few .iat t i ec . A BI A ; and Q 3 mean the annealed bond , 

        the annea_leci i to flu the quenched site model respectively. 

the cries expansion can >e un.cierstood as the confluent singularity . 

if i e series 2(z) e A .ak has the following behavior near the 
                                 a:i-O n 

clot et real singularity z _ ouQh as 

                         elk- (Z) -4 e_l~,.i. • tie 

                                  

. ' l 02~ i- Z )~/ °~ for z'`. z , 

c when . is =11 positive and the coefficients e , and e,; 

are similar magnituo°e, !be ratios r
n= d n . /CA n .. Will be expo'ctci:                                                                                                                           -~A _ 

to h re the form 

               n ^. zc e,~a ) t` for n> I, .. a n- 1-. ) 

wher g = e2 ! ! )/e. i s ; and I (x) a.: a function of x 

f



                                                                                            ,~ ca 

From (4.-9) a 

                        A- 1 2 ,                     rY r _ + ° -rte c. i 3 
              n `` G n kT n 

                   c It. 

Where 
t i (g±l) Thus a new exponent 1U1 arises out o:f the 

interference of the term UN-t. Therefore it is difficult to 

estimate the critical exponents by the ratio method in the dilute 

ferromagnet such as the annealed bond model because of the above 

reason. 

     As seen in 1 2-2, the critical exponent "Y estimated by the series 

for the quenched model increases monotonically as p decreases. .f 

    is assumed to decrease when p decreases, we cannot find the true: 

critical exponent . We cannot decide if the present calcui.atio.n 

reveals the true behavior of the critical exponent.



    4'-2 Critical oxponentc of dilute ferromagnet with four-spin 

          interaction 

      In this section w; give another exactly soluble eight-vertex 

model and discuss the critical exponents of diluted eight-vertex 

model. The eight-vertex model which was solved by Baxter',, includes 

the Ising model, the S later model for ferroelectricity ,~ ij`~-model for t ` 

antiferroelectrici ty and moo? of other exactly soluble model as special 

cases. 

      The eight vertex model has an arrow on each bond of the square 

lattice. An arrow takes two states, up and down direction on the 

vertical bond and right and left on the horizontal bond. Even 

numbers of entering arrows at each vertex are permitted. There are 

the following eight kinds of configurations of arrows with energies 

   l , 02 ,a and &4 as shown in Fig.4-2. The free energy is 

             -kTf - -WE + 2 hc L(t_~t r. ~osh -c iC %(x ` 1 
                          3 ad=~                                1 n s i n h 2n`) cosh(n I 

A where r - tt Kl1Kl r F = t. 0/X!, F' C# _ F( V,<Kl, and 110 ,1- ,)-112. 
> O and V are determined from 01, 2, ~.a.nd 6 4' k see ref . 30) 

J 

                 i Fits.4--2 Allowed confi t'.ru-

                              t 62 rations of arrows about a 

                                                      vertex with energy 
r 
                                                     assignmenn 

          Z3 14



      had not l' and 1' ilq-.ncr .j ' .3how ed that the o gh,t-vertei model 1 G 

?C Li,iva en to a t` o- ;t._ F::X s`l.n~g mode in eruC;i:7.T1 with a our-':3pi 

i_z teraction, as, shogun i!` 'ig.4-3 , whose Hamiltonian is giver; by 

                         j k, --j+ k ~ + Jcl +-,kd~7'k+l+ h ` k+lk+l("+ k '"tk 

                                                                                   k.-12',                                          

r ` ~ t                       r i 1 
r+ / t                          

+ 1 ~ 

 3Q le. r4--3 A two-planner lsing lattice which is equivalent to the 

       eight'verte ;code)_. The two square lattices with the 

       ordinary e ch a e interaction are represented by the solid 

      and the da.-shod lines A unit cell of the dotted square 

       lattice represents the four-spin interaction, 

The critical temperature of this system is determined. by 

                                                           r ,, r 
,                                                                                                          t~i 1              xpi 2 A j sinh(2K t 1



w: re .c e 

, 

       rt - J/kT A , ? /kT A 

The critical exponents are calculated in the weak coupling iicnm: t. 

