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PSEUDO-DIFFERENTIAL OPERATORS RELATED
WITH ORTHONORMAL EXPANSIONS OF
GENERALIZED FUNCTIONS AND APPLICATION TO
DUAL SERIES EQUATIONS

NGUYEN VAN NGOC

ABSTRACT. The aim of the present work is to introduce some
functional spaces for investigating pseudo-differential operators in-
volving orthogonal expansions of generalized functions and their
application to dual series equations.

1. Introduction

The purpose of the present work is to introduce some functional
spaces for investigating pseudo-differential operators of the form

oo

(1.1) Alu)(z) =Y a(n)a(n)in(z),

n=0

where {1,(2)}2%, is an orthonormal sequence of functions in Ls, @(n)
denotes a value of the generalized function u on the function ¢, (x) ,
a(n) is a known function and is called the symbol of the operator Afu].

Quite a number of problems of mechanics and mathematical physics
are reduced to the investigation of the operators in the form (1.1) and to
resolution of correlative dual series equations (see [2,4]). Formal tech-
niques for solving such equations have been developed vigorously, but
their solvability so far as we know has been considered comparatively
weakly (see[2,4]).

Our work is constructed as follows. In Sections 2 we recall some def-
initions and results from the theory of orthonormal series expansions
for generalized functions [5], in Sections 3 and 4 we construct some
functional spaces for the investigation of the pseudo- differential oper-
ator (1.1). These spaces are constructed by a way analogous to that
used for the construction of Sobolev- Slobodeskii spaces based on the
Fourier transform in [1]. We present these results for investigation of
dual series equations in the Section 5.
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2. Integral transform of generalized functions

We denote by J a certain interval of the real axis and by N the linear
differential operator of the form

N = lo(x) D™ 0,(z)D"™...D" b, (),

where D = d/dx,n; are positive integer numbers, 0;(x) are infinitely
differentiable functions on J and 6x(z) # 0,Ya € J. We also require
that

N = () (=Dl (=D)"01(z)(= D)™ 0o(2),

where 0;(z) denotes the complex-conjugate of the function 6, (z). Be-
sides, one supposes that there exist a sequence {A,}5° of real numbers
are called eigenvalues of the operator A and a sequence {,(z)} of
infinitely differentiable functions from Lg(J) are called eigenfunctions
of the operator N, for which |A,| — oo when n — oo(JAo] < [N <
[A2] < ...) and

N (z) = Abn(z), n=0,1,...

Suppose that functions ¥,(z) generate an orthonormal sequence in
Lo(J) with the scalar product and norm

(u,0) = / w(eyo@dz, |lull = v/ w).

Besides, we assume also that A, = 0(n?),n — co.
Definition 2.1 Denote by A the space of test functions ¢(z) such that:
1) p(z) € C=(J),
2) VE=0,1,2...;a1(p) = ||N*p|| < oo,
3) (N p,n) = (0, N¥apn).
The sequence{y, ()}, of functions from A is called convergent in A
to zero, if ay(v,) — 0 when n — oo, Vk =0,1,2, ...
Obviously, A is a linear space and ¥,(z) € A. In [5] it was shown
that A is a complete space and besides, D(J) C A C Ly(J), where
D(J) is the space of basic functions [5].

Theorem 2.1. . It ¢ € A then
olz) = S (0, 0)(a),
n=0

where the series converges in A.
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o
Theorem 2.2. . The series Zan?/)n(:s) conwverges in A if and only if

n=0
o0
the series E |an*[Aa|?* converges for any non- negative integer num-
n=0

ber k.

Definition 2.2. A generalized function is called any continuous line
functional on the space A. We denote by A’ the set of all generalized
functions and by < f,¢ > a value of the generalized function f € A’
on the test function ¢ € A. The value of f € A" on @ € A we denote
by (f, ). Like this, (f,¢) =< f,7>.

In [5] it was shown that the space A’ is complete and Ly(J) C A’ C
D'(T), where D'(J) is the conjugate space of D(J). Hence, every
function f(z) € Lo(J) determines a regular functional f by the formula

(2.1) (f,p) = /Jf(x)gp(:b)dr w e AC L(J).

oC
Theorem 2.3. The series anzbn(:c) converges in A’ if and only
n=0
if there exists a non-negative integer number q, such that the series
o0

Z ba]?| 20| 24 converges.

An#0
Theorem 2.4. If f € A’ then f is expanded to the series
(2.2) F= (ftn)tn(®),

n=0

where the series is convergent in A'.

