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ON THE POLYCONVOLUTION FOR THE FOURIER, FOURIER
SINE AND FOURIER COSINE TRANSFORMS

NGUYEN XUAN THAO AND NGUYEN DUC HAU

ABSTRACT. A polyconvolution for the Fourier, Fourier sine and Fourier cosine
integral transforms is introduced, its properties and applications to integral equa-
tions and systems of integral equations are considered.

1. INTRODUCTION

In 1941, R.V. Churchill introduced the convolution for the Fourier sine and Fourier
cosine transforms (see [3])

1) (fr0) @ === [ FG)lalle = s) — glo -+l dy >0
0

which satisfies the factorization equality

(1:2) Fs (£19) W) = (Fsf) W) (Fog) (v), ¥y > 0.

Note that (1.2) contains two integral transforms: Fourier sine and Fourier co-
sine. This is quite different from previous convolutions such as Fourier convolu-
tion, Laplace convolution, Mellin convolution, Fourier cosine convolution (see [19]),
Fourier sine convolution, Hilbert convolution and Hankel convolution (see [4]). In
the factorization equalities of these convolutions only one integral transform is in-
volved. For example, the convolution of the functions f and g for the Fourier integral
transforms is (see [19])

(1.3) (fj;g) (z) = % / fl@z=y)gly)dy, z € R

which satisfies the following property

(1.4) F(fx9) W) = (FF) W) (Fo) v), Yy € R

The convolution of two functions f and g for the Laplace integral transform has the
form (see [19])
(1.5 (119) @) = [ 1o =iy, = >0

0

Key words and phrases. Polyconvolution, Fourier, Fourier sine and cosine transforms, integral
equations.
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NGUYEN XUAN THAO AND NGUYEN DUC HAU
and the factorization property holds
(1.6) L (f*Lg> () = (Lf) (v) (Lg) (y), Yy € C.

The convolution of two functions f and ¢ for the Fourier cosine integral transforms
is given by the integral (see [19])

0 (1re)@=—= [1@le-w)+oG+ilds v>0

which satisfies
19 Fe (£ £.9) ) = (Fe) ) (Fea) ). o > 0.

The convolution with the weight-function +;(z) = sinz for the Fourier sine integral
transforms is defined as follows (see [4, 10])

(1E9)@) = 57= [ 1@ lsiene+y=Dolle+y=1) —sla+y+ 1+
0

(1.9)  +sign(z —y — Dg(lz —y — 1]) —sign(z —y + L)g(jz —y + 1|)]dy, 2> 0

with
(1.10) Fe (1.0) ) = siny (Ff) ) (Fs9) 0), V>0

Afterwards, S.B. Yakubovich and co-authors published a series of papers devoted
to the generalized convolutions of several index integral transforms, such as integral
transforms of Mellin type (see [21]), integral transforms of Kontorovich-Lebedev
type (see [22]) and the G transforms (see [18]).

In 1998, V.A. Kakichev and Nguyen Xuan Thao proposed a constructive method of
defining the generalized convolution for any integral transforms K, K, and K3 with
the weight-function «y (z) of functions f and g, for which we have the factorization
property (see [6])

1 (£49) (9) =7 (v) (o) (4) (Kag) ().

Subsequently, there have been some papers published on the generalized convo-
lution for the Stieltjes, Hilbert and Fourier cosine-sine transforms (see [8]), the
H-transforms (see [7]), the I-transforms (see [16]), the Fourier, Fourier cosine and
sine transforms (see [14]), the Fourier cosine and sine transforms (see [11]) and the
Kontorovich-Lebedev, Fourier sine and cosine transforms (see [17])... For example,
the generalized convolution for the Fourier cosine and Fourier sine has been defined
(see [11]) by the formula

(111)  (f19) @) = = [ 70 ign v —a)g o = vl) + 9(o + 1)y, >0
0
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POLYCONVOLUTION FOR THE FOURIER, FOURIER SINE AND COSINE

which satisfies the factorization equality

(1.12) Fo (£19) () = (Fsf) () (Fsg) (v), ¥y > 0.

