
Title Recognition of Parallel Multiple Context-Free
Grammars and Finite State Translation Systems

Author(s) 楫, 勇一

Citation 大阪大学, 1994, 博士論文

Version Type VoR

URL https://doi.org/10.11501/3075134

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Ph.D. dissertation

TITLE

 Recognition of Parallel Multiple

Context-Free Grammars and Finite State
 Translation Systems

 supervlsor
Professor Tadao Kasami

Yuichi Kaji

January 28, 1994

Osaka U4iversity

-1-

Recognition of Parallel Multiple Context-Free Grammars and Finite
State Translation Systems

Yuichi Kaji

Abstract

 A number of computational models whose generative powers are be-
tween context-free grammars and context-sensitive grammars have been
proposed, and the classes of language generated (or accepted) by those
models have been widely studied. Among them, the class of parallel mul-
tiple context-free grammars (PMCFG), which was introduced to describe
the syntax of natural languages, is an interesting formalism.

 In the first half of this dissertation, computational complexities of

the universal recognition problems for PMCFG and its subclasses are
investigated. The universal recognition problem for a class 9 of grammars

is the one to decide, taking a grammar G E 9 and a string w as an input,

whether G can generate w or not. Characteristics of PMCFG, relations
among subclasses of PMCFG, and their significance in natural language
processing are discussed based on theoretical results.

 The latter half of this dissertation is devoted to a study on the gen-

erative powers of subclasses of finite-state translation systems (FSTS)

which was introduced as a model of transformational grammars. It is
shown that deterministic FSTS has the same generative power as that of
PMCFG. As a corollary, any yield language generated by deterministic
FSTS is recognizable in O(ne+i)-time where n is the length of an input

word and e is a constant called the degree of the deterministic FSTS.
It is also shown that there is a nondeterministic finite-state translation
system that generates an ./V'7-complete language even if very strong con-

straint, namely, monadicness and two state-boundness, is assumed on the

systems.

Keywords
formal language, parallel multiple context-free grammar, universal recog-

nition problem, finite-state translation system, computational complex-
ity

-2-

Publication List

Journal Papers (Reviewed)

 [1] Kaji Y., Nakanishi R., Seki H. and Kasami T.: "The Universal

 Recognition Problems for Multiple Context-Free Grammars and for

 Linear Context-Free Rewriting Systems" , IEICE Transaction on In-

 formation and Systems, E75-D, 1, pp.78-88 (Jan. 1992).

 [21 Kaji Y., Nakanishi R., Seki H. and Kasami T.: "The Universal

 Recognition Problems for Parallel Multiple Context-Free Grammars

 and for Their Subclasses", IEICE Transaction on Information and
 Systems, E75-D, 7, pp.499-508 (July 1992).

 [3] Kaji Y., Nakanishi R., Seki H. and Kasami T.: "The Universal

 Recognition Problem for Parallel Multiple Context-Free Grammars" ,

 Computational Intelligence, Special Issue on Papers Presented at
 TAG+ Workshop, Springer-Verlag (to appear).

 [4] Kaji Y., Seki H. and Kasami T.: "Finite State Translation Systems

 and Parallel Multiple Context-Free Grammars", IEICE Transaction
 on Information and Systems (to appear).

International Conferences

 [5] Kaji Y., Nakanishi R., Seki H. and Kasami T.: "The Computa-

 tional Complexity of the Universal Recognition Problem for Parallel

 Multiple Context-Free Grammars", Abstracts of TAG+ Workshop,
 pp.25.1-25.2, University of Pennsylvania, Philadelphia (June 1992,

 Invited).

 [61 Sections 3 and 6 of: Seki H., Nakanishi R., Kaji Y., Ando S.

 and Kasami T.: "Parallel Multiple Context-Free Grammars, Finite-
 State Translation Systems, and Polynomial-Time Recognizable Sub-

 classes of LexicaJ-Functional Grammmars" , Proceedings of 31st An-

 nual Meeting of Association for Computational Linguistics, pp.130-

 139, Ohio State University, Columbus (June 1993, Reviewed).

 -3-

Workshops

 [7] Kaji Y., Nakanishi R., Seki H. and Kasami T.: "The Universal

 Recognition Problems for Multiple Context-Free Grammars and
. for Its Subclasses", IEICE Technical Report, COMP91-25 (June

 1991).

 [8] Kaji Y., Nakanishi R., Seki H. and Kasami T.: "Parallel Multiple

 Context-Free Grammars and Finite State Translation Systems" , IE-

 ICE Technical Report, COMP92-34 (Sept. 1992).

 [9] Nakanishi R., Ando S., Kaji Y., Seki H. and Kasami T.: "On
 the Generative Capacities of Tree Translation Systems and Lexical-

 Functional Grammars", Technical Paper of FAI, Japanese Society
 for Artificial Intelligence, SIG-FAI-9302 (Feb. 1993).

-4-

Acknowledgement

 I have been fortunate to have received great support from many indi-

viduals during the course of this work. Among them, I would especially

like to thank my supervisor, Professor Tadao Kasami for his guidance

to this work, continuous support and encouragement. I am also greatly

appreciate to Professor Nobuki Tokura, Professor Kenichi Taniguchi, and

Professor Tohru Kikuno for their helpfu1 suggestions and valuable com-

ments. I am also very appreciate to Associate Professor Hiroyuki Seki for

his insightful comments and valuable discussions on this work.

 I have received valuable instructions from a number of professors of

Osaka University. I especially thank to Professors of Department of In-

formation and Computer Sciences. I also thank to Professor Aravind K.

Joshi of University of Pennsylvania, and Professor David Weir of Sussex

University for their helpful support and valuable comments.

 I would also like to express my thanks to Dr. Noriya Kobayashi who in-

spired the significance of universal recognition problems, Dr. Koji Nakano

for his kind advise and support, and Mr. Yasunori Ishihara for his helpful

comments. I also thank to Dr. Giorgio Satta of University of Pennsylvania

for his kind support and valuable information.

 I am greatly appreciate to Associate Professors Toru Fujiwara, Toyoo

Takata, Research Associates Masahiro Higuchi and Robert Morelos-
Zaragoza for their kind supports. I also thank to Ms. Machiko Uehara
for valuable assistance. I would also like to express my thanks to my col-

laborators Ms. Sachiko Ando and Mr. Ryuichi Nakanishi for their helpful

comments and valuable discussions.

 Finally, special thanks go to the entire staff of the Laboratory of In-

formation Theory and Logics, Department of Information and Computer

Sciences, Osaka University.

Contents

1 Introduction

2 Definitions
 2.1 Parallel Multiple Context-Free Grammars
 2.2 Finite State Translation Systems

3 UniversalRecognitionProblems
 3.1 GeneralCase
 3.1.1 Containment in EXP-POLY Time
 3.1.2 Basic Ideas ,

 3.1.3 EXP-P O LY time-hardness

 3.2 WithNon-ErasingCondition.......
 3.3 Bounded Dimension

 3.3.1 m-MCFGwithm>2
 3.3.2 m-PMCFGwithm>1......
 3.4 Bounded Degree

 3.5 Results and Their Implication

4 GenerativePowersofFSTS
 4.1 DeterministicFSTS............
 4.1.1 yL(DFSTS) g PM CFL
 4.1.2 PM CFL g yL(DFSTS)
 4.1.3 Recognition of yL(D FSrl'S)

 4.2 MonadicFSTS

5 Conclusions

References

-5-

6

16
16

22

26
26

26

33

39

47

51

51

61

64

66

68
68

68

74

79

80

83

85

-6-

1 Introduction

 Many researchers have investigated the "gap" between the class of
context-free languages (CFL) and the class of context-sensitive languages

(CSL) i. Their studies are motivated by two different interests; an interest

from the viewpoint of natural language processing, and an interest from

the viewpoint of computational complexity theory.

 In the field of natural language processing, it has been often claimed

that the generative power of context-free grammars (CFG) is not strong

enough to describe the syntax of natural languages; for example, dis-

continuous phrase structure such as "respectively" sentence cannot be

described by any cfg in a simple manner. An example of a "respectively"

sentence is: "A dog and cats runs and walk, respectively". In this sen-

tence, "runs" corresponds to "a dog", and "walk" corresponds to "cats".

This discontinuous and interleaving phrase structure can be modeled by a

formal language {ww 1 w E Z'} which cannot be generated by any cfg. If

one admits that the length of w in this language should be finite in natural

languages, then the Ianguage can be generated by a cfg. But a derivation

tree of the cfg will have a quite unnatural structure as compared with our

intuitive understanding on the phrase structure of respectively sentence.

 On the other hand, the generative power of context-sensitive gram-

mars (CSG) is too strong for eMcient handling. Taking these prob-

lems into considerations, a number of new grammatical formalisms of

which generative powers are stronger than that of CFG have been pro-
posed. These new grammars include head grammars (HG)[i91 , tree adjoin-

ing grammars (TAG)[25], generalized context-free grammars (GCFG)[i9].

Among them, GCFG is a natural extension of CFG, and phrase structure

is simply defined in GCFG. However, it was shown in Ref.[13] that GCFG

has generative power equal to that of type-O grammars and hence they

cannot be handled eMciently.

 To get rid of such intractability of GCFG, a subclass of GCFG, called
parallel multiple context-free grammars (PMCFG)[i3] was introduced. The

class of languages generated by pmcfg's is called parallel multiple context-

free langitages (PMCFL). MiLltiple context-free grammars (MCFG)[i3] is

 iNames of "classes" of languages, grammars, or systems are capitalized in this
dissertion.

-7-

a subclass of PMCFG, and the class of languages generated by mcfg's is

cailed multiple context-free languages (MCFL). PMCFG and MCFG can
be considered as natural extensions of CFG. For each nonterminal symbol

A of a pmcfg, a positive integer d(A) is defined and A derives d(A)-tuples

of strings. The maximum of d(A) among nonterminals A of a pmcfg G
is called the dimension of G. A cfg is a special case of mcfg such that

its dimension is one. Linear context-free rewriting systems (LCFRS) in-
troduced by Vijay-Shanker et al.[26] is essentially the same grammatical

formalism as MCFG.
 As for the classes of languages, it was shown in Ref.[13] that MCFL

properly includes CFL, and is properly included in PMCFL, which in
turn is properly included in CSL. It was also shown[26] that MCFL prop-

erly includes TAL (the class of tree adjoining languages)[ii] and HL (the

class of head languages)[i9]. Moreover, it has been already shown[i4] that

PMCFL is included in the class P of computational complexity, i.e., the

fixed-language recognition problem for any language generated by a pm-

cfg is solvable in deterministic polynomial time (Figure 1).

 Some subclasses of PMCFG and MCFG can be defined in natural
ways. Among those are classification via dimensions, and classification

via degrees. A pmcfg (mcfg) with dimension m or less is called an m-

pmcfg (m-mcfg). For each m() 1), the class of languages generated by

(m + 1)-pmcfg's ((m + 1)-mcfg's) properly includes the class of languages

generated by m-pmcfg's (m-mcfg's). The degree of a pmcfg G is defined

as the maximum of the sizes of production rules of G (see Chapter 2 for
formal definition). The class of modified head grammars[221, which were

shown[22] to have the same generative power as HG, is a proper subclass

of MCFG with dimension 2 and degree 6.

 For those newly introduced grammars, including PMCFG and MCFG,

their mathematical properties have been extensively studied. But most
of those studies focused mainly on properties of the class of "languages"

generated by those grammatical formalisms, and properties of "gram-

mars" themselves have not been studied so widely. Universal recognition

problem, which will be described later, is one of the typical problems for

grammars. To clarify computational complexity of the universal recogni-

tion problem for a certain class of grammars has great importance if one

-8-

 ./"')P
 etf-a-tt

:i:tt

:i

i'

,i,

----e-

,,,.,..

 -t-s-----

 -- ` i--l------

PMCFL

MCFL
= LCFRS

TAL=HL

.
.

--

,

,

l-

-1-t

'x,

 i-i

 :l
 :-
 t s

 i
 :-
 :t

::

tt

'

CSL

Figure
only).

The inclusion relation between CSL and P is a conjecture.

 All other inclusion relations are proper.

1: Inclusion relations among classes of languages (known results

-9-

aims to use the grammars to describe the syntaJc of natural languages.

The half of this dissertation is devoted to a study on computational com-

plexities of the universal recognition problems for PMCFG, MCFG and
their subclasses.

 Let L(G) be the language generated by a grammar G. For a class 9 of

grammars, the universal recognition problem for 9 is formally defined as

follows; take a description of a grammar G E g and a string w as an in-

put, decide whether w E L(G), Note'that the size of an input is IGI +lwl,

where IGI and lwl denote the length of the description of G and that of

w, respectively, which is different from the case of fixed-language recog-

nition (parsing) problem. A fixed-language recognition (parsing) problem

for a language L is defined as follows; take a string iv as an input, decide

whether w E L. The size of an input is lwl only; any favorable grammar

G such that L = L(G) is thought to have "built in" the algorithm. In

this case, the size of a gramrnar G is considered to be a constant and

thereby, the succinctness of the grammar does not have effect on the
complexity of the fixed-language recognition problem. If one has inter-

est in grammars as representations which explain languages, especially

their syntactic structures, then the complexity of a fixed-language recog-

nition problem is not an appropriate measure of syntactical complexity.

Fixed-language recognition is a problem for a language, while universal

recognition is a problem for a class of grammars. Table 1 summarizes

known results on the universal recognition problems for some classes of
grammars, where RLFG[i8] denotes a subclass of lexical functional gram-

mars and IG denotes the class of indexed grammars(i]. As one can see

from the table, the universal recognition problems for many well-known

classes of grammars are often intractable. From a viewpoint of compu-

tational linguistics, it is significant to find out a class of grammars such

that

(i) it has enough generative power to describe the syntax of natural lan-

 guages, and

(ii) the universal recognition problem for the class is tractable.

In addition
 -7
processmgi

the foll owing property is strongly desired for natural lang uage

-10-

(iii) fixed-language recognition problem for any lang

 grammar in that class is tractable.

uage generated by a

 To the author's knowledge, no grammatical formalisms g have been in-

troduced such that the class of Ianguages generated by 9 properly includes

PMCFL, and is properly included in both of CSL and 1), i.e. PMCFG
has the strongest generative power among the known classes of grammars

which define tractable classes of languages within CSL. Thereby it can

be concluded that PMCFG satisfies properties (i) and (iii) above. Hence

it is significant to clarify the computational complexities of the universal

recognition problems for PMCFG and its subclasses.

 In this dissertation, four completeness results on computational com-

plexities of the universal recognition problems for PMCFG, MCFG and

their subclasses are shown: The universal recognition problems for PM-

CFG (MCFG) without any constraint, for PMCFG (MCFG) with non-
erasing condition, for m-PMCFG (m-MCFG), and for PMCFG (MCFG)
with degree e are EXP-POLY time-complete, PSPACE-complete, YV'7>-
complete, and 1>-complete, respectively (see Figure 2). Characteristics,

relations among those subclasses, and their implication in natural lan-

guage processing, especially language acquisition, are discussed based on

these theoretical results.

 The other half of this dissertation investigates the gap between CFL

and CSL from the viewpoint ofcomplexity theory. It has been known that

any language in CFL can be recognized in deterministic polynomial time,
while there is an YV'P-complete language in CSL[2i], and hence one may

conjecture that there is the border between P and A/'P in the gap between

CFL and CSL. A number of computational models have been introduced
to clarify computational theoretic hierarchy in this gap. For example,

tree automata and their variants, extensions of push-down automata,
and finite-state translation systems are widely studied models for this

purpose.
 Finite state translation system (FSTS)[20] was originally introduced

as a model of transformational grammars. Later it was found to be an

interesting general computational model, and properties of FSTS and its
subclasses have been extensively investigated[6' 7' 28]. An fsts consists of a

tree transducer M and a cfg G[20, 241. A tree transducer M takes a tree as

-11-

Table 1: Known results

grammars complexity of unlvers al recognition

CFG P-complete[10]

GPSG[8] EXP-POLYtime-hard[2]

RLFG[i8] N7-hard[2]

IG[i] EXP-POLYtime-complete[23]

CSG PSPACE-complete[i2]

Table 2: The complexities of the unlversa 1 recognition probl ems

PMCFG MCFG

(withnoconstraint) EXP-POLYtime-complete

withnon-erasingcondition PSPACE-complete

m--
(boundeddimension)

YV'P-complete

form>1- form>2-

withdegreee
P-completefore)3

solvablein
O(IG121wle+i)-time

solvablein
O(IG121wle)--time

-12-

an input, starts from the initial state with its head scanning the root node

of an input. According to the current state and the label of the scanned

node, M transforms an input tree into an output tree in a top-down way.

An fsts (M, G) is a tree transducer M with its input domain being the
set of derivation trees of the cfg G[20' 24]. The output set of trees is called

the tree language generated by (M, G), and the yield language generated

by (M, G) is defined to be the set of strings obtained by concatenating

(the labels of) leaves of a tree in the tree language.

 A number of studies have been devoted to the generative powers of

FSTS and its subclasses. Engelfriet et al. summarized these results in

Ref.[7]. It has been shown that the generative power of deterministic

FSTS is properly stronger than that of finite-copying FSTS, and is prop-

erly weaker than that of (nondeterministic) FSTS. Monadic FSTS (ETOL

system in Ref.[7]) is another subclass discussed in Ref.[7], and it has been

shown to have properly weaker generative power than that of nondeter-
ministic FSTS. In Ref.[7], concept of state-bound of fsts is introduced, and

a hierarchy of generative power via state-bound is investigated. Figure 2

summarizes relations between the generative power of subclasses of FSTS,

where FSTS,, DFSTS,, and MFSTS, denote FSTS with state-bound s,
deterministic FSTS with state-bound s, and monadic FSTS with state-

bound s, respectively, and FCFSTS, denotes finite-copying FSTS with
copying-boisnd s.

 In Ref.[28], it is shown that the class of yield languages generated

by finite-copying FSTS equals to the class of LCFRS, hence MCFL. In
Chapter 4 of this dissertation, it is shown that the class of yield languages

generated by deterministic FSTS equals to PMCFL. It is also shown
that there is an !V'P-complete language in the class of yield languages

generated by nondeterministic monadic FSTS with state-bound 2. See
Figure 3 and compare it with Figure 1.

 By our results, a number of known properties of PMCFL and MCFL
will be used for the study of FSTS and their yield languages, and vice

versa. In fact, as a corollary of our results, it can be concluded that

the (fixed-Ianguage) recognition problem for the class of yield languages

generated by deterministic FSTS is solvable in O(ne+i)-time, where n is

the length of an input word and e is a constant called the degree of the

-13-

CFG =

 FSTS
 /x DFSTS MFSTS /iFCFSTS
 FSTSs
 i / XX"-iN.
 DFSTSs MFSTS s
FCFSTS s
 FSTS 2
 /]N DFSTS2 l MFSTS2
 /i l liFCFSTS2 i V i i .fDF/iTsf/FSTS--1--MF/ITs ,

FCFSTS 1

A -->B : the generative power of A

A ------>B : the generative power of A

is properly stronger than B .

is stronger than B .