Theorem 2.5. If f,g € A and (f,¢,) = (g9,¢n),Vn, then f = g in
the sense of A'.

Remark 2.6. If f € A and F, = (f,%n), then there exists a integer

2

number r, such that F,, = 0(|\,|") when n — oo.

Definition 2.3. We consider the orthonormal expantion (2.2) as the
inverse formula, defining a certain integral transform of genertalized
functions, wich is given by the formula

A

(2.3) f(n):=S[fl(n) = (fvn), fe A n=012,..
Note that when f € Lo(J) in virtue of (2.1) formula (2.3) has the form

f(n) = /] () w)d.
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The inverse mapping S™! is given by the formula (2.2) and may be
represented in the form

(2.4) STHFM(@) = f(n)yihu(z) = f

Definition 2.4.The generalized differential operator A is defined by
the following equality

(2.5) WN'fop)=(fNg), feA, peA

In the sequel we shall identify A" with A" and understand the gen-
eralized differential operator N in the sense (2.5). Thus, the operator
N defines a continuous mapping from A’ into A’. Therefore, for any
generalized function f € A’ there exist derivatives N* f, besides

(2.6) SINFF] = (N*f, ) = (£, N¥apn) = XES[f](n).

The formula (2.6) may be used for solving differential equations in
the form

(2.7) PN)u = f,

where P(z) is a certain polynomial with constant coeflicients. Indeed,
applying the operator S to the equation (2.7) and using (2.6), we have

(28) P(w)i(n) = f(n).
Assume that P()\,) # 0(Vn), from (2.8) it follows that
(2.9) i(n) = P((/\j)

Applying to (2.9) the operator S~* defined by the formula (2.4), one
gets

(2.10) u(z) = [f ](a: :ip

n=0

3. The space H,

Definition 3.1. Let s be a real number. Denote by H, the set of
generalized functions f € A', such that

o0

(3.1) 1£112 5= Y1+ [n)*|f (n)]* < oo,

n=0
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where f(n) = S[f](n). The scalar product in Hj is defined by the
formula

0
(3.2) (£,9)s = Y _(1+In))* f(n)a(n).
n=0
Consider some examples of the space Hs;. If s = 0 then from
(3.1) it follows that {f(n)} € Iy : Z:|fn|2 < o0, therefore, f(z) =

n=0
S f(n)](z) € Ly(J). Let s = m be a positive integer number, J =
(=7, w) and S the finite Fourier transform , then H, turns to the
Sobolev space Wit (—n, 7).
Note that, in virtue of Theorems 2.1 and 2.2, we have A C H, for
any s € R. Hence, for any v € H; and ¢ € A, in virtue of Cauchy-
Schwarz inequality we have

(33)  lw el =1(u Y ¢u(2))] = [2Ze@(n)(n)] < |lulls]lol]-s-

Definition 3.2. Let « be a real number. Denote by o, the class of
functions a(n) satisfying the condition

(3.4) la(n)] < C(1+ |n))* Vn=0,1,2, ...

where C is a certain positive constant. We shall say that the function
a(n) belongs to the class 02 if a(n) € o, and a(n) > 0. Finally, the
function a(n) belongs to the class o7 if a(n)* € oi,, respectively.

Theorem 3.1. Assume that a(n) € o4,u € Hs,4(n) = S[u}(n). Then
the pseudo-differential operator

o0

(35  Afu(z) = S alm)a(n))(z) == ) a(n)@(n)yn(z)

n=0
is bounded from Hs into Hs—q. If a(n) € o_g, where 3 > 1/2, then the
operator A is completely continuous in Hs.

Proof. In virtue of Remark 2.6 and (3.4) a(n)a(n) is the slow growth at
infinity. Due to Theorem 2.3 the series (3.5) converges in A’ to certain
function v := Afu] € A'. We show that v € Hy_, . Indeed, applying
the operator S to both parts (3.5), we have

(3.6) o(n) = Alul(n) = a(n)a(n).
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Multiplying by (1 + |n|)*~® both parts (3.6), taking into account that
(1 +|n])"la(n)] < C for all n, we have

GBIl = AR, CZ(HIHI la(n)|* = Cllull3-

The inequality (3.7) shows that Afu](z) € Hs_,. Now we assume
that a = =3, [ > 1/2. Let §;; be the Kronecker symbol. We rewrite
(3.6) in the form

