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PSEUDO-DIFFERENTIAL OPERATORS RELATED 
WITH ORTHONORMAL EXPANSIONS OF 

GENERALIZED FUNCTIONS AND APPLICATION TO 
DUAL SERIES EQUATIONS 

NGUYE:\f VAN NGOC 

ABSTRACT. The aim of the present work is to introduce some 
functional spaces for investigating pseudo-differential operators in
volving orthogonal expansions of generalized functions and their 
application to dual series equations. 

1. Introduction 

The purpose of the present work is to introduce some functional 
spaces for investigat.ing pseudo-different.ial operat.ors of the form 

00 

(1.1 ) A[u](x) = L a(n)u(n)~j;n(x), 
n=O 

where {?,iJn (x)} ~=o is an orthonormal sequence of functions in L 2 , u( n) 
denot.es a value of the generalized function U on the function 1/Jn (x) , 
a(n) is a known function and is called the symbol of t.he operator A[u]. 

Quite a number of problems of mechanics and mathematical physics 
are reduced to the investigation of the operators in the form (1.1) and to 
resolution of correlative dual series equations (see [2,4]). Formal tech
niques for solving such equations have been developed vigorously, but 
t.heir solvability so far as we know has been considered comparatively 
weakly(see[2,4]). 

Our work is constructed as follows. In Sections 2 we recall some def
initions and result.s from the theory of orthonormal series expansions 
for generalized functions [5], in Sections 3 and 4 we construct. some 
functional spaces for t.he investigation of the pseudo- differential oper
ator (1.1). These spaces are constructed by a way analogous to that 
used for the construction of Sobolev- Slobodeskii spaces based on the 
Fourier transform in [1]. \Ve present these results for investigation of 
dual series equations in the Section 5. 
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2. Integral transform of generalized functions 

We denote by J a certain interval of the real axis and by N the linear 
differential operator of the form 

where D = d/dx, nk are positive integer numbers, Bk(X) are infinitely 
differentiable functions on J and Bk(X) =1= 0, Vx E J. We also require 
that 

where denotes the complex-conjugate of the function Bk(X), Be
sides, one supposes that there exist a sequence {An}(f of real numbers 
are called eigenvalues of the operator N and a sequence {1/)n (x)} of 
infini tely differentiable functions from L2 (J) are called eigenfunctions 
of the operator N, for which IAnl --+ 00 when n --+ oo(IAol ::;; IA11 ::;; 
IA21::;; ... ) and 

Suppose that functions 'l/Jn (x) generate an orthonormal sequence in 
L2 (J) with the scalar product and norm 

(u, v) = j' u(x)v(x)dx, Ilull = ~. 
J 

Besides, we assume also that An = O(nq
), n --+ 00. 

Definition 2.1 Denote by A the space of test functions SO(x) such that: 
1) SO(x) E COO(J), 
2) 'Ilk = 0,1,2 ... ; CYk(SO) := IINksol1 < 00, 

3) (Nk SO ,1/)n) = (SO,Nk'l/Jn)' 
The sequence{ SOn (x)} ~=o of functions from A is called convergent in A 
to zero, if CYk(SOn) --+ ° when n --+ 00, 'Ilk = 0, 1,2, ... 

Obviously, A is a linear space and 'l/Jn(X) E A. In [5] it was shown 
that A is a complete space and besides, V(J) cAe L2(J), where 
V( J) is the space of basic functions [5]. 

Theorem 2.1. . It SO E A then 

00 

SO(x) = 2::.)SO, 'l/J)'l/J(x) , 
n=O 

where the series converges in A. 
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ex; 

Theorem 2.2 . . The series I:an1/)n(x) converges in A if and only if 
n=O 

00 

the series I: lanl21Anl2k converges for any non- negative integer num-
n=O 

ber k. 

Definition 2.2. A generalized function is called any continuous line 
functional on the space A. We denote by A' the set of all generalized 
functions and by < f, cp > a value of the generalized function f E A' 
on the test function cp E A. The value of f E A' on cp E A we denote 
by (j, cp). Like this, (j, cp) =< f, cp > . 