Figure 2: Generative power hierarchy of subclasses of FSTS[7].

-14-

"t-

/p
DFSTS
 = PMCFL

FCFSTS
= MCFL

 = LCFRS

TAL = HL

.•" x

 MFSTS with state-bound 2 yV'T)-complete

Figure 3: Inclusion relations among classes of languages (known results

and results in this dissertation).

 CSL

 FSTS

MFSTS
(ETOL)

 language
 < if p:Ar'p)

-15-

deterministic fsts.

 -16-

2 Definitions

2.1 Parallel Multiple Context-Free Grammars

 A parallel multiple context-free grammar (pmcfg) is defined to be a

5-tuple G = (VN, VT, F, P, S) which satisfies the following conditions (Gl)

through (Gs)[i4, 22] .

(Gl) VN is a finite set of nonterminal symbols. For each nonterminal A E

 VN, a positive integer d(A) is associated, and called the dimension of

 A. The dimension of the grarnmar G is defined as max{d(A) l A E

 VN}•

(G2) VT is a finite set of teTminal symbols which is disjoint with VN. For

 a positive integer d, the set of all the d-tuples of strings over VT is

 denoted by (V.')d.

(G3) F is a finite set of functions satisfying the following conditions.

 For each f E I7, positive integers a(f), di(f) (1 S i <- a(f)) and
 r(f) are given, and f is a total function from (VT')di(f) Å~ (VT')d2(f) Å~

 •• • x (VT')da(f)(f) to (VT*)'(f) which satisfies the following condition

 (fl). Let

 Xi = (Xil,Xi2,•••,Xidi(f))

 denote the ith argument of f for 1 S i -< a(f), and let

 X :{xij 11 Si <- a(f),1 S j' <- di (f)}. (1)

 (fl) For 1 S h S r(f), the hth component of f, denoted by f[h] is

 defined by a concatenation of some terminal strings in VT' and

 some variables in X. That is, a nonnegative integer vh(f) is

 defined and

 f[h] [tni, hi2, . • • , tna(f)] = ahoZhiahiZh2 ' ' ' Zhvh(f)ahvh(f), (2)

 where ahle E VT' (O SI k f{ vh(f)) and ihk E X (1 fE{ k s{ vh(f)),

(G4) P is a finite set of productions of the form A - f[Ai, A2, • • • , Aa(f)]

 where A,Ai,A2,...,A.(f) E VN, f E F, r(f) = d(A) and di(f) =
 d(Ai) (1 S i g a(f)). If a(f) = O, then f has no argument and f

-17-

 equals to a tuple of strings over VT. A production with a function

 f such that a(f) = O is called a terminating production, otherwise

 it is called a nonterminating production. A terminating production
 A - f with f = a E (Vi)'(f) may be denoted by A - d.

(G5) S E VN is the initial symbol, and d(S) = 1.

The class of pmcfg's is denoted by PMCFG.
 The language generated by a pmcfg G = (VN, VT, F, P, S) is defined
as follows. For A E VN, define LG(A) {; (VT')d(A) as the smallest set

satisfying the following two conditions:

(Ll) If there is a terminating production A . f and f = d E (VT")d(A),

 then a E LG(A).

(L2) If A -. f[Ai,A2,...,A.u)] E P and ai E LG(Ai) (1 S i S
 a(f)), then d = f[di,a2,...,a.(f)] E LG(A), We say that A -ÅÄ
 f[Ai, A2, . . . , A.(f)] is the last production applied to obtain d.

Let L(G)SLG(S). (Note that d(S) = 1 by (G5) of the definition, hence

L(G) is a set of strings.) L(G) is called the parallel multiple context-

free language (pmcfl) generated by G. The class of pmcfl's is denoted by

PMCFL.
 If all the functions of a pmcfg G satisfy the following condition (M),

then G is called a multiple context-free grammar (mcfg), and the language

generated by G is called the multiple context-free language generated by

G. The class of mcfg's and the class of mcfl's are denoted by MCFG and

MCFL, respectively.

(f2) For each variable xi2- in X, the total number of occurrences of xi2• in

 the right-hand sides of (2) from h = 1 through r(f) is at most one.

If some variable occurs in the right-hand side of (2) more than once, or

occurs in the right-hand sides of (2) for different h's, the string substituted

for the variable will be copied more than once. It has been shown that
such copy operations increase the generative power of grammars[i3]i.e.

MCFL f PMCFL. Condition (f2) inhibits these copy operations.

-18-

Example 2.1: Let Gi = (VN, VT, F, P, S) where VN = {A, B, S}(d(A)
d(B) = 2,d(S) = 1), VT = {a, b, c, d}, 1' = {f, gA,gB,h} and the rules

P are

 ro : S --ÅÄ f[A,B] where f[(xn,xi2),(X2i,X22)] =XnX2iXi2X22

 ri : A - gA [A] where gA [(xi, x2)] = (axi, cx2)

 r2 : B - gB [B] where gB [(xi, x2)] = (bxi, dx2)

 r3: A.h where h=(6,6)
 r4 : B- h.

m

Note that Gi is an mcfg since no variable occurs more than once in the

right-hand side of the functions. The language generated by Gi is defined

as follows: By rule T3, (e,e) belongs to LG(A). Substituting (E,e) for A in

the right-hand side of ri, we obtain (a, c) E LG(A). Repeating application

of ri, (aM,cM) E LG(A) for m) O. In a similar way, (b",d") G LG(B)

for n ;) O. By rule ro, LG(S) = {aMb"cMd"lm,n) O} and this is the

language generated by Gi. O
Example 2.2: Let G2 = (VN,VT,I7, P, S),VN =
{f, f.} and the rules in P are

{S},VT = {a},I7 =

ro : S- f[S] where f[x] = xx
ri: S --ÅÄ f. where f. = a.

G2 is a pmcfg but is not an mcfg since the function f does not satisfy
the condition (f2). The language generated by G2 is {a2" ln) O}, which

cannot be generated by any mcfg (see Lemma6 of [14]). a

 Hereafter, we will define subclasses of PMCFG and MCFG. If all the
functions f of a pmcfg (resp. mcfg) G satisfy the following condition (f3),

then G is a pmcfg with non-erasing condition (resp. mcfg with non-erasing

condition). The class of pmcfg's (mcfg's) with non-erasing condition is

denoted by NEPMCFG (NEMCFG).

(f3) Let X be defined as in (1). Each variable x E X appears at least

 once in the right-hand side of (2) for some h (1 S h S r(f)). B

 In a mcfg with non-erasing condition, each variable appears exactly

once in the right-hand side of (2) for some h. This is a same formalism to a

-19-

subclass of linear context-free rewriting systems[26] , a subclass which deals

with only tuples of strings. From a grammatical viewpoint, NEPMCFG
(NEMCFG) is a proper subclass of PMCFG (MCFG). But it has been
already shown, as in the following lemma, that condition (f3) does not

weaken the generative power of PMCFG (MCFG)I22].

Lemma 2.1[221: For a given pmcfg (resp. mcfg), we can construct a

weakly equivalent pmcfg (resp. mcfg) with non-erasing condition.

Sketch of Proof: The idea behind the construction is similar to that of

6-rule elimination procedure of a context-free grammar. For example,

assume that there is a production A . f[Bi,...,B.] and xij does not

appear in the right-hand side of (2). Then a new nonterminal B:• with

d(B;•) = d(Bi) - 1 is introduced, and this production is replaced by A -

f'[Bi,...,B;•,...,B.] where f' is identical to f except that the dimension

of the ith argument is smaller by one than f. Furthermore, for each

production whose left-hand side is Bi, add a new production whose left-

hand side is B;• and whose function in the right-hand side is defined by

deleting 1'th component ofthe original one. See Lemma 1 of Ref.[14] for

the formal proof. D Next, pmcfg's (mcfg's) with bounded dimension is introduced. For a

positive integer m, if the dimension of a pmcfg G is not greater than m,

then G is called an m-pmcfg. The class of m-pmcfg's is denoted by m-

PMCFG. In other words, m-PMCFG is a subclass of PMCFG such that
the dimension of each grammar in the class is equal to or smaller than

the previously given constant m. Note that m is treated as a constant

in m-PMCFG. For a pmcfg G in the class of (unconstrained) PMCFG,

there is a number m which happens to be the dimension of G. But in
general, m is in O(IGI) and we cannot treat it as a constant in this case.

For m) 1, m-PMCFG is a proper subclass of m + 1-PMCFG, and the
generative power of the former is properly weaker than the latter. In a

similar way, m-MCFG is defined.
 The last subclass we introduce is the class of pmcfg's with bounded

degree. (Refer to the expression (2) of (fl)). The degree of a function f

 r(f)
is defined as 2(vh(f) + 1), which equals to the total number of variables

 h=1

-20-

appearing in the right-hand side of f plus the dimension of f. If the max-

imum degree among the functions in F of G is e, then G is called a pmcfg

with degree e. In the same way, an mcfg with degree e is defined. The
class of pmcfg's (mcfg's) with degree e is denoted by PMCFG. (MCFG,).

Note that in these classes of grammars, a degree e is treated as a constant.

For e 2 1, PMCFG, is a proper subclass of PMCFG.+i, but the relation

between the generative power of them is in general not known.

 We note that if a degree of a grammars is bounded, then a dimension

of the grammars is also bounded, but not vice-versa. Indeed, PMCFG,

is a subclass of e-PMCFG and hence the dimension of each grammar in

that class can be treated as a constant. But in m-PMCFG, there is a

grammar with an arbitrary large degree and hence it cannot be treated

as a constant in the class.

 The mcfg Gi introduced in Example 2.1 has dimension 2 and degree

5 (rule ro has the maximum degree) and the pmcfg G2 in Example 2.2

has dimension 1 and degree 3.
 The size of a pmcfg G = (VN, VT, "F", P, S) is defined as follows. The

size of a function f E Iii, denoted by lfl, is defined as the sum of the

lengths of the right-hand sides of (2), that is,

 r(f) vh(f)
 lfl22(vh(f) + 2 lahkl)•
 h=1 le =O
The size of a rule r : A - f[Ai, A2,.. ., A.(f)], denoted by lrl, is defined

to be a(f) +2 (each of A,Ai,A2,. . . , A.(f) and f counts for one). Define

the size of G, denoted by IGI, to be the sum of IVNI,IVTI, 2 Ifl and

 fEl7
2lrl•
rEP
 Lastly, a derivation is defined. Let G = (VN, VT, F, P, S) be a pmcfg.

For a nonterminal symbol A E VN and k (1 S k S d(A)), the kth compo-
nent ofA is represented by a symbol (A[k], v), where v is an index to distin-

guish distinct "instances" of the same nonterminal symbol A in a deriva-

tion. Define C(VN)2{(A[k],v) l A E VN,1 S k g d(A) and v) O}. Each

(A[k],v) E C(VN) is called a component symbol of A and v is called the

index of (A[k],v). Let (A,v) denote ((A['],v),(A[2],v),...,(A[d(A)],v)) E

C(VN)d(A) for AE VN and v }) O.

-21-

 Assume that a is a tuple of strings over VT U C(VN) and there exists
v) O and A E VN such that (A[kl,v) appears at least once in a for some

k (1 S k S d(A)). Let r : A --ÅÄ f[Ai,A2,...,A.(f)] be a production in

P. Let 6 denote the tuples of strings obtained from dv by replacing each
(A[h],v) (1 s h s a(f)) (if exists in a) with f[h][(Ai,vi),(A2,v2),•••,

(A.(f), v.(f))] where vi's (1 (i S a(f)) are distinct nonnegative integers

such that no (B[j],vi) does not appear in d for any B E VN and]' >- O,

that is, vi's are newly introduced indices which are not used in a. Then,
a directly derives 6 (by applying production r to(AIhl,v)'s), denoted by

d=>6•
 Let => denote the refiexive transitive closure of =>. If a=>6, then a
is said to derive fi. If G is understood by context, => and 5 are written
 CGas => and 5, respectively.

 It is easily shown that, for each A E VN, a E (VT')d(A) and v }ll O,

 d E LG(A) iff (A,v) 2•a.

Example 2.3: Consider mcfg Gi defined in Example 2.1. Then,

 (S['],v) => (A[i],vo)(B[i],vi)(A[2],vo)(B[2],vi)

 => a(A[il,v2)(B[i],vi)c(A[2],v2)(B[2],vi)

 => aM(A[ij,v.+i)(B(i],vi)cM(A[2],v.+i)(B(2],vi)

 => aM(B[i),vi)cM(B[2],vi)

 => aMb(B[i],vm+2)cMd(B[2],vm+2)

 -ee
 => aMb"(B[i],v.+.+i)cMd"(B[2],vm+n+i)

 => ambncmdn

for any m,n () O) and v,vo,...,v.+.+i (2 O). Since the indices are
redundant for this derivation, the derivations are written without indices

for simplicity. For example, the above derivation is written as

 s[il } A[i]B[i]A[2]B[21

 => aAIi]BIiJeAl2]B[2]

 -22-

 => aMA[1]B[1]cMA[2]B[21

 => aMB[1]cMB[2]

 => aMbB[i]cMdB[2]

 .> ambnB[1]cmdnB[2]

 => aMbncmdn.

 D

2.2 Finite State Translation Systems

 A set Åí of symbols is a ranked alphabet if, for each a E Åí, a unique

non-negative number p(a) which is called the rank of a is associated.

Define 7rx as the smallest set such that;

 e If p(a) =O for aE Åí, then aE 7rx.

 e If p(a) = n (}il 1) for a E Z and ti,...,t. E 7rÅí, then t =
 a(ti,...,t.) E Crx. a is called the root symbol, or shortly, the root

 of t.

Hereafter, a term in 7rÅí may be called a tree.

 Let G = (VN, VT, P, S) be a context-free grammar (cfg) where VN, VT,

P and S are a set of nonterminal symbols, a set of terminal symbols, a

set of productions and the initial symbol, respectively. A derivation tree

of the cfg G is a term defined as follows.

(Tl) For every a E VT, a is a derivation tree of G.

(T2) Assume that there are a production T : A . Xi•••X. (A E
 VN,Xi,•-•,Xn E VN U VT) in P where r is the label of this produc-

 tion, and n derivation trees ti,...t. whose roots are labeled with

 ri,...,r., respectively, and

 e if Xi E Viv, then ri (1 f{{ i -< n) is the label of a production

 ri : Xi . •••, whose left-hand side is Xi, and

 e if Xi E VT, then ri =ti = Xi.

 -23-

 Then r(ti, . . . , t.) is a derivation tree of G.

(T3) There are no other derivation trees.

Let R(G) be the set of derivation trees whose root is the label of a pro-

duction of which left-hand side is the initial symbol S. Remark that if

we take 2 = {the labels of productions in P} U VT, and define p(r) = n

for r:A- Xi•••X. EP and p(a) =O for aE VT, then E] is a ranked
alphabet and 7e(G) ! 7rÅí.

 A tree transducer is defined in Ref.I2e] as a generalization of a gener-

alized sequential machine, and it defines a mapping from trees to trees.

But in this paper, since we are mainly interested in a string language
generated by it, a "tree-to-string" version of transducer defined in Ref.[7]

is reviewed. For sets (? and X, let

 ([?[X]Åí{q[x] 1 q E (?,x E X}.

 A tree-to-string transducer (yT-transducer or simply transducer) is

defined to be a 5-tuple M = (Q,Åí,A, qo,R) where

 e Q is a finite set of states,

 e Åí is an input ranked alphabet,

 e A is an output alphabet,

 e qo E (? is the initial state, and

 e R is a set of rules of the form

 q[a(xl, , . . , x.)] - v

 where g E (?,a E 2,p(a) =n and v E (A U (?[{xi, •••,xn}])'•

If different rules in R have different left-hand sides, then M is called
deterministic[7].

 A configuration of a yT-transducer is an element in (A U Q[7rx])'.

Derivation of M is defined as follows. Let c = aiq[a(ti,.••, tn)]a2 be a

configuration where ai,a2 E (A U (?[7TÅí])', g E (?, a E Åí, p(o) = n and

ti,...,t. E Tx. Assume that there is a rule q[a(xi,...,x.)] - v in R,

-24--

and v' can be obtained from v by substituting ti,...,tn for xi,•••,xn,
respectively, then c => aiv'a2. Let 5 be refiexive and transitive closure of

=>. For configurations c and c', ifc=ll}c', then c derives c'. Ifthere is no c' c

A* such that ci5c', then c derives no output. For example, if there is no

rule whose left-hand side is g[a(xi, . . . , xn)], then c = aiq[a(ti, • • • , tn)]a2

derives no output.

Example 2.4[20]: Let M = (Q, Z, A, qd, R) be a yT-transducer where

 Q == {qd, qi}

 2= {c, y, +, •} (p(c) = p(y) = O, p(+) == p(•) = 2)

 A=ZU {O, l}

and the rules in R are:

 qi [c] .c qi [y] -y
 qi [+(xl, x2)] - gi [xl] + qi [x2]

 qi[•(xl,x2)l - gi[xl]•qi[x2]

 gd [c] -O gd [y] .1
 gd [+(xl, x2)] - qd [xl] + qd [x2]

 qd [•(xl, x2)] - qd [xl] • qi [x2] + gi [xl] • gd [x2]•

Intuitively, an element in TÅí represents an arithmetic expression, and

state gd and qi represent "differential" and "identity", respectively. Let

t = qd [• (y, +(c, y))] and t' = qd [y] • qi [+ (c, y)] + qi [y] • qd l+ (c, y)], then

t => t', which corresponds to ili(y• (c+ y)) = jliy' (C+ Y) +Y' ili(C+ Y)•

 B

 A tree-to-string finite state translation system (yT-fsts, or fsts for

short) is defined by a yT-transducer M and a cfg G, written as (M, G) 2.

The class of fsts' is denoted by FSTS.

 Define yL(M,C), called the yield langzLage generated by a yT-fsts

(M, G), as
 yL(M, G)2{t E A' l]t' E 7Z(G), go[t']=ll;'t}

 2In Ref.[20], a yT-fsts is defined by a yT-transdueer and a recognizable set of trees.
In Ref.[24], it is shown that the class of recognizable sets of trees is equal to the class

of sets of derivation trees of CFG. Hence a yT-fsts is defined by a yT-transducer and

a cfg in this paper.

