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Shifts on the hyperfinite factor

of type II,

Masatoshi Enomoto

Introduction

This thesis 1is devoted to the study of shifts on the
hyperfinite factor R of type IIl. This is an extended version of

papers [9],[10]1,[11]1,([12].

On the structure of isometries, we have the next fundamental
result which will be referred to as the Wold decomposition:
Every isometry is a direct sum of a unitary operator and some
copies of the unilateral shift. The co-rank of a shift (also
called its multiplicity) constitutes a complete set of wunitary

invariants for it. Unitary operators correspond with



*-automorphisms ,so to say,and then how do isometries and

*-endomorphisms correspond? Indeed, the main question which
R.T.Powers threw out in his paper [19],[21] was " what about
*-endomorphisms versus *-automorphisms of C*-algebras." He

considered that, since there is an index theory for isometries,
perhaps there is a corresponding index theory for *-endomor-
phisms. Powers [19],[21] called o a shift of a unital C*-algebra
A if o is a *-endomorphism of A so that o(I) = I and
f\§=1un(A) = {A1}. Following after A.Connes [8], Powers
[191,[21] defined that two *-endomorphisms o and B of a wunital
C*-algebra A are conjugate if there is a *-automorphism y of A so
that «a(a) = Y(B(y_l(a))) for a e A. He also defined two
*-endomorphisms o and B as outer conjugate 1if there 1is a
*-gutomorphism y of A and a unitary u € A so that
u(uau—l) = Y(B(Y_l(a))) for all a ¢ A.

Let B(H) be the algebra of all bounded operators on a
separable Hilbert space H. Suppose a is a shift of B(H). Let
N, = a(B(H))'. Then N, is a factor of type I, with n =

2,3,...,°. Powers [19],[21] called this number n the
multiplicity of o. He showed also the following theorems about

conjugacy and outer conjugacy of shifts of B(H).

Theorem 1. Suppose o and B are shifts of B(H) and there is a
pure normal state w of B(H) which is invariant under o. Then «a
and B are conjugate if and only if there is a pure normal state
wy of B(H) which is invariant under 8 and o and B have the same

multiplicity.



Theorem 2. Suppose o and B are shifts of B(H). Then o and B8
are outer conjugate 1if and only if they have the same

multiplicity.

Thus conjugacy and outer conjugacy of shifts of B(H) are
determined by their multiplicities. He then concentrated his
attention to shifts of factors of type 1T, and continuous
semigroups of shifts of B(H). For the index of continuous
semigroups of shifts of B(H), there are works of Powers
[19]1,[2037,i21], Powers and Robinson [22],Arveson [2],{3].

In the case of IIl—factors, Powers defined the index of
shifts ¢ on a hyperfinite IIl—factor R by using the famous Jones
index [R:0(R)](Jones[131]). He made discussions on conjugacy
classes and outer conjugacy classes of binary shifts. A shift o
of R is called a binary shift if there is a unitary u ¢ R with
u2 = I such that R = {u,o(u),oz(u),...}" and uok(u) = iok(u)u
for k ¢ N. There are uncountably many nonconjugate (at 1least
countably many non outer conjugate) binary shifts on R([19]).
M.Chodai7] generalized this Powers' result first for a shift

. . m
with such a wunitary u as u

=1 (me N), and then,

considering certain shifts which come from a family of Jones
projections(6], showed the existence of a countably infinite
number of outer conjugacy classes of shifts on R with a given
index ( € {4cosz(ﬂ/n); n = 3,4,...}L/[4,w) ). G.L.Price[23]
ingeniously succeeded on constructing an example of a shift o on

R of index two which is not a binary shift and ,in [24], he

further generalized unitary shifts considered by M.Chodal7].



This topic 1is also treated in D.Bures and H.s.Yin[5]. Other

generalizations of shifts are considered in Price[25].

In this thesis, we shall consider a general shift ¢ on a group
von Neumann algebra Rm(G) on a group G twisted by m ¢ ZZ(G,T)
such that the shift o is induced from a shift on a group G. This
formulation 1is also taken up in [5] independently. Under this
formulation, concepts are simplified and, notions and proofs
become clearer. All examples of shifts depending on unitaries
which are obtained by Powers[19],Chodai{7] and Price[19],[24] can

be reduced to shifts induced from groups.

In 1, we shall gather up elementary facts about shifts on von
Neumann algebras induced from shifts on groups.

In 2, we shall treat shifts with index two on a
hyperfinite factor of type 1I,.

In 2.1, we shall introduce signature sequences due to
1117,[12), and discuss the triviality of relative commutant
algebras. In 2.2, inspired by the construction of Price's
non-binary shifts with index two on R, we shall construct
uncountably many non-binary shifts on R of index two. Price's
construction of a non-binary shift comes from viewing R as the
completion of an inductive 1limit of binary shift algebras
(cf.Brattelif4]).

In 2.3, we shall be concerned with a Powers' problem on
outer conjugacy of binary shifts on the hyperfinite IIl—factor.

Let 0 be a binary shift on R and q(o) be the number

—4-



min{kelN ; ok(RJ'f\R.# €CI}. Then the number q(o) 1is an outer

conjugacy invariant for a binary shift o. Powers [11] raised
the following problem. " Is the number q(c) the complete outer
conjugacy invariant for a binary shift o." 1In this section we

shall give a negative answer to this Powers' problem. In order
to do this, we shall use the sequence of relative commutant
algebras {ok(R)'f\R ; k=10,1,2,... }. Obviously the set of
the (isomorphism classes of) relative commutant algebras
{ok(R)'f\R ; k=0,1,2,...} is an outer conjugacy invariant for
binary shifts.

In 2.4, we shall consider to represent multipliers of 2.2 as
multipliers on the rational function field over a finite field.

In 3, we shall consider shifts with an integral index on a
hyperfinite factor of type IIl.

In 3.1, when G 1is an ES group (cf. Definition 3.1.5), we
shall show that the conjugacy classes of shifts coming from
shifts on groups are classified by Powers invariants.

In 3.2., we shall generalize results in 2.2 using a different

method to any index case.



1. Elementary facts (Preliminaries).

(Shifts on von Neumann algebras induced from shifts on

groups)

Let G be a countable discrete group. A multiplier m on G is
a map of GxG into T = {ze€; |z| = 1} such that
m(x,1l) = m(l,x) =1 and m(x,y)m(xy,z) = m(xX,yz)m(y,z)

for x,y,zeG, so that meZz(G,T).

Definition 1.1. Let G be a countable discrete group. A

projective representation u of G with a multiplier m is a mapping

from G into the unitary group U(B(H)) of B(H) on a separable

Hilbert space H and u(g)u(h) = m(g,h)u(gh) for any g and h in G.

For xeG and meZz(G,T), define a unitary operator Am(x) on RZ(G)
by
_ -1 -1 2

(Am(x) E)(Y) = m(x,x "y)E(x “y) for £er7(G).
Then Ag’ G—> U(B(ZZ(G)D is a projective representation with m.
Let Rm(G) be the von Neumann algebra generated by ({ Am(x); xeG}.
We call R_(G) the (twisted) group von Neumann algebra. Let
6X522(G) be the Dirac's delta function defined by

s (y) =1if x =y and § (y) =0 if x ¥ y, for x,yeG.
We can characterize Rm(G) as follows. The following proposition

may be known but we note here for completeness.

Lemma 1.2. Let M be a von Neumann algebra. Suppose that




there exists a projective representation u with m, u:G6— M.

Assume that M 1is generated by {u(g);geG}. If there exists a

faithful normal state ¢ on M such that ¢(u(y)*u(x)) = & y for

x,y € G, then there is a *-isomorphism 6:M — R_(G) such that

B(u(x)) = Am(x).

Proof. Take the GNS representation

¢
let £ be the embedding of M into LZ(M,¢). Put U(SX) = £(u(x)) for

of M induced by ¢ and

xeG.

<U(6X)IU(6y)> <g(u(x))|E(uly))>

¢ (u(y)*u(x)) = 6X,y = <6X16y>.

Thus U can be extended to a surjective isometry of KZ(G) onto

LZ(M,¢). We have that

(Ux (x)U*) (E(u(y))) = Uxm(x)csy = Um(x,y)aXy = m(x,y)Ude

m(x,y)E(u(xy))

ﬂ¢(u(X))€(u(Y))

Hence Rm(G)is isomorphic to 7

¢(M). Since ¢ is faithful, ﬂ¢(M) is

isomorphic to M. Therefore Rm(G) is isomorphic to M. Q.E.D.

Now we can construct shifts on R_(G) as follows
An 1injective homomorphism ¢ :G —> G is called a shift (on a
group G) 1if f\;=ook(G) = {1} and we say that o preserves the
multiplier meZz(G,T) if m(o(x),0(y)) = m(x,y) for x,yeG.

Lemm 1.3. Let o be a shift on a group G. Suppose that o

preserves the multiplier m € ZZ(G,T). Then o induces a shift

o, _on the (twisted) group von Neumann algebra Rm(G) such that



o (A (x)) =2 (0(x)) for x ¢ G.

Furthermore, supposing that Rm(G) is a factor,

[R_(G):0 (R (6))] = [G:a(G)].

Proof. Put u(x) = Am(o(x)) for xeG and let M be the wvon
Neumann algebra generated by {u(x);xeG}. Put ¢ = wai( = the
vector state determined by 61). Then those {u(x);x € G} and ¢
satisfy the assumption of Lemma 1.2. Hence Rm(G) is 1isomorphic
to M‘giRm(G). This extended isomorphism O from Rm(G) onto M
satisfies o (A _(x)) = A_(0(x)) for xeG.Thus o_ is a *endomorphism
from Rm(G) into Rm(G) and Om(I) = I. Next we shall show that
=195 (R (6)) = €I. Take the GNS representation 7, of R (G)
induced by ¢. Let & be the embedding of Rm(G) into LZ(Rm(G),¢).
Then {g(km(x));st} is a CONS in LZ(Rm(G),¢). Fix any
x( # 1) €G. Since [}E=lok(G) = {1}, there exists an integer k
such that x ¢ ok(G). As E(o;(Rm(G))) is contained in the closed
subspace spanned by g(km(ok(G))), g(xm(x))_L_g(o;(Rm(G))). Hence
E(Am(x))_L,E( f\i=lo§(Rm(G)». On the other hand

(D) = (1)) e EC(\po0n(R (6)), thus

ECNroioK (R (0))) = €6(I). Therefore [ \j_ oN(R (G) = €I. See
Jones|[13,Example 2.3.2] for [Rm(G),om(Rm(G»] = [G:0(G)]. Q.E.D.

Summing up above considerations, we put
Definition 1.4. Let o be a shift on a group G. Suppose
that o preserves the multiplier m ¢ ZZ(G,T). Then we say that

the shift o, on Rm(G) comes from a shift on a group.

-8-



2. Shifts with index two on a hyperfinite factor

of type 11,.
2.1. Fundamental facts and examples.