The convolution with the weight-function y2(z) = cosz for the Fourier cosine inte-
gral transform is defined as (see [13])

(fgg)u»=5§§;Jf@nmm+y—1n+ax+y+n+

(1.13) +g(le =y~ 1)) +g(lz —y +1[)]dy, >0

which satisfies
(119 Fo (1 £.9) ) = cosy(Fe ) Fea) 1), V> 0.

The generalized convolution with the weigth-function v (x) = sinz for the Fourier
cosine and sine transforms has the form (see [12])

(F¥9) @ = 57= [ 1Wlalr+y—1) = gle+y+1)-

(1.15) ~g(lz =y = 1)) +g(je —y + 1)]dy, = >0
and the factorization property holds
(1.16) Fo (1% 9) (w) = siny(Fs)(w)(Fog)(v), ¥y > 0.

The generalized convolution with a weight-function v (z) = sinz for the Fourier
sine and Fourier cosine transforms of the functions f and g is defined by (see [15])

T 1 bl
fxg)(z)= f@g(lz+y = 1) = glz +y + 1)+
( _) 2¢§F!
(1.17) +9(lz —y — 1)) = g(lz —y + 1] dy, >0
which satisfies the factorization property
(1.18) Fs (% 9) (v) = siny(Fo ) () (Fog)(v), ¥y > 0.

In 1997, V.A. Kakichev proposed a constructive method of defining the polyconvo-
lution for n+1 integral transforms K, Ky, Ko, ..., K, with the weight-function v(z)
of functions fi, fa,..., fn for which we have the factorization property (see [5])

K [* (fl» fQ: fn)] <y) =7 (y) (Klfl) (y) ( /QfQ) (y) (ann) (y)

The polyconvolution for the Hilbert, Stieltjes and Fourier cosine transforms was in-
troduced by Nguyen Xuan Thao in 1999 (see [9]).

In this paper we define the polyconvolution of the Fourier, Fourier sine and Fourier
cosine integral transforms, of which some properties are proved as well as some

— 569 —



NGUYEN XUAN THAO AND NGUYEN DUC HAU

relationships pointed out to several well-known convolutions and generalized convo-
lutions. We also show that it does not exist aliquot of zero. Finally, we apply this
notion for solving some integral equations and systems of integral equations.

2. POLYCONVOLUTION FOR THE FOURIER, FOURIER SINE AND FOURIER
COSINE TRANSFORMS

Definition 2.1. Polyconvolution for the Fourier, Fourter sine and Fourier cosine
integral transforms with the weight-function y(z) = e™® of the functions f, g and h
is defined by

+00 +00 +00
(21)  Hfoh@) =5 / / / 0z, u, v, w) (1) g(v)h(w)dudvdw, = > 0
"% 0 0
where
Q(xuvw)z-—-—[, w+1 o w1
T w2 liu+ 12+ (z+v—w)? (iu+1)?+ (z+v+w)?
w41 w+1
+(iu—{—1)2+(z—~v—w)2 B (iu+1)2+($—v+w)2}

Theorem 2.1. Let f be a function in L(R), g and h be the functions in L(R..), then
the polyconvolution (2.1) for the Fourier, Fourier sine and Fourier cosine transforms
with the weight-function v(x) = e™® of the functions f, g and h has a meaning and
belongs to L{R,) and the factorization property holds

(2.2) Fs[#(f,9.1)] () = e (Ff)(y)(Feg)(y)(Fsh)(y), Yy > 0

Proof. We first prove that l( f+9,h)(z) has a meaning and belongs to L(Ry). We
observe that Ve, ¢ € C:

1 1 Co
2 — — .
et eal 2 gl + b [+
from which
1 1)
G+ 1)+ (@ +v—w)? > 5 [lGu+ D)+ @+v-w '(Zjil +1
1
—2~[1+u + (z +v —w)?|
thus
’ iu+ 1 ] < 2v/1 4 u? 5
(u+1)2+(z+v—w)?l " 1+u2+(z+v—w)?
similarly
w41 2V 1+ u?

o

’(z’u+1)2+($——v+w)21 S 1+ u?+ (2 — v+ w)?

w+1 2v1 +u?