                   ~/6$ =_ VV 4A/itkT 4-14 

where Y0 , N~o and o are the exponents of the susceptibility, the 

t ~                                                           ~c;~'i for the square i,.4ltt:ie c. .~pdrltt_t?"EedUS magnetization and correlation length ~A' 

      Now we investigate two cases of dilution problem in this two-

plarnar lattice with four•-span interaction; in the first case only 

                                                                 i; ordinary spin interact .one are diluted and in the second case un_i; 

of four-- :}pin interac ions. are diluted. As following to rt 2--1 and ? 3-i we 

introduce variables , which take l and 0, corresponding to wheeiheer 

an interaction unit exists or not. The partition functions of two 

models are 

        2f :x j +1
~k+l k + J k+l ; +lfk 

           1 `k+ l ` +lk +. =k~ +1k+1~ + kd k+l ~ ' (4-15 ) 

                      Carp L (XC . {j . + Irc ..           "`2 
, +1+~+i~k ~kr 

             -+ 2 1k -_i €::W' -+ ik+l`3j+lk jk}Xk) 
                                                                            y d l J 

where and 2 are chemical potentials which are deviaed by iemperaturn. 

Applying the iteration transformation,



                                        k j-'-1-k+1 ;+Lk JK+.L 

         2 'k i t. Jk j+ .k+l J+~K j;k+~ 

                         } ~{ jk~j+lk+l6j ±1k ~jk+i (4 L8 

where ' 

       A = exp( ~ 1) '+-1 1 {exp(-K + ~l) +11 

exp( 2K.') exp(': + ~~) +11 / exp(-K + i) +l } , (+-20 

           texp(A+2) +~ exp(- +2) +1j ( -21 

       exp( 2A ) = {exp(A+2) +1 } / exp(-A + 2) +1 ( -2P ) 

In the same way as before, the critical temperature at p is call- cuit Lec 

from a set of equations for the first case, 

       exp( ) sinh2:r` 

        exp 2K                  C 2p - i ..- exp(-2K') 1+~ 2;t K 

where E2 is the pair !correlation in the two-planar Ising lattice 

with the four-spin interaFct4kone e nor the second case i t is given by
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          e.xp(2!\' ) :,3.1nh2K 1 , 4 0 1 

         exp(2A/kT i - r.:-P $w (Yxp( ?P1 ) .- ~'~' W, IV ̀ } (4-26) A                   c 2p _ 1 -exp(-2A') j 1 +E ('r,, A) 

) 

 where ~4 is the four-...,pan correlation. 

       Por the variation o. ' critical exponent Y we have 

 Y(p, Y(0,0) 1 1 ± 4 h /tkT 00,00 for the first case ,(4-27) 
 Y (p, i\) = Y ( 0, 0) 1 - 4 A (p, , )/it for the second case .(4-28) 

 Other exponents Z1 are renormaiized in the similar way. -ere it 

] s noted that the above exponent I increases or decreases with o ecrecue 

or the concentration p according as ,\ is positive or negatlve,c7nct, 

the transition temperature T c decreases monotonically as p decreaucc. 

      Mc`"oy and Wu34) proposed an exactly sol L'able quenched b®nc modal ., 

which the horizontal exchange energies are equal and all the vertical 

interaction J(j) between j--th and (j+!) st row are equal but i(j) _i s 

allowed to depend on j. J( j) are treated as independent random var :L i cf. 

and each is described by the same temperature independent probability 

density P(J ). The specific heat is shown to have a singularity a t gar 

certain To, at which it is non-analytic ,but infinitely dif:f erentiab ...
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   4-3 Critical exponents i n the percolation problem 

      .Kaste:Le,yn and L ortuin ti~ovcod -the following analogies between t,} e 

percolation problem and the icing model, 

     pair connectedness o -v pair correlation function, 

      mean number of clusters ----3 free energy, 

     percolation Probability P(p) E--4 magnetization 

 mean size of finite cluster S(p) E--4 zero field susceptibility 

Extending this analogies, they get that the fluctuation of moan 

number of cluster A(p) corresponds to the specific heat. When 

p p+ , K(p) , p(p) and S(p) behave as 

c              

.(p) ^-' (p - p
c)_,p 

          r'(p) (p _ pc)~p (4--29) 

           (p} (p -- pc}-Yd . 

