Title	ON BOUNDARY VALUE PROBLEMS FOR A CLASS OF SINGULAR INTEGRAL EQUATIONS
Author(s)	Nguyen, Van Mau; Nguyen, Tan Hoa
Citation	Annual Report of FY 2004, The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST). 2005, p. 247-257
Version Type	VoR
URL	https://hdl.handle.net/11094/13218
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. Library.osaka-u.ac.jp/
Osaka University

ON BOUNDARY VALUE PROBLEMS FOR A CLASS OF SINGULAR INTEGRAL EQUATIONS

Nguyen Van Mau, Nguyen Tan Hoa
Hanoi University of Science, VNUH

Abstract

This report deals with the solvability of boundary value problems for singular integral equations of the form $$
\begin{gather*} {\left[\left(K^{n}+K^{n-1} K_{c}\right) \varphi\right](t)=f(t)} \tag{i}\\ \left(F_{j} K^{j} \varphi\right)(t)=\varphi_{j}(t), \quad j=0, \ldots, n-1, \quad \varphi_{j}(t) \in \text { Ker } K, \quad \text { if } \propto>0 \\ \left(G_{0} f\right)(t)=0,\left(G_{j} R_{j-1} \ldots R_{0}\right) f(t)=0, \quad j=1, \ldots, n-1 \quad \text { if } \propto<0 \tag{ii} \end{gather*}
$$

By an algebraic method we reduce the problem (i) - (ii) to a system of linear algebraic equations which gives all solutions in a closed form.

Key words and phrases: initial and co-initial operators, singular integral equations, boundary value problem.
1991 Mathematics Subject Classification: 47 G05, 45 GO5, 45 E05

1 Introduction

The theory of general boundary value problem induced by right invertible operators were investigated by Przeworska - Rolewicz and has been developed by many other mathematicians (c.f. [2], [4]). In this paper, we give an application of this theory to solve the following boundary value problem:

$$
\begin{equation*}
\left[\left(K^{n}+K^{n-1} K_{c}\right) \varphi\right](t)=f(t) \tag{i}
\end{equation*}
$$

$$
\begin{align*}
\left(F_{j} K^{j} \varphi\right)(t) & =\varphi_{j}(t), \quad j=0, \ldots, n-1, \quad \varphi_{j}(t) \in \text { Ker } K, \quad \text { if } \propto>0, \tag{ii}\\
\left(G_{0} f\right)(t) & =0,\left(G_{j} R_{j-1} \ldots R_{0}\right) f(t)=0, \quad j=1, \ldots, n-1 \quad \text { if } \propto<0,
\end{align*}
$$

where K_{c} is an operator of multiplication by the function $c(t) ; F_{j}, G_{j}(j=$ $0, \ldots, n-1$) are initial and co-initial operators, respectively, and

$$
(K \varphi)(t)=a(t) \varphi(t)+\frac{b(t)}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)}{\tau-t} d \tau, \quad \propto=\operatorname{Ind} K .
$$

2 Preliminaries

We recall some notations and results which are used in the sequel (see [2], [4]).

Let Γ be a simple regular closed arc in complex plane and let $X=$ $H^{\mu}(\Gamma) \quad(0<\mu<1)$. Denote by D^{+}the domain bounded by Γ (assume that $0 \in D^{+}$) and by D^{-}-its complement including the point at infinity. The set of all linear operators with domains and ranges contained in X will be denoted by $L(X)$. Write $L_{0}(X):=\{A \in L(X): \operatorname{dom} A=X\}$.

Let $R(X)$ be the set of all right invertible operators belonging to $L(X)$. For $D \in R(X)$, we denote by \mathcal{R}_{D} the set of all its right inverses.

An operator $F \in L(X)$ is said to be an initial operator for an operator $D \in R(X)$ corresponding to a right inverse R of D if

$$
F^{2}=F, \quad F(\operatorname{dom} \mathrm{D})=\operatorname{Ker} D, F R=0 .
$$

Denote by \mathcal{F}_{D} the set of all initial operators for $D \in R(X)$.
It is well - known the following fact:
$F \in L(X)$ is an initial operator for $D \in R(X)$ corresponding to $R \in \mathcal{R}_{D}$ if and only if $F=I-R D$ on $\operatorname{dom} D$.