In [5] it was shown that the space A' is complete and L2(J) c A' c 
1)' (.:J), where 1)' (.:J) is the conjugate space of 1)(.:J). Hence, every 
function f (x) E L2 (J) determines a regular functional f by the formula 

(2.1) (j, cp) = 1 f(x)cp(x)dx, cp E A c L2(J). 

ex; 

Theorem 2.3. The series I:bn'lbn(x) converges in A' if and only 
n=O 

if there exists a non-negative integer nllmber q, such that the series 
00 

I: Ibnl2lAnl-2q converges . 
..\n¥O 

Theorem 2.4. If f E A' then f is expanded to the series 
00 

(2.2) 
n=O 

where the series is convergent in A'. 

Theorem 2.5. If f, 9 E A' and (j, 'Ibn) = (g, 'lbn), \:In, then f = g zn 
the sense of A'. 

Remark 2.6. If f E A' and Fn = (j, 1/)n) , then there exists a integer 
number T, such that Fn = O(IAnn when n -+ oc. 
Definition 2.3. We consider the orthonormal expantion (2.2) as the 
inverse formula, defining a certain integral transform of genertalized 
functions, wich is given by the formula 

(2.3) J(n) := S[j](n) := (j, 'lbn) ,f E A', n = 0, L 2, ... 

Note that when f E L2(J) in virtue of (2.1) formula (2.3) has the form 

J(n) = r f(x)'lbn(x)dx. 
J.J 
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The inverse mapping S-l is given by the formula (2.2) and may be 
represented in the form 

00 

(2.4) S-l[j(n)](x) := ,,£j(n)'l/Jn(X) = f. 
n=O 

Definition 2.4.The generalized differential operator N' is defined by 
the following equality 

(2.5) (N'f,rp) = (j,Nrp), f E A', rp E A. 

In the sequel we shall identify N' with N and understand the gen
eralized differential operator N in the sense (2.5). Thus, the operator 
N defines a continuous mapping from A' into A'. Therefore, for any 
generalized function f E A' there exist derivatives Nk f, besides 

The formula (2.6) may be used for solving differential equations in 
the form 

(2.7) P(N)u = f, 

where P(x) is a certain polynomial with constant coefficients. Indeed, 
applying the operator S to the equation (2.7) and using (2.6), we have 

(2.8) P(An)u(n) = j(n). 

Assume that P(An ) =I- O(Vn), from (2.8) it follows that 

(2.9) 
A j(n) 
u(n) = P(A

n
)' 

Applying to (2.9) the operator S-l defined by the formula (2.4), one 
gets 

-1 [ j(n) ] ~ j(n) 
(2.10) u(x) = S P(An) (x) = ~ P(An) 'l/Jn(x). 

3. The space Hs 

Definition 3.1. Let s be a real number. Denote by Hs the set of 
generalized functions f E A', such that 

00 

(3.1 ) Ilfll; := "£(1 + Inl) 2s lj(nW < 00, 

n=O 
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formula 

(3.2) 

PSEUDO-DIFFERENTIAL OPERATORS 

S[j](n). The scalar product in Hs is defined by the 

00 

(j, g)s := ~(l + Inl)2s j(n)g(n). 
n=O 

Consider some examples of the space Hs. If s = ° then from 
00 

(3.1) it follows that {i(n)} E l2 : ~ Ifnl 2 < 00, therefore, f(x) = 
n=O 

S-l[}(n)](x) E L2(J). Let s = rn be a positive integer number, J = 
( -it, it) and S the finite Fourier transform , then Hs turns to the 
Sobolev space Wln( -it, it). 

Note that, in virtue of Theorems 2.1 and 2.2, we have A c Hs for 
any s E R Hence, for any u E Hs and rp E A, in virtue of Cauchy
Schwarz inequality we have 

00 

(3.3) l(u,rp)1 = I(u, ~cp1,bn(x))1 = 1~=ou(n)cp(n)1 :::; Ilullsllrpil-s. 
n=O 

Definition 3.2. Let a be a real number. Denote by (Jo: the class of 
functions a( n) satisfying the condition 

(3.4) la(n)1 :::; C(l + InI)O:, \In = 0,1,2, ... 

where C is a certain positive constant. VVe shall say that the function 
a(n) belongs to the class (J~ if a(n) E (Jo: and a(n) ;::: 0. Finally, the 
function a(n) belongs to the class (Jt if a(n)± E (J±o:, respectively. 