<
}(z’u+1)2+(az+v+w)2] S 14w+ (24 v+ w)?
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and
u+1 21+ u? <o

‘(z’u+1)9+(:§—v—w)2]\ T+w?+(z—v—w)?

we obtain
+00 400 400

*(f.9, h)(:r < // /If )g(v)h(w)|dudvdw
=5 / £ / j9(w)ldv / Ih(w)ldw < +o0
J, J J

On the other hand,
+00 +00 o0 +00

//// 41 +‘ -+ 1 o
(lu+ 12+ (z+v—w)? (iu+1)2+ (z —v+w)?
x| f(uw)g(v)h(w)|dzdudvdw <
+00 +0o0 +00 +00
//// V1+u? 4 2V 1+ u?
1-I—u~ +z+v—w)? 14+ (xz—v+w)?
0 —cc 0 0
<1 £(u)g(v)h(w) | drdudvd
we have
+oo
/ 21 + u? 2V1 +u? dr —
J |1+ +(z+v—w)? 1+u+(z—v+w)?
0
= (arctanx—FU_W+arcta11x_v+w>+m—‘77r
T VT2 U VI+u? Ja=0
thus
400 +00 +00 +00
A+ 1 -+ 1 } y

](iu+1)2+(m+v—w)21+}(iu+l)2+($—v+w)2

x| f(uw)g(v)h(w)|dzdudvdw <
<2W/ / / |f(w)g(v)h(w)|dedudvdw < +o0

- 0 0
Similarly, we get

+00 +0 +00 +00

////{ u+ 1) wgsl-mw)?“}(WH)QZ:«LE.W_W@X

x| f(u)g(v)h(w)|dedudvdw < +00

Therefore, we have l( f,9,h)(z) € L(R;). We now prove that the polyconvolution
(2.1) satisfies the factorization equality (2.2). Indeed,

e (Ff)(y)(Fog)(y)(Fsh)(y) =
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+00 400 +00

7(_5% / / /Sm(wy)COS(vy)e_(i““)yf(u)g(v)h(w)dudvdw

oo 0O 0

400 00 +00

1 _4 O/ O/[sin(w + v)y + sin(w — UMeu(i"“)yf(u)g(v)h(w)dudvdw

T 2T

On the other hand, applying formula 2.2.16, p.65, V.1 in [2] we obtain

sin(w + v)yle” ™Y + sin[(w — v)yle Y =

+oco

,__/{ iu+1 B iu+1 } in(ey)dat
oo (fu+12+(w+v—2)2  (fu+1)?+ (w+v+2)? Smiryjar

[y

+00

1/[ i+ 1 i+ 1 } in(zy)dz
o —_ ST
7 ) Gur 1P+ (w—v—22 (utlP+w—ov+z)2 Y

0

it follows that
eV (F ) ) (Feg)(y)(Fsh)(y) = \/g / (f, 9, h) () sin(xy)de

= FS[;(fa g, h)} (y)
The proof is complete. ]

Theorem 2.2 (Titchmarsch-type Theorem). Let f be a function in L(e™®,R), ¢

and h be the functions in L(e*,Ry). Ifl(f,g,h) =0 then either f=0o0rg=0 or
h=0.

Proof. We apply the Fourier sine transform to both sides of l( frg,h) =0, an appli-
cation of Theorem 2.1 yields

eV (Ff)(y)(Feg)(y)(Fsh)(y) =0, Yy >0

therefore

(2.3) (FN) @) (Feg)y)(Fsh)(y) =0, vy >0

As (Ff)(y), (Feg)(y) and (Fsh)(y) are analytic, from (2.3) it may be concluded
that Ff =0or Fsg=0or Feh=0andso f=0org=00or h=0. 0

Theorem 2.3. Let f be a function in L(R), g and h be the functions in L(Ry). The
polyconvolution for the Fourier, Fourier sine and Fourier cosine integral transforms
relates to the known convolutions as follows

-+00

8) ¥(f, g, () = 2 [ {[k(u,v) 2 9(10])](w)