Let $\Lambda(X)$ be the set of all left invertible operators belonging to $L_{0}(X)$. For $V \in \Lambda(X)$, we denote by \mathcal{L}_{V} the set of all its left inverser.

If $V \in \Lambda(X)$ and $L \in \mathcal{L}_{V}$ then the operator

$$
G:=I-V L
$$

is called the co-initial operators for V corresponding to $L \in \mathcal{L}_{V}$.
Denote by \mathcal{G}_{V} the set of all co-initial operators for $V \in \Lambda(X)$.

Lemma 1 (see [2]). Let $A, B \in L(X), \operatorname{Im} A \subset \operatorname{dom} B, \operatorname{Im} B \subset \operatorname{dom} A$. Then equation $(I-A B) x=y$ has solutions if and only if $(I-B A) u=B y$ does and there is one-to-one correspondence between the two sets of solutions, given by

$$
u=B x \longleftrightarrow x=y+A u
$$

2. The results

Let

$$
(K \varphi)(t):=a(t) \varphi(t)+\frac{b(t)}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)}{\tau-t} d \tau
$$

where $a(t), b(t) \in X, a^{2}(t)-b^{2}(t)=1, \quad 0 \neq \propto=\operatorname{Ind} K$.
Denote

$$
\left(R_{0} \varphi\right)(t):=a(t) \varphi(t)-\frac{b(t) Z(t)}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)}{Z(\tau)(\tau-t)} d \tau
$$

where

$$
Z(t)=e^{\Gamma(t)} t^{-\infty / 2}, \quad \Gamma(t)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\ln \left(\tau^{\left.-\infty \frac{a(\tau)-b(\tau)}{a(\tau)+b(\tau)}\right)}\right.}{\tau-t} d \tau
$$

It is known that (see [2], [4])
i) If $\propto>0$ then K is right invertible and

$$
\mathcal{R}_{K}=\left\{R=R_{0}+\left(I-R_{0} K\right) T: T \in L_{0}(X)\right\} .
$$

Let F_{0}, \ldots, F_{n-1} be given initial operators for K corresponding to $R_{0}, \ldots, R_{n-1} \in$ \mathcal{R}_{K}, where

$$
\begin{equation*}
R_{j}=R_{0}+\left(I-R_{0} K\right) T_{j} \quad(j=1, \ldots, n-1) ; T_{1}, \ldots, T_{n-1} \in L_{0}(X) \tag{1}
\end{equation*}
$$

ii) If $\propto<0$ then K is left inverbible and

$$
\mathcal{L}_{K}=\left\{R=R_{0}+T\left(I-K R_{0}\right): T \in L(X), \quad \operatorname{dom} T=\left(I-K R_{0}\right) X\right\}
$$

In this case, let G_{0}, \ldots, G_{n-1} be given co-initial operators for K corresponding to $R_{0}, \ldots, R_{n-1} \in \mathcal{L}_{K}$, where

$$
\begin{equation*}
R_{j}=R_{0}+T_{j}\left(I-K R_{0}\right)(j=1, \ldots, n-1) ; \quad T_{1}, \ldots, T_{n-1} \in L(X) \tag{2}
\end{equation*}
$$

Lemma 2. If $œ>0$, then

$$
\left(F_{0} \varphi\right)(t)=\sum_{k=0}^{\infty-1} u_{k}(\varphi) \psi_{k}(t) \text { on } X,
$$

where $\psi_{k}(t)=b(t) Z(t) t^{k}(k=0, \ldots, \propto-1)$ and $u_{k}(\varphi)(k=0, \ldots, \propto-1)$ are linear functionals which are defined by

$$
\begin{equation*}
u_{k}(\varphi)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\tau^{œ-1-k}}{e^{\Gamma-(\tau)}}\left[\varphi(\tau)-\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi\left(\tau_{1}\right)}{\tau_{1}-\tau} d \tau_{1}\right] d \tau \tag{3}
\end{equation*}
$$

where $\Gamma^{-}(t)$ is a boundary value of the function $\Gamma(z)$ in D^{-}.
Proof. We have

