Title	CAUCHY PROBLEM FOR SOME HYPERBOLIC SYSTEMS OF NONLINEAR FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS
Author(s)	Ha, Tien Ngoan; Nguyen, Thi Nga
Citation	Annual Report of FY 2004, The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST). 2005, p. 305-317
Version Type	VoR
URL	https://hdl.handle.net/11094/13244
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/

CAUCHY PROBLEM FOR SOME HYPERBOLIC SYSTEMS OF NONLINEAR FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

Ha Tien Ngoan * Nguyen Thi Nga*

Abstract

The Cauchy problem for a normal weakly hyperbolic system of first-order nonlinear partial differential equations in two variables is considered. Sufficient conditions for its diagonalisation are given. The local solvability of the noncharacteristic Cauchy problem for classical weakly hyperbolic Monge-Ampère equation is proved.

1. Cauchy problem

We consider the following normal quasilinear first-order system of

1991 Mathematics Subject Classification. Primary 35L70; Secondary 53C21, 58C27, 58G17.
Keywords: Hyperbolic system, Diagonalised system, Weakly hyperbolic MongeAmpère equation, Cauchy problem.

* Supported in part by the National Basic Research Program in Natural Sciences (Vietnam).
equations in two variables

$$
\left\{\begin{align*}
\frac{\partial X_{1}}{\partial \alpha_{2}}= & \left(a_{12}-1\right) \frac{\partial X_{1}}{\partial \alpha_{1}}+a_{22} \frac{\partial X_{2}}{\partial \alpha_{1}}+\frac{\partial P_{2}}{\partial \alpha_{1}} \tag{1}\\
\frac{\partial X_{2}}{\partial \alpha_{2}}= & -a_{11} \frac{\partial X_{2}}{\partial \alpha_{1}}-\left(a_{21}+1\right) \frac{\partial X_{2}}{\partial \alpha_{1}}-\frac{\partial P_{1}}{\partial \alpha_{1}} \\
\frac{\partial Z}{\partial \alpha_{2}}= & \left(a_{12} P_{1}-a_{11} P_{2}\right) \frac{\partial X_{1}}{\partial \alpha_{1}}+\left(a_{22} P_{1}-a_{21} P_{2}\right) \frac{\partial X_{2}}{\partial \alpha_{1}} \\
& -\frac{\partial Z}{\partial \alpha_{1}}-P_{2} \frac{\partial P_{1}}{\partial \alpha_{1}}+P_{1} \frac{\partial P_{2}}{\partial \alpha_{1}} \\
\frac{\partial P_{1}}{\partial \alpha_{2}}= & \left(-a_{11} a_{22}+a_{12} a_{21}\right) \frac{\partial X_{2}}{\partial \alpha_{1}}+\left(a_{12}-1\right) \frac{\partial P_{1}}{\partial \alpha_{1}}-a_{11} \frac{\partial P_{2}}{\partial \alpha_{1}} \\
\frac{\partial P_{2}}{\partial \alpha_{2}}= & \left(a_{11} a_{22}-a_{12} a_{21}\right) \frac{\partial X_{1}}{\partial \alpha_{1}}+a_{22} \frac{\partial P_{1}}{\partial \alpha_{1}}-\left(a_{21}+1\right) \frac{\partial P_{2}}{\partial \alpha_{1}}
\end{align*}\right.
$$

Here $\left(X_{1}, X_{2}, Z, P_{1}, P_{2}\right)$ are unknown functions of the variables $\alpha_{1}, \alpha_{2} ; a_{i j}$ arefunctions of $\left(X_{1}, X_{2}, Z, P_{1}, P_{2}\right)$.
Suppose that in R_{X}^{2} there is a curve Γ that is given by equations:

$$
\left\{\begin{array}{l}
X_{1}=X_{1}^{0}\left(\alpha_{1}\right) \\
X_{2}=X_{2}^{0}\left(\alpha_{1}\right)
\end{array}\right.
$$

