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ON THE POLYCONVOLUTION FOR THE FOURIER, FOURIER 
SINE AND FOURIER COSINE TRANSFORMS 

NGUYEN XUAN THAO AND NGUYEN Due HAU 

ABSTRACT. A polyconvolution for the Fourier, Fourier sine and Fourier cosine 
integral transforms is introduced, its properties and applications to integral equa­
tions and systems of integral equations are considered. 

1. INTRODUCTION 

In 1941, R.V. Churchill introduced the convolution for the Fourier sine and Fourier 
cosine transforms (see [3]) 

+00 

(1.1) (f * g) (x) = ~ j f(y) [g (Ix - yl) g(x + y)] dy, x> 0 
1 V 21f 

o 
which satisfies the factorization equality 

(1.2) Fs (i i g) (y) = (FsI) (y) (Feg) (y), Vy> O. 

Note that (1.2) contains two integral transforms: Fourier sine and Fourier co­
sine. This is quite different from previous convolutions such as Fourier convolu­
tion, Laplace convolution, Mellin convolution, Fourier cosine convolution (see [19]), 
Fourier sine convolution, Hilbert convolution and Hankel convolution (see [4]). In 
the factorization equalities of these convolutions only one integral transform is in­
volved. For example, the convolution of the functions f and 9 for the Fourier integral 
transforms is (see [19]) 

+00 

(1.3) 1 j' (i;g) (x) = y27f f(x - y)g(y)dy, x E IR 
-00 

which satisfies the following property 

(1.4) F (i;g) (y) = (FI) (y) (Fg) (y), Vy E R 

The convolution of two functions f and 9 for the Laplace integral transform has the 
form (see [19]) 

x 

(1.5) (irg) (x) = jf(X-Y)9(Y)dY, x>O 
o 

Key words and phrases. Polyconvolution, Fourier, Fourier sine and cosine transforms, integral 
equations. 
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and the factorization property holds 

(1.6) L (Jig) (y) (Lf) (y) (Lg) (y), Vy E C 

The convolution of two functions f and 9 for the Fourier cosine integral transforms 
is given by the integral (see [19]) 

+00 

(1.7) (f ;cg) (x) = ~ J f(y)[g(lx-yl)+g(x+y)]dy, x>O 
o 

which satisfies 

(1.8) Fe (f ;c g) (y) = (Fef) (y) (Feg) (y), Vy > O. 

The convolution with the weight-function!l (x) = sin x for the Fourier sine integral 
transforms is defined as follows (see [4, 10]) 

+00 J f(y) [sign(x + y - l)g(lx + y - 11) - g(x + y + 1)+ 

o 

(1.9) +sign(x - y - l)g(lx - y - 11) sign(x - y + l)g(lx - y + 11)]dy, x> 0 

with 

(1.10) Fs (f ~ g) (y) = siny (Fsf) (y) (Fsg) (y), Vy > O. 

Afterwards, S.B. Yakubovich and co-authors published a series of papers devoted 
to the generalized convolutions of several index integral transforms, such as integral 
transforms of Mellin type (see [21]), integral transforms of Kontorovich-Lebedev 
type (see [22]) and the G transforms (see [18]). 
In 1998, V.A. Kakichev and Nguyen Xuan Thao proposed a constructive method of 
defining the generalized convolution for any integral transforms K 1 , K2 and K3 with 
the weight-function! (x) of functions f and g, for which we have the factorization 
property (see [6]) 

Subsequently, there have been some papers published on the generalized convo­
lution for the Stieltjes, Hilbert and Fourier cosine-sine transforms (see [8]), the 
H-transforms (see [7]), the I-transforms (see [16]), the Fourier, Fourier cosine and 
sine transforms (see [14]), the Fourier cosine and sine transforms (see [11]) and the 
Kontorovich-Lebedev, Fourier sine and cosine transforms (see [17]) ... For example, 
the generalized convolution for the Fourier cosine and Fourier sine has been defined 
(see [11]) by the formula 

+00 

(1.11) (J ~ g) (x) = ~ J f(y) [sign (y - x) 9 (Ix - yl) + g(x + y)]dy, x> 0 

o 
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which satisfies the factorization equality 

(1.12) Fe (f ~ g) (y) = (Fsf) (y) (Fsg) (y), Vy> O. 