$$
\begin{aligned}
\left(F_{0} \varphi\right)(t) & =\left[\left(I-R_{0} K\right) \varphi\right](t) \\
& =\varphi(t)-a^{2}(t) \varphi(t)-\frac{a(t) b(t)}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)}{\tau-t} d \tau \\
& +\frac{b(t) Z(t)}{\pi i} \int_{\Gamma} \frac{1}{Z(\tau)(\tau-t)}\left[a(\tau) \varphi(\tau)+\frac{b(\tau)}{\pi i} \int_{\Gamma} \frac{\varphi\left(\tau_{1}\right)}{\tau_{1}-\tau} d \tau_{1}\right] d \tau \\
& =\varphi(t)-a^{2}(t) \varphi(t)-\frac{a(t) b(t)}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)}{\tau-t} d \tau \\
& +b(t) Z(t)\left[\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi^{+}(\tau) d \tau}{X^{+}(\tau)(\tau-t)}-\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi^{-}(\tau) d \tau}{X^{-}(\tau)(\tau-t)}\right]
\end{aligned}
$$

where $\quad \varphi^{+}(t)=\frac{1}{2}[(I+S) \varphi](t), \quad \varphi^{-}(t)=\frac{1}{2}[(-I+S) \varphi](t), \quad X^{+}(t)=$ $e^{\Gamma^{+}(t)}, X^{-}(t)=t^{-\infty} e^{\Gamma^{-}(t)}\left(\Gamma^{+}(t), \Gamma^{-}(t)\right.$ are boundary values of the function $\Gamma(z)$ in D^{+}, D^{-}, respectively).

On the other hand

$$
\begin{aligned}
& \frac{1}{\pi i} \int_{\Gamma} \frac{\varphi^{+}(\tau) d \tau}{X^{+}(\tau)(\tau-t)}-\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi^{-}(\tau) d \tau}{X^{-}(\tau)(\tau-t)}=\frac{\varphi^{+}(t)}{X^{+}(t)}-\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi^{-}(\tau) \tau^{\infty} d \tau}{e^{\Gamma-(\tau)}(\tau-t)} \\
& =\frac{\varphi^{+}(t)}{X^{+}(t)}-\frac{t^{\infty}}{\pi i} \int_{\Gamma} \frac{\varphi^{-}(\tau) d \tau}{e^{\Gamma-(\tau)}(\tau-t)}-\sum_{k=0}^{\infty-1} \frac{t^{k}}{\pi i} \int_{\Gamma} \frac{\tau^{\infty-1-k} \varphi^{-}(\tau)}{e^{\Gamma-(\tau)}} d \tau
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\varphi^{+}(t)}{X^{+}(t)}+\frac{\varphi^{-}(t)}{X^{-}(t)}-\sum_{k=0}^{\infty-1} \frac{t^{k}}{\pi i} \int_{\Gamma} \frac{\tau^{œ-1-k} \varphi^{-}(\tau)}{e^{\Gamma-(\tau)}} d \tau \\
& =\frac{b(t)}{Z(t)} \varphi(t)+\frac{a(t)}{Z(t) \pi i} \int_{\Gamma} \frac{\varphi(\tau)}{\tau-t} d \tau-\sum_{k=0}^{\infty-1} \frac{t^{k}}{\pi i} \int_{\Gamma} \frac{\tau^{\propto-1-k} \varphi^{-}(\tau)}{e^{\Gamma-(\tau)}} d \tau
\end{aligned}
$$

Hence

$$
\left(F_{0} \varphi\right)(t)=\sum_{k=0}^{\infty-1} \frac{b(t) Z(t) t^{k}}{2 \pi i} \int_{\Gamma} \frac{\tau^{\infty-1-k}}{e^{\Gamma^{-}(\tau)}}\left[\varphi(\tau)-\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi\left(\tau_{1}\right)}{\tau_{1}-\tau} d \tau_{1}\right] d \tau
$$

The lemma is proved.
By similar arguments, we obtain the following result:
Lemma 3. If $œ<0$, then

$$
\left(G_{0} \varphi\right)(t)=\sum_{k=0}^{|œ|-1} v_{k}(\varphi) \psi_{k}(t) \quad \text { on } X
$$

where $\psi_{k}(t)=b(t) t^{k} \quad(k=0, \ldots,|œ|-1)$ and $v_{k}(\varphi) \quad(k=0, \ldots|œ|-1)$ are linear functionals defined by

$$
\begin{equation*}
v_{k}(\varphi)=\frac{1}{2 \pi i} \int_{\Gamma} \tau^{|œ|-1-k} e^{\Gamma^{-}(\tau)}\left[\frac{\varphi(\tau)}{Z(\tau)}-\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi\left(\tau_{1}\right) d \tau_{1}}{Z\left(\tau_{1}\right)\left(\tau_{1}-\tau\right)}\right] d \tau \tag{4}
\end{equation*}
$$

