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Recognition of Parallel Multiple Context-Free Grammars and Finite
State Translation Systems

Yuichi Kaji

Abstract

A number of computational models whose generative powers are be-
tween context-free grammars and context-sensitive grammars have been
proposed, and the classes of language generated (or accepted) by those
models have been widely studied. Among them, the class of parallel mul-
tiple context-free grammars (PMCFG), which was introduced to describe
the syntax of natural languages, is an interesting formalism.

In the first half of this dissertation, computational complexities of
the universal recognition problems for PMCFG and its subclasses are
investigated. The universal recognition problem for a class G of grammars
is the one to decide, taking a grammar G € G and a string w as an input,
whether G can generate w or not. Characteristics of PMCFG, relations
among subclasses of PMCFG, and their significance in natural language
processing are discussed based on theoretical results.

The latter half of this dissertation is devoted to a study on the gen-
erative powers of subclasses of finite-state translation systems (FSTS)
which was introduced as a model of transformational grammars. It is
shown that deterministic FSTS has the same generative power as that of
PMCFG. As a corollary, any yield language generated by deterministic
FSTS is recognizable in O(n®*!)-time where n is the length of an input
word and e is a constant called the degree of the deterministic FSTS.
It is also shown that there is a nondeterministic finite-state translation
system that generates an N'P-complete language even if very strong con-
straint, namely, monadicness and two state-boundness, is assumed on the
systems.

Keywords

formal language, parallel multiple context-free grammar, universal recog-
nition problem, finite-state translation system, computational complex-
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1 Introduction

Many researchers have investigated the “gap” between the class of
context-free languages (CFL) and the class of context-sensitive languages
(CSL) ™. Their studies are motivated by two different interests; an interest
from the viewpoint of natural language processing, and an interest from
the viewpoint of computational complexity theory.

In the field of natural language processing, it has been often claimed
that the generative power of context-free grammars (CFG) is not strong
enough to describe the syntax of natural languages; for example, dis-
continuous phrase structure such as “respectively” sentence cannot be
described by any cfg in a simple manner. An example of a “respectively”
sentence is: “A dog and cats runs and walk, respectively”. In this sen-
tence, “runs” corresponds to “a dog”, and “walk” corresponds to “cats”.
This discontinuous and interleaving phrase structure can be modeled by a
formal language {ww | w € ¥*} which cannot be generated by any cfg. If
one admits that the length of w in this language should be finite in natural
languages, then the language can be generated by a cfg. But a derivation
tree of the cfg will have a quite unnatural structure as compared with our
intuitive understanding on the phrase structure of respectively sentence.

On the other hand, the generative power of context-sensitive gram-
mars (CSG) is too strong for efficient handling. Taking these prob-
lems into considerations, a number of new grammatical formalisms of
which generative powers are stronger than that of CFG have been pro-
posed. These new grammars include head grammars (HG)'¥, tree adjoin-
ing grammars (TAG)I?, generalized context-free grammars (GCFG)!®,
Among them, GCFG is a natural extension of CFG, and phrase structure
is simply defined in GCFG. However, it was shown in Ref.[13] that GCFG
has generative power equal to that of type-0 grammars and hence they
cannot be handled efficiently.

To get rid of such intractability of GCFG, a subclass of GCFG, called
parallel multiple context-free grammars (PMCFG)*® was introduced. The
class of languages generated by pmcfg’s is called parallel multiple context-
free languages (PMCFL). Multiple context-free grammars (MCFG)!'® is

INames of “classes” of languages, grammars, or systems are capitalized in this
dissertion.
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a subclass of PMCFG, and the class of languages generated by ﬁlcfg’s is
called multiple context-free languages (MCFL). PMCFG and MCFG can
be considered as natural extensions of CFG. For each nonterminal symbol
A of a pmcfg, a positive integer d(A) is defined and A derives d(A4)-tuples
of strings. The maximum of d(A) among nonterminals A of a pmcfg G
is called the dimension of G. A cfg is a special case of mcfg such that
its dimension is one. Linear context-free rewriting systems (LCFRS) in-
troduced by Vijay-Shanker et al.?®! is essentially the same grammatical
formalism as MCFG.

As for the classes of languages, it was shown in Ref.[13] that MCFL
properly includes CFL, and is properly included in PMCFL, which in
turn is properly included in CSL. It was also shown(?® that MCFL prop-
erly includes TAL (the class of tree adjoining languages)'!! and HL (the
class of head languages)!'®l. Moreover, it has been already shown!'¥ that
PMCFL is included in the class P of computational complexity, i.e., the
fixed-language recognition problem for any language generated by a pm-
cfg is solvable in deterministic polynomial time (Figure 1).

Some subclasses of PMCFG and MCFG can be defined in natural
ways. Among those are classification via dimensions, and classification
via degrees. A pmcfg (mcfg) with dimension m or less is called an m-
pmcfg (m-mcfg). For each m(> 1), the class of languages generated by
(m+ 1)-pmcfg’s ((m + 1)-mcfg’s) properly includes the class of languages
generated by m-pmcfg’s (m-mcfg’s). The degree of a pmcfg G is defined
as the maximum of the sizes of production rules of G (see Chapter 2 for

f22]

formal definition). The class of modified head grammars'®?, which were

shown!?? to have the same generative power as HG, is a proper subclass
of MCFG with dimension 2 and degree 6.

For those newly introduced grammars, including PMCFG and MCFG,
their mathematical properties have been extensively studied. But most
of those studies focused mainly on properties of the class of “languages”
generated by those grammatical formalisms, and properties of “gram-
mars” themselves have not been studied so widely. Universal recognition
problem, which will be described later, is one of the typical problems for
grammars. To clarify computational complexity of the universal recogni-
tion problem for a certain class of grammars has great importance if one



The inclusion relation between CSL and P is a conjecture.
All other inclusion relations are proper.

Figure 1: Inclusion relations among classes of languages (known results
only).
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aims to use the grammars to describe the syntax of natural languages.
The half of this dissertation is devoted to a study on computational com-
plexities of the universal recognition problems for PMCFG, MCFG and
their subclasses.

Let L(G) be the language generated by a grammar G. For a class G of
grammars, the universal recognition problem for G is formally defined as
follows; take a description of a grammar G € G and a string w as an in-
put, decide whether w € L(G). Note that the size of an input is |G|+ |w|,
where |G| and |w| denote the length of the description of G and that of
w, respectively, which is different from the case of fixed-language recog-
nition (parsing) problem. A fized-language recognition (parsing) problem
for a language L is defined as follows; take a string w as an input, decide
whether w € L. The size of an input is |w| only; any favorable grammar
G such that L = L(G) is thought to have “built in” the algorithm. In
this case, the size of a grammar G is considered to be a constant and
thereby, the succinctness of the grammar does not have effect on the
complexity of the fixed-language recognition problem. If one has inter-
est in grammars as representations which explain languages, especially
their syntactic structures, then the complexity of a fixed-language recog-
nition problem is not an appropriate measure of syntactical complexity.
Fixed-language recognition is a problem for a language, while universal
recognition is a problem for a class of grammars. Table 1 summarizes
known results on the universal recognition problems for some classes of
grammars, where RLFG[®l denotes a subclass of lexical functional gram-
mars and IG denotes the class of indexed grammarslll. As one can see
from the table, the universal recognition problems for many well-known
classes of grammars are often intractable. From a viewpoint of compu-
tational linguistics, it is significant to find out a class of grammars such
that

(1) it has enough generative power to describe the syntax of natural lan-
guages, and

(ii) the universal recognition problem for the class is tractable.

In addition, the following property is strongly desired for natural language
processing;
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iii) fixed-language recognition problem for any language generated by a
g g g g
grammar in that class is tractable.

To the author’s knowledge, no grammatical formalisms G have been in-
troduced such that the class of languages generated by G properly includes
PMCFL, and is properly included in both of CSL and P, i.e. PMCFG
has the strongest generative power among the known classes of grammars
which define tractable classes of languages within CSL. Thereby it can
be concluded that PMCFG satisfies properties (i) and (iii) above. Hence
it is significant to clarify the computational complexities of the universal
recognition problems for PMCFG and its subclasses.

In this dissertation, four completeness results on computational com-
plexities of the universal recognition problems for PMCFG, MCFG and
their subclasses are shown: The universal recognition problems for PM-
CFG (MCFG) without any constraint, for PMCFG (MCFG) with non-
erasing condition, for m-PMCFG (m-MCFG), and for PMCFG (MCFG)
with degree e are EXP-POLY time-complete, PSPACE-complete, N P-
complete, and P-complete, respectively (see Figure 2). Characteristics,
relations among those subclasses, and their implication in natural lan-
guage processing, especially language acquisition, are discussed based on
these theoretical results.

The other half of this dissertation investigates the gap between CFL
and CSL from the viewpoint of complexity theory. It has been known that
any language in CFL can be recognized in deterministic polynomial time,
while there is an A/P-complete language in CSL?!!, and hence one may
conjecture that there is the border between P and NP in the gap between
CFL and CSL. A number of computational models have been introduced
to clarify computational theoretic hierarchy in this gap. For example,
tree automata and their variants, extensions of push-down automata,
and finite-state translation systems are widely studied models for this
purpose.

Finite state translation system (FSTS)?Y was originally introduced
as a model of transformational grammars. Later it was found to be an
interesting general computational model, and properties of FSTS and its

[6, 7, 28]

subclasses have been extensively investigated An fsts consists of a

tree transducer M and a cfg G2%24, A tree transducer M takes a tree as
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Table 1: Known results

grammars | complexity of universal recognition

CFG P-completel!”)
GPSGH EXP-POLY time-hard?
RLFG!®! NP-hard?

IGM EXP-POLY time-complete?®]

CSG PSPACE-completel!?