-25-

where A is an output alphabet and qo is the initial state of M. Note that

7?)(G) is a set of derivation trees of the cfg G and hence recognizable
set of trees. An fsts is called deterministic[7] if the transducer M is

deterministic. The class of deterministic fsts' is denoted by DFSTS. We

use a terminology "nondeterministic" when we emphasize that we don't

assume determinism of the transducer.
 Next, a state-bound of fsts and finite-copying FSTS[7] are defined. Let

(M, G) be an fsts with an output alphabet A and an initial state qo. Let

t E R(G) and consider a derivation a : qo [t]Siv E A'. Let t' be a subtree

of t. Now, delete from the original derivation a all the derivation steps

which operates on t'. This leads to the following new derivation which

keeps t' untouched:

 d : qo [t]5wiqi,[t']w2 ' ' ' wnqi. [t']Wn+i

where wi E A' (1 S i -< n+ 1).

 The state seguence oft' in derivation a is defined to be <qi,,•••,qi.>•

The derivation a has a state-bound s if, for each subtree of t, the number

of different states in the state sequence is at most s. a has a copying-

bound k if, for each subtree of t, the length of its state sequence is at

most k. An fsts (M, G) has a state-bound s,if for each w E yL(M,G),
there is a derivation tree t E R(G) such that the derivation qo [t]5w has a

state-bound s. An fsts (M, G) is a finite-copying fsts if there is a constant

k such that for each w E yL(M, G), there is a derivation tree t E 7?t(G)

such that the derivation go[t]=5w has a copying-bound k. The class of

finite-copying fsts' is denoted by I7CIiiSTS.

 An fsts (M,G) whose second component G is a regular grammar is
called an ETOL system (see Ref.[7]). In this paper, we say a monadic fsts

for an ETOL system. The class of monadic fsts' is denoted by MFSTS.

 Figure 2 shows relationship among the generative power of subclasses

of FSTS. In the figure, FSTS,, DFSTS, and MFSTS, denote the classes
of each fsts' with state-bound s, respectively. For FCFSTS, the subscript

denotes its copying-bound. An arrow from a class A to another class B

means that A has properly stronger power than B.

-- 26-

3 UniversalRecognitionProblems

3.1 GeneralCase

 In this section, the universal recognition problems for PMCFG and

for MCFG are both shown to be EXP-POLY time-complete, where

 EXP-POLY time :"={L 1 L is solvable in deterministic O(cP(")) time

 for some c> 1 and some polynomial p,
 where n is the size of an input }.

Since MCFG are a subclass of PMCFG, it suMces to show that the prob-

lem for PMCFG belongs to EXP-POLY time, and that the problem for

MCFG is EXP-POLY time-hard.

3.1.1 ContainmentinEXP-POLYTime
 In this section,, the universal recognition problem for PMCFG is

shown to belong to EXP-POLY time. An algorithm which solves the
problem for MCFG are presented first, and it is extended for PMCFG.
 First, atable NULL(A,(ki,k2,...,k.)) (A E VN,1 Sl ki < k2 < ''' <

k. S d(A)) is computed to satisfy

 e NULL(A,(ki,...,k.)) =1 if there is some (wi,...,wd(A)) E LG(A)

 such that wle, = wk, =•••= wk. =e, and

 e NULL(A,(ki,..., k,)) = O otherwise.

If NULL(A, (ki, k2, . . . , k,)) = 1 then (ki, k2, . . . , k.) is called a nullable

combination for A.

 A simple way to check whether G generates w or not is to simulate

derivation of w on a working tape nondeterministically. However, such a

method may require a working tape of size exponential to IGI since there

may exist a string w such that, in every derivation (S[i],O)= >w, a length

of a string on the tape once grows exponential to IGI due to component
symbols (AIki],v),(A[k2],v),..., and (A[k'],v) such that (ki,k2,•..,k.) is

a nullable combination for A. If the table NULL is precomputed, it
can be decided whether w E L(G) or not with a polynomial bounded

 -27-

working tape by referring the table NULL and deleting directly arbi-
trary component symbols (A[ki],v),(A[le2],v),...,and (A[k'l,v) such that

(ki, k2,•••,k.) is a nullable combination for A.

Lemma 3.1: The table NULL can be constructed in EXP-POLY time.

Proof The table can be constructed as follows:

 Step 1. If a terminating production A - (ai, . . . , cifd(A)) is in P, then

 for every tuple (ki,...,k.) such that 1 S ki < ••• < k. S d(A) and

 akj = e (1 :Sl j -< r), set the value of NULL(A, (ki,..., k.)) to be 1.

 The others are set to O.

 Step 2. If a nonterminating production A . f[Ai,...,A.(f)] is in P

 and NULL (Ai,(kii,...,ki.)) = 1 for 1 f{I i :E{ a(f), then let

 th = (wi,..., wd(A)) be the tuple obtained by replacing xij (1 S

 i -< a(f),j' E {kii, ...,ki.,}) with e in the right-hand side of the

 definition of f (see (2) in section 2.1). For every tuple (kl,...,k;)

 such that 1S kl <•••< k; S d(A) and wle1 =•••,wk; =e, set the
 value of NULL(A,(kl, ...,k;)) to be 1. This step is applied to all

 productions and all entries of the current table simultaneously.

 Step 3. Repeat Step 2 until the table is not changed.

 We assume that the read/write operation for a single entry of the

table NULL, and the evaluation of the value of f E F for given ar-

guments can be perfomed as elementary operations. Let m be the di-

mension of G. Since the number of the terminating productions is at
most iGI and the number of the subsets of {1,2,...,d(A)} is at most
2m E O(2ICI), Step 1 takes O(IGi21Gl) time. Consider Step 2. The num-

ber of the nonterminating productions and that of the nonterminal sym-

bols in the right-hand side of each production are both O(IGD. For each

Ai (1 S i S a(f)), there are at most 2M E O(21Gl) entries (Ai,(•••))

whose values are equal to 1, and for a single value th of f in Step 2, the

number of entries to be set to 1 is at most O(21Gl). As a whole, Step 2

takes O(IGI Å~ (21GI)IGI Å~ 21G[) = O(IG121G12'IGI) time. Finally, this table

has IVNI2M entries, and hence Step 2 loops at most IVNI2M times. That
is, the table can be constructed by O(IVNI2m Å~ IG121G12+IGI) = o(clGl2)

-28-

elementary operations for some c

constructed in EXP-POLY time in

> 1.
IGI

It follows that the table can be

o

 Next, a nondeterministic algorithm is presented which decides whether

w E L(G) for an mcfg G and string w with the table NULL and a poly-

nomial space bounded working tape.

Algorithm 3.1:
 input : an mcfg G= (VN, VT, "Fi, P, S) with the table NULL

 and a string w.
 Try to generate w by simulating a derivation from the initial symbol

nondeterministically on a working tape as follows.

 Step 1. Write the component symbol (S[il,O) of the initial symbol S on

 the working tape.

 Step 2. Execute one of the following (a) and (b).

 (a) Choose a rewriting production A . f[Ai,A2,.. .,A.(f)] non-
 deterministically, and apply it to component symbols (A[h] , v)'s

 (1 S h S d(A)) on the tape. Remark that, since G does not
 necessary satisfy the non-erasing condition, some newly intro-
 duced component symbols (Al•k], vi) might be lost to the tape.

 If the length of the string on the tape exceeds mlwl + lfmaxl,

 where lf...l denotes the maJcimum size of the function in F,

 then halt.

 (b) Choose component symbols (B[lei],v), (B[k2],v), ..., (B[ler],v)

 nondeterministically, with (B[Jl,v)'s being lost to the tape for

 each j' (1 S j' <- d(B) and 2' l ki for anyi(1 Sig r)).
 If (ki,k2,...,k.) is a nullable combination for B, then erase

 the component symbols and shift the other symbols to fi11 the

 blanks.

 Step 3. Repeat Step 2 until there exists no component symbol on the

 tape.

 Step 4. If the string on the tape equals to w, then accept w. O

-29-

 Next, it is shown that

 Algorithm 3.1 accepts w iff w E L(G).

 The only if part is obvious and if part will be shown. It sufiices to

show that, for w E L(G), Algorithm 3.1 can generate w by using only
mlwl + lfmaxl symbols on the tape. First, following proposition is shown.

Proposition 3.2: Assume that (S[i],O)5ct=3}iv (ct E (VT UC(VN))', zv E

VT') and lal g mlwl + If...1. Also assume that, after executing Step 2

finite times, Algorithm 3.1 reaches a state such that a is on the working

tape. Then, there exists a sequence of moves from this state to the
accepting state such that the number of symbols on the working tape is

always mlwl + lfmaxl or less.

Proof. The lemma is shown by the induction on the length of the deriva-

tion cx=!i>w. For the basis, the lemma holds clearly since a == w and

Iwl Sll lwl + lfmaxi•

 Suppose that the lemma holds for all derivations 55w of length
T (T }r O) or less, and consider a derivation a l5w of length T + 1.

 First, assume lal S mlwl. As a=>w is of length 1 or more, there is

some production r : A - f[Ai,A2,...,A.(f)] and a' E (VT U C(VN))'
such that a => a' by the application of r and a'l5>w. Since the size of the

right-hand side of this production is at most lfmaxl, la'1 S mlwl + lfmaxl•

By executing (a) of Step 2 and applying r, a' is generated on the tape. As

a'5w is of length T, by the inductive hypothesis, there exists a sequence

of moves to the accepting state such that the number of symbols on the
working tape is always mlwl + lfmaxl or less•

 Next, assume mlwl < lal S mlwl + lf...1 and let it be the number of

terminal symbols and i. be the number of distinct indices of component

symbols (not the number ofcomponent symbols) appearing in a. Observe

that i. > lwl - it since mlwl < lal S it + mi.. Since it terminal symbols

out of lwl have been generated, the other lwl - it terminal symbols must

be generated from i. nonterminal symbols. Hence, there exists at least
in - (lwl - it) > O distinct indices v's such that every (BI•.k],v) in a

derives e. Let u be any of such indices and a" E (VT U C(VAr))' be the
string obtained from a by replacing all (Bl•.k'],u)'s in a with e. It can be

-30-

easily shown that there is a derivation a=!>a"=l}>zv of length T + 1 (apply
productions to erase (Bi•.k'],u)'s first). By executing (b) of Step 2, a" can

be obtained from a on the tape and ld'1 < lal -< mlwl+lfmaxl• As a"=!;w

is of length T or less, by the inductive hypothesis, from this state there

exists a sequence of moves to the accepting state such that the number

of symbols on the working tape is always mlwl + lf...1 or less. Hence,

the proposition holds. Z
 Assume that w E L(G). Then (S[i],O)=l3}w. At the first time Step 2

is executed, there is only one symbol (SIi],O) on the tape. Hence, let-

ting w = a, Proposition 3.2 implies that Algorithm 3.1 generates w and
accepts it by using at most mlwl + lf...1 symbols at a time on the tape.

 Next, it must be considered how the symbol should be represented
upon the tape. Let n = IGI+ewl be the size of an input. As the number of

distinct terminal symbols is at most n, they can be represented in O(log n)

size per one symbol. For each component symbol (A[k],v) (1 S k S
d(A),v) O), information on (1)A, (2)k, and (3)v is kept on the tape. (1)

and (2) can be represented in O(log n) space, and (3)v can be represented

in O(log(mlwl + lf...1)) space since at most mlwl + lf...1 symbols are

on the tape simultaneously by Proposition 3.2. Hence, one component
symbol can be represented in O(log n + log n + log(mlwl + 1 fmax1)) space.

As m, lwl and lf...I are all O(n), O(logn+logn+log(mlwl +If...I)) =

O(logn). The number of the cornponent symbols appearing on the tape

is O(mlwl + lf...1) = O(n2). Therefore the total size needed upon the

tape is O(n2 logn).

 The following lemma can be obtained from Lemma 3.1 and the anal-
ysis of Algorithm 3.1 described above.

Lemma 3.3: The universal recognition problem for MCFG belongs to

EXP-POLY time.

Proof. Given an mcfg G and a string w, the table NULL can be con-

structed in EXP-POLY time by Lemma 3.1. Algorithm 3.1 decides
whether 2v E L(G) by using zv,G and the table NULL (on the read-
only input tape) and an O(n21ogn) bounded working tape where n =
IGI + lwl. Since the size of NULL is O(n2"), the size of the input tape is

O(n2"). It can be easily shown in a similar way to the proof of Savitch's

-31-

theorem[9] that there exists a deterministic Turing machine Mi which

decides whether w E L(G) with the same read-only input tape as Algo-
rithm 3.1 and an O(n4log2n) bounded working tape. From Mi, a non-
deterministic Turing machine M2 which accepts L(G) within o(dn`iogn2)

time can be constructed in a similar way to the proof of Theorem 12.10(b)

 Next, Algorithm 3.1 is extended for PMCFG. For PMCFG there may
exist a pmcfg G and a string w such that in every derivation of w, the
number of occurrences of an identical component symbol (A[h],v) on a

tape grows exponentially to lwl by copy operations, and lastly, (A[h],v)

derives e. If above Algorithm 3.1 is extended for PMCFG in a straight-

forward way, the size of a working tape needed can not be bounded by

any polynomial.

 To extend the algorithm for PMCFG, a special treatment is needed
for the component symbols which are copied, and derive 6 at last. Let
(A[h],v) be such a component symbol. Note that the number of the
occurrences of (A[h],v) makes no infiuence on the string to be generated

on the tape since (A[h],v) will derive s.

 By using this property, a derivation can be simulated as follows. First,

choose a component symbol (A[h] , v) nondeterministically. Intuitively, the

chosen symbol (A[h],v) is "guessed" to derive 6. Mark one (A[h],v) and

erase the other occurrences of (A[h],v) (if there is on the tape). All

the symbols derived from the marked symbol will be also marked. If a

terminal string is derived from a marked symbol, which contradicts the

"guess", then reject the input and halt. If al1 marked symbol derive e,

then it turns out that the nondeterministic choice was correct and the

terminal string generated on the tape can be derived by G.

 The following Algorithm 3.2 is obtained by modifying Algorithm 3.1

in such a way that the number of component symbols can not be greater

than m + lwl times as many as the number of the distinct indices.

Algorithm 3.2:
 input : a pmcfg G= (VN, VT,F, P, S) with the table NULL

 and a string w.

 -32-

Step 1. Writethe component symbol (S[i],O) ofthe initial symbol S on

 the working tape (and do not mark it),

Step 2. Execute one of the following (a),(b) and (c).

 (a) Choose a rewriting production A - f[Ai, A2, . . . , A.(f)] non-

 deterministically, and apply it to component symbols (A[h] , v)'s

 (1 sl h f{ d(A)) on the tape. If (A[h],v) (1 :{ h f{ d(A)) is

 marked, then mark to all the symbols derived from (A[h], v). If

 a terminal symbol is derived from marked component, or the
 length of the string on the tape exceeds (m + lwl)lwl + lfmaxl7

 where lf...1 denotes the maximum size of the function in F,

 then halt.

 (b) Choose component symbols (B[ki],v), (Blk2],v), ..., (B[krl,v)

 nondeterministically, with (B[J'],v)'s being lost to the tape for

 each 2' (1 S 2' <- d(B) and 2' ; ki for anyi(1 SiS r)).
 If (ki,k2,...,k.) is a nullable combination for B, then erase

 the component symbols and shift the other symbols to fill the

 blanks.

 (c) Choose a component symbol and mark it. If there are other

 occurrences of the symbol, then erase them.

Step 3. Repeat Step 2 until no component symbol remains on the tape.

 Step 4. If the string on the tape equals to w, then accept w. O

 The next proposition claims that, for w E L(G), Algorithm 3.2 can

generate w by using only (m + Iwl)lwl + lf...1 symbols on the tape.

Proposition 3.4: Assume that (S[i],O)5aiw (a E (VT UC(VN))',w E

VT') and lal S mlwl + If...1. Also assume that, after executing Step 2

finite times, Algorithm 3.2 reaches a state such that a is on the working

tape. Then, there exists a sequence of moves from this state to the

accepting state such that the number of symbols on the working tape is

always (m + lwl)lwl + lf...l or less.

-33-

Proof This is a PMCFG version of Proposition 3.2, and the proof is
similar to that of Proposition 3.2. The difference between them are

 e mlwl in Proposition 3.2 is replaced by (m+ Iwl)iwl, and

 o discussion for the case (m + iwl)lwl < lal -< (m + lwl)Iwl + Ifmaxl

 in the inductive step is replaced by follows.

Assume that (m + lwl)lwl < lal S (m + lwl)lwl + lf...1 and let it be the

number of terminal symbols and i. be the number of distinct indices of

component symbols (not the number of component symbols) appearing in

or• Let (Ai, vi),•.•,(Ai.,vi.) be nonterminal symbols on the tape and let

wi (1 S i S i.) be the tuple of strings derived from (Ai, vi) by G. Without

loss of generality, the number of unmarked component symbols of (Ai, vi)

is not greater than lwil (otherwise, execute (c) of Step 2), and the number

of marked component symbols of (Ai,vi) is not greater than m. Observe
 in
that i. > lwl - it holds since (m + Iwl)lwl < lal S it + 2)(m + lwil) =

 i=1
it + mi. + lwl and lw12) lwl. The proof proceeds as in the proof for

 By the above lemma and Savitch's theorem, the following lemma can

be shown in asame way to Lemma 3.3.

Lemma 3.5: The universal recognition problem for PMCFG belongs to

3.1.2 Basicldeas

 First, a basic algorithm is presented which translates a given polyno-

mial space-bounded Turing machine M into an mcfg G such that every
valid computation of M can be simulated by a derivation of G. In the

following sections 3.1.3 and 3.2, this algorithm is modified to show that

the universaJ recognition problems for MCFG and for NEMCFG is EXP-

POLY time-hard and PSPACEhard, respectively.
 Let M = (Q, Z, P, B, 6, gs, QF) be a 'I'uring machine where

-34-

 Q is the finite set of states,

 Åí c r is the finite set of input symbols,

 r is the finite set of tape symbols,

 B E r- 2 is the blank symbol,
 6 : ((? Å~ r) . 2(OXrX{L,R}) is the transition function,

 qs E Q is the initial state, and

 (?F g! (? is the finite set of final state.

An ID of M is atriple (q,k,a), where q E Q,a E r' and k is a positive

integer such that 1 S k S lal which denotes the position of the head

on the tape. Let "F" denote one step transition between IDs of M.
Define ACC(M) as the smallest subset of IDs of M satisfying the following

conditions (a) and (b).

(a) If qE (?F then (g, k, ct) E ACC(M) for every aE P' and k (1 gkS

 lal)•

(b) If I F I' and I' E ACC(M), then I E ACC(M).