The convolution with the weight-function ~f2(X) = cosx for the Fourier cosine inte­
gral transform is defined as (see [13]) 

( 

12 ) 1 J+OO f*g (x)= /CL f(y)[g(lx+y-ll)+g(x+y+l)+ 
Fc 2v 27f 

o 

(1.13) +g(lx-y-ll)+g(lx-y+ll)]dy, x>O 

which satisfies 

(1.14) Fe (f l g) (y) cosy(Fcf)(y)(Fcg) (y), Vy> O. 

The generalized convolution with the weigth-function ~fl (x) = sin x for the Fourier 
cosine and sine transforms has the form (see [12]) 

+00 

( 
11 ) f jg (x) = 

1 
J f(y) [g(lx + y - 11) - g(x + y + 1)-
o 

(1.15) -g(lx - y - 11) + g(lx - y + 11)]dy, x> 0 

and the factorization property holds 

(1.16) Fe (! r g) (y) = siny(Fsf)(y)(Fcg)(y), Vy> O. 

The generalized convolution with a weight-function rYl (x) = sin x for the Fourier 
sine and Fourier cosine transforms of the functions f and g is defined by (see [15]) 

+00 

( f'1 g)(x)= ~Jf(y)[g(lx+y-ll)-g(x+y+l)+ 
2 2v 27f 

o 

(1.17) +g(lx - y - 11) - g(lx - y + 11)]dy, X> 0 

which satisfies the factorization property 

(1.18) Fs ((~ g) (y) = siny(Fcf)(y)(FCg)(y), Vy> O. 

In 1997, V.A. Kakichev proposed a constructive method of defining the polyconvo­
lution for n+ 1 integral transforms K, Kl , K2 , ... , Kn with the weight-function J(x) 
of functions fl' 12, ... , fn for which we have the factorization property (see [5]) 

K [* (h, 12, ... , fn)] (y) = J (y) (Kdd (y) (K212) (y) ... (Knfn) (y). 

The polyconvolution for the Hilbert, Stieltjes and Fourier cosine transforms was in­
troduced by Nguyen Xuan Thao in 1999 (see [9]). 
In this paper we define the polyconvolution of the Fourier, Fourier sine and Fourier 
cosine integral transforms, of which some properties are proved as well as some 
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relationships pointed out to several well-known convolutions and generalized convo­
lutions. We also show that it does not exist aliquot of zero. Finally, we apply this 
notion for solving some integral equations and systems of integral equations. 

2. POLYCONVOLUTION FOR THE FOURIER, FOURIER SINE AND FOURIER 

COSINE TRANSFORMS 

Definition 2.1. Polyconvolution for the Fourier, Fourier sine and Fourier cosine 
integral transforms with the weight-function ,(x) = e-X of the fZLnctions f, 9 and h 
is defined by 

+00 +00 +00 

(2.1) J(f, g, h)(x) = 1 ./././ B(x, u, v, w)f(u)g(v)h(w)dudvdw, x> 0 

-00 0 0 

where 
1 [ iu + 1 

B(x,u,v,w) = ( )2 ( )2 iu+ 1 + x+v - w 

iu + 1 iu + 1 ] 
+(iu+l)2+(x V-W)2 - (iu+l)2+(x-v+w)2 

Theorem 2.1. Let f be a function in L(JR), 9 and h be the functions in L(JR+), then 
the polyconvolution (2.1) for the Fmlrier, Fourier sine and Fourier cosine transforms 
with the weight-fzLnction ~((x) = e-X of the functions f, 9 and h has a meaning and 
belongs to L(JR+) and the factorization property holds 

(2.2) Fs[J(f,g,h)](y) = e-Y(Ff)(y)(Fcg)(y)(Fsh)(y), Vy> 0 

f 
Proof. We first prove that *(f,g,h)(x) has a meaning and belongs to L(JR+). We 
observe that VCl, C2 E C: 

from which 

1 I (iu + 1)2 I I(iu + 1)2 + (x + v w)21 ~ 2" [I(iu + 1)21 + (x + v - W)2] I(iu + 1)21 + 1 

~ ~ [1 + u2 + (x + v - w)2] 

thus 

I 
iu + 1 I 2Vl + u2 

2 
~ ~ (iu+l)2+(x+v-w)2 1+u2+(x+v-w)2 

similarly 

I 
iu + 1 I 2V1 + u2 /' ? 

