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ON THE GENERALIZED CONVOLUTION WITH A 
WEIGHT-FUNCTION FOR THE FOURIER COSINE, MELLIN 

AND FOURIER SINE INTEGRAL TRANSFORMS 

NGUYEN XU AN THAO AND TRAN AN HAl 

ABSTRACT. A generalized convolution with a weight-function for the Fourier co­
sine, Mellin and Fourier sine integral transforms is introduced. Its properties are 
studied, the application to solving a system of integral equations is outlined. 

1 Introduction 
The convolution for integral transforms were studied in the 20th century, at first the 
convolution for Fourier transform (see, eg.[3, 21]), for the Laplace transform (see 
[26]), for the Mellin transform [21] and after that the convolution for the Hilbert 
transform [4, 24], the Hankel transform [7, 25], for the Kontorovich- Lebedev trans­
form [7, 29], for the Stieltjes transform [22], the convolution with weight- function 
for the Fourier cosine transform [14]. 

The convolutions have applications to solving integral equations, evaluating inte­
grals, summing a series [5, 6, 10,21, 23, 24, 28]. 
The convolution of two functions f and 9 for Mellin integral transform iVI was in­
troduced in [21] 

which satisfies the factorization identity 

+00 

J x du 
f(u)g( - )-, 

u u 
o 

lv!(J * g)(y) = (lvIJ)(y)(1\1g)(y), Vy E C. 

where the Mellin integral transform is [21] 

roo 
J(y) = (I11f)(y) = Jo f(x)xy-1dx, Y E C. 

Furthermore, the inverse IVlellin transform is defined [2] 

x> o. 

Key words and phrases. Convolution, Fourier sine and Mellin transforms, integral equations 
1\;15C(2000) : 44A35 , 4238, 45E IO . 
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NGUYEN XUAN THAO AND 'IRAN AN HAl 

Let Fs and Fe be the Fourier cosine and sine transforms, respectively: 
+00 

(Fsf)(y) = /! J f(x)sin(xy)dx, y> ° 
o 
+00 

(Fef)(y) = /! J f(x)cos(xy)dx, y > 0. 

o 

In 1941, Churchill R.V gave out the convolution of functions f and g for Fourier 
cosine integral transform [3J 

+00 

U * g)(x) = 
Fe 

1 J f(y) [g (Ix - ul) + g (x + u)J du, x> ° 
o 

which satisfies 

(1) FeU * g)(y) = (Fef)(y)(Feg)(y), 'l/y> 0. 
Fe 

At the same time, he also gave out the convolution of functions f and g for Fourier 
sine and Fourier cosine integral transforms 

+00 

~ J f(u)[g(lx - ul) - g(x + u)Jdu, x> 0, 
V 21T 

o 

for which the factorization property holds 

(2) FsU * g)(y) = (Fsf)(y)(Feg)(y), 'l/y> 0, 

A convolution with the weight function (3(y) = sin y of functions f and g for the 
Fourier sine integTal transform Fs was studied in [7], [12J: 

+00 

(3 1 J . U * g)(x) = ~ f(u) [slgn(x + u - l)g(lx + u - 11) - g(x + u + 1)+ 
Fs 2v 21T 

o 

+sign(x - u - l)g(lx - u - 11) - sign(x - u + l)g(lx u + II)]du, x> ° 
for which the factorization property holds: 

(3) 
6 

FsU* g)(y) = siny(Fsf)(y)(Fsg)(y), 'l/y> 0. 
Fs 

In the first of 90s of the last century, Yakubovich S.B. published some papers on 
special cases of generalized convolutions for integral transforms according to index, 
such as integral transforms of Mellin type [27J, integral transforms of Kontorovich 
- Lebedev type [29], the G-transform [20J. For instance, for integral transforms of 
Mellin type 

+00 

J
. x dt 

(Kd)(x) =. f(t)k i ( t) t (i = 0,1,2), 

o 
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ON THE GENERALIZED CONVOLUTION 

the convolution has the form 

U * g)(x) = -.- 1 2 j*(S)g*(t)x-s-tdsdt, 1 l j' k*(s)k*(t) 
(21TZ)2'lJs IJt ko(s+t) 

x> 0, 

where k;, j*, g* respective are Mellin transforms of ki' f, g (i 0,1,2), for which the 
factorization property holds 

KoU * g)(y) (Kd)(y)(K2g)(y). 