Table 2: The complexities of the universal recognition problems

PMCFG MCFG
(with no constraint) EXP-POLY time-complete
with non-erasing condition PSPACE-complete
m- — NP-complete
(bounded dimension) form >1 | form > 2
P-complete for e > 3
with degree e solvable in solvable in
O(|GJ?|lw|e*!)-time | O(]G|?*|w]|®)-time
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an input, starts from the initial state with its head scanning the root node
of an input. According to the current state and the label of the scanned
node, M transforms an input tree into an output tree in a top-down way.
An fsts (M, G) is a tree transducer M with its input domain being the

20,24 The output set of trees is called

set of derivation trees of the cfg G
the tree language generated by (M, G), and the yield language generated
by (M, G) is defined to be the set of strings obtained by concatenating
(the labels of) leaves of a tree in the tree language.

A number of studies have been devoted to the generative powers of
FSTS and its subclasses. Engelfriet et al. summarized these results in
Ref.[7]. It has been shown that the generative power of deterministic
FSTS is properly stronger than that of finite-copying FSTS, and is prop-
erly weaker than that of (nondeterministic) FSTS. Monadic FSTS (ETOL
system in Ref.[7]) is another subclass discussed in Ref.[7], and it has been
shown to have properly weaker generative power than that of nondeter-
ministic FSTS. In Ref.[7], concept of state-bound of fsts is introduced, and
a hierarchy of generative power via state-bound is investigated. Figure 2
summarizes relations between the generative power of subclasses of FSTS,
where FSTS,, DFSTS,, and MFSTS, denote FSTS with state-bound s,
deterministic FSTS with state-bound s, and monadic FSTS with state-
bound s, respectively, and FCFSTS, denotes finite-copying FSTS with
copying-bound s.

In Ref.[28], it is shown that the class of yield languages generated
by finite-copying FSTS equals to the class of LCFRS, hence MCFL. In
Chapter 4 of this dissertation, it is shown that the class of yield languages
generated by deterministic FSTS equals to PMCFL. It is also shown
that there is an ANP-complete language in the class of yield languages
generated by nondeterministic monadic FSTS with state-bound 2. See
Figure 3 and compare it with Figure 1.

By our results, a number of known properties of PMCFL and MCFL
will be used for the study of FSTS and their yield languages, and vice
versa. In fact, as a corollary of our results, it can be concluded that
the (fixed-language) recognition problem for the class of yield languages
generated by deterministic FSTS is solvable in O(n®*!)-time, where n is
the length of an input word and e is a constant called the degree of the
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FSTS
e T
DFESTS MESTS
FCESTS
FSTS §
- T~a
DFSTS MEFESTS
-
FCFESTS
FSTS 2
/ 5 \
DFSTS 2 MFESTS 2
e 5 |
FCFSTS 2 \ |
‘ ESTS1
T
DFSTS 1 MFSTS 1
\J -

CFG = FCFSTS 1

A ——B : the generative power of A is properly stronger than B .

A —»B : the generative power of A is stronger than B .

Figure 2: Generative power hierarchy of subclasses of FSTS!".
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MFSTS with state-bound 2 NP-complete language

(if PENP)

Figure 3: Inclusion relations among classes of languages (known results
and results in this dissertation).



deterministic fsts.

-15-
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2 Definitions

2.1 Parallel Multiple Context-Free Grammars

A parallel multiple context-free grammar (pmcfg) is defined to be a
5-tuple G = (Vy, Vr, F, P, S) which satisfies the following conditions (G1)
through (G5)!' 22,

(G1) Vy is afinite set of nonterminal symbols. For each nonterminal A €
Vi, a positive integer d( A) is associated, and called the dimension of
A. The dimension of the grammar G is defined as max{d(A) | A €

VN}.

(G2) Vr is a finite set of terminal symbols which is disjoint with V. For

a positive integer d, the set of all the d-tuples of strings over V7 is
denoted by (V7)<

(G3) F is a finite set of functions satisfying the following conditions.
For each f € F, positive integers a(f), d;(f) (1 < 7 < a(f)) and
7(f) are given, and f is a total function from (V)% () x (V)% x
oo x (V)2 to (V) which satisfies the following condition
(f1). Let

Ty = (xil) Ti2y- .-y xid,’(f))

denote the ith argument of f for 1 < ¢ < a(f), and let
X=A{z;;|1<i<a(f),1<j<di(f)} (1)

(f1) For 1 < h < 7(f), the hth component of f, denoted by f™ is
defined by a concatenation of some terminal strings in V7 and

some variables in X. That is, a nonnegative integer v(f) is
defined and

f[h][fhfz,---,fa(f)] = QhoZh1Oh1Zh2 " * * Zhon(f)Chon(f)y  (2)
where apt, € V7 (0 < k < wp(f)) and zp, € X (1 < k < vp(f)).

(G4) P is afinite set of productions of the form A — f[A;, Aa, ..., Agp)
where A, Aj, As,..., Ay € Vv, f € F, r(f) = d(A) and d;(f) =
d(A;) (1 <i<a(f)). Ifa(f) =0, then f has no argument and f
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equals to a tuple of strings over Vpr. A production with a function
f such that a(f) = 0 is called a terminating production, otherwise
it is called a nonterminating production. A terminating production
A — f with f = & € (V)Y may be denoted by 4 — a.

(G5B) S € Vy is the initial symbol, and d(S) = 1.

The class of pmcfg’s is denoted by PMCFG.

The language generated by a pmcfg G = (Vy, Vz, F, P, S) is defined
as follows. For A € Vy, define Lg(A) C (V;)%4) as the smallest set
satisfying the following two conditions:

(L1) If there is a terminating production A — f and f = & € (V;)44),
then & € Lg(A).

(L2) If A — f[Al,Az,...,Aa(f)] € P and &; € LG(A,) (1 < <
a(f)), then & = flay, aa,..., 0045 € Le(A). We say that 4 —
FlA1, Az, ..., Aup)] is the last production applied to obtain &.

Let L(G)&Lg(S). (Note that d(S) = 1 by (G5) of the definition, hence
L(G) is a set of strings.) L(G) is called the parallel multiple context-
free language (pmcfl) generated by G. The class of pmcfl’s is denoted by
PMCFL.

If all the functions of a pmcfg G satisfy the following condition (f2),
then G is called a multiple context-free grammar (mcfg), and the language
generated by G is called the multiple context-free language generated by
G. The class of mcfg’s and the class of mcfl’s are denoted by MCFG and
MCFL, respectively.

(f2) For each variable z;; in X, the total number of occurrences of z;; in
the right-hand sides of (2) from h = 1 through 7(f) is at most one.

If some variable occurs in the right-hand side of (2) more than once, or
occurs in the right-hand sides of (2) for different A’s, the string substituted
for the variable will be copied more than once. It has been shown that

such copy operations increase the generative power of grammars!'3i.e.
MCFL ¢ PMCFL. Condition (f2) inhibits these copy operations.



-18-

Example 2.1: Let G, = (Vy, Vp, F, P, S) where Vy = {A, B, S}(d(4) =
d(B) =2,d(S)=1), Vr ={a,b,c,d}, F = {f, 94,98, h} and the rules in
P are

To: S — f[AaB] where f[(il?u,wlz), (1321,3322)] = X11Z21T12T22
]

r1: A — galA] where gu[(z1,22)] = (azy, cz2)
ro: B — gg[B] where gg[(z1,z3)] = (bx1, dz))
r3: A—h where h = (¢,¢)

r4: B — h.

Note that (5 is an mcfg since no variable occurs more than once in the
right-hand side of the functions. The language generated by G, is defined
as follows: By rule r3, (¢,¢) belongs to Lg(A). Substituting (¢,¢) for A in
the right-hand side of 71, we obtain (a,c) € Lg(A). Repeating application
of r1, (a™,c™) € Lg(A) for m > 0. In a similar way, (6",d") € Lg(B)
for n > 0. By rule 7o, Lg(S) = {a™b*c™d*|m,n > 0} and this is the
language generated by G;. i

Example 2.2: Let Go = (Vy,Vp, F,P,S),Vy = {S},Vr = {a},F =
{f, f.} and the rules in P are

ro: S — f[S] where flz] =2z
ri: S— f, where f,=a.

G4 is a pmcfg but is not an mcfg since the function f does not satisfy
the condition (f2). The language generated by G is {a®" |n > 0}, which
cannot be generated by any mcfg (see Lemma 6 of [14]). [

Hereafter, we will define subclasses of PMCFG and MCFG. If all the
functions f of a pmcfg (resp. mcfg) G satisfy the following condition (f3),
then G is a pmcfg with non-erasing condition (resp. mcfg with non-erasing

condition). The class of pmcfg’s (mcfg’s) with non-erasing condition is
denoted by NEPMCFG (NEMCFQG).

(f3) Let X be defined as in (1). Each variable £ € X appears at least
once in the right-hand side of (2) for some h (1 < h < r(f)). 0

In a mcfg with non-erasing condition, each variable appears exactly
once in the right-hand side of (2) for some h. This is a same formalism to a
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subclass of linear context-free rewriting systems(?®, a subclass which deals
with only tuples of strings. From a grammatical viewpoint, NEPMCFG
(NEMCFQG) is a proper subclass of PMCFG (MCFG). But it has been
already shown, as in the following lemma, that condition (f3) does not
weaken the generative power of PMCFG (MCFG)??2.

[22],

Lemma 2.1 For a given pmcfg (resp. mcfg), we can construct a

weakly equivalent pmcfg (resp. mcfg) with non-erasing condition.