~ ""'~. (iu+l)2+(x v+w)2 1+u2+(x-v+w)2 , 

I 
iu + 1 I 2Vl + u2 2 

~ ~ 
(iu+l)2+(x+v+w)2 1+u2+(x+v+w)2 
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and 

1 

iu + 1 1 2-)1 + U 2 
') 

~ ~~ 
(iu+1)2+(x-v-w)2 1+u2+(x-V-W)2 

we obtain 
+00 +00 +00 

1 i(j, g, h)(X)1 ~ :2 J J J Jf(u)g(v)h(w)Jdudvdw 
-00 0 0 

+00 +00 +00 

= 4 J Jf(u)Jdu J Jg(v)Jdv J Jh(w)Jdw ~ +00 
-cc 0 0 

On the other hand, 

J
+ooJ+ooJ+ooJ+oo [I iu + 1 1 1 iu + 1 I] 

(iu+1)2+(x+v-w)2 + (iu+1)2+(x-v+w)2 X 
o -00 0 0 

x Jf(u)g(v)h(w)Jdxdudvdw ~ 

~ joojoojCCjCC[l + U22~ w)2 + 1 +u2 + (x _ v +W)2] x 
o -cc 0 0 

x Jf(u)g(v)h( w)Jdxdudvdw 
we have 

+jCC[ 2)1 + u2 2-)1 + u2 1 d ----::--,------;-::- + X -
'0 1+u2+(x+v-w)2 1+u2+(x-v+w)2 -

( 
x+v-w X-V+W)+OO 

= 2 arctan ~ + arctan ~ = 21f 
y 1 + u 2 y 1 + u2 x=O 

thus 

+CC +cc +00 +00 [ ] . iu + 1 iu + 1 
J J J j l(iU+1)2+(x+v-w)21+I(iu+1)2+(x-v+w)21 x 
o -00 0 0 

x Jf(u)g(v)h(w)Jdxdudvdw ~ 
+00 +00 +00 

~ 21f J J J Jf(u)g(v)h(w)Jdxdudvdw ~ +00 
-00 0 0 

Similarly, we get 

x Jf(u)g(v)h(w)Jdxdudvdw ~ +00 
Therefore, we have i(j, g, h)(x) E L(lR+). We now prove that the polyconvolution 
(2.1) satisfies the factorization equality (2.2). Indeed, 

e-Y(FJ)(y)(Fcg)(y)(Fsh)(y) = 
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+00 +00 +00 

= 7f~ J J J sin(wy) cos(vy)e-(iu+l)Y f(u)g(v)h(w)dudvdw 

-00 0 0 

+00 +00 +00 

7f~ J J J [sin(w + v)y + sin(w v)yje-(iU+l)Y f(u)g(v)h(w)dudvdw 

-00 0 0 

On the other hand, applying formula 2.2.16, p.65, V.1 in [2j we obtain 

sin[(w + v)yje-(iU+l)y + sin[(w - v)yje-(iU+1)Y = 

+00 

- - sm xy dx+ 1 J [ iu + 1 iu + 1 ] . 
7f (iu+1)2+(w+v-x)2 (iu+1)2+(w+v+x)2 () 

o 
+00 

+- - sin(xy)dx 1 J [ iu + 1 iu + 1 ] 
7f (iu+1)2+(w-v-x)2 (iu+1)2+(w-v+x)2 

o 
it follows that 

+00 

e-Y(F f)(y)(Feg)(y)(Fsh)(y) = ;g J ;(f, g, h)(x) sin(xy)dx 

o 

= Fs [1(f,g,h)](y) 

The proof is complete. o 
Theorem 2.2 (Titchmarsch-type Theorem). Let f be a function in L(e-x,lR), 9 

and h be the functions in L(ex,lR+). If1(f,g,h) = 0 then either f = 0 or 9 = 0 or 
h=O. 