It is obvious that, for t E E]'

 M acceptst iff (qs, 1, t) E ACC(M). (3)

 Fix a polynomial p and a p(n) space-bounded Turing machine M =
((?,2, T, B, 6, qs, (?F). By using the following Algorithm 3.3, the problem

whether M accepts a given string t E 2' can be reduced to the universal

recognition problem for MCFG. First, the idea behind the reduction is

explained. For convenience, number the symbols in r as ci,...,clrl, and

define a pairing function as <k, cj> = (k - 1)lrl + 2' (1 S k S p(n),1 S

2' <- Pl)•

 For each g E (2 and integer k such that 1 ff{ k S p(n), a nonterminal

symbol A,le with d(A,le) = p(n)lrl is introduced. Let

 IDi = (q, k, bib2'''bk-icbk+i'''bp(n))
 ID2 == (q', k+1, blb2'''bk-lc'bk+1'''bp(n))
 ID3 = (q", k-1, bib2•••bk.ic"bk+i•••bp(n))

and let ai,a2 and a3 be the sequences of component symbols defined as
 a, = Ae<,i•bi >]AL<,2•b2 >] • • • At<,k-i•bk-i>] AL<,k•c>]Ae<,k+i•bk+i>] . . . Ae<,p(n)•bp(n)>]

 a2 = A59,'ee]AtS2,822i • • • AL(,ki.1'bk-i>]Ae<,k,•;'l]ALSk,'.i,•bk+i>] • • • AQSP,(.",)'bp(")>]

 or, = ASSi, kbl l] AeS2, kb-' ll • • • AS<,tsi.'ibk-i>] Ae<,hc-'2]AeSk, ,+-iibk+i >] . . . Aa,<,?Åí"?ibp(n)>] .

-35-

Note that the component symbols are written without indices using ab-

breviation mentioned in Example 2.3. Intuitively saying, IDi , ID2 and ID3

correspond to ai, a2 and a3, respectively. The lower suMx of a nontermi-

nal symbol A indicates the state in Q and the position of the head on the

tape. The sequence of upper suffixes of component symbols represents

the string on the tape.

 Assume that 6(q,c) = {(q',c',R),(q",c",L)}. Observe that the fol-

lowing (Ml) and (M2) hold by the definition of ACC(M).

(Ml) If q E QF, then IDi E ACC(M).

(M2) If q Åë QF, then

 IDi E ACC(M) iff either ID2 E ACC(M) or ID3 E ACC(M).

Productions of mcfg G are constructed to satisfy the following conditions

(Pl) through (P3).

(Pl) If q E (2F then ai => e•

(P2a) If (q',c',R) E 6(g,c), that is, if IDi F ID2, then ai => a2. See

 Figure 4.

(P2b) If (g",c",L) E 6(q, c), that is, if IDi F ID3, then ai => a3.

(P3) If a => a' other than those in (Pl), (P2a) and (P2b), then the

 symbol 1 appears at least once in cM'.

If productions are constructed to satisfy (Pl) through (P3) for every

qE (? andcE r, it can be shown that

 IDi E ACC(M) iff ai=E>e.

Algorithm 3.3:
 input: astringt :tlt2•••t. over Åí.

 output: mcfg G :(VN,VT,F, P, S) and string w
 such that M accepts t iff w E L(G).
 For convenience, let t = tit2 •••t.BB •••B E rP("). The mcfg G and

string w are constructed as follows.

 -36-

Step 1. Let VT = {1} and 2v =a.

Step 2. Let VN = {S} U {A,le l q E (?,1 f{I k s: p(n)} where d(A,le) =

 p(n)II)1 (q E e, 1 f{{ k s{l p(n)).

Step 3. Add

 f[X] = X<1,ti>X<2,t2> '''X<n,t.>X(n+1,B> ''•X<p(n),B> (4)

 to F where di = (xi,x2,...,xp(.)tr[), and add S - f[Ag.i] to P•

 The right-hand side of this production corresponds to the start ID
 (qs, 1, tit2 '''t.B '•• B).

Step 4. For each q E QF, add terminating production Aqk - (e, . . . ,s)

 to P for each k (1 g k S p(n)).

 Note that these productions realize the condition (Pl) before this

 algorithm.

Step 5. If (q', c', R) E 6(q, c), then add f,,tk to F and Aqk - fcc,k[Ag,k+i]

 to P for each k (1 g k < p(n)), where f,.tle is defined as

 f5,','2>[tnl = x<.,b> (rlk) (5)
 fEi,',C>[di] = x<k,.•> (6)
 fE.hkb>[tn] =l (b#c)• (7)

 See Figure 4 and note that the conditions (P2a) and (P3) are real-

 ized by these productions,

Step 6. If (q",c",L) E 6(q,c), then add g.."k to iF and Agle -
 gcct,k[Agt,k-i] to P for each k (1 < k S p(n)), where g,,nle is de-

 fined as

 g5:t'Pk>[hi] = x<r,b> (r 7E k)

 gEk,;C2[x] = x<le,.••>

 g55hbk[tn] - 1 (blc)•

 These productions realize the conditions (P2b) and (P3) before this

-37-

 The time complexity of Algorithm 3.3 is analyzed as follows. Remind

that the Turing machine M is fixed and IQI, 121, Pl, IQFI and the number

of values of 6 are considered to be constant. Step 1 of Algorithm 3.3 takes

O(1) time. In Step 2, the number of nonterminal symbols to be defined is

O(p(n)), which implies that O(logp(n)) space is required to denote a sin-

gle nonterminal symbol, and Step 2 takes O(p(n)logp(n)) time. Steps 3

and 4 take O(p(n)logp(n)) time and O(p(n)2) time, respectively. For

Step 5, O(p(n)logp(n)) time is required to construct a single production

and O(p(n)) productions are constructed, and therefore this step takes
O(p(n)2 logp(n)) time. Similarly, Step 6 takes O(p(n)2 Iogp(n)) time. As

a whole, Algorithm 3.3 can be executed in deterministic O(p(n)2 logp(n))

time.

 For the end of this section, following theorem is presented. Refer to

the Theorem 3.7 and Lemma 3.12 for the proof of this theorem.

Theorem 3.6: In Algorithm 3.3, M accepts t iff w E L(G). o

k th equare of the tape

v
bl b2 et- bk

k+1 st square

 v
bk.1 .'' bl b2 e e e bk bk+1 '''

q F q'

A<ql i b'> A<q2i b2> '.. A< qkkbk>A<qkk'1'bk."i.>. = A<d•ktz A<;•kZ2)••• A< k,• bk >A< k+I• bk.i >

 qk+1 qk+I' ' '

Figure 5: Simulation of a move of Turing machine M

cl-)

po

-39-

3.1.3 EXP-POLYtime-hardness

 Next, it is shown that the universal recognition problem for MCFG is

EXP-POLY time-hard. It is known that L belongs to EXP-POLY time
if and only if L is accepted by a polynomial space-bounded alternating
Turing machine (ATM)[3]. Let M4@,2,r,B,6, qs,(?F,Qu,(?E) be an

ATM where
 Q is the finite set of states,

 Z g r is the finite set of input symbols,

 r is the finite set oftape symbols,

 B E r - 2 is the blank symbol,
 6:((? Å~ I") Å~ 2(QXrX{L,R}) is the transition function,

 qs E ([? is the initial state,

 (?F g (? is the set of final state,

 Qu g ([2 is the set of universal states, and

 (?E g ([2 is the set of existential states,

where the followings are assumed:

 e Qi7,Qu and QE are disjoint, and

 e Q = QF U (?u U (?E•

An ID (g,k,a) and a relation "F" are defined in a same way as those

of Turing machine. Define ACC(M) as the smallest subset of IDs of M
satisfying the following conditions (a) through (c).

(a) If g E (2F then (q,k,a) E ACC(M) for every ct E r' and k (1 S k S

 lal)•

(b) Let I = (q, k, cr) be an ID with q E (2u. If every I' satisfying I F I'

 belongs to ACC(M), then I also belongs to ACC(M).

(c) Let I = (q, k,a) be an ID with q E (2E. If some I" satisfying I F I"

 belongs to ACC(M), then I also belongs to ACC(M).

M accepts a string t if and only if (qs, 1,t) E ACC(M).

 Fix a polynomial p and p(n) space-bounded ATM M. The prob-
lem whether M accepts a given string t can be reduced to the universal

recognition problem for MCFG in deterministic polynomial time by the

following Algorithm 3.4.

 -40-

 First, the idea behind the reduction is explained. Remind the basic

algorithm 3.3 described in section 3.1.2. For convenience, number the

symbols in r as ci,...,clrl, and define a pairing function as <k,cj> =

(k - 1)lrl +]' (1 E{ k :E{ p(n),1 f{l j <- II"1). For each q E (2 and integer k

such that 1 S k S p(n), a nonterminal symbol A,le with d(A,k) = p(n)lrl

is introduced. Let

 IDi = (q, k, bib2'''bk-icbk+i'''bp(n))
 ID2 = (q', k + 1, bl b2 ''' bk.I C' bk+1 ''' bp(n))

 ID3 = (q", k - 1, bi b2 ''' bh-i c" bk+i ''' bp(n)),

and let

 a, :A5<,i•bi>]Ae<,2•b2>]•..Ae<,k-i•bk-i>lAL<,k•c>]AS<,k+i•bk+i>]...At<,p(n)}bp(n)>]

 a, = AeSi,•bl]AeS2,•e2?] • • • Ae<,ki.1•bk-i>] AeSk,•.C'l]AeSk,+.i,•bk+i >] . . . Ae<,P,(.n,)•bp(n)>]

 g"k-i q"k-i q"k-i •••AIq(,?Åí".)ibp(n)>] a3 = At<,}kb-' llAt<,?kb311 • . .A[<k",bk-i>]A[<k,c">]A[<k+i,bk+i>l

as in section 3.1.2.

 Assume that 6(g,c) = {(g',c',R),(g",c",L)}. Observe that the fol-

lowing (M3) through (M5) hold by the definition of ACC(M).

(M3) If g E QF, then IDi E ACC(M).

(M4) If q E (2E, then

 IDi E ACC(M) iff either ID2 E ACC(M) or ID3 E ACC(M).

(M5) If g E Qu, then

 IDi E ACC(M) iff both ID2 E ACC(M) and ID3 E ACC(M).

Note that (M5) is newly introduced proposition for ATM. To realize (M5),

productions of mcfg G are constructed to satisfy the following conditions

(P4) through (P7).

(P4) If g E ([l}F, then ori=>6•
 G
(P5) If q E (?E, then both cti7a2 and ai Zcr3•

-41-

(P6) If q E C?u, then

 a,7AQSi,•.bi2]AL<,}kbl l] • • • AQSki.',•bk-i>]AeSk, ,--iibk-i>]ASSle,•\2]AeSk, Ae-"l]

 AtSlek'.i,'bk+i >] ALSk, ,'-iibk+'>] • • • AL<,P,(.",)'bp(")>]AtlP, Åí"-)ibp(n)>] .

 Notice that the right-hand side is the sequence obtained by con-

 catenating a2 and a3 componentwise.

(P7) For each derivation ai7a' other than those in (P4) through (P6),

 the symbol 1 appears at least once in a'.

 Observe that the following (Ql) holds by (P5) and (P7). Similarly,

(Q2) holds by (P6) and (P7).

(Ql) If q E (?E, then ai 2•e iff a2i6 or a32e•

(Q2) If q E (?u, then ai2s iff a2ie and a3 2)e•

If productions are constructed to satisfy (P4) through (P7) for every

gE (? and cE r, it can be shown that

 IDi E ACC(M) iff aiiE•

by (M3) through (M5),(P4),(Ql) and (Q2).

Algorithm 3.4:
 input : a string t = tlt2 • • • t. over Åí.

 output : mcfg G = (VN, VT, F, P, S) and st ring w

 such that M accepts t iff w E L(G).
 For convenience, let t = tit2 •••t.BB •••B E rP("). The mcfg G and

string w are constructed as follows.

 Step 1. Let VT = {1} and w == 6.

 Step 2. Let VN = {S} U {A,k 1 q E (2,1 f{I k S p(n)} where d(A,k) =

 p(n)IVI (q E (?,1 fE{ k fE{ p(n))•

 Step 3. Add

 f[te] = X<1,ti>X<2,t2>'''X<n,t.>X<n+1,B>'''X<p(n),B>

 to I7 where X = (xi,x2,...,xp(.)lrl), and add S --> f[Ag.i] to P•

 The right-hand side of the production corresponds to the start ID

 (qs, 1, ti '''t.B'•• B).

 -42-

Step 4. For each qE (?F, add terminating production Aqk -, (6,...,E)

 to P for each k (1 S k S p(n)). Remind the condition (P4) before

 this algorithm.

Step 5. If
 6(g•c) = Åí(ei'6;,;,-),E,,)",fgf• Åé.Rk,,, (s)

 then for (g;•,cl•,R) E 6(q, c), function f.,:k is defined for each k (1 f{

 k < p(n)) as follows.

 fE.'t,b>[f] = x<.,b> (rlk) (9)

 fE.k,,',C>[f] = x<le,,t,> (lo)
 fE.k,,'Åí'[x] -i (bSc). (ii)

 Similarly, for (g;!,cll,L) E 6(q,c), function g..yle is defined for each

 k (1 < k S p(n)) as follows.

 gE:iPk>[X] : x<.,b> (rlk) (12)

 gE2:iCk[x] - x<k,,;t> (i3)
 g5,k,r,b,> [x] =i (b 7` c). (i4)
 J

 Suppose that q E ([l}E. Then by (c) in the definition of ACC(M),

 the ID
 (q, k,bi b2 ''' bk-icbk+i •'• b.(.)) (15)

 belongs to ACC(M) if one of the following IDs belongs to ACC(M):

 (ql•,k + 1, bib2•••bk-ic:•bk+i•••b,(.)) (1 s{ i f{ nR); (16)

 (q;I, k - 1, bi b2 • • • bk-i cSf bk+i • • • b.(.)) (1 fE{ Ji -< nL)• (17)

 In this case, add f.,tle to F and add
 t

 Agk- fcc:.k[Ag:. k+i] (18)

 to P for 1 S i -< nR and 1 S k < p(n). Also add g,.yk to F and add

 Ag le - 9cc ;'k[Ags,' k- i] (19)

-43-

 to P for 1 S 2' <- nL and 1 < k S p(n).

 Note that the conditions (P5) and (P7) before this algorithm are

 realized by these productions.

 Suppose that q E Qu. Then by (b) in the definition of ACC(M),

 the ID (15) belongs to ACC(M) if all of (16) and (17) belong to

 ACC(M). Define h,k as

 h.k [gi, • • • , g.., 2i, . . . , 2..] = CONCATP.(."+)1.r.1 [f.,1 le [yi], . . . ,

 fcckRk[ZjnR], gccttk[Z-1],•••, gcca,Lk[2nL]]

 for 1 fs{ k fi{ p(n) where gi = (yii,•••,yip(.)lrl) for 1 S{ i S{ nR,

 2j = (iji,•••, zjp(n)lrt) for 1 :fl j .< nL and

 CONCAT; [(xn, X12, • • • , Xls), • • • , (Xrl, Xr2, • • • , Xrs)]

 == (XllX21 ''' Xrl)•••7 XlsX2s ''' Xrs)•

 Add h,k to F and add

 Agk - hcle [Agl k+i, • • • , Aga.k+1, Aqs' k-1, ' ' ' , Ag"'.k-1] (20)

 to P for 1 S k S p(n).

 The conditions (P3) and (P4) are realized by these productions. O

 AIgorithm 3.4 is deterministic and its time complexity is estimated

as follows. Steps 1,2 and 3 of Algorithm 3.4 take O(1),O(logn) and
O(p(n)logn) time, respectively. For Step 4, O(p(n)logn) time are re-

quired to construct a single terminating production, p(n) terminating

productions are constructed, and therefore this step takes O(p2(n) logn)

time. For Step 5, O(p(n)logn) and O(logn) time are required to con-

struct a single function and a single nonterminating production, respec-

tively. The number of functions and that of nonterminating produc-
tions to be constructed are both O(p(n)), and hence this step takes

O(p2(n)logn) time. As a whole, Algorithm 3.4 can be executed in
O(p2(n)logn) time.

Theorem 3.7: In Algorithm 3.4,

 M accepts t iff w E L(G).

 -44-

Proof. It suMces to show that (gs,1,t) E ACC(M) if and only if there

is II = (wi,.••,wp(n)Irl) E LG(Ag,i) such that

 w<r,t.> = e (ISrSn)
 w<.,B> = E (n<rf{ p(n)),

which is shown by following two lemmas. U
Lemma 3•8: Let di = (wi,w2,...,wp(.)lrl) E LG(Aqk) (q E (2,1 S k S
p(n))• If w<.,b.> =E (1 -< r -< p(n)) for bi,b2,..., b,(.) E r, then

 (q, k, bib2 ' ' ' bp(n)) E ACC(M).

Proof. The lemma is shown by induction on the number T of the appli-
cations of (Ll) and (L2) in section 2.1.

 Let T = 1 and the production used in (Ll) be Agle --> (6,...,E) con-

structed in Step 4, then q E qF. By (a) in the definition of ACC(M),

 (q, k, bib2 ' ' ' bp(n)) E ACC(M)

and the lemma holds.

 Assume that the lemma holds for 7 -< v, and consider a case with 7 =

y+ 1. Suppose that q E ([?u and the last production used in (L2) is (20)

defined in Step 5. Then, bk = c and there exists ofi = (uii,•••,uip(n)lrl)

with 1 fE{ i E{ nR and ofj = (vji,..., vjp(.)lrl) with 1 SI j -< nL such that

 tii E LG(Ag:le+i), Ij E LG(Agyk-i),

and
 di = hck[iti, •••) anR, Tl,•• • , InL]'

By (9) through (11), (12) through (14) and (20), followings hold.

 W(r,br> == Ul<r,br>'''ttnR<r,b.>Vl<r,b.>'''VnL<r,b.> (r 7! k)

 W<k,bk> = Ul<k,cl>'''UnR(k,c"R>Vl<k,c','>'''VnL<k,c#L>

 w<k,b> = 1•••11•••1 (blc).

 -45-

Since w<.,bl> = e (1 -< r -<- p(n)),

 Ul<r,br> ='''=UnR<r,br> = Vl<r,b.> ='''=VnL<r,b.> =e (r 7! k)

 Ul<k,cl> = ' ' ' = UnR(le,c"R) = 2)1<k,cl'> = ' ' ' = VnL <k,c"'L) = e'

That is, ai : (uii,...,uip(.)lr}) E LG(Agl,k+i) satisfies ui<.,b.> = s (1 -< r Sl

p(n),r 7C k) and ui(k,.:,> == e for 1 :E{ i S{ nR. By the inductive hypothesis,

 (ql•, k + 1, bib2 ' ' ' ble"icl•bk+i ' ' ' bp(n)lrl) E ACC(M)

for all 1 S i -< nR. Similarly,

 (9;", k - 1, bib2 ' ' ' bk-iCSfbk+i ' ' ' bp(n)lrl) E ACC(M)

for al1 1 :f{ j <- nL. Since q E (?u, it follows from (b) in the definition of

ACC(M) and (8) that

 (q, k, bi ' ' ' b.(.)) = (q, k, bi '' ' bkbicbk+i ' ' ' b,(.)) E ACC(M).