[s.0)
(38) o(n) = Y a(§)5)8n.
=0

Multiply by (1+|n|)® both parts (3.8) and denote f,, = (14+|n])*t(n), g, =
(L+|np*a(n), f = {fn},9 = {gn} Obviously, f,g € l» and we have

s (e
(3.9) Jo= ;QJ‘CL(J)%W~

Then (3.9) defines certain linear continuous operator L : f = Lg
from [y into lo. In virtue of Cauchy- Schwarz inequality, we have

L4l < Zlgjlzzjcw mllj‘(;ﬂ;

7=0 n=0
=S Il Y lam) < S la? S (3> 1/2)
=0 n=0 =0 (1t 1 )
Thus, we have
2 o . 1+|n§)32_°° 5
(310)  [IL|’ < z;zol %W _;W” < .

Now we prove that the operator L is completely continuous. Indeed,
let {am(7)},(m = 1,2,...) be a complete orthonormal basic in l5(0 <
Jj<oo):

am> Olk E amgak] - 6mk

Then {am(j)ar(n) oz, is a complte orthonormal basic in [2([0 < j <
o0) X [0 < n < 00)). Denote

A(n,3) = byya() T

(T+14D)s

— 534 —



PSEUDO-DIFFERENTIAL OPERATORS

and rewrite (3.9) in the form

o= Llgl(n) = _ A(n, 5)g;

=0
In virtue of (3.9), we have A(n,7) € ([0 < j < 00) X [0 < n < 0)),
hence there is the orthnormal expansion

n j) = Z /\mkam(n)a'k(j)’

m,k=1
For arbitrary element g = {g;} € l2, we put
1\7

N n, .7 Z )\mkam )

m,k=1

Lylg ZAN n,7)g Zam(n (Z/\ ;ﬁk)

where
o
= Z ar(7)g;
i=0

It is clear that, the operator Ly is completely continuous in ls. Since
An(n,j) is a partial sum of the Fourier series of funtions Ay(n, j), we
have

fee]
> A, §) = An(n, )P = 0, (N — o).
n,j=0
Therefore, applying the estimation (3.10) to the operator L — Ly, we
have
IIL = Ly|| =0, (N — o0).

Thus, L is a completely continuous operator. Like this, there exists
the subsequence { f } converging in s, therefore, there exists a subse-
quence {6(n)} = {S[Au](n')} converging in H, := S[H,], this means
that one has found a sequence {v,} = {Afu](n')} converging in H;.
The proof of Theorem 3.1 is complete. O

Theorem 3.2. Let H; be the conjugate space of the space H,. Then
H? is isomorphic to the space H_;. Besides, a value of a functional
f € H_, on an element u € Hy is given by the formula

oG

(3.11) (u, o= _a(n)f(n),

n=0

where f(n) = S[f](n) = (f, %), &(n) = S[u](n) = (u,vn).
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Proof. According to Riesz Theorem on the general form of linear con-
tinuous functional in Hilbert spaces any functional ¢(u), u € Hy is given

by an element v € Hy and its norm ||¢]| = sup |¢(u)| equals to ||v]]s.
“uHszl
Denote
(3.12) fn)= (1 +n)*o(n), f=5"[fl.

Then f € H_g, ||fll-s = l|v]ls and (u,v)s = (u, f), where

(3.13) (u, f) = ln) f(n).

n=0

Like this, (3.12) establishes an isomorphism between HF and H_g, be-
sides, the value of the functional f € H, on the element u € H, is given
by the formula (3.13).The proof of Theorem 3.2 is complete. O

In virtue of Theorem 3.2, we put H} ~ H_,.

4. The spaces HZ(Q)) and H,(Q)

Let Q be a certain subset of J. Let us introduce the following defi-
nitions.
Definition 4.1. Denote by HZ(€2) the space defined as the closure
of the set C§°(Q) of infinitely differentiable functions with a compact
support in Q with respect to the norm (3.1). The norm in H2(f) is
fefined by the same (3.1).

Thus, HZ(Q) is a subspace of H.
Definition 4.2 The space H () is defined as the set of generalized
functions f from D'(Q)) having extensions [f € H,. The norm in Hs(§2)
is defined by the formula

(4.1) [l zroe) = i?fiflfﬂs:

where the infimum is taken over all possible extentions [f € H,.

Lemma 4.1. Assume that u € HJ(Q),v e H° (), QUQ = J. Then
(u,v) = 0, where (u,v) denotes the value of the generalized function
u on the elment T. Contrarily, if v € H_g and (u,v) = 0 for all u €
H2(Q), then v € H® ().

