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CAUCHY PROBLEM FOR SOME 
HYPERBOLIC SYSTEMS OF NONLINEAR 

FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 

HA TIEN N GOAN * 

NGUYEN THI NGA* 

ABSTRACT. The Cauchy problem for a normal weakly hyper­
bolic system of first-order nonlinear partial differential equations 
in two variables is considered. Sufficient conditions for its diago­
nalisation are given. The local solvability of the noncharacteristic 
Cauchy problem for classical weakly hyperbolic Monge-Ampere 
equation is proved. 

1. Cauchy problem 

We consider the following normal quasilinear first-order system of 
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equations in two variables 

(1) 

Here (X I, X 2, Z, PI, P2 ) are unknown functions of the variables 

al,a2; aij arefunctions of (X I ,X2,Z,PI ,P2). 
Suppose that in R'i there is a curve r that is given by equations: 

Suppose that we are given also 3 functions ZO(al), pE(al), pg(al)' 
The Cauchy problem for the system (1) consists in looking for 

(X(al' a2), 

Z(al,a2),P(al,a2)) -

(XI(al, a2), X 2(al, a2), Z(al' a2), PI (aI, a2), P2(al, a2)). 

E C2 that is a solution of (1) such that 

( 

X(al' a2) la2=o = XO(aI), 

Z(al, a2) la2=o = ZO(al), 

P(al' a2)la2=o = pO(al), 

(2) 

where XO(al) (X~(al)' xg (aI)), pO(al) (PE(al), pg(al)). 
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From (3) we have the following necessary condition for the initial 

Cauchy data 

(3) 

which is assumed to be fulfilled. 

We introduce now the following condition for the system (1) 

(C I ): aij(X, Z, P) 

Xp ( al) , xg ( al) , 

ZO(al), P~(al)' P~(al) () 

2. Hyperbolicity 

We set 

A(U)= 

aI2 - 1 a22 0 0 1 

-all -a2I - 1 0 -1 0 

aI2P I - allP2 a22P I - a2I P 2 -1 -P2 PI 

0 -all a22 + aI2 a 2I 0 aI2 - 1 -all 

all a22 - aI2 a 2I 0 0 a22 -a2I - 1 
(5) 
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We write the system (1) in the matrix form 

(6) 

Now we recall some definitions and results on hyperbolic systems. 

To do this we may consider following more general normal system 

in two variables 

aV = H(V) aV G(V), 
aa2 aa1 

(7) 

where V, G(V) are columm-vectors of size mx 1 and H(V) is matrix 

of size m x m. 

The Cauchy problem for system (7) consists in looking for V(a1' (2) E 

C1 such that 

V(a1' (2)lo:
2
=o = VO(a1), 

where VO(a1) is a given vector function. 

Definition 1. ([9]) ( ) 

) 
) 

VERm 

Theorem 1. ([9]) 

H(V) 

Theorem 2. ([9]) 

2m 

Theorem 3. a12 =f. a21 
( ) 

H(V) 

( ) ( ) 

2m 

( ) 

( ) 

(8) 

For the system (6) we do not assume that a12 i- a21. In this case 

only condition 1) in Definition 1 is valid. We show below (Theorem 

5) that under some restrictions on coefficients aij(X, Z, P), 
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the system (6) can be reduced to a diagonal one of 7 quasilinear 

equations with respect to 7 unknowns. From the Theorem 1 it 

follows that there exists locally unique smooth solution for the 

Cauchy problem (6), (2). In this case the system (6) could be said 

to be weakly hyperbolic. 

3. Reduced system 

Set 
1 0 0 0 0 

0 1 0 0 0 

C(X1,X2, Z,P1,P2) = 0 0 1 0 0 (9) 
-all -a21 0 1 0 

-a12 -a22 0 0 1 

Then 

1 0 0 0 0 

0 1 0 0 0 

C-1(X1,X2,Z,P1,P2) = 0 0 1 0 0 

all a21 0 1 0 

a12 a22 0 0 1 

Set 

That means 

Z = Z, (10) 

Q1 =P1 all(X,Z,P)X1 +a21(X,Z,P)X2, 

Q2 = P2 + a12(X, Z, P)X1 + a22(X, Z, P)X2. 

Proposition 1. 

