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Japan
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ABSTRACT

We are concerned with a forestry kinematic model presented by Kuznetsov et al. [4]. In
this report, we will survey how to construct global solutions and a dynamical system
for the model equations. We introduce three kinds of w-limit sets, namely, w(U) C
L2-w(Uy) € w*-w(Uy), for each point Uy. Using a Lyapunov function, we will then investi-
gate basic properties of these w-limit sets. Especially, it shall be explained that L?-w(Up)
consists of stationary solutions alone.
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INTRODUCTION

We study the initial-boundary values problem for a parabolic-ordinary system

%—7: = fow — y(v)u— fu in Q x (0,00),
%:fu—hv in Qx (0,00),

(1) %;— = dAw — fw + owv in Qx (O, OO),
%:—g =0 on 90 x (0,00),
’l,L(.’EO) = U'O(CE)? U(:C:(D = UO(I>7 ’LU(CC,O) = ?,UQ(CU) in ()

This system has been introduced by Kuznetsov et al. [4] in order to describe the kinetics
of forest from the viewpoint of the age structure. For simplicity they consider a prototype



ecosystem of a mono-species and with only two age classes in a two-dimensional domain
Q.

The unknown functions u(z,t) and v(z,t) denote the tree densities of young and old
age classes, respectively, at a position z € Q and at time ¢ € [0, 00). The third unknown
function w(z,t) denotes the density of seeds in the air at z € Q and ¢ € [0, 00). The third
equation describes the kinetics of seeds; d > 0 is a diffusion constant of seeds, and a > 0
and 8 > 0 are seed production and seed deposition rates respectively. While the first and
second equations describe the growth of young and old trees respectively; 0 < < 1is a
seed establishment rate, v(v) > 0 is a mortality of young trees which is allowed to depend
on the old-tree density v, f > 0 is an aging rate, and h > 0 is a mortality of old trees.

On w, the Neumann boundary conditions are imposed on the boundary 092. Nonneg-
ative initial functions ug(z) > 0, vo(z) > 0 and we(z) > 0 are given in £,

Several authors have already been interested in such a model. Wu [8] studied the
stability of travelling wave solutions. Wu and Lin [9] discussed the stability of stationary
solutions. Lin and Liu [5] extended this result to a case when the model includes nonlocal
effects.

In this report we intend to construct a global solution to (1) for each initial function
Uy € K and to construct a dynamical system determined from the problem. Furthermore,
we are concerned with studying asymptotic behavior of solutions.

Throughout the report, Q is a bounded, convex or €? domain in R% According to
[11], the Poisson problem —dAw + fw = v in Q under the Neumann boundary conditions
g—;’j = 0 on 0 enjoys the optimal shift property that v € L*(Q2) always implies that
w € H*(Q). We assume as in [4] that the mortality of young trees is given by a square
function of the form

(2) Y(v) =alv—b)* +¢,

where a, b, ¢ > 0 are positive constants. This means that the mortality takes its minimum
when the old-age tree density is a specific value b. As mentioned, d, f, h, o, § > 0 are all
positive constants and 0 < § < 1.

MATERIALS AND MATHODS

We shall formulate the initial boundary value problem (1) as the Cauchy problem for an
abstract semilinear equation

%+AU:F(U), 0<t< oo,
0(0) = s

in the underlying product space X = L>®(Q) x L>°(Q) x L?(Q). Here, the linear operator
A and the nonlinear operator F' are defined by

f 00 Béw — v(v)u
A=l0 h o), FO)= fu ,
0 0 4 QU
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where A is a realization of the operator —dA + 3 in L?(Q) under the homogeneous Neu-
mann boundary condition % = 0 on the boundary 9. It is known that A is a positive
definite self-adjoint operator of L*(Q) with D(A) = H%(Q) (see [10, 11}), where HZ ()
is a closed subspace of H?(Q)) consisting of functions w’s satisfying the homogeneous
Neumann boundary conditions on 0€2. The initial value Uy is taken from the space

K = {(UO,U(),U)Q);O < g, Vg € LOO(Q) and 0 < wp € LZ(Q)}

Then we can apply the general results in [7] to construct local solutions. Nonnegativity
of local solutions and a priori estimates for local solutions will be established in ordinary
manners. As an immediate consequence of a priori estimates, we can prove the existence
and uniqueness of global solution. Moreover, from the Lipschitz continuity of solution in
initial data, we can construct a dynamical system determined from (1).

