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Mathematical Definitions of Forest Energy 
and Forest Health for Forest Kinematic Model 

Le Huy Chuan 
Faculty of Mathematics, Mechanics and Informatics, Hanoi University of Science 

and Atsushi Yagi 
Department of Applied Physics, Osaka University 

Abstract 

vVe are concerned with a forest kinematic model presented by Kuznetsov et al. 
[4]. In this report, we will survey some results obtained from investigation of this 
model equations (see [1,2,3]). By using Lyapunov function, we can define forest 
energy and represent the direction of the growth of forest. Moreover, on the basis 
of theoretical results combining with some numerical results, we will propose a 
mathematical quatity to measure the helth of forest ecosystem. 

1. Introduction 

In the study of forest growth dynamics, the numerical simulations on the basis of suitable 
mathematical models are becoming one of indispensable methods. \iVhen we concerned 
with dynamics of forest ecosystem, age dependent tree relationship is more interesting 
than the individual of trees. By forest age structure dynamics we mean the space and 
time variation of tree numbers in different age classes, caused by various internal and 
external factors. 

In this talk, we are concerned with the Age-Structured Continuous Space Model. 
Among others we consider a prototype model describing the growth of a forest by age
dependent trees relationships and by regeneration processes, which was proposed by 
Kuznetsov et al. [4]. They considered a mono-species ecosystem with only two age 
classes of trees, the young age class and the old age class, and model the regeneration 
process by seed production, seed dispersion and establishment of seeds. Their system of 
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equations reads 

AU 
at = pow -r(v)U - fu III Ox (0,00), 

ov 
at = fu - hv in Ox (0,00), 

ow at = dLlw - pw + CtV in Ox (0,00), (1.1 ) 

ow 
° on 00 x (0, (0), an 

u(x,O) = uo(x), v(x,O) = vo(x), w(x,O) = wo(x) in O. 

Here, 0 is a e2 or convex, bounded domain in ]R2. The unknown functions u = u(x, t) 
and v = v(x, t) denote the tree densities of young and old age classes, respectively, at a 
position x E 0 and at time t E [0, (0). The third unknown function w = w(x, t) denotes 
the density of seeds in the air at x E 0 and t E [0, (0). The third equation describes the 
kinetics of seeds; d > ° is a diffusion constant of seeds, and Ct > ° and p > ° are seed 
production and seed deposition rates, respectively. While the first and second equations 
describe the growth of young and old trees, respectively; ° < 0 ~ 1 is an establishment 
rate of seeds, f > ° is an aging rate, h > ° is a mortality of old trees. And ~(( v) > ° 
is a mortality of young trees which is allowed to depend on the old-tree density v and is 
expected to hit a minimum at a certain optimal value of v. We assume as in the paper 
[4] that the function ~(( v) is given by a quadratic function 

r(v) = a(v - b)2 + c, (1.2) 

where a, b, c > ° are all positive constants. 

In the papers [1], we constructed a dynamical system (S(t), J{, X) determined from 
the initial-boundary value problem (1.1). As the underlying space X, we set a space of 
the form 

x ~ { (:) ; u E L=(fl), v E L=(fl), '" E L'(fl) } , (1.3) 

It is necessary to handle the first and second ordinary differential equations in the Banach 
space LOO(O). Indeed, since r(v)u contains a nonlinear term like v2u (see (1.2)), the 
Banach space to be chosen must enjoy a norm property IIv2uli :::; Cllvl1 21lull, namely, the 
space must be a Banach algebra. Moreover, even if the initial functions uo, Vo and Wo are 
smooth, its solution (u, v, w) can tend to a discontinuous stationary solution as t ~ (X) 

(see [2, Section 6]). That is, the continuous function space e(IT) is not suitable. The 
phase space J{ consists of triplets of nonnegative functions of X, i.e., 

The nonlinear semigroup S(t) acts on J{ for ° :::; t < 00. In [2], we found a Lyapunov 
function and investigated asymptotic behavior of trajectories S(t)Uo, Uo E J{. Since 
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some S(t)Uo can converge to a discontinuous stationary solution even if the initial value 
Uo E K consists of smooth functions and since if so the trajectory S(t)Uo has an empty 
w-limit set in X, the dynamical system (S(t),K,X) never enjoys any compact attractor 
in general. By this reason we introduced three kinds of w-limit sets for Uo E K, i.e., 
w(Uo) C L2-W(UO) C w*-w(Uo) i= 0, here w(Uo) denotes the usual one, L2-W(UO) is 
an w-limit set with respect to the L2 topology and w*-w(Uo) is that with respect to 
the weak* topology of LCO(D). And we proved by utilizing the Lyapunov function that 
L2-W(UO) consists of stationary solutions only. So, roughly speaking, every trajectory 
S(t)Uo, Uo E K, converges asymptotically to some stationary solution of (1.1). 