Theorem 3.1. Assume that a(n) E (Jo:, U E Hs, u(n) = S[u](n). Then 
the pseudo-differential operator 

00 

(3.5) A[u](x) := S-l[a(n)u(n)](x) := ~ a(n)u(n)1,bn(x) 
n=O 

is bounded from Hs into Hs-o:. If a(n) E (J-{3, where (J > 1/2, then the 
operator A is completely continuous in Hs. 

Proof. In virtue of Remark 2.6 and (3.4) a(n)u(n) is the slow growth at 
infinity. Due to Theorem 2.3 the series (3.5) converges in AI to certain 
function v := A[u] E AI. We show that v E Hs-o: . Indeed, applying 
the operator S to both parts (3.5), we have 

-(3.6) v(n) = A[u](n) = a(n)u(n). 

-533-



NGUYEN VAN NGOC 

Multiplying by(l + Inl)s-a both parts (3.6), taking into account that 
(1 + Inl)-ala(n)1 ~ C for all n, we have 

00 

n=O 

The inequality (3.7) shows that A[u](x) E Hs- a . Now we assume 
that 0; ,6 > 1/2. Let 6ij be the Kronecker symbol. We rewrite 
(3.6) in the form 

DO 

(3.8) v( n) = L a(j)u(j)6nj. 

j=O 

Multiply by (l+lnl)S both parts (3.8) and denote fn = (l+lnl)sv(n), gn = 
(1 + Inl)su(n), f = Un}, g = {gn}. Obviously, f, g E l2 and we have 

f = ~a( ')6 (1 + InlY 
(3.9) n kogJ J nJ(l+lJl)s' 

Then (3.9) defines certain linear continuous operator L : f = Lg 
from l2 into l2. In virtue of Cauchy- Schwarz inequality, we have 

2 00 2 00 00 (1 + Inl)" 2 

IILgll12 ~ ~ Igjl ~ ~ la(n)6nj (1 + I.m s I 

00 00 DO 00 C2 

= ~ Igjl2 ~ la(nW ~ ~ Igjl2 ~ (1 + Inl)2!3(P > 1/2). 

Thus, we have 

(3.10) 
2 00 DO _ (1 + InlY 2 00 2 

IILII ~ ~ ~ la(n)Onj (1 + Ijl)s I = ~ la(n)1 < 00. 

Now we prove that the operator L is completely continuous. Indeed, 
let {O;m(j)},(m = 1,2, ... ) be a complete orthonormal basic in l2(0 ~ 
j < (0) : 

00 

(O;m,O;d := L O;mjO;kj = 6mk. 
j=O 

Then {O;m(j)O;k(n)}~.k=l is a complte orthonormal basic in l2([0 ~ j < 
(0) x [0 ~ n < (0)). Denote 

( ) ;; ( .) (1 + Inl)s 
An,j UnjaJ (l+ljl)s 
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and rewrite (3.9) in the form 
00 

fn L[g](n) = LA(n,j)gj. 
j=O 

In virtue of (3.9), we have A(n,j) E l2([0 ::::; j < (0) x [0::::; n < (0)), 
hence there is the orthnormal expansion 

00 

m,k=l 

For arbitrary element g = {gj} E l2' we put 
N 

AN(n,j) = L AmkCtm(n)Ctk(j). 
m.k=l 

00 N N 

LN[g](n) = LAN(n,j)gj = LCtm(n)(LAmk/Jk), 
j=O m=l k=l 

\\'here 
00 

(3k = L Ctk(j)gj. 
j=O 

It is clear that, the operator LN is completely continuous in l2. Since 
AN(n,j) is a partial sum of the Fourier series of funtions AN(n,j), we 
have 

00 

L IA(n,j) - AN(n,jW -+ 0, (N -+ (0). 
n,j=O 

Therefore, applying the estimation (3.10) to the operator L - L n , we 
have 

IlL LNII-+ 0, (N -+ (0). 
Thus, L is a completely continuous operator. Like this, there exists 

the subsequence {fnt} converging in l2, therefore, there exists a subse
quence {v(n')} = {S[Au](n')} converging in fIs := S[HsJ, this means 
that one has found a sequence {vnt} = {A[u](n')} converging in Hs. 
The proof of Theorem 3.1 is complete. 0 