where $\Gamma^{-}(t)$ is a boundary value of the function $\Gamma(z)$ in D^{-}.
In the sequel, for every function $c(t) \in X$, we write

$$
\left(K_{c} \varphi\right)(t)=c(t) \varphi(t)
$$

Consider singular integral equation of the form

$$
\begin{equation*}
\left[\left(K^{n}+K^{n-1} K_{c}\right) \varphi\right](t)=f(t) \tag{5}
\end{equation*}
$$

with mixed boundary conditions
i) $\left(F_{j} K^{j} \varphi\right)(t)=\varphi_{j}(t), \quad \varphi_{j}(t) \in \operatorname{Ker} K, \quad j=0, \ldots, n-1 \quad$ if $\propto>0$,
ii) $\quad\left(G_{0} f\right)(t)=0, \quad\left(G_{j} R_{0} \ldots R_{j-1} f\right)(t)=0, \quad j=1, \ldots, n-1 \quad$ if $\propto<0$,
where $f(t), c(t) \in X ; F_{j}, G_{j}(j=0, \ldots, n-1)$ are defined by (1) and (2), respectively, $1<n \in \mathbb{N}$.
Theorem 1. Suppose that $1+c(t) a(t) \pm c(t) b(t) \neq 0$ for all $t \in \Gamma$. Then every solution of the problem (5) - (6) can be found in a closed form.
Proof
Let $\propto>0$, we have $K \in R(X)$.
Hence, the equation (5) is equivalent to the equation

$$
\begin{aligned}
\varphi(t) & =-\left(R_{0} \ldots R_{n-1} K^{n-1} K_{c} \varphi\right)(t)+\left(R_{0} \ldots R_{n-1} f\right)(t)+\left(R_{0} \ldots R_{n-2} z_{n-1}\right)(t) \\
& +\ldots+\left(R_{0} z_{1}\right)(t)+z_{0}(t)
\end{aligned}
$$

where $z_{0}(t), \ldots, z_{n-1}(t) \in$ Ker K are arbitrary.
Thus, the problem (5)-(6) is equivalent to the equation

$$
\begin{aligned}
\varphi(t) & =-\left(R_{0} \ldots R_{n-1} K^{n-1} K_{c} \varphi\right)(t)+\left(R_{0} \ldots R_{n-1} f\right)(t)+\left(R_{0} \ldots R_{n-2} \varphi_{n-1}\right)(t) \\
& +\ldots+\left(R _ { 0 } \varphi _ { 1 } \left((t)+\varphi_{0}(t),\right.\right.
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\left[\left(I+R_{0} \ldots R_{n-1} K^{n-1} K_{c}\right) \varphi\right](t)=f_{1}(t) \tag{7}
\end{equation*}
$$

where

$$
f_{1}(t)=\left(R_{0} \ldots R_{n-1} f\right)(t)+\left(R_{0} \ldots R_{n-2} \varphi_{n-1}\right)(t)+\ldots+\left(R_{0} \varphi_{1}\right)(t)+\varphi_{0}(t) .
$$

By the Taylor-Gontcharov formula for right invertible operators (see [4]), (7) is iquivalent to the equation

$$
\begin{equation*}
\left[\left(I+R_{0}\left(I-F_{1}-\sum_{k=2}^{n-1} R_{1} \ldots R_{k-1} F_{k} K^{k-1}\right) K_{c}\right) \varphi\right](t)=f_{1}(t) . \tag{8}
\end{equation*}
$$

By lemma 1, in order to solve the equation (8) it is enough to solve the equation

$$
\left[\left(I+K_{c} R_{0}-F_{1} K_{c} R_{0}-\sum_{k=2}^{n-1} R_{1} \ldots R_{k-1} F_{k} K^{k-1} K_{c} R_{0}\right) \psi\right](t)=g(t)
$$

where

$$
g(t)=\left[\left(I-F_{1}-\sum_{k=2}^{n-1} R_{1} \ldots R_{k-1} F_{k} K^{k-1}\right) K_{c} f_{1}\right](t) .
$$