And the critical exponents a
p and YO satisfy the inequality 

            + 2 ? (- 3v ) 

which is first derived by Rushbrooke36)for the critical exponents for 

the f erromagnet,



           1 .i g.rorou Lneor emu onl the d t .lutte ferromagnet 

      Although we have, no exact solution of th.e site problem, even ire 

the two-dimensional square lat"t,i cC , following exact results for this 

random model have been proved by Griffiths and Lebowitz. 

(1 I A• f ETi j (ri j 0, the limiting free energy 

per site 

          lim I V1-1 zl )L(V, V(4-31)               
f V) --). V, ̀ i 

ex1, is for a sequencce o .' d-c irnensi.onal lattices of suffiuient"1 y regular 

shape and is a continuouu.u i'uncti.on of the concentration t> with the 

usual convexity properties;. Here rid is the distance between sites 

  and, ri(V') is the probability that the vertices V' are occupied 

and V-V' are unoccupied.. .1f HH.(V' I G) is the Hamiitoniar,, . the free energy 

i s given by 

                                      - g ) 

(2) for a ferromagne ;ic s"ing interaction of finite range the 

limiting free energy is analytic in p and Ho for H®k- 0 and c <p_<'__!". 

(3) for the nearest neighbor ferromagnetic Icing interaction on r.i 

plane square or simple c Eak:7i+.. 1.:s.tt.icef the spontaneous 17a netiza.tion 

exists at sufficiently Ci I concentration and low temperatures. ~':~'ce3,! 

o b t fined about 0.98) For the i t cal concentration for the plane, 

square lattice. This; e G liter Lion is not good. Our estimation of the 

cr:i tidal cork er~tra"t ior~ for he plane square lattice by the high 

temperature series. expansion a s about l/2. 

( 4-) The existence and analyticity of 'the correlation functions for 

dx6 0 and O .~ p l are proved.



a 

 `)1• The spontaneous magnetization is monotonical_i_y ini;reasin'=T 

function of p, i/T and . Thus T (p is also (a, monotone eal.; y 

increasing function o r p. 

(6) for nearest neighbor i.nternctions, the concentration p at 

U which the spontaneous magnetization appear e at T =- 0 .i s greater tied:; 

or equal to the critical concen t:ra t;ion p 
c, , for the site problem.. 

The critical temperature for M? 1 as shown in t''ig.3-3 shows the sty"«.ii(".c; 

behavior and the 7 sire r lattice has the spontaneous magnetization in 

the intermediate temperature. `:3 oe !sing lattices, including the, 

1 ing models with the many phase transition temperatures, may have 

any different ord erinE is the paramagnetic region at the lower 

temperature and may have any correspondence each other.



 r}aplor V Concluding icemarks 

        `>-l ("or, ciusionu 

      The annealed 'ond models for the dilute f erromagnet and the magnetic 

solid solution are exactly solved and the expression of several 6hermo-

dyna.mic quantities has been obta;iried, and the quenched site and the 

quenched bond models are discuscstod by the high temperature series; 

expansion. The critical.. temperature versus concentration curves have 

similar character between these models. As the n.qn-magnetic impurities 

are substituted in, the critiicai. temperature begins to decrease linearly 

depending on p. The gradient oi' critical temperature near p = depends 

on the number of the nearest neighbor sites in the site model. The 

largerr is the number of the nearest neighbor sites, -the steeper is the 

gradient. Just above pC the behavior of the critical temperature is 

c expressed by -- log(p - PC)I -.,- in the case of the annealed bond model. . 
This property is also found in the case of the quenched model. In 

general the gradient in they bond model is smaller than that in the 

site model. 

     An inequality fdr the critical concentrations p(B) C P ( S' , which 
is proved in the next section, is 4lso satisfied with the present bond 

and site models. The critical. exponents in the annealed model o`.` the 

dilute ferromagnet are renormalized but constant as seen already. On 

the other hand the critical exponent in the quenched model increases 

with the decrease of p calculated from the high temperature series 

of the zero field susceptibility. In order to establish this 

increasing exponent in the quenched model for the dilute ferrotagr_ct 

Lt is necessary much longer series of susceptibility. In the case of 

the agnetic solid solution we obtain 'the constant exponent in both 

the annealed., and the quenched models.