Sketch of Proof: The idea behind the construction is similar to that of
e-tule elimination procedure of a context-free grammar. For example,
assume that there is a production A — f{B;,..., B,] and z;; does not
appear in the right-hand side of (2). Then a new nonterminal B; with
d(B!) = d(B;) — 1 is introduced, and this production is replaced by A —
f'[B1,...,B., ..., By] where f’isidentical to f except that the dimension
of the ith argument is smaller by one than f. Furthermore, for each
production whose left-hand side is B;, add a new production whose left-
hand side is B} and whose function in the right-hand side is defined by
deleting jth component of the original one. See Lemma 1 of Ref.[14] for
the formal proof. (]

Next, pmcfg’s (mcfg’s) with bounded dimension is introduced. For a
positive integer m, if the dimension of a pmcfg G is not greater than m,
then G is called an m-pmcfg. The class of m-pmcfg’s is denoted by m-
PMCFG. In other words, m-PMCFG is a subclass of PMCFG such that
the dimension of each grammar in the class is equal to or smaller than
the previously given constant m. Note that m is treated as a constant
in m-PMCFG. For a pmcfg G in the class of (unconstrained) PMCFG,
there is a number m which happens to be the dimension of G. But in
general, m is in O(|G|) and we cannot treat it as a constant in this case.
For m > 1, m-PMCFG is a proper subclass of m + 1-PMCFG, and the
generative power of the former is properly weaker than the latter. In a
similar way, m-MCFG is defined.

The last subclass we introduce is the class of pmcfg’s with bounded

degree. (Refer to the expression (2) of (f1)). The degree of a function f
r(f)

is defined as Z(vh(f) + 1), which equals to the total number of variables
h=1



-20-

appearing in the right-hand side of f plus the dimension of f. If the max-
imum degree among the functions in F' of G is e, then G is called a pmcfg
with degree e. In the same way, an mcfg with degree e is defined. The
class of pmcfg’s (mcfg’s) with degree e is denoted by PMCFG. (MCFG,.).
Note that in these classes of grammars, a degree e is treated as a constant.
For e > 1, PMCFG., is a proper subclass of PMCFG,,,, but the relation
between the generative power of them is in general not known.

We note that if a degree of a grammars is bounded, then a dimension
of the grammars is also bounded, but not vice-versa. Indeed, PMCFG,
is a subclass of e-PMCFG and hence the dimension of each grammar in
that class can be treated as a constant. But in m-PMCFG, there is a
grammar with an arbitrary large degree and hence it cannot be treated
as a constant in the class.

The mcfg G; introduced in Example 2.1 has dimension 2 and degree
5 (rule 7o has the maximum degree) and the pmcfg G, in Example 2.2
has dimension 1 and degree 3.

The size of a pmcfg G = (Vy, Vp, F, P, S) is defined as follows. The
size of a function f € F, denoted by |f|, is defined as the sum of the
lengths of the right-hand sides of (2), that is,

. (f) va(f)
IFIZ X (ualf) + 3 lomel)-
h=1 k=0

The size of a rule 7 : 4 — f[Ay, 4o, ..., Aq(p)], denoted by |r|, is defined
to be a(f) + 2 (each of A, A1, As, ..., Ag(s) and f counts for one). Define
the size of G, denoted by |G|, to be the sum of |Vy|,|Vz|, D |f] and

feF
> Irl

reP
Lastly, a derivation is defined. Let G = (Vy, Vp, F, P, S) be a pmcfg.

For a nonterminal symbol A € Vy and k (1 < k < d(A)), the kth compo-
nent of A is represented by a symbol (A, v), where v is an index to distin-
guish distinct “instances” of the same nonterminal symbol A in a deriva-
tion. Define C(Vy)={(4A*,v) | A € Vy,1 < k < d(A) and v > 0}. Each
(AWM ) € C(Vy) is called a component symbol of A and v is called the
indez of (A v). Let (A,v) denote ((AlY,v), (AR, 0),..., (AN v)) €
C(Vy)* 4 for A € Vy and v > 0.



-21-

Assume that & is a tuple of strings over V7 U C(Vy) and there exists
v > 0 and A € Vi such that (A% v) appears at least once in & for some
k(1 <k <d(A). Let r: A — f[Ay, A,, ..., Ag(p)] be a production in
P. Let (B denote the tuples of strings obtained from & by replacing each
(A v) (1 < h < a(f)) (if exists in &) with fR[(A1, 1), (Az,v2),. ..,
(Aa(f), Va(s))] Where v;’s (1 <7 < a(f)) are distinct nonnegative integers
such that no (BY) v;) does not appear in & for any B € Vy and j > 0,
that is, v;’s are newly introduced indices which are not used in &. Then,
a directly derives B (by applying production r to(A!*, v)’s), denoted by
aiﬁ

Let -—a> denote the reflexive transitive closure of :> If a=f, then &
is said to derive 3. If G is understood by context, = and :> are written
as = and =, respectively.

It is easily shown that, for each 4 € Vy, & € (V3#)¥4) and v > 0,

a € Lg(A) iff (A,v)%&.
Example 2.3: Consider mcfg GG; defined in Example 2.1. Then,

(S8 ) = (AN vo)(BM, v) (AP vg) (B2, v;)
= a(A[I],’Ug)(Bll],’Ul)C(A[z],’U2)(B[2],’U]_)

= a™(AM v i1) (B, v1)c™(AB, vy )(BE, 1)
am(B[I], 'ul)c"‘(B[Z], v1)
= a™b(BY, vpi0)c™d(BY, v ys)

4

= ambn(B[ll’ vm+n+1)cmdn(B[2]a vm+n+1)
= a™"b"c"d"
for any m,n (> 0) and v,vq,...,Umins1 (> 0). Since the indices are

redundant for this derivation, the derivations are written without indices
for simplicity. For example, the above derivation is written as

gl o Al gl 402 g2
o aAlpleal2 I
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o™ Blcem B2l
= a™bBMcmqBl

U

= o"b"Bl'¢md" B
= amb"cmd".

2.2 Finite State Translation Systems

A set ¥ of symbols is a ranked alphabet if, for each o € ¥, a unique
non-negative number p(o) which is called the rank of o is associated.
Define 75 as the smallest set such that;

o If p(0) =0 for o € ¥, then 0 € T5.

e If plo) =n (> 1) for 0 € ¥ and ¢y,...,t, € Ty, then t =
o(ty,...,t,) € Tg. o is called the root symbol, or shortly, the root
of t.

Hereafter, a term in 7y may be called a tree.

Let G = (Vy, Vr, P, S) be a context-free grammar (cfg) where Vi, V7,
P and S are a set of nonterminal symbols, a set of terminal symbols, a
set of productions and the initial symbol, respectively. A derivation tree
of the cfg G is a term defined as follows.

(T1) For every a € Vr, a is a derivation tree of G.

(T2) Assume that there are a production r : A — X;.--- X, (4 €
Vn, X1,...,Xn € VyUVr) in P where 7 is the label of this produc-
tion, and n derivation trees t;,...t, whose roots are labeled with
T1,...,Tn, Tespectively, and

o if X; € Vi, then r; (1 < ¢ < n) is the label of a production
r; : X; — - -+, whose left-hand side is X;, and

o if X; € Vp, thenr; =t; = X;.
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Then 7(ty,...,t,) is a derivation tree of G.
(T3) There are no other derivation trees.

Let R(G) be the set of derivation trees whose root is the label of a pro-
duction of which left-hand side is the initial symbol S. Remark that if
we take ¥ = {the labels of productions in P} U Vr, and define p(r) = n
forr: A— X;---X, € P and p(a) =0 for a € Vr, then ¥ is a ranked
alphabet and R(G) C Ts.

A tree transducer is defined in Ref.[20] as a generalization of a gener-
alized sequential machine, and it defines a mapping from trees to trees.
But in this paper, since we are mainly interested in a string language
generated by it, a “tree-to-string” version of transducer defined in Ref.[7]
is reviewed. For sets @ and X, let

QIX)={qlz] | ¢ € Q,z € X}.

A tree-to-string transducer (yT-transducer or simply transducer) is
defined to be a 5-tuple M = (Q, X, A, qo, R) where

e () is a finite set of states,
e Y is an input ranked alphabet,

e A is an output alphabet,

qo € Q is the initial state, and

R is a set of rules of the form

qlo(zy, ..., z,)] — v
where ¢ € Q,0 € X,p(0) =n and v € (AU Q[{z1, ...,z }])*

If different rules in R have different left-hand sides, then M is called
deterministicl”.

A configuration of a yT-transducer is an element in (A U Q[7x])*.
Derivation of M is defined as follows. Let ¢ = ayqo(ty,..., ta)]as be a
configuration where a;,a; € (AU Q[Ts])*, ¢ € Q, 0 € X, p(0) = n and
t1,...,t, € Tg. Assume that there is a rule g[o(z1,...,z,)] — v in R,
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and v’ can be obtained from v by substituting ¢y,...,¢, for z,...,z,,
respectively, then ¢ = a;v'ay. Let = be reflexive and transitive closure of
=. For configurations c and ¢/, if c=>¢/, then c derives ¢. If thereisnoc' €
A* such that ¢=>¢/, then ¢ derives no output. For example, if there is no
rule whose left-hand side is g[o(z1, . .., z,)], then ¢ = aiglo(ty, ..., t,)]a2
derives no output.

Example 2.4%%: Let M = (Q, 3, A, g4, R) be a yT-transducer where

Q = {Qdaqi}
Y= {c,y,+ -} (plc)=p(y) =0,p(+) = p(-) =2)
A=3XuU{0,1}

and the rules in R are:

gile} — ¢ alyl — y
i[+(z1, 22)] gilz1) + qifz2)
%[ (21, z2)] gi[z1] - gi[z2]
qafc] — 0 qaly] = 1
qa[+(z1,z2)] —  qalri] + qalz2)
qal(z1,22)] —  qalzs] - sfza] + qi[z1] - qafz2).

!

l

Intuitively, an element in 7y represents an arithmetic expression, and
state g4 and ¢; represent “differential” and “identity”, respectively. Let
t = qaf-(y,+(c,y))] and t' = qaly] - g:[+(c, y)] + @ly] - qal+(c,y)], then
t = t', which corresponds to %(y (c+y)) = a‘iy—y (c+y)+y- j—y(c + ).

i

A tree-to-string finite state translation system (yT-fsts, or fsts for
short) is defined by a y7-transducer M and a cfg G, written as (M, G) 2.
The class of fsts’ is denoted by FSTS.