In 1998, Kakichev and Nguyen Xuan Thao proposed a constructive method of defin­
ing the generalized convolution of two functions f and g, for three arbitrary integral 
transforms K 1 , K 2 , K3 with the weight - function ~((x) [8], for which the factorization 
property holds 

In recent years, several generalized convolutions were published, for instance: the 
generalized convolutions for Stieltjes, Hilbert and Fourier cosine- sine integral trans­
forms [11], the generalized convolution for H - transform [9], the generalized con­
volution for I-transform [18], the generalized convolution with a weight-function 
for Fourier, Fourier cosine - sine transforms[15]' the generalized convolutions for 
Kontorovich-Lebedev, Fourier sine and cosine transforms [19] ... For example, the 
generalized convolution for Fourier cosine and sine transforms has the form[13] 

+00 

1 j' U * g)(x) =;'"CC f(u) [sign(u - x)g(lu 
T v 21T 

xl) + g(u + x)]du, x> 0, 

o 

which satisfies the factorization identity 

(4) FeU * g)(y) = (Fsf)(y)(Fsg)(y), Vy > 0. 
T 

The generalized convolution with the weight-function {3(y) = sin y of the functions 
f and g for the Fourier cosine and sine integral transforms was studied in [17] 

+00 

f3 1 J U * g)(x) = ;'"CC f(u)[g(lx + u - 11) + g(lx - u + 1 
1 2v 21T 

o 

-g(x+u+l) g(lx u-ll)]du, x>O 

and the factorization property holds 

(5) 
f3 

FeU * g)(y) siny(Fsf)(y)(Feg)(y), Vy> 0. 
1 

The generalized convolution with the weight-function {3(y) = sin y for the Fourier 
sine and cosine transforms has been defined [16] by the indentity 

+00 

f3 1 J U~g)(x)= ;'"CC f(u)[g(lx+u-ll)+g(lx 
2 2v 21T 

u - 11)-

o 

-g(x+u+l)-g(lx-u+ll)]du, x>O 
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NGUYEN XUAN THAO AND TRAN AN HAl 

with the factorization property 

(6) FeU t g)(y) = siny(Fef)(y)(Feg)(y), Vy> O. 

In this paper we give out a notion of the generalized convolution with a weight­
function of two functions for the Fourier cosine, Mellin and Fourier sine integral 
transforms. vVe will prove some of its properties as well as point out a relationship 
to the convolution (1). Finally, we will aplly this notion to solving a system of 
integral equations. 

2 The generalized convolution for the Fourier cosine, Mellin and Fourier 
sine integral transforms 
Let 

(7) 
e1(x, u, v) =2 \ T( -U){[l + (x 

7r-Z 
V)2]~ sin[u. arctan(x - v)]-

- [1 + (x + V)2]~ sin[u. arctan(x + v)]} 

Definition. The generalized convolution with the weight function Af(Y) = e-Yy-l of 
functions f and 9 for the Fourier cosine, Mellin and Fourier sine integral transforms 
is defined 

c+ico +co 

(8) U1g)(x) / / e1(x,u,v)f(u)g(v)dudv, x> 0, 
c-ico 0 

where u is the complex variable and c = Reu < -2, t Imu. 

Let L(ch7rI;;U, ffi.) = {f : ~r If(u)ldt < +oo} 
-co 

and L(ffi.+) = {g : -r Ig(v)ldv < +oo}. 
o 

Theorem 1. Let f(u) E L(ch7rI;;u,ffi.) (c < -2) and 9 E L(ffi.+). Then the convo-

lution U 1 g) belongs to L(ffi.+) and satisfies the factorization equality 

(9) FeU 1 g)(y) = ,(y)(M-1 f)(y)(Fsg)(y), Vy> O. 

Proof. First of all we show that 

(10) If(z)1 ~ f(Rez), Vz E C such that Rez > 0 

and 

(11) 1 sin zl ~ cosh(Im z), Vz E C 
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ON THE GENERALIZED CONVOLUTION 

Indeed, 
+00 +00 

If(z) I = I J e-XxZ-ldxl ~ J e-XlxZ-1Idx 

and 

o 0 
+00 +00 

= J e-Xle(Z-l)ln xldx = J e-xe(iRz-l)lnxdx 

o 0 
+00 

= J e-xx'Rz-1dx = r(~z). 
o 

. leizi + le-izi 
I sm z I ~ '---'---'-------'-

2 • 
le-1mzl + le1mzl 

= 2 = eh(Imz). 

