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Abstract 
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Institute of Mechanics, 264 Doi Can St., Hanoi, Vietnam. 

Email: ptnam@im01.ac.vn 

In this paper the following problems are presented: 
Algorithms for solving the two-dimensional matter propagation and its adjoint 
problems, 
Stability of the difference schemes and the non-negative property of numerical 
solution, 
Determination of the plant locations so that some environmental criteria are 
satisfied, 
Numerical experiments for the test cases and for Halong Bay area. 

Keywords: Partial differential equations, finite difference schemes. 

1. Equation of the suspended matter propagation and its adjoint 
equation 

1.1. Governing equations 

The equation describing the suspended matter diffusion and transport III the 
horizontal2D case has the following form (see [1]): 

OC oC OC 
-+u-+v-+aC=J+y!1C (x,Y)EG,O<t~T (1) at ox Oy 

with the initial and boundary conditions: 

Clt=o = Co, Cl r - = rp, ~~ I r+ = 0 (2) 

where: x, Y, t - space and time variables, 
(u, v) - velocity that satisfies the condition: 

c - matter concentration, 
() - decay coefficient, 
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ou+ov=O 
ox Oy , 

(3) 



1 - source intensity, 
r -diffusion coefficient; 
r = r+ + r-, r+ - boundary part, at which un ::::: 0; r- - boundary part, at 

which un < 0, Un - projection of the velocity on the external normal vector 

n. 
a2 a2 

6. = -) + -? - Laplace operator. ax- ry-
Solution of the equation (1) may be determined under the form: C = CI + C2 

where, CI and C2 are solutions of two following problems: 

with the initial and boundary conditions: 

Problem 2: 

aC2 +u aC2 +v aC2 +aC = v6.C +1 at ax ay 2 /' 2 

with the initial and boundary conditions: 
aC2 =0. an 

(4) 

(5) 

(6) 

(7) 

It is well known that the adjoint equation of the equation (6), (7) has the following 
form (see [1], [2], [7]): 

ac; ac; ac; * * (8) ----u--v--+aC? -r6.C? =p at ax ay - -
and the initial and boundary conditions of the equation (7) be chosen as follows: 

c; 1,",= 0, C; I, = 0, (r a~; +u"C; ) " = 0 (9) 

We have the dual form (see [1 ], [2], [7]) for the problem (6), (7) and adjoint 
problem (8), (9): 

T T 

fdt fpC2dG = fdt f1C;dG (10) 
o GOG 

From equation (8), using a variable transformation tl = T - t, we obtain the 

another form of the adjoint equation: 

ac; ac; ac; * * ---u---v---+aC? -r6.C2 = p at
l 

ax ay -
(11) 
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1.2. Algorithm (see [2]-[6]) 

The equation (6) and the adjoint equation (11) may be rewritten in a common 
form: 

where, A =Al + A 2 , 

ac +AC=j 
at 

(13) 

Equation (13) may be solved by one of two methods of the directional 
decomposition (splitting method): 

1.2.1. First method: 

ChI - c
k 

+ A[eck+1 + (1- B) ck ]= jk+1 
dt 

or (I + dtBA)Ck+1 = [1 - dt(1- B)A ]Ck + dt jk+l 

where 0:::; B:::; 1, I is the unique operator. Using approximation: 

[1 +dtB(A1 +A 2 )]=(I +dtBA1)(I +dtBA1)+O(dt2) 
from (14), one deduces: 

(I +dtBAJ(I +dtBA2)Ck+1 =[1-dt(1-B)A]Ck +dtfk+l 

The computational process includes two steps: 
(I + dtBA I )C

k+1I2 = [1 - dt(1- B)A ]Ck + dt jk+1 

1.2.2 Second method: 

(14) 

(15) 
(16) 

C k +1I2 Ck 

-----+ A reck+1I2 + (1- B) Ck J+ aoCk+1I2 = ajk+1/2 (17) 
dt I ~ 

C
k

+

1 

- C
hl/2 

+ A) reck + (1- B) Ck+1/2 ]+ (1- a)oCk+1 = (1- a)j k+1 (18) 
dt - ~ 

where, 

1.2.3. Discretizing the equations (15) and (17) by an implicit finite difference 
scheme in the x - direction: 
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C k+1/2 _ 2C k+1/2 + C k+1/2 
m+l,n m,n m-l,n 

dx 2 

we obtain: C k+1I2 + b C k+1/2 + C k+1I2 - d am 111+1,17 In 111,n em m-l,n - m (19) 

where, am,bm,cm are known values satisfying the following conditions: 

bm >0, am <0, cm <0 and Ibm l;:=::laml+lcm l+5, 5>1 (20) 