Theorem 3.2. Let H; be the conjugate space of the space Hs. Then 
H; is isomorphic to the space H- s . Besides, a value of a functional 
f E H- s on an element u E Hs is given by the formula 

00 

(3.11) (u,1)o L u(n)j(n), 
n=O 

where j(n) = S[J](n) = (j, ~j;n),u(n) = S[u](n) = (u, ~n). 
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Proof. According to Riesz Theorem on the general form of linear con
tinuous functional in Hilbert spaces any functional ¢( u), u E Hs is given 
by an element v E Hs and its norm II¢II = sup 1¢(u)1 equals to Ilvlls. 

Ilulls=l 
Denote 

(3.12) 

Then f E H-s, Ilfll-s = Ilvlls and (u,v)s = (u,f), where 

00 

(3.13) (u, f) L u(n)J(n). 
n=O 

Like this, (3.12) establishes an isomorphism between H; and H- s , be
sides, the value of the functional f E Hs on the element u E Hs is given 
by the formula (3.13).The proof of Theorem 3.2 is complete. D 

In virtue of Theorem 3.2, we put H; c:::: H- s . 

4. The spaces H~(O) and Hs(O) 

Let 0 be a certain subset of J. Let us introduce the following defi
nitions. 
Definition 4.1. Denote by H~(O) the space defined as the closure 
of the set CO'(O) of infinitely differentiable functions with a compact 
support in n with respect to the norm (3.1). The norm in H~(O) is 
fefined by the same (3.1). 

Thus, H~(O) is a subspace of Hs. 
Definition 4.2 The space Hs(O) is defined as the set of generalized 
functions f from V' (0) having extensions l f E Hs. The norm in Hs (0) 
is defined by the formula 

( 4.1) IlfIIHs(ll) := infillflls, 
I 

where the infimum is taken over all possible extentions If E Hs. 

Lemma 4.1. Assume that u E H~(O), v E H~s(O'), 0 u 0' = J. Then 
(u, v) = 0, where (u, v) denotes the value of the generalized function 
u on the elment v. Contrarily, if v E H -s and (u, v) = ° for all u E 
H~(O), then v E H~s(O'). 

Proof. Assume that u E H~(O), v E H~s(O'). According to the defini
tion of the support of generalized functions we have (u,:p) = 0, V:p E 

CO'(O'). Sinse the set CO'(O') is dense in H~s(O'), therefore from the in
equality (3.3) it follows that (u, v) = ° for all u E H~(O), v E H~s(O'). 
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i'\ow assume that v E H-s and (u, v) = 0, Vu E H~(fl). Then, in par

ticular, (v, 'P) = = ° for any 'P E Co (fl), this means suppv C fl', 
that is v E H~s (fl'). The proof of Lemma 4.1 is complete. 0 

Theorem 4.2. Let u E H~(fl), f E H_s(fl) and If be an extension of 
the function f from fl to J belonging to H_s(fl), then the series 

co 

(4.2) [u, f] := (u, l!)o := L S[u](n)S[lf](n) 
n=O 

does not depend on the choice of the extension If. Therefore, this series 
defines a linear contimwus functional on H~(fl). Conversely, for every 
linear continuous functional cfJ( u) on H~ (fl) there exists an element 
f E H_s(fl) such that cp(u) [u,f] and IlcfJll = IlfIIH-s(rl). 