Proof. Assume that v € H(2),v € H® (). According to the defini-
tion of the support of generalized functions we have (u, ) =0, Ve €
C§e(8Y). Sinse the set C§(Q) is dense in H® ('), therefore from the in-
equality (3.3) it follows that (u,v) = 0 for all uw € HZ(Q2),v € H2 ().
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Now assume that v € H_; and (u,v) =0, Vu € HZ(2). Then, in par-
ticular, (v, ) = (p,v) = 0 for any ¢ € C°(Q), this means suppv C ¥,
that is v € H° (€). The proof of Lemma 4.1 is complete. O

Theorem 4.2. Letuw € H(Q)), f € H_,(Q2) and If be an extension of
the function f from Q to J belonging to H_s(Q2), then the series

(42) [0, 1= (w10 = 3 S () STFn)

does not depend on the choice of the extension lf. Therefore, this series
defines a linear continuous functional on HZ(QY). Conversely, for every
linear continuous functional ¢(u) on HI(Q) there exists an element
f € Hos(Q) such that ®(u) = [u, f] and ||| = || f||r_.(2)-

Proof. Obviously the series (4.2) is convergent . Let I'f be an another
extension of the function f. Then we have [f — I'f = 0 on . Due to
Lemma 4.1 we have (u,lf —U'f) = 0,Vu € HJ(Q) and Vf € H_4(Q).
From (4.2) it follows |(u,[f)o] < ||ulls||lf]|-s- Sinse (w,lf) does not
depend on the choice of [f then

(4.3) [ U)ol < Nlullsin ANl = Nlullsl| fllz-@)-

Thus, every element f € H_,(Q) gives a continuous functional on
HZ(Q) by the formula (4.2). Let ®(u) be a linear continuous func-
tional on HZ(Q2). The space H2(Q) C H, is a Hilbert space with
scalar product (3.2). Therefore, due to Riesz Theorem there exists
a function v € H2(Q), such that ¢(u) = (u,v)s. We put fo(n) =
(1 + |n))*0(n), fo = ST f(n)]. Then fo € H_s, pfo= f € H_s(),
where p denotes the resriction operator to . We have ¢(u) = (u,v)s =
(u, fo) and ||¢]| = ||v||s = || foll=s = || fllz_s)- On the other hand, in

virtue of (4.3) we have ||¢]| = sup |¢(u)| < ||fl|#_,)- Like this,
ul]s =1
Holl = || fllz_y). The proof of Theorem 4.2 is complete . O

Let H*(Q) be the conjugate space of the space Hg(€). In virtue of
Theorem 4.2 we put H*(Q) ~ H_4(Q).

Theorem 4.3. Assume that b(n) € o9s_5(8 > 1/2),u € H2(Q) and p
is the resriction operator to Q1. Consider the following pseudo-differential
operator

Blu] = pS~Hb(n)a(n))(z), 4(n) = S[u](n).
Then the operator B from HZ(Q) to H_4(Q2) is completely continuous.
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Proof. It is not difficult to show that the operator B is continuous
operator from HZ () into H_g,5(2). We put

(44) Al =S"p(m)am)(z), f=pJsAlul, Lf = plf,

where J_, denotes the embedding operator to H_;, | and p are the
extension and restriction operators respectively. We have L[f] = Blu],
besides, the operator L is bounded from H_,(Q) into H_s15(Q). Let
loL[f] be a certain continuous extension of L[f] (in view of Han- Banach
Theorem). Denote by Ag the pseudo-differential operator of the form
(1.1) with the symbol (1 + [n])?. We have

L[f] = pA_pAglo L[f].
According to Theorem 3.1 the operator A_z(8 > 1/2) is completely
continuous in H_s(J), AgloL and p are continuous operators, then L is
completely continuous in H_4(2). The proof of Theorem 4.3 is com-
plete. O

5. Dual series equations

5.1. Preparation. Let J; and J; be certain subsets of J, such that
J1 U Jo = J. In this section we shall consider the following dual series
equation:

(5.1) S Ha(n)u(n)] = fi(z), =z €.,

(52) pQSyl[a(n)](m) = fg(f]?), T e JQ»

where 4i(n) is a function to be found, the function a(n) is given and is
called the symbol of the dual equation (5.1)-(5.2), fi(z) € D'(J;) and
fa(x) € D' (Js) are given distributions on J; and J; respectively, finally,
p1 and py are restriction operators to Jy and Jo respectively.