—Cc0

[signwh(juw)] } () f(u)du

*
£

b) 150, h)@) = 2 | () (ko) 5 o)) (@) @) (w)da

e
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¢) H(f,g,h)(z) = 1 f () s B, ) (0 2 9(0)) (@) ()
here,
41

)= e e

Proof. We have

+00 400

1 w41
/ / Zu -+ 1 (x 4 — )2 (zu 4 1)2 + (IE - w)z]g(v)h(w)dvdw =

—0o0

_ / wyiw | <m+1>2i—f@ {v_u,)zguvl)d(—m

0

+o0

i i+ 1
+ O/ h(w)dw/ Gut 12+ (2= _w)QQ(M)dU =

0

+00 +00

U+ 1
= /h(w)dw/ (w+1)2+($_v_w)gg(ivi)dv

0 —o0

- / [k, ) % 9([0])] (2 — w)h(w)du
Q

Similarly, we get

+00 +00

w+1 tu+ 1
/ / ZU+1 CL+'U+UJ) (zu+1)2—i—(a:—v+w)2}g(v)h(w)dvdw‘

- Var / [k(us, ) 2 (o) (2 + w)h ()
0

- Vi / k(1. 2) . g((o])] (= — w)signuh(fuw])du

it follows that

Mm@ = == [ [ o) polloh] o - wisignwh(u)fwdude
1 +o00

= - / { [k, 0) £ 9(0])] (w) % [signwn(w])] }a)f (u)du

™
—00
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The equality a) is proved. On the other hand

T iu+1 iu+1
o/ (s e A e ey e

= v2r (k(u,v) Fs;g(v))(ll‘ —wl)

and
“+o0

Al du+ 1
0/ [(iu+1)2+(fv+v+w>2 + (w+1>2+($_v+w)2]g(v)dv:

= VB (k(w,0) £ 9(0)) (@ + )

#(f,9,h)(z) =
== / fu)du / [(km,v) £ 9(0)) (|2 —w]) = (k. v) x g<v>)<:c+w>]h<w>dw

_1 / (B (k(w,v) g 90)) () @) (Wdu

T
—00

The equality b) is proved. In the same maner we can obtain the equality c).
The proof is complete. [

Theorem 2.4. Let f and @ be the functions in L(R), g, h, k and ¢ be the functions
in L{Ry). The polyconvolution for the Fourter, Fourier sine and Fourier cosine in-

tegral transforms is neither commutative nor associative, and the following formulas
holds

a) (f ga*(§077// h)"*(<ﬁ¢ (f g, ))
b) * (f,9. (hx k) = % (£.k, (hx))

¥*-2

9L 0F00 =116 F 0. -0 )
)+ (f.0.(h5R) =5 (L k(5 9)

Proof. The proof follows easily from formulas (1.2), (1.8), (1.10), (1.12), (1.16),
(1.18) and (2.2). For example, we have

Fs| % (f,9,%(p %, )| = 1*F fFogFieFou Fsh

—Fs[ (0,0, %(f, 9, h))}
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Therefore, * (f.9, (0,0, h)) = i’ (.2, £, 9, h)), and formula a) is proved. By the
same way, one can verify the other parts, too. 0

3. APPLICATIONS TO INTEGRAL EQUATIONS AND SYSTEMS OF INTEGRAL

BQUATIONS
Let

B3z = <= (e =) = f(a + )]

62z, ) = 2\}2:‘ [sign(z +u — 1) f(Jz +u— 1) — fle+u+ 1)+

+sign(z —u—1)f(jJz —u— 1]) — sign(z — v + 1) f(|z —u+1])]

03 (z,u) = -—%“ [sign(u — z) f(lz —ul) + f(z +u)]

e

0N

03, = 5= [Flla+u= 1) = e +us 1) = flle=u=1) + flle = u-+ 1)]

Theorem 3.1. Consider the system of integral equations

+00 +00 +00

f(w)+/\1///H(x,u,v,w)ga(u)lb(v)g(w)dudvdw=ql(:v)
(3.1) e 00

+oo

/ {/\29;1 (z,u)+ /\3932(13,&) + Aﬁ;@;g(m,u)]f(u)du +g(z) = g2(z), >0
0

where 1 = (& §§2)’ w2 = (& T€4)7 w3 = (& %ﬁs); ©, P, &1, &2, &3, &4, &5, 6, 1 and
g are the functions of L (R1), A1, Ao, A3 and Ay are the complex constants, f and
g are the unknown functions. With the condition