Proof. Obviously the series (4.2) is convergent. Let l' f be an another 
extension of the function f. Then we have l f - l' f == ° on fl . Due to 
Lemma 4.1 we have (u,lf -l'!) == o,Vu E H~(fl) andVf E H-s(fl). 
From (4.2) it follows I(u,l!)ol (; Ilullsillfil-s. Sinse (u,lf) does not 
depend on the choice of l f then 

(4.3) I(u, l!)ol (; Ilulisinfillfll-s = IlullsllfIIH_s(rl). 
I 

Thus, every element f E H_s(fl) gives a continuous functional on 
H~ (fl) by the formula (4.2). Let cp ( u) be a linear continuous func
tional on H~(fl). The space H~(fl) c Hs is a Hilbert space with 
scalar product (3.2). Therefore, due to Riesz Theorem there exists 
a function v E H~(fl), such that cfJ(u) = (u, v)s, We put lo(n) = 

(1 + InI)2si)(n), fo = S-l[i(n)]. Then fo E H-s, pfo = f E H-s(fl), 
where p denotes the resriction operator to fl. vVe have ¢( u) = (u, v) s = 

(u, fo) and IlcfJll = Ilvll s = IIfoll-8 2: IlfIIH-s(rl). On the other hand, in 
virtue of (4.3) we have IlcfJll = sup IcfJ(u) I (; IlfIIH-s(rl). Like this, 

Ilulls=l 
IlcfJll = IlfIIH-s(rl). The proof of Theorem 4.2 is complete. 0 

Let H~*(fl) be the conjugate space of the space H~(fl). In virtue of 
Theorem 4.2 we put H~*(fl) c::: H_s(fl). 

Theorem 4.3. Assllme that b(n) E (J2s-f3ce > 1/2), u E H~(fl) and p 
is the resriction operator to fl. Consider the following pseudo-differential 
operator 

B[u] = pS-l[b(n)u(n)](x), u(n) = S[u](n). 

Then the operator B from H~(fl) to H_s(fl) is completely continuous. 
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Proof It is not difficult to show that the operator B is continuous 
operator from H~(O) into H-S+!3(O). We put 

(4.4) A[u] = S-l[b(n)u(n)](x), 1= pLsA[u], LI pll, 

where J- s denotes the embedding operator to H- s , land p are the 
extension and restriction operators respectively. We have L[J] B[u], 
besides, the operator L is bounded from H_s(O) into H-s+!3(O). Let 
loL[J] be a certain continuous extension of L[J] (in view of Han- Banach 
Theorem). Denote by A!3 the pseudo-differential operator of the form 
(1.1) with the symbol (1 + Inl)!3. We have 

L[/] = pA-!3A!3loL[J]. 

According to Theorem 3.1 the operator A_!3(fJ > 1/2) is completely 
continuous in H-s(J), A!3loL and p are continuous operators, then L is 
completely continuous in H-s(O). The proof of Theorem 4.3 is com
plete. 0 

5. Dual series equations 

5.1. Preparation. Let J1 and J2 be certain subsets of J, such that 
J1 U J2 = J. In this section we shall consider the following dual series 
equation: 

(5.1) 

(5.2) 

p1S-1[a(n)il,(n)] h(x), .'T E J1 , 

P2S- 1 [u(n)](x) = h(x), x E J2, 

where u( n) is a function to be found, the function a( n) is given and is 
called the symbol of the dual equation (5.1)-(5.2), h(x) E V'(J1) and 
h(x) E V' (J2 ) are given distributions on J1 and J2 respectively, finally, 
P1 and P2 are restriction operators to J1 and J2 respectively. 

We shall investigate the dual equation (5.1)-(5.2) under the following 
assumptions 

(5.3) a(n) E O'gex' h(x) E H_ex(Jt}, h(x) E Hex (J2) 

and we shall find the function '11 in the form '11 S[u], where u E Hex. 

Theorem 5.1. (Uniqzleness). Under the assumptions (5.3) the dual 
equation (5.1)-(5.2) has at most one solution u = S-l[U] E Hex. 

Proof To prove the theorem it suffices to show that the homogeneous 
dual equation 
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P2S-1[u(n)](x) = U(X) = 0, X E J2 
has only the trivial solution. 

Since u E H~ (Jl) the last dual equation may be rewritten as 

(5.4) (Au)(x) = 0, x E J1, 

where 

(5.5) (Au)(x) := p1S-l[a(n)u(n)](x), x E J1. 

Since Au E H-o:(Jl) c:::' H~*(Jl)(see Theorem 4.2) we obtain from 
(4.2) 

(5.6) [u, Au] = L S[u] (n)S[lIAu](n), 
o 

where hAu is an arbitrary extension of Au from J1 onto J : hAu E 
H_o:. Since the series on the right-hand side of (5.6) does not depend 
upon the choice of hAu (see Theorem 4.2) we can take 

llAu = hp1S-1[a(n)u(n)](x) = S-l[a(n)u(n)](x). 