In this section we shall look at examples of shifts from
group theoretic view point. Let G be a countable discrete
abelian group and m be a multiplier on G. Define wm:G X Gu=>r T
by wm(x,y) = m(x,y)m(y,X) . Then w, turns out to be an

anti-symmetric bicharacter on G (cf.[14]). It is known that if

W is non-degenerate, that is, wm(x,G) = {1} implies that x = 1,
then Rm(G) becomes a hyperfinite IIl—factor(cf.Slawny[26]). We
put

X = II§=0G1, where GiC: Z2 = 2/2Z = {0,1}. A sequence

a:Z — {0,1} with a(0) = 0 and a(n) = a(-n) 1is called a

signature sequence. A signature sequence a:Z — {0,1} 1is

periodic if there exists an n ¢ Z such that a(j+n) = a(j) for any
je@. For x = (%(1)) and y = (y(j)) in X, let wus define a
multiplier m ¢ ZZ(XfT) by

(2.1.1)

m, (X,y) = (-1)%e] a(i-j)x(1)y(J)

Then m, is a bicharacter, that is , ma(x+y,z) = ma(x,z)ma(y,z)
and ma(x,y+z) = ma(x,y)ma(x,z). Price[23] showed that the
group von Neumann algebra Rm (X) is a factor if and only if the

a
signature sequence a is non-periodic. The following proposition



is a slight refinement of this Price's result.

o0

Proposition 2.1.1. Let X = II.,_,G,, G.”=~ Z.,. Let a be a
== i=0"1 i 27 = YV—c

signature sequence on Z and m be the corresponding multiplier by

(2.1.1).

Then the following statements are all equivalent.

(1) the group von Neumann algebra Rm (X) is a factor

4
(2) the anti-symmetric bicharactor W is non-degenerate
a

(3) the signature sequence a is non-periodic.

Proof. (2) implies (1) by Slawny [26]. (1) implies (3) by

Price[23,Theorem 2.3]. (3) implies (2) as in the below. We put

a(0) a(l) a(2) a(3)
a(l) a(0) é(l) a(2)

A= a(2) a(l) a(0) a(l) ... and x,y e X.
a(3) a(2) a(l) a(0)

Then w_ (x,y) = (_1)(Ax|y) . Therefore if w is degenerate,
my m,

there exists a non-zero x € X such that Ax = 0 . If we take the

non-zero solution x of minimal length, the x is unique. By using

this fact and the proof in Price [23,Theorem 2.3}, we can show

that (3) implies (2). Q.E.D.
Example 2.1.2.(Powers' ©binary shifts). Let o be a binary

- 10.—



shift on R with a unitary generator u. Put
S = { keNN; uak(u) = —ak(u)u F.
Define the sequence a:Z — {0,1} by a(n) =1 if |n| € S and

a(n) = 0 if |n| ¢ S. Suppose that a is not periodic. Let m, be

as in (2.1). For x = (x(0),...,x(n),0,0,...)eX = II7_/G.,

X(0) ()X 2)yx(2) nyx(M) ey

= =
Gi = 22 , we put u(x) u

by 1lemma 1.2, there exists an isomorphism 6:R —> Rm (X) such
Y
that

p(u(x)) = A (x). Define the canonical shift o on the group X
a
by (o(x))(j) = x(j-1) for j 2z 1 and (o(x))(0) = 0. Since

ma(o(x),o(y)) = ma(x,y), by lemma 1.3, o induces a shift omh on a
von Neumann algebra Rma(X)' Then, by the above isomorphism 6,
6ap~1 = Gm&' Thus the binary shift o is exactly o under the
isomorphism 6.

Remark 2.1.3. Let S be a subset of the positive integers.

The binary shift algebra B(S) over S(Powers[19,Definition 3.81])

is the *-algebra generated by elements us for 1 =1,2,3,...
2 .
* = B =
such that u, u;, U I and uiuj o(l,J)ujui where
o(i,j) = -1 if [i-j| € S and o(i,j) = 1 if |i-j| ¢ S. Powersil9]

proved that if the signature sequence is non-periodic, then the
binary shift algebra B(S) and its C*-completion A(S) are simple
and do not depend on the choice of generators {ul,uz,...}. By
proposition 2.1.1, this fact turns out to be a corollary of the

general theorem by Slawny[ 269Theorem 3,7].

Example 2.1.4. Let G be an arbitrary countable discrete

-11-



group. Put X = II?;OGi, where Gi/;/G. Then we can generalize the
above example 2.1.2. In chapter 3 , we shall investigate this
case. If G = ZZ’ then we have Powers' binary shift. If G = Zn’

then we have shifts considered by M.Choda|[7 ] and G.Price[23].

Example 2.1.5. Let M, be the algebra of two by two
matrices. Put M =M, ® M, ® ... be the infinite tensor product
with respect to the trace. Then M is a hyperfinite factor of
type 1I,. We have the canonical shift o such that

a(x1 ® x, ® ... X ® IQ1I...)
=1 Xq ® X, ® ... & X RIIG ...

The shift a also comes from a shift on a group. Recall that
M,"Y R_(2,02,) for a suitable multiplier m ¢ Z°(Z,8Z,,T). For
example m is given by

m((i1,1,),(31,3,)) = (-2
Put G; = 2,82, and X = g;Gi . The multiplier?ﬁeZZ(X,T) will be
given by

m(x,y) = TI,Z; m(x;,y;).

Then M =M, ® M, ® ... is isomorphic to RE(X) and the canonical

shift o with index 4 on M corresponds to the induced shift o on

R=(X) .

-12-



Next We shall look at a relation between certain signature

sequences and relatve commutant algebras associated with them.

Definition 2.1.6. Let a be a non-periodic signature

sequence on Z. The sequence a is called essentially

if there exist non negative integers k and p such

periodic
that,

v

for any n 2z k, a(ntp) a(n).

Theorem 2.1.7. Let a be a non-periodic signature

sequence and Ta be the associated shift of the hyperfinite

IIl—factor R. The sequence a is essentially periodic if and

only if there exists a non negative integer r such that

C.(o,) = o (R)'[\R # CI.

Proof. At first we shall assume that there exists a non

negative integer r such that Cr(ca) # CI. Then there exists a

word g(# 1) € G = II, 4

n 2 r,where e_(n)=1 and e_(i)=0 for
n n

d .
g = Zi=0Y(l)ei

0

Gi,GisZ/ZZ, such that m(g,en) m(en,g)

for i#n. For this g, g 1is

>

expressed as for some d 0 and y(i) ¢ {0,1}.

Then

[\

Zg=oa(n—i)y(i) for n z r. We put

j = min{ i;y(i) # 0}.

(=}
(%

Furthermore we put, for r,

ao(n) = a(n—d),al(n) a(n—d+1),...,ad_j_1(n) = a(n-j-1).

Using these ai(n) (0 £ i £ d-j-1), we put
- t
a, = (ap(n), ,an_j_l(n)) .

We shall define a

(d-j)x(d-j) matrix A by

-13-



0 0 1 0 0 ..... 0
0 0 0 1 0 ..... 0
A= | i
.............. 1
y(d) .o i y(j+1)

Since {O,l}d“j is a finite set, there exist non-negative integers
k and p such that
AP (aFT) = Ak
Then by iterating powers of A to this above equality, we have
AP(E;) = 5; for m 2 r +k.
Therefore, by the definition of 5;,
a(m+p) = a(m) for m 2 r+k-d .
Thus a 1is essentislly periodic. Next we shall show the
necessity of this theorem. Assume that a 1is essentially
periodic. So there exist mnon-negative integers k and p sucﬁ
that, for any n 2 k, a(ntp) = a(n).
Then we have the following two cases.
(Case I). a(k)+a(k+l)+...+a(k+p-1) = 0.

- /
Put v = ugug...u & CD. Then v e of'P 1(R)/\ R.

P
(Case II). a(k)+a(k+l)+...+a(k+p-1) = 1.
Put v = u0u1"'up-lupup+l"'u2p—1(§ €CI). Then
- /
€ ok+2p 1(R)[\ R. This comes from the following fact.
a(k) = a(k+p),a(k+l) = a(k+p+l),a(k+2) = a(kt+p+2),...,

a(k+p-1) = a(k+2p-1). So we get

-14-



a(k)+a(k+1)+...+a(k+p-1)+a(k+p)+a(k+p+1)+...+a(k+2p-1) = 0.

Thus we get the necessity of this theorem. Q.E.D.

Proposition 2.,1.8. Let o be a shift on R. Let N(a)

be the set {u € R; u is a unitary and uak(R)u* = ak(R), for any

integer k 2 0} and u e N(a). Then (Adu)o 1is a shift on R.

Proof. Put S ={\;=0(Adu.a)k(R). Take y € S. Thus there
is an element Xy € R such that

y = (Adu.a)(xl) = ua(xl)u*. By u e N(a),
y € a(R). Similarly there is an element Xo € R such that

y = (Adu.a)z(xz) = ua(ua(xz)u*)u* 3 ua(a(R))u*(:jaz(R).
Continuing this process inductively we have

y e(\izoak(R). Since /\ ;=Oak(R) = ¢I, we have that

y € €I. Thus (Adu)o 1is a shift on R. Q.E.D.

Remark 2.1.9. Let o be a Powers'binary shift on R with
a unitary generator u. Put u, = o™ (u). For ug and uy, there
exists a unitary w ¢ R such that wulw* = ug,, because
tr(ul) = tr(o(uo)) = tr(uo). Then we have
((Adw)a)(uo) = (Adw)(ul) = wulw* = ug. Thus, for any n,
((Adw)a)"(ug) = ug.  Therefore

u e(\:=0((Adw)a)n(R). Hence (Adw)o is not a shift.
Recently Bures and Yin[6] obtain Theorem 2.1.7. independently.

_15_



2.2. Uncountably many non-binary shifts of index two.

Powers[19] completely classified binary shifts wup to
conjugacy on a hyperfinite IIl-factor R. Subsequently Price[23]
ingeniously found a non-binary shift with index two on R.
Inspired by the construction of Price's non-binary shift with
index two on R, in this section, we shall construct wuncountably

many non-binary shifts on R of index two.

Let Xi be a countable discrete group, m; a multiplier on Xi

and o; a mi-preserving shift of Xi(i =1,2,...). Consider an

injective homomorphism <I>n:Xn _— Xn+1 such that @n-on = On+1®n

and mn(x,y) = mn+1(®n(x),®n(y)) for n=1,2,3,... . Let
X = lig(xn,¢n) be the inductive limit of {(Xn,¢n)}. We identify
that X _ =\j:=1Xn. Then (o,) induces an injective homomorphism o
on X by o (x) = on(x) if x ¢ Xn' Let x,y €X_. We may assume
that x,y ¢ Xn for some n. Put m_(x,y) = mn(x,y). Then m_ is a

multiplier on X, and o_: X — X _Dbecomes a shift on the group

X . We treat only the restricted direct product group

[oe]

Xn = lli=0Gi’ Gi = Zz. Let a: Z—> {0,1} be a signature sequence.

Let m, be the corresponding multiplier by ( 2.1,1), Let o be the

canonical shift. Then clearly o preserves this multiplier m, .

o)

Similarly let Y = II._,H.,, H,= Z,. Let F[t] be the polynomial

ring over the field F = {0,1}. Fix a polynomial

p(t) = c0+c1t+...+cktk e Fit] with ¢y = 1 = c,.

Let Flti/p(t) = {£(t)/p(t);£(t)eF[t] }. Consider an embedding

-16-



Y:F[t] =~ F[t]/p(t) defined by ¥(£f(t)) = p(t)f(t)/p(t) = £(t).
First we recall the following elementary fact. Let G be a
countable discrete group such that g2 = 1 for any g ¢ G. Then G
is isomorphic to II:=0Gi,G£g72. So we denote this group product
by addition. Such a group turns out to be a vector space over
F. In fact the sum is given by the addition of G and the scalar
multipication is given by
Ox =0 and 1l<x = x.

Define a group isomorphism 6:X — F{t] by,
for x = (x(0),x(1),...,x(n),...) € X,
B(x) = x(0)+x(1)t+x(2)t2+...+X(n)tn+... e Fit].
Define a group isomorphism v:Y — F[t]/p(t) by,
for y = (y(o),y(1),...,y(n),...) & ¥,
v(y) = (y(O)+y (L) t+...+y @) t™...)/p(t).