The proof can be done in asimilar way for the cases that qE (?E and the

last productions to be applied are (18) and (19) defined in Step 5. M

Lemma 3.9: If (q,k,bib2•••b,(.)) E ACC(M), then there is mb = (wi,
2V2,•••,Wp(n)lrl) E LG(Agk) such that w<.,b.> =E for 1 f{l r f{ p(n).

Proof. It is shown by induction on the number T of the applications of

(a),(b) and (c) in the definition of ACC(M).

 If T = 1, then g E QF and there is a production Agk - (e,...,e)
constructed in Step 4. Hence, (a,...,e) E LG(Agk) and the lemma holds

clearly.

 Assume that the lemma holds for every T S u, and consider a case

with 7 = v+ 1. Suppose that q E (?u and

 6(g, bk) = {(ql•, c:•, R) Il f{ i f{l nR}

 U{(q;!,c;f,L) ll s{ j -< nL}•

Since (q, k, bi • • • b,(.)) E ACC(M), followings hold by (b) in the definition

of ACC(M).

 (g•, k+ 1, bi ••• ble-i c:• ble+i •• • b,(.)) E ACC(M) (1 -< i -< nR)

 (9;!, k- 1, bi ''' bk-i cSf bk+i ''' bp(n)) E ACC(M) (1 S]' -< nL)•

 -46-

By the inductive hypothesis, there exists

 iti = (Uii, • • • , Uip(n)lrt) E LG (Ag:, k+i) (1 S{ i f{i nR)

such that ui<.,b.> = 6 (1 f{ r sl p(n),r 7! k) and ui<k,,;.> = e for 1 s{ i f{ nR.

Similarly, there exists

 Tj = (vji,•••,Vjp(n)irl) E LG(Ag;'k-i) (1 S{ j -< nL)

such that vj<.,b.> = s (1 S{ r f{ p(n),r 7! k) and vj<k,,;,t> = e for 1 :E{ j -< nL.

Define

 nd == hck[al,•••,ofnR,i)1,•••,i)nL]

then ib E LG(A,k) by (20) in Step 5, and followings hold by the definition

of hck•

 W(T,br> == Ul<r,b.>'''UnR<r,b.>Vl<r,6.>'''VnL<r,b.> == e (r 7fl le)

 W<k,bk> == Ul<k,cl>'''UnR(k,cLR>Vl<k,c','>'''VnL<k,c"'L> = E'

Thus the lemma holds. The case q E QE can be handled in a similar way.

 u

 Now, Lemma 3.5, the estimation of time complexity of Algorithm 3.4

and Theorem 3.7 imply following theorem.

Theorem 3.10: The universal recognition problems for PMCFG and for

MCFG are both EXP-POLY time-complete. B

-- 47-

3.2 WithNon-ErasingCondition

 In this section, the universal recognition problems for NEPMCFG and

for NEMCFG are both shown to be PSPACE-complete. As in Section 3.1,

it suMces to show that the problem for NEPMCFG belongs to PSPACE,

and that the problem for NEMCFG is PSPACE-hard,
 First, a nondeterministic algorithm to solve the problem for NEPM-

CFG is presented. The algorithm solves the problem in polynomial space

by using Algorithm 3.2 and a slightly modified version of the algorithm

in the proof of Lemma 3.1.

 Let G = (VN, VT, F, P, S) be a pmcfg with non-erasing condition and

w be an input string. By the non-erasing condition, if (S[i], O)5a=;w and

some (A[k],v) appears in a, then every (A[j],v) (j' : k, 1 S 1' -< d(A)) also

appears in a. 'Therefore, only the entries NULL(A,(1,2,...,d(A))) for

A E VN are needed in Algorithm 3.2 for a pmcfg with non-erasing condi-

tion. Since the number of such entries is O(IVNI) = O(n), Algorithm 3.2

can be executed in O(n2 logn) space by the analysis of Algorithm 3.2 in

section 3.1, where n = IGI + Iwl. [Irhese entries of the table NULL can be

constructed in O(IGI) = O(n) space. Hence, the next lemma holds.

Lemma 3.11: The universal recognition problem for NEPMCFG is in

 Next, it is shown that the universal recognition problem for NEM-

CFG is PSPACE-hard. If a problem belongs to PSPACE, then there is
some polynomial p and some p(n) space-bounded Turing machine M =
((?,Z,r,B, 6,qs,QF) which solves that problem. The problem whether

M accepts t for a given t E F' can be reduced to the universal recognition

problem for NEMCFG by using the following deterministic algorithm in
time polynomial in ltl.

 Remind the basic idea and Algorithm 3.3 described in 3.1.2. The
construction of mcfg is similar to that of Algorithm 3.3. The differences

are:

(a) Remember that mcfg G constructed in Algorithm 3.3 does not satisfy

 non-erasing condition. For the mcfg constructed here to satisfy non-
 erasing condition, the extra component f.P,(,"le)Irl+i is introduced and

-48-

 the value ef f.P,(,"k)Irl+i is defined to be the concatenation of all the

 components of the arguments which do not appear in the right-hand
 side of the definition of any f,h,,le for 1 S h g p(n)lrl. Similarly, the

 extra component gZE,"tZIrl+i is introduced for each gcc,,k.

(b) The extra component introduced in (a) derives, as it stands, some

 string whose length can increase in proportional to the length of the

 derivation. To restrict the length of the terminal string which the

 extra component derives to be less than some constant, the roles of

 e's and 1's are interchanged. And the productions are constructed

 in such a way that a component symbol can derive E whenever it
 can derive 1 so that the value of f.P,(,nk)]rl+i can always be made e.

 Remark that the construction here does not work in the case of an

 ' ATM since, by the productions constructed in (20) universal states,

 a string derived from the initial symbol which represents an ID in

 ACC(M) becomes a string of 1's and its length may be expoRential

 to n.

 Let assume that IDi,ID2,ID3,ai,a2 and a3 are the same as defined
in 3.1.2. Productions are constructed so that the following (P8) through

(PIO) hold.

(P8) If q E (2F, then ai71P(").

(Pga) If (q', c', R) E 6(q, c), that is, if IDi F ID2, then cyi7a2•

(P9b) If (q", c",L) E 6(q, c), that is, if IDi F ID3, then ai?cM3•

(PIO) If a7a' other than those in (P8), (P9a) and (P9b), then cr derives

 at most p(n) - 1 1's.

If productions are constructed to satisfy (P8) through (PIO) for every

qE (? andcE r, it can be shown that

 IDi E ACC(M) iff ai 21P(").

Algorithm 3.5:
 input : a string t = tlt2 ••• t. over Z.

 output : mcfg G = (VN, VT, I7, P, S) with non-erasing condition

 and string w such that M accepts t iff w E L(G).
 The mcfg G and the string w are constructed as follows.

 -49-

 Step 1. Let VT = {1,#} and let w = IP(")#.

 Step 2. Let VN = {S, D}U{A,le l q E (?,1 S k S p(n)} where a(A,le) =

 p(n)lrl + 1 (q E (2,1 S k Sp(n)) and d(D) = 1.

 Step 3. Define f as follows.

 f[hi] = X(1,ti>X(2,t2> ' ' ' X<n,t.>X<n+1,B> ' ' ' X<p(n),B>#

 n p(n) (il ll x<.,b>)(n nx<.,b>)xp(.)pl+i
 r=l bE Ii ,b7Et. T=n+l bEÅí

 ' l
 where X = (xi,x2,...,xp(.)lrl+i) and ll ai denotes the concatena-

 i= k
 tion aleale+i •••ai. Add f to F and add S - f[Ag.i] to P 3.

 Step 4. Add terminating productions D -• 1 and D --> e.

 Step 5. Add

 i[(Xl)J•••,(Xp(n)lrl)] = (Xl,•••,Xp(n)Irl,6)

 to F. For each q E (?F and k (1 f{{ k f{g p(n)), add

 Agk ' i[D, D, • • • , D]

 to P.

 Step 6. If(q', c',R) E 6(q, c),then add f..ik to I7 and Agk - fcc,le[Aq,le+i]

 for each k (1 S k < p(n)), where f..,k is defined as

 fE.','2>[x] = x<,,b> (rlk)
 fE.k,',C>[x] = x<k,.t>

 f5.h'k>[di] ==6 (blc)
 f.P.(,",)lrl+i[hi] = (fi x<k,b>)xp(.)ErE+i•

 bEI",b7!c'

 3The parenthesis are used only to get rid of ambiguity, and it is not included in

the definition of f.

-50-

 Step 7. If (q",c",L) E 6(q,c), then add g.,"le to I7 and Agk -ÅÄ
 gcc"le[Ag"k-i], for each k (1 < k S p(n)), where g,,ttk is defined

 as

 gE:;tbk[x] = x<.,b> (T it! k)
 gE5•:Ck[di] - x<k,.tr>

 g2,k,;bk[th] =e (blc)
 di,E,n,21rl+i[te] = (Ifi x<k,b>)xp(n)lrl+i•

 bEr,b7Ectt

 o

 It can be easily shown that the above algorithm can be executed in
O(p2(n) logn) time in the same way as is the case of Algorithm 3.3.

 Following lemma can be shown in a same way as Theorem 3.7.

Lemma 3.12:
 M accepts t iff w E L(G).

 o

Now, Lemmas 3.11 and 3.12 imply the following theorem.

Theorem 3.13: The universal recognition problems for NEPMCFG and

for NEMCFG are both PSPACE-complete. D

-51-

3.3 BoundedDimension

 In this section, the computational complexities of the universal recog-

nition problems for m-PMCFG and for m-MCFG are investigated. The
result here is that, for any fixed m (m 2 1), the problem for m-PMCFG is

YVP-complete, and that the problem for m-MCFG is also A/'P-complete

for any fixed m (m) 2).

3.3.1 m-MCFG with m > 2

 First, the universal recognition problem for m-MCFG (m) 2) is
shown to be YV'P-complete. In this paper, only the case m) 2 is investi-

gated since, for m = 1, any 1-mcfg is also a cfg and the time complexity of

the universal recognition problem for cfg's is known to be O(IGI2Iwl3)[4].

 It is shown that the problem for m-MCFG is in Al'7) as follows. Let G

be a given m-mcfg and w be an input string. First, G is transformed into

an m-mcfg G' such that L(G) = L(G') as follows. If (6,...,e) E LG(A),

then the nonterminal symbol A is called a nullable symbol.

 Step 1. By using Lemmas 1 and 3 in Ref.[14], construct m-mcfg G" =

 (Vk', VT, 17", P", S) which satisfies L(G) = L(G") and the following

 conditions (f3) and (f4).

 (B) G" satisfies the non-erasing condition.

 (f4) No terminal symbols appear in the right-hand side of the def-

 inition of any f E F such that a(f) }ir 1.

 Step 2. Construct m-mcfg G' = (Vk,VT,F',P',S) from G" by adding
 A - (6,...,e) to P" for every nullable symbol A in Vk' (such a

 production is called an e-production).

 By the construction of G" in Ref.[14], IG"l S 2MIGI and Step 1 can

be executed in O(2MIG12) = O(IGI2) time deterministically since m is a

constant. Consider Step 2. Since G" satisfies the above conditions (f3)

and (f4), nullable symbols can be found as follows.

(a) If A --ÅÄ (e, . . . ,e) E P", then A is a nullable symbol.

-52-

(b) If A --. f(Ai,A2 ...,A.(f)) E P" and Ai,...,A.(f) are nullable sym-

 bols, then A is also a nullable symbol.

(c) Repeat (b) until no more nullable symbols can be found,

 The above procedure halts in O(IG12) time deterministically. Further-

more, IG'1 g 2IG"l E O(IGI)•

 Next, a derivation tree t in G' is generated nondeterministically and

is tested whether t is a derivation tree of w. The following lemma claims

that if nd E L(G') then li) has a derivation tree whose size is not greater

than some polynomial in IG'1 + lwl, where the size of a derivation tree is

defined to be the number of nodes in t'.

Lemma 3.14: Let G' = (Vk, VT,F', P', S) be the mcfg constructed from

a given G in the above discussion. If w E L(G'), then w has a derivation

tree in G' whose size is O(lwllG'l2).

 (2m - 1)!
Proof. Let M= (m - 1)! . Since m is a constant, M is also a constant.

 nFor a tuple ib = (wi,w2,...,w.) of strings, let libl2 2) lwkl, and lil)I is

 le==1
called the length of ID. Ift is a derivation tree of 2D whose size is not

greater than that of any derivation tree of 2Z), then t is called a minimal

derivation tree of iD. It will be shown that if tl E LG,(A), then there is a

derivation tree of th whose size is not greater than

 (;M(211bl'1)IG'l2 tfthAer-wi,W-,.EP"

This is shown by induction on the length of ib.

 The lemma holds clearly when lth1 == O, since tl) = (e,...,e) and

A- albEpt. ,
 Suppose that the claim holds for every tuples of length s or less. Let

libl == s+ 1, and let t be a minimal derivation tree of 2I as shown in

Figure 5, where e- denotes a tuple of 6's. Let p : vo,vi,...,vk be the

longest path from the root which satisfies the following conditions:

-53-

E

eee

E

 .

 . Wl

ure 5: Ad

u
.

eee

1
.

 vo

vl"

:V2 E
:
:
l
1

iVk-I

Vk

Ul

Fig

...i" /Vl

 eriva

eee

ee

 E...e

tion tree in G'

E

.

-

-54-

 [1] e- is generated from every child of v2•(O S 1' < k) other than vj+i,

 [21 iZ)i, nd2,..•,thi (l) 1) such that II)i l e- (1 S i S l) are generated

 from children ui,u2,...,ui of vk respectively, and

 [3] i is generated from every child of vk other than tti, u2• . . . , ui•

 Let label(v) denote a nonterminal symbol or a terminal string attached

to a node v as a label and let g(v)2(gi(v), g2(v), . . . , gd(i"bie(v))) denote the

tuple of strings derived from a node v in t. For 2' (O g 2' <- k), il) = g(vo)

can be represented by g(vj) as follows:

 gh(.,) .. g4j(hii)(vj)gCs(h,2)(vj)•••g4i(h'"hj)(vj) (1 S h S d(label(vo)))

where for each h' (1 S h' S d(label(vj))) there exist unique h and l such

that h' = Ci•(h,l) by the non-erasing condition, that is, each component
gh' (v,•) of g(v,•) (1 E{ h' S d(label(v,•))) appears exactly once in g(vo). Let

 REp(vj)2(4j (1, 1)Cj (1, 2) • • • Cj (1, nij),

 ..., 6j (d(label(vi)), 1) ••• Cj (d(la bel(vi)), nd(iabei(vi))j))•

For example, if

 g(vi) = (g5(vj)g3(vD,6, g2(vj)g`(vj),gi(vj))

then REP(vj) = (53,6,24,1). The number of distinct REP(vj)'s
among vj's labeled with an identical nonterminal symbol is not greater
than (2M - 1)!.

 (m - 1)!
 Assume that k 2 MIVkl. Then there exist distinct nodes vp and
v,(O S p < g g k) such that label(v,) = label(v,) and REP(p) = REP(g).

Let t' denote the tree obtained from t by replacing the subtree whose

root is vp with the subtree whose root is vg. It is obvious that t' is also a

derivation tree of th and the size of t' is less than that of t, a contradiction.

That is, k < MIVkl. Let y denote the maximal number of arguments of
a function in .l7'. By Step 2 of the construction of G', the definition of

path p and the fact that t is minimal, an e-production is applied at every

child of v,` other than vj+i (O S j' < k). It follows that the size of "upper

part" oft (that is, "the size of t" minus "the size of subtree whose root

is vk") is not greater than 2(y - l)k+k = 2ku - k.

-55-

 Ifl = 1, then the size of the subtree whose root is ui is 2 by the

definition of path p. In this case,the size oft is not greater than

 2ky -k+1+ 2u S 2ku +1+ 2v = 2(k + 1)y+ 1.

Since k < MIVkl and both y and IVM are Iess than IG'l,

 2(k + 1)v + 1 S 2MIVk ly + 1 < 2MIG'l2.

Clearly, 2MIG'I2 S 2M(21th1 - 1)IG'12 and the lemma holds.

 If l) 2, then by the inductive hypothesis, the sizes of the sub-
trees whose roots are ui,n2,.. ., and ui are not greater than 2M(21thil -

1)IG'12, 2M(2l 2D2l - 1)lG' 12, . . . , and 2M(21thi1 - 1)lG'l2, respectively. The

size oft is not greater than

 i
 2kv -k+1+ 2(u - l) +22M(21 tbil - 1)IG' l2. (21)
 i=1
By using ltbil + l2i)21 +•••+ Ithil = 1nd1,l 2 2 and the following inequality

 2kv -k+1+ 2(u - l) < 2(k + 1)y +1 < 2MIG'l2,

the expression (21) is upper bounded by

 2MIG'l2 + 2M(21th1 - l)IG'l2 g 2M(21ul - 1)IG'l2.

Thus the induction completes. It follows that if w E L(G'), then w has a

derivation tree in G' whose size is O(lwllG'l2). "

 For a derivation tree t, it can be easily shown that linear time to the

size of t is sufficient to test whether t is a derivation tree of w. Since

IG'l E O(IGI), Lemma 3.14 implies the following lemma.

Lemma 3.15: For any fixed m (m 2 2), the universal recognition prob-

lem for m-MCFG belongs to YVP. Z
 Next, the problem is shown to be vVP-hard. It is suMcient to consider

the case m = 2, since any 2-mcfg is also an m-mcfg for every m) 2.

 By the following deterministic algorithm 3.6, 3SAT (the satisfiabil-

ity problem of 3-conjunctive normal form Boolean expressions), which
is known to be YVP-complete[9], is reducible to the universal recognition

problem for 2-MCFG in polynomial time. The formal description of the

algorithm is given first, followed by a simple example.

 -56-

AIgorithm 3.6:
 input : 3-CNF Boolean expression E.
 output: 2-mcfg G= (VN,VT,F, P, S) and string w
 such that E is satisfiable iff w E L(G).

 Let E = Ei A E2 A•••A Eg, and Ei =: (lii V li2 V li3) where lij is a

literal (1 SiS q,1S 1' -< 3).

 Step 1. Count the distinct variables appearing in E. Let r be the num-

 ber of them and let those distinct variables be pi,p2,•••, and pr•

 Step 2. Let mi and m;• (1 Si <- r) be the numbers of the occurrences

 of positive literal pi and negative literal 7pi in E, respectively.

 Without loss of generality, assume that mi) m:•. Furthermore,
 T let t == 2(mi - ml•). In Step 4, yi's (1 S i S t) will be used as

 i=1
 fi11ers if the number of the occurrences of pi is strictly greater than

 that of 7pi.

 Step 3. Let VT = {$,#,1} and VN = {S,X,Y,A}, where d(X) =
 d(A) =2, d(Y) = d(S) :1.