Then we have 

[u, Au] = L a(n)lu(nW = 0 
o 

if the function u(x) = S-I[u(n)](x) satisfies the equation (5.4). From 
this it follows that u == u == 0 since a(n) ;::: O(a(n) =1= 0). The proof of 
Theorem 5.1 is complete. 0 

Lemma 5.2. The dual equation (5.1)-(5.2) is equivalent to the follow
ing equation 

(5.7) p1S-1 [a(n)v(n)](x) = JI(x) p1S-1 [a(n)Q;(n)](x) , 

where v S-l[V] E H~(J1) satisfies the condition 

(5.8) v + l212 = u E Ho: 

(l2!2 E Ho: being an arbitrary extension of the function 12 from J2 onto 
J ). 

Proof. Assume that u E Ho: satisfies the dual equation (5.1)-(5.2) and 
l212 E Ho: is an arbitrary extension of the function 12 E Ho:(J2). Taking 
v = U-l2!2 we get v E H~(J1)' Putting (5.8) into (5.1) we have (5.7). 
The right-hand side of (5.7) belongs to H-o:(J1) in view of Theorem 
3.1 and Theorem 3.2. 

Conversely, assume that v E H~ ( J1) satisfies the equation (5.7). 
Then obviously, the function u defined by (5.8) belongs to Ho:. We 

-539-



NGUYEN VAN NGOC 

shall prove that this function satisfies the dual equation (5.1)-(5.2) in 
the sense of distributions. Indeed, in transfering the second member 
in the right-hand side of (5.7) to the left-hand side and using (5.8) we 
obtain the equality (5.1). Finally, from (5.8) it follows the equality 
(5.2). The proof of Lemma 5.2 is complete. 0 

Denote 

(5.9) h(x) = JI(x) p1S-1 [a(n)[J;(n)](x). 

Using (5.5) we can rewrite (5.7) in the form 

(5.10) (Av)(x) = h(x), x E J1. 

Our purpose now is to establish the existence of solution of the equa
tion (5.10) in th space H~(J1)' We shall consider the following cases. 

5.2. The case a(n) = a+(n) Eo-to:' It is clear that in this case the 
norm and scalar product in Ho: defined by (3.1) and (3.2) respectively 
are equivalent to the following 

00 

(5.11) Ilvll~+ La+(n)I'f!(nW, 
n=O 

00 

(5.12) (v, w)a+ = L a+(n)v(n)w(n). 
n=O 

We shall also write A+v instead of Av. 

Theorem 5.3. (EXistence). If hE H-o:(J1) , a(n) a+(n) Eo-to: then 
the equation (5.10) has an unique solution v E H~(J1)' 

Proof. By an argument similar to that used in the proof of the Theorem 
4.2 we can show that 

00 

[w, A+v] = L a+(n)w(n)v(n) = (w, v)a+ 
n=O 

for arbitrary functions v and w belonging to H~(J1)' where [w,A+v] 
is defined by the formula (4.2). Therefore, if v E H~(Jl) satisfies the 
equation (5.10) then the following equality holds 

(5.13) (w, v)a+ = [w, hl, Vw E H~(Jr). 

We shall demonstrate that if (5.13) holds for any w E H~(J1) then 
the function v will satisfy the equation (5.10) in the sense of V'(J1 ). 
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In fact, noting that (5.13) holds for w = ep E C[{'(Jd we get from (2.4) 
and (4.2): 

00 

[ep, h] = L S[ep]S[hh](n) = (hh, ep), 
a 

00 

(ep, v)a+ = L S[ep](n)S[S-l[a+(n)v(n)] 
a 

Hence we have 

i. e. 

p1S-1 [a+(n)v(n)](x) = p1l1h(x) = h(x), x E J1. 