Proof. We apply the Fourier sine transform to both sides of ;(f, g, h) = 0, an appli­
cation of Theorem 2.1 yields 

e-Y(Ff)(y)(Feg)(y)(Fsh)(y) = 0, Yy> 0 

therefore 

(2.3) (Ff)(y)(Feg)(y)(Fsh)(y) = 0, Yy > 0 

As (Ff)(y), (Feg)(y) and (Fsh)(y) are analytic, from (2.3) it may be concluded 
that F f = 0 or Fsg = 0 or Feh = 0 and so f = 0 or 9 = 0 or h = O. 0 

Theorem 2.3. Let f be a function in L(lR), 9 and h be the functions in L(lR+). The 
polyconvol1dion for the Fourier, Fourier sine and Fourier cosine integral transforms 
relates to the known convolutions as follows 

a) ;(f, g, h)(x) ~ ~r {[k(u, v) ~g(lvl)] (w) ~ [signwh(lwl)] }(x)f(u)du 
-00 

I +00 ( ) b) *(f,g,h)(x)=~ J h(w)i(k(u,v); g(v))(w) (x)f(u)du 
-00 c 
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I +00 ( ) C) *(f, g, h)(x) = ~ J (h(w) i k(u, W)) (V) :. g(V) (x)f(u)du 
-00 c 

here, 
iu + 1 

k(u,v) = C 1)2 ? zu+ + v~ 

Proof. We have 

+00 +00 

J j. [ iu + 1 iu + 1 
(iu+l)2+(x+v-w)2 + (iu+l)2+(x 

o 0 
v-w )

2]g(v)h(W)dvdw = 

+00 -00 

= J h(w)dw J C 1)2 iu t 1 )2 g(lvl)d( -v)+ zu+ + x-v-w 
o 0 

+00 +00 

+ J h(w)dw J C )? iu t 1 rg(lvl)dv = zu + 1 ~ + x v w-
o 0 

+00 +00 

= J h(w)dw J C )2 iu t 1 )2 g(lvl)dv zu+l + x-v-w 
o -00 

+00 

= V'ii J [k(u, v) }g(lvl)] (x - w)h(w)dw 
o 

Similarly, we get 

+00 +00 

J J [ iu + 1 iu + 1 ] ( )h( )d d 
(iU+l)2+(X+v+w)2+(iu+l)2+(X-V+w)2 gv w v w 

o 0 

+00 

= V'ii J [k(u, v) }g(lvl)] (x + w)h(w)dw 
o 

o 

= -V'ii J [k(u, v) }g(lvl)](x w)signwh(lwl)dw 
-00 

it follows that 
+00 +00 

1,(f, g, h)(x) = 1 J J [k(u, v) }g(lvl)] (x - w)signwh(lwl)f(u)dudw 
-co -00 

+00 

= ~ J {[k(u, v) }g(lvl)] (w)} [signwh(lwl)] }(x)f(u)du 
-00 
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The equality a) is proved. On the other hand 

and 

thus 

+00 

J [ iu + 1 iu + 1 ] d 
(iu+l)2+(x+v-w)2 + (iu+l)2+(x-v-w)2 g(v) v 

o 

= vI'ii(k(u, v) * g(v)) (Ix - wI) 
Fc 

+00 

..,-----:-:--.,------:-:: + 9 ( v) v = J [ iu + 1 iu + 1 ] d 
(iu+l)2+(x+v+w)2 (iu+l)2+(x-v+w)2 

o 

= vI'ii(k(u, v) * g(v))(x + w) 
Fc 

Ai 
*(f, g, h)(x) = 

+(X) +00 

= ~ J f(u)du J [(k(u, v) * g(v))(lx wi) - (k(u, v) * g(v))(x +w)] h(w)dw 
Tty 2Tt Fc Fc 