 Step 4. Let F = {f} where f is defined as follows.

 f [al,•••, ar, tn11, X12, te13, te21,•••, teg3, Yl,•••, Yt]

 = XlllX121X131#X211X221X231#'''#XqllXg21Xg31
 $aiiin ii2 ''' zimi # zlizl2 ''' /i ., ai2 (22)

 $arlZrlZr2 ''' Zrm. # Z;1Z;2 ''' Z;m. ar2

 where Xij = (xiji, xij2) (1 S i S q,]' = 1, 2, 3) and a-i = (aii, ai2)

 (1 SiSr).

 For each z.. and 4. (1 S uS r, 1 S v S mu),

 zu.,zt. E {xij2 l 1 s{ i E{I q, j' = 1,2, 3} U{yk l 1 Ei{ k SI t}

 and they must satisfy the followings.

-57-

(a)

(b)

(c)

Step 5.

If the literal lij (1 <- i S q, 2' = 1,2,3) is the vth occurrence of

p. from the left, then zuv = xiJ•2.

If the literal li3• (1 S i -< q,]' -- 1,2,3) is the vth occurrence of

7p. from the left, then zL. = xij2.

The number of za.'s which are not defined by the above (a) or

(b) equals to t. Those zL.'s are equal to yi,...,yt, respectively.

(Since mi) ml•, it is suficient to consider only za.'s.)

The rewriting productions are defined as:

P = {S -> f A, A, ...,A, X, X, ...,X, Y, Y, ...,Y
 v r 3g t X--ÅÄ (1, 1)I(e, 1)l(e,e) (23)
 A- (#,e) l (e, #)
 le}. Y.1

 Step 6. Define the input string w as

 w= 1#1# •••#1$# IMi #$# IM2 #$•••$#IMr #. (24)
 v g 1's

 m

Example 3.1: Let E = (pi V np2 Vp3)A (pi Vp2 V 7p3)A(-PiVP3 VP2)
be an input. The word w and the function f are:

 w = 1#1#1$#11#$#11#$#11#
 v (*)

 f[al, a2, a3, Xll, hi12, T13, f21,•••, hi337 Yl, Y2, Y3]

 = XlllX121X131#X211X221X231#X3nX321X331 (I)
 $allXl12X212#X312Yla12 (II)
 $a21X222X332#X122Y2a22 (III)
 $a31X132X322#X232Y3a32• (IV)

In Figure 6, the components of the same variable are linked
Intuitively, the part (I)

(II),(III) and (IV) correspond to pi,p2 and p3, respectively.

(25)

(26)

 by a line.
of f corresponds to the expression E, and parts

a

a

a

 E = (Pl v 7 P2

 f(''') =

part for PI :

part for P2 :

part for P3 :

V P3)A (Pl V P2v7P3)A (n pl v P3

x IIIX121X131#X211X221X231#X31

$all Xl12X212#X

$a21X222X332#X

$a31XI32X322#X

Figure 7: An example of the function f

VP2)

 X321

 312 Yl

X122 Y2

X232 Y3

X33J

a12

a22

a32

,

or
oo

i

-59-

 The value of variable pi (1 SiS 3) is represented by ai as

 (k. : Y, #S:.ff. ;:. I: 11:.R,U,E,'1;

and the value of literal liJ• (1 S i,j <- 3) is represented by tei2• = (xiji,xij2)

as
 (z.:;.::l;,ijor(e•') !.ff S:;l:[IF.R,U,E,",;. (27)

The first component xiji of tei2• appears in the part (I) of (26) and is used

for checking that the value ofith clause is "TRUE" or not, and the second

component xij2 appears in either (II),(III) or (IV) and is used for checking

that, for each variable, the same value is assigned to every occurrence of

the variable and the values assigned to positive and negative literals are

distinct .

 If the variable pi is to be "TRUE", then an and ai2 are replaced
by # and e, respectively. To satisfy w E L(G), the part (II) in (26)

must yield the part (*) in (25), which implies that xll2, x2i2,x3i2 and yi

must be replaced by 1, 1,E and e, respectively. By (23) in the algorithm,

xm and x2ii which correspond to pi are replaced by 1 or e, and x3ii

which corresponds to 7pi is replaced by e. In the case where pi is to

be "FALSE", and in the cases of p2 and p3, a similar discussion follows.

Hence, the first component xi2•i which corresponds to the literal li2• to be

"TRUE" is replaced by 1 or a, and the one which corresponds to the
literal to be "FALSE" is replaced by e.

 Now, it is clear that the part (I) in (26) can generate 1#1#1 if and

only if at least one literal in each clause are to be "TRUE", that is, E is

satisfiable. In this example, E is satisfiable and wE L(G). O

 Apparently, Algorithm 3.6 can be executed in O(p(IEI)) time for some

polynomial p where IEI is the length of a description of E.

Lemma 3.16: E is satisfiable iiff w E L(G).

(If part) Assume w E L(G). Then there exist a. (1 S u S r), 6ij (1 S

i S q, j' = 1, 2, 3) and ori (1 S i S t) such that

 f[ai,•••,ar,Bii,•••,3g3, ori,•••,rytl =wE LG(S) = L(G). (28)

 --60-

By the definition of f, P and w (see Steps 4 through 6 in Algorithm 3.6),

either d. = (#,6) or a. == (E, #) for each 1 :{ u f{l r. Define (vi,...,v.)

as
 v.-(11T,.R,U,E,".Its.S.E,t'i] (29)

for 1 S u S r and assign v. (1 S tt S r) to the variable p..

 Consider a clause lii V li2 V li3 (1 S i S q). Since w = 1#1 •••#1 $#
 v g 1's
• • • # E L(G) and LG (X) == {(1, 1), (e, 1), (e, 6)}, exactly one of 6ii, 5i2

and 6i3 is (1,1) by the definition of f. Without loss of generality, let

fiii = (1, 1)• If lii = p., then xii2 is on the left of the (q - 1 + u)th # by

the definition of f. Hence, by (28), w can be written as

 w =.••$a.i••.1...#•.•a.2$..•,

where a. = (a.i,a.2). By the definition of w in (24) of AIgorithm 3.6,

a. = (#,6) and the value v. assigned to lii is "TRUE" by (29). If lii is

-p., then lii is also shown to be "TRUE" in the same manner. It follows

that E is satisfiable.

(Only if part) Assume E is satisfiable, then there exists an assignment

(vi, v2, . . . , vr) which makes the value of E "TRUE" , where vi is the value

assigned to pi. Under this assignment, at least one of lii,li2 and li3 is

"TRUE" for eachi(1 SiS q). Choose one of such literals for each i,
SaY li2'i)l2J-2,•••,lgj',• Under the above assignment, let

 a. -(Ef, #61 II Z# :11F.R,UsEE'1•

for 1<u<r and let

 (1, 1) if the value of lij is "TRUE" and]' = j'i

 Pij = (6,1) ifthe value oflij is "TRUE" and j' l]'i
 (s,s) if the value of lii• is "FALSE"

for 1 g i S q and j' = 1, 2, 3. If zt. = yi at Step 4 (intuitively, yi is a fi11er

for the variable p.), then let

 ,, -(l ,li .V# ,-.-11ii)ftLi,E,l'

-61-

for 1<i< t.
 By the definition of G, d. E LG(A),6ij E LG(X) and tyi E LG(Y)• By

(22) and (24) in Algorithm 3.6,

 f[bli, • • • , ar,Pii, • • • , Pg3, 7i, • • - , 7t] == w E LG(S) == L(G).

 u

 Lemma 3.16 implies that by using Algorithm 3.6, 3SAT is reducible

to the universal recognition problem for 2-MCFG.

 The following theorem summarizes the above results.

Theorem 3.17: For any fixed m (m >- 2), the universal recognition

problem for m-MCFG is Al'7-complete. O

3.3.2 m-PMCFGwithm>1
 In this section, it will be shown that the problem for m-PMCFG
(m >- 1) is also .IV'P-complete.

Lemma 3.18: For any fixed m (m) 1), the universal recognition prob-

lem for m-PMCFG belongs to ArP.

Sketch of Proof: Let p:vo,vi,...,vk be the path as described in Lem-

ma 3.14. Since G does not always satisfy the condition (f2) in this case, a

copy operation is permitted, and the length of the string derived from the

node vi (O S i < k) can be greater than that of vi+i (see Example 2 in 2).

Let len(v)21g(v)l, that is, the length of the tuple derived from a node v.

By the assumption, len(vo) = ithl, and by the condition 2 of the definition

ofthe pathp, len(vk) l}r 1. Let io,ii,,..,ic (O :io :{ ii <'''< ic = k)

be the integers such that

lwl = len(vi,) = len(vi,) > len(vi,+i) = ••. = len(vi,) > ••• len(vi.)) 1.

Clearly, c < lwl, and it can be easily shown that ib+i - ib S MIVNI (O S

b < c). Therefore, k < MIVNIIwl•

 In a similar way to the proof of Lemma 3.14, it can be shown that if

wE L(G) then w has a derivation tree whose size is O(n4). a

-62-

 It has already shown that the problem for m-MCFG is JV7-hard for

m 2 2. For m-PMCFG, the lemma holds for m) 1. Basic idea is the
same as that for MCFG, and the differences are:

 e For MCFG, the second component xij2 of hiij ---- (xiji, xij2) is used to

 ensure that an identical value ("TRUE" or "FALSE") is assigned

 to each occurrence of a variable. This technique cannot be used
 for 1-PMCFG since only strings (1-tuples of a string) are available.

 Instead, the same mechanism is realized by copy operations.

 e For MCFG, the first component xiji of thij = (xiji,xij2) can be any

 of 1 and e when the value ofthe corresponding literal lij is "TRUE"

 (see (27) in Example 3.1). Hence, the number of 1's in xiii, xi2i, xi3i

 for the clause lii V li2 V li3 whose value is "TRUE" can always be

 made one. For 1-PMCFG, only 1 is allowed to represent the cor-

 responding literal to take "TRUE" as the value and the number of

 1's for each clause varies from 1 to 3. To make the number of 1's

 be a uniform value, say 4, for each clause whose value is "TRUE",

 three fi11ers (y3im2,y3i-i,y3i in Step 3 of Algorithm 3.7) are added

 for each clause.

 By the following deterministic algorithm, 3SAT is reducible to the

universal recognition problem for 1-PMCFG in polynomial time.

Algorithm 3.7:
 input : 3-CNF boolean expression E.
 output : 1-pmcfg G= (VN,VT,Ii", P, S) and string w

 such that E is satisfiable iff w E L(G).

 Let E= Ei AE2A•••A Eq and let Ei = (liiVli2Vli3) where lij is a
literaJ.

 Step 1. Count the distinct variables appearing in E. Let r be the num-

 ber of them and let those distinct variables be pi,p2 • • • , and pr•

 Step 2. Let VT = {$,#,1} and Viv = {S, X,Y}, where d(X) = d(Y) =

 d(S) = 1.

-63-

 Step 3. Let F = {f} where f is defined as follows.

 f [Xll, X 12, X21) X22,•••, Xrl, Xr2, Yl, Y2,•••, Y3g]

 = ZllZ12Z13YIY2Y3#'''#ZqlZa2Zq3Y3q-2Y3q-IY3g
 $XllX12$X21X22$ ' ' ' $XplXp2•

 For each ii,• (1 f{ i .< q,j' -- 1,2,3), zij = x.i if lij = p. and

 ziJ• = x.2 if lij = -p..

 Step 4. The rewriting productions are defined as

 P = {S -f X, X, ...,X, Y, Y, ...,Y

 2r 3q
 X --, 1lE
 Y-1l 6}.

 Step 5. Define the string w as

 ••• #1111 $ 1$1$ ••• $1. w= 1111#1111#
 "v gllll's rl's
 o

 The readers can easily verify that

 E is satisfiable iff w E L(G)

and that this algorithm can be executed in polynomial time, that is,

the universal recognition problem for 1-PMCFG is YV'P-hard, and the

following theorem holds.

Theorem 3.19: For any fixed m (m 2 1), the universal recognition

problem for m-PMCFG is /V'P-complete. M

-64-

3.4 BoundedDegree
 This section introduces subclasses of pmcfg's and mcfg's for which the

universal recognition problems can be solved in deterministic polynomial

time. Refer to the definition of the degree in Section 2.1. Notice that,

by the definition, for each e (e) 1), there exists m (m 2 1) such that

every pmcfg with degree e or less is an m-pmcfg. On the other hand, for

each m (m 2 1) and e (e) 1), there always exists an m-pmcfg G with

degree greater than e. That is, every pmcfg with bounded degree has also

a bounded dimension, but not vice versa.

Lemma 3.20: For any fixed e (e) 1), the time complexity of the uni-

versal recognition problem for MCFG. is O(IGI21wle).

Sketch of proof: In Ref.[15], a fixed-language recognition algorithm for

a language generated by a mcfg with bounded degree is presented. Al-

though the algorithm assumes that a given mcfg satisfies (f3) in Lem-

ma 2.1, E-production freeness and some other conditions, it can be easily

extended so as to be directly applicable to an arbitrary mcfg (without

any equivalence transformation of the grammar). The analysis of the
complexity is analogous to that of O(IG121w13) time algorithm for CFG.ll

 A modified head grammar (MHG) is introduced in Ref.[25] to define
the syntax of natural languages. It has been shown in Ref.[16] that the
generative capacity of MHG is equal to that of head grammars[i9] and

that of tree adjoining grammars[ii], which are also introduced to define

the syntax of natural languages. Since every mhg is a 2-mcfg with degree
6 or less by definition[i61, the following holds as a corollary of Lemma 3.20.

Corollary 3.21: The universal recognition problem for MHG is solvable

in deterministic O(IG12iwl6) time. D
Lemma 3.22: The universal recognition problem for 1-MCFG with de-
gree 3 or less is P-hard.

Sketch of proof: By Corollary 12 in Ref.[10], the universal recognition

problem for Chomsky normal form CFG is P-complete. Since any Chom-
sky normal form cfg is also a 1-mcfg with degree 3 or less[i4], the lemma

 -65-

 The next theorem is obtained from lemmas 3.20 and 3.22.

Theorem 3.23: For any fixed e (e) 3), the universal recognition prob-

lem for MCFG. is IP-complete and solvable in deterministic O(IG12Iu]le)

 In a similar way, the following theorem can be proved.

Theorem 3.24: For any fixed e (e 2 3), the universal recognition prob-

lem for PMCFG, is P-complete and solvable in deterministic

O(IGI21wle") time. M

-66-

3.5 Results and Their Implication

 In this section, significance and implication of the results are dis-

cussed informally. Computational complexities of universal recognition

problems are sometimes considered to have strong relation with "diM-

culty" of acquisition of a language: Suppose that one learns a language

from a description of a grammar G. By compiling G (in mental repre-
sentation), one will acquire an eflicient parser of L(G), by which one can

decide whether a given text w belongs to the language generated by G or

not. This process can be modeled as in Figure 7, using a parser generator

for a class g of grammars to which G belongs. If the "acquisition of a

language" means a construction of an efficient parser, the diMculty of the

acquisition can be measured by the complexity of the parser generator.

Let Ug, PGg and PG be the computational complexity of the universal

recognition problem for a class g of grammars, the computational com-

plexity of the parser generator to produce a parser for a given G in 9,

and the computational complexity of the parser to decide w E L(G) for

a given 2v, respectively. We obtain Ug E{ PGg + PG. If the parser is

efficient enough compared with the parser generator, i.e., Pg << PGg,

the difficulty of acquisition of a language is estimated by the complexity

of the universal recognition problem, As for acquisition of a language,

our intuition tells that an acquisition of a language from a grammar will

be more difficult if the grammar allows "omissions". In the case of PM-

CFG, an omission of a word corresponds to an erasing of a variable on

the right-hand side of the expression (2). Thereby, it is quite suitable

to our intuition that the universal recognition problem for PMCFG with

no constraint is more diMcult than that for NEPMCFG. As mentioned
above, non-erasing condition does not weaken the generative power of

grammars. Now, one may think to transform a pmcfg G that violates the

non-erasing condition into another weakly equivalent pmcfg G' that sat-

isfies the non-erasing condition, and apply a polynomial space universal

recognition algorithm to G'. But elimination of productions that vio-

late the non-erasing condition may make the grammar size exponentially
larger than the original one[i4,22], and hence the complexity of the uni-

versal recognition problem cannot be reduced by such a transformation.

 Generally speaking, there is not much difference between the complex-

-67--

ities of the problems for PMCFG and for MCFG with the same restriction

(compare results for PMCFG and MCFG in the same row in Table 2).
It seems that copy operations do not have an effect on the succinctness

of a grammar, which is a quite interesting contrast with the fact that

erasing operations (which are inhibited by (f3)) have a great effect on the

complexity of the problem.

 The problem can be solved eficiently if one fixes the degree of gram-

mars. In the language acquisition example, this result means that the
acquisition of a language is tractable (i.e. performed in polynomial time)

if the Ianguages to be acquired are modeled by PMCFG(or MCFG) with
fixed degree e. The remaining question is; "does the class of pmcfg's with

fixed degree have enough generative power to describe the syntax of nat-

ural languages?" Our answer is positive to this question in the following

sense.
 Head grammars (HG)[i9] and tree adjoining grammars (TAG)[ii] have

been widely accepted as grammatical formalisms to describe the syntax of

natural languages. It has already been shown that the class of languages

generated by HG and TAG coincide, and it is a proper subclass of lan-
guages generated by mcfg's with dimension 2 and degree 6[22]. Of course

one can choose a larger degree and pay more to the universal recognition.

This result agrees with our intuitive understanding that, for any gram-

mars, there is a trade-off relation between the generative capacity and

the diMculty of acquisition.

-68-

G W

parser generator

 for !C;

PG g

-.i >
generate
 as an
output

parser
 for
L(G)

PG

Ug

-> true
 or
false

Figure 7:

grammar

A model of acquisition of a language from a description of a

-69-

4 GenerativePowersofFSTS
 This section is devided intotwo parts. In the first section, it is shown

that yL(DFSTS), the class of yield languages generated by deterministic

FSTS, equals to PMCFL. Based on this result, the concept of degree

of PMCFG is extended to deterministic FSTS, and the fixed-language
recognition problem for yL(DFSTS) is shown to be recognized in O(ne+i)-

time where n is the length of an input word and e is the degree of the

deterministic fsts. In Section 4.2, in contrast to these results, it is shown

that there is a nondeterministic mondaic fsts with state-bound 2 which

generates an YV'7-complete language.

4.1 DeterministicFSTS

4.1.1 yL(DFSTS)gPMCFL
 Let (M, G) be a deterministic yT-fsts where M == (Q, 2, A, qi, R) and

G = (VN, VT, P, S). We assume that (? = {q!, . • • , qe}, VT = {ai, • • • , an}

and the productions in P are labeled with ri,...,r.. Since the input
domain of M is the set of derivation trees of G, we assume that Åí :
{ri,...,rm,ai,...,a.} without loss of generality.