Suppose that we are given also 3 functions $Z^{0}\left(\alpha_{1}\right), P_{1}^{0}\left(\alpha_{1}\right), P_{2}^{0}\left(\alpha_{1}\right)$. The Cauchy problem for the system (1) consists in looking for $\left(X\left(\alpha_{1}, \alpha_{2}\right)\right.$,

$$
\begin{aligned}
& \left.Z\left(\alpha_{1}, \alpha_{2}\right), P\left(\alpha_{1}, \alpha_{2}\right)\right) \equiv \\
& \left(X_{1}\left(\alpha_{1}, \alpha_{2}\right), X_{2}\left(\alpha_{1}, \alpha_{2}\right), Z\left(\alpha_{1}, \alpha_{2}\right), P_{1}\left(\alpha_{1}, \alpha_{2}\right), P_{2}\left(\alpha_{1}, \alpha_{2}\right)\right)
\end{aligned}
$$

$\in C^{2}$ that is a solution of (1) such that

$$
\left\{\begin{array}{l}
\left.X\left(\alpha_{1}, \alpha_{2}\right)\right|_{\alpha_{2}=0}=X^{0}\left(\alpha_{1}\right) \tag{2}\\
\left.Z\left(\alpha_{1}, \alpha_{2}\right)\right|_{\alpha_{2}=0}=Z^{0}\left(\alpha_{1}\right) \\
\left.P\left(\alpha_{1}, \alpha_{2}\right)\right|_{\alpha_{2}=0}=P^{0}\left(\alpha_{1}\right)
\end{array}\right.
$$

where $X^{0}\left(\alpha_{1}\right) \equiv\left(X_{1}^{0}\left(\alpha_{1}\right), X_{2}^{0}\left(\alpha_{1}\right)\right), P^{0}\left(\alpha_{1}\right) \equiv\left(P_{1}^{0}\left(\alpha_{1}\right), P_{2}^{0}\left(\alpha_{1}\right)\right)$.

From (3) we have the following necessary condition for the initial Cauchy data

$$
\begin{equation*}
\frac{\partial Z^{0}\left(\alpha_{1}\right)}{\partial \alpha_{1}}=P_{1}^{0}\left(\alpha_{1}\right) \frac{\partial X_{1}^{0}\left(\alpha_{1}\right)}{\partial \alpha_{1}}+P_{2}^{0}\left(\alpha_{1}\right) \frac{\partial X_{2}^{0}\left(\alpha_{1}\right)}{\partial \alpha_{1}}, \tag{3}
\end{equation*}
$$

which is assumed to be fulfilled.
We introduce now the following condition for the system (1)

$$
\begin{align*}
& \left(\mathcal{C}_{1}\right): \\
& X_{1}^{0}\left(\alpha_{1}\right), X_{2 j}^{0}\left(\alpha_{1}\right), \\
& Z^{0}\left(\alpha_{1}\right), P_{1}^{0}\left(\alpha_{1}\right), P_{2}^{0}\left(\alpha_{1}\right) \\
& \left|\frac{D\left(a_{11}, a_{12}\right)}{D\left(P_{1}, P_{2}\right)}\right|\left(X_{1}^{0}\left(\alpha_{1}\right)\right)^{2}+\left|\frac{D\left(a_{21}, a_{22}\right)}{D\left(P_{1}, P_{2}\right)}\right|\left(X_{2}^{0}\left(\alpha_{1}\right)\right)^{2}+ \\
& {\left[\left|\frac{D\left(a_{11}, a_{22}\right)}{D\left(P_{1}, P_{2}\right)}\right|+\left|\frac{D\left(a_{21}, a_{12}\right)}{D\left(P_{1}, P_{2}\right)}\right|\right] X_{1}^{0}\left(\alpha_{1}\right) X_{2}^{0}\left(\alpha_{1}\right)+} \\
& +\left(\frac{\partial a_{11}}{\partial P_{1}}+\frac{\partial a_{12}}{\partial P_{2}}\right) X_{1}^{0}\left(\alpha_{1}\right)+\left(\frac{\partial a_{21}}{\partial P_{1}}+\frac{\partial a_{22}}{\partial P_{2}}\right) X_{2}^{0}\left(\alpha_{1}\right)+1 \neq 0, \\
& \left.Z^{0}\left(\alpha_{1}\right), P_{1}^{0}\left(\alpha_{1}\right), P_{2}^{0}\left(\alpha_{1}\right)\right) . \tag{4}
\end{align*}
$$