Rewrite this equation in the form

$$
\begin{equation*}
\left[\left(I+K_{c} R_{0}-F_{1} K_{c} R_{0}-\sum_{k=2}^{n-1} R_{1} \ldots R_{k-1} F_{k} K^{k-1} K_{c} R_{0}\right) K_{Z} \phi\right](t)=g(t) \tag{9}
\end{equation*}
$$

where $\phi(t)=\psi(t) / Z(t)$.
From lemma 2, we have

$$
\left(F_{k} K^{k-1} K_{c} R_{0} K_{Z} \phi\right)(t)=\sum_{j=0}^{\infty-1} u_{j k}(\phi) \psi_{j}(t), \quad k=1, \ldots, n-1
$$

where $u_{j k}(\phi)=u_{j}\left[\left(I-T_{k} K\right) K^{k-1} K_{c} R_{0} K_{Z} \phi\right] ; u_{j}(\varphi), \psi_{j}(t) \quad(j=0, \ldots, œ-1)$ are defined by (3).

Hence, (9) is of the form

$$
\begin{equation*}
(M \phi)(t)-\sum_{k=1}^{n-1} \sum_{j=0}^{\infty-1} u_{j k}(\phi) \psi_{j k}(t)=g(t) \tag{10}
\end{equation*}
$$

where $\psi_{j 1}(t):=\psi_{j}(t), \quad \psi_{j k}(t)=\left(R_{1} \ldots R_{k-1} \psi_{j}\right)(t) \quad(k=2, \ldots, n-1), \quad j=$ $0, \ldots, \propto-1$ and

$$
\begin{equation*}
(M \phi)(t):=[1+c(t) a(t)] Z(t) \phi(t)-\frac{c(t) b(t) Z(t)}{\pi i} \int_{\Gamma} \frac{\phi(\tau)}{\tau-t} d \tau \tag{11}
\end{equation*}
$$

Write this equation in the form

$$
\begin{equation*}
(M \phi)(t)-\sum_{k=1}^{q} \widetilde{u}_{k}(\phi) \widetilde{\psi}_{k}(t)=g(t) \tag{12}
\end{equation*}
$$

where $q=\propto(n-1),\left\{\widetilde{u}_{1}(\phi), \ldots, \widetilde{u}_{q}(\phi)\right\}$ is a permutation of $\left\{u_{j k}(\phi), j=\right.$ $0, \ldots œ-1 ; k=1, \ldots, n-1\}$ and $\left\{\widetilde{\psi}_{1}(t), \ldots, \widetilde{\psi}_{q}(t)\right\}$ is obtained by this permutation from the set of functions $\left\{\psi_{j k}(t), j=0, \ldots, œ-1 ; k=1, \ldots, n-1\right\}$.

Denote

$$
(N \phi)(t):=\frac{[1+a(t) c(t)] \phi(t)+\frac{c(t) b(t) Z_{1}(t)}{\pi i} \int_{\Gamma} \frac{\phi(\tau)}{Z_{1}(\tau)(\tau-t)} d \tau}{\left[(1+a(t) c(t))^{2}-c^{2}(t) b^{2}(t)\right] Z(t)}
$$

where

$$
\begin{aligned}
Z_{1}(t) & =Z(t) e^{\Gamma_{1}(t)} t^{-\propto_{1} / 2}\left[(1+a(t) c(t))^{2}-b^{2}(t) c^{2}(t)\right]^{1 / 2} \\
\Gamma_{1}(t) & =\frac{1}{2 \pi i} \int_{\Gamma} \frac{\ln \left(\tau^{-\propto_{1}} G(\tau)\right)}{\tau-t} d \tau \\
G(t) & =\frac{1+a(t) c(t)+b(t) c(t)}{1+a(t) c(t)-b(t) c(t)}, \quad œ_{1}=\operatorname{Ind} G(t)
\end{aligned}
$$

If $œ_{1}=0$, then M is invertible and $M^{-1}=N$. Hence, the equation (12) is equivalent to the equation

$$
\begin{equation*}
\phi(t)-\sum_{k=1}^{q} \widetilde{u}_{k}(\phi)\left(N \widetilde{\psi}_{k}\right)(t)=(N g)(t) \tag{13}
\end{equation*}
$$