So, the linear equation system (19) has the unique solution and the computational 
error of the following double sweep method: 

Ck+1 L Ck+1 K 
m,n == 111 m+l,n + m 

-am 
where, Lm = b L 

m +cm m-I 

is not accumulated (see [7]). 

Km 
dm -cmKm_1 

bm +cm Lm_1 

(21) 

1.2.4. Discretizing the equations (16) and (18) by a difference scheme in the y 
direction: 

( 
ac)k+1 = (v+lvl)~~:, C,~~: -C'~~:_I + (v-Ivl)~~:, C'~~:+I -C,~~: 

v Qv m,n 2 dy 2 dy 

(:~r,: 
Ck+1 2Ck+1 Ck+1 

m,n+l - m,n + m,I1-1 

dy2 

we also get: 

(22) 

where, am ,bm,c'n are known values satisfying the following conditions: 

bm >0, am <0, c'n <0 and jb,nl;:=::lam l+lcm l+5, 5>1 (23) 

Also, the equation system (22) has the unique solution and the double sweep 
method (21) does not produce an accumulated computational error. 

1.3. Stability of the finite-difference schemes and non-negative property of the 
numerical solutions 

1.3.1. Stability of the difference scheme 
Suppose that u = const, v = const, 5 = const, r = const, e = 1 , then 

am = const, bm = const 'Cm = const and dm = C,~,n + dt /',~,:I. Difference schemes 

satisfy the necessary and sufficient conditions of the stability. 
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a) Necessary condition 
Let f = 0 and the solution C is defined by the form: 

then 

C,~"n = /L :C,~eimrp , l= -1, tpE[O, 2n) 

/L k+1/2 
Ch1/2 = _x __ Ck 

m,1l A k m,n 
x 

Putting (24) into (19) it yields 

(24) 

(25) 

}c :+1/2[bm +(am +c,Jcostp+i(am -cm)sintp] =/L: (26) 

From (20) we have: 

bm +(am + cnJcostp~ 0 + laml + !em I +(am + cm)costp > 1 

Therefore 
/L k+1/2 
_x__ <1 

/L ~ ~[bm + (am + c",)costp r + (am - c"Y sin 2 tp 

Similarly, from equation (22), (23) one deduces 

and 

/L k+l 
ChI = __ Y_C k+1/2 (27) 

m,n /L k+1/2 m,n 
y 

/L k+l 
k:1I2 < 1. 

/Ly 

From (25) and (27), we obtain: 
ChI /Lkck 

m,n - m,n 

where 
/L k+l 1 k+1I2 

I/Lkl= _Y_' _/J.,X_<l 
/L h1/2 /L k • 

Y x 

b) Sufficient condition 

Let IC
k+1/2 1 ICk+1/21 mo,no = sup sup m,n 

I::;; m::;Af-l l::;n::;N-l 

From equation (19), (20) we get: 

Ib ck+1/2 -I a 1 Ck+1I2 -I c 1 Ck+1/2 I = ICk + dt J,k I 
m 1110,110 m mo+l,flo m lno-I,no mo,llo lno,no' 

sup sup IC,~:,:I2I:s; sup sup IC,~,nl + dt sup sup sup 1J,,~,nl 
l:::;m::;Al-1 l:$n.sN-l t::;m::;AI-11sn::;N-l k l::;m::;Af-ll::;n.s:N-l 

Similarly, from equation (22), (23) we get: 

sup sup IC,~:':I:s; sup sup IC,~:,:/21 
t::;m'5:.M-l lsn:5N-i l::;msAl-1 l.$l1:s;N-I 

Therefore 
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sup sup le,~~: I::;; sup sup le,~,"1 + dt sup sup sup 1J,,~,"1 
l:>m:>M-II:>II:>N-1 l:>m:>M-II:>II:>N-1 k l:>m:>M-II:>II:>N-1 