Define yL(M,G), called the yield language generated by a yT-fsts
(M, @), as

yL(M,G)={t € A* | 3t' € R(G), go[t']>1}

2In Ref.[20], a yT-fsts is defined by a yT-transducer and a recognizable set of trees.
In Ref.[24], it is shown that the class of recognizable sets of trees is equal to the class
of sets of derivation trees of CFG. Hence a yT-fsts is defined by a yT-transducer and
a cfg in this paper.
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where A is an output alphabet and g is the initial state of M. Note that
R(G) is a set of derivation trees of the cfg G and hence recognizable
set of trees. An fsts is called deterministic(”) if the transducer M is
deterministic. The class of deterministic fsts’ is denoted by DFSTS. We
use a terminology “nondeterministic” when we emphasize that we don’t
assume determinism of the transducer.

Next, a state-bound of fsts and finite-copying FSTS!"} are defined. Let
(M, G) be an fsts with an output alphabet A and an initial state go. Let
t € R(G) and consider a derivation a : go[t]=w € A*. Let ¢’ be a subtree
of t. Now, delete from the original derivation « all the derivation steps
which operates on t'. This leads to the following new derivation which
keeps t' untouched:

o ¢ goft]Swigi, [twe - Wags, [ Wi

where w; € A* (1 <i<n+1).

The state sequence of t' in derivation a is defined to be (g;,,..., ¢, ).
The derivation a has a state-bound s if, for each subtree of ¢, the number
of different states in the state sequence is at most s. a has a copying-
bound k if, for each subtree of ¢, the length of its state sequence is at
most k. An fsts (M, G) has a state-bound s if for each w € yL(M,G),
there is a derivation tree t € R(G) such that the derivation go[t]=w has a
state-bound s. An fsts (M, G) is a finite-copying fsts if there is a constant
k such that for each w € yL(M,G), there is a derivation tree t € R(G)
such that the derivation go[t|]=>w has a copying-bound k. The class of
finite-copying fsts’ is denoted by FCFSTS.

An fsts (M, G) whose second component G is a regular grammar is
called an ETOL system (see Ref.[7]). In this paper, we say a monadic fsts
for an ETOL system. The class of monadic fsts’ is denoted by MFSTS.

Figure 2 shows relationship among the generative power of subclasses
of FSTS. In the figure, FSTS,, DFSTS, and MFSTS; denote the classes
of each fsts’ with state-bound s, respectively. For FCFSTS, the subscript
denotes its copying-bound. An arrow from a class A to another class B
means that A has properly stronger power than B.
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3 Universal Recognition Problems

3.1 General Case

In this section, the universal recognition problems for PMCFG and
for MCFG are both shown to be EXP-POLY time-complete, where

EXP-POLY time 2{L | L is solvable in deterministic O(c?()) time
for some ¢ > 1 and some polynomial p,
where n is the size of an input }.

Since MCFG are a subclass of PMCFG, it suffices to show that the prob-
lem for PMCFG belongs to EXP-POLY time, and that the problem for
MCFG is EXP-POLY time-hard.

3.1.1 Containment in EXP-POLY Time

In this section,, the universal recognition problem for PMCFG is
shown to belong to EXP-POLY time. An algorithm which solves the
problem for MCFG are presented first, and it is extended for PMCFG.

First, a table NULL(A, (ky, ko, ..., k) (A€ VN, 1 < ki <ky<--- <
k, < d(A)) is computed to satisfy

o NULL(A, (ky,...,k.)) = 1 if there is some (wy, ..., wya)) € Lg(A)
such that wy, = wg, = -+ = wy, = ¢, and

e NULL(A, (k1,..., k»)) = 0 otherwise.

If NULL(A, (ky,k2,...,k.)) = 1 then (ky,ko,...,k,) is called a nullable
combination for A.

A simple way to check whether G generates w or not is to simulate
derivation of w on a working tape nondeterministically. However, such a
method may require a working tape of size exponential to |G| since there
may exist a string w such that, in every derivation (S M 0)Sw, a length
of a string on the tape once grows exponential to |G| due to component
symbols (A%l v), (A% v), ... and (A v) such that (ki,ko,...,k,) is
a nullable combination for A. If the table NULL is precomputed, it
can be decided whether w € L(G) or not with a polynomial bounded
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working tape by referring the table NULL and deleting directly arbi-
trary component symbols (Al v), (Alk] 4), ... and (A% v) such that
(ky, k2, ..., k,) is a nullable combination for A.

Lemma 3.1: The table NULL can be constructed in EXP-POLY time.

Proof. The table can be constructed as follows:

Step 1. If a terminating production A — (a,...,a44)) is in P, then
for every tuple (k1,...,k;) such that 1 < k; < --- < k, < d(A) and
ar; =€ (1 < j <), set the value of NULL(A4, (k1,...,k.)) to be 1.
The others are set to 0.

Step 2. If a nonterminating production A — f[Ay,..., Aqy) is in P
and NULL (A4;, (ki1,...,kir;)) = 1 for 1 < i < a(f), then let
@ = (wy,..., wya)) be the tuple obtained by replacing z;; (1 <
i < a(f),j € {kia, -.-,kir,}) with € in the right-hand side of the
definition of f (see (2) in section 2.1). For every tuple (ki,...,k.)
such that 1 < k; <--- <k, < d(A) and wy; = ---,wp, = ¢, set the
value of NULL(A, (k}, ...,k.)) to be 1. This step is applied to all

productions and all entries of the current table simultaneously.
Step 3. Repeat Step 2 until the table is not changed.

We assume that the read/write operation for a single entry of the
table NULL, and the evaluation of the value of f € F for given ar-
guments can be perfomed as elementary operations. Let m be the di-
mension of G. Since the number of the terminating productions is at
most |G| and the number of the subsets of {1,2,...,d(A)} is at most
2™ € O(2!61), Step 1 takes O(|G|2!°!) time. Consider Step 2. The num-
ber of the nonterminating productions and that of the nonterminal sym-
bols in the right-hand side of each production are both O(|G|). For each
A; (1 € i < a(f)), there are at most 2™ € O(2!°!) entries (A, (---))
whose values are equal to 1, and for a single value @ of f in Step 2, the
number of entries to be set to 1 is at most O(2!!). As a whole, Step 2
takes O(|G| x (2!61)I81 x 2I¢1) = O(|G|2!6I*+I61) time. Finally, this table
has |Vy|2™ entries, and hence Step 2 loops at most |Vy|2™ times. That
is, the table can be constructed by O(|Vy|2™ x |G|2IP+IGl) = O(c¢F)
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elementary operations for some ¢ > 1. It follows that the table can be
constructed in EXP-POLY time in |G|. (]

Next, a nondeterministic algorithm is presented which decides whether
w € L(G) for an mcfg G and string w with the table NULL and a poly-
nomial space bounded working tape.

Algorithm 3.1:
input : an mcfg G = (Vy, Vr, F, P, S) with the table NULL
and a string w.
Try to generate w by simulating a derivation from the initial symbol
nondeterministically on a working tape as follows.

Step 1. Write the component symbol (S[ll, 0) of the initial symbol S on
the working tape.

Step 2. Execute one of the following (a) and (b).

(a) Choose a rewriting production A — f[A1, A, ..., Ay(y)] non-
deterministically, and apply it to component symbols (A" v)’s
(1 < h < d(A)) on the tape. Remark that, since G does not
necessary satisfy the non-erasing condition, some newly intro-
duced component symbols (A£’°], v;) might be lost to the tape.
If the length of the string on the tape exceeds m|w| + | fmax|s
where | frnax| denotes the maximum size of the function in F,
then halt.

(b) Choose component symbols (Bl v), (Bl v), ..., (Bl v)
nondeterministically, with (BUl, v)’s being lost to the tape for
each j (1 < j < d(B) and j # k; for any ¢ (1 < ¢ < 7)).
If (ki,kq,...,k:) is a nullable combination for B, then erase
the component symbols and shift the other symbols to fill the
blanks.

Step 3. Repeat Step 2 until there exists no component symbol on the
tape.

Step 4. If the string on the tape equals to w, then accept w. 0
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Next, it is shown that
Algorithm 3.1 accepts w iff w € L(G).

The only if part is obvious and if part will be shown. It suffices to
show that, for w € L(G), Algorithm 3.1 can generate w by using only
m|w| + | fumax| symbols on the tape. First, following proposition is shown.

Proposition 3.2: Assume that (SIU,0)Sa=w (a € (VP UC(Vy))*, w €
V#) and |a| € m|w| + |fmax|- Also assume that, after executing Step 2
finite times, Algorithm 3.1 reaches a state such that o is on the working
tape. Then, there exists a sequence of moves from this state to the
accepting state such that the number of symbols on the working tape is
always m|w| + | fmax| oOr less.

Proof. The lemma is shown by the induction on the length of the deriva-
tion a=w. For the basis, the lemma holds clearly since « = w and
lw| < |w| + | fmax|-

Suppose that the lemma holds for all derivations S=w of length
7 (7 > 0) or less, and consider a derivation a=w of length 7 + 1.

First, assume |a| < m|w|. As a=w is of length 1 or more, there is
some production r : A — f[A;,As,..., Ayp) and o € (Vp U C(Vy))*
such that & = o' by the application of r and o/=w. Since the size of the
right-hand side of this production is at most | fmax|, |@'| < m|w| + | fmax|-
By executing (a) of Step 2 and applying 7, o is generated on the tape. As
o' Sw is of length 7, by the inductive hypothesis, there exists a sequence
of moves to the accepting state such that the number of symbols on the
working tape is always m|w| + | fmax| or less.