2. Hyperbolicity

We set

$$
U=\left(X_{1}, X_{2}, Z, P_{1}, P_{2}\right)^{T}
$$

$A(U)=$

$$
\left[\begin{array}{ccccc}
a_{12}-1 & a_{22} & 0 & 0 & 1 \tag{5}\\
-a_{11} & -a_{21}-1 & 0 & -1 & 0 \\
a_{12} P_{1}-a_{11} P_{2} & a_{22} P_{1}-a_{21} P_{2} & -1 & -P_{2} & P_{1} \\
0 & -a_{11} a_{22}+a_{12} a_{21} & 0 & a_{12}-1 & -a_{11} \\
a_{11} a_{22}-a_{12} a_{21} & 0 & 0 & a_{22} & -a_{21}-1
\end{array}\right]
$$

We write the system (1) in the matrix form

$$
\begin{equation*}
\frac{\partial U}{\partial \alpha_{2}}=A(U) \frac{\partial U}{\partial \alpha_{1}}, \tag{6}
\end{equation*}
$$

Now we recall some definitions and results on hyperbolic systems. To do this we may consider following more general normal system in two variables

$$
\begin{equation*}
\frac{\partial V}{\partial \alpha_{2}}=H(V) \frac{\partial V}{\partial \alpha_{1}}+G(V) \tag{7}
\end{equation*}
$$

where $V, G(V)$ are columm-vectors of size $m \times 1$ and $H(V)$ is matrix of size $m \times m$.
The Cauchy problem for system (7) consists in looking for $V\left(\alpha_{1}, \alpha_{2}\right) \in$ C^{1} such that

$$
\begin{equation*}
\left.V\left(\alpha_{1}, \alpha_{2}\right)\right|_{\alpha_{2}=0}=V^{0}\left(\alpha_{1}\right), \tag{8}
\end{equation*}
$$

where $V^{0}\left(\alpha_{1}\right)$ is a given vector function.
Definition 1. ([9])
$V \in R^{m}$

```
)
\(H(V)\)
```

)

$$
R^{m}
$$

Theorem 1. ([9]) $H(V)$

Theorem 2. ([9])
$2 m$
$2 m$
Theorem 3. $a_{12} \neq a_{21} \quad\left(X_{1}, X_{2}, Z, P_{1}, P_{2}\right) \in R^{5}$,
()

For the system (6) we do not assume that $a_{12} \neq a_{21}$. In this case only condition 1) in Definition 1 is valid. We show below (Theorem 5) that under some restrictions on coefficients $a_{i j}(X, Z, P)$,
the system (6) can be reduced to a diagonal one of 7 quasilinear equations with respect to 7 unknowns. From the Theorem 1 it follows that there exists locally unique smooth solution for the Cauchy problem (6), (2). In this case the system (6) could be said to be weakly hyperbolic.

3. Reduced system

Set

$$
\mathcal{C}\left(X_{1}, X_{2}, Z, P_{1}, P_{2}\right)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \tag{9}\\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
-a_{11} & -a_{21} & 0 & 1 & 0 \\
-a_{12} & -a_{22} & 0 & 0 & 1
\end{array}\right] .
$$

Then

$$
\mathcal{C}^{-1}\left(X_{1}, X_{2}, Z, P_{1}, P_{2}\right)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
a_{11} & a_{21} & 0 & 1 & 0 \\
a_{12} & a_{22} & 0 & 0 & 1
\end{array}\right] .
$$

Set

$$
V \equiv\left(\tilde{X}_{1}, \tilde{X}_{2}, \tilde{Z}, Q_{1}, Q_{2}\right)^{T}=C^{-1} U
$$

That means

$$
\left\{\begin{align*}
\tilde{X}_{1} & =X_{1} \tag{10}\\
\tilde{X}_{2} & =X_{2} \\
\tilde{Z} & =Z \\
Q_{1} & =P_{1}+a_{11}(X, Z, P) X_{1}+a_{21}(X, Z, P) X_{2} \\
Q_{2} & =P_{2}+a_{12}(X, Z, P) X_{1}+a_{22}(X, Z, P) X_{2}
\end{align*}\right.
$$

Proposition 1.