-00 0 
+00 

~ J (h(w) * (k(u,v) * g(v))(w)) (x)f(u)du 
Tt 1 Fc 

-00 

The equality b) is proved. In the same maner we can obtain the equality c). 
The proof is complete. 0 

Theorem 2.4. Let f and cp be the functions in L(lR), g, h, k and?/J be the functions 
in L(lR+). The polyconvolution for the Fourier, Fourier sine and Fourier cosine in­
tegral transforms is neither commutative nor associative, and the following formulas 
holds 

) I ( I( )) I ( I( )) a * /,g,* cp,?/J,h = * cp, ?/J, * f,g,h 

b) i(J,g,(h*k)) =i(J,k,(h*g)) 
1 1 

c) (i(f,g,h)*k) =i(J,(g * k),h) 
1 Fc 

d) i (J, (g ~ h), k) = i (J, (g ~ k), h) 

e) i(J,(g~rh),k) i(J,(krh),g) =i(J,h,(gA k)) 

f) i(J,g,(h~k)) =i(J,k,(h~g)) 

Proof. The proof follows easily from formulas (1.2), (1.8), (1.10), (1.12), (1.16), 
(1.18) and (2.2). For example, we have 

Fs * (J,g, *(cp,'lj), h)) "?FfFcgFcpFc?/JFsh [
I I ] 

=Fs *(cp,?/J,*(f,g,h)) [
I I ] 
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Therefore, 1 (1, g)( cp, 1jJ, h)) = 1 (cp, 1jJ)(f, g, h)), and formula a) is proved. By the 
same way, one can verify the other parts, too. 0 

3. ApPLICATIONS TO INTEGRAL EQUATIONS AND SYSTEMS OF INTEGRAL 

EQUATIONS 

Let 
1 

e}(x, u) = rn= [J(lx - ul) - f(x + u)J 
V 271 

1 . 
e'i(x, u) = rn= [slgn(x + u - l)f(lx + u - 11) - f(x + u + 1)+ 

2v 271 

+ sign(x - u - l)f(lx - u - 11) - sign(x - u + l)f(lx - u + II)J 
1 . 

e} ( x, u) = rn= [sIgn (u - x) f ( I x - u I) + f (x + u) J 
V 271 

1 
ej(x, u) = rn= [f(lx + u - 11) - f(x + u + 1) - f(lx - u - 11) + f(lx u + II)J 

2v 271 

Theorem 3.1. Consider the system of integral equations 

+00 +00 +00 

f(x) + Al J J J e(x, u, v, w)cp(u)1jJ(v)g(w)dudvdw = ql(X) 

(3.1) -00 0 0 
+00 J [A2e~1 (x, u) + A3e~2(x, u) + A4e~3(x, u)Jf(u)du + g(x) = q2(X), x> 0 

o 
71 

where CPl = (6 !6), CP2 = (~3 i~4)' CP3 (~6 i ~5); cP, 1jJ, 6,6, 6, ~4' ~5, ~6, ql and 

q2 are the functions of L (lR+), )'1, A2, A3 and A4 are the complex constants, f and 
9 are the unknown functions. With the condition 

1 - AIFc¢(x) i=- 0, Vx > ° 
here ¢ = A2( 1(cp, 1jJ, 6)! 6) + A3( 1(cp, 1jJ, 6) ~r ~4) + A4( 1(cp, 1jJ, 6) T ~6)) 
there exists a solution in L (lR+) of (3.1) which is defined by 

f = ql + (qq l) - Al[1(cp, 1jJ, q2)] A1 [1(cp, 1jJ, q2) i l] E L (lR+) 

+(q2 d) - A2((ql * 'PI) * l) - A3((q1 ~~ 'P2) * l) - A4(~5 ~(~6 * qd * l) E L (lR+) 
1 1 1 Fs 1 2 2 1 

with l E L (lR+) and is defined by 

Fel = AIFc¢ 
1 - AIFcdJ 
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Proof. Applying the Fourier sine transform to the both sides of the equations of the 
system (3.1) and using (1.1), (1.2), (1.9), (1.10), (1.17), (1.18), (1.11), (1.12) and 
Theorem 2.1, we obtain the linear system 