(X,Z,Q) 
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ffi (XO(a1), ZO(a1), QO(a1)), 
P1 ,P2 

{
PI + aU (X, Z, P)X1 + a21 (X, Z, P)X2 = Q1, 

P2 + a12(X, Z, P)X1 a22(X, Z, P)X2 = Q2 

PI = f(X1,X2,Z,Q1,Q2),P2 = g(X1,X2,Z,Q1,Q2), 

QO(aJ = pO(a1) + XO(a1)H(XO(a1), ZO(a1), pO(a1)) 

[

an (X, Z, P) a12(X, Z, P)] 
H(X,Z,P) = a21(X,Z,P) a22(X,Z,P) . 

Theorem 4. V 

oV = A(V) oV + B(V)V, 
oa2 oa1 

-1 0 0 0 1 

0 -1 0 -1 0 

A= 0 0 -1 -P2 PI 
0 0 0 a12 - a21 - 1 0 

0 0 0 0 a12 - a21 -1 

oa12 oa22 
oal oal 

_oall _ oa21 
oal oal 

_ oall p. + oal2 p 
oal 2 oal 1 

oa21 p. 
- oal 2 

oa22 p 
oal 1 

( 1) oall oall a12 - a21 - - - -
oal oa2 

( 1) oa21 oa2l a12 - a21 - - - -
oal oa2 

(a12 - a21 - 1) oa l2 _ oa12 
oal oaz 

(a12 - a21 - 1) oa22 _ oa22 
oal oa2 
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0 

0 

0 

0 

0 

(11) 

(12) 

(13) 

(14) 

(15) 

0 

0 

0 

0 

0 
(16) 

0 

0 

0 

0 

0 



aij(XI ,X2, Z, PI, P2) PI, P2 
PI = f(XI ,X2,Z,QI,Q2),P2 = g(XI ,X2,Z,QI,Q2) 

4. Diagonalization 

It is clear from (15) that the system (14) is not diagonal. We 

give now some sufficient conditions under which the system (14) 

can be reduced to a diagonal quasilinear one. 

We introduce now other condition for the system (1) 

(02 ) : aij (X, Z, P) fi 

r [}aij = 0 
[}Z ' 

(17) 

We set 

Proposition 2. 

) 

(18) 

) 

We introduce new dependent variables 
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From Proposition 2 it follows 

Theorem 5. Assume the conditions (Cl ) and (C2 ). Then the 

system (14) can be diagonalized, i.e. it may be reduced to following 

diagonal one: 

oW = A(W) oW 
00.2 00.1 

F(W), (20) 

where 
-1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 

A= 0 0 0 t 0 0 0 (21) 

0 0 0 0 t 0 0 

0 0 0 0 0 t 0 

0 0 0 0 0 0 t 

where t = a12 - a21 - 1 and 

F(W) = Fl(W) + F2 (W), 

where 

Fl(W) = 

S2 + (b12S 1 + C12S2)Xl + (b22S1 C22S2)X2 
-Sl (bnSl Cn S 2)Xl - (b21 S 1 + C21S2)X2 

-P2S1 + P1S2 + [-(bnSl + Cn S2)P2 + (b12S 1 + C12 S2)Pl )]Xl 
o 
o 

[(b12 - b21 )Sl (C12 - C21)S2)]Sl 

[(b12 - b21 )Sl + (C12 - C21)S2)]S2 

o 
o 

[-(b21 S 1 + C21 S2)P2 + (b 22S1 + C22 S2)Pl ]X2 
F2 (W) = 0 

o 
o 
o 
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where in Fl (W), F2 (W) the variables PI, P2 must be replaced by 

f(Xl ,X2,Z,Ql,Q2) and g(Xll X 2,Z,Ql,Q2) respectively. 

Theorem 6. (CJ 
( ) ( ) 

5. Application to the classical weakly hyperbolic Monge­

Ampere equation 

The classical hyperbolic Monge-Ampere equation with two vari­

ables is that of the form 

where Z = Z(Xl,X2) is an unknown function defined for (Xl,X2) E 
2 8z 8z 8 2 z 8 2 z 8 2 z f R ,PI = ;;;--,P2 = ;;;--, r = ~, s = 8 8 and t = ~. The coe-

UXI UX2 UX I Xl X2 UX 2 

ficients A, B, C and E are real smooth functions of (Xl, X2, Z,Pl,P2) 

and satisfy the condition of hyperbolicity: 

L\ := B2 - 4(AC + E) > O. 