By the inequalities (10) and (11) , Vu E C such that e < -2, we have 

10,(x, u, v) I ~ 2~' r( ~c) {I [1 + (x v)'I'lch[Imu.acctan(x ~ v)]+ 

(12) 

+ I [I + (x + v)'I'lch[Imu.arctan(x + V)]} 

Since e < - 2, we obtain 

(13) 

Because laretan(x ± v)1 ~ ~, it follows that 
'iT 

(14) eh[Imu.aretan(x ± v)] ~ eh( 2Imu). 

From (12), (13), (14) we get 

(15) 

Base on (15), with e < -2 we have 

c+ioo +00 

l(Jig)(x)1 = I J J el(x,u,v)f(u)g(v)dudvl 
c-ioo 0 

+00 +00 

~ J J le1(x, u, v)llf(u)lIg(v)ldtdv 
-00 0 

+00 +00 

~ :2 r ( -e) J J eh 'iTI~ulf(u)lIg(v)ldtdv < +00. 
-00 0 
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NGUYEN XUAN THAO AND TRAN AN HAl 

We have 

+00 +00+00+00 J j (J ~ g)(x)ldx:( J J J IB1(x, u, v)llf(u)llg(v)ldxdtdv 
o 0 -00 0 

+00 +00 +00 J J (J IB1(x, u, v)ldx )If(u)llg(v)ldtdv 
-00 0 0 

+00 +00 +00 

1 J J (J 1IImu :( 2112f(-C) ch-2-{[1 + (x v?l~ + [1 + (x + v)2l~}dx) If(u)llg(v)ldtdv 
-00 0 0 

+00 +00 +00 

:( 2:2f( -c) J J (J ch1lI;W HI + (x - v)2rl + [1 + (x + v)2rl }dx) If(u)llg(v)ldtdv 
-00 0 0 

+00 +00 

= ')1
2
r(-c) J j' ch1lI~{,u{artan (x_v)l+

oo 
+ art an (x+v)l+oo}lf(u)llg(v)ldtdv 

~11 ~ 0 0 
-00 0 

+00 +00 

1 J J 1IImu -f( -c) ch--lf(u)llg(v)ldtdv < +00 
211 2 

-00 0 

So (J ~ g) E L(lE+). 

To prove that the generalized convolution (8) satisfies the factorization equality 
(9), first of all we make the following observation: if u E C and v E lR+ are fixed 
numbers, then B1(x,u,v) E L(lR+). 
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ON THE GENERALIZED CONVOLUTION 

Indeed, 

+00 +OO{ 
j le1(x,u,v)ldx:S; 2~2r(-C) j 1[1+(x-v)2]~llsin[u.arctan(x-v)]1 
o 0 

+ 1[1 + (, + v)'] 'II ~iD[u.a'·ctan(x + v )11 }dX 
+00 

:S; ~2r(-C) j {[I + (x v)2r1ch[t.arctan(x v)] 
21f 

o 

+ [1 + (x + V )2] -1 ch[t.arctan(x + V)] }dx 

{ 

+00 

= ~r( -c) j ch[t.arctan(x - v)]d(arctan(x V))+ 
21f~ 

o 

+00 } 
+ j ch[t.arctan(x + v)]d(arctan(x + v)) . 

o 

Therefore, if t = I mu :::f 0, then 

~r( -c) {j+OOCh[t.arctan(x v)]d(arctan(x v))+ 
21f~ 

o 

+00 } 
+ j ch[t.arctan(x + v)]d(arctan(x + v)) = 

o 

~r( -c) {sh[t.arctan(:r - v)] 
21f t 

+00 

o 
+ sh[t.arctan(x + v)] 

= ~2 r( -c){sh 1ft - sh[t.artan (-v)] + sh 1ft - sh[t.artan v]} 
~t 2 2 
1 1ft 

= -r( -c) sinh-. 
1f2t 2 

If t = I mu = 0 then 

~2r(-C){ j+ooCh[t.arctan (x - v)]d(arctan(x v))+ 
21f 

o 

+00 } 
+ j cosh[tarctan (x + v)]d(arctan (x + v)) = 

o 
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NGUYEN XUAN THAO AND TRAN AN HAl 

~ 2~,r( -C) { 1 d(a,ctan(x v)) + 1 d(arctan(x +u)) } 

= 212 f( -C) {arctan(x - v) 1+
00 

+ arctan(x + v) I+
oo

} 
7i 0 0 

1 {7i 7i} = -?f( -c) - - arctan( -v) + - arctanv 
27i~ 2 2 
1 

= 27i f (-c). 