(X, Z, Q)
$\in R^{5}$,
ffi

$$
\begin{gathered}
\left(X^{0}\left(\alpha_{1}\right), Z^{0}\left(\alpha_{1}\right), Q^{0}\left(\alpha_{1}\right)\right), \\
P_{1}, P_{2}
\end{gathered}
$$

$$
\left\{\begin{array}{l}
P_{1}+a_{11}(X, Z, P) X_{1}+a_{21}(X, Z, P) X_{2}=Q_{1} \tag{11}\\
P_{2}+a_{12}(X, Z, P) X_{1}+a_{22}(X, Z, P) X_{2}=Q_{2}
\end{array}\right.
$$

$$
\begin{gather*}
P_{1}=f\left(X_{1}, X_{2}, Z, Q_{1}, Q_{2}\right), P_{2}=g\left(X_{1}, X_{2}, Z, Q_{1}, Q_{2}\right), \tag{12}\\
Q^{0}\left(\alpha_{1}\right)=P^{0}\left(\alpha_{1}\right)+X^{0}\left(\alpha_{1}\right) H\left(X^{0}\left(\alpha_{1}\right), Z^{0}\left(\alpha_{1}\right), P^{0}\left(\alpha_{1}\right)\right) \\
H(X, Z, P)=\left[\begin{array}{ll}
a_{11}(X, Z, P) & a_{12}(X, Z, P) \\
a_{21}(X, Z, P) & a_{22}(X, Z, P)
\end{array}\right] . \tag{13}
\end{gather*}
$$

Theorem 4. V

$$
\begin{align*}
& \frac{\partial V}{\partial \alpha_{2}}=\mathcal{A}(V) \frac{\partial V}{\partial \alpha_{1}}+\mathcal{B}(V) V, \tag{14}\\
& \mathcal{A}=\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 1 \\
0 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & -P_{2} & P_{1} \\
0 & 0 & 0 & a_{12}-a_{21}-1 & 0 \\
0 & 0 & 0 & 0 & a_{12}-a_{21}-1
\end{array}\right], \tag{15}\\
& \mathcal{B}=\mathcal{C}^{-1}\left(A \frac{\partial C}{\partial \alpha_{1}}-\frac{\partial C}{\partial \alpha_{2}}\right)= \\
& {\left[\begin{array}{ccccc}
\frac{\partial a_{12}}{\partial \alpha_{1}} & \frac{\partial a_{22}}{\partial \alpha_{1}} & 0 & 0 & 0 \\
-\frac{\partial a_{11}}{\partial \alpha_{1}} & -\frac{\partial a_{21}}{\partial \alpha_{1}} & 0 & 0 & 0 \\
-\frac{\partial a_{11}}{\partial \alpha_{1}} P_{2}+\frac{\partial a_{22}}{\partial \alpha_{1}} P_{1} & -\frac{\partial a_{21}}{\partial \alpha_{1}} P_{2}+\frac{\partial a_{12}}{\partial \alpha_{1}} P_{1} & 0 & 0 & 0 \\
\left(a_{12}-a_{21}-1\right) \frac{\partial a_{11}}{\partial \alpha_{1}}-\frac{\partial \partial a_{12}}{\partial \alpha_{2}} & \left(a_{12}-a_{21}-1\right) \frac{\partial a_{21}}{\partial \alpha_{1}}-\frac{\partial a_{21}}{\partial \alpha_{2}} & 0 & 0 & 0 \\
\left(a_{12}-a_{21}-1\right) \frac{\partial a_{12}}{\partial \alpha_{1}}-\frac{\partial a_{12}}{\partial \alpha_{2}}, & \left(a_{12}-a_{21}-1\right) \frac{\partial 222}{\partial \alpha_{1}}-\frac{\partial a_{22}}{\partial \alpha_{2}} & 0 & 0 & 0
\end{array}\right],} \tag{16}
\end{align*}
$$

$$
\begin{array}{cc}
a_{i j}\left(X_{1}, X_{2}, Z, P_{1}, P_{2}\right) & P_{1}, P_{2} \\
P_{1}=f\left(X_{1}, X_{2}, Z, Q_{1}, Q_{2}\right), P_{2}=g\left(X_{1}, X_{2}, Z, Q_{1}, Q_{2}\right)
\end{array}
$$