Without loss of generality, we can assume that $\left\{\left(N \widetilde{\psi}_{k}\right)(t)\right\}_{k=\overline{1, q}}$ is a linearly independent system. Then every solution of (13) can be found in a closed form by means of the system of linear algebraic equations

$$
\widetilde{u}_{j}(\phi)-\sum_{k=1}^{q} a_{j k} \widetilde{u}_{k}(\phi)=\widetilde{u}_{k}(N g), \quad j=0, \ldots, q,
$$

where $a_{j k}=\tilde{u}_{j}\left(N \tilde{\psi}_{k}\right) ; k, j=1, \ldots, q$.
If $œ_{1}>0$, then M is right invertible and N is a right inverse of M. Hence, the equation (12) is equivalent to the equation

$$
\phi(t)-\sum_{k=1}^{q} \tilde{u}_{k}(\phi)\left(N \tilde{\psi}_{k}\right)(t)=(N g)(t)+y(t)
$$

where $y(t) \in$ Ker M is arbitrary.
We now can solve this equation by the same method as for the equation (13), i.e. every its solution can be found in a closed form.

If $\propto_{1}<0$, then M is left invertible and N is a left inverse of M. Hence, the equation (12) is equivalent to the system

$$
\left\{\begin{array}{l}
\phi(t)-\sum_{k=1}^{q} \widetilde{u}_{k}(\phi)\left(N \widetilde{\psi}_{k}\right)(t)=(N g)(t), \\
\int_{\Gamma}^{g(\tau)+\sum_{k=1}^{q} \frac{\widetilde{u}_{k}(\phi) \widetilde{\psi}_{k}(\tau)}{Z_{1}(\tau)} \tau^{\nu-1} d \tau=0, \quad \nu=1, \ldots,\left|œ_{1}\right|,}
\end{array}\right.
$$

i.e.

$$
\left\{\begin{array}{l}
\phi(t)-\sum_{k=1}^{q} \widetilde{u}_{k}(\phi)\left(N \widetilde{\psi}_{k}\right)(t)=(N g)(t), \tag{14}\\
\sum_{k=1}^{q} b_{\nu k} \widetilde{u}_{k}(\phi)=f_{\nu}, \quad \nu=1, \ldots,\left|œ_{1}\right|,
\end{array}\right.
$$

where

$$
f_{\nu}=-\int_{\Gamma} \frac{g(\tau) \tau^{\nu-1} d \tau}{Z_{1}(\tau)}, \quad b_{\nu k}=\int_{\Gamma} \frac{\widetilde{\psi}_{k}(\tau) \tau^{\nu-1}}{Z_{1}(\tau)} d \tau
$$

Without loss of generality, we can assume that $\left\{\left(N \widetilde{\psi}_{k}\right)(t)\right\}_{k=\overline{1, q}}$ is a linearly independent system. Every solution of (14) can be found in a closed form by means of the system of linear algebraic equations

$$
\left\{\begin{array}{l}
\widetilde{u}_{j}(\phi)-\sum_{k=1}^{q} a_{j k} \widetilde{u}_{k}(\phi)=\tilde{u}_{j}(N g), \quad j=1, \ldots, q \\
\sum_{k=1}^{q} b_{\nu k} \widetilde{u}_{k}(\phi)=f_{\nu}, \quad \nu=1, \ldots,\left|œ_{1}\right|
\end{array}\right.
$$

where $a_{k j}=\tilde{u}_{k}\left(N \widetilde{\psi}_{j}\right), k, j=1, \ldots, q$.
Thus, every solution of the equation (12) can be found in a closed form.
Due to the result of Lemma 1, every solution of the problem (5)-(6) is defined by the formula

$$
\varphi(t)=\left(R_{0} K_{Z} \phi\right)(t)+f_{1}(t),
$$

where $\phi(t)$ is a solution of the equation (12), i.e. every solution of the problem (5)-(6) can be found in a closed form.

Let $\propto<0$, we have $K \in \Lambda(X)$.
The Taylor-Gontcharov formula for left invertible operators (see [4]) and (6) together imply

$$
\left[\left(I-K^{n} R_{n-1} \ldots R_{0}\right) f\right](t)=\left(G_{0} f\right)(t)+\left[\left(\sum_{k=1}^{n-1} K^{k} G_{k} R_{k-1} \ldots R_{0}\right) f\right](t)=0
$$

i.e.

$$
f(t)=\left[\left(K^{n} R_{n-1} \ldots R_{0}\right) f\right](t) .
$$

Hence, the problem (5)-(6) is equivalent to the equation

$$
\left[\left(K^{n}+K^{n-1} K_{c}\right) \varphi\right](t)=\left(K^{n} R_{n-1} \ldots R_{0} f\right)(t)
$$

i.e.

