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ON THE GENERALIZED CONVOLUTION WITH A
WEIGHT-FUNCTION FOR THE FOURIER COSINE, MELLIN
AND FOURIER SINE INTEGRAL TRANSFORMS

NGUYEN XUAN THAO AND TRAN AN HAI

ABSTRACT. A generalized convolution with a weight-function for the Fourier co-
sine, Mellin and Fourier sine integral transforms is introduced. Its properties are
studied, the application to solving a system of integral equations is outlined.

1 Introduction
The convolution for integral transforms were studied in the 20** century, at first the
convolution for Fourier transform (see, eg.[3, 21]), for the Laplace transform (see
(26]), for the Mellin transform [21] and after that the convolution for the Hilbert
transform [4, 24], the Hankel transform [7, 25], for the Kontorovich- Lebedev trans-
form [7, 29], for the Stieltjes transform [22], the convolution with weight- function
for the Fourier cosine transform [14].

The convolutions have applications to solving integral equations, evaluating inte-
grals, summing a series [5, 6, 10, 21, 23, 24, 28].
The convolution of two functions f and g for Mellin integral transform M was in-
troduced in [21]

+00

(f * 9)(a) = / Flw)gl

0

z. du
W

which satisfies the factorization identity

M(f = g)(y) = (Mf)(y)(Mg)(y), Yy € C.

where the Mellin integral transform is [21]
+o0

J?(?J) =(Mf)y) = (z)2¥"dz, yeC.

0

Furthermore, the inverse Mellin transform is defined [2]

c+ico
(M f)(z) = QLm / flwz %y, z>0.

Key words and phrases. Convolution, Fourier sine and Mellin transforms, integral equations
N[SC(QOOO) 1 44 Ags, 4235, 45 F1g.
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NGUYEN XUAN THAO AND TRAN AN HAI

Let Fg and F¢ be the Fourier cosine and sine transforms, respectively :

(Fsf)(y) = \/% 76f($)5m($y)dl’, y>0
(Fef)ly f / f(@)cos(zy)dx, y > 0.

In 1941, Churchill R.V gave out the convolution of functions f and g for Fourier
cosine integral transform [3]

(fbi*‘cg)(iv):'\”/“;—;0/f(y)[g(lx—u|)+g(:c+u)]du, z>0

which satisfies
(1) Fo(f X D) = (Fef)y)(Feg)y), Yy > 0.

At the same time, he also gave out the convolution of functions f and g for Fourier
sine and Fourier cosine integral transforms

(F+0)@) = o= / fWlg(le — ul) — g(w+ wldu, = >0,

for which the factorization property holds

(2) Fs(f = g)(y) = (Fsf)(w)(Feg)ly), vy >0,

A convolution with the weight function f(y) = siny of functions f and g for the
Fourier sine integral transform Fs was studied in [7], [12]:

(f £ o)) ZW/M (o +w = gl +u — 1) = glz +u+ 1)+

+sign(z — u — 1)g(lz —u— 1)) —sign(z — v+ 1)g(|lz — u+ 1))]du, z> 0
for which the factorization property holds :

(3 Fs(f & 9)y) = siny(Fsf)(u)(Fsg)(w), ¥y > 0.

In the first of 90s of the last century, Yakubovich S.B. published some papers on
special cases of generalized convolutions for integral transforms according to index,
such as integral transforms of Mellin type [27], integral transforms of Kontorovich
- Lebedev type [29], the G—transform [20]. For instance, for integral transforms of
Mellin type

+co

(KH)e) = [ femFa=0.12)

0
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ON THE GENERALIZED CONVOLUTION

the convolution has the form

ki (s)ks(t
(f*g)(z 2m // (Ss+t F(8)g* @)a™ M dsdt, x>0,

where kf, f*, g* respective are Mellin transforms of k;, f, g (i = 0,1, 2), for which the
factorization property holds

Ko(f * 9)(y) = (K1) (y)(Ka29)(y)-

In 1998, Kakichev and Nguyen Xuan Thao proposed a constructive method of defin-
ing the generalized convolution of two functions f and g, for three arbitrary integral
transforms K7, K>, K3 with the weight - function y(z) [8], for which the factorization
property holds

Ki(f * 9)(y) = () Fa f) () (Ks9) ().