4. Diagonalization

It is clear from (15) that the system (14) is not diagonal. We give now some sufficient conditions under which the system (14) can be reduced to a diagonal quasilinear one.
We introduce now other condition for the system (1)

$$
\left(C_{2}\right): \quad a_{i j}(X, Z, P) \quad f i
$$

$$
\left\{\begin{align*}
\frac{\partial a_{i j}}{\partial Z} & =0 \tag{17}\\
\frac{\partial a_{i j}}{\partial X_{1}}-a_{11} \frac{\partial a_{i j}}{\partial P_{1}}-a_{12} \frac{\partial a_{i j}}{\partial P_{2}} & =0 \\
\frac{\partial a_{i j}}{\partial X_{2}}-a_{21} \frac{\partial a_{i j}}{\partial P_{1}}-a_{22} \frac{\partial a_{i j}}{\partial P_{2}} & =0
\end{align*}\right.
$$

We set

$$
S_{1}=\frac{\partial Q_{1}}{\partial \alpha_{1}}, S_{2}=\frac{\partial Q_{2}}{\partial \alpha_{1}} .
$$

Proposition 2.

)
)

$$
\begin{gather*}
\left(a_{12}-a_{21}-1\right) \frac{\partial a_{i j}}{\partial \alpha_{1}}-\frac{\partial a_{i j}}{\partial \alpha_{2}}=0, \tag{18}\\
b_{i j}(X, Q) \quad c_{i j}(X, Q) \\
\frac{\partial a_{i j}}{\partial \alpha_{1}}=b_{i j}(X, Q) S_{1}+c_{i j}(X, Q) S_{2}, \forall i, j=1,2 . \tag{19}
\end{gather*}
$$

We introduce new dependent variables

$$
W=\left(X_{1}, X_{2}, Z, Q_{1}, Q_{2}, S_{1}, S_{2}\right)^{T} .
$$

From Proposition 2 it follows
Theorem 5. Assume the conditions $\left(C_{1}\right)$ and $\left(C_{2}\right)$. Then the system (14) can be diagonalized, i.e. it may be reduced to following diagonal one:

$$
\begin{equation*}
\frac{\partial W}{\partial \alpha_{2}}=\tilde{\mathcal{A}}(W) \frac{\partial W}{\partial \alpha_{1}}+F(W) \tag{20}
\end{equation*}
$$

where

$$
\tilde{\mathcal{A}}=\left[\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{21}\\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & t & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & t & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & t & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & t
\end{array}\right],
$$

where $t=a_{12}-a_{21}-1$ and

$$
F(W)=F_{1}(W)+F_{2}(W)
$$

where

$$
\begin{gathered}
F_{1}(W)= \\
{\left[\begin{array}{c}
S_{2}+\left(b_{12} S_{1}+c_{12} S_{2}\right) X_{1}+\left(b_{22} S_{1}+c_{22} S_{2}\right) X_{2} \\
-S_{1}+\left(b_{11} S_{1}+c_{11} S_{2}\right) X_{1}-\left(b_{21} S_{1}+c_{21} S_{2}\right) X_{2} \\
\left.-P_{2} S_{1}+P_{1} S_{2}+\left[-\left(b_{11} S_{1}+c_{11} S_{2}\right) P_{2}+\left(b_{12} S_{1}+c_{12} S_{2}\right) P_{1}\right)\right] X_{1} \\
0 \\
0 \\
\left.\left[\left(b_{12}-b_{21}\right) S_{1}+\left(c_{12}-c_{21}\right) S_{2}\right)\right] S_{1} \\
\left.\left[\left(b_{12}-b_{21}\right) S_{1}+\left(c_{12}-c_{21}\right) S_{2}\right)\right] S_{2}
\end{array}\right]} \\
0 \\
0 \\
F_{2}(W)=\left[\begin{array}{c}
{\left[-\left(b_{21} S_{1}+c_{21} S_{2}\right) P_{2}+\left(b_{22} S_{1}+c_{22} S_{2}\right) P_{1}\right] X_{2}} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

where in $F_{1}(W), F_{2}(W)$ the variables P_{1}, P_{2} must be replaced by $f\left(X_{1}, X_{2}, Z, Q_{1}, Q_{2}\right)$ and $g\left(X_{1}, X_{2}, Z, Q_{1}, Q_{2}\right)$ respectively.

Theorem 6.