     The size-effect on the critical phenomena is discussed and a 

simple relation between the shift of critical temperature and 

concentration from three-dimensional values and the numberr of iayer~; 

     nis established. Ritchie and Fisher conjectured that . ~k 

where V is the critical exponent of coherent length. 'Here we obtain 

the p-dependent /\ . This is an evidence of the p-dependent critical 

exponents, judging from the scaling law. 

     it is also shown that a pile of some layer; of two--dimensionaa 

_Tsing lattice which does not show any spontaneous magnetization fhr 

p < p_ has a possibility of having the spontaneous magnetization.



     5-2 The site problem and the bond problem 

     The percolation problem introduced in ~ 1 3 is formulated in -tern', 
of the linear graph theory and the critical probabilities (which is 

equivalent to the critical concentration in the dilute ferromagnet) 

in the site, and bond problems are discussed. 

     Let's consider a general linear graph G = (V, E) with vertex set 

V and edge set E. In the site problem the vertices of the graph are 

the possible locations of a particle and an edgei, ~E E is said 

to be occupied if both its vertices are occupied by a particle. Two 

particles belong to the same cluster if there is a chain of occupied 

edges connecting the vertices which they occupy. The subset V'C V 

consisting of all the occupied vertices defines a section graph 

G' = (V', E') where E' consists of all edges of E with both vertices 

in V1. If A(V', G) is a function of the state of the system, its mean 

value is 

             eA,G> = : i(V') A(V',G) (5 1) 
                            V-V 

where rc(V') is the probability that the vertices V' are occupied and 

V-V' are unoccupied. The probability that vertex i is occupied is 

given by 

                     pi < ;G > (5..-2', 
where 

                               1 for i E V' 

(V,) 
                                 0 otherwise 

"' the vertices are occupied independently . 

     In the case of the bond problem the edges which are in one of 

two states (open or closed for the water)'define a partial graph 

G' = (V', E') where E' is the open edges in E. In the similar way 

mean value is defined as



        < A;G > A(E',G) 
                          E`m E 

where n(E') is the probability that the edges E' are open and 

E -- E' are closed. 

     The probability that the edge Lilij is open is given by 

               Pi, = ~` ¢G (5-' }                   .~ ij , 

where 
                            1 for (i;j] E'"E' 

                                0 otherwise 

     The critical probability p
C is defined by 

                  p -- sup p              PC ~
P(P) =0 

where P(p) is the percolation probability which is defined in the 

following paragraph. 

     Now it is assumed that- there is at least one infinitely long, 

self-avoiding walk beginning at every vertex. In the following a °t, 

we add the superscript B and S to th-e quantities of bond- and site 

problems respectively. And let Sn(i) be the total number of n-steppe:: 

self-avoiding walks beginning from the vertex .i. The percolation 

probability in the bond problem is defined by 

              (B} ) EB} w t                P (i
,p) _ lim P (i,p) {`~s1 

                                                       y~ ._y rso n 

where P(B)(i,p) is the probability that at least one of the S
nt i) i,:> 

open. Similar definition is also given in the case of the site 

problem. 

Property 1. The critical probability In the site problem is larger 

than that in the bond probbi.em, that is,



                   (6) > p(B) (`~c) 

i can be shown that for any system and for all ' i 

              P (S) ( ,p) l'nB)(i,p) (s-io) 
and hence 

               P'(')( ,p) < P(B) (i,p) 

therefore the above results is obtained. 

Property 2. A Lower bound for pc is given by V , where 

                                                                                   ~-1 
          log = Sup lira Sup n-1 log Sn(i) ('-12 ) 

                     I n. 

   p( j ,n) is the probability that exactly j of the walks S n(i) are 

open then 

         Pn(i,p) = p(j,n) <_ Gap(j,n) =, Sn(i) pn (` --13) 

 s~ (i) pn is the expected number of open n stepped walks from i. 

When p p 

n                   lit S. (i) p -~ 0 

thus the lower bound is given as follows 

               () 

Property 3. if L is obtained from L+ by removal of edges we have 

for bond and site problems 

               Prz(~ ,+) ( .,p) > Pn(T)(i,p) (5-16) 

Thus 

                 ~) < ti`                  p c(~ pc(.11



E?isher haB used (5 -1 ) to show that p~ does not decrease in going 

from the triangular, to the plane square, to the honeycomb lattice 

and also in going from the face--centered cubic to the body-centered 

cubic to the simple cubic and finally to the diamond lattice. 

Property 4. Bond-to-site transformation 

     Any bond problem can be transformed into an equivalent site 

problem on a different graph called the covering graph. 