Next, assume m|w| < |a| < m|w| + | fmax| and let 7, be the number of
terminal symbols and 7, be the number of distinct indices of component
symbols (not the number of component symbols) appearing in a. Observe
that i, > |w| — i, since m|w| < |a| < i; + mi,. Since i, terminal symbols
out of |w| have been generated, the other |w| — ¢, terminal symbols must
be generated from 4, nonterminal symbols. Hence, there exists at least
in — (Jw| — 4;) > 0 distinct indices v’s such that every (Bl[f],fu) in «
derives €. Let u be any of such indices and o” € (Vz U C(Vy))* be the
string obtained from a by replacing all (B,[fl], u)’s in a with . It can be
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easily shown that there is a derivation a=a”=w of length 7 + 1 (apply
productions to erase (B}f'],u)’s first). By executing (b) of Step 2, @’ can
be obtained from « on the tape and || < |a| < m|w|+|fuax|- As "Sw
is of length 7 or less, by the inductive hypothesis, from this state there
exists a sequence of moves to the accepting state such that the number
of symbols on the working tape is always m|w| + | fmax| or less. Hence,
the proposition holds. [

Assume that w € L(G). Then (S 0)2w. At the first time Step 2
is executed, there is only one symbol (S 0) on the tape. Hence, let-
ting w = «, Proposition 3.2 implies that Algorithm 3.1 generates w and
accepts it by using at most m|w|+ | fmax| symbols at a time on the tape.

Next, it must be considered how the symbol should be represented
upon the tape. Let n = |G|+]|w| be the size of an input. As the number of
distinct terminal symbols is at most n, they can be represented in O(log n)
size per one symbol. For each component symbol (AlFl v) (1 < k <
d(A),v > 0), information on (1)A, (2)k, and (3)v is kept on the tape. (1)
and (2) can be represented in O(log n) space, and (3)v can be represented
in O(log(m|w| + | fmax|)) space since at most m|w| + | fmax| Symbols are
on the tape simultaneously by Proposition 3.2. Hence, one component
symbol can be represented in O(log n + log n + log(m|w| + | fmax|)) space.
As m,|w| and | fnax| are all O(n), O(logn +log n + log(m|w| + | fmax|)) =
O(logn). The number of the component symbols appearing on the tape
is O(m|w| + |fmax|) = O(n?). Therefore the total size needed upon the
tape is O(n%logn).

The following lemma can be obtained from Lemma 3.1 and the anal-
ysis of Algorithm 3.1 described above.

Lemma 3.3: The universal recognition problem for MCFG belongs to
EXP-POLY time.

Proof. Given an mcfg G and a string w, the table NULL can be con-
structed in EXP-POLY time by Lemma 3.1. Algorithm 3.1 decides
whether w € L(G) by using w,G and the table NULL (on the read-
only input tape) and an O(n?logn) bounded working tape where n =
|G| + |w|. Since the size of NULL is O(n2"), the size of the input tape is
O(n2"). It can be easily shown in a similar way to the proof of Savitch’s
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theorem!® that there exists a deterministic Turing machine M; which
decides whether w € L(G) with the same read-only input tape as Algo-
rithm 3.1 and an O(n*log?n) bounded working tape. From M, a non-
deterministic Turing machine M, which accepts L(G) within O(d**18™")
time can be constructed in a similar way to the proof of Theorem 12.10(b)

in Ref.[9]. (]

Next, Algorithm 3.1 is extended for PMCFG. For PMCFG there may
exist a pmcfg G and a string w such that in every derivation of w, the
number of occurrences of an identical component symbol (A, v) on a
tape grows exponentially to |w| by copy operations, and lastly, (A, v)
derives ¢. If above Algorithm 3.1 is extended for PMCFG in a straight-
forward way, the size of a working tape needed can not be bounded by
any polynomial.

To extend the algorithm for PMCFG, a special treatment is needed
for the component symbols which are copied, and derive ¢ at last. Let
(A" ) be such a component symbol. Note that the number of the
occurrences of (A", v) makes no influence on the string to be generated
on the tape since (A", v) will derive ¢.

By using this property, a derivation can be simulated as follows. First,
choose a component symbol (A", v) nondeterministically. Intuitively, the
chosen symbol (A" v) is “guessed” to derive ¢. Mark one (A" v) and
erase the other occurrences of (A" v) (if there is on the tape). All
the symbols derived from the marked symbol will be also marked. If a
terminal string is derived from a marked symbol, which contradicts the
“guess”, then reject the input and halt. If all marked symbol derive ¢,
then it turns out that the nondeterministic choice was correct and the
terminal string generated on the tape can be derived by G.

The following Algorithm 3.2 is obtained by modifying Algorithm 3.1
in such a way that the number of component symbols can not be greater
than m + |w| times as many as the number of the distinct indices.

Algorithm 3.2:
input : a pmcfg G = (Vy, Vr, F, P, S) with the table NULL
and a string w.
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Step 1. Write the component symbol (St 0) of the initial symbol S on
the working tape (and do not mark it).

Step 2. Execute one of the following (a),(b) and (c).

(a) Choose a rewriting production A — f[Ay, As, ..., Ayyy] non-
deterministically, and apply it to component symbols (A" v)’s
(1 < h < d(A)) on the tape. If (AlM v) (1 < A < d(A)) is
marked, then mark to all the symbols derived from (A v). If
a terminal symbol is derived from marked component, or the
length of the string on the tape exceeds (m + |w|)|w| + | fmax/,
where | fimax| denotes the maximum size of the function in F,
then halt.

(b) Choose component symbols (B, v), (B2l v), ..., (B® v)
nondeterministically, with (BU!,v)’s being lost to the tape for
each j (1 < j < d(B)and j # k; for any ¢ (1 < ¢ < 7)).
If (ky,ko,...,k;) is a nullable combination for B, then erase

the component symbols and shift the other symbols to fill the
blanks.

(¢) Choose a component symbol and mark it. If there are other
occurrences of the symbol, then erase them.

Step 3. Repeat Step 2 until no component symbol remains on the tape.

Step 4. If the string on the tape equals to w, then accept w. [

The next proposition claims that, for w € L(G), Algorithm 3.2 can
generate w by using only (m + |w|)|w| + | fmax| symbols on the tape.

Proposition 3.4: Assume that (S, 0)Sa=w (a € (Vo UC(Vy))*,w €
V7) and |a| € m|w| + |fmax|. Also assume that, after executing Step 2
finite times, Algorithm 3.2 reaches a state such that « is on the working
tape. Then, there exists a sequence of moves from this state to the
accepting state such that the number of symbols on the working tape is
always (m + |w|)|w| + | fmax| OT less.
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Proof. This is a PMCFG version of Proposition 3.2, and the proof is
similar to that of Proposition 3.2. The difference between them are

e m|w| in Proposition 3.2 is replaced by (m + |w|)|w|, and

e discussion for the case (m + |w|)|w| < |a| < (m + |w|)|w| + | fmax]
in the inductive step is replaced by follows.

Assume that (m + |w|)|w| < |a| < (m + |w|)}|w| + | fmax| and let 7, be the
number of terminal symbols and i, be the number of distinct indices of
component symbols (not the number of component symbols) appearing in
a. Let (A1,v1),...,(A;,,v;, ) be nonterminal symbols on the tape and let
w; (1 <4 < 14,) be the tuple of strings derived from (A4;, v;) by G. Without
loss of generality, the number of unmarked component symbols of (A;, v;)
is not greater than |w;| (otherwise, execute (c) of Step 2), and the number
of marked component symbols of (A;,v;) is not greater than m. Observe
in
that i, > |w| — ¢, holds since (m + |w|)|w| < |a] < &, + > (m + |w;]) =

i=1
iy + mi, + |w| and |w|? > |w|. The proof proceeds as in the proof for

MCFG. 0

By the above lemma and Savitch’s theorem, the following lemma can
be shown in a same way to Lemma 3.3.

Lemma 3.5: The universal recognition problem for PMCFG belongs to
EXP-POLY time. [

3.1.2 Basic Ideas

First, a basic algorithm is presented which translates a given polyno-
mial space-bounded Turing machine M into an mcfg G such that every
valid computation of M can be simulated by a derivation of G. In the
following sections 3.1.3 and 3.2, this algorithm is modified to show that
the universal recognition problems for MCFG and for NEMCFG is EXP-
POLY time-hard and PSPACE-hard, respectively.

Let M = (Q,%,T, B, 6,95, QF) be a Turing machine where
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Q is the finite set of states,

¥ C T is the finite set of input symbols,

I" is the finite set of tape symbols,

B € T' — X is the blank symbol,

§:(Q xT) — 2@xI{L.R}) g the transition function,
gs € @ is the initial state, and

Qr C @ is the finite set of final state.
An ID of M is a triple (g, k,a), where ¢ € Q,a € I'* and k is a positive

integer such that 1 < k < |a| which denotes the position of the head
on the tape. Let “+” denote one step transition between IDs of M.
Define ACC(M) as the smallest subset of IDs of M satisfying the following
conditions (a) and (b).
(a) If ¢ € Qr then (g,k,a) € ACC(M) for every a € [ and k (1 < k <
|al).

(b) It I+ I' and I' € ACC(M), then I € ACC(M).
It is obvious that, for t € ¥*

M accepts t iff (¢s,1,t) € ACC(M). (3)

Fix a polynomial p and a p(n) space-bounded Turing machine M =
(Q,%,T,B,8,qs,Qr). By using the following Algorithm 3.3, the problem
whether M accepts a given string ¢t € ¥* can be reduced to the universal
recognition problem for MCFG. First, the idea behind the reduction is
explained. For convenience, number the symbols in I' as ¢;,..., ¢, and
define a pairing function as (k,¢;) = (k—1)|[T| +j (1 <k < p(n),1 <
j < IT)).