 A pmcfg G' = (Vk,Vdi,F', P',S') such that yL(M, G) == L(G') n A'

is constructed as follows. Let Vdi = AU{b} where b is a newly introduced

symbol and let

 Vk = {S', Ri,•••, Rm, Ai,•••,An}

where d(Ri) == d(Aj) = e for 1 g i S m and 1 S j' <- n. Note that each

Ri (1 Si <- m) and Aj (1 S]' <- n) correspond to production ri and

terminal aj of cfg G, respectively. Productions and functions of G' will

be constructed to have the following property.

Property 4.1: There is (ai,...,ae) E LGt(Rh) (resp. LG,(Ah)) such

that
 (gg[: gf, g,s6'idn'8,x.ZOgi,?Pl.iZn,Idlig.2'.i.kdb

if and only if there is a derivation tree t of G such that the root oft is rh

 -70-

(resp. ah) and

 q,. [t]5a,. (l spg u) (qt.[t] derives no output (1 SpS v).

 z

The basic idea is to simulate the move of tree transducer M which is

scanning a symbol rh (resp. ah) with state gi by the ith component of

the honterminal Rh (resp. Ah) of pmcfg G'. During the move of M, it

may happen that no rule is defined for a current configuration and hence

no output will be derived. The symbol b is introduced to represent such

an undefined move explicitly,

 To construct productions and functions, Define RS(X) (X E VN UVT)

as follows.

 Rs(x) .. (l{iit}l the ieft-hand side of rh iSiix} .lf.X, EE vV.N.

Productions and functions are defined as follows.

Step 1: For each production rh:Yo . Yi•••Yk (Yo E VN,Yu E VN U
 VT for 1 S u S k) of cfg G, construct nonterminating productions

 Rh - f.,[Zi,•••, Zk]

 for arbitrary combinations of Z. E RS(Y.) (1 S u S k) where fr,

 is defined as follows: For 1 S i <- e,

 e ifthere is no rule whose left-hand side is gi [rh(xi,...,xk)],then

 fil][di,,...,tek]2b, (30)

 e if the transducer M has a rule qi[rh(xi,•••,xk)] "-> wi,i
 qn(i,i)[Xp(i,i)]Wi,2'''Wi,niqn(i,ni)[Xpa(i,n,)]wi,ni+i, where 1 g n(i,

 2') S e and 1 S pa(i, j') S k (1 S j' <- ni), then

 rlt,'][Ml,...,hile] 2 wi,lxp(i,1)"(i,i)Wi,2•••

 Wi,niXp(i,ni)n(i,ni)Wi,ni+1 (31)

 where X. = (x.i, .. ., x.e) (1 g u (k).

-71-

 (Since M is deterministic, there exists at most one rule whose left-

 hand side is qi[rh(• ••)] and hence the above construction is consis-

 tent.)

Step 2: For each ah E VT, construct a terminating production Ah - fa,

 where f., is defined as follows: For 1 E{ i f{ e,

 e if there is no rule whose left-hand side is qi[ah], then fai,]gb.

 ' e if qi [ah] - wi, then fY2 2wi.

Step 3: For each Rh E RS(S), construct S' - ffirst[Rh] where ffirst[(xi,
 . . ., xe)]gxi. Intuitively, the right-hand side of this production cor-

 responds to the configuration that M is in an initial state qi and

 scanning the root symbol Th of a derivation tree, where rh is the

 label of a production of G whose left-hand side is the initial symbol

 s.

 In the following, it is shown that the pmcfg G' defined as above has

Property 4.1.

(Only if part) It is shown by induction on the number of applications of

(Ll) and (L2) in section 2 to obtain a tuple of strings (cti,...,ae). For

the basis, assume that a = (ai,. .. , ae) E LG,(X) is obtained by only one

application of (Ll). It is clear that the applied (terminating) production

is constructed in Step 2, and hence there is some h such that X = Ah,

Ah -ÅÄ faE and fa, = d• Let t = ah and consider how derivations proceed
from qi[t] for1Si <- e. If ai =bthen fY,] == band hence there should

be no rule whose left-hand side is qi[ah]. If ai does not contain b, then

transducer M has a rule qi[ah] --> ai, and the property holds.

 Assume that the property holds for every tuple of strings which can be

obtained by d' applications or less, and suppose the case that (ai,...,ae)

E LG,(X) is obtained by d' + 1 applications. The last (nonterminating)

production applied in (L2) must be constructed in Step 1, hence there is

some h such that X = Rh, and the applied production is

 Rh- f,, [Zi,..., Zk]. (32)

Furthermore, there exist i(3. = (fi.i, . . . , ,(3.e) E LG,(Z.) for 1 f{ u fl{ k such

that (ai,...,ae) = f.,[fii,...,fik]. For each u (1 Su S k), if Z. == Rh.

-72-

for some h. (resp. Z. = Ah. for some h.), then 6u E LG,(Rh.) (resp.

6. E LG,(Ah.)), and by the inductive hypothesis there is a derivation

tree t. which satisfies Property 4.1 with P.. That is, the root of t. is rh.

(resp. ah.), and for v (1 S v S e),

 (g;[l#l=ilg,:•;,,....,,., liS::g.o.e,s."..o,`spntainb• (,,)

We note that since (32) is constructed in Step 1 as a production of pmcfg

G', cfg G has a production rh : Yo - Yi •••Yk and Z. E RS(Y.) holds

for 1SuS k. Now, Z. = Rh. E RS(Y.) (resp. Z. == Ah. E RS(Yu))
holds and it follows that the left-hand side of production rh is Y. by the

definition of RS (resp. Y. is the terminal symbol ah.). Hence, if we take

t = rh(ti,...,tk) then t is a derivation tree of cfg G. Now, consider a

derivation of M from qi [t] for 1 g i g e.

 e If ai contains b, then there are two cases.

 - fltj] is defined to be b by (30). In this case, there exists no rule

 whose left-hand side is qi[rh(xi,...,xk)]. Hence qi[t] derives

 no output and the property holds.

 - fil] is defined by (31). In this case, ai can be written as

 ai = Wi,i6"(i,i)n(i,i)Wi,2' ' 'Wi,ni6p(i,n{)n(i,noWi,ni+i and 5p(i"')n(i,j)

 contains b for some 2' (1 -<-]' S ni). By the construction of

 function f., in Step 1, there is a derivation from qi[t];

 qi[tl = qi[rh(ti,•••,tk)] =>

 Wi,lqn(i,1)[tp(i,1)]Wi,2 ' ' ' Wi,niqn(i,ni)[tge(i,nD]Wi,ni+1

 and there are no other derivation since M is deterministic.
 If P.(i,j)n(i,,•) contains b, then by (33), gn(i,j)[t,(i,,•)] derives no

 output and hence qi[t] also cannot derive output.

 e If c!i does not contain b, then "Z,J] is defined by (31), cei can be writ-

 ten as ai = wi,i6"(i,i)n(i,i)wi,2'''wi,nP"(i,ni)n(i,nowi,ni+i and each

 fip(i"')n(i,2') (1 S j <- nD does not contain b. By (33), q,(i,•)[t,(i,•)]

 5P.(i,j)n(i,j) holds for 1 S 1' <- ni, hence

 qi[t] == qi[rh(tl,•••7tk)]

 -73-

 => Wi,lqn(i,1)[tp(i,1)]Wi,2 ' ' ' Wi,niqn(i,n"[tp(i,nD]Wi,ni+1

 =ll; Wi,IPp(i,1)n(i,1)Wi,2'''Wi,n,6p(i,ni)n(i,n,)Wi,n.+1

 = ai

 and the property holds.

(ifpart) If part is shown by induction on the size of a derivation tree t

of G. (The size of a treet is the number of occurrences of symbols of the

ranked alphabet appearing in t.) For the basis, assume that the size of t

is one, that is, t = ah for some ah E VT. By Step 2, there is a production

Ah . fa, and the property holds.

 For the inductive step, assume that the property holds for every
derivation tree whose size is not greater than d', and consider a deriva-

tion tree t = rh(ti,...,tk) with size d' + 1. Since t is a derivation tree

of cfg G, rh is aproduction of the form Yo . Yi•••Yk and the root of
t. (1 SuS k) is;

 (rahh.. (label of a production whose left-hand Side iifSylX:.u)--ifa]hK.u EE vVT{

 By the definition of RS, Rh. E RS(Y.) (or Ah. E RS(Y.)) holds for

1 S u g k, and hence pmcfg G' has a production Rh - fr,[Zi,•••,Zk]

where Z. = Rh. (or Z. = Ah.). (See the construction of productions in

Step 1.)

 Here, the size of each subtree t. (1 S u g k) equals to or less than d',

by the inductive hypothesis, there exist /(3u = (/(3ui,•••,,(3ue) E LGt(Rh.)

(or LGt(Ah.)) such that P. and t. satisfy Property 4.1. That is, for

v(1 <- vs e),

 (s#;g.o.ee.p.o,`;o"`ai"b l.i9,:I,`#l=lig,:•%,....,,.t. (34)

Now, let

 a = (ai,•••,ae) = f., [fii,•••,6k] E LG,(Rh)

and consider how ai is defined for 1 S i g e.

 e If there is no rule whose left-hand side is qi[rh(xi,...,xle)], then

 qi[t] derives no output. In this case, ptZjl is defined to be b and hence

 ai = b, the property holds.

 -74-

 e If the transducer M has a rule qi [rh(xi,• • • ,Xk)l - Wi,iqn(i,i)[Xp<i,i)]

 Wi,2 ' ' ' Wi,nS"(i,ni)[xp(i,ni)]wi,ni+i, then we can write ori as

 ai == Wi,iPpt(i,on(i,oWi,2 ' ' ' Wi,niP"(i,ns)n(i,n"Wi,ni+i (35)

 by the construction of functions in Step 1. There are two cases:

 - For some 2' (1 S i -< ni), qn(i,i•)[tp(i"•)] derives no output and

 hence qi[tl also. In this case, fip(i,e•),(i,2•) contains b by (34) and

 it follows from (35) that ai also contains b, the property holds.

 - For every 1' (1 S 2' <- ni), q,(i,j)[t.(i,j)] derives some output.

 Since M is deterministic, and by (34), the derived string should

 be 6p(i,j)n(i,j) which does not contain b.

 qi[t] = qi[rh(ti,•••,tk)]

 => Wi,lqn(i,1)[tit(i,1)]Wi,2 ' ' ' IVi,ni9n(i,ni)[tp(i,ni)]Wi,ni+1

 !i' Wi,16pt(i,1)n(i,1)Wi,2'''IVi,n,fip(i,ni)n(i,n,)Wi,n,+1

 .. ai

 and the property holds.

 The proof of if part is completed and Property 4.1 has been proved.

 o

Lemma 4.1: yL(DFSTS) g PMCFL

Proof. Let Li2L(G')nA'. Since pmcfl's are closed under intersection

with a regular set[i41, Li is also a pmcfi. We show that yL(M, G) = Li.

By Property 4.1 and the productions constructed in Step 3, 2v E Li if
and only if there is a derivation tree t of G such that

 e the root oft is rh,

 e the left-hand side of rh is the initial symbol S, and

 e qi [t] !>w

and the lemma holds. fi

-75-

4.1.2 PMCFLgyL(DFSTS)
 Let G = (VN,VT,F,P,S) be a pmcfg with dimension e. Without
loss of generality, G is assumed to satisfy the non-erasing condition of

Lemma 2.1. Also suppose that the nonterminating productions of G are

labeled with ri, . . . , r., and the terminating productions are labeled with

rl,...,ra. Furthermore, for each nonterminal production rh (1 S h S

m), we suppose that the function of the right-hand side of rule rh is fh

(the suMx of the function is identical to that of the production), hence

each nonterminal production can be written as Th : Yo - fh[Yi)•••,

Yk] (a(fh) = k,Yo,••.,Yk E VN). We also suppose that each terminating

production can be written as rk : Yo - fA. A yT-fsts (M, G') such that

yL(M, G') = L(G) is constructed as follows.
 First, define a cfg G' == (V&, Vdi, P', S') with Vk 2{ S', Ri , . , . , R.}

and Vdi 2{ai , . . . , a. }. Note that each nonterminal Ri (1 S i g m) and

terminal aj (1 S]' -< n) of cfg G' correspond to nonterminating produc-

tion and terminating production of pmcfg G, respectively. To construct
productions, RS'(X) {!l Vk U Vi for X E VN is defined as follows.

 RS'(X) = {Rh 1 the left-hand side of rh is X}

 U {ah1the left-hand side of rL is X}.

By using RS', productions P' of cfg G' are defined as follows.

Step A: For each nonterminating production Th : Yo - fh[Yi,

 pmcfg G, construct productions

 ehz,•••zk : Rh - Zl ••• Zk

 for Z. E RS'(Y.) (1 SuS k).

Step B: For each Z E RS'(S), construct

 -start : Sl --> Z.

 t
 pmcfg G whose left-hand side is the initial sy

 Define ÅíS{the labels of productions in P'} U Vf,

fihzi•••zk : Rh . Zi •••Zk, p(ah) = 1 for ah E Vdi and p(e,t.,t) =

is a ranked alphabet.

, Yk] of

(36)

Note that each element in RS (S) corresponds to the production

 mbol S of G.

 P(fihzi•••zk) = k for

 1, then X

(37)

 of

 -76-

 Next, we define yT-transducer M = (Q,Z,A,qi,R) with Åí defined
above and A2VT. (? is defined to be {qi,...,ge} (note that e is the

dimension of G).

 The rules in R will be defined to have the following property.

Property 4.2: There is d = (ai,. .. ,a,) E LG(X) and the last produc-

tion applied to obtain a is rh : X - fh[Yi,...,Yk] (resp. rk : X - fA)

if and only if there is a derivation tree t of G' such that the root is

ehzi•••zk : Rh -'ÅÄ Zi'''Zk (Zu E RS'(Y.),1 S u S k) (resp, terminal
symbol ah) and gi [t]=5}ai for 1 g i S s. (qi [t] derives no output for i > s.)

 o

 Intuitively saying, a derivation tree of cfg G' represents how to apply

productions to obtain tuple of string. The rules of transducer M are

constructed to "expand" the tree into string. The rules in R are defined

as follows.

Step I: For each nonterminating production rh : Yo --ÅÄ fh[Yi,•••,Yk]

 with fh defined as

 fhi][tn1, • • • , tnk] = wi,IXpa(i,1)n(i,1)Wi,2 ' ' ' Wi,niXpt(i,n,)n(i,n,)Wi,nt+1

 where T. = (x.i,...,x.d(y.)) (1 S 2t S k), 1 S pa(i,]`) S k, and

 1 S n(i, 2') S d(Y,i,j) (1 g o' <- ni), define rules

 qi [-hZi -•Zk (Xl,•••,Xk)l- (38)
 Wi,l qn(i,1) [Xp(i,1)]Wi,2 ' ' ' Wi,ni qn(i,ni) [Xpa(i,ni)]Wi,ni+1

 where Z. E RS'(Y.) (1 f{{ u f{ k) and 1 S i S d(Yo).

Step II: For each terminating production rk : Yo - fA with fA defined
 as fAli] = wi, define rules qi[ahl - wi for 1 :{ i f{{ a(Yo).

Step III: Define

 qi [fstart (x)] . qi [x]t (39)

 It is clear that the constructed transducer M is deterministic. A

transducer M and a cfg G' defined as above have Property 4.2. Following

is its proof.

-77-

(Only if part) It is shown by induction on the number of applications of

(Ll) and (L2) to obtain a tuple of strings (ai,...,cM,). For the basis,

assume that d == (ai,...,a,) E LG(X) and it is obtained by one appli-

cation of (Ll). Then the applied terminating production is rk : X - fA

where fA == d. If we take t = ah, then t is a derivation tree of cfg G' and

the property holds by the construction of rules in Step II.

 Next, assume that the property holds for every tuple of strings which

can .be obtained by d' or less applications of (Ll) and (L2), and consider

the case that d = (ai, . . . , a,) E LG(X) is obtained by d' +1 applications.

Let

 rh :X- fh [Yi,..., Yk] (40)
be the last production app!ied to obtain d where fh is defined as

 fLi] [Xi, • • • , Xle] = wi,ixpt(i,i)n(i,i)2vi,2 ' ' ' wi,n`xp(i,n,)n(i,n,)Wi,n,+i (41)

for 1 ff{ i s{ d(X). Then, there are P. = (fiui,•••,5ud(y.)) E LG(Yu) (1 -<

uS k) such that

 d= fh [6i,.••,fik]. (42)
Each 6. can be obtained by d' applications or less, and there is a nontermi-

nating production Th. :Y. - fh.[Y.i,...,Y.k.] (or terminal production

Tk. : Y. -ÅÄ fA.) which is the last production applied to obtain 5.. By the

inductive hypothesis, there are derivation trees t. (1 S tt S k) such that

 gv [tu] l5' 5uv (43)

for 1 S v g d(Y.), and the root of tu is fh.z.i•••z.k. : Rh. ' Zui ''' Zuk.

(or ah.). Note that Rh. E RS'(Y.) (or ah. E RS'(Y.)) holds for 1 S u S k.

Since pmcfg G has a nonterminating production rh (see (40)), cfg G' has

a production fihz,...z, : Rh -• Zi ••• Zk such that

 ' (S#';5,lrl•il:sigglgil:l.gzzu.?ui•••zuku• (,,)

Hence if we take t == ehz,...z,(ti,...,tk) then t is a derivation tree of G'

and

 qi[t] = qi[fihZ,•••Zk(ti,•••,th)]

-78-

 =>' Wi,19n(i,1)[tp(i,1)]Wi,2 ' ''Wi,niqn(i,ni)[tp(i,ni)]Wi,ni+1 bY (38)

 5 Wi,iPp(i,i)n(i,i)Wi,2'''Wi,nP"(i,n,)n(i,n,)iVi,n,+i by (43)

 == fLil[Bi,...,Bk] by(41)

for 1 S i <- d(X). That is, gi[t] l5ai (1 S i <- d(X)) and the property

holds.

(lf part) The only if part is shown by induction on the size of a derivation

tree t of cfg G'. For the basis, consider a derivation tree of size one, that

is,t== ah for some ah E VT, and assume that qi[t]IE>ai for1Si<- sand

it derives no output for i > s. Then, there are Tules ai[ah] - cti (1 S{

i g s) and by the construction of rules of M in Step II, pmcfg G has a
terminating production r'h : Yo - fA with d(Yo) = s and fA[i] = cti for

1 fl{ i S{ s. Hence, (cifi, . . . , or,) E LG(Yo) and the property holds.