     The vertices of the covering graph Go of a•sgraph G are the middle 

points of' edges of G and the edges of GCconsist of the lines connecting 

the pairs of edges which are adjacent in G. If G is a system i , and 

,~`' is the covering system then 

                   pc ~, pc (i,) 

`or example the covering lattice of the square lattice is giv en in 

Fig 

{ ~ I I ~ 

                  ~ I I 

       Fig. 5--1 An example of the site-bond transformation in the 

              ercolation problem,where the dashed line means the site 

            percolation corresponding to the bond percolation 

           problem(written by the solid line).



     5--3 Related problems 

     In this chapter we discuss some problems which are interesting 

in this field of critical phenomena and should be discussed in the 

future. 

    On the dependence of critical exponents in the dilute ferromagnet 

upon the concentration p. We have the exact analysis on the critical 

exponents in the annealed bond model for the dilute f erromagnet, but 

there is no such exact theory on the critical eacpon.ent in the quenched 

site model for the dilute ferromagnet. As an approach to this problem 

we can consider to calculate much longer series of high temperature 

expansion of susceptibility, and to apply Kadanoff-W eger and Suzuki's 

perturbational method to the dilute ferromagnet. The renormali.zation 

group theory may give us imformations about critical exponents. 

2. On the magnetic solid solutions which consist of ferromagnetic 

and antif erromagnetic substances. W e discussed the ferromagnetic 

solid solutions in 1,3-2. If we consider magnetic solid solutions 
which consist of ,ferromagnetic and antiferromagnetic substances, it 

mightt be interesting to calculate the critical exponents. For the 

critical exponent 'Y of susceptibility is 7/4 in the two--dimensional 

ferromagnetic lattice and. that is 0 (logarithmic singularity) in the 

two-dimensional antiferromagnetic lattice. Changes from 7/4 to 0 in 

Y would be found in this system. 

3. Relations between the magnetic.solid solution and the percolation 

problem 

     The equivalence of the dilute f erromagnet and the percolation 

problem is-discussed by many authors. In a similar way there may
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exist some correspondences between the magnetic solid solution and the 

percolation problem. Adding an antiferromagnetic impurity to the 

magnetic solid solution has the possibility to affect spin arrangement 

in longer ranges as contrasted with local effects in the dilutee 

ferromagnet. 

4. Random magnetic system wLth different magnitudes of spin. 

5. Magnetic solid solution with different types of spin-spin 

interaction. 

     For example we have Ni Col _JCl_2 2H20, where NiCl2 2H20 has the 

exchange interaction as the X-Y model and 0o0l2.21120 has that as the 

Ising model. In this case it is interesting to calculate the 

critical exponent as well as the critical temperature. 
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         5 2 _ 6 6 2 2 3 3.1 7 tf        a1a3) + ala ; + a2a3) p q + a1< a2 Jq + 1 ~4q _ a5 i 
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     a a~a3 4aa3)+ 3(a a + aza2a 3 3                                        + alai + a2a6 + a7) 
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where 'a 2a alb fiat`` and a2d are the partial coefficients of a.2       7 7 7 7 7 

which are given in Table 1, corresponding 'ic the four Magnetic 

graphes. They all consist of- the six verteees, and given in Table 3. 

The coefficients (ai a2) of pmqn are obtained by interchanging 

a1 and a2 in the coefficients of pngm
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   Appendix B 

     bl' a,(I) a 
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             a3(1) 2 a - a 1) 

                                              

,a, a+ aa w a a CIL 

                        ~
+ a(1) 

 where 

                           a = alp + a 2 q 

                     ~ - app 2a a 

                   a3p ~                       + a3q 

                        a4 = alp + a q 

                5 5 5                            a a
1p - a2q 

  rind 

                       - l+ 'a ap a4,



.!. As a ri~view Ka,r4.d.R.1~-.e 

. 

      _. a,'rT„ J a l!,}.. L ;,:1 himN. a.'1 .i '+.d Cies e~'d io '.3 uppl. 1 0 ~3 (100 716. 

    See also 

    A.Aa Max =.ducki.n3 Pa Mazu.r, E.Wa Mon ;w ,a1_t.. and G.I a Wk.= 

    Rev. Mod. P"hys 30 (1906) 17 5, 

  A . . Maradudin; Pboron.s and Phcnoh .a r t c , : runs' edit`__. y Y A, 

    Bak, Bcnjamir, Not Or:, 1964. 