In the next part, we investigate asymptotic behavior of each trajectory of the dy-
namical system. For this purpose, we will introduce three kinds of w-limit set, namely,
w(lUp) C L*w(Uy) C w*-w(Up) for Uy € K. By finding a Lyapunov function for our
dynamical system, we can obtain many results on these w-limit sets.

RESULTS AND DISCUSSION

Theorem 1. For any Uy € K, (1) possesses a unique global solution such that

{o < u,v € C([0, 00); L¥(R)) N €X((0, 00); L=(R)),
0 < w € C([0,00); L*(€2)) N €((0, 00); H(2)) N €1((0, 00); L2(12)).

For each Uy € K, there exists a unique global solution U = U(¢; Up) to (1) and
the solution is continuous with respect to the initial value. Therefore, we can define a
semigroup {S(¢)}+>0 acting on K by S(¢)Uy = U(t; Up). Such that the mapping (¢, Up) —
S(t)Uy is continuous from [0,00) x K into K, where K is equipped with the distance
induced from the universal space X. Hence, we have constructed a dynamical system
(S(t), K, X) determined from (1). Moreover, (S(t), K, X) admits a bounded absorbing
set X C D(A)N K.

In addition, we can prove that the functional

W (U) = /Q [%(fu — hv)? + @

f6%

2

|Vw|?* + hal (v) + w? — (faﬁé)vw] dx

is a Lyapunov function for the present dynamical system (S(¢), K, X).
As well known, the (usual) w-limit set of S(¢)Uy, Uy € K, is defined by

w(lh) = ﬂ {S(1)Uy; t <7 < o0} (closure in the topology of X),

t>0

namely, U € w(Up) if and only if there exists a time sequence {¢,} tending to co such
that S(t,)Us — U in the topology of X. There is some numerical simulation (see [6])
suggests that there exists a trajectory which starts from a continuous initial functions
Up = (uo(z),ve(z), wo(z)) € K but, as t — oo, converges to a discontinuous stationary
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solution U = (w(z),7(x),w(z)). If this phenomenon is true, then any sequence S(t,)Up
cannot converge to U in the topology of X, namely, it is possible that w(Us) = (). This
then suggests that our dynamical system never possesses a global attractor in the topology
of X. By this reason we will content ourselves with constructing nonempty w-limit sets
in a suitable weak topology of X only.

We may equip X with the L? topology (resp. weak* topology) as follows. A sequence
{ (U, Vn, wy) } in X issaid to be L? (resp. weak*) convergent to (ug, vo, wp) € X asn — 0o,
if up — ug, v, — v and w, — wp strongly in L?(Q) (resp. u, — ug and v, — vy weak*
in L*(Q) and w, — wp strongly in L?(Q)). Then, using these topologies we can define
the L2-w-limit set and the w*-w-limit set of S(t)Uy, Uy € K, by

Lw(Uy) = ﬂ {S(M)Up; t <7 < 0} (closure in the L? topology of X),
£>0

w*-w(Uy) = m {S(1)Up; t <7 < 0} (closure in the weak™ topology of X).

t>0

We can prove the following results:
Theorem 2. For each Uy € K, w*-w(Uy) is a nonempty set.
Theorem 3. For each Uy € K, w(Uy) C L*-w(Up) C w*w(Up).

Theorem 4. Assume that h > -Cf%}s. Then, w(Up) = L*-w(Uy) = w*-w(Us) = {(0,0,0)}
for every Uy € K.

Theorem 5. Assume that ab® < 3(c+ f). Then, L?*-w(Up) = w*-w(Uy) for every Uy € K.
Theorem 6. For any Uy € K, L?<w(Uy) consists of equilibria of the dynamical system.

For the proofs of all the theorems in this report, refer to [1] and [2].

CONCLUSIONS

We constructed a global solution to (1) for each triplet of initial functions and constructed
a dynamical system determined from the problem. Furthermore, by finding a Lyapunov
function for our dynamical system and using three kinds of w-limit set, we can obtain
some results about asymptotic behavior of solutions.
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