 Assume that the property holds for every derivation tree whose size

is d' or less, and consider a derivation tree t = "hz,...z,(ti,•••,tk) of size

d' +1 such that

 qi [t] => Wi,l qn(i,1) [t"(i,1)]IVi,2 ' ' ' Wi,ni qn(i,ni) [tp(i,ni)]Wi,ni+1 (45)

 !i> IVi,1](3pa(i,1)n(i,1)IVi,2 ' ' ' Wi,n,/Bp(i,n,)n(i,n,)Wi,nt+1

for 1 :E{l i :E{ s• Let Fh.z.,...z.,. (or ah. possibly) be the root of subtree

t. (1 S u S k). To apply the inductive hypothesis to each subt,ree
t. (1 S u S k), we first investigate the nonterminal on the left-hand

side of rh. which is a corresponding production of pmcfg G. Since t is

a derivation tree of cfg G' and the left-hand side of eh.z.iE-sz.k. is Rh.

(see 36), there is a production dihz,,,.z, : Rh ---> Zi •••Zk such that (44)

holds. By the construction of productions of G' in Step A, pmcfg G has

a production

 rh:Yo -. fh[Yi,...,Yk] (47)
such that Z. E RS'(Y.) holds for 1 s{ u S k. By the definition of RS' and

(44), it follows that the left-hand side of rh. (or rk.) is Yu•

 Next, consider the rules of transducer M which are used in (45). Ap-

parently, the rules used are defined in Step I, and it follows that the

-79-

function fh in (47) is defined as

 fLi] [toi, • • • , Xk] == wi,ixp(i,i)n(i,i)wi,2 ' ' ' Wi,n,Xpt(i,n,)n(i,n,)Wi,n,+i (48)

for 1 S i S d(Yo) = s where tn. = (x.i,...,x.d(y.)) (1 S u S k). Since

pmcfg G satisfies the non-erasing condition, for every u (1 S u S k) and

v (1 S v S d(Y.)), the variable x.. appears at least once on the right-

hand side of (48) for somei(1 Si S s). Hence, q.[t.] appears at least

once on the right-hand side of (45) for somei(1 .< i g s), and it follows
that" q. [t.]=5P.. holds for every u (1 S u S k) and v (1 S v S d(Y.))•

Since the size of t. (1 g u S k) equals to d' or less, by the inductive

hypothesis,

 /(3u = (6ui,•••,,(3ud(y.)) E LG(Yu) (49)

for each u (1 S u S k). (Remind that the root of tu is fh.z.i•••z.k. (Or

ah.) and the left-hand side of rh. (or Tk.) is Y..) Now, replacing x's with

P's in (48), and by (46),

 fÅíi] [B,,...,,B,]

 = Wi,IPpa(i,1)o(i,1)Wi,2 ' ' ' Wi,nifip(i,ni)n(i,ni)Wi,ni+1

 =cri (50)
for l f{ i f{ d(Yo). By (47),(49) and (50), (ai,...,(],) E LG(Yo) and the

property holds. Hence, Property 4.2 has proved. U

Theorem 4.2: yL(DFSTS) = PMCFL.

Proof. In Lemma 4.1, it has been shown that yL(DFSTS) [PMCFL,
and hence it suMces to show that PMCFL g yL(DFSTS). We show that
L(G) = yL(M, G') for M and G' constructed as above.

 If w E LG(S), then there is a production of pmcfg

 rh :S- fh [Yi,•••Yk] (51)
which is the last production applied to obtain w. By Property 4.2,
there is a derivation tree t of G' such that the root is fihz,•••zk : Rh -

Zi ''' Zk (Z. E RS'(Y.),1 S u s{ k) and gi[t]=5w holds. Let t' == F,t.,t(t)

then, since Rh E RS'(S), t' is also a derivation tree of cfg G'. Hence,

w E yL(M, G') holds by (39).

 In a reverse way, we can prove that ifw E yL(M, G') then w E LG(S),

and the theorem holds. Z

-80-

4.1.3 RecognitionofyL(DFSTS)

 In the previous sections, we show that yL(DFSTS) equals to PMCFL.

Since deterministic polynomial time recognition algorithm for PMCFL
has been proposed[i5], it can be concluded that yL(DFSTS) is in 1> of

computational complexity. This result has been noted in an earlier paper

Ref.[5] as a corollary of its main result, but the running-time required for

recognition was not analyzed.
 By combining the recognition algorithm for PMCFL[i5] and the con-

struction procedure described in Section 4.1.1, we obtain an effective

procedure to recognize yL(DFSTS). In the rest of this section, we inves-

tigate the complexity of the recognition of yL(DFSTS). First, we review

results on the recognition of PMCFL. Please refer the definition of degree

of PMCFG in Section 2.1.

Lemma 4.3[i5]: A pmcfl which is generated by pmcfg with degree e can

be recognized in O(lwle+i)-time where lwl denotes the length of an input.

 o

 Next we define the degree of a deterministic yT-transducer M =
(Q,Z, A, go,R). For a E 2 and 1 E (2, let ng,. denote the number of oc-

currences of variables in the right-hand side of a rule whose left-hand side

is q[a(xi,.. , ,x.)]. If no rule is defined for q[a(xi,. .. ,x.)], then nq,. = O.

Since the yT-transducer is deterministic, nq,. can be defined uniquely.

For instance, in Example 2.4, ng,,+ = 2 and ng,,. = 4. Define the degree

of a symbol a E Z as IQI + 2 ng,.. If the maJcimum degree among the

 9E(?
symbol in X is e, then M is called a yT-transducer with degree e. An fsts

with degree e is an fsts of which yT-transducer is with degree e.

 The readers can easily verify that a deterministic fsts with degree e is

translated into a pmcfg with degree e by using the construction described

in Section 4.1.1. Hence the following theorem holds.

Theorem 4.4: The yield language generated by an fsts with degree e
can be recognized in O(Iwle+i)-time where lwl denotes the length of an

-81d

4.2 MonadicFSTS
 In previous sections, the class of yield languages generated by deter-

ministic FSTS is shown to be in IP. In Ref.[21], it has been shown that

there is an .IV'P-complete language in the class of yield languages gener-

ated by nondeterministic FSTS. In this section, we give an Af'P-complete

language in a more "restricted" class of languages, yL(NMFSTS2), the

class of yield languages generated by nondeterministic monadic FSTS
with state-bound 2 (this class is denoted as m-fsts2 in Figure 2). First, a

language called Unary-3SAT[i71, which is YVP-complete, is reviewed, and

then it is shown to belong to yL(NMFSTS2).

 A Unary-3CNF is a (nonempty) 3CNF in which the subscripts of
variables are represented in unary. A positive literal xi is represented by

lt$ in a Unary-3CNF. Similarly, a negative literal 7xi is represented by

12#. For example, a 3CNF

(Xl V X2 V 7X3) A (X3 V HXI V 7X2)

is represented by

 1$11$111# A 111$1#11#

in a Unary-3CNF. Unary-3SA T is the set of all satisfiable Unary-3CNF's.

CIearly, Unary-3SAT is YV'P-complete.

 A nondeterministic monadic yT-fsts (M,G) with state-bound 2
which generates Unary-3SAT is defined as follows. First, define a cfg
G = (VN, VT, P, S) where VN = {S, T, I7}, VT = {e} and the productions

in P are as follows:

rss : S-S
rsT : S-T
rsF : S-F
rTT : T.T
rTF : T- F.

rTe : T-e
rFT : 17 .T
rFF : I7.F
rFe : F-e

Note that G is a regular grammar, and hence this fsts is monadic. Let tt

be a derivation tree of G. Then u has a following form;

ug rss(• •• (rss(rsp, (ut)))•• •)

 m-1

 -82-

where
 ul = rplp2(rp2p3(...(rp.e(e))•••))

and pi E {T, F} for 1 SiS n. The outer m (m 2 1) symbols of u are
the rules whose left-hand side is S, and the next n symbo}s are the rules

whose left-hand side is T or F.

 Next, a yT-transducer M = @,Z,A, qo,R) is constructed to trans-

duce u into a Unary-3CNF E such that

 e E has m clauses,

 e there are at most n distinct variables xi,...,x. in E, and

 e the value of E becomes true if values are assigned to the variables

 as
 x2 -(illllll},UsE, ,II;:. l.g T. (i sisn). (s2)

Let ([2 = {qo, q,, qt, q.}, X = {rss,...,rF,,e} and A = {1,A, $,#}. Since

there are many rules in R, we will use an abbreviated notation. For
example, the following four rules

 9a[rTe(X)] --" 1$, 9a[rTe(X)] - 1#

 qa[rFe(x)] - 1$, qa[rFe(x)] - 1#

are abbreviated as "q.[rT.(x)] = q.[rF,(x)] -" 1$ or 1#". By using this

notation, define R as following rules (Rl) through (R9):

(Rl) qo[rss(x)] . q,[x] A qo[x].

(R2) q.[Tss(x)] - q,lx].

 By the rules (Rl) and (R2), M transduces qolu] into

 q, [rsp,(u')] A ••• A q. [rsp, (u')] A qo [rsp, (u')] . (53)

(R3)

 m
As we explain later, each q.[• • •] and go[• • •] derives one clause. Hence

m clauses will be derived from qo[u].

 qo[rsT(x)] == qo[rsl7(x)] == q,[TsT(x)] = q,[rsF(x)] -

 gt[x]qa[T]g.[x] or q.[x]qt[x]g.[x] or g.[x]q.[x]gt[x].

By these rules, each g.[rsp,(u')] (go[Tsp,(u')]) in (53) derives one of

gt [ul] qa [ut] q. [ul], q. [utl qt [ut] q. [ut] or q. [ut] q. [ut] qt [ut].

 -83-

(R4) gt[rTT(x)l = qt[rTF(x)] - lqt[x] or 1$.

(R5) qt[rT.(x)] - 1$•

(R6) gt[rFT(x)] = qt[rFF(x)] - lgt[x] or 1#.

(R7) qt[rF,(x)] - 1#.

 Suppose that a derivation from qt[u'] has been proceeded and the

 current configuration is gt[rp,p,+,(• • •)]. Now, transducer M has two

 choices (see rules (R4) and (R6));

 e generate 1 and continue a translation of subtree, or

 e generate 1$ ifpi is T, 1# ifpi is F and completea translation.

 If M completes atranslation and pi is T (resp. F), then gt[u'] has

 derived lt$ (resp. 12#). Note that this is a literal xi (resp. Xi)

 which becomes "true" under the assignment (52).

(R8) g.[rTT(x)] = q.[rTF(x)] = q.[rFT(x)] = g.[rFF(x)] -

 lq.[x] or 1$ or 1#.

(R9) ga[rTe(x)] == qa[rF.(x)] - 1$ or 1#.

 These are similar to the rules (R4) through (R7); q.[iL'] derives some

 literal but it is not guaranteed to become "true".

Now, the readers can easily verify that this fsts has a state-bound 2, and

that this fsts can derive an arbitrary satisfiable Unary-3CNF.

Theorem 4.5: Unary-3SAT is in yL(NMFSTS2). O

-84-

5 Conclusions

 Computational complexities of the universal recognition problems

have been investigated in this dissertation. It has been shown that the

problems for PMCFG, NEPMCFG, m-PMCFG (m 2 1), and PMCFG.
(e) 3) are EXP-POLY time-complete, PSPACE-complete, YV'7-complete,

and P-complete, respectively. Complexities of the problems for MCFG

and its subclasses are almost identical to that for PMCFG, except that

ArP-completeness holds for m-MCFG with m 2 2 (see Figure 2). Based

on these theoretical results, characteristics and relations among these

subclasses are discussed. Furthermore, the relation between language ac-

quisition and universal recognition is discussed in some detail. The vari-

ation of complexities of the universal recognition problems confirms our

intuitive understanding, from theoretical aspects, that there is a trade-off

relation between the generative power of grammars and the difficulty of

acquisition of languages. Though the universal recognition problems are

intractable for most subclasses of PMCFG, it is tractable for the class of

pmcfg's (mcfg's) with bounded degree. It can be concluded that the class

of pmcfg's (mcfg's) with bounded degree satisfies properties (i) through

(iii) introduced in the introduction. Thereby, it is a favorable model to

describe the syntaix of natural languages. There may be other gram-

matical, or mathematical computational models of which generative (or

computationaJ) power equal to PMCFG. In fact, in the latter half of this

dissertation, FSTS is shown to have the same generative power as PM-

CFG. Clarifying complexities of universal recognition problems for these

models, and comparing the results to that for PMCFG will bring fruitful

implications from both of theoretical and practical viewpoints.

 In the latter half of the dissertation, the generative power of FSTS

and its subclasses are investigated. It is an interesting result that de-

terministic FSTS and PMCFG, which were proposed from quite different

viewpoints and developed independently, have the same generative power.

Remark that we can define hierarchies in the class of languages generated

by PMCFG (and hence deterministic FSTS) via dimension of PMCFG,

and via state-bound of deterministic FSTS, It is interesting to clarify

the relation between these two hierarchy. As for nondeterministic FSTS,

it has been shown that there is a nondeterministic monadic fsts with

-85-

state-bound 2 which generates an vVP-complete language. Among the

natural subclasses of nondeterministic FSTS, nondeterministic monadic

FSTS with state-bound 2 is quite a smal1 one. The fact that there is

an A/'P-complete language in the class of yield languages generated by

nondeterministic monadic FSTS with state-bound 2 implies that nonde-

terminism brings an essential computational power in FSTS. It is notable

that the relation between the class P and the class of yield languages

generated by monadic FSTS with state-bound 1 remains unclear. Hence
it will be interesting subject to clarify the relation among P, the class of

languages generated by PMCFG, and that of moRadic FSTS with state-

bound 1.

 -86-

References

 [1] Aho A.V.: "Indexed Grammars", J. Assoc. Comput. Machinary, 15,

 pp.647--671 (1968).

 [21 Barton G.E., Berwick R.C. and Ristad E.S.: "Computational Com-

 plexity and Natural Language", The MIT Press (1987).

 [3] Chandra A. and Stockmeyer L.: "Alternation", Proc. of the 17th

 FOCS, pp.98-108 (1976).

 [41 Earley J.: "An Efficient Context-Free Parsing Algorithm", Ph.D.

 dissertation, Dept. of Computer Science, Carnegie-Mellon University

 (1970).

 [5] Engelfriet J.: "The Complexity of Languages Generated by Attribute

 Grammars", SIAM J. Comput., 15, 1, pp.70-86 (Feb. 1986).

 [6] Engelfriet J. and Heyker L.: "The String Generating Power of
 Context-Free Hypergraph Grammars", J. Comput. & Syst. Sci., 43,

 pp.328-360 (1991).

 [7] Engelfriet J., Rosenberg G. and Slutzki G.: "Tree Transducers, L

 Systems, and Two-Way Machines", J. Comput. & Syst. Sci., 20,
 pp.150-202 (1980).

 [8] Gazdar G., Klein E., Pullum G. and Sag I.: "Generalized Phrase
 Structure Grammar", Basil Blackwall (1985).

 [9] Hopcroft J.E. and Ullman J.D.: "Introduction to Automata Theory,

 Languages, and Computation", Addison-Wesley (1979).

[10] Jones N.D. and Laaser W.T.: "Complete Problems for Deterministic

 Polynomial time", Theoretical Computer Science, 3, 1, pp.105-118

 (1976).

[11] Joshi A.K., Levy L. and Takahashi M.: "'bee Adjunct Grammars",
 J. Comput. & Syst. Sci., 10, 1, pp.136-163 (1975).

[121 Karp R.M.: "Reducibility among Combinatorial Problems", Com-
 plexity of Computer Computations, pp.85-104, Plenum Press (1972).

-87-

[13] Kasami T., Seki H. and Fujii M.: "Generalized Context-Free Gram-

 mars, Multiple Context-Free Grammars and Head Grammars",
 Technical Report, Osaka University (1987), also in : Preprint of
 WG on Natural Language of IPSJ, 87-NL-63-1 (Sept. 1987).

[14] Kasami T., Seki H. and Fujii M.: "Generalized Context-Free Gram-

 mars and Multiple Context-Free Grammars", Trans. IEICE, J71-D-
 I, 5, pp.758-765 (May 1988) (in Japanese).

[15] Kasami T., Seki H. and Fujii M.: "On the Membership Problem

 for Head Languages and Multiple Context-Free Languages", Trans.
 IEICE, J71-D-I, 6, pp. 935-941 (June 1988) (in Japanese).

[16] Matsumura T., Seki H., Fujii M. and Kasami T.: "On the Generative

 Power of Multiple Context-Free Grammars and Head Grammars",
 Trans. IEICE, J73-D-I, 5, pp.473-483 (May 1990) (in Japanese).

[17] Nakanishi R., Seki H. and Kasami T.: "On the Generative Capacity

 of Lexical-Functional Grammars", IEICE Trans. Inf. and Syst., 75-
 D, 7, pp.509-516 (July 1992).

[18] Nishino T.: "Relating Attribute Grammars and Lexical-Functional

 Grammars", Research Report TDU-IS-7, Tokyo Denki University
 (June 1988) (also in Information Sciences, 66, pp.1-22 (1992)).

[19] Pollard C.J.: "Generalized Phrase Structure Grammars, Head
 Grammars and Natural Language", Ph.D. dissertation, Stanford
 University (1984).

[20] Rounds W.C.: "Context-Free Grammars on Trees", Proc. of ACM

 Symp. on Theory of Computing, pp.143-148 (May 1969).

[21] Rounds W,C.: "Complexity of Recognition in Intermediate-Level

 Languages", IEEE 14th Annual Symp. on SWAT., pp.145-158 (Oct.

 1973).

[22] Seki H., Matsumura T., Fujii M. and Kasami T.: "On Multiple

 Context-Free Grammars", Theoretical Computer Science, 88, 2,
 pp.191-229 (Oct. 1991).

-88-

[231 Tanaka S. and Kasai T.: "The Emptiness Problem for Indexed Lan-

 guages is Exponential Time Complete", Trans. IEICE, 68-D, 10,
 pp.1727-1734 (Oct. 1985) (in Japanese).

[24] Thatcher J.W.: "Characterizing Derivation 'Trees of Context-Free

 Grammars through a Generalization of Finite Automata Theory",
 J. Comput. & Syst. Sci., 1, pp.317-322 (Dec. 1967).

[25] Vijay-Shanker K.,

Head Wrapping",
207 (1986).

Weir D.J. and Joshi

Proc. 11th Intl. Conf.

A.K.: "Tree

on Comput.
Adjoining and

Ling., pp.202-

[26] Vijay-Shanker K., Weir D.J. and Joshi A.K.: "Characterizing Struc-

 tural Descriptions Produced by Various Grammatical Formalisms",
 Proc. of 25th Annual Meeting of Assoc. for Comput. Ling., pp.104-

 111 (1987).

[27]

[28]

Weir D.J
malisms"

. : "Characterizing Mildly Context-Sensitive Grammar For-

, Ph.D. thesis, University of Pennsylvania (1988).

Weir D.J.: "Linear

istic Tree-Walking

Assoc. for Comput.

Context-Free Rewriting Systems and

Transducers", Proc. of 30th Annual
Ling. (June 1992).

Determin-
Meeting of