In this case the characteristic equation 

(23) 

has two different real roots Al = Al (Xl, X2, Z,Pl ,P2), A2 = A2(Xl, X2, Z,Pl,P2)' 

In the case, where the equation (1) is hyperbolic, it can be written 

in the following equivalent form 

I 
ZXIXI C 

ZX2Xl + A2 
ZXIX2 + Al I = O. 
ZX2X2 + A 

(24) 

Equation (22) was investigated in [1], [2] by G. Darboux and E. 

Goursat under the assumptions that L\ > 0 and there are two 

independent first integralsfor the equation (22). In this case 

the equation (22) had been also considered in [3], [4], [6], [7] by 
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reducing it to a hyperbolic quasilinear system of first-order partial 

differential equations with two variables. For the case .6. :::::: 0 in 

[5] M.Tsuji proved loal solvability of Cauchy problem (22), (25) 

provided that there exist two independent first integrals. In [10] 
D. V. Tuniski considered the case .6.. :::::: 0 and proved solvability 

of the Cauchy problem in class of multivalue functions, but under 

rather strong assumptions on coefficients A, B, C, E. 
In [8] we have proposed a solving method for the equation (24) 
that reduces it to the system (1) with an = C, a12 = AI, a21 = 

A2, a22 = A. Applying Theorem 6 stated above to the last system 

we can consider the case .6.. :::::: 0 and we do not assume 

existence of two independent first integrals. 

Suppose the functions X~(al)' X~(al)' ZO(al), pf(al), P~(al) are 
given as§in 1, that satisfy the condition (3). 

Cauchy problem: The Cauchy problem for the equation (22) 

consists in looking for z( x) E C 2 that is a solution of (22) such 

that 

{ 

z(x) Ix=xo(at} = ZO(al), 

ZXj (x)lx=xO(al) = P?(al),j = 1,2, 

where XO(al) - (X~(al),Xg(al))' 

(25) 

We assume that the Cauchy problem (22), (25) is not charateristic, 

i.e. 

(26) 

where the coefficients A, B, C are calculated at (X~(al)' Xg(al), ZO(al), pp(al), 

P~(al) ). 

Theorem 1. 

( ) ( ) 

) ffi A,B,C,E 
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) .6. :2:: 0; 

) 

[\ D(C, A) I + I D(A2, AI) I]X~(al)Xg(al) 
D(Pl,P2) D(Pl,P2) 

+( ~C + ~Al )X?(al) + (~A2 + ~A )Xg(al) + 1 =1= 0, 
UPI UP2 UPI UP2 

(Xp(ad, Xg(al), 
ZO(al), pE( al); pg(al)); 

A, C, Al,A2 

) A(x, z,p), C(x, z,p), Al (X, z,p), A2(X, z,p) 

fi 

( ) ( ) 

(27) 

(28) 

The Monge-Ampere equations, satisfying conditions 1) - 4) of The­

orem 7 are said to be weakly hyperbolic ones. 
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Exemples. 

1) ([5], [10]) The coeffiients A, B, C, E are constants with ~ 2:: 0. 

It is easy to see that all the assumptions of the Therem 7 are 

satisfied. 

2) Suppose v(y, t) is a solution of the Burger equation 

Vt + VVy = 0, (29) 

which satisfies the following condition 

vy(P~(al) -pg(al),X~(al) Xg(al))(X~(al) Xg(al)) 1 f 0. 

(27') 
Then the Monge-Ampere equation 

with A = B = C = 0, E = -V2(ZXl - ZX2' Xl X2), ~ = 4v2(Pl -
P2,Xl X2),Al = -A2 = V(Pl-P2,Xl +X2) satisfies all conditions 
of the Theorem 7. 

3) Suppose v(y, t), w(y, t) are some solutions of the equation (29) 

that satisfy the condition: 

Vy( -P~(al)' X? (al))X~(al)-Wy( -pg(al), xg( al))Xg(al) 1 f 0. 
(27" ) 

Then the equation 

with A = w( -P2, X2), B = 0, C = V( -PI, Xl)' E = V( -PI, Xl)W( -P2, X2), ~ =-

0, Al = A2 = ° satisfies all conditions of the Theorem 7. 
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