Fsi + An(F<p) (Fc1/J) (Fsg) FSql 

[A2(Fs6)(Fs6) + A311(Fs6)(Fc~4) + A4~(1(Fc~5)(Fs~6)]Fsi + Fsg = FSq2 

We have 

1 

1 An(F<p)(Fc1/J) 1 

6 A2(Fs6)(Fs6) + A3~(1(Fs6)(Fc~4) + A4~(1(Fc~5)(Fs~6) 1 

= 1- AlFc [A2(1(<p,1/J,6) ~6) + A3(1(<p,1/J,6) ¥ ~4) + A4(1(<p,1/)'~5) ¥ ~6)] 
=1- AI FC¢ 

so that 

Furthermore, we get 

1 

FMI An(F<Pl)(Fc1/J) 1 

6j FS q2 

Moreover 

6 _I 1 FSql 1 
g - A2(Fs6)(Fs6) + A311(Fs6)(Fc~4) + Acnl(Fc6)(Fs~6) FSq2 

= FSq2 - A2FS(ql * <PI) - A3 FS(ql i <P2) - A4Fs(~5 i(~6 * qr)). 
1 Fs 2 2 

Due to Wiener-Levi's theorem (see [1]), there exists a function l E L (lR+) such that 

AIFc¢ 
Fel 

1 - AIFc¢' 
Hence 

Fsi = (1 + Fc l) {FSql - AIFs[1(<p, 1/J, q2)]} 

= FSQl + Fs (Qq l) - AIFs[1( <P, 1/J, Q2)] - AlFs [1( <p, 1/), Q2) j' l] 

and consequently 

i QI+ (qlj'l) Ar[1(<p,1/),q2)] Al [1(<P,1/J,Q2)j'l] EL(lR+) 

Similarly, we show that 

Fsg (1 + Fel) [FSQ2 - A?Fs(Ql *<Pl) - A3FS(Ql i <P2) - A4Fs(~5 i(~6 *Ql))] 
~ I Fs 2 2 

FsQ2 A2FS(QI * <PI) - A3FS(QI -~ <P2) - A4Fs(~5 i (~6 * Ql)) + 
I Fs 2 2 

+ Fs( Q2 * l) - A2FS (( QI * <PI) * l) - A3FS (( Ql i <P2) * l) - A4FS (~5 i (c;6 * Ql) * l) 
1 1 1 Fs 1 2 2 I 

namely, 
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+(q2 * l) A2((ql * ipl) d) - A3((ql -~ ip2) d) A4(~5 -~ (~6 * ql) * l) E L (lR+) . 
1 1 1 Fs 1 2 2 1 

o 
Theorem 3.2. Consider the system of integral equations 

+00 +00 +00 

f(x) + Al J J J 8(x, u, v, W)ip(U)1jJ(w)g(v)dudvdw = ql(X) 

(3.2) -00 0 0 
+00 J [A2 8!, (x, U) + A38!2 (x, U) + A48!3 (x, U)] f( u)du + g(X) = q2(X), x > 0 

o 
12 

where ipl = (6 ~ 6), ip2 = (6 ;c ~4)' ip3 = ~5 i(~6 i 6); ip, 1jJ, 6, 6, 6, ~4' 6, ~6, 
6, ql and q2 are the functions of L (lR+), AI, A2, A3, A4 and A5 are the complex 
constants, f and 9 are the unknown functions. With the condition 