0 [oe]

Definition 2.2.1. For X = lli=OGi’ Y = Ili=0Hi’ where
Gif;Hifz'Zz, and a polynomial p(t) € F[t],by using the above
maps Y,¥,06. Put a group injection @p:X ~—> Y by @p = y'lwe.
Then,
for x = (x(0),x(1),...), (®p(x))(n) = Zi+j — n(CiX(j)).

{20,320

The group injection @p: X — Y is called the one defined by the

polynomial p.

Consider the multiplication operator O by t on Fit] (or
Fiti/p(t)).
o (£(£)) = tf(t)(or o (£(t)/p(t)) = tf(t)/p(t)) for
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f(t) ¢ Fitl.

Then o = 606_1 on F[t] and o, = Yoy_l on Fl[tl/p(t).

Thus the canonical shift is realized as the multiplication by ¢t.
Therefore d 0 = g0 on X.
p P
The following lemma is a refinement of Pricel[23,Theorem

5.11.

Lemma 2.2.2. Let a:Z — {0,1} be a non-periodic signature

sequence and p € F[t] with a nonzero constant term. Then there

exits a non-periodic signature sequence b: Z —» {0,1} such that

(2.2.2.4)

mb(®p(x),©p(y)) = ma(x,y) for any x,y ¢ X.

Poof. Let g e X such that g(0) =1 and g(i) = 0 if i %o,
that is, g = (1,0,0,...). It is sufficient to prove the mnext
(2.2.2.B) for (2.2.2.A).

(2.2.2.B)
(my (0,082,007 (8)) = my(g,07 (&) = 1.
\‘mb(®p(oj(g)),®p(g)) - m_ (oI () ,8)

In fact, take x = (x(i))j,q = Ij;oX(1)07(g) and
y = (y(i))iZO = Zizoy(i)ol(g) in X. Since m, is a bicharacter,
m (x,y) = T, . 0m, (x(L)07(g),y(3)od (g)

12]

- 1_-112:‘20111a(x(i)ol—J (g),y()e)

(by the o-invariance of m,)

-18-



n_(x(1)o I (g), y(J)g)
m_(x(i)g, Y(J)o (g))

= T, 5. 0mp (X)) Ch en.ye,

izj

'IIjZiZO b(x(l)ép(g),y(j)Qp(oJ
by @po = o@p and the o-invariance

= IIiijomb(®P(X(i)cl(g)),®p(y(j)

. i .
'IIjziZOmb(¢p(X(l)O (g),®p(y(J)o

- 11 L g (85 (x (1) 0™ (8)), 0 (y(

120, 2

= mb(©p(x),¢p(y)).

Next,we shall show that (2.2.2.B). Put
the definition of the multiplier m,,
m_ (o3 (g),g) = -1)2) for jz0.
Since @p(g) = cog'+c10(g')+ +ck0k(g')
and @P(oj(g)) = ¢q J(g )+eq o5 (g )+,

We have

mb(®P(OJ(g)),©P(g)) TTysns0, k2 a2 0 (Cg07

(g))

1))

of my

o3 (g)))
j(g)))

o))

g'= (1,0,0,...) ¢

itk ,
+CkOJ (g ) ’

(g ), c,0 (g ))

- I (_1)chqbb(j+£-n)

jt+izn
Kznz0
kzlzo

-19-
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Similarly
j ' j+L,
my (0 (8),0 (o) (8))) =TTy, ,gm (e 0™(g"),e 07" (g")

kz0=20
h%jfl

= Tlisnso

K292
W2j+£

(_1)cnqtb(n—j-£)

Thus we need the following equations (2.2.2.C.1),(2.2.2.C,2)

order to establish (2.2.2.B), that is,

(2.2.2.C.1)

a(j) = Zj+£zn chnb(j+£—n) for j20
(2.2.2.C.2)

0 = Zn2j+2 czcnb(n—j-z) for jz20

Put qy = c0c0+c1c1+...+ckck, q; = c0c1+c1c2+...+ck_1ck,...,
d = CoCk- Furthermore we put Ay = 9% for t = 1,2,..,k.
For (2.2.2.C.1), we demand the following.

We put

(2.2.2.D)

qéj) =14 if j+t > 0

A
o

0 if j+t
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Then it is sufficient to show the existence of the signature
sequence b satisfying, for j z 0,
(2.2.2.E)
a(i) = b0+l GH-1 + L+ b GK)

For j = 0, the above (2.2.2.E) becomes as follows.

a(0) = ¢l Vb0 +q Db k-1+.. . 4q§Vb 0+, . +q Vb (-k) = qb(0).

If we put b(0) = 0, then the above equation (2.2.2.E) for j =0
holds. For j =1,

a() = ¢fPbarD gl b0+ 4 Pb0+. 4¢P bk
By (2.2.2.D), since qfi) = ... = q(i) =0 and
ot = q =cpe =1, if we put b(1) = ... =b(k) =0, then

b(k+l) 1is determined as a(l) so that (2.2.2.E) for j =1 1is
satisfied. Inductively we can take b(s) for s 2z 0 which satisfy
(2.2.2.E) for j > 0. In fact, put

b(+k) = a(i+q I )b (Gk-1+. .. +q P b(-k) .

Since we put b(0) = b(l) = ... = 0 for the above b, (2.2.2.C.2)

holds. On the other hand, put b(-s) = b(s) for s 2 0. Next, we

check the condition (2.2.2.E) of b(j) for j < 0. For j < 0, we
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put (2.2.2.F)

0 if j+t 2 0
qéj) =
qe if j+t < 0.
Put i = -s for s > 0, we shall show that
(2.2.2.G)

a(-5) = qi S b(-s+)+q{ TP b(-stk-1+. ..+ ")+, . ...
(-s)

+¢{ 7500 (-s+k-1)+q L5 b (-s-k0) .
By the way we have already obtainded the following.

(2.2.2.H)
_.(s) (s) _ (s)
a(s) Q. (b+k) + qk_lb(s+k I + ... + 4 b(s) + ...

+ q{8) bk + b1 for s > 0

Substituting a(-s)(resp. b(-s)) for a(s)(resp. b(s)) for s > 0
in (2.2.2.H), we get
(2.2.2.1)
a(-s) = q{%b(-s-k) + q{*Ib(-s-k+D) + ... + b0y + .....
+ q'8) b-s+k-1) + g P b(-s4k).

To show (2.2.2.G), it 1is enough to 1look at the following

relation.

(2.2.2.3)
(s) _ _(-s) (s) _ _(-s) (s) _ (-s) _(s) _ _(-s)
SRR A DA DIPREEEETL S DYPREL -

By the way the followings hold by (2.2.2.D) and (2.2.2.F).

-22-



(2.2.2.K)

(qfi) = q_; for s-i > 0 if and only if qé-S) = q; for -s+i < 0.
1q£i) =0 for s-i <0 if and only if qi—s) = 0 for -s+i 2z 0.

Therefore (2,2.2.J) is satisfied. Thus(22.2.E) holds for j < 0 by
qéj) of (2.2.2.F). Finally we shall show that this signature
sequence b is non-periodic. For j > 0, qéj) = 0 for j+tt £ 0

where -k £ t £ k and -kst<j+t<0. Since b(s) =0 for -k<ssk,

b(j+t) = 0. Hence

q{Pb(g+r) = q b3+t for j+t s 0.

For j < 0, q. =0 for jtt 2 0 where -k £t £ k. Since
b(s) = 0 for -k £ s £k and 0 £ j+t < t £ k, b(j+t) = 0. Hence
qéj)b(j+t) = qtb(j+t). For j = 0, qéo) =0 for t # 0 where

k £t £ k. Since b(t) = 0 for -k stsk, q{0b(t) = q.b(t) for

-k

IA
IIA

t k.

Thus (2.2.2.E) turns out to be

(2.2.2.L)
a(j) = qub(3+k) + q_;b(J+k-1) + ... + qgb(3) + ... +q_b(j-K)

for j e 2.

Suppose that b is periodic. Then a is periodic by (2.2.2.L). This
contradicts the assumption. Therefore there exists a non-periodic

signature sequence b on Z wnich satisfies (2.2.2.A). Q.E.D.
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Thus, using a polynomial p(t) = c0+c1t+...+cktk with

co = k =1 and a non-periodic signature sequence a on Z which

[+ ]

. . . _ /;-/
induces a multiplier m, on X = Ili=OGi’ Gy Z,, we found a group

injection from X to Y = llz=0Hi, Hi/;/ZZ, and a non-periodic

signature sequence b which induces a multiplier my on Y

satisfying (2,2.2.A). Continuing this procedure for a sequence of

polynomials pg(t) = ¢, gtecy, qtt...tc, k(S&)tk(l) with
- - - b (L) (%) >
CR,O = Cl,k(l) = 1 and XQ lli=OGi , G Z2 for
L =1,2,... , we can get a family {ma 38 =1,2,...} of
2

multipliers on Xz induced by a non-periodic signature sequences

a, on Z which satisfies(2,2.2.A). Hence we have the following

L
proposition 2.2.3.

_ G

> L ey g
i=0"1 i

Proposition 2,2.3. Let Xl = 11 2 and fix a

signature sequence a. Consider a sequence p = (pl,pz,...) of

polynomials pg(t) = c2’0+cl’1t+...+c£’k(l)tk(z) with

=1 for 2 =1,2,.... Let Qp :X2 —_— XSLJrl be

2,0 7 S2,k()
the group injection defined by the polynomial Py - Then there

exist multipliers m, on XQ (2 =1,2,...) induced by some

£

non-periodic signature sequences a, _on Z which satisfy

m (¢ (x),¢_ (y)) =m, (x,y) for x,y e X, and a; = a.
G B P '

Now under the above condition,for a sequence p = (p;,py,...)
of polynomials {p, , % = 1,2,3,...}, we put X[p] = lim(X,,o_ ).

Define a multiplier m on X[p] by m[a’p](x,y) =m_ (X,y)

[a,p]

if x,y € Xg' Then RmCA4U(X[p]) is a hyperfinite IIl-factor

since anti-symmetric bicharactor w_ is mnon-degenerate by
Ca,pl



proposition 2.1.1. We have the canonical group endomorphism

O[p] which is a shift on X[p]' Then O[p] induces a shift o[a,p]

on R (

X ).
m(q,p3 LPI

Definition 2.2.4. Under the above notation, for sequences

p = (pl’PZ"”) of polynomials pz(t) with nonzero constant terms
and non-periodic signature sequences a, shifts 9la D] on
R (X, 4) are called shifts of Price type.
m (pl

Ca,pl

The normalizer of a shift o on a hyperfinite IIl—factor R,
denoted N(o)(cf.[19]1), consists of those unitary elements ueR so
that uc“(R)u* = o“(R) for all k=1,2,.... Here we shall

show that the normalizer of a shift of Price type is the set of
elements of the underling group up to scalar elements. This fact
is proved by Price in [23]. Here we shall restate his result in

terms of twisted group von Neumann algebras. We shall prepare the

notations. Put O[a,p] =g , m[a,p] = m, X[p] = X and
R X = R.

mulfﬂ( [P])

Let E be the conditional expectation from R onto o(R). Put
® = 2E-I on R. Then 6 is an automorphism on R and

e(Am(x)) = Am(x) if x € 0(X) and e(xm(x)) = -Xm(x) if

X ¢ o(X). Put

A(X) = { Z§=luikm(xi) ; x; e X, yeCandpelN },
A(Xn) = { z?=1“ikm(xi) ;X o€ Xn’ Wy o€ €C and p e N } and

W(X)

{ uxm(x) ;x ¢ X and uwu e T }.