::;; .,.::;; sup sup le,~,"1 + dt(k + 1) sup sup sup 1J,,~,"1 
l:>m:>M I:>II:>N k I:>m:>M-II:>I1:>N-1 

(28) 

F or second difference scheme (17), (18) we also get inequality (28) 

If the boundary condition is an function rp, then 
ek k ek k ek k ek k 

0,11 = CfJo,n' Nf,11 = CfJl\1,n' m,O = CPm,O' rn,N = fPm,N 

If the boundary condition is ~~ = 0, e;,o = e l\, e;,N = el~N_1' e"~,o = e'~1_1,1' and 

e
k ek b . 
M,N = M-I,N-I' we 0 taIn 

sup le;,IlI::;; sup sup le,~,"1 = A 
11 1:5:111:5:;\1-1 l:5:n::::;;N-l 

suple"~,"I::;; A, suple,~,ol::;; A, suple,~,NI::;; A (29) 
n IJ1 m 

Let the norms of the functions are defined as follow: 

Ilell = sup sup sup le,~,,"1 = supsupsuple,~,"1 
k O:5:111-;;'/yl O$,n:5:N k 111 J1 

Ileo II = sup suple,~,nl 
111 n 

Ilfll = sup sup sup 1J,,~,"1 
k l:>m:>M-1 l:5n:>N-1 

(30) 

Ilrpll = max { s~p s~Plrp;,nl, s~p s~plrp'~1 ,nl, s~p s~plrp,~,o I, s~p s~plrp'~'N I} 

Then, from the inequality (28), (29) and (30), we obtain: 

sup sup sup le,~"nl::;; Ileo II + T Ilfll 
k l:5m:5M-1 l:>n:>N-1 

(31 ) 

max {s~p s~ple;,nl, s~p s~plel~1 ,111, s~p s~ple,~,o I, s~p s~ple'~'N I} ::;; max {llrpll, Ileo II + Tllfll } 

(32) 
From (30), (31) and (32) we get: 

Ilell = max {s~p 1:5~,~,e-1 1:>~,~fJe,~,nl, s~p s~ple;,"I, s~p s~ple"~f,nl, s~p s~ple,~,ol, s~p s~ple'~'N I} 

::;; max {leo II + Tllfll, Ilrpll} 

Therefore 

Ilell::;; Ileoll+Tllfll+llrpll 
and the stability of the difference schemes is proved. 

1.3.2. Non-negative property of the numerical solution 

The equation (19) can be solved by the double sweep method 
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C k+1/2 L C k+l12 K 
111,11 = m m+l,n + In 

(33) 

where 

Using the inductive method, we can prove 
Os LII1 < 1 and K,11 ~ 0 . (m=l, ... ,M-I) 

Indeed, assumed that 0 s Lm-! s 1 and Km_! ~ O. Let 8=1, we obtain d", ~ O. From 
equation (20) andf(x, y, t) ~ 0, we get: 

bm +cmLm_1 =bm -laml-lc",I+la",I+lcml-icmILm_l = 
= 5 +la",I+(1-Lm_1)lc",1 > laml 

(34) 

Therefore, 

(35) O L 
-am s m = ---"'--

b1l1 +Cm L 1I1 _ 1 

(36) 

From inequalities (35), (36) and the non-negative boundary conditions Cb C: 0, we 
have: 

C k
+

l12 
- L C k+1/2 K >0 

1l1,11 - III nz+Ln + III -

Similarly, we also get C,~,~: ~ O. So we obtain the non-negative property of the 

numerical solution. 

1.4. Comparison with the analytical solution 

The matter propagation problem: 
ac ac ac 
-+u-+v-+()C-rllC=Q5(r-r )5(t-t) at ax ay 0 0 , 

(37) 
C = 0 for t = 0 

C -+ 0 for 1rI-+ ex) 

with assumption: u = const ~ 0 and v = const ~ 0, has the following analytical 
solution (see [1] [2]): 

1 
Q exp{-a(r-ro,t-to)}, 

C(X,y,t)= 47rr(t-to) 

0, t E [O,to] 

where 

() 
(X-ut)2 +(y-vt)2 

a r, t = () t + -'----'----"'---'--
4r t 

Let the computational region G, that containing source point ro, is large enough so 
that C=O at the boundaries. The algorithm is applied for calculating the matter 
propagation problem of two test cases with and without the advection term: 
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a) Without the advection term (u=v=O) 
The input parameters are as follows: y= 0.5 m2/s, 0'= 0.01 1/s, Q = 100 mg/lIs, to 
= 10. s, ro = (100,100), dx = dy = 1m, dt = 1. s. We obtain very good agreement 
between the computed and analytical solutions (see Fig. 1). 