$\left(C_{1}\right) \quad\left(C_{2}\right)$.

5. Application to the classical weakly hyperbolic MongeAmpère equation

The classical hyperbolic Monge-Ampère equation with two variables is that of the form

$$
\begin{equation*}
F\left(x_{1}, x_{2}, z, p_{1}, p_{2}, r, s, t\right)=A r+B s+C t+\left(r t-s^{2}\right)-E=0 \tag{22}
\end{equation*}
$$

where $z=z\left(x_{1}, x_{2}\right)$ is an unknown function defined for $\left(x_{1}, x_{2}\right) \in$ $R^{2}, p_{1}=\frac{\partial z}{\partial x_{1}}, p_{2}=\frac{\partial z}{\partial x_{2}}, r=\frac{\partial^{2} z}{\partial x_{1}^{2}}, s=\frac{\partial^{2} z}{\partial x_{1} \partial x_{2}}$ and $t=\frac{\partial^{2} z}{\partial x_{2}^{2}}$. The coedficients A, B, C and E are real smooth functions of $\left(x_{1}, x_{2}, z, p_{1}, p_{2}\right)$ and satisfy the condition of hyperbolicity:

$$
\Delta:=B^{2}-4(A C+E)>0
$$

In this case the characteristic equation

$$
\begin{equation*}
\lambda^{2}+B \lambda+(A C+E)=0 \tag{23}
\end{equation*}
$$

has two different real roots $\lambda_{1}=\lambda_{1}\left(x_{1}, x_{2}, z, p_{1}, p_{2}\right), \lambda_{2}=\lambda_{2}\left(x_{1}, x_{2}, z, p_{1}, p_{2}\right)$. In the case, where the equation (1) is hyperbolic, it can be written in the following equivalent form

$$
\left|\begin{array}{cc}
z_{x_{1} x_{1}}+C & z_{x_{1} x_{2}}+\lambda_{1} \tag{24}\\
z_{x_{2} x_{1}}+\lambda_{2} & z_{x_{2} x_{2}}+A
\end{array}\right|=0
$$

Equation (22) was investigated in [1], [2] by G. Darboux and E. Goursat under the assumptions that $\Delta>0$ and there are two independent first integralsfor the equation (22). In this case the equation (22) had been also considered in [3], [4], [6], [7] by
reducing it to a hyperbolic quasilinear system of first-order partial differential equations with two variables. For the case $\Delta \geq 0$ in [5] M.Tsuji proved loal solvability of Cauchy problem (22), (25) provided that there exist two independent first integrals. In [10] D. V. Tuniski considered the case $\Delta \geq 0$ and proved solvability of the Cauchy problem in class of multivalue functions, but under rather strong assumptions on coefficients A, B, C, E.
In [8] we have proposed a solving method for the equation (24) that reduces it to the system (1) with $a_{11}=C, a_{12}=\lambda_{1}, a_{21}=$ $\lambda_{2}, a_{22}=A$. Applying Theorem 6 stated above to the last system we can consider the case $\Delta \geq 0$ and we do not assume existence of two independent first integrals.
Suppose the functions $X_{1}^{0}\left(\alpha_{1}\right), X_{2}^{0}\left(\alpha_{1}\right), Z^{0}\left(\alpha_{1}\right), P_{1}^{0}\left(\alpha_{1}\right), P_{2}^{0}\left(\alpha_{1}\right)$ are given as§in 1 , that satisfy the condition (3).
Cauchy problem: The Cauchy problem for the equation (22) consists in looking for $z(x) \in C^{2}$ that is a solution of (22) such that

$$
\left\{\begin{align*}
\left.z(x)\right|_{x=X^{0}\left(\alpha_{1}\right)} & =Z^{0}\left(\alpha_{1}\right), \tag{25}\\
\left.z_{x_{j}}(x)\right|_{x=X^{0}\left(\alpha_{1}\right)} & =P_{j}^{0}\left(\alpha_{1}\right), j=1,2,
\end{align*}\right.
$$

where $X^{0}\left(\alpha_{1}\right) \equiv\left(X_{1}^{0}\left(\alpha_{1}\right), X_{2}^{0}\left(\alpha_{1}\right)\right)$.
We assume that the Cauchy problem (22), (25) is not charateristic, i.e.