In the paper [3], we study the structure of stationary solutions of (1.1). The structure 
depends on the parameter h drastically. In fact, when 0 < h < aJ:.:+ f' where a, band 
c are positive constants contained in ,(v) (see (1.2)), it is shown that there exist two 
homogeneous stationary solutions P+ (which is non zero solution) and the zero solution 
o = (0,0,0) and that P+ is stable and 0 is unstable. This means that in this case 
any forest starting from a non zero initial state holds alive. In the meantime, when 
f~J < h < 00, the zero solution 0 is a unique stationary solution and is globally stable, 

that is, every forest is going to vanish asymptotically. When aJ:.:+ f < h < f~J, there exist 
three homogeneous stationary solutions P± (which are non zero) and the zero solution 
0; here, P+ and 0 are stable meanvvhile P_ is unstable. This means that some forests 
can hold alive and others are going to vanish. \Alhat is more interesting is that, in this 
case, there exist many inhomogeneous stationary solutions. Especially when a and b 
are sufficiently large, one can construct an infinite number of discontinuous stationary 
solutions (u, V, w) 's, u, v E LCO(D) being discontinuous and w E H2(D) being continuous. 

By using this results and combining with the Lyapunov function (kinetic energy of 
dynamical system), we can represent the direction of the growth of forest as in Figure 1. 

K 
o 

(a) 0 < h < (b) h> l..£§.. c+J 

Figure 1: Graph of Lyapunov function 

Case 1. 0 < h < aJ:':+r There exists two homogeneous stationary solutions P+ and 
0, where P+ is stable and minimal energy; and 0 is unstable. As shown in Figure 1 (a), 
every trajectory starting from an initial state Uo i= 0 always proceeds in the way that its 
energy decreases and tends to P+. 
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Case 2. f~fij < h < 00. The zero solution 0 is a unique stationary solution and c, 

minimal energy (see Figure 1 (b)). Therefore, every trajectory of dynamical system tends 
to O. 

Case 3. aJ::+f < h < t:J· There exists three homogeneous stationary solutions 
P+, P_ and 0, where P+ and 0 are stable and local minimal energy; and P_ is unstable. 
More precisely, as shown in Figure 1 (c), there exists so many stationary solutions (perhaps 
discontinuous) which are local minimal energy. It implies that some trajectory can tend 
to P+, or 0 or some stationary solution depending on the initial condition. 

2. Mathematical measurement of forest health 

There are many definitions of "forest health" depending on the viewpoint of the user of the 
forest. Forest health reflects many concerns about the sustainability of forest ecosystems. 
The important meaning of forest health is that the ability of a forest to recover from 
natural and human-caused stresses or disturbances. On the basis of theoretical results, 
we will propose a mathematical quantity to measure the health of forest ecosystem which 
is described by (1.1). This definition is from the viewpoint of asymptotic behavior of 
solutions. 

When 0 < h < aJ::+f' we known there exist two homogeneous stationary solutions 
P+ which is stable and the zero solution 0 which is unstable. In addition, there is no 
nonnegative stationary solution other than homogeneous ones. This means that in this 
case any forest starting from a nonzero initial state holds alive. We can interpret this 
fact as follows. Let us consider a regeneration of trees of old age class. They produce 
seeds with rate 0' and the seeds are established with rate 6 and become young trees, and 
then some young trees die with rate a( v - b)2 + c but others grow toward old trees with 
rate j; so the net of aging rate is given by a( V-b~+C+f' In this way, on one hand, we see 

that the regeneration rate of trees of old age class is a(v-~)t~c+r In the worst case, i.e., 

v = 0, we have a rate ab2a:t+ f' On the other hand, the death rate of old trees is give by 

h. Therefore, if 0 < h < al::+ f' then the regeneration rate always dominates the death 
rate, namely the forest is never extinct. 