Xé2> ={xeX; x= (x(1)), x(1) =0 for i 2 2+1 }.
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Proposition 2.2.5. Under the condition of proposition

2.2.3., N(o) = W(X).

Following after [23], we shall give the proof of this proposition
2.2.5. At first we shall show that W(X)C;:N(o). Let x ¢ X. Fix

k ¢ N. Then since ok(Rm(X)) is generated by Am(ok(X)) and
Am(x)}m(y)xm(x)* = m(x,y)m(y,x)kﬁ(y), we have‘xm(x) € N(o). Thus

W(X)C;'N(o).

<

Next, we shall show that N(o) = W(X). This fact comes from the

lemmas below.

Lemma 2.2.6. 8(s) = ts for s € N(o). For any L e N and

n ¢ [N, there exist x ¢ Xég) and Sy41 € R‘ such that
_ 2+1 '
s = Am(x)o (Sl+1)‘

Proof. This is derived. from the same method of [19]. Q.E.D.

Lemma 2.2.7. Let s e N(o) and t/e A(Xn) for some n € N.

Assume that there exist x € Xéz) and So41 € R such that

5 = Am(x)ol+1(sz+l). Then there exist a t ¢ A(Xn) and
L+1

i /
toyy € M(X)) such that t = A (x)o (tg4q1) and Is-tlf, = {Is-t “2

Proof. Put g = (1,0,0,0,...) € Xn‘ If 6(s) = s, replace t/
/ /
with ty = E(t’). Then |[s-toll, = IE(s-t)|, < ls-t||,.  1f
8(s) = -s, replace t/ with t0 = Am(g)E(Am(g)t/), in which case

ls-tglly = A, (@EM (8)8)-A (8 EG (&)t
§HE(Am(g)s—Am(g)t/)H2 < “s-t/Hz. In either case, if

s = Am(g)k°((sl), then there exists tl € A(Xn) such that
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/
tg = Am(g)ko (t;). Then we have [[sy-t4[l, = “s-toll2 < Js-t “2
and sy = Am(g)kiw(sz). Proceeding as above we may replace ty with
an element of the form Am(g)k'd(tz)where t2 € A(Xn) such that
k

“sl—Am(g) ba(ey)]l, s Isq-tqlly s Hs-t/“z. Hence

k, 2
lIs-2_(8) 0n_(o(en 62t ],

IIA

“S't/“z' Continuing this process &

steps yields the result. Q.E.D.

Lemma 2.2.8. Let s € N(o). Let n € N be a number such that

, for some t’e MK, (Is-t/ll2 < 1. Let N = sup({qeN; there

. (2)
exist xeX , Sz+1€R and 2 2 q such that

_ L+1
s = Am(x)o (S£+l)})' Then N < o,

Proof. By the assumption, there exists k e (N such that

/ X(k)
n

Hs—2§=1yi Am(y{ ”IZ <1 for Yism and yge and
i=1,2,..,p. Suppose that N = o, then there are an & > k and

X € Xél) such that s = Am(x)oz+l(s Then by the idea of

2417
lemma 2.2.7 , there exist y € € and yeXék) such that
y(i) = x(i) for 0 <is< k and

i / 7/
Is-va_ il s s-28_yv) A )l < 1.
Let z = (z(1))ex{* for z(1) = 0 (1 = 0,1,..,k) and z(i) = x(i)
for i = k+1,...,%. Let s/E-R such that s’ = xm(z)ol+1(s£+l).

. W/

Then Hs—yxm(y)ﬂz < 1 yields ||s 'YIUZ < 1. But
Hs/—ylnz = 1+|y]2—2Re(tr(7s/)), and tr(s”) = 0. For if j is the
first index greater than k for which x(j) ¥'O,
tr(s’) = tr(a I (s”)) = tr(8(a™I(s”)) = ~tr(a I (s”)) = -tr(s)).

Hence Hs/-ylﬂi = 1+|y]2 > 1, a contradiction. Thus N is finite.

Q.E.D.
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The proof of proposition 2.2.5. Let s € N(o). Let n € (N be
sufficiently large such that “s-2§=1uixm(xi)"2 < 1 for some p,
Wy € € and X € Xn and i = 1,2,... . By the lemma 2.,2.8, there
is a maximum % e N, Se41 € R and x ¢ Xél) such that

s = xm(x)o2+1

(sz+1). - Since s and Ap (%) belong to N(o), hence
2+1 T

o (S£+l) and So+1 belong to N(o). Thus e(s2+1) = *s) 4 by
lemma 2;2,6, if 6(sy,q) = -s;,,q sthen for g = (1,0,0,0,...) in
X, Se+2 = Am(g)sl+l belongs to o(R). Hence Se+1 = Am(g)s£+2. But
this implies a contradiction about the maximality of %, therefore
e(s£+1) = s£+l,that is, So41 € o(R). From Sy41 € g (R),
0-1(s2+1) e N(o). Similarly o-l(s£+l) e o(R), thus

So4] € 02(R). Iterating this procedure, we get So+1 e()nglon(R).

Since ¢ is a shift, So+1 is a scalar. So we get this proposition

2.2.5. Q.E.D.

Using this proposition 2.2.5, we shall show the mnext
proposition 2.2.9 which states the shifts on the hyperfinite
IIl-factor induced by the shifts on the group are not conjugate

if the shifts on the groups are not conjugate.

Proposition 2.2.9,. Take two sequences of polynomials
with non-zero constant terms , P = (pi) and q = (qi)for
i=1,2,... , and two non-periodic signature sequences a and b.

If two shifts of Price type G[a,p] and o[b’q] are conjugate on

the hyperfinite IIl-factor, then (o[p],X[p]) and (o[q],X[q]) are
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conjugate,where O[p] is the induced shift on X[p] from O[a,p]‘

Proof.The shifts o[ (X[p]) induces shifts

on R ,
a,pl mey, pl
/T —> N(o[a p])/’1‘. By Proposition 2.2.5,

9a,p1 N 9a,p1’

N(O[a,p])/T = X[p] and o Therefore if 0[ and

la,p] ~ %[pl- a,pl
O[b,q] are conjugate, then (o[p],X[p]) and (O[q]’X[q]) are

conjugate. Q.E.D.

In the following we shall construct wuncountably many

non-binary shifts. At first we shall choose countable irreducible

polynomials pk(t)(* t) for k = 1,2,... which are distinct
each other. Take a = (a(l),a(2),a(3),...)éTI:=122. Put
X =( g(t)/E(t) ; g(t)eF(t]

f(t) satisfies that if £f(t) = pl(t)kﬂ..pn(t)k",
k; £ 0, then a(i) # 0.

That 1is, X2 is the set of rational functions whose denominator

may have pi(t) factor only if a(i) % 0. This X? is, of course,
isomorphic to Ilz=0Gi, where G, = Z,. When we consider this O
on X?, we denote it by o

Lemma 2.2.10. Let a and b elements in II?=1ZZ. Then

a=>b if and only if (c?,%*) and (ob,Xb) are conjugate

Proof. 1If a ¥ b, then there exists an n, such that

(a(ng) =1 and b(ng) = 0 ) or (a(ny) = 0 and b(ny) = 1). Hence
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we may suppose that a(no) = 1 and b(nO) = 0. If ¢? and ob are

conjugate, then Py (¢?) and Py (ob) are conjugate. But ( Image of
o 0

P, (6?)) = x* and (Image of P, (ob)) = Xb. In fact, take an
0 o
element g(t)/f(t) € X2, Then g(t)/(pn (t)f(t)) € X* and
(o]
g(£)/£(t) = p (©)g(t)/p, (£)E(t) e Im(p  (c%)). Hence
0 0 o o

Im(pn (oa)) = X%. On the other hand, 1 € X, but
0

R b _
1 § Im(pno(o )). If pnb(t)g(t)/f(t) = 1, then

P, (t)g(t) = £(t). But p_ (t) does not divide f(t). This is a
0 0
contradiction, therefore 1 % Im(pn (ob)). Thus
0
Im(p_ 0?)) + xP. Q.E.D.
(o]
Puc X3 = Flt], X2 = Fle)/pp(0)@D), ,
1 2 [

k2 = Fre)/(pp()@Wp )23 L p 02 E,

a

Then we have k) :=OX§ = X”. Furthermore, the way of this

embedding from Xi to x2

+1 1s defined by the multiplication of

the polynomial

a(2) a(E)(p2+1(t))(2+l)a(z+l)'

1
(py (€22 (p, () (p, ()
In particular, the Powers' binary shift is associated to the
sequence a= (a(l),a(2), ... ) =1(0,0,0, ... ) by example
2.1.2. Thus we get the following theorem 2.2.8, combined with

proposition 2.2.6 and lemma 2.2.7.

Theorem 2.2.11. There exist uncountably many non-conjugate

non-binary shifts of index two on the hyperfinite IIl-factor.

We have the following proposition similar to Price [23,

Theorem 4.5] which also shows that above shifts are not binary.
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Proposition 2.2.1Z.. Let G be a countable discrete group

and ¢ a shift. Suppose [G;0(G)] = 2 and for any g in
G, gz = 1. Then o is conjugate to the canonical shift on

o0

G = LI7_yZ, if and only if [G:<o¥(g); k = 0,1,2,...>] < o
for g( * 1) ¢ G.

Proof. In the following , put {g}~ = <ok(g);k =0,1,2,..>.
(sufficiency). Suppose that [G:{g} ] < += for any g(t 1) ¢ G.
Since [G:0(G)] = 2, there exists an element a % 0(G) such that
G =oa(®)|)o(Ba.

Case 1. If [G: {a}"] =1, then we have G = {a}~. Thus
G = ﬁ%zz, 22 = {0,1} and o is conjugate to canonical shift on

o) 0o
lIZZ. The conjugacy comes from the mapping ¢ from IIZ2 onto G
i=0 =

. 1=0
such that o(x(0),x(1),...,x(k),0,0,...) = a*{®  oK@a)X(K) = por
. . . _ .x(0) k x (k)
any x in G, x is uniquely represented by x = a ...0 (a) ,
where x(i) ¢ 22 , since a ¢ o(G) and o is faithful.

Case 2. If [G:{al”] > 1, then we have bl(% 1)e G such that
b1 ¢ {a}” and [{a,b1}~:{a}"] > 1. The existence of bl comes from
{al}™ # G. Furthermore we may assume that b1 ¢ 0(G). Because 1if
b1 e 0(G),then, renaming bla by bl’ we have b1 ¢ {a}” and
b1 ¢ 0(G). TFurther we get abl € 0(G). Because, by b1 e 0(G)a,
then abl = ao(gl)a = aao(hl) = o(hl) e 0(G) from o(G)<jG and
a” = 1. On the other hand, from ab1 e 0(G), we denote
ab1 = a(gq). If g1 € o(G), then we have ab1 = o(o(gz)). If
g, € 0(G) for any n ,then ab1 € (\kzook(G) = {1} since o is a

shift on G. Hence ab1 = 1. Thus a = bl' But b1 % {a}”. This is a

-31-



contradiction. Therefore there exists an integer my such that
abi = oml(bz) and b2 # 0(G). Furthermore we may assume that
b, % {a}”. Because if b, ¢ {a}”, then ab; e {a}”. So

b, € a{a}~£;{a}”. This is a contradiction. As b, = aoml(bz),
we have {bz,a}~;;{bl,a}~. For the condition of b2’ we have
b2 % {a}f and b2 % 0(G). Repeating the above process, we get
ab2 = ao(gz)a = éao(hz) = o(hz) € 0(G). Therefore ab2 = o(hz).
1f h2 e 0(G), then ab2 = o(o(h3)). If this process continues,
we have ab2 € [\kZOORG) = {1}. Since ab2 =1, a = b2. But
b2 % {a}~. This is a contradiction. Therefore there exists an
integer m, such that ab2 = oml(b3) and b3 % 0(G). Furthermore
b3 % {a}™. Because if b3 e {al”, then ab2 e {a}”. Thus

b, € a{a}~(;'{a}~. This is a contradiction. Repeating the above

2

process, we have

> 2

, . -
H, = {b3,a} = H2 = {bz,a} Hl = {bl,a} .