1 - AIFe¢(X) =f 0, \Ix> 0 

-I I 11 (12 I ) here ¢ = A2 ( * ( ip, 6, 1jJ) ~ 6) + A3 ( * ( ip, 6, 1jJ) i ~4) + A4 6;c ( * ( ip, ~6, 1/;) ~ ~5) 
there exists a solution in L (lR+) of (3.2) which is defined by 

f = ql + (ql i I) Al[~(ip, q2, 1/;)] Al [~(ip, q2, 1jJ) i I] E L (lR+) 

g=q2- A2((ql*6) * 6) -A3((6-~~4)*ql))-
2 Fe 2 2 

-A4((6 ~ ~6) *(6*ql)) +(q2 * 1)-A2Fe(((ql*6) * 6) * I) 
Fe Fe 2 Fe 2 Fe Fe 

-As[((6;;; ~4) *ql)) * I] - A4[((6 i ~6) * (~5 *ql)) * I] E L(lR+) 
2 2 Fe Fe Fe 2 Fe 

with I E L (lR+) and is defined by 

Fel = AI Fe¢ 
1 - AIFe¢ 

Proof. Taking the Fourier sine transform of the both sides of the first equation, the 
Fourier cosine transform of the both sides of the second equation and according to 
(1.11), (1.12), (1.15), (1.16), (1.7), (1.8), (1.13), (1.14) and Theorem 2.1, we give 
the linear system 

Fsf + An(Fip) (Fs1jJ) (Feg) = FS ql 

[A2(Fs6) (Fc6) + A3~(I(Fe6)(Fe~4) + A,n2(Fs~5)(Fe~6)(Fe6)] Fsf + Feg = Fe q2. 

We get 

6. -I 1 An(Fip)(Fs1jJ) 1 
- A2(Fs6)(Fe6) + A31'1(Fe6)(Fe~4) + An2(Fs~5)(Fe~6)(Fe6) 1 

= 1 - A 1 Fe [ A2 ( ~ ( ip, 6, 1jJ ) ~ 6) + A3 ( ~ ( ip, 6, 1jJ) ¥ ~4) + A4 (6lc (Z ( ip, ~6, 1jJ) ~ ~5) ) ] 
1 - AIFe¢ 
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which is 

On the other hand 

6., = I ~~~~ An(Fi) (Fs1/J) I = FSql AIFs[~(<p, q2,1/J)] 

and 

I 
1 FSql I 

6.9 = A2(Fs6)(Fc6) + A3~(1(Fc6)(Fc';4) + A412 (Fc6 )(FC~6)(Fs';5) FCq2 

= FCq2 - A2FC((ql *6) * 6) - A3 FC((61: ';4) *ql)) - A4 FC((6 ';;; ~6) * (~5 *ql)) 
2 Fe 2 2 Fe Fe 2 

By the Wiener-Levi theorem (see [1]), there exists a function l E L (lR+) such that 

Fel = A1Fc ¢ .. 
1 AIFc¢ 

This implies that 

FsI = (1 + Fel) {FSql AIFs[~(<p, q2,1/J)]} 

() 
I ['I] =FSql+Fs q1il AIFsH<p,q2,~))]-AIFs *(<p,q2,1/J)i l 

thus 

I = ql + (ql i l) - Al[~(<P, q2,1/J)]- Al [~(<p, q2,1/J) i l] E L (lR+) 

Likewise, we obtain 

Fcg = (1 + Fel) [FCq2 - A2FC((ql * 6) * 6)-
2 Fe 

-A4FC((6 ~ ~6) * (~5 * ql)) + FC(Q2 * l) - A2FC(((Ql *~d * 6) * l) 
Fe Fe 2 Fe 2 Fe Fe 

-A3 FC[((61: ~4) *Ql)) * l) - A4 FC[((6 ~ ~6) * (6 *Ql)) * l). 
2 2 Fe Fe Fe 2 Fe 

Therefore, 

g = Q2 - A2 (( Ql * 6) * 6) - A3 ((6 1: ~4) * Ql)) 
2 Fe 2 2 

-A4((6 12 ~6) *(~5*Ql)) +(Q2 * l)-A2 FC(((Ql*6) * 6) * l) 
Fe Fe 2 Fe 2 Fe Fe 

-A3[((61:~4)*Ql)) * l) -A4[((6 ~';6) *(6*Ql)) * l) EL(lR+). 
2 2 Fe Fe Fe 2 Fe 
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