+00 

So J IB1(x, u, v)ldx < +00. 
o 

On the other hand, from the formula 7 ([2] p.277) we get, 
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ON THE GENERALIZED CONVOLUTION 

+00 

=j! 1I~i J e-Yy-U-l [ sin (y(x - v)) + sin (y(x + v)) ] dy j!e1 (x, u, v). 
o 

It follows that 

(Fe(e1(x, u, v))) (y) 

The last equality yield 
c+ioo +00 

,(y) (1V!-l J)(y)(Fsg)(y) = e-Vy-1-21 J f(U)y-l'du f!.. J g(v) sin(vy)dv 
1IZ y; 

c-ioo 0 

c+ioo +00 

I J E~e-Vy-U-l sin(vy)f(u)g(v)dudv 
. Y211 Z 

c-ioo 0 

c+bo +00 +00 J J Cj! J e1(x, u, v) cos(xy)dx )f(u)g(v)dudv 
c-ioo 0 0 

= Fe(J i g) (y). 

Theorem 1 is thus proved. 0 
Theorem 2. If f(u) E L(ch7rI;m,YK) (c < -2) and g E L(YK+), then 

c+ioo 

(Jig) (x) = . ~ j' f( -u)f(u)[(1+v2 )-!l' sin( -u.arctanv)*g(v)J (x)du, \Ix> O. 
ZV2113 T 

Proof. 

(Jig)(x) = 
c+ioo +00 

1 j' 1 J =,V 3 f( -u)f(u)(;;c {sign(v 
Z 211 v 211 

x) [1 + Ix - vl 2J -!l' sin (-u.arctanlx - vl)+ 
c~oo 0 

+ [1 + (x + V )2J 1l' sin (-u.arctan(x + v)) } g( v )dv )du 

c+ioo 

= . ~ J f( -u)f(u) [(1 + v2 )-!l' sin( -u.arctanv) * g(v)] (x)du, \Ix> O. 0 
ZV 2113 T 

c-ioo 
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It is easy to find out that the generalized convolution (8) is neither commutative 
nor associative. But we have 
Theorem 3. Let g, hE L(lR+) and f E L( ch1l'I;nu, lR) (c < -2), then the following 

eqzwlities holds 

a) f i (g*h) = (t i g) ;c h. 

b) f*(gih) g*(tih). 

c) f t (g i h) = gr (t i h). 
d) f J (g ~ h) = h ~ (f J g) . 

Fs 1 

Proof. We prove a). Base on (1),(9), we have 

Fe(t i (g*h)) (y) = ,(y) (lvI-1 f)(y)Fs(g * h)(y) 

= ,(y)(lvI-1 f)(y)(Fsg)(y)(Feh)(y) 

= FeU i g) (y)(Feh)(y) = Fe( U;; g) ;c h) (y), vy> O. 

Hence f ;; (g*h) = (t;; g) lc h. The proof for b), c), d) are similar to those of a). 

The theorem is proved. 

3 Applications to integral equations 
Consider the system of integral equations 

(16) 

c+ioo +cc +00 

f(x) + Al J J B1(x, u, v)<.p(u)g(v)dudv + A2 J B2(x, u)g(u)du+ 
c-ioo 0 0 

+00 

+00 

+A3 J B3(x,u)g(u)du = h(x) 
o 

A4 J B4(x, u)f(u)du + g(x) = k(x), 

o 

where x > 0, and c, AI, A2, A3, A4 denote complex parameters with c < 
B1(x, u, v) is defined in (7), 

B2(x, u) = ~ [sign (u - x),;-(lx - ul) + ';-(x + u)], 
V 211 

kernels: 

1 
B3(x, u) = r.c. [((Ix + u 11) + ((Ix - u + 11) - ((x + u + 1) - ((Ix - u - 11)], 

2v 211 

B4(x, u) = ~ [sign (x u)1jJ(lx - ul) + 1jJ(x + u)], 
V 211 
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tp,~, ('?/J, h, k are given functions and 1, 9 are unknown functions. 

Theorem 4. Suppose that tp E L (ch 7rI;:U, lR) (Reu < -2) and 1/), ~, (, h, k E L(lR+), 

8(x) = )'l(tp 1 ?/J)(x) + )d~ ~ ?/J)(x) + A3(?/J r ()(x). Then, with the condition 

1 A4(Fc8)(y) i- 0, \ly> 0, 

the system (16) have a solution 

f(x) = h(x) + (h;.c q)(x) - Al (tp 1 k) (x)-

( (tp 1 k) fc q) (x) A2 ( ~ ~ k) (x) - A2 (( ~ ~ k) ;'C q) (x) 

g(x) = k(x) + (k * q)(x) - A4(?/J * h)(x) - A4((?/J * h) * q)(x) E L(lR+) 

with q(x) E L(lR+) satisfying 

Proof. 