3
Here Hk = {bk,a}~, where bk % {a}” and bk % 0(G).

Since [G:H ] = [G:{bk,a}~] < [G:{a)}”] < +», there exists an
integer k such that H, = Hoiq- Hence bk+l € Hk'

For simplicity, we denote b = bk’ m = m. Since

abk = amk(bk+1), bk+1 = ¢ ™(ab). We denote {a,b}” = H. Then
o ™(ab) ¢ H, = {a,b}". Therefore, there exist polynomials

pO(t),qO(t) e F[{t] such that

(2.2.12) o ™(ab) = <a,py><b,qq> where

ca,p> = a% g(a)o%(a®)...oM(an)
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_ 2 n
for p(t) = ¢y et + ct™ + ...+ ¢t

Multiplying (2.2.12) by ", there exist polynomials p(t), q(t)
e F[t] such that <a,p> = <b,q>. Furthermore, - without loss of

generality, we may suppose that p(t) and q(t) are relatively

prime over F[t]. Because if p = p'r,q = q'r with degree(r) 2 1,

then we have <a',r> = <b',r> where a' = <a,p'>,b' = <b,q’'>.
Since <a',r> = <b',r>, then <a'b',r> = 1.

If r(t) = tP + cp+ltP+1 + ... + cdtd, then we have
PabyoP((ab)%+)...o%((a's")% ) = 1. That is,

Pa'b') = P a b)) .. .0%(a'b")%d ). Hence

oP(a'b') ¢ [\nglon(G) = {1}. By the injectivity of oP,

a'b' = 1. Thus a' =b'. Therefore

<a',r> = <b',r> if and only if a' = b"'. That is,

<a,p> = <b,q> if and only if <a,p'> = <b,q'>. By
considering p',q', we may suppose that p and q are relatively
prime over F[t]. So we assume that <a,p> = <b,q> are
relatively prime. By the induction about (deg p +deg q), we

can show that there exists an element ¢ ¢ G such that <c,p> =b
and <c¢,q> = a. Then the the case deg(p)+deg(q) = 0 is trivially
satisfied. So we assume that deg(p)+deg(q) > 0. We put
P(t) = 2o + &t + ... +2th, q(t) =my + mpt + ... 4m el
Since p and q are relatively prime , if a ¢ o(G),b ¢ o(G), then
2o = my = 1. Therefore, by <a,p> = <b,q>,

ab = o(a)M o(B)™...0"(a)* o™ (b)™r.  Let k be the first
index k(z1l) such that zk + my % 0. Then ab ¢ ok(G).

<a,p(t)> = <b,q(t)>. So «<a,p(t)><a,q(t)> = <b,q(t)><a,q(t)>.
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<a,p(t) + q(t)> = <ab,q(t)>. Then

o "F(<a,p(t) + q(t)>) = o F(<ab,q(t)>). Thus

<a, (p(t) + q(t))/tk> = <o_k(ab),q(t)>. By the step of induction,
there exists an element ¢ € G such that <c,q(t)> = a

<c, (p(t) + q(e))/t> = o™F(ab).

So we get <c,p(t) + q(t)> = ab. That is ,

<c,p(t)><c,q(t)> = ab. Since <c,q> = a, then <¢,q> = a and
<c,p> = b. Therefore the induction is completed.

Therefore ({c}™== (a,b}™ 2 {a,b)".
[G:{c}™] & [G:{a,bl}] < [G:{al}"]. Continuing this process,
there exists an element c¢' € G such that [G:{c'}"] = 1.
Therefore G = {c'}".
(necessity) Let o be a shift on G which is conjugate to the

canonical shift on i%ZZ by a map ¢. Then there exists the
element g ¢ G such th;£ ®( eo) = g where ey € E%ZZ and

eg(0) =1, ep(i) = 0 if 1 + 0. Then G = {g}~.

If heG, thenn = gOo(g")...o” (g"M. If k_ =1, then
[(G:{h}~] = [{g} :{h}7] = 2% < 4w, Because

FC Fle1/n(e)FIE] ) = 27 where h(t) = ky + kyt + ... + k_t

Q.E.D.
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2.3. Outer conjugacy problem of Powers' binary shifts.

In this section we shall solve Powers'problem on outer
conjugacy of binary shifts on a hyperfinite II1 factor

negatively. This work is inspired by Ocneanu [18] and Araki [1].

o]

Let G = 1L,_,G; be the restricted direct product of
Gif: L, = {0,1}. Let a be a signature sequence. Let us define
a multiplier maEZZ(G,T) by
m_(x,y) = (_l)Zc>ja(i-j)x(i)y(j)
for x=(x(i)), yé(y(j)) € G.
We shall define a unitary operator A (x) on 22(G) by
O (RE) () = m, (x,x 1Y) E(xy)
for x,y ¢ G and & ¢ 22(G).
Let R.m (G) be the von Neumann algebra generated by

2
{Am (x) ;X e G}l. In the following we shall always assume that

A
the signature sequence a 1is mnon-periodic and identify the
sequence (a(i);i ¢ NV {0}) with (a(i);i ¢ Z). By lemma 1.1.3 ,
o induces a shift o on R_(G) such that o(A_ (x)) = A _(o(x)) for

my my Iy

X ¢ G, where we use the same notation o. Put
ey = (1,0,0,0,..) € G and e, = on(eo) € G. Similarly put
uy = Ama(eo) and u, = on(uo). Then

- a(n-m) L
num—(—l) uu,  and the hyperfinite factor of type 114

u

R=Rm (G) is generated by {un ; n=0,1,2,..}. Thus the shift ¢ = ¢
A

a

1

on R (G) is a Powers
Mo,

(cf. Example 2.1.2.).

binary shift with a signature sequence a
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In the following we shall realize the relative commutant algebras

/
Cplo) = ok(R)[\R concretely.

Theorem 2.3.1. Let a be an non-periodic signature sequence.

Suppose that the set {i ¢ [N ; a(i) % 0} is finite.

Put d = max{i e N ; a(i) % 0}

Let o be the Powers' binary shift with a signature sequence a.

Let u, = (e ) be the o-generator. Put u, = o™ (u). Then

A
K a
Cplo) =0 (R)f\R =€l if 0 £ k £ d and

Y.
C, (o) = {uy 5 0 51 s k-d-1) if dtl < k.

Proof.It 1is clear that we have the inclusion Ck(o):)CI if
V4
0 £k £d and Ck(o):){ui ; 0 £ 1 g k-d-1} if d+1 £ k. We shall

show the reverse inclusion. In the following we denote X = Ao
a
Let =L X_A R G). If x is in C, (o), then
et X = I Xghg € Ry (6) k

A\, =, (I xA) forn 2 k.
(Tg Xghg)he, ™ te,(Tg Xghg) T T

Hence nggma(g, n>xg+en = g xgma(e ,g)Aen+g.

Thus xg(ma(g,en)-ma(en,g)) = 0 for n 2 k. We may suppose that
Xg = 0.

Then ma(g,en)=ma(en,g) for n 2 k. It is enough to show that
g =0 if 0 <k sd and g(s) =0 for s 2k -d if d + 1 < k.

Since ma(g,en) (-1)203 a(i-jlg(ide, (j) _ (_1)Z¢7ha(i—n)g(i)

Zb?j a(l‘J)eh(l)g(J) — (_'l)zy\>j a(n-j)g(j)’ we

and ma(en,g) = (-1)

have that Zi>na(i-n)g(i) = Zn>ja(n—j)g(j). By changing variables
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from i,j to p, we have that

min(n,d)

p=1 a(p)g(n-p) for n 2 k.

(2.3.1) IS_jg(ptn)alp) = 1

IA

Firstly consider the case that 0 £ k $ d. We shall show that

g 0. Suppose that g £ 0. Put m = max{i e NUL0) g(i) * 0} and

n =m + d. Then we have n 2 k. Therefore we can apply ( 3.1) in
this case, so that we have Zg=1g(p+m+d)a(p) = Zg=1g(m+d—p)a(p).

Hence 0 = g(m)a(d). Since a(d) = 1l,we have that g(m)=0. This is
a contradiction. Thus we have g = 0. Next consider the case
that d+l1 < k. Assume that g(s)=1 for some s 2 k-d. Then we shall
show the contradiction. Put m = max{i ¢ NU{0};g(i) ¥ 0}. By

the assumption we have that m 2 k-d. Put n = m+d. Then we have

that n 2 k. Since we can apply (2.3.1), we have that

Zg=1g(p+m+d)a(p) = Zg=lg(m+d-p)a(p). Therefore 0 = g(m)a(d).
Since a(d) =1, g(m) = 0. This is a contradiction. Thus g(s) = 0
for k-d < s. Q.E.D.

Remark 2.3.2. 1In [5], Bures and Yin considered independently

the relative commutant algebras for group shifts abstractly and
they proved the following:

Let G be a discrete abelian group and m a multiplier of G . Let
Rm(G) be the von Neumann algebra as well as the above case
m=m . If H is a subgroup of G, then Rm(H{/h\ R _(G)=R_(Dy),
where Dy is the subgroup {g € G; m(g,h)=m(h,g) for any h € H }

of G.

Powers[19] defined the following outer conjugacy invariant q(o)
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for shifts o : Put q(o) = min{k e N; ok(Rf?)R ¥ Cl}.

Remark 2.3.3. Take a signature sequence a such that the set
{i e Nja(i) * 0} 1is finite. Let degree a be the number
max{i ¢ N;a(i) * 0}. Then Theorem 1 says that
q(o) = (degree a)+l.

In [19], Powers raised the following problem(cf. also[24]).

Powers' problem. If o and B are binary shifts and

q(a) = q(B) then are o and B outer conjugate?
We give a negative answer to the above problem.

Corollary 2.3.4. There exist binary shifts o and B such that

q(a) = q(B) but o and B are not outer conjugate.

Proof. Let a and b be signature sequences such that

a(2) =a(3) =1 and a(i) =0 (i % 2,3), b(l) =b(3) =1 and
b(ij) =0 (3 %X 1,3).
/)
Then Ck(oa) e ?; for 0 £ k £ 3, Cé(oa) = {uo}/; CZ and
A

CS(O ) = {uO,ul} = C On the other hand Ck(ob) z CI for
2 %

a
/
0 k £3 and Cq(ob) = {uo} = C but C5(ob) = {uo,ul} = MZ'

IA

Thus q(oa) = q(ob) =4 but 9, and o are not outer

conjugate. Q.E.D.

Remark 2.3.5. Let a be a signature sequence such that the
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set {i e IN; a(i) % 0} 1is finite. Let order a be the number
min{n ¢ N; a(n) % 0}. Then degree a and order a are outer
conjugacy invariants for Powers' binary shifts O, with

degree a <+« ., In fact q(oa) = (degree a)+1 and

(degree a)+(order a)+l = min{k € N ; ok(R{h R is not abelian}.
But orders and degrees are not complete outer conjugacy

invariant. This is shown by the following example.