Fig. 1. Concentration distribution along a ray passing the source point and parallel 
with the Ox axis, at t = 50 s, t = 100 sand t = 150 s 
(mg/!) 

0.45 -r------------------------------, 

0.4 

0.35 

0.3 . 

0.25 

0.2 

0.15 

0.1 

0.05 

t=lOOs ..... ;;/ ... - . 

Vt=150s _ 

O~~~~~~m=~~~~====m=m=~~~~m==mm=~m=~~ 

1 10 19 28 37 46 55 64 73 82 91 100109118127136145154163172 181190199 

b) With the advection term 
The input parameters are as follows: u = 0.5 mis, v = O. mis, y= 0.5 m%, 0'= 0.01 
1/s, Q = 100 mg/l/s, to = 10. s, ro = (30,100), dx = dy = 1m, dt = 1.2 s. Figure 2 
shows an agreement between the computed and analytical solutions. 

Fig. 2. Concentration distribution along a ray passing the source point and parallel 
with the flow direction, at t = 50 s, t = 100 sand t = 150 s . 

(mg!l) 
0.45 --y----------------------------, 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 
o ,,,,,,,,,,,, 

',' - - . t=50s . . . 
./ .. 

I 10 19 28 37 46 55 64 73 82 91 100109118127136145154163172 181 190199 

3 Optimization problem of plant location (see [1]) 
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Assume that the suspended matter concentration C is calculated from the equation 
(1). We consider the following generalized functional called the pollution-level 
reflecting functional (see [1]): 

T {I -+ak ,(X,y)EGk Yk = fdt fPk CdG ,where Pk = T 
o GO, (x,y)f1.Gk 

and Pk is a function referring to the economic, sanitary, ecological, health standards 
and so on, ak is a settling coefficient. 

Let Gk(k=1,2, ... ,m) be considered areas, recreation zones or other environmentally 
sensitive areas on the region G. Our problem is to determine the domain nkcG so 
that the pollution matter from a plant located in this domain n k satisfies the 
following condition for the sensitive area Gk: 

(38) 

where, Ck is a given value. 

Assume that on the region G there are m sensitive areas Gk (k=I, ... , m) and the 
source of matter emission is located at a point ro = (xo,yJ. Then, the source 

intensity can be described by the function: 
!(X,y) = Qo(r-ro), Q=const 

where, o(r) = {ooo ,r = ro is Dirac function, 
, r::j: ro 

For the purpose of determination of the domain n, in which the plant can be 
located so that in all sensitive areas Gk , the generalized functional Yk satisfies the 
condition (38), we take the following steps: 
3.1 Step 1 
Calculation of concentration C from the problem (4) and (5) and generalized 
functional: 

T 

Yk = f dt fpC dG = Ck 

o Gk 

3.2 Step 2 

Solving m adjoint equations (11): 

ac; ac; ac; ae* .hC· at:-uax-Vay+ k-rD.k=Pk 

where, 

with the conditions: 
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C:I = 0, C:lr- = 0, 
1,=0 

we obtain the solutions C;(k = 1,2, ... ,m). From the dual form (10), we get: 

T T T T 

Yk* = fdt fPk C dG = fdt fQ5(r - ro)C;dG = fQC:(ro,t)dt = fQC;(ro,T -tl)dtl 
o GOG 0 0 

which must satisfy the condition: Yk* :s; ck - ck = c; 

T 

Now we consider the function: Yk* (r) = Q fC; (r,t)dt and draw the iso-grams of 
o 

Y; (r) = const . We obtain the domains Ok in which if the plant is located, then the 

functional Yk* (r):S; c; in the area Gk. If there is perchance no area Ok inside G, it 

may be re-established anyway by reducing the discharge intensity Q. 
m 

Overlaying all the areas Ok (k = 1, ... ,m), we obtain the domain 0, (0 = nOk) .0 
k=1 

will be the domain in which the plant can be located so that pollution standards 
will be met in all the areas Gk c G, (k= 1,2, ... m). 