A4(Fc8)(y) = (Fcq)(y). 
1 - A4(Fc8)(y) 

Using (2), (4), (5), (9) we obtain the linear system 

(Fcf)(y) + An(y) (lVr1tp) (y) (Fsg) (y) + A2(Fs~)(y)(Fsg)(y)+ 
+A3siny(Fc()(y)(Fsg)(y) = (Fch)(y) 

A4(Fs?/J)(y)(Fcf)(y) + (Fsg)(y) = (Fsk)(y) 

On the other hand 

.6. = 1 1 An(y)(M-1tp)(y) + A2(FsO(y) + A3siny(Fc()(Y) 1 

A2(Fs?/J)(Y) 1 

= 1 - A4Fc(Al(tp i?/J) + A2(~ ~?/J) + A3(?/J r ())(y) = 1 - A4(Fc8)(y) i- 0 

.6. -1(Fch)(Y) An(y)(M-1tp)(y) + A2(F1s~)(Y) + A3 siny(Fc()(Y) 1 

1 - (Fsk)(y) 

= (Fch)(y) Al Fc(tp 1 k)(y) A2Fc(~ ~ k)(y) A3 Fc(k r ()(y), 

.6. _I 1 (Fsh)(Y)1 
2 - A4 (Fs?/J) (y) (Fsk)(y) 

= (Fsk)(y) - A4FS(?/J * h)(y). 

Hence 

1 f !3 1 (17) (Fcf)(y) = ;\ [(Fch)(y) AIFC(tp * k)(y) - A2Fc(~ * k)(y) A3(k * ()(y) 
L.:>. T 1 
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In virtue of Wiener - Levi's theorem [1] there is a function q(x) E L(lR+) such that 

),4(FeS)(y) 
(18) 1 _ ),4(FeS)(y) = (Feq)(y). 

From (1), (17), (18) we get 

~ ~ 
(Fef)(y) = [1 + (Feq)(y)][(Feh)(y) - ),l Fe(rp * k)(y) - ),2Fe(~:;. k)(y) - ),3Fc(k i ()(y)] 

= (Feh)(y) + (Feq)(y)(Feh)(y) - ),lFe(rp 1 k )(y)-

- ),1 Fe (rp 1 k) (y )(Feq)(y) - ),2 Fe (~ :;. k) (y) - ),2 Fe (~ :;. k) (y )(Feq)(y)-

~ . ~ 
- A3Fe(k i ()(y) - ),3 Fc(k i ()(y)(Feq)(y) 

= (Feh)(y) + Fc(h * q)(y) A1Fe(rp 1 k) (y)-
Fe 

A1Fe((rp 1 k) * q)(y) - A2Fe(~ * k)(Y) - A2Fe((~ * k) * q)(y)-
Fe T T Fe 

~ ~ 
- A3Fc(k * ()(y) - ),3 Fe((k * () * q)(y). 

1 1 Fe 

From last equation, we obtain 

f(x) = h(x) + (h J
e 

q)(x) - A1 (rp 1 k) (x)-

-A1((rplk) J
e 

q)(x) A2(~:;.k)(x) A2((~:;.k) J
e 

q)(x)-

,6 ~ 
-A3(k*()(x) - A3((k*() * q)(x) E L(R+). 

1 1 Fe 

Similarly, 

(Fsg)(y) = [1 + (Feq)(y)][(Fsk)(y) - A4Fs(1/J * h)(y)]. 

From (2) we have 

(Fsg)(y) (Fsk)(y) + Fs(k * q)(y) - A4FS(1/J * h)(y) - A4FS((1/J * h) * q)(y). 

Hence 

g(x) = k(x) + (k * q)(x) A4(1/J * h)(x) A4((1/J * h) * q)(x) E L(R+). 

The proof is complete. 