Example 2.3.6. Let a and b be signature sequences such that
a(l) = a(3) =1 and a(i) = 0 (i ¥ 1,3), b(l) = b(2) =b (3) =1
and b(j) = 0 (j * 1,2,3). Then obviously degree a = degree b and
order a = order b. On the other hand,by Theorem 2.3.1, we have

that

124

C7(oa) M2 R @4 and C7(ob) = Mh' Thus C7(oa) is not

isomorphic to C7(ob). Hence o and 0}, are not outer conjugate.

Remark 2.3.7. In (7], M.Choda also uses the numbers
K VA n : K oy :
min{k € N ;6" (R)N\R ¥ €1} and min{k ¢ N; ¢~ (R)() R is not
abelian} for projection shifts to show that there are at least a
countable infinity of outer conjugacy classes among the
projection shifts of R with the index

A€ {Acosz(ﬂ/n); n=3,4,...1 J [4,2).



2.4, Multipliers on the rational function field over a
finite field.

Let a be a non periodic signature sequence on 2 and
G = 11°_.G, the restricted direct product of G,, G, =2,. We
i=0"1 i i 2
can realize G as various subspaces of the rational function
field F(t) over the finite field F = {0,1}. For =x = (x(i))
and y = (y(i)) in G, Let us define a multiplier

m (x,y) = (—l)EiU a(i-j)x(i)y(j)
a '’ ’

Now we shall rewrite the multiplier m, by identifying
G with the additive group ( F[t],+) of the polynomial ring F[t]
over F . Let F[[t]] be the ring of formal power series  over
. _ oo n
F . Define Qa(t) e F[[t])] by Q(t) = En=0a(n)t .

[o o]

Lemma 2.4.1. Let x,y in G = L1, Gy Gy = Z,. Define

f,5 in Flt] by f£(t) = I_,x(m)t" and g(t) = I ,oy(m)t".

Then ma(x,y) = (-l)C(f’g), where c(f,g) is the constant

term of f(l/t)g(t)Qa(t).

Proof. As Q(t) = Zizoa(i)ti e F[[t1T , we have the
following.
C(£(1/t)g()Q, (t))

CC(E, (1) (1/69)) (25,051 E)) (I a ) £9)

a(l) (x(L)y(0)+x(2)y(1)+...)+a(2) (x(2)y(0)+x(3)y(1)+...)
+..

= £;,;aE-xWy Q)
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Q.E.D.

In the above lemma 2.4.1, we have the following elementary

fact.

Lemma 2.4.2.(cf.[15]). Let F((t)) be the field of formal

power series over F. Then there is an injective algebra

homomorphism ﬂ from the rational function field F(t) into

F((t)) such that w(a) = a for a e F and 7n(t) = t.

Definition 2.4.3. For f£f,g e F(t) and Q € F((t)), let
cQ(f,g) be the constant term of w(£(1/t)g(t))Q(t). Put
my(£,8) = (-8,
Then mQ is a multiplier on (F(t),+). Define a map o on
F(t) by o(f£(t)) = tf(t). Then the map o preserves the
multiplier mQ.

Under the same notation in 2.2, we showed the following

lemma 2.2.2.

( Lemma.2.2.2) Let a:Z — {0,1} be a non-periodic signature

sequence and p € Fit] with a nonzero constant term. Then there

exists a non-periodic signature sequence b:Z —= {0,1} such that

mb(ép(x),¢p(y)) = ma(x,y) for an x,y € X.

Using the proof of this lemma 2.2.2 , we have the next lemma.
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Lemma 2.4.4. For h(t) e F((t)), p(t) = 1¥_jc.t! and the

above signature sequences a and b in lemma 2.2.2 , then

we have
the constant term of h(t)a(t)(=C(h(t)a(t)))
= the constant term of w(h(t)p(l/t)p(t))b(t) (2.4.4)
(= C(r(h(t)p(l/t)p(E))b(t))).

Proof. By the above lemma 2.2.2, we have
a(j) = qkb(j+k)+qk_1b(j+k—1)+...+q0b(j)+...+q_kb(j-k).
99 = c0c0+clcl+...+ckck, q:= c0c1+c102+...+ck_1ck,...,
9 = 5%k and Q¢ = qt(t =0,...,k).
In order to prove this lemma, it is sufficient to show the
equality for h(t) = t™(m ¢ 2).
The left hand side of(2.4.4)= C(tTa(t)) = a(-m).
The right  hand side of (2.4.4)
= C(m(t™p(1/E)p(£))b(L))
= q_kb(—m+k)+q_k+1b(-m+k-l)+...+qkb(-m—k).

Thus we get this lemma. Q.E.D.

Lemma 2.4.5. Let A be the subspace of F(t) defined by

A= {gt)/pe)™ € F(t) ; g(t) € Flt]l, n = 0,1,2,...},

where p(t) € F[t] with a nonzero constant term. Let a be a

non-periodic signature sequence. Define Q(t) = Qa(t). Let

m = mQ be the multiplier on A defined as in 2.4.3. Consider a

shift o on A defined by o(£f(t)) = tf(t). Then the induced shift o

on R = Rm(A) is exactly the non-binary shift. In particular, in
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the case of p(t) = t+l, we have the non-binary shift considered

by Price[23].

Proof. By lemma 2.4.4, we have

m. (CEE)/p()™), (g(t)/p)Y)) = m. (£(t),g(t)) (2.4.5)
4 S|

for f(t), g(t) e Fit]

In the situation of lemma 2.2, 2,

m, (£(£),8(8) = my (o (£(£)),0, (g(£)))

]

mb(p(t)f(t),p(t)g(t)).

Then

mb(f(t),g(t)) ma((f(t)/p(t)),(g(t)/p(t))).
This comes from putting f(t) = £(e)/p(t), g(t) = g(r)/p(L).

So we get (2.4.5), Q-E.D.
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3. Shifts with an integral index on a hyperfinite factor of

type IIl'

3.1. A generalization of Powers' binary shifts.

Here we shall treat shifts on a hyperfinite IIl—factor

induced by groups. Let G be a countable discrete group. Let

~

o]

Gi = G for i = 0,1,2,.... and X = I.Ii=0Gi . Let Gi be the

set of elements (Xj)jZO in X such that Xy 1 for j ¥ i. Put
Py be the canonical isomorphism from G to Gs in X. A function

a: (Z\{0}) x G x G — T is called a commutation relator

if
(1) a(n,gh,k) = a(n,g,k)a(n,h,k)

il

(2) a(n,g,hk) a(n,g,h)a(n,g,k)
(3) a(n,g,h) = a(-n,h,g)
for any n € Z2\{0}, g,h,k ¢ G.

Let Comm(G) be the set of all commutation relators. Let
o: X-—— X be the canonical shift on X. Let Bich(X,T) be the set
of all functions m: X x X—> T such that

(a) m is a bicharacter
(b) m(o(x),0(y)) = m(x,y)
(c) m(pi(g),pj(h)) =1 if i £ j

Then we have the following lemma.

Lemma 3.1.1. There is a one to one correspondence between

the elements in Comm(G) and the elements in Bich(X,T) such that
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(3.1.1)

m(x,y) = IT a(i-j;x(i),y(j)),

(i,3)
where (i,j) ¢ (NU{0}) x w(J{0}) and i > j,

a(n;g,h) = m(pi(g),pj(h))/m(pj(h),pi(g)) for n = i-j

Proof. Take an element a(n;g,h) from Comm(G) and put
m(x,y) as (3.1.1 ), Then this function m(x,y) on X x X defines an
element in Bich(X,T). We shall show this statement. At first we
shall show that (a) m is a bicharacter.

m(X,yZ) = Hi>ja(i_j; X(i))(yz)(j))

TTi>ja(i-j;X(i),y(j)Z(j))

IIi>ja(i-j;x(i),y(j))a(i-j;X(i)z(j))
= [IT1>ja(i-j;X(i),y(j))][IIi>ja(i—j;x(i),z(j))]
= m(x,y)m(x,z)
Similarly we get
m(xy,z) = m(x,z)m(y,z) for any fixed =z in X.
Secondly we shall show that
(b) m(o(x),0(y)) = m(x,y)
TT&>ja(i—j;(o(x))(i),(O(y))(j))

m(o(x),o0(y))
= IIi>ja((i—l))—(j—1); x(i-1),y(j-1))
= IIi>ja(i—j;x(i),y(j)) = m(x,y)
Thirdly we shall show that
(c) m(pk(g),pg(h)) =1 if k £ &
In fact m(p(g),p,(h)) = TIi>ja(i—j;pk(g)(i),Dﬁ(h)(j)) = 1.
Conversely take an element m from Bich(X,T). Then we shall show

that (1), (2),(3) hold for a(n;g,h) defined by

_45_



a(n;g,h) = m(pi(g),pj(h))/m(pj(h),pi(g)) for n = i-j.

Because if n=1i-j = i/-j/, then a(i-j;g,h) = a(i/—j/;g,h) by

the shift invariance of m. Using the property (a) of m,

a(i-j;gh,k) = m(pi(gh),pj(k)/m(pj(k),pi(gh))

it

m(pi(g)pi(h),pj(k))/m(pj(k),pi(g)pi(h))

m(pi(g),pj(k))m(pi(h),Dj(k))/m(pj(k),oi(g))m(pj(k),oi(h))

= a(i-j;g,k)a(i-j;h,k)
At last we shall show that (3) holds.
a(i-js;g,ha(j-ish,g)
{(m(pi(g),pj(h))/m(pj(h){oi(g)))}
{(m(pj(h),pi(g))/m(pi(g),pj(h)))}
= 1.

I

Therefore a(i-j;g,h) = a(-(i-j);h,g).

Starting from a € Comm(G), we get m & Bich(X,T) and using
this m, we get a € Comm(G). We shall show that this ; equals
to a.

a(i-j;g,h) = m(pi(g),pj(h))/m(pj(h),pi(g))

= m(p;(),p; (M) = a(i-jig,h)  if 1 > j,

= l/m(pj (h),Dl(g)) = 1/a(J"l;hsg) = a(i_j;gvh)

if i< j.
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Thus we get a = a. Starting from m ¢ Bich(X,T), we get
a € Comm(G) and using this a, we get m ¢ Bich(X,T). We shall

~

show that this m equals to m.

m(x,y) = TI; ja(i-35x(1),y ()

ITi>jm(pi(X(i)),pj(y(j)))/m(oj(y(j)),Di(X(i)))

I

IIi>jm(pi(X(i)),oj(y(j))):

, since m(pj(y(j)),pi(x(i)) =1,

m(X’Y) .

~

Thus we get m = m. Q.E.D.

Definition 3.1.2. Let u be a mapping from X, =Ui=OGi

to the unitary group U(B(H)) of B(H) on a separable Hilbert space

H. Then u is called a generator representation with respect to a

mapping a in Comm(G) if u satisfies the following
u(oi(g))U(pj(h)) = a(i-j;g,h)u(pj(h))u(pi(g)),

where o, is a canonical injection from G into éi in X and u{af

which restricts the representation u on XO to Gi into U(B(H);

is a unitary representation.

Next, we shall give a relation between projective

representations and generator representations.

Lemma 3.1.3. Let G be a countable discrete group and
X = ll:=OGi, where G, = G. Fix a commutation relator
a ¢ Comm{G) and the corresponding multiplier m € Bich(X,T) as

in lemma 3.1.1. Then there exists a one to one correspodence




between the set of all projective representations u from X

into U(B(H)) and the set of all generator representations

from X, ={J7_(6; into U(B(H)).

Proof. Take the generator representation u with respect

to a in Comm(G) from X0 into U(B(H)).