For each ¢ €  and integer k such that 1 < k < p(n), a nonterminal
symbol Ay with d(Ag) = p(n)|T| is introduced. Let

ID, = (q, k, biby - br_1Cbpyr - bp(n))
.[Dg (q,, k + 1, b1b2 s bk_lc’bk+1 v bp(n))
ID; = (q¢", k=1, biby---br_1c"bpyr - bp('n))
and let a;, a; and az be the sequences of component symbols defined as
A[ (1,1 ]A[(Z,bz 0., A[(k 1,bx—1 ]A[(k C)]A[(k+1 b)) | AKZ’(") ®o(n))]

(1,61Y] 41(2,b2) (k=1 k'] 4 [(k+1,b [(pn)bpn>]
Qs —A[:k+11]A[:k+21} A['k—i—l k- 1>]A[<’Ic+1]A['k+1 k1)) A%’k ™ b( )
Qs = A[(Hlkbl)llA[(nzka)] A[(I’fk 11bk 1)]A (’f’k‘? I]A[(k+1 bega)] | A <”’(cn)1 p(n))]
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Note that the component symbols are written without indices using ab-
breviation mentioned in Example 2.3. Intuitively saying, ID;, ID, and IDj
correspond to ay, as and as, respectively. The lower suffix of a nontermi-
nal symbol A indicates the state in @ and the position of the head on the
tape. The sequence of upper suffixes of component symbols represents
the string on the tape.

Assume that §(q,¢) = {(¢,c,R),(¢",c",L)}. Observe that the fol-
lowing (M1) and (M2) hold by the definition of ACC(M).

(M1) If g € Qp, then ID; € ACC(M).
(M2) If ¢ ¢ Qp, then

ID; € ACC(M) iff either IDy € ACC(M) or ID; € ACC(M).

Productions of mcfg G are constructed to satisfy the following conditions
(P1) through (P3).

(P1) If g € QF then a; = «.

(P2a) If (¢',c,R) € 6(q,c), that is, if ID; & ID,, then a; = as. See
Figure 4.

(P2b) If (¢",", L) € 6(q,c), that is, if ID, - IDs, then a; = as.

(P3) If @ = o other than those in (P1), (P2a) and (P2b), then the
symbol 1 appears at least once in «'.

If productions are constructed to satisfy (P1) through (P3) for every
g € @ and c € T, it can be shown that

ID; € ACC(M) iff ay=e.

Algorithm 3.3:
input : a string t = ¢yt -, over X.
output : mcfg G = (Vy, Vg, F, P, S) and string w
such that M accepts t iff w € L(G).
For convenience, let t = tity-+-t,BB--+B € I'"™). The mcfg G and
string w are constructed as follows.
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Step 1. Let Vr = {1} and w =¢.

Step 2. Let Vy = {S}U {44 | ¢ € Q,1 < k < p(n)} where d(Ay) =
p(n)IT| (g € Q,1 < k < p(n)).

Step 3. Add

fIZ] = 2T en)  Tinga) Tnt1,B) * * T(p(n),B) (4)

to F where Z = (21,%2,..., Zp)r)), and add S — f[A,,] to P.
The right-hand side of this production corresponds to the start [D
(qS, 1, t]_tz . tnB s B)

Step 4. For each ¢ € QF, add terminating production Ay — (¢,...,¢€)
to P for each k (1 < k < p(n)).

Note that these productions realize the condition (P1) before this
algorithm.

Step 5. If (¢, ¢, R) € 6(q,¢), then add f..x to F and Agx — feor[Agr+1]
to P for each k (1 < k < p(n)), where f.. is defined as

wE = T(r by (r#k) - (5)
wE = zge (6)
55,?[ | =1 (b # o). (7)

See Figure 4 and note that the conditions (P2a) and (P3) are real-
ized by these productions.

Step 6. If (¢",¢",L) € 6(q,c), then add geerr to F and Ay —
Jeck[Aguk—1] to P for each k (1 < k < p(n)), where gy, is de-
fined as

gcc”k[m] = x(’,b) (T # k)
gcc” >[$] = x("’r”“)
gcc”k[m] =1 (b # C).

These productions realize the conditions (P2b) and (P3) before this
algorithm. [
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The time complexity of Algorithm 3.3 is analyzed as follows. Remind
that the Turing machine M is fixed and |Q|, |Z|, |T|, |@r| and the number
of values of § are considered to be constant. Step 1 of Algorithm 3.3 takes
O(1) time. In Step 2, the number of nonterminal symbols to be defined is
O(p(n)), which implies that O(log p(n)) space is required to denote a sin-
gle nonterminal symbol, and Step 2 takes O(p(n)logp(n)) time. Steps 3
and 4 take O(p(n)logp(n)) time and O(p(n)?) time, respectively. For
Step 5, O(p(n)log p(n)) time is required to construct a single production
and O(p(n)) productions are constructed, and therefore this step takes
O(p(n)*log p(n)) time. Similarly, Step 6 takes O(p(n)%logp(n)) time. As
a whole, Algorithm 3.3 can be executed in deterministic O(p(n)?log p(n))
time.

For the end of this section, following theorem is presented. Refer to
the Theorem 3.7 and Lemma 3.12 for the proof of this theorem.

Theorem 3.6: In Algorithm 3.3, M accepts t iff w € L(G). 1
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3.1.3 EXP-POLY time-hardness

Next, it is shown that the universal recognition problem for MCFG is
EXP-POLY time-hard. It is known that L belongs to EXP-POLY time
if and only if L is accepted by a polynomial space-bounded alternating
Turing machine (ATM)®). Let M=(Q, 2, T, B, 6,95, Qr, Qu, Qr) be an

ATM where
Q is the finite set of states,

Y C T is the finite set of input symbols,

I is the finite set of tape symbols,

B € T — ¥ is the blank symbol,

§: (Q x I') x 2@*xIx{L.E}) i5 the transition function,
gs € @ is the initial state,

Qr C @ is the set of final state,

Qu C @ is the set of universal states, and

Qr C Q is the set of existential states,
where the followings are assumed:

o Qr,Qu and Qg are disjoint, and

e Q=QrUQuUQsg.

An ID (q,k,a) and a relation “+” are defined in a same way as those
of Turing machine. Define ACC(M) as the smallest subset of IDs of M
satisfying the following conditions (a) through (c).

(a) If ¢ € QF then (g,k,a) € ACC(M) for every a € ™ and k (1 < k <
o).

(b) Let I = (q,k,a) be an ID with ¢ € Q. If every I' satisfying I + I
belongs to ACC(M), then I also belongs to ACC(M).

(c) Let I =(q,k,a) be an ID with ¢ € Qp. If some I” satisfying I + I"”
belongs to ACC(M), then I also belongs to ACC(M).

M accepts a string t if and only if (gs,1,t) € ACC(M).

Fix a polynomial p and p(n) space-bounded ATM M. The prob-
lem whether M accepts a given string t can be reduced to the universal
recognition problem for MCFG in deterministic polynomial time by the
following Algorithm 3.4.
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First, the idea behind the reduction is explained. Remind the basic
algorithm 3.3 described in section 3.1.2. For convenience, number the
symbols in T' as ¢i,...,¢r), and define a pairing function as (k,c;) =
(k—DIT+7(1<k<p(n),1<j<|I|). For each g € Q and integer k
such that 1 < k < p(n), a nonterminal symbol Ay with d(Ag) = p(n)|T|
is introduced. Let

ID, = (q, &, biby -+ - br—1Cbri1 -+ by(n))
ID, (¢, k41, biby---be_1¢bpyr - bym))
ID; = (q", k=1, biby-- bp_1"bpy1 -+ bppn)),

and let

;= A[ (1,61) ]A[ (2,62)] A[(k-lybkq)]A[ (ke ]A[ k+1bi41)] A[ ):bp(n))]

Qs = A['}Cill)]A[(’iizl)] A[(";H_ll Br—1 ]A[(k C’)]A[(k+1 blet1)] A[(P(") bp(n))]

T (e i) by
(1,b1) (2,b2) k—1,b [(k,c) k+1b P(n)by(n
a —A[nkllA[ukz "'A‘[;uk_lk 1 A ”kc 1]A[<uk 1k+1)l"'Aan_1 #(m)

as in section 3.1.2.
Assume that 6(q,¢) = {(¢/,c,R),(¢",c¢",L)}. Observe that the fol-
lowing (M3) through (M5) hold by the definition of ACC(M).

(M3) If ¢ € QF, then ID, € ACC(M).
(M4) If ¢ € QE, then

ID, € ACC(M) iff either ID, € ACC(M) or ID; € ACC(M).

(M5) If ¢ € Qp, then

ID; € ACC(M) iff both ID, € ACC(M) and ID; € ACC(M).

Note that (M5) is newly introduced proposition for ATM. To realize (M5),

productions of mcfg G are constructed to satisfy the following conditions
(P4) through (P7).

(P4) If ¢ € Qp, then G,

(P5) If ¢ € QE, then both a1z ay and = as.
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(PG) If q < QU, then
1,b 1,b [(e—1,bp—1)] 4[(k—1,bx_ k)] 4 (ke
al—_c_?A[q(’k{-ll)]A[q(”k—l)I] e Aqlk_+_1 k-t ]A[q”k—l . 1)]A¢[1<’k+i]Al[1“k—]>.]
E+1,bpy1)] A [(k+1,bkp1)] [(p(n)bp(ny)] 4 [{p(1),bp(n))]
A<[1<'k+1 k+1 ]A[q(“k_1 k1 "'Aq'k+1 p(n) Aq"k—l ()
Notice that the right-hand side is the sequence obtained by con-
catenating o, and a3 componentwise.

(P7) For each derivation a1=G>a’ other than those in (P4) through (P6),
the symbol 1 appears at least once in o'.

Observe that the following (Q1) holds by (P5) and (P7). Similarly,
(Q2) holds by (P6) and (P7).

(Q1) If g € Qg, then a1:;>5 iff a2:;>e or 03%5.
(Q2) If g € Qy, then alzgs iff a2:;>€ and a3:;,>s.

If productions are constructed to satisfy (P4) through (P7) for every
g € @ and ¢ € T, it can be shown that

ID, € ACC(M) iff aI%g.
by (M3) through (M5),(P4),(Q1) and (Q2).

