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CAUCHY PROBLEM FOR SOME
HYPERBOLIC SYSTEMS OF NONLINEAR
FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

Ha TIEN NGOAN *
NGUYEN THI NGA*

ABsTRACT. The Cauchy problem for a normal weakly hyper-
bolic system of first-order nonlinear partial differential equations
in two variables is considered. Sufficient conditions for its diago-
nalisation are given. The local solvability of the noncharacteristic
Cauchy problem for classical weakly hyperbolic Monge-Ampére
equation is proved.

1. Cauchy problem

We consider the following normal quasilinear first-order system of
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equations in two variables

(% _ (g, 25 8X1 X, 0P,
60&2 12 + a2 6@1 8051
90X, 8X2 0X, 0P,
8042 = Tn (9041 (a21 + 1) (90!1 6041
07 0X1 0X
e = (a12P; — CL11P2)——‘— + (agaP1 — ag1 Po) 5o 2
4 8] (651
07z OP; 0P,
B 8@1 _Pzﬁ (651 +P18011
OP 0X OP: 0P
-é—é = (—a11092 + a12a21)—57‘f + (a12 — 1)“—1— — a11 802
OF: o0X OP OP:
| 5&2 (a11022 — a12a21)‘?11 +a 225&—11- — (ag1 + 1) 2

(1)
Here (X1,Xs,Z, Py, P;) are unknown functions of the variables
a1, 0g; aqy arefunctions of (X1, Xy, Z, Py, Ps).
Suppose that in R% there is a curve I that is given by equations:

X1 X <a1)
Xg == X2 (Czl).

Suppose that we are given also 3 functions Z%(ay), PY(cu), PY(c).
The Cauchy problem for the system (1) consists in looking for
(X(Oél, &2)7

Z(a1,ag), P(og,a)) =
(X1(a1,00), Xo(on, @), Z(a1, ag), P10, az), Pa(ar, 0)).

€ C? that is a solution of (1) such that

X<a1’a2)¥a2:0 = XO(Ozl),
Z<0‘170‘2)la2=o = Z()(C\!l), (2)
P(Oél,az)iaz____o = Po(al),

where X%(ay) = (X?(a1), X3 (1)), P (1) = (P (a), PP (a)).
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From (3) we have the following necessary condition for the initial

Cauchy data

0Z°%(cu) ( 1) 0X3 (o)
“%T—Pﬂ ) + Py(0n) —2—= D (3)
which is assumed to be fulfilled.
We introduce now the following condition for the system (1)
(C1): aij(X, Z, P)
Xg(al)’Xg(al)’
Z%(a1), PY(a1), P (oa) ()
011, Cllz) 9 a21,a22 2
Doy | (KLea))? + |——-———D (X3 (o))
D(an, &22) D(CL21, a12) 0 0
[ D(Pl,Pz) } D(Pl,Pg) ]Xl (Oél)XQ(al)—}r
da Oa Oa Oa
+(3p, T gp ) Xilen) + (gp + gp ) Xsle) +1#0, (4
Qi (X9 (a1), X8 (on),

Z%(an), PP(a1), P3 (aa)).

2. Hyperbolicity

We set

A(U)=

aig — 1
—a11
a12P1 — a1 P
0

| A11G22 — (120921

U - <X17X27Z5P1>P2)T7

a22 0 0
—a9g1 — 1 0 -1
agePy —ao1P,  —1  —P
—a11022 +aizae1 0 a;p—1
0 0 Q99
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We write the system (1) in the matrix form

oU oU
— = A(U) 7, 6
ey = AU 5 (6)
Now we recall some definitions and results on hyperbolic systems.
To do this we may consider following more general normal system
in two variables
oV oV
— =H{V)— + G(V), 7
o = H(V)5— +G(V) 7
where V, G(V) are columm-vectors of size mx 1 and H (V) is matrix
of size m x m.
The Cauchy problem for system (7) consists in looking for V(aq, aa) €
C?! such that

Viaa, O‘Q)Iag:o = V%), (8)
where V9(a) is a given vector function.
Definition 1. ([9]) ()
V e R™
) | H(V)
) R™,
Theorem 1. ([9]) ()
H(V)
() ()
Theorem 2. ([9]) ()
2m
2m
Theorem 3. ais # az (X1,X9,Z,P1, Py) € R®,

()

For the system (6) we do not assume that ajs # a21. In this case
only condition 1) in Definition 1 is valid. We show below (Theorem
5) that under some restrictions on coefficients a;;(X, Z, P),
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the system (6) can be reduced to a diagonal one of 7 quasilinear
equations with respect to 7 unknowns. From the Theorem 1 it
follows that there exists locally unique smooth solution for the
Cauchy problem (6), (2). In this case the system (6) could be said
to be weakly hyperbolic.