For x = (x(0),x(1),...,x(n),1,1,...) we put
W(x) = u(x(0)) ... u(x(n)). Then putting
y = (y(o),y(l), ... ,y(m),1,1,...),
a(x)uly) = ux(0) ... u(x(m)uly(0O)uly(1)) ... uly@)
= ITi>ja(i-j;x(i),y(j))u((xy)(O)) c.ooou((xy)(n))

ITi>ja(i-j;x(i),y(j))u(XY)

m(x,y)u(xy) for any x,y in X.

Thus stating from the generator representation, we gwt the
projective representation of X on the same Hilbert space.
Conversely wé shall start from the projective representation v of
X. Then for g in G, put ;(pi(g)) = v(pi(g)) , where pi(g)
in éi in X. Then we shall show that ; is the generator

representation. At first we have that

V(pi(g))y(pj(h)) m(pi(g),oj(h))v(pi(h)pj(h)).

Furthermore,for i £ j, we have that

V(pi(g))V(pj(h)) V(pifg)pj(h)),

in particular, for i j, Vv is a unitary representation.
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For i < j, we have that

V(fi(g))V(pj(h))

m(pj(h),oi(g))V(oj(h))v(pi(g)z )
IIS>ta(s-t;pj(h)(s),pi(g)(t))v(pj(h))v(pi(g))

a'"(j'—"i;h,g):l(pj (h)v(p, (g))

a(i-j;g,h)V(pj(h))V(pi(g)).

For i > j, we have that

v(p; (8))v(p; (R))

m(ps (8) 405 (0))V(py (8o (h))

TIS>ta(s-t;pi(g)(s),oj(h)(t))V(pi(g)pj(h))

a(i-33g,0)v(p;(h),p; (8))

a(i-j;g,h)m(pj(ﬁ),pi<g))§<pj<h>>v<pi(g>>

a(i—j;g,h)V(pj(h))V(Di(g))
Thus v is a generator representation.

Starting from the generator representation u with respect to
a in Comm(G) from XO into U(B(H)) and using this u, we shall
construct the projective representation u with the multiplier

~

m corresponding to a from X into U(B(H)) and using this u ,
we construct the generator representation ﬁ with respect to a
in Comm(G) from X0 into U(B(H)). Then we shall show that

ﬁ = u. By the way of the correspondence we get

Ulo;(g)) = ulp;(g)) = ulp,(g)). Thus we get @ = u.

Conversely starting from the projective representation v with
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the m ¢ Bich(X,T) and wusing this v , we shall construct the

-~

generator representation v with respect to a in Comm(G) and
using this v, we shall construct the projective representation

v with the m e Bich(X,T). Then we shall show that % = v,

By the way of the correspondence,

for x = (x(0),x(1), ... ,x(n),1,1,...),
T = vipy(x(0))...v(p (x(n)))
= vipg(x(0)) ... v(p (x(m))) = v(x).
Thus we get % = V. Q.E.D.

Before discribing our theorem we shall prepare definitions

and its examples.

Definition 3.1.4. Let M be a von Neumann algebra and a be

a shift of M. Let X be a countable discrete group and ¢ be a

shift of X. Let m be a o-invariant multiplier on X. Then
(Rm(X),om) is called a realization of (M,a) if there exists an
isomorphism 6 from M onto Rm(X) such that a6 = 6o > where o is

the shift on Rm(X) induced by o

Definition 3.1.5 (Suzuki). Let G be a countable discrete
group and put X = II:zOGi where G; = G. Let ¢ be a
homomorphism from G into X. Let I, be the subgroup generated by

{on(¢(a)); n=20,1,2,..., a e G}. A map ¢ is <called
E-homomorphism if Lo = X. A map ¢ 1is <called trivial if

~

P(G) = GO' A group G is called an ES-group if any
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E-homomorphism is trivial.

Next, we shall look at examples of ES-groups below.

Remark 3.1.6. The following groups are ES-groups.

(1) Zp’ where p is a prime number (2) Zn , where n 1is a
square free integer (3) 2 (4) Z x Z ., where n is a
square free integer (5) S3 (the symmetric group of
degree three ) (6) K"\ Zp = (K x K x ... xK) x Zp

where K is a finite simple group and p /[ #K.

Remark 3.1.7. For G = ZA = {0,1,2,3}, this is not an
ES-group. This is shown as follows.
Take x = (1,2,0,0,0,... ). Then o(x) = (0,1,2,0,0,0,...),

20(x) = (0,2,4,0,0,0,...). And we get

x+20(x) = (1,4,4,0,0,0,... ) = (1,0,0,0,... ). Therefore
x = (1,2,0,0,0,...) is a o-generator and x is not in'aB.

In the below, we shall prove the following theorem 3.1.8.

which generalize the Powers' result.

Theorem 3.1.8. Let o and B8 be shifts of a IIl—factor

/
M such that o(M)/\ M =€I and B(M’A\ M = CI. Let G and H be

ES-groups. Let (Rm(X),om) (resp. (Rn(Y),on)) be a realization of

G, = G for any 1i and

(M,a) (resp. (M,B)),where X = II;_,G., G;

=ity By

to (M,B) if and only if H is isomorphic to G wvia Y and

n

H for any 1i. Then (M,0) is conjugate

b(n;g,h) = a(n;¥(g),¥(h)) for any g,h ¢ H where a(resp. b)
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corresponds to m(resp. n).

At first we shall show the next lemma.

Lemma 3.1.9. Let M be a IIl factor. Let G and
H be countable discrete groups and put X = Ilz=OGi’ Gi z G,
Y = II?=OHi, H, = H. Let o and B be shifts of M such that

,
oM’ M=¢I and B(MY/\ M= CI. Assume that there exists a

realization (Rm(X),om) (resp. (Rn(Y),on) for (M,a) (zesp.

(M,8)), where m € Bich(X,T) (resp. n € Bich(Y,T)). Then we have

a group isomorphism from H onto G.

Proof. Since (Rm(X),om) is a realization of (M,a), we may
put R_(X) = M. By the assumption of this lemma, putting
N = om(Rm(X)), then (1) M is generated by
’RM(N) = {u e U(M);uNu* = N} and (2) on(M)/ﬂ M = N//\M = CI.
Hence by Nakamura-Takeda[l6;lemma 3], we have that M = G Kk N.
By Nakamura-Takeda[l7,Theorem],
for any w ¢ rnwéN) = {u & U(M);uNu* = N}, there exists g € G such
that w = Agag ,where ag e N. Therefore 71M(N)/N is
isomorphic to G. Similarly regarding M as Rn(Y) and N as
on(Rn(Y)), ’WlM(N)/N is isomorphic to H. Thus it is shown

that G is isomorphic to H. Q.E.D.

Lemma 3.1.10. Let o be a shift of a IIl-factor M

S
such that o(M) /Y M = CI. Let G be a countable discrete group

and put X = Il?=0Gi, where Gi = G for any 1i. Assume that
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(Rm(X), om) is a realization of (M,a), where m in Bich(X,T).

Suppose w is in the normalizer of a(i.e. w € N(a)). Then there

exist an X e X and u e T such that w = pu(x) ,where

u(x) = G(Am(x)) via an isomorphism 8 from Rm(X) onto M.

Proof. It is sufficient to prove this lemma for M = Rm(X)
and o = g By the assumption of this lemma, we can conlude
that M = G &x N , where N = a(M). From w ¢ N(a), by [17],

w = )\m(po(go))ago , where agoe N and 8g € G.

Then )\m(po(go)) e N(a), ,

since A_(py(gg))on(R (X)X (py(g))* ¢~ oX(R_(X)).  Since

Am(po(go))_lw £ N(a), we have that ago = om(wgo) e N(oa) and

wg € N0 Because om(wgo)og(Rm(X))om(wgo)*c:_oE(Rm(X)),

k =1,2, ... , multiplying 0&1,
k-l g (x)yw_ *,— o 1R (X)). Since w_ ¢ N(a), by

m go C m m g

w, o
&, o

{171, we have that w = Am(pl(gl))a and e N(a).

g, 8 g,
Continuing this process we get the following expression of w.
= n+l
w o= A (p(gg))r (o (gy)) - A (o (g ))o (wgn).
We put the following.
= nt+l
2 = sup{n; w = Am(po(go))km(pl(gl)) cee Agle (g )0 (wgh)

with g T 1 1.
We shall show that 2 is finite. So we shall assume that 2
is infinite.

Choose k so large and take an integer n > k such that

n+l . .
w = Am(po(go))Xm(pl(gl)) ce )\m(pn(gn))orn (wgh) since L is
infinite. Take y = (y(0),y(1), ... ,yk),1,1, ... ).
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Am(y)*w
n+l

= Xm(@(o),y(l),---,y(k),---))*Am(po(go)) cee Am(pn(gn))om (Wgn)
-1 -1
= vAm(po((y(O) (go)))Am(pl((y(l) (gl)) .........
-1 n+l
...... }\m(pk(Y(k) (gk)))\m(pk+1(gk+l))......)\m(pn(gn))om (wgh)7
where v ¢ T.
Thus Am(y)*w is approximated .by the linear combinations of

Am(h), h % 1. Hence wGi(Am(y)*w) = 0. Since {km(y);y e X}

is a total se of Rm(X), this is a contradiction. Hence 2 1is

finite. Thus
w = A (pn(gg))A (pq(81)) A (0, (g0 w )
m 080’/ 'n*P1'81 tee P8y m 8y,
= t
= Am(po(go))km(pl(gl)) vee A (o, (gg))o (W)
for all t 2 2+1.
Since L is finite, for t 2 1+1, Am(pt(gt)) = 1 and
only the power of O is increasing. Therefore
- C s -
Am(pl(gl))* ce Am(po(go))*w = o (w.) ¢ (\szlom(M) = CI. Thus
Am(pl(gl))* ce Am(po(go))*w =y ,where py e T. So we have
that w = ukm(po(go)) e Am(pl(gz)).
Thus w = ukm(x) , Wwhere x = (go, e gz,l,l, eee ). Q.E.D.
Proposition 3.1.11. Let o(resp. B) be a shift of a
/
IIl—factor M such that o(M) /N M = €I (resp. 8(M)</)M = CI).
Assume that o and B are conjugate, i.e., there exists
an_automorphism y of M such that Yay_l = B. Let G be an
ES-group and Eut~ X = IIi=OGi and X, =k)i=OGi’ where Gi = G
for any i, and Gi is the i-component set in X. Assume that

(Rm(X),om)(resQ. (Rn(X),on)) is a realization of (M,a) (resp.
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(M,B)) ,where m and n in Bich(X,T). Then there exist an

automorphism ¢ e AutG a character x of G into T such

that

v vy = x(grueig)

where u(x) = e(xm(x))(resg. v(x) = e/(xn(x)) via an

isomorphism 6 (xesp. e/ ) from Rm(X) (resp. Rn(X)) onto M.

Proof. For any g ¢ G, we have pu ¢ T and x ¢ X such that

Y_l(V(po(g))) = pu(x) by lemma 3.1.10. At first we shall

show that 1y and x 1is uniquely determined by this given g.

v 1(v(py(g)), then

e (uu)) = o7l uy). s w0 = v ).