Algorithm 3.4:
input : a string ¢ = t1t,---%, over X.
output : mcfg G = (Vy, Vp, F, P, S) and string w
such that M accepts t iff w € L(G).
For convenience, let t = t;ty--+t,BB--- B € ™). The mcfg G and
string w are constructed as follows.

Step 1. Let Vr = {1} and w =¢.

Step 2. Let Vy = {S}U{Ax | ¢ € Q,1 < k < p(n)} where d(Ay) =
p(n)IT] (¢ € Q,1 < k < p(n)).

Step 3. Add

fIZ] = 20,0y %200) " Tinyta) Tina1,B) *** T(p(n),B)

to F where Z = (z1,%2,...,Zp@m)r)), and add S — f[Ay4] to P.
The right-hand side of the production corresponds to the start ID
((Is,l, ty---t,B--- B).
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Step 4. For each g € Qp, add terminating production Ay — (e, ... ,¢€)
to P for each k (1 < k < p(n)). Remind the condition (P4) before
this algorithm.

Step 5. If
6(‘17 C) = {(Q£7c:’ R) |1 <1< nR} (8)
U{(q],C],L) Il <j< nL}
then for (g}, ci, R) € 6(q, c), function f..:y is defined for each k (1<
k < p(n)) as follows.

fRE = aey  (T#KR) (9)
faE = e (10)
e = (b #c). (11)

Similarly, for (gj,cj, L) € §(q,c), function gecuk is defined for each
k (1 <k < p(n)) as follows.

ch"b/Z[fB] = T(rp) (r # k) (12)
ginlel = e (13)
ccuk[l‘] =1 (b # o). (14)

Suppose that ¢ € Qg. Then by (c) in the definition of ACC(M),
the ID
(q’kablb2"'bk—16bk+1 "'bp(n)) (15)

belongs to ACC(M) if one of the following IDs belongs to ACC(M):

(q:-, k+ 1, bibg--- bk—lcgbk+1 v bp(n)) (1 <1 < TLR); (16)
(q' k= 1,byby by yClbir -+ -bymy) (1< 5 < mp).(17)

In this case, add f..x to F" and add
Aqk - fccik[Aq£k+1] (18)
to Pfor1<i<mngpand1 <k <p(n). Alsoadd gecyk tO F and add

Aqk - gcc-’i’k[Aq;.’k—l] (19)



-43-

to Pforl <j<mngpandl<k<p(n).

Note that the conditions (P5) and (P7) before this algorithm are
realized by these productions.

Suppose that ¢ € Qp. Then by (b) in the definition of ACC(M),
the ID (15) belongs to ACC(M) if all of (16) and (17) belong to
ACC(M). Define h as

hek[T1s- > Tngs 21 -+ Zng] = CONCATERITL 1 (], - -,
fcc’an[gnn]agcc’l’k[El]a s agccuLk[an]]

for 1 < k < p(n) where §i = (Yi1,-- - Yipyry) for 1 < @ < mp,
ZJ‘ = (Zjl,. . .,ij(n)|p|) for 1 S] < ng and

CONCAT:[((L’ll, L12y .0 ,iL‘l_,), ey (131.1, Tp2y .oy 1'7.3)]

= (73113321 CrrTply e ey T1gl2s 'xrs)-

Add h. to F and add

Aqk - hck[Aq;k+1, - aAq;RIH-l) Aqi’k—la R )AqL{Lk—l] (20)
to P for 1 < k < p(n).
The conditions (P3) and (P4) are realized by these productions. []

Algorithm 3.4 is deterministic and its time complexity is estimated

as follows. Steps 1,2 and 3 of Algorithm 3.4 take O(1),O(logn) and
O(p(n)logn) time, respectively. For Step 4, O(p(n)logn) time are re-

quired to construct a single terminating production, p(n) terminating

productions are constructed, and therefore this step takes O(p?(n)logn)

time. For Step 5, O(p(n)logn) and O(logn) time are required to con-

struct a single function and a single nonterminating production, respec-

tively. The number of functions and that of nonterminating produc-

tions to be constructed are both O(p(n)), and hence this step takes
O(p?*(n)logn) time. As a whole, Algorithm 3.4 can be executed in
O(p?*(n)logn) time.

Theorem 3.7: In Algorithm 3.4,

M accepts t iff w € L(G).
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Proof. It suffices to show that (¢s,1,t) € ACC(M) if and only if there
is W= (wi,...,Wpm)r|) € Lg(Ags1) such that

Wee) = € (1<r<n)
wep = € (n<r<p(n)),
which is shown by following two lemmas. {

Lemma 3.8: Let @ = (wy, wa, ..., Wym)r|) € Le(Ag) (¢ € Q1 <k <
p(n). fwpyy =€ (1 <r <p(n)) for by, by, ..., byw) € T, then

(q, k, blb2 T bp(n)) € ACC(M)

Proof. The lemma is shown by induction on the number 7 of the appli-
cations of (L1) and (L2) in section 2.1.

Let 7 = 1 and the production used in (L1) be A, — (e,...,€) con-
structed in Step 4, then ¢ € gp. By (a) in the definition of ACC(M),

(g, k,biby -+ by(n)) € ACC(M)

and the lemma holds.

Assume that the lemma holds for 7 < v, and consider a case with 7 =
v+ 1. Suppose that ¢ € Qy and the last production used in (L2) is (20)
defined in Step 5. Then, b, = c and there exists @; = (u,. .., Uip(n)r|)
with 1 < ¢ < ng and 9; = (vj1,. .., Yjp(n)ry) With 1 < j < ny such that

%; € Lo(Age+1), 9j € La(Agre-1),

and

W= herlt1, ...y gy D1y -y Tny -

By (9) through (11), (12) through (14) and (20), followings hold.

Wirp) = Ul(rb,) """ Ung(rb)V1(rb,) " " Unp(rbr) (r # k)
Wikbe) = Uslkey) " Unplke, ) VI(keY) " " Vnplkiel )
Wiepy = 1-.--11---1 (b#c).
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Since wrp,) = € (1 <r < p(n)),

Ui(rb,) = *°* = Unprbdy = Vird) = * " = Unp(rp,) =¢ (r#k)

Ut(key) = 00 = Unplhh,) = Vlke)) = 00 = Ung(hel ) = €

That iS, U; = (u,-l, ce ,u,-p(n)m) € LG(AqélH—l) satisfies Ui(r b,y = € (1 S r <
p(n), # k) and uyg ey = € for 1 <4 < ng. By the inductive hypothesis,

(QL k+ ]-a b1b2 c bk—lcgbk+1 s bP(n)|F|) € ACC(M)
for all 1 <2 < ng. Similarly,
(q_{jla k — ]-’ b1b2 v bk—lc_ljlbk+1 tee bp(n)|I‘|) € ACC(M)

for all 1 < j < ny. Since g € Qyu, it follows from (b) in the definition of
ACC(M) and (8) that

(q, k,by--- bp(n)) = (q, k,by--- bk-ICbk+1 te bp(n)) € ACC(M)

The proof can be done in a similar way for the cases that ¢ € Qg and the
last productions to be applied are (18) and (19) defined in Step 5. M

Lemma 3.9: If (q, k, b1by - - - byn)) € ACC(M), then there is @ = (w;,
Wa, - - -, Wy(n)r|) € La(Agr) such that wi,,y =€ for 1 <7 < p(n).

Proof. 1t is shown by induction on the number 7 of the applications of
(a),(b) and (c) in the definition of ACC(M).

If 7 =1, then ¢ € QF and there is a production Ay — (e,...,¢€)
constructed in Step 4. Hence, (e,...,¢) € Lg(Ag) and the lemma holds
clearly.

Assume that the lemma holds for every 7 < v, and consider a case
with 7 = v + 1. Suppose that ¢ € Qy and

6(g,bx) = {(gic}, R) |1 < i< ng}

U{(¢/,cj, L) |1 <j <nmp}.

Since (g, k, by - - - by(n)) € ACC(M), followings hold by (b) in the definition
of ACC(M).

(g;, k+1, by bp_1¢bps1 - bpm)) € ACC(M) (1<i< ng)
(¢/, k=1, bree bp_1¢bpsr - bymy)) € ACC(M) (1< 5 < my).



-46-

By the inductive hypothesis, there exists
B = (W1, - - - Uip(n)r|) € La(Agiks1) (1<i<mng)

such that w4 =€ (1 <7 < p(n),r # k) and Ui,y = € for 1 <@ <mp.
Similarly, there exists

¥ = (1, Vjpmr) € La(Agrr-1) (1 <J < np)

such that vj,,y =€ (1 <7 < p(n),r # k) and Vieery = €for1 < j <mp.
Define

W= heg[81, ..., 8ng, V1, -, Vny)

then @ € Lg(Ag) by (20) in Step 5, and followings hold by the definition
of hck~

Wirb) = Ulrb,) Unglrb) Vb)) " Vng(rhy = € (T #Kk)
Whb) = Uilkel) " Unpll,c, ) Vilkel) ** * Ung kil

L>

Thus the lemma holds. The case ¢ € Qg can be handled in a similar way.

i

Now, Lemma 3.5, the estimation of time complexity of Algorithm 3.4
and Theorem 3.7 imply following theorem.

Theorem 3.10: The universal recognition problems for PMCFG and for
MCFG are both EXP-POLY time-complete. [
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3.2 With Non-Erasing Condition

In this section, the universal recognition problems for NEPMCFG and
for NEMCFG are both shown to be PSPACE-complete. Asin Section 3.1,
it suffices to show that the problem for NEPMCFG belongs to PSPACE,
and that the problem for NEMCFG is PSPACE-hard.

First, a nondeterministic algorithm to solve the problem for NEPM-
CFG is presented. The algorithm solves the problem in polynomial space
by using Algorithm 3.2 and a slightly modified version of the algorithm
in the proof of Lemma 3.1.