$$
\begin{equation*}
\left[\left(K+K_{c}\right) \varphi\right](t)=\left(K R_{n-1} \ldots R_{0} f\right)(t) \tag{15}
\end{equation*}
$$

If $\varphi(t)$ is a solution of (15) then

$$
\left(G_{0} K_{c} \varphi\right)(t)=\left(G_{0} K R_{n-1} \ldots R_{0} f\right)(t)-\left(G_{0} K \varphi\right)(t)=0
$$

Thus, (15) is equivalent to the system

$$
\begin{cases}{\left[\left(I+R_{0} K_{c}\right) \varphi\right](t)} & =f_{2}(t) \tag{16}\\ \left(G_{0} K_{c} \varphi\right)(t) & =0\end{cases}
$$

where $f_{2}(t)=\left(R_{n-1} \ldots R_{0} f\right)(t)$.
From Lemma 3, $\quad\left(G_{0} K_{c} \varphi\right)(t)=0$ if and only if

$$
v_{k}\left(K_{c} \varphi\right)=0, \quad k=0, \ldots,|œ|-1,
$$

where $v_{k}(\varphi)(k=0, \ldots,|œ|-1)$ are defined by (4).
Hence, the system (16) is equivalent to the system

$$
\begin{cases}{\left[\left(I+R_{0} K_{c}\right) \varphi\right](t)} & =f_{2}(t), \\ v_{k}\left(K_{c} \varphi\right) & =0, \quad k=0, \ldots,|œ|-1 .\end{cases}
$$

Consider the system of equations

$$
\begin{cases}{\left[\left(I+K_{c} R_{0}\right) \psi\right](t)} & =\left(K_{c} f_{2}\right)(t) \tag{17}\\ v_{k}(\psi) & =0, \quad k=0, \ldots,|œ|-1\end{cases}
$$

It is easy to check that the system (16) has solutions if and only if the system (17) does. Moreover, if $\varphi(t)$ is a solution of (16) then $\psi(t)=c(t) \varphi(t)$ is a solution of (17). Conversely, if $\psi(t)$ is a solution of (17) then

$$
\begin{equation*}
\varphi(t)=\frac{b(t) \psi(t)+\frac{b(t) Z(t)}{\pi i} \int_{\Gamma} \frac{\psi(\tau)}{Z(\tau)(\tau-t)} d \tau+f_{2}(t)}{1+c(t) a(t)+c(t) b(t)} \tag{18}
\end{equation*}
$$

is a solution of (16).
Hence, in order to solve the system (16), it is enough to solve the system (17).

Rewrite (17) in the form

$$
\begin{cases}(M \phi)(t) & =\left(K_{c} f_{2}\right)(t) \tag{19}\\ \tilde{v}_{k}(\phi) & =0, \quad k=0, \ldots,|œ|-1\end{cases}
$$

where $\phi(t)=\psi(t) / Z(t), \tilde{v}_{k}(\phi)=v_{k}\left(K_{Z} \phi\right)$ and M is defined by (11).
By the same method as for the equation (12), every solution of this system can be found in a closed form. So every solution of the problem (5)-(6) is defined by the formula

$$
\varphi(t)=\frac{b(t) Z(t) \phi(t)+\frac{b(t) Z(t)}{\pi i} \int_{\Gamma} \frac{\phi(\tau)}{(\tau-t)} d \tau+f_{2}(t)}{1+c(t) a(t)+c(t) b(t)}
$$

where $\phi(t)$ is a solution of the system (19), i.e. every solution of the problem (5)-(6) can be found in a closed form.

The theorem is proved.

References

[1] Gakhov F.D., Boundary value problems, Oxford 1966 (3rd Russian complemented and corrected edition, Moscow, 1977).
[2] 2. Mau Ng. V., Boundary value problems and controllability of linear system with right invertible operators, Warszawa, 1992.
[3] 3. Mau Ng. V., Generalized algebraic elements and linear singular integral equations with transformed arguments, WPW, Warszawa, 1989.
[4] 4. Przeworska - Rolewicz D., Algebraic Analysis, PWN and Reidel, Warszawa - Dordrecht, 1988.
[5] 5. Przeworska - Rolewicz D., Equations with transformed argument, An algebraic approach, Amsterdam - Warszawa, 1973.