.. 

, .. 

     and D. Turnbul .. . F_9f 6 

2) .i Soven: a"Iys. i `,2v. d.»:. 4, 1'1 f ) 809 * 178 . 01 113V 

     Y. Onodera and Y, Tlpyscn,:i., ca; fi; nTl syea Soc. ,apa ' (1968) L.3..._. 

    B, Velicky, S. Ki :S: Frt :.: ick and H Ehrenre? ch, P S, Rear 17 (I96 ) 

   147. 

   J.L. J3eeby: Proca .i S yz. Soc. (:i.:.ordor) A27`W ,1964) V,, 

       Wolfram and. J. Callaw a ,ys Phat r. Rev. 130 (1963) 22c' 

     Tak enc a Prop. T e z w3 . 312 (1963) 131, 

      . I shi:_, J. I i- -. an a E. c kamura: Prop T evr, Phy s . 30 

   01SWO) 791. 

    T. Tonegawa and A .c :?ams i rays. Letters 21 0966) 100. 

r 

    S.W. Lovesey; J. P byc_. 'YI (1968) 102, 116. 

     T a Tanaka, S. Terskaws and S. Miya2ima: Proga `R ..,,.k .."~ ao. f;.;' 

   49 (1973) No. 2.



 ~4) T.M.- Holden, R.A. Cowley, W.J.Tl. Buyers and R.W.H. Stevenson: 

    Solid State Commun. 6 (1968) 145. 

     L.F. Johnson, R.E. Dietz and H.J. Guggenheirn: Phys. R ev. Tsettc.nn

3.7 (1966) 13. 

     A. Oseroff and P. S . Pershan: Phys Rev. Letters 121.(1968) . 5(J3 

. 

      P. Moch, G. Parisot, R.E. ietz and H.J. Guggenheim: Phy:. JLZer:`. 

    betters 21 (1968) 1596. 

 5) E. i'rikkee; J. Phys. 02 (1969) 345. 

 6) S. Miyazima and A. Okiji: J. .Whys. Soc. Japan ,:32 (-1-972) 118t"'.. 

 7) T. Tonegawa: J. Phys. Soc. Japan 33 (19T2) 348. 

 8) I . Syyozi : Prog. Theor. Phys. 34 (1965) 189. 

     I. Syozi and S. Miyazima: Prog. Theor. Phys. 36 (1966) .1:. 

     Y. Kasai, S. Miyazima and I . Syozi: Prcg. T:'.cor. Phys. 40 ; 1969 i .. 

     T. Kano and S. Miyazima: frog. Theor.. Phys. 40 (1969) 130. 

     S. Miyazima: Prog. Theor. Phys. 47 (1972) 2146. 

 9) R. Brout: Phys. Rev. 115 (1959) 894. 

1.C) R.B. Griffiths and J.la. .w;:cwait2v J. Math. Ph ;5 . x1968) 1284. 

 1") L. Onsager: Phys. Rev. 65 (1944-) 117. 

    B. Kaufrnan: Phys. Rev. 7o (1949) 1232. 

12) S.R. Broadbent and J.M. Hammersley: Proc. Carob. Phil. Soc. 

    53 (1957) 629. 

13) i . Kottler: J. Phys. Chem. 56 (1952) 442. 

1.4) J.M. Ziman: J. Phys. C 1 (1.968) 1532. 

15' T. Oguchi: J. Phys. Soc. Japan 6 (1951) 31. 

     M.E. Fisher and M.i+°. Sykes: Phys. Rev. 103 (1956) 1. 

     As a review article, 

     C. Bomb: Advances in Whys. (1091`''.     C. 

16) T. Haseda: Kagaku 40 (1970) 2 a9.$



                                                           65 

17) '.. ~. Ballentine: (1964) 1231. 

18) G. A.T. Allan: P i ,:a,ti Rev, B is C1,970) 352. 

19} T. Oguchi J. Phys. 'Soc. Japan 6 (1951) 31. 

20) M.E. Fisher and M. 1j'. f s: Phys. Rev. 103 (1956) 1. 

h 21 O. Domb: Advances _ P ,je. (1960) 149. 