We shall investigate the dual equation (5.1)-(5.2) under the following
assumptions

(5.3) a(n) € 035, fi(z) € Hoo(1), fa(z) € Ha(J2)
and we shall find the function @ in the form 4 = Su], where u € H,.

Theorem 5.1. (Uniqueness). Under the assumptions (5.3) the dual
equation (5.1)-(5.2) has at most one solution v = S™![0] € H,.

Proof. To prove the theorem it suffices to show that the homogeneous
dual equation

S Ha(n)u(n)] =0 z € Jy,
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pSTHa(n))(z) = ul(z) =0, z€Js
has only the trivial solution.
Since u € Ho(Jy) the last dual equation may be rewritten as

(5.4) (Au)(z) =0, z€ .,
where
(5.5) (Au)(z) == p1S~Ha(n)i(n)](x), z € J;.

[
Since Au € H_,(J;) =~ HZ*(Jy)(see Theorem 4.2) we obtain from
(4.2)

(5.6) [u, Au] = Z Slu](n)S[l1Au](n),

where l; Au is an arbitrary extension of Au from J; onto J : [HAu €
H_,. Since the series on the right-hand side of (5.6) does not depend
upon the choice of I; Au (see Theorem 4.2) we can take

hAu = hpi S a(n)i(n)](z) = S~ a(n)i(n)](2).

Then we have
o
[u, Au] = E a(n)|a(n
0

if the function u(z) = [ (n)](x) satisfies the equation (5.4). From
this it follows that w = @ = 0 since a(n) > 0(a(n) # 0). The proof of
Theorem 5.1 is complete, "

Lemma 5.2. The dual equation (5.1)-(5.2) is equivalent to the follow-
mg equation

(67 pSam)om)) = fi(2) - p S a)bf(m) (@),
where v = S7Y[0] € HS(J1) satisfies the condition
(5.8) v+lfo=u€ H,

(lafs € Hy being an arbitrary extension of the function fs from Ja onto
J).

Proof. Assume that u € H, satisfies the dual equation (5.1)-(5.2) and
lafs € Hy is an arbitrary extension of the function fo € H,(Js2). Taking
v=u—lafy we get v € H3(J;). Putting (5.8) into (5.1) we have (5.7).
The right-hand side of (5.7) belongs to H_,(J;) in view of Theorem
3.1 and Theorem 3.2.

Conversely, assume that v € HZ(Jy) satisfies the equation (5.7).
Then obviously, the function u defined by (5.8) belongs to H,. We

— 539 —



NGUYEN VAN NGOC

shall prove that this function satisfies the dual equation (5.1)-(5.2) in
the sense of distributions. Indeed, in transfering the second member
in the right-hand side of (5.7) to the left-hand side and using (5.8) we
obtain the equality (5.1). Finally, from (5.8) it follows the equality
(5.2). The proof of Lemma 5.2 is complete. O

Denote
(5.9) hz) = fi(2) = prS~ a(n)lafo(n)](@).
Using (5.5) we can rewrite (5.7) in the form
(5.10) (Av)(z) = h(z), =€ J.

Our purpose now is to establish the existence of solution of the equa-
tion (5.10) in th space HZ(J1). We shall consider the following cases.

5.2. The case a(n) = a*(n) € of,. It is clear that in this case the
norm and scalar product in H, defined by (3.1) and (3.2) respectively
are equivalent to the following

(5.11) |[o]|2+ Za Yo (n

(5.12) (v, W)+ = Za*(n)@(n)'@_(ﬂ
n=0

We shall also write A*v instead of Av.

Theorem 5.3. (Ezistence). If h € H_o(J1),a(n) = a*(n) € o, then
the equation (5.10) has an unique solution v € H2(Jy).

Proof. By an argument similar to that used in the proof of the Theorem
4.2 we can show that

[w, A*o] =) at(n)w(n)i(n) = (w,v)q

for arbitrary functions v and w belonging to H2(J;), where [w, ATv]
is defined by the formula (4.2). Therefore, if v € HY(J;) satisfies the
equation (5.10) then the following equality holds

(5.13) (W, v)g+ = [w,h], Yw e H(]1).

We shall demonstrate that if (5.13) holds for any w € HS(J1) then
the function v will satisfy the equation (5.10) in the sense of D'(J1).
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In fact, noting that (5.13) holds for w = ¢ € C§°(J1) we get from (2.4)
and (4.2):

oo

> SlelShhl(n) = (L, ).