1— M Fed(z) # 0,9z > 0

here ¢ = X (*(i2,1, &) 5 &) + ha (%0, 0, &) ¥ &) + M (F(0, 9, &) ¥ &)
there exists a solution in L (Ry) of (3.1) which is defined by

F=a+ (a0) = Mo, 0] = 0 [ Ko, 0) 1] € L(RY)

71

9= g = dalq 1) - )\3(611:’!‘1 ©2) — Al §(§6§Q1))+
S

Hapxl) = X((@ax 1) #1) — Xs((a ¥ o) 1) — A4(§5§(§6 xq1) %) € L(Ry)
1 17 Fs 1 2 0o
with | € L(R4) and is defined by

MEod
Fol = — 22
TN Feo
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Proof. Applying the Fourier sine transform to the both sides of the equations of the
system (3.1) and using (1.1), (1.2), (1.9), (1.10), (1.17), (1.18), (1.11), (1.12) and
Theorem 2.1, we obtain the linear system

Fsf +Mv(Fo)(Fep)(Fsg) = Fsqi
[Xe(Fs&1)(Fsé&a) + Aan (Fs€s) (Foéa) + M (Feds) (Fsés)| Fsf + Fsg = Fsgo

We have

A =

1 M%F@@MM‘
A2(Fs€1)(Fs&a) + Mam1(Fs&s)(Febs) + A (Feds)(Fsés) 1

=1-\NF¢ {/\z(l(éﬁawafl) §§2) + /\3(1(%%53)?5@ + /\4(1(4/9-,?/),55)%156)]
— 1=\ Fud

so that . MEed
1_,, MFed
A T T TN Fod

Furthermore, we get

F MY FoMFeo
Fig; 1/( 9?)( cw) =FSQI‘>\1FS[;((P-,¢?(]2)].

5=

Moreover
A — 1 FSQI
g Ao (Fs&1)(Fséa) + Asvi(Fs&s)(Feéa) + A (Feés)(Fsés) Fsqo

= Fsqa — M Fs(q * ¢1) — A3 Fs(q ;3{ ©2) — MFs(és 7*21(56 % @)

Due to Wiener-Levi’s theorem (see [1]), there exists a function [ € L (R,.) such that
MEFcd

Fol = —217¢%
T I NFEod

Hence
Fsf = (1+ Fel) {Fsm - /\1FS[;(<P>¢> 42)]}

— Fsqu + Fs (a1+1) = M Fs[¥(e,%, )] - W Fs | 4,9, 2) 1]
and consequently
f=a+ (Ch * l) - M[l(ﬁﬁﬂ/fﬂh)] — A [1(%?%(}2) Tl} € L(Ry)
Similarly, we show that

Fsg = (1+ Fol) [Fsga = MaFs(gu 1) = MaFs(a: ¥ 02) = MFs(6 % (6 5 )]
= Fsq2 — M Fs(q % ¢1) — /\BFS(C_h;’<1 ®2) — >\4FS(§52§(§G’§‘11))+
5 2

—’rFS(QQTl) — X Fs((q1 TWl) * 1) — Ang((%}fl ©2) * 1) - A4FS(§5§(€6§QI) x )
S
namely,
9= 0= dlate) - /\3(q1:>§1 Pa) — /\4(€5§(§6§Q1))+
8
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+(qQTl)-/\2((q1>;sol)j<l) As (@ F* 2) 1) = (& A%(fﬁ*Ql)*l)EL(RvL)

d

Theorem 3.2. Consider the system of integral equations
+00 400 +00

z) + M / / /H(x,u,v)w)ga(u)z/)(w)g(v)dudvdw: n(z)