22) O. Domb and M.F. Sykes: :Pros. Roy. Soe. (London) A240 (19`,t7) 214. 

23) G.S. Rushbrooke: J. Meat . Phys. 5 (1.964) 1106. 

     D.J. Morgan and 0'.S. Rushhrooke: - Mot. Phys. 6 (1963) 477. 

     M`.E. Fisher and P,E. cesney: Phys. Rev. 4 2 (1970) 82.5. 

24) .8. S. Ritchie and .:E. F- her: Phya,. Rev. B 5 (1972) 2668. 

     M.E. Fisher: Theory of Critical Point Singularities V. Finite 

     Size and Boundary Ear"ect, Proc. 1970 Enrico Fermi Summer School 

     Course No.51, Varcnna, : aiy (Italian Phys. oo. and Academic 

    Press, 1972). 

25) R. Abe: Prog. Theo:r°„ .'1 ;i` a.. 44 (1970) 339'. 

26) T. Ishikawa and T. c : J. 11hys. Soc. Japan 33 (1972) c;916. 

27) O.K. Werthei m and F., J. aF 5:;' nheim: Phys. Rev. 1788 (1969) E304. 

28) J.W. "seam and H. GE~:r :_: a Proc. Whys. Soo. 92 (1967? 1,36. 

29) 'D.C. Rapaport: s.. . •'ks`:iEr"}a. r :3 (1972) 1830. _. 

3 0) R . J . Baxter: Ann. .a:' x}..9 7 2) 19 3 . 

     B. Sutherland. J. M h. Phys. 11 (1970) 31.83. 

31; E. F. Lieb: Phys. Rev. ;.(52 (1.96') 1.62. 

  E.H. Li.eb: Phys. Rev. 1"c-;tern 18 (1967) 692. 

32) F. Rys: HHely. Phyla ;;a_ 6 (X963) 537. 

     J.F. Na le: J. Math. Phys. 7 (1.966) 1492. 

     B. Sutherland: Phys _ ° . e :;t ers (1967) 10.3. 

 o f L. m i io ' and 1:"his. Rev. B 4. (1971) 3989 . 

34 ;) M. IvIoC T.' A". Shy a1 l 6



                                                      66 

35) P,,°1z .Tasteleyn and J. Phys. Soc. Japan (SupplE:rneht) 

   26 (1969) 11. 

36) G.S.Rushbrboke: J. Cheni; 'hys. 39 (1963) 842. 

r


	015@00001.pdf
	015@00002.pdf
	015@00003.pdf
	015@00004.pdf
	015@00005.pdf
	015@00006.pdf
	015@00007.pdf
	015@00008.pdf
	015@00009.pdf
	015@00010.pdf
	015@00011.pdf
	015@00012.pdf
	015@00013.pdf
	015@00014.pdf
	015@00015.pdf
	015@00016.pdf
	015@00017.pdf
	015@00018.pdf
	015@00019.pdf
	015@00020.pdf
	015@00021.pdf
	015@00022.pdf
	015@00023.pdf
	015@00024.pdf
	015@00025.pdf
	015@00026.pdf
	015@00027.pdf
	015@00028.pdf
	015@00029.pdf
	015@00030.pdf
	015@00031.pdf
	015@00032.pdf
	015@00033.pdf
	015@00034.pdf
	015@00035.pdf
	015@00036.pdf
	015@00037.pdf
	015@00038.pdf
	015@00039.pdf
	015@00040.pdf
	015@00041.pdf
	015@00042.pdf
	015@00043.pdf
	015@00044.pdf
	015@00045.pdf
	015@00046.pdf
	015@00047.pdf
	015@00048.pdf
	015@00049.pdf
	015@00050.pdf
	015@00051.pdf
	015@00052.pdf
	015@00053.pdf
	015@00054.pdf
	015@00055.pdf
	015@00056.pdf
	015@00057.pdf
	015@00058.pdf
	015@00059.pdf
	015@00060.pdf
	015@00061.pdf
	015@00062.pdf
	015@00063.pdf
	015@00064.pdf
	015@00065.pdf
	015@00066.pdf
	015@00067.pdf
	015@00068.pdf
	015@00069.pdf
	015@00070.pdf
	015@00071.pdf
	015@00072.pdf
	015@00073.pdf
	015@00074.pdf
	015@00075.pdf
	015@00076.pdf
	015@00077.pdf