In recent years, several generalized convolutions were published, for instance: the
generalized convolutions for Stieltjes, Hilbert and Fourier cosine- sine integral trans-
forms [11], the generalized convolution for H— transform [9], the generalized con-
volution for /— transform [18], the generalized convolution with a weight-function
for Fourier, Fourier cosine - sine transforms[15], the generalized convolutions for
Kontorovich-Lebedev, Fourier sine and cosine transforms [19]... For example, the
generalized convolution for Fourier cosine and sine transforms has the form[13]

(7300 = 7= [ Flsiontu = )gllu = al) + glu+a)du, 2 >0,

which satisfies the factorization identity
(4) Fe(f x9)(y) = (Fs ) () (Fsg)(y), vy > 0.

The generalized convolution with the weight-function S(y) = siny of the functions
f and g for the Fourier cosine and sine integral transforms was studied in [17)

(+i9)(@) 2ﬁ;/f o+ = 11) + gl = u-+ 1))~

—gz+u+1)—g(lz —u—1])]du, >0
and the factorization property holds

(5) Fc(f%g)(y) = siny(Fsf)(y)(Feg)(y), Yy > 0.

The generalized convolution with the weight-function (y) = siny for the Fourier
sine and cosine transforms has been defined [16] by the indentity

(+10)@) Zm/f gz -+ u=11) + glle = u = 1))~

—gz+u+1) —g(lz —u+1])]du, z>0
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NGUYEN XUAN THAO AND TRAN AN HAI

with the factorization property
4] .
(6) Fo(f % 9)(y) = siny(Fof)(y)(Feg)(v), Yy > 0.

In this paper we give out a notion of the generalized convolution with a weight-
function of two functions for the Fourier cosine, Mellin and Fourier sine integral
transforms. We will prove some of its properties as well as point out a relationship
to the convolution (1). Finally, we will aplly this notion to solving a system of
integral equations.

2 The generalized convolution for the Fourier cosine, Mellin and Fourier
sine integral transforms
Let

91($7u>?}) = 9
(7) 2724

F(—u){[l + (z — v)?% sinfu. arctan(z — v)]—
— [1+ (z 4+ v)?)? sinfu. arctan(z + v)]}
Definition. The generalized conwolution with the weight function y(y) = e Yy~1 of

functions f and g for the Fourier cosine, Mellin and Fourier sine integral transforms
is defined

(8) (flg)(:c) = / /91(:1;,u,v)f(u)g(v)dudv, z >0,

c—ioc 0
where u s the compler variable and ¢ = Reu < -2, t= Imu.

+oo
Let L(ch™™ R) = {f [ ch™I| f(u)|dt < +oo}
-0

+o0
and L(R,) = {g c f g(w)]dv < —{-oo}‘

0
Theorem 1. Let f(u) € L(ch™Z% R) (¢ < —2) and g € L(Ry). Then the convo-
lution (f i g) belongs to L(Ry) and satisfies the factorization equality

(9) Fo(f * 9)(y) = +(w)(M ™' )(v)(Fs9)(y), Vy>0.

Proof. First of all we show that

(10) IT'(2)] < T(Rez), Vz € C such that Rez >0
and
(11) Isinz| < cosh(Im 2), VzeC
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ON THE GENERALIZED CONVOLUTION

Indeed,
+00 +o0
IT'(z)| = ‘ /e‘”:cz_ld:c‘ < /e"m|az’z_1|dm
0 0
+oo +oo
— /6~m|e(z—l)lnm|d$= /e-—me(ﬂ?z—l)lnmdl,
0 0

+oc

= / e %y = T(R2).

and
|Slll 7| < M
- 2
—Imz Imz
= %«ii——l = ch(Imz).

By the inequalities (10) and (11) , Vu € C such that ¢ < —2, we have

101 (z,u, )| < Q%F(—c){‘ [1+ (z —v)?] B ch[Imu.arctan(z — v)]+
(12)

+|[1+(x+v)gﬁ

ch[Imu.arctan(z + v)] }

Since ¢ < —2, we obtain

(13) “1+(xiv)}

A
2

<L

Because |arctan(z & v)| < %, it follows that
(14) chlImu.arctan(z £ v)] < ch(zlmu).

From (12), (13), (14) we get

(15) On(,u, v) < Tir(-c)ch

Base on (15), with ¢ < —2 we have

4400 +00

o) -] / /61a:uv £ (w)g(v)dudv

e—100
+00 +00

<m£ / 01(, 5, )L () llg ()]t

+00 +00

/ /Chvrfmu u)|lg(v)|dtdv < +o0.