If pu(x) = u/(U(y))

Regarding R _(X) in L°(R_(X),w, ) via € , {E(A_(x)); x € X }

is a CONS for L2(Rm(X),w6|). Then wE(A_(x)) = u E(A_(¥)).
/
u

Hence Xx =y and = u . Therefore we put this unique X
(resp. p) by ¢(g)(resp.x(g)). Next we shall show that ¢ is a
E-map and yx 1is a character. We shall show that ¢ 1is a
homomorphism from G into X. Take

Y vipy(8))) = x(g)ute(g)) and ¥ l(v(py() = x(W)u(e(h)),

where g and h in G. We have that

Y L(v(py(gh)) = x(gh)u(e(gh))  and
v lvogeny T o))

= x(g)u(e(g))x(h)u(e(h))

= x(g)x(h)u(d(g))u(d(h))

= x(g)x(h)m(¢(g),d(h))u(d(g)o(h)).
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Since Vv is a unitary representation of GO’
(3.1.11)

x(gh)u(e(gh)) = x(g)x(h)m(¢(g),o(h))u(e(g)e(h)).
Multiplying 6—1 to both side and taking the map & to both side
of (3.1.11),

g£(r, (¢(gh))) = g (0(g)e(h))).
Thus o(gh) = ¢(g)o(h). Therefore ¢ 1is a homomorphism from
G into X. Multiplying X to Y-l(V(po(g))) = x(glu(s(g)),

then, by using the realization,

v og(e))) = x(e)uc® o).

Since {Ok(po(g));g e G, k=20,1,2, ... } generates X,
{v(ok(po(g)); geG, k=20,1,2, ... } generates M.
Hence if {ok(¢(g)); g G, k=20,1,2, ... } does not generate
X, then

{u(ok(¢(g)); g eG, k=20,1,2, ... } does not generate M.

This contradicts the fact that {v(o(py(g)))ig € G, k e NAJ{0} )
generates M. Thus

<o™(®(G)); n = 0,1,2,... > = X. That is, ¢ is an E-map.
Since G is an ES-group, ¢ 1is trivial. Thus ¢(G) = 60‘

As is a unitary representation,

u]&o
u(d(gh)) = u(d(g)e(h)) = u(e(g))u(e(h)).
By (3.1.11)7
x(gh)u(¢(gh)) = x(g)x(h)u(e(g)lu(e(h)).
So x(gh) = x(g)x(h). Hence x is a character. Thus we get

this proposition. Q.E.D.



In the below, we shall prove Theorem 3.1.8. By
lemma 3.1.9., it is sufficient to prove the theorem for G = H.
At first we shall show the necessity of this theorem 3.1.8. By

proposition 3.1.11,

v v o; (8))V(p  (h))) = v T (b(i-338,h)v(p; (M)V(p; (8)))

b(i-j;g.h)x(h)U(pj(¢(h)))x(g)u(pi(¢(g))),

]

u(oj(¢(g)))U(pi(¢(h))) = a(j-i;Q(g),¢(h))u(pj(¢(h)))U(pi(®(g)))

and

<2

-1
(v(p; (8))v(p;(h))

x(g)u(pi(®(g)))x(h)u(oj(¢(h)))

a(i-j;@(g),¢(h))x(h)u(oi(é(h)))x(g)u(pj(@(g)))
a(i-j;®(g),Q(h))B(i—j;g,h5Y_l(V(oi(g))V(pj(h)))

Therefore a(i-j;o(g),e(h))b(i-j5g,h) = 1.
Thus b(i-j;g,h) = a(i-j;o(g),o(h)).
Conversely we shall show the sufficiency of this theorem

3.1.8. At first we put

U(é(in(x))) = E(Am(W(X))) for x € X, where ¥ satisfies the
condition of Theorem 3.1.8.
Then U 1is an isometry from L2(R (X),w. ) onto LZ(R (XD),w, ).
n 6| m Q
This fact follows from the computation below.

(e (A (¥ (x))) 8 (¥(¥))))
= (Am(W(x))Gllxm(W(y))61)
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(m(¥(x),1)8 )Im(W(y),l)é

¥ (x v(y))

m(¥Y(x),1)m(¥(y),1)($

W(X)!dw(y))

= (6W(x)|6W(y)) = éx,y , since ¥ is an automorphism of G.

On the other hand

(EOQ () [EON (¥))) = (A, (x)81 ]2, (¥)87)
(n(x,l)éx|n(y,l)6y)
~n(x,l)n(y,1)(6X|6y) = §

X,y.

Next wusing this surjective isometry U, we shall construct an
isomorphism from Rn(X) onto Rm(X). By the condition

b(n;g,h) = a(n;¥(g),¥(h)), we have

m(¥(x),¥(y)) TTi>ja(i-j;(W(X))(i)I(W(y))(j))

TI;, ;b(i-33%(1),5(3)) = nix,y).

Thus we get

n(x,y) = m(¥(x),¥(y)) for any x and y in X.
(U*Am(W(X))U)E(An(Y))

= U*Am(w(x))g(km(w(y)))

= U*m(W(X),W(y))E(Am(W(Xy)))

I

m(¥ (%), ¥ (y))E (X))
= n(x,y)EQL (1))

Putting an(x)U* = W(An(x)), Y is an isomorphism from Rn(X) on

~

to Rm(X). Then we shall show that V¥ gives the conjugacy for

9 and o . That is,putting
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YO (0)) = A_(¥(x),

Y, (o, (x)) = A _(¥(o (x))) A (o (Y (x))).

- - ~ o~ _1 - ~ /- /~_1 -
Then ) la = ome L ‘Pan‘i‘ 19 1. ‘PGI 189 Y 19 l.
/-1,-1, _ . /o-1,-1 . .
So B(B Y "6 7)) =(6Y "8 TNa . This proves the conjugacy for

o and B . Thus we have the proof of theorem 3.1.8
Q.E.D.

As a corollary of this theorem 3.1.8 , we have a Powers'
result {19].

Corollary 3.1.12 (Powers). Two binary shifts o and B

of R are conjugate if and only if their anticommutator sets

S(a) and S(B) coincide.

oo

Proof. We put X = IIi=OGi’ Gi = 22 . For S(u) and
S(B), take functions a(k;g,h) and b(k;g,h) from
(ZN\1{0}) x Z2 X 22 into {y ¢ C;Yz =1} = {1,-1}.

S(a) = {k € N; a(k;1,1) = -1 } and
S(B) = {k € N;b(k;1,1) = -1}, where 22 = {0,1}.
By the theorem 3.1.8j we have that
R = (Rm(X),om) = (Rn(X),on), where m (resp. n) correspods to
a (resp. b) and o (resp. on) corresponds to af(resp. B) 1if
and only if there exists a ¢ € AutZ2 such that
b(n;g,h) = a(n;9(g),¢(h)) for any g and h in 22. Since
Aut 2, = {1}, it is equivalent to

b(n;g,h) = a(n;g,h) for any g and h in Z,

if and only b(n;1,1) = a(n;1,1)
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if and only S(a) = S(B).
Thus we get the result of Powers as a corollary of

Theorem 3.1.8. Q.E.D.

In the below we shall look at examples.

o favi
Example 3.1.13. Take G = Z3 and X = I1G.,, G. = G.
L':O 1 1

We note that Z3 = {0,1,2} and Aut Z3 = {¢1,¢2}, where

2. Furthermore,
a(n;g,h) € {y e T; y3 = 1}. Then by the theorem 3.1.8,

(Rm(X),om) = (Rn(X),on) if and only if

b(n;g,h) a(n;®(g),®(h)), where ¢ e Aut Z3, if and only if
b(n;1,I) = a(n;1,1)

or b(n;1,1) = a(n;2,2) = a(n,1,1)% = a(n;1,1) if and only if
S(a;1) = S(B;1), S(a;exp(2mi/3)) = S(B;exp(2mi/3)),
S(az;exp(4mi/3)) = S(Bs;exp(4mi/3)),  where

S(a;y) = { k € N;uak(u) = Yak(u)u }.

Remak 3.1.14. For G = Zk,

a(n;g,h)k = a(n;k-g,h) = a(n;0,h) = 1. Therefore

a(n;g,h) e {y ¢ C;Yk = 13CT.

Example 3.1.15. Put G = Z5 = {0,1,2,3,4}. Even if

a(n;1,1) % b(n;1,1), (Rm(X),om) can be conjugate to (Rn(X),on)

whenever a(n;l,l) = b(n;l,l)2 for n € 7 ,where & = 4.

2 42 = 1 (mod 5),

This is implied by the fact that 1

22 = 32 = 4 (mod 5).
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3.2. Price type shifts with an integral index.

In this section, we shall consider the general case of 2.2.

oo}

Let n 2 2 be an integer and G = LI, _4G;, G = Z . Let o be a

canonical shift on G. Let a = (a(j))j

satisfying a(j) e Zn’ a(0) = 0 and a(-j) = -a(j)(cf.[24],
£51,161).

7 be an infinite sequence

Suppose that
(3.2.0) for all primes p dividing n, the above sequence
a = (a(j)) fails to be periodic mod p.(cf. [51,[24]).
e2ﬂi/n.

Put vy = Using the above sequence a = (a(i)), let wus

define a multiplier m, by
m (x,y) = yPi AETDEDTD g = (x(i)),y = (y(3))  in

G(cf.(2.1.1)). Then m = m, preserves o SO that o induces a

o, on Rm(G). On the other hand Bures and Yin (5] showed that

all the following statements (1),(2),(3) are equivalent.

(1) the sequence a = (a(i)) satisfies (3.2.0).

/
(2) Rm (G) is a factor. (3) om(Rm(G))f\Rm(G) = CI.

Definition 3.2.1.([51).
A shift  of the hyperfinite IIl—factor R is called an n-shift

if  1is conjugate to a shift induced from the canonical shift

= 11° Y - ;
o on G = LI,.06;» G; Z, and nondegenerate o-preserving

multiplier m on G xG.
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Definition 3.2.2.

By the same way of 2.2 , for sequences p = (pg)221 of

k(%) i - =
i=0"Cp,1% 20d Cg 0 = ¢y k) T b

and the sequence a satisfying (3.2.0), we can make shifts

polynomials pz(t) where pyf= I

O[a,p] on Rm[ A(X[p])’ We call them shifts of Price type.
a, pA
In the below, put O[a,p] = g, X[p] = X.

Proposition 3.2.3.

For a shift o of Price type, o(R)NR = CI.

Proof. We use theorem 1.2 and proposition 3.1{5]. Take =x( # AI)

in o(R)'NR. Let {ég; g € X} be the canonical orthonormal basis
of QZ(X). Then we have x§_ = deGcgég’ ngGlcglz < 4o,
For any h e o(X), (Am(h)x)de = Zgchgm(h,g)Sgh and

(g ()6, = x(py (KT8 ) = 2 ceom(g, )6, where

geG

-1
pm(g)(éh) = m(h,g )th for g,h e X. As Am(h)x = xxm(h), we
have cgm(h,g) = cgm(g,h). Thus if cg # 0, m(h,g) = m(g,h) for
any h ¢ o(X). Since x is not scalar, there exists g(# 1) in X

such that Am(g) e o(R)'nR. On the other hand, as

X = X[p] = lim Xp ,» there exists a number & such that g e X,. On
the other hand Am(g)lzz(XL) = Amﬁfg). Obviously ATZ(g) is not
scalar and Amz(g) 3 o(le(Xz)) fWRmzfXZ)‘ But
G(RmL(Xz))/\RmL(XQ) = ¢I by theorem 1.2 [5]. This is a

contradiction. Therefore o(R)V\R = CI. Q.E.D.

Next we use the following facts proved in [5].
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Proposition 3.2.4, ([5 ,proposition 1.4]).

Let G be a countable discrete abelian group and m a nondegenerate

multiplier of G and ¢ a shift of G which preserves m. Let O

be the shift of the hyperfinite IIl factor Rm(G) induced by o.

Then N(o )/T = G if and only if o, (R)'NR = C.

Using this proposition 3.2.4. , proposition 3.2.3. and

the same method of lemma 2.2.10., we get the following.

Theorem 3.2.5,

There exist uncountably many non-conjugate Price type shifts of

index n, which is not conjugate to n-shifts,of index n on the

hyperfinite IIl—factor.
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