3. Reduced system

Set ) .
1 0 0 0 0
0 1 0 0 O
C(X1,X2,Z, P, Py) = 0 0 1 0 0. (9)
—a11 —ad21 0 1 0
| —a12 —a929 0 0 1_
- Then
1 0 0 0 O]
0 1 0 0 0O
CYX1,X0,Z,PL,Pl)=] 0 0 1 00
aiy 4oy 0 1 Q
aig ag2 0 0 1__
Set
V= (Xl,X% Za Ql) Q2)T = G_lU'
That means
(X; = X1,
Xy = Xy,
{ Z=2, (10)

Q1 =P +011(X,Z, P) X1 4 a2:(X, Z, P) Xs,
\ Q2 =Py +a12(X, Z, P) X1 + ax(X, Z, P) X>.

Proposition 1. (C1)
(X,2,Q)
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€ RS, bill

P +a11(X7 Z3P)Xl +a21<X> Z)P)XQ
PZ +a'12<X7 Z)P)Xl +CL22(X, ZaP)XQ

(X%(a1), 2% (1), Q%(an)),
' P, P

:Qh
= Qs

Pl - f<X19X27Z>Q17Q2),P2 - g(XlaXQaZ> QlaQZ),

Q°(a1)

all(X, Z,P)
H(X,Z,P)= | an(X,Z,P)

Theorem 4. Vv
oV ov
= AV)=— + B(V
Far = AV) 5o +BV)V,
-1 0 0 0 1 i
0 -1 0 -1
A = 0 0 —1 —PQ Pl
0 0 0 di9 — 491 — 1 0
A 0 0 0 0 ajg — A21 — 1 |
oc  oC
B=C1A— - ") =
( 80&1 8042 )
- fa1z 9azs
oy day
__dayy fagy
50&1 aal
R TR R gmR
(a12 —ag1 — 1)636211 - :95%3—21' (@12 —ag1 — 1) gﬁff g(ff;
| (a1 — a1 — 1) G822 — G542 (a2 — a9 — 1) 522 — 522
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= P%ay) + X (a1)H(X(a1), Z% 1), P(an))

a12(X, Z, P)
CLQQ(X, Z, P)

o O O O O

(11)

(12)

(13)

= OO O O D
o O O O



a:; (X1, X9, 2, P1, P) P, Py
P = f(X1,X2,2,Q1,Q2), P = g(X1,X2,7Z,Q1,Q2)

4. Diagonalization

It is clear from (15) that the system (14) is not diagonal. We
give now some sufficient conditions under which the system (14)
can be reduced to a diagonal quasilinear one.

We introduce now other condition for the system (1)

(Ca): a; (X, 2, P)  fi
()
a5 g o =
We set 90 90,
S = G5 = G
Proposition 2. (C1) (C?)
) dasj  Oagj
(a13 —ag1 — 1) 60: — 602 =0, (18)
) bi; (X, Q) cii (X, Q)
ZZZ = by(X, Q)81 + ci; (X, Q)8 Vi j =1,2.  (19)

We introduce new dependent variables

W= <X13X27Z)Q1)Q2331782)T‘
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From Proposition 2 it follows

Theorem 5. Assume the conditions (C1) and (C3). Then the
system (14) can be diagonalized, i.e. it may be reduced to following
diagonal one:

ow . AW
Bag = A(W)b—&-l- + F(W), (20)
where
—1 0 0 0 0 0 07
0 -1 0 00 0 0
0 0 -1 02000
A=|10 0 0 ¢t 0 0 0], (21)
0 0 0 0t 00
0 0 0 00 ¢t 0
L0 0 0 0 0 0 ¢l

where t = a19 — ag1 — 1 and
F(W) = (W) + F(W),

where
(W)=
B So + (blgsl + cmSg)Xl + (b2251 -+ CQzSQ)XQ 7
~51 4+ (b1151 + €1152) X1 — (b2151 + ¢21.59) X
—PyS1 + P1Sy 4+ [—(b1151 + ¢1152) Pa + (b1251 + €1252) 1) X1
0
0
[(b1z — b21)S1 + (c12 — €21)52)]51
L [(D12 — b21)S1 + (€12 — €21)52)]S2 _

- O e
0
[—(b21S1 + €2152) Py + (b22S1 + €2252) P1] X5

R(W)=

o O OO
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where in Fy (W), Fo(W) the variables P, P, must be replaced by
f(Xl7X2> Za Ql? Q2) a'nd g<X17 X2) Za Qla Q2> respectively.