— 556 —



NGUYEN XUAN THAO AND TRAN AN HAI

We have

+0o¢ +o0 +o¢

/5“9$W@b///ﬁwwvwfmaﬂmww

+0¢ +oe 400

=//(!mmeWmewm

- 0
+00 400 +oo

< gl //‘/’T“ww+@—mﬁ [+ (2 -+ )78 e ) |7 g (o) i
0
<5 272 7 / / "];”“{[1 (@ =07+ [ (o + ) e ) | F ()] g () |dedo
0 0
= .é.}r.z_p(_c) / / Chﬂfgw{artan (x — U)’:oo + artan (z + v)}:mﬂf(u)”g(v)]dtdv
= 5T (7/dfmﬂﬂnm>WM<+m
0

So (f#g) € L(Ry).

To prove that the generalized convolution (8) satisfies the factorization equality
(9), first of all we make the following observation: if u € C and v € R, are fixed
numbers, then 0;(z,u,v) € L(R,).
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Indeed,

5 | sinfu.arctan(z — v)]]|

/ 101 (2, u, v)|dz <
0

+ ] [1+ (z +v)7] #|| sin[u.arctan(z + v)]] }dﬂ?

+oo

< 51 (=¢) / {[1 + (z —v)?] “Leh[t.arctan(z — v)]

0

+ [1+ (z +v)?] “Lehft.arctan(z + v)] }da:

Qigf(-c){ / chlt.arctan(z — v)]d(arctan(z — v))+
0

+ / chlt.arctan(z + v)|d(arctan(z + v)) }

Therefore, if £ = I'mu # 0, then

ZiQF(_C){ / chlt.arctan(z — v)ld(arctan(z — v))+
0

+ / chlt.arctan(z + v)]d(arctan(z + v))} =
0

+o0

j

0

+0oo

! + shlt.arctan(z + v)]

2wt

I'(—¢) {sh[t.arctan(:c — )]

0

= ——-Q;Qtf‘(—c){shz; — sh[t.artan (—v)] + sh%2E — shft.artan U]}

1 7t
= —7;2—1;1“(—0) sinh %—

Ift = Imu =0 then
+oo

9’1‘2 F(—c){ / chlt.arctan (z — v)]d(arctan(z — v))+
0

“+co
+ / cosh[tarctan (x + v)|d(arctan (z + v))} =
0
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= ”2',1“_511(—0){ / d(arctan(z —v)) + / d(arctan(x —{—v))}
0 0
—I(=¢){arctan(z — v) ’:Oo + arctan(x +v) };oo

}

= ?F(—C){g — arctan{—v) + g- - a?‘ctanv}

1
= %F(—C)

+co

So [ |61(z,u,v)|ldz < 400.
0
On the other hand, from the formula 7 ([2] p.277) we get,

— 559 —
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7w
0

= \/3;12—2 /Ooe‘yy*““l [sin (y(z —v)) +sin (y(z + v))} dy = \/%91(33» u,v).

0
It follows that

(FC(%e‘yy“““lsin(vy)))(m):\/2—1“. / Yy~ sin(vy) cos(ay)dy

(Fe(0:(@,u,v)) ) ) = /53¢~ sin(oy).

272
The last equality yield

c—Hoo

() (M) () (Fsg)(y) = ey~ duf / sin(oy)d

27‘2

ct+ioc +oo

/ \/g “vhsin(vy) f (u)g(v)dudv

ctioco 4o

-/ \f [t oyt st

100

' = Fo(f + ) ().
Theorem 1 is thus proved.[]
Theorem 2. If f(u) € L(ch™™ R) (c < —2) and g € L(R,.), then

C—‘LOO

(flg) (z) = z\/&}i? / T(—u) f(u)[(1+v?)2 sin(—-u.arctanv);ig(v)] (z)du, Yz >0.

Proof. o

(f+9)(@) =

= Z—%Tg / F(—u)f(u)(\/% / {sign(v —z)[1+ |z — v % gin (—u.arctan|z — v|)+
+ [1+ (z +v)?] % sin (—u.arctan(z + v))}g(v)dv)du

= ig T'(—u) f(u) [(1 + 0% % sin(—u.arctanv) % g(”u)] (x)du, Vz>0. O

c—100

— 560 —



NGUYEN XUAN THAO AND TRAN AN HAI

It is easy to find out that the generalized convolution (8) is neither commutative
nor associative. But we have

Theorem 3. Let g,h € L(Ry) and f € L(chf‘f—gﬁ,R) (¢ < =2), then the following
equalities holds

a) f1 (g*h) = <flg> I;kch.

d) £ i (gl'%h) =hi(fig).
Proof. We prove a). Base on (1),(9), we have
Fo(f (g*h))(y) = () (M () Fslg + M)
V) (M )()(Fsg)(w)(Feh)(y)
= Fo(f +9)W)(Feh)(w) = Fe((£49) 2 h)(w). vy >0

Hence f i (g*h> = ( = g) x h. The proof for b), ¢), d) are similar to those of a).
C

The theorem is proved.