Consider the system of integral equations 
c+ioo +00 

f(x) + A1 J J e1(x, u, v)rp(u)g(v)dudv = h(x) 

(19) c-ioo 0 

+00 +00 

A2 J e4(x, u)f(u)du + A3 J e5 (x, u)f(u)du + g(x) = k(x), x> 0 

o 0 
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here, c, AI, A2, A3 denote complex parameters with c < -2, kernels: 
e1(x, u, v) is defined in (7), 

1 . e4 (x, u) = [sIgn (x - u)w(lx - ul) + W(x + u)J, 

1 e5 (x, u) = /CL [~(Ix + u - 11) + ~(Ix - u - 11) - ~(x + u + 1) - ~(Ix - u + II)J, 
2v 27r 

with 
+00 

~(x) = ~ J 6 (u)[sign (u - x)6(lu - xl) + 6(u + x)Jdu, 
o 

where cp, W, 6, 6, h, k are given functions. J, g are unknown functions 

Theorem 5. Suppose that cp E L(ch7fI;;U,lR) (Reu < -2) and w,6,6,h,k E 

L(lR+), l (x) = A2 (cp i W) (x) + A3 (6 ~ (cp i 6)) (x) . Then, with the condition 
1 

1 - A3(Fcl)(y) i- 0, Vy> 0, 

the system (19) have a solution 

f(x) = h(x) - A1(CP i k)(x) + (q * h)(x) - A1(q * (cp i k))(x) E L(R+) 
Fc Fc 

(3 
g(x) k(x) A2(W * h)(x) - A3(6 * (6 * h))(x) 

Fs 

(3 
+(k * q)(x) - A2((1p * h) * q)(x) - A3((6 * (6 * h)) * q)(x) E L(R+). 

Fs 

with q(x) E L(lR+) satisfying 

)dFcl)(y) 
1 A3(Fcl)(y) = (Fcq)(y). 

Proof. 
Using (2), (4), (6), (9) we obtain the linear system 

(Fcf)(y) + Al/(y)(M-1cp)(y)(Fsg)(y) = (Fch)(y) 

A2(FsW)(y)(Fcf)(y) + A3siny(Fs6)(y)(Fs6)(y)(Fcf)(y) + (Fsg)(y) = (Fsk)(y) 
On the other hand 

.6. = I 1 Al/(y)(M-
1
cp)(y) I 

)·dFsW)(y) + A3 siny(Fs6) (y)(Fs6)(Y) 1 
, (3 , 

= 1 - A1Fc(A2(CP * W) + A3(6 *(cp * 6)))(y) = 1 - A3(Fcl)(y) 
1 

.6. -1(Fch)(Y) Al/(Y) (A1-1cp) (y) I 
1 - (Fsk)(y) 1 

= (Fch)(y) - A1Fc(cp i k)(y), 
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.6. _I 1 (Fch)(y) 1 
2 - A2(Fs1/J)(Y) + A3siny(Fs6)(y)(Fs6)(Y) (Fsk)(y) 

= (Fsk)(y) - A2 FS(1/J * h)(y) - A3FS(6 ~ (6 * h))(y). 
Fs 

Hence 

(20) 
1 r 

(Fcf)(y) = .6. [(Fch)(y) - AIFc(cp * k)(y)]. 

In virtue of Wiener - Levi's theorem [1] there is a function q(x) E L(lR+) such that 

A3(Fcl )(y) 
(21) 1 _ A3(Fcl )(y) = (Fcq)(y). 

From (1), (20), (21) we get 

(Fcf)(y) = [1 + (Fcq) (y)][(Fch) (y) - AIFc(cp ~ k)(y)] 

= (Fch)(y) - AIFc(cp ~ k)(y) + Fc(q * h)(y) - AIFc(q * (cp ~ k))(y). 
Fc Fc 

From last equation, we obtain 

f(x) = h(x) - Al(CP ~ k)(x) + (q * h)(x) - Al(q * (cp ~ k))(x) E L(R+). 
Fc Fc 

Similarly, 
j3 

(Fsg)(y) = [1 + (Fcq) (y)][(Fsk) (y) - A2FS(1/J * h)(y) - A3FS(6 * (6 * h))(y)]. 
Fs 

From (2) we have 

(Fsg)(y) = (Fsk)(y) 
j3 

A2 FS(1/J * h)(y) - A3FS(6 * (6 * h))(y) 
Fs 

+Fs(k * q)(y) A2FS((1/J * h) * q)(y) 
j3 

A3FS((6 * (6 * h)) * q)(y). 
Fs 

Hence 

g(x) = k(x) - A2(1/) * h)(x) A3(6 ~ (6 * h))(x) 
Fs 

+(k * q)(x) - A2((1/J * h) * q)(x) - A3((6 ~ (6 * h)) * q)(x) E L(R+). 
Fs 

The proof is complete. 
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