%
=
I

(9, 0)ar = ) Slel(m)S[Sa*(m)o(n)] = (S a* (n)3(n)], ).

Hence we have

(S7HaT(n)o(n)], @) = (Lh, ), Vo € CF(),

piS7Hat (n)o(n)|(z) = phik(z) = h(z), z € J1.
We now return to the relation (5.13). Since [w, h] is a linear con-

tinuous functional on the Hilbert space HS(J;), then by virtue Riesz
Theorem there exists an unique element vg € H2(J;) such that

[w, h] = (w,v0)e+, Yw € Hy(J1)
and moreover
(5.14) |volla+ < ClIAIE_a(n),

where C' is a positive constant. The proof of Theorem 5.3 is complete.

O

Remark 1. It is easily seen that the inverse operator (AT)™! is
bounded from H_,(J;) onto HS(Jy). This follows from The Theorem
5.3 and the inequality (5.14).

Remark 2. The solution u of the dual series equation (5.1)-(5.2)
expressed in terms of the solution v of the equation (5.7) by the formula
(5.8) does not depend on the choice of the extension lyfs. This fact
follows from the uniqueness of solution of the dual equation (5.1)-(5.2).
Hence, we can choose the extension Iy f; such that

o folla < Coll fol | Ha( )

where C, is a certain positive constant.
In this case, from (5.8), (5.9) and (5.14) it is easy to obtain the
following estimate

(5.15) ulla < CU1fill_an) + 1 fallzam),

where C = constant > 0. Therefore, the solution of the dual equation
(5.1)-(5.2) depends continuously upon the functions given on the right-
hand side.
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5.3. The case a(n) € 09,. Assume in addition that there is a function
at(n) € o, such that

(5.16) b(n) :=a(n) —a*(n) € osa-p, B>1/2.

We now represent the operator A defined by (5.5) in the form A =
AT 4+ B, where

(5.17) Aty =p S aT(n)2], Bv:=pSTHb(n)d].

Theorem 5.4. (Exzistence). Under the condition (5.16) for every fi €
H_o(J1) and fs € Ho(J2) the dual series equation (5.1)-(5.2) has an
unique solution v € Hy.

Proof. According to Lemma 5.2 the dual series equation (5.1)-(5.2) is
equivalent to the equation (5.5). In virtue of Remark 1 the operator
(A*)~! is bounded from H_, (/1) into HZ(J;) and in virtue of Theorem
4.3 the operator B is completely continuous from HZ(.J;) into H_q(J1).
Therefore, the operator A = AT + B is a Fredholm and from the
uniqueness of solution it follows that the dual series equation (5.1)-
(5.2) has a unique solution u € H,. The proof is complete. J

Example. Consider the following problem [5]. Find a function v(z,y)
satisfying the Laplace equation

Ve + 0y =0, O<z<m, 0<y<oo

with boundary conditions:

i) If £ — 40, or £ — 7 — 0, then v(z,y) uniformly converges to zero
onY Ly <oo,VY > 0.

ii) If y — oo, then v(z,y) uniformly converges to zero on 0 < z < 7.

iii) If y — +0, then v(z,y) — f(z) € D'(0,a) on 0 < z < a and
vy(z,y) — g(z) € D'(a,m)on a < z < 7.

It is not difficult to show that the function v(z,y) has the form

5 N
vz, y) = \/;Z y-%ge_”y sinnz,
n=1

where 4(n)(n = 1,2,....) are determined by the following dual series
equation

2 o= i(n) |
1 1/ — = . .
(5.18) - nil - sinnz flz), 0<z<a,
2 o0
1 =N a(n)sinne = — :
(5.19) =3 a(n) sinnz g(z), a<w<m
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u(z) == S~ Ha(n)|(z) = \/giﬁ(n) sinnz, 0<z<m,

2
i(n) = Slu)(n) = (v, \/;sinm:).

According to Theorem 5.3 we have that, the dual series equation
(5.18)-(5.19) have an unique solution u(z) € H_ /s = H_1/5(0,7). For
simplicity, assume that g(z) = 0 and the function u(z) is represented
in the form

w(z)
wr) = ——r, 0<z <a,
(@) = s
where . )
[w(z)] dz < oo.

o V=2
Then one can show that the function u(z) is a solution of the following
integral equation
a .
(5.20) l/ In ‘w’u(t)dt = f(z), 0<z<a.
7 Jo sin(z — t)
The integral equation (5.20) can be resolved by the method of orthog-
onal polynomials [3].
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