3 Applications to integral equations
Consider the system of integral equations

flz)+ XM Or(z, u, v)p(u)g(v)dudv + Ao u)du+
Ll [
(16) +A3 / Os(x, u)g(u)du = h(x)

M [ 6w ) fw)du+ g(z) = he),
0

where z > 0, and ¢, A\, Ag, A3, Ay denote complex parameters with ¢ < —2, kernels:
01(x, u,v) is defined in (7),

bo(e ) = —=[sign (u = )l — ul) + €(o + )],

O(xu) = 5 [z +u—1)+ ¢z —u+1) = (@ +u+1) =l —u—1])],

2w
1
2

Oz, u) = [sign (z — w)(|z = u]) + ¥(z +u)],

P

y

i
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©,&,C, ¥, h, k are given functions and f, g are unknown functions.
Theorem 4. Suppose that € L(ch%, R) (Rew < —2) and ), £, ¢, b, k € L(R,),

§(z) = Mo %) (@) + M€ % )(z) + N3 /% C)(x). Then, with the condition
1—M(Fed)(y) #0, Yy>0,

the system (16) have a solution

f@) = hla) + (h x @) = a0+ k) (@)=
(@ E) 5 a)@) = (g xk) @) = Ra((E20) 2 0) @)
“Xa(k¥)(@) = (k3 C) (@) € L(RS)

g(a) = k(z) + (k= 9)(a) = M # h)(@) = M(( * 1) ¥ (@) € L(Ry)

with q(z) € L(Ry) satisfying

M(Fed)(y)
T MlBed)) (Feq)(y)-

K
T

Proof.
Using (2), (4), (5), (9) we obtain the linear system
(Fe)() + Mv(y) (M o) (y) (Fsg)(y) + Ae(Fs)(y) (Fsg)(y)+
+Assiny(FoC)(y) (Fsg)(y) = (Foh)(y)

M(Fsp) () (Fef)(y) + (Fsg)(y) = (Fsk)(y)
On the other hand

Aol 1 Aw(y)(M"lwxy)+A2<Fs£)(y>+A3smy<Fc<><y>‘
/\Q(FSQM(?J) 1
= 1= MFe((p ) + M€ 5 0) + X FO)(w) = 1 = M(Fed)(y) # 0
A = |(Feh) (@) M) (M o) (y) + X (Fs€)(y) + Assiny(Fe()(y)
P (Fsk)(y) 1
= (Foh)(y) = M Fole * K)(y) = XaFe(€ 1 1)(y) = X Fe(k % O)(y),
A, = 1 (FSh)(y)
T M(Fsv)(y)  (Fsk)(y)
= (Fsk)(y) — MFs(y * h)(y).
Hence

A7) (Fef)ly) = %[(Fch)(y) = MFelp *k)(y) = aFo(€xk)(y) /\3(/6§C>(y)]
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In virtue of Wiener - Levi’s theorem [1] there is a function ¢(z) € L(R.) such that

M(Fed)(y)

(18) T (Fed) () = (Feq)(y).

From (1), (17), (18) we get

(Fof)y) = [+ (Fea)@)][(Feh)(y) — X Fo(w ¥ B)(y) = MaFol€ 5 K)(y) — s Folk s O))]
= (Foh)(y) + (Fea) (y)(Foh)(y) — M Fe (9 k) (1) -
— MFe (v 8) W) (Foa)(y) = MoFo(€ 3 k) () — MaFo (€ 5 k) () (Fea)(y)-
= XaFo(k % O)Y) = X Felk ) ) (Fea)(v)

= (Foh)(y) + Fo(h x q)(y) = M Fe («p ¥ k) (y)—

‘C

~MFe((p 2 R) 2 0) () = MaFo(€ k) ) = MaFo((€ 2 0) 2 ) (w)-
= MFe(kFOW) = MFel(k5) £ ).