$$
\begin{gather*}
C\left(X_{1}^{0^{\prime}}\left(\alpha_{1}\right)\right)^{2}+A\left(X_{2}^{0^{\prime}}\left(\alpha_{1}\right)\right)^{2}-B X_{1}^{0^{\prime}}\left(\alpha_{1}\right) X_{2}^{0^{\prime}}\left(\alpha_{1}\right)+ \\
\left(X_{1}^{0^{\prime}}\left(\alpha_{1}\right) P_{1}^{0^{\prime}}\left(\alpha_{1}\right)+X_{2}^{0^{\prime}}\left(\alpha_{1}\right) P_{2}^{0^{\prime}}\left(\alpha_{1}\right)\right) \neq 0, \tag{26}
\end{gather*}
$$

where the coefficients A, B, C are calculated at $\left(X_{1}^{0}\left(\alpha_{1}\right), X_{2}^{0}\left(\alpha_{1}\right), Z^{0}\left(\alpha_{1}\right), P_{1}^{0}\left(\alpha_{1}\right)\right.$, $\left.P_{2}^{0}\left(\alpha_{1}\right)\right)$.

Theorem 7.

```
    ( ) ( )
) ffi A,B,C,E z;
```

$$
\begin{align*}
& \text {) } \Delta \geq 0 ; \\
& \text {) } \\
& \left|\frac{D\left(C, \lambda_{1}\right)}{D\left(p_{1}, p_{2}\right)}\right|\left(X_{1}^{0}\left(\alpha_{1}\right)\right)^{2}+\left|\frac{D\left(\lambda_{2}, A\right)}{D\left(p_{1}, p_{2}\right)}\right|\left(X_{2}^{0}\left(\alpha_{1}\right)\right)^{2}+ \\
& {\left[\left|\frac{D(C, A)}{D\left(p_{1}, p_{2}\right)}\right|+\left|\frac{D\left(\lambda_{2}, \lambda_{1}\right)}{D\left(p_{1}, p_{2}\right)}\right|\right] X_{1}^{0}\left(\alpha_{1}\right) X_{2}^{0}\left(\alpha_{1}\right)+} \\
& +\left(\frac{\partial C}{\partial p_{1}}+\frac{\partial \lambda_{1}}{\partial p_{2}}\right) X_{1}^{0}\left(\alpha_{1}\right)+\left(\frac{\partial \lambda_{2}}{\partial p_{1}}+\frac{\partial A}{\partial p_{2}}\right) X_{2}^{0}\left(\alpha_{1}\right)+1 \neq 0, \tag{27}\\
& A, C, \lambda_{1}, \lambda_{2} \\
& \left(X_{1}^{0}\left(\alpha_{1}\right), X_{2}^{0}\left(\alpha_{1}\right),\right. \\
& \left.Z^{0}\left(\alpha_{1}\right), P_{1}^{0}\left(\alpha_{1}\right) ; P_{2}^{0}\left(\alpha_{1}\right)\right) ; \\
& \text {) } \\
& A(x, z, p), C(x, z, p), \lambda_{1}(x, z, p), \lambda_{2}(x, z, p) \\
& f \\
& \left\{\begin{array}{l}
\frac{\partial \varphi}{\partial x_{1}}-C \frac{\partial \varphi}{\partial p_{1}}-\lambda_{1} \frac{\partial \varphi}{\partial p_{2}}=0, \\
\frac{\partial \varphi}{\partial x_{2}}-\lambda_{2} \frac{\partial \varphi}{\partial p_{1}}-A \frac{\partial \varphi}{\partial p_{2}}=0 .
\end{array}\right. \tag{28}\\
& \text { () () }
\end{align*}
$$

The Monge-Ampère equations, satisfying conditions 1) - 4) of Theorem 7 are said to be weakly hyperbolic ones.

Exemples.

1) ([5], [10]) The coeffiients A, B, C, E are constants with $\Delta \geq 0$. It is easy to see that all the assumptions of the Therem 7 are satisfied.
2) Suppose $v(y, t)$ is a solution of the Burger equation

$$
\begin{equation*}
v_{t}+v v_{y}=0, \tag{29}
\end{equation*}
$$

which satisfies the following condition
$v_{y}\left(P_{1}^{0}\left(\alpha_{1}\right)-P_{2}^{0}\left(\alpha_{1}\right), X_{1}^{0}\left(\alpha_{1}\right)+X_{2}^{0}\left(\alpha_{1}\right)\right)\left(X_{1}^{0}\left(\alpha_{1}\right)+X_{2}^{0}\left(\alpha_{1}\right)\right)+1 \neq 0$.