Theorem 6. (C1) (Cy).
() ()

5. Application to the classical weakly hyperbolic Monge-
Ampere equation

The classical hyperbolic Monge-Ampere equation with two vari-
ables is that of the form

F(z1,29,2,p1,p2,7,8,t) = Ar+Bs+Ct+ (rt —s*) —E = 0, (22)

where z = z(z1,22) is an unknown function defined for (z1,23) €
2 . Oz __ Oz . &%z _ 8%z _ 8%z

R*,p1 = B P2 = 5oy " T 52205 T Burons and t = Erg The coef-

ficients A, B, C' and E are real smooth functions of (z1, 22, 2, p1, p2)

and satisfy the condition of hyperbolicity:
A = B? ~4(AC + E) > 0.
In this case the characteristic equation
M4 BA+(AC+E)=0 (23)

has two different real roots A1 = A1(z1, 22, 2,01, P2), A2 = Ao(21,22, 2,p1,D2).
In the case, where the equation (1) is hyperbolic, it can be written
in the following equivalent form

21131931 + C Zmlmg + >\1 _

= 0. 24
Zroxq + )\2 Zxozo + A ( )

Equation (22) was investigated in [1], [2] by G. Darboux and E.
Goursat under the assumptions that A > 0 and there are two

independent first integralsfor the equation (22). In this case
the equation (22) had been also considered in [3], [4], [6], [7] by
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reducing it to a hyperbolic quasilinear system of first-order partial
differential equations with two variables. For the case A > 0 in
[6] M. Tsuji proved loal solvability of Cauchy problem (22), (25)
provided that there exist two independent first integrals. In [10]
D. V. Tuniski considered the case A > 0 and proved solvability
of the Cauchy problem in class of multivalue functions, but under
rather strong assumptions on coefficients A, B,C, E.

In [8] we have proposed a solving method for the equation (24)
that reduces it to the system (1) with a11 = C,a12 = A1,a91 =
Ao, 099 = A. Applying Theorem 6 stated above to the last system
we can consider the case A > 0 and we do not assume
existence of two independent first integrals.

Suppose the functions X (ay), X9 (1), Z2°%(a1), PP (1), P (1) are
given as§in 1, that satisfy the condition (3).

Cauchy problem: The Cauchy problem for the equation (22)
consists in looking for z(z) € C? that is a solution of (22) such
that

{ 2(3) |y xo(ay) = 2° (1), (25)

%, (@) |y xo ey = F5 (@), 5 = 1,2,

where X%(a1) = (X%(a1), X9 (1)),
We assume that the Cauchy problem (22), (25) is not charateristic,
1e.

C(XY ()" + A(XY (@1))” — BXY (01) XY (o) +

(XY (1) PY (1) + X3 (an) PY () #0, (26)

where the coefficients A, B, C are calculated at (X9 (a1), X3(c1), Z%(ay), P2 (ay),
P (o))

Theorem 7. ()
() ()
) fji Aa B> C? E 2]
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) A >0

)
D(C, M) (A2, A)
Dlp1, 03 )I(Xl 1))2+‘D< 2

P1,02)
D(C,4) |, | DX, M)
{ D(p1,p2) D(pj,m) ]Xl(o‘l)Xzo(Oél)+

|(X3(01))?+

+(§Z g;l)xo(al) (‘-9—;—2 + —%4))(2 (a1)+14£0, (27)
A, C A, Mo
(X?(a1)>X§(a1),
Z%(c), PP(a1); P (0a));
) Az, z,p), C(z, 2,p), M (2, 2,p), Aa(z, 2,D)

fi

Op Cﬁ(ﬁ _ Al_aﬁ =0,
Oz1 Om Op2 (28)
Op _\ Op _ 0

— = 0.
Oxa *0p1 Opo

() ()

The Monge-Ampére equations, satisfying conditions 1) - 4) of The-
orem 7 are said to be weakly hyperbolic ones.
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Exemples.

1) ([5], [10]) The coeffiients A, B, C, E are constants with A > 0.
It is easy to see that all the assumptions of the Therem 7 are

satisfied.
2) Suppose v(y,t) is a solution of the Burger equation

vy + vuy = 0, (29)
which satisfies the following condition

vy (PP (1) = P (1), X7 () + X3 () (X7 (an) + X3 (0)) +1 # 0.
(27)
Then the Monge-Ampere equation

rt— 8% + 1)2(%51 — 23y, 21+ 22) =0
with A=B=C=0,F = —v*(2g, — 2g,, 21 + 22), A = 4v%(p; —
D2, %1 + Z2), A1 = —A2 = v(p1 — P2, T1 + 22) satisfies all conditions
of the Theorem 7.

3) Suppose v(y,t), w(y,t) are some solutions of the equation (29)
that satisfy the condition:

vy (=P (0), X7 (o)) wy (—P3 (o), X3 (1)) X7 (o) X5 (1) —
vy(—Plo(al),X?(al))Xf(al)éwy(—PS(al),Xg(al))XS(a1)+1 # 0.
(277)
Then the equation

W(—=Zgy, T2 )T +V(— 25y, T )t (rt—5) (=24, , 21 )W(—2g,, 23) = 0

with A = w(—p2,22), B =0,C =v(—p1,21), E = v(—p1,z1)w(—pa, 22), A ==
0, A1 = Ao = 0 satisfies all conditions of the Theorem 7.
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