From last equation, we obtain

fla) = h(@) + (h 2 @) =M (0 Fk) (@)=
(e Hh) 2 ) (@) = (€ xk)@) = ha((ExH) 2 q) (@)=

“Xa(kO)(@) = Xa((K5C) x Q)(x) € L(R).
Similarly,
(Fs9)(y) = [1 + (Feq)@[(Fsk)(y) — AFs(¥ + h)(y)].
From (2) we have

(Fsg)(y) = (Fsk)(y) + Fs(k = q)(y) — MFs(¥ * h)(y) — MFs((¥ x h) = q)(y)-
Hence
9(z) = k(z) + (k * ) () — M (¥ = h)(x) = M((¥ % h) % q)(z) € L(R4).
The proof is complete.

Consider the system of integral equations

4100 400

flx)+ XM / /Ql(x,u,v);o(u)g(zz)dudvz h(z)
<19) +oo C—_:oo: "
Ao / Os(z,u) f(u)du + A3 / O5(z,u) flu)du + g(z) = k(z),2 >0
0 0
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here, ¢, A1, Ao, Az denote complex parameters with ¢ < —2, kernels:
01(z, u, v) is defined in (7),

bu(a. ) = = [sien (& = wp(fa =) + (o +u)],
Oa(, ) = 5= e+ u— 1) + 1w — = 1) = e+ u+ 1) = €lle —u-+ 1)),
with

+o0
o) = o= [ ) lsien (u = 2)ealu— )+ olu+))
where @, ¥, £, &, b k ar; given functions. f, ¢ are unknown functions
Theorem 5. Suppose that ¢ € L<ch7ﬂmu R) (Reu < —2) and 9,1, 8, bk €
L(RL), l(z) = Aol * w)(x) + Az(& T(gp*gl))(x) . Then, with the condition
1= Xs(Fel)(y) #0, Vy>0,

the system (19) have a solution

f(&) = h(m) = Xlp £k)(2) + (g g h)(@) = Mala ¢ (¢ £K))() € L(R4)
9(z) = k(@) = Do * W)(&) = Xa(Es £ (62 h)) ()

H(kxq)(2) = Xa((Wh x h) + ) () = As((&r % (éz*h)) g)(z) € L(Ry).

with q(z) € L(Ry) satisfying

As(Fel)(y)

T (Ecl)(y) (Feq)(y).

Proof.
Using (2), (4), (6), (9) we obtain the linear system

(Fef)y) + My(@) (M~ o) (y) (Fsg)(y) = (Feh)(y)
A (Fs) (W) (Fof)(y) + Assiny(Fséi)(y) (Fs&)(y) (Fef)(y) + (Fsg)(y) = (Fsk)(y)
On the other hand

A= |\a(Fst) () + Nssiny(Fsér) (w)(Fsea) ()

(
8
*
1

1 /\w(y)(fzf“lw(y)’

= 1= MFe(Qalp #9) + (& * 0+ &) (y) = 1 — As(Fel)(v)

Ay = ;(th) ) Alﬂ/(y)(M‘hﬁ)(y)’

(y
(Fsk)(y) 1
= (Foh)(y) = M Folp + k) (y),
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Ay — 1 (Feh)(y)
27 Da(Fs)(y) + Assiny(Fsér)(y) (Fs€)(y)  (Fsk)(y)

= (Fsk)(y) = AaFs(t = B)(y) = MaFs(Es % (6 % ) (v).

Hence
1
(20) (Fef)) = 5 [(Foh)(y) = MFolp * B)(w)]
In virtue of Wiener - Levi’s theorem [1] there is a function ¢(z) € L(R4) such that
As(Fel
(21 2P (Feq)(v)

1= A3(Fel)(y)
From (1), (20), (21) we get

(FeNw) = 1+ (Fea) )] [(Foh)(y) = MFe(p = k)(v)
= (Feh)(y) = MFolp = K)(y) + Felg 2 M) = MFola g (9 k)(y)

From last equation, we obtain

£(&) = ha) = M@ FB@) + (@ ¢ W@ = Nilg 2 (pFR)E) € LR
Similarly,
(Fsg)(y) = [1+ (Feq)W)[(Fsk)(y) — AoFs(¥ x R)(y) — AsFs(& gs (&2 % 1) (W)]-

From (2) we have

(Fsg)(v) = (Fsk)(y) = haFs( x W)(u) = MaFs(6r (&2 M) (w)

+Fs(k*q)(y) — MFs((¥ xh) *q)(y) — A Fs((& ng(é? *h)) = q)(y).
Hence s
g(z) = k(z) — X (¥ x h)(2) = Xs(& a(&x h)(z)

k3 9)(a) = Xal(¥ % 1) * (&) = Xa(( £ (&2 ) * 0)(a) € L(R).

The proof is complete.
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