Then the Monge-Ampère equation

$$
r t-s^{2}+v^{2}\left(z_{x_{1}}-z_{x_{2}}, x_{1}+x_{2}\right)=0
$$

with $A=B=C=0, E=-v^{2}\left(z_{x_{1}}-z_{x_{2}}, x_{1}+x_{2}\right), \Delta=4 v^{2}\left(p_{1}-\right.$ $\left.p_{2}, x_{1}+x_{2}\right), \lambda_{1}=-\lambda_{2}=v\left(p_{1}-p_{2}, x_{1}+x_{2}\right)$ satisfies all conditions of the Theorem 7 .
3) Suppose $v(y, t), w(y, t)$ are some solutions of the equation (29) that satisfy the condition:

$$
\begin{gather*}
v_{y}\left(-P_{1}^{0}\left(\alpha_{1}\right), X_{1}^{0}\left(\alpha_{1}\right)\right) w_{y}\left(-P_{2}^{0}\left(\alpha_{1}\right), X_{2}^{0}\left(\alpha_{1}\right)\right) X_{1}^{0}\left(\alpha_{1}\right) X_{2}^{0}\left(\alpha_{1}\right)- \\
v_{y}\left(-P_{1}^{0}\left(\alpha_{1}\right), X_{1}^{0}\left(\alpha_{1}\right)\right) X_{1}^{0}\left(\alpha_{1}\right)-w_{y}\left(-P_{2}^{0}\left(\alpha_{1}\right), X_{2}^{0}\left(\alpha_{1}\right)\right) X_{2}^{0}\left(\alpha_{1}\right)+1 \neq 0 . \tag{27"}
\end{gather*}
$$

Then the equation
$w\left(-z_{x_{2}}, x_{2}\right) r+v\left(-z_{x_{1}}, x_{1}\right) t+\left(r t-s^{2}\right)-v\left(-z_{x_{1}}, x_{1}\right) w\left(-z_{x_{2}}, x_{2}\right)=0$
with $A=w\left(-p_{2}, x_{2}\right), B=0, C=v\left(-p_{1}, x_{1}\right), E=v\left(-p_{1}, x_{1}\right) w\left(-p_{2}, x_{2}\right), \Delta=\equiv$ $0, \lambda_{1}=\lambda_{2}=0$ satisfies all conditions of the Theorem 7 .

References

[1] G. Darboux, Leçons sur la théorie générale des surfaces, tome 3, GauthierVillars, Paris, 1894.
[2] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre, tome 1, Hermann, Paris, 1896.
[3] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris, 1932.
[4] H. T. Ngoan and N. T. Nga, On the Cauchy problem for hyperbolic MongeAmpère equations, in Proceedings of the Conference on Partial Differential Equations and their Applications, Hanoi, December 27-29, 1999, pp. 77-91.
[5] M. Tsuji, Formation of singularities for Monge-Ampère equations, Bull. Sci. Math., (1995), 433-457.
[6] M. Tsuji and H. T. Ngoan, Integration of hyperbolic Monge-Ampère equations, in Proceedings of the Fifth Vietnamese Mathematical Conference, Hanoi, 1997, pp. 205-212.
[7] M. Tsuji and N. D. Thai Son, Geometric solutions of nonlinear second order hyperbolic equations, Acta Math. Viet., 27:1 (2002), 97-117. .
[8] Ha Tien Ngoan and Nguyen Thi Nga, On the Cauchy problem for multidimesional Monge-Ampère equations, to appear in Acta Mathematica Vietnamica.
[9] B. L. Rodgestvenski, N. N. Yanenko, Quasilinear hyperbolic systems, Nauka, Moscow, 1978.
[10] D. V. Tunitski, Multivalue solutions of hyperbolic Monge-Ampère equations, Differentialnye Uravnenia, t.29, $N^{0} 12$, (1993), pp. 2178-2189.