In the meantime, when t:J < h < 00, the zero solution is a unique stationary solution 
and is globally stable, that is, every forest is going to vanish asymptotically. As shown 
above, when v = b, we have an optimal regeneration rate t:J, so t:J < h < 00 means 
that the death rate h of old age trees is large than the optimal regeneration rate. That 
is, the forest cannot be alive in any form. 

In the case when al::+ f < h < t:J is valid, there exist three homogeneous stationary 
solutions P± and the zero solution 0; here P+ and 0 are stable meanwhile P_ is unstable. 
vVe know also that in this case there are many stationary solutions (sometime infinite 
number of stationary solutions). This means that some forest can hold alive and others 
are going to vanish. In view of these facts we are naturally led to define a number 1> in 
such a way that 

ja6 
h = ---:,------

+c+j 
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or as 
j{- -I} - c 

iP(a, b, c, 1, h, a, S) = h ab2 
(2.1) 

By the discussion above, if iP < 0 then :~; < h and the forest is going to vanish; if 

iP > 1 then 0 < h < aJ::+ f and any forest starting from a nonzero initial state holds 

alive; and if 0 < iP < 1, then al::+f < h < £D and some forests can hold alive and 
others are going to vanish depending on the initial states. 

Then, in some sense, we can say that the quantity iP(a, b, c, j, h, a, S) is a measurement 
for forest health. In this way we have defined iP from the arguments of mathematical 
analysis. But, as will be observed in the next section, such a definition can be justified 
by numerical results. 

3. Numerical Results 

This section is devoted to presenting some numerical results for the system (1.1). Through
out all numerical computations, we set n [0,1] x [0,1]. The coefficients of system (1.1) 
are fixed as /3 = 1.0, S = I, a = 1.0, c = 0.2, d 0.05 and b = 1. The rest coeffi
cients a, 1, h will be fixed depending on the purpose of calculations. We consider a forest 
ecosystem in which there exists the stationary state P+. It is already known that P+ is 
an exponentially stable equilibrium of the dynamical system. Hence, if there is nothing 
to influence, forest can hold alive in this state forever. 

.0 

1.0 

(a) Graph of ua (b) Graph of va (c) Graph of wa 

Figure 2: Initial function P~ = (uo, vo, wo) 

Now we cut a part of forest (include young trees and old trees) in a quarter circle with 
radius r as shown in Figure 2, and observe what happen to the forest ecosystem. It is easy 
to see that if we cut a little part, say r is small, then forest can evolve towards recover all 
domain to stationary state P +; if we cut too much, say r is large, forest is going to vanish; 
and in some cases, forest can tend to a discontinuous state. The following numerical 
examples show this fact. 

In the numerical computation, the coefficients are fixed as a 1.0 and j = 1, but the 
mortality of old trees h and the radius r are variable. We consider two cases b = 1 and 
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b = 3. From the theoretical results it follows that, if b 1 then ab2 < 3( c + f) and every 
stationary solution is continuous, therefore we can not expect that the solution will tend 
to a discontinuous stationary solution. Contradictorily, if b 3 then ab2 > 3(c + f) and 
it is possible that some solution tends to a discontinuous stationary solution. 

Now for each value of h, we calculate the values of r such that forest starting from 
initial state p~ is going to vanish, or recover to homogeneous stationary solution P+, or 
tend to a inhomogeneous stationary solution. 'vVe performed numerical computations for 
sufficiently large time until the graph of solutions and the values of Lyapunov function 
are stabilized numerically. The relation between hand r is as shown in Figure 3. 

Case 1. b 1. All solutions tend to homogeneous stationary solutions P+ or O. There 
are two regions Rand E as shown in 3 (a). If (h, r) E E then the forest is going to vanish; 
meanwhile if (h, r) E R then the forest is going to recover to P+. 

Case 2. b = 3. There are three regions R, D and E. If (h, r) E D then the forest tends 
to a discontinuous stationary solution. 

T 

0.9 

0.8 

0.7 

0.6 

0.5 CH ........ H, ......... H' ... ' ... , ...... 'H....... ,........ , .....Hi 

0.4 C············,················,················c···············;················c .~ 

0.3I-H ..... , ....... . 

0.2 ':::--::-::-:--::-:::::----::-':=---!-::--::-'::-::-~. 
0.72 

(a) b 1 

r 

0.9 

0.8 c··,·····;···'\H 

0.7 

0.61-··,·······,········,,·\·····,····1CC)···H .. ,'\HH .. , ......... , ....... ,H··· .. ·, .... ··l 

0.5 !-"".H .H .. ' ....... H ••.... \ .. 'H ...... ' ........ , ..... '>(., ......... , ........ , ........ '.H ... ; 

OA 

0.3 C····'H' ... '.; ........ , •......... , .... '><;:, ••...... , ........ , ....... ' ... H.' .. 

0.21-··· , ... , ... . 