We now return to the relation (5.13). Since [w, h] is a linear con
tinuous functional on the Hilbert space H~ (J1 ), then by virtue Riesz 
Theorem there exists an unique element Va E H~(J1) such that 

[w,h] = (w,va)a+, Vw E H~(Jd 

and moreover 

(5.14) 

where C is a positive constant. The proof of Theorem 5.3 is complete. 
D 

Remar k 1. It is easily seen that the inverse operator (A +) -1 is 
bounded from H-et (J1) onto H~(J1). This follows from The Theorem 
5.3 and the inequality (5.14). 
Remark 2. The solution u of the dual series equation (5.1)-(5.2) 
expressed in terms of the solution V of the equation (5.7) by the formula 
(5.8) does not depend on the choice of the extension l212. This fact 
follows from the uniqueness of solution of the dual equation (5.1 )-(5.2). 
Hence, we can choose the extension l212 such that 

where Co is a certain positive constant. 
In this case, from (5.8), (5.9) and (5.14) it is easy to obtain the 

following estimate 

(5.15) 

where C = constant> o. Therefore, the solution of the dual equation 
(5.1)-(5.2) depends continuously upon the functions given on the right
hand side. 
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5.3. The case a(n) E a2o:. Assume in addition that there is a function 
a+(n) E ato: such that 

(5.16) b(n) := a(n) - a+(n) E a2o:-/3, (3 > 1/2. 

We now represent the operator A defined by (5.5) in the form A = 

A+ + B, where 

(5.17) A+v:= P1S-1[a+(n)v], Bv:= P1S-l[b(n)v]. 

Theorem 5.4. (Existence). Under the condit-ion (5.16) for every II E 

H-o:(Jd and h E Ho:(J2) the dual series equation (5.1)-(5.2) has an 
unique solzttion U E Ho:. 

Proof. According to Lemma 5.2 the dual series equation (5.1)-(5.2) is 
equivalent to the equation (5.5). In virtue of Remark 1 the operator 
(A+)-l is bounded from H-o:(Jl) into H~(Jl) and in virtue of Theorem 
4.3 the operator B is completely continuous from H~(Jd into H-o:(Jl). 
Therefore, the operator A = A + + B is a Fredholm and from the 
uniqueness of solution it follows that the dual series equation (5.1)
(5.2) has a unique solution U E Ho:. The proof is complete. 0 

Example. Consider the following problem [5]. Find a function v(x, y) 
satisfying the Laplace equation 

Vxx + Vyy = 0, 0 < x < 1f, 0 < y < 00 

with boundary conditions: 
i) If x -+ +0, or x -+ 1f - 0, then v(x, y) uniformly converges to zero 

on Y ~ y < 00, VY > o. 
ii) If y -+ 00, then v(x, y) uniformly converges to zero on 0 < x < 1f. 
iii) If y -+ +0, then v(x, y) f(x) E 1)'(0, a) on 0 < x < a and 

vy(x, y) -+ g(x) E 1)'(a, 1f) on a < x < 1f. 

It is not difficult to show that the function v(x, y) has the form 

v(x, y) = .J! f u~) e-ny sin nx, 
n=l 

where u(n)(n = 1,2, .... ) are determined by the following dual series 
equation 

(5.18) 

(5.19) 

J! 00 u(n) 
- '" -- sin nx = f(x), 
1f6 n 

n=l 

J!
oo 

- I: u(n) sin nx = -g(x), 
1f 

n=l 
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We put 

j!

oo 

u(x) := S-l[u(n)](x) = -" u(n) sin nx, 
Ti~ 

n=l 

u(n) = S[u](n) = Cu, j!sinnx). 

0< x < Ti, 

According to Theorem 5.3 we have that, the dual series equation 
(5.18)-(5.19) have an unique solution u(x) E H-1/ 2 == H-l/2(O, Ti). For 
simplicity, assume that g(x) == 0 and the function u(x) is represented 
in the form 

where 

u(x) 
__ w(x) 

0< x < a, va2 - x 2 ' 

l
a Iw(x)12 

--'-;=.~==:;;:dx < 00. 
o va2 - x 2 

Then one can show that the function u(x) is a solution of the following 
integral equation 

(5.20) ~ t In I s~n(x + t) lu(t)dt f(x), 0 < x < a. 
Ti Jo sm(x - t) 

The integral equation (5.20) can be resolved by the method of orthog
onal polynomials [3]. 
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