4. Numerical experiments 

The first mentioned-above method is applied to solve the following two 
optimization problems of plant location: 

4.1. Test case 1 

The computed rectangular region G = 1000m x 1000m is covered by a uniform 
grid 51x51 with spacing steps: dx = 20m, dy = 20m. A constant velocity field (u,v): 
u = 0.5 mis, v = -0.5 mls. Diffusion coefficient: y= 0.5m2/s. Decay coefficient: (j 
= 0.0005s- l

. Time step: dt = 5 s. Time simulation: T = 20000 s. 3 considered 
sensitive rectangular areas Gk inside G (k=1,2,3) with the left-bottom corner 
coordinates and the right-top corner coordinates are as follows: 

0 1 = [(24.5,8.5),(25.5,9.5)], 
O2 = [(37.5,12.5),(39.5,14.5)], 
03 = [(29.5,33.5),(30.5,34.5)]. 

And standard concentration: c: = 1 Omg / I (k= 1,2,3). 

The numerical results are illustrated in Fig. 3. In this figure, the number on the 

contour lines indicates value of the pollution-level reflecting functionals Yk*' As a 

result, the domain 0 where the plant can be located so that the sanitary condition 

in the all areas Gk are satisfied (that means Yk* :s; ck ) is in white. 
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4.2. Test case 2 

The computed area, Ha Long Bay, is covered by a uniform grid 69x45 with 
spacing steps: dx = 1000m, dy = 1000m. Diffusion coefficient: r = 10m2 Is. The 
decay coefficient: (j = 0.001 lis. Time step: dt = lOs. Simulation time: T = 24 h. 
The CUlTent is determined by solving the Navier-Stockes equation for the 
incompressible water as the follows: 

au au au ap 
-+u-+v-+-=1]f..u 
at ax ay ax 

av av av ap 
-+u-+v-+- = 1]f..v 
at ax ay 8y 

au+av=o 
ax ay 

with 1] is the viscosity of water. 
3 considered sensitive rectangular areas Gk inside G (k= 1,2,3) with the left-bottom 
comer coordinates and the right-top comer coordinates are as follows: 

G1 = [(13.5,13.5),(16.5,16.5)]- DoSon beach area, 
G2 = [(25.5,34.5),(26.5,35.5)]- HaLong beach area, 
G3 = [(33.5,20.5),(35.5,22.5)]- a some area. 

And standard concentration: c; = 1 Omg / I (k=1 ,2,3). 

The numerical results are illustrated in Fig. 4. Also, in this figure, the number on 
the contour lines indicates value of the pollution level-reflecting functionals ~*. 

Consequently, the domain n where the plant can be located so that the sanitary 
standards in the all areas GK are satisfied ( that means Yk* ::::; c;) is also in white. 
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LEGEND 

_ Plant can't be located 

Plant can be located 

Sensitive Area 

Figure 3: Distribution of value of the pollution level-reflecting functionals 
~* for test case 1 

Land 

I11III Plant can't be located 

Plant can be located 

Sensitive Area 

I 

0.00 10.00 20,00 30.00 40.00 50.00 60.00 
Figure 4: Distribution of value of the pollution level-reflecting functionals Yk* for 

test case 2 
5. Conclusions 
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• The algorithms for solving the matter propagation and its adjoint problems 
are stable. The numerical solution is non-negative and agreement with the 
analytical solution. 

• For determination of the plant location satisfying the condition (38), we 
suppose that the plant locates at the point ro = (xo, Yo) , then we solve the 

equation (l) and verify the condition (38). If the condition (38) is satisfied, 
the requisite plant location at point ro is found. Conversely, we must 

suppose new plant location at the other point fj and recur the previous 
process of the above computation and verification. This process might be 
recur several times. However, if we use the adjoint equation (11), then we 
solve the equation (11) and (4) only one time for determining the region, in 
which plant pollution satisfied the condition (38). As a result, it is very 
convenient for determination of the plant location ensuring the given 
environmental criteria in the sensitive areas if the adjoint equation is 
applied. 
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