0.1 L::~.:=;r;~~=;;-:~~;.;~l:;sJ 
0.3 0.35 OA 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 

h 

(b) b 3 

Figure 3: Relation between hand r 

Therefore we are led to define, for each forest ecosystem, the restitution radius by 

R = sup{r > 0; forest starting from P~ is going to recover to P+ }. (3.1) 

This radius R = R(a, b, c, d,.f, h, 0', (3, 8) depends on all parameters of model. 

Now we present some numerical results to show the relation between the measurement 
of forest health (j) which is defined in (2.1) and the restitution radius R. The main idea 
is that, first we fix an initial function P~ (see Figure 2); second we change values of 
parameters of the system (1.1) and calculate to find if the solution starting from P~ is 
going to tends to P+ or not; third, from these calculations, we can divide values of all 
parameters into regions R, D or E as same meaning as above. Finally, if values of (j) in 
each region are separated independent of parameters then we can say (j) is characteristic 
for restitution of forest with respect to initial function P~. 
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The numerical calculation is performed in the following way. The initial function p~ 
is fixed with r = 0.5. For simplicity of calculations, we fix all parameters except two of 
them and find out the relation between the two parameters. 

Case 1. Fix f = 1. b = 1. The parameters hand G are variable. In this case, 
ab2 < 3(c + f) therefore all stationary solutions are continuous. For each value G in 
[0.1, 1], we find the values of h such that forest starting from p~.5 is going to vanish, or 
recovers to homogeneous stationary solution P+. 

0.9 

0.8 

0.7 

0.6 
0: 

0.5 

0.4 

0.3 

0.2 

0.1 
0.1 

Figure 4: Relation between hand G 

Figure 4 shows numerical plot of hand G. It is easy to see that there is a linear relation 
between hand G, and the line (h, G) separates two regions Rand E. Moreover, the values 
of <P in this line can be approximate by a constant C E (0,1). Hence, if (h, G) belong 
to the region for that <P > C then the forest starting from p~.5 tends to homogeneous 
stationary solution P+. On the contrary, if (h, G) belong to the region for that <P < C 
then the forest starting from p~.5 is going to vanish. 

Case 2. Fix G = 1, b = 1. The coefficients hand f are variable. Let f E [0.2,1]' 
then ab2 < 3( c + f) and therefore all stationary solutions are continuous. The graph of 
hand f is shown in Figure 5 (a). There are two regions Rand E separated by a curve. 
Figure 5 (b) shows the graph of l/h and 1/ f. It is easy to see there is a linear relation 
between l/h and 1/ f. Moreover, values of <P in the curve separates two regions Rand E 
can be approximate by the same constant C as in Case 1. Hence, if (h, f) belong to the 
region for that <P > C then the forest starting from p~.5 tends to homogeneous stationary 
solution P+. On the contrary, if (h, f) belong to the region for that <P < C then the forest 
starting from p~.5 is going to vanish. 

These numerical results shm'1 that, if the parameters of system are taken so that the 
restitution radius is constant 'with R = 0.5, then G and h are proportional and 1/ f and 
1/ h are in a linear relation. These then mean that the measurement of forest health is 
also constant with <P = C, C being a suitable constant, for the change of parameters 
under the restriction R = 0.5. Some other numerical computations shmv inverse results, 
namely, if the parameters of system are taken so that the measurement of forest health 
is constant, then the restitution radius is constant. These observations suggest us that <P 
and R are connected intimately, probably there would exist a one-to-one correspondence 
among them. One could calculate the restitution radius from the measurement <P alone 
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Figure 5: Relation between hand f 

which is determined by the ecological parameters appearing in the system. And one could 
therefore characterize the restitution radius from the ecological parameters alone. 

It is now very important problem to know how the restitution radius is determined 
from the measurement CP. To know this, however, it is needed to perform more numerical 
computations and to analyse these results. For the moment it is only possible to say that 
R is an increasing function of cP and t.he diffusion coefficient d of seeds in t.he air also 
contributes to t.he correspondence cP R, although d does not appear in the definition 
of CP. 
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