/ [A2b2, (2, u) + X305, (z, u) + Mab2, (z,w)] f(u)du + g(z) = ga2(z), >0
0

where ¢, = (& *52)~ (53 i3 54), @3 = 5 % (56 * &), ¥, & &, &, &, &5, &,

&, q1 and go are the functzons of L{Ry), /\1 /\2, A3, A and As are the complex
constants, f and g are the unknown functions. With the condition

1—MFog(z) # 0,z > 0

here ¢ = /\2(;(% £a,0) % 51) + /\3( (@,€3,9) 1§4) + M (57;{ (3‘(99’ &6, 1) *2‘55)>
there exists a solution in L (Ry) of (3.2) which is defined by

f=a+ (cn =1=<l> M[*(, g0, 9)] = M [l(% Q%@b)"fl} € L(Ry)
9= - X((n ;‘fl) iy &) = x3((& Zg ) % q))—
M6 F &) p (E3a)) + (@ p D= doFe(((@3) 2 &) 2 1)~

—/\3[((53%1 &) ’5(21)) i 1] = xa[((& I}Z &) Fi;(és x Q) 3 l] € L(Ry)
with | € L(R,) and is defined by
MFoo

| = el
Fel =123 Fog

Proof. Taking the Fourier sine transform of the both sides of the first equation, the
Fourier cosine transform of the both sides of the second equation and according to
(1.11), (1.12), (1.15), (1.16), (1.7), (1.8), (1.13), (1.14) and Theorem 2.1, we give
the linear system

Fsf 4+ Mv(Fo)(Fs¥)(Feg) = Fsq
[No(Fs&1)(Foba) + Asmi(Fobs)(Foba) + Mava(Fsés) (Fobs) (Fosq)| Fsf + Fog = Foga.
We get

A 1 MY (F)(Fsv) ’

Ao (Fs&1)(Foba) + Aam (Fols) (Foba) + Mva(Fsés ) (Foss) (Foér) 1

=1- >\1Fc{/\2(1(997§2,l/)) "551) + /\3(;(90:53;10)1‘1154) + A4 (57}2 (z(%ﬁs,ﬂ)) ?;50))}
=1—=XNFpo
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which is
1 MFcd
o=y Cr
N W
On the other hand

Fsqi M~y(Fo)(F 7
Af”" ch:g; i [’i)( sv) = Fsq1 — M Fs[*(¢0, g2, )]

and

1 Fsq

By = ‘ Aa(Fs&1)(Foba) + A (Fods) (Foéa) + Mave(Feér)(Fee)(Fsés) Foae

= Fogs — Mo Fe((@ “551) % &) — MaFo((& ¥ &) xq1)) — MFo((& ¥ &) * (& %q1))
Fe 2 2 2
By the Wiener-Levi theorem (see [1]), there exists a function ! € L (Ry) such that

MFco

Fol = il |
ST I N e

This implies that
Fof = (1+ Fol) { Fsa = M FslHp,02,)]}
= Fsq1 + Fs <Q1 f;l) ~ M Fs[¥(p, g2, %)) — M Fs [‘1(% 92, %) % l]

thus

f=ar+ (031) = e )] - M [He @) £ 1] € LR

Likewise, we obtain

Feg= (1+ Fcl) [FCQQ = XFe((@ ’551) d &)—
—/\3FC((§37§§4) % @) - >\4FG((57Z’FZ€6) I;’f‘c(fs’;%))} =
= Fogs — MFe((a ;51) iy &) — >\3Fc((§3%1§4) Z‘%))“
->\4FC((57:>1§§6) Fi’z({sgfh)) + Fel(ge ;Cl) - /\2F0<((CJ1 ”;51);252) ks l)““

=X Fe[((& 72*1 &) ij%)) ks 1] — MFe[((& 1}:: EG)F*C(SS 2*(21)) ks 1.
Therefore,
g=q¢—X((n §§1) F*sz) - As((ﬁa%@)j‘h))‘

(& % &) ;;(‘55 : @) + (a2 a ) — )\QFC(((QM ’551) ks &) = l>—~

Fe

T

¥ &4) ;Hh)) ijc 1 =X [((&

Y2

—/\3[((53 éfﬁ)é(ﬁs?%)) Fi;l] € L(Ry).
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