Let G = (Vy,Vr, F, P, S) be a pmcfg with non-erasing condition and
w be an input string. By the non-erasing condition, if (S!!,0)=a=>w and
some (A, v) appears in a, then every (AU v) (j # k,1 < j < d(A)) also
appears in o. Therefore, only the entries NULL(A4,(1,2,...,d(A))) for
A € Vy are needed in Algorithm 3.2 for a pmcfg with non-erasing condi-
tion. Since the number of such entries is O(|Vy|) = O(n), Algorithm 3.2
can be executed in O(n?logn) space by the analysis of Algorithm 3.2 in
section 3.1, where n = |G| + |w|. These entries of the table NULL can be
constructed in O(|G|) = O(n) space. Hence, the next lemma holds.

Lemma 3.11: The universal recognition problem for NEPMCFG is in
PSPACE. [

Next, it is shown that the universal recognition problem for NEM-
CFG is PSPACE-hard. If a problem belongs to PSPACE, then there is
some polynomial p and some p(n) space-bounded Turing machine M =
(@,%,T, B, 6,95, Qr) which solves that problem. The problem whether
M accepts t for a givent € I'* can be reduced to the universal recognition
problem for NEMCFG by using the following deterministic algorithm in
time polynomial in |¢].

Remind the basic idea and Algorithm 3.3 described in 3.1.2. The
construction of mcfg is similar to that of Algorithm 3.3. The differences
are:

(a) Remember that mcfg G constructed in Algorithm 3.3 does not satisfy

non-erasing condition. For the mcfg constructed here to satisfy non-

. . . 41 . .
erasing condition, the extra component fc(,’;c)' *1 is introduced and
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the value of f(f:_,(f;c)m+1 is defined to be the concatenation of all the
components of the arguments which do not appear in the right-hand
side of the definition of any f2,, for 1 < h < p(n)|T|. Similarly, the

T+1 .
extra component gfﬁ,’f,ll +1 is introduced for each gour.

(b) The extra component introduced in (a) derives, as it stands, some
string whose length can increase in proportional to the length of the
derivation. To restrict the length of the terminal string which the
extra component derives to be less than some constant, the roles of
e’s and 1’s are interchanged. And the productions are constructed
in such a way that a component symbol can derive ¢ whenever it

can derive 1 so that the value of ffc(f,‘c)m“

can always be made ¢.
Remark that the construction here does not work in the case of an
ATM since, by the productions constructed in (20) universal states,
a string derived from the initial symbol which represents an ID in
ACC(M) becomes a string of 1’s and its length may be exponential

to n.

Let assume that IDy, ID,, ID;, oy, @ and as are the same as defined

in 3.1.2. Productions are constructed so that the following (P8) through
(P10) hold.

(P8) If ¢ € QF, then a1:G>1P(").
(P9a) If (¢,, R) € §(q,c¢), that is, if ID; + IDs, then 170
(P9b) If (¢", ", L) € é(q,c), that is, if ID; - IDs, then a=as.

(P10) If a:G>a' other than those in (P8), (P9a) and (P9b), then « derives
at most p(n) — 1 1’s.

If productions are constructed to satisfy (P8) through (P10) for every
g € Q and c € T, it can be shown that

ID; € ACC(M) iff a1=;>1p<").

Algorithm 3.5:
input : astring t = t;t5---1, over X.
output : mcfg G = (Vy, Vg, F, P, S) with non-erasing condition
and string w such that M accepts t iff w € L(G).
The mcfg G and the string w are constructed as follows.
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Step 1. Let Vr = {1, #} and let w = 1P™W#.

Step 2. Let Vy = {S,D}U{An | ¢ € Q,1 < k < p(n)} where d(Asu) =
p(n)|T|+1(q € Q,1 <k <p(n))and d(D) = 1.

Step 3. Define f as follows.

FIZ] = 2(10)T2,6) " Tnta) Tin+1,8) * * * Tip(n), BYH
p(n)

(InI IT ze)( I II ze8) 2

r=1berl b#t, r=n+1bex

!
where = (21, %2, ..., Zp(n)r|+1) and H a; denotes the concatena-
i=k
tion agagyr - -a. Add f to F and add S — f[Az] to P 3.
Step 4. Add terminating productions D — 1 and D — ¢.

Step 5. Add
i(@1), -5 (@pmyr)] = (21, -+, Zp(myr), €)
to F. For each ¢ € Qp and k (1 < k < p(n)), add
Ag —iD,D,..., D]
to P.

Step 6. If (¢, ¢, R) € 6(q,c), then add feox to F and Age — fecrk[Agit1)
for each k (1 < k < p(n)), where f.r is defined as

iz,,’:u = 2w 70
cc’k [$] = Tlke)
c(’j:)[x] = ¢ (b;éc)
FEE = (T ows)Eamri-
bel' b#c!

3The parenthesis are used only to get rid of ambiguity, and it is not included in
the definition of f.
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Step 7. If (¢",c",L) € 6&(q,c), then add g.x to F and Ay —
Gecrk|Agrr—1], for each k (1 < k < p(n)), where g,y is defined

as
gzl = e (r # k)
g8z = zaen
glillz] = e (b#¢)
Az = (T ows)zamimr.
beTl b#c!

[

It can be easily shown that the above algorithm can be executed in
O(p*(n)logn) time in the same way as is the case of Algorithm 3.3.
Following lemma can be shown in a same way as Theorem 3.7.

Lemma 3.12:
M accepts tiff w € L(QG).

Now, Lemmas 3.11 and 3.12 imply the following theorem.

Theorem 3.13: The universal recognition problems for NEPMCFG and
for NEMCFG are both PSPACE-complete. [
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3.3 Bounded Dimension

In this section, the computational complexities of the universal recog-
nition problems for m-PMCFG and for m-MCFG are investigated. The
result here is that, for any fixed m (m > 1), the problem for m-PMCFG is
NP-complete, and that the problem for m-MCFG is also N/P-complete
for any fixed m (m > 2).

3.3.1 m-MCFG with m > 2

First, the universal recognition problem for m-MCFG (m > 2) is
shown to be N'P-complete. In this paper, only the case m > 2 is investi-
gated since, for m = 1, any 1-mcfg is also a cfg and the time complexity of
the universal recognition problem for cfg’s is known to be O(|G[*|w|*)™.

It is shown that the problem for m-MCFG is in NP as follows. Let G
be a given m-mcfg and w be an input string. First, G is transformed into
an m-mcfg G’ such that L(G) = L(G’) as follows. If (g,...,¢) € Lg(A),

then the nonterminal symbol A is called a nullable symbol.

Step 1. By using Lemmas 1 and 3 in Ref.[14], construct m-mcfg G =
(VX, Vr, F", P", S) which satisfies L(G) = L(G") and the following
conditions (f3) and (f4).

(f3) G” satisfies the non-erasing condition.

(f4) No terminal symbols appear in the right-hand side of the def-
inition of any f € F' such that a(f) > 1.

Step 2. Construct m-mcfg G' = (V, Vp, F', P!, S) from G" by adding
A — (g,...,e) to P" for every nullable symbol A in V] (such a
production is called an e-production).

By the construction of G” in Ref.[14], |G| < 2™|G| and Step 1 can
be executed in O(2™|G|?) = O(|G|?) time deterministically since m is a
constant. Consider Step 2. Since G” satisfies the above conditions (f3)
and (f4), nullable symbols can be found as follows.

(a) If A — (e,...,e) € P", then A is a nullable symbol.
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(b) If A — f(A1,A2...,Ayy) € P" and Ay, ..., Ay are nullable sym-
bols, then A is also a nullable symbol.

(c) Repeat (b) until no more nullable symbols can be found.

The above procedure halts in O(|G|?) time deterministically. Further-
more, |G| < 2|G"| € O(|G)).

Next, a derivation tree ¢t in G’ is generated nondeterministically and
is tested whether ¢ is a derivation tree of w. The following lemma claims
that if @ € L(G') then @ has a derivation tree whose size is not greater
than some polynomial in |G’| + |w|, where the size of a derivation tree is
defined to be the number of nodes in ¢'.

Lemma 3.14: Let G' = (Vy, Vp, F', P’ S) be the mcfg constructed from
a given G in the above discussion. If w € L(G’), then w has a derivation
tree in G’ whose size is O(|w]|G'[?).

2m — 1)!
Proof. Let M = % Since m is a constant, M is also a constant.
For a tuple @ = (wy,ws,...,w,) of strings, let |@|= > |wi|, and |w@] is

k=1
called the length of w. If t is a derivation tree of w whose size is not

greater than that of any derivation tree of @, then t is called a minimal
derivation tree of w. It will be shown that if @ € Lg/(A), then there is a
derivation tree of @ whose size is not greater than

2 ifA—weP,
{ 2M(2|w| — 1)|G'? otherwise.

This is shown by induction on the length of .

The lemma holds clearly when |@w| = 0, since w = (g,...,¢) and
A—weP.

Suppose that the claim holds for every tuples of length s or less. Let
|@| = s + 1, and let ¢ be a minimal derivation tree of @ as shown in
Figure 5, where £ denotes a tuple of ¢’'s. Let p : v, vy,...,vx be the

longest path from the root which satisfies the following conditions:



Figure 5: A derivation tree in G’

-53-
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[1] € is generated from every child of v;(0 < j < k) other than v,

[2] Wy, @2,..., % (I > 1) such that @; # & (1 < i < [) are generated
from children u,,uy, ..., u; of v; respectively, and

[3] & is generated from every child of vy other than uy,us. ..., u.

Let label(v) denote a nonterminal symbol or a terminal string attached
to anode v as a label and let g(v)=(g'(v), g%(v), . . ., g???*(*))) denote the
tuple of strings derived from a node v in ¢. For j(0 < j < k), w = g(vo)
can be represented by g(v;) as follows:

g"(vo) = g% (v;)g4 ™D (v;) -+ g% ™) (v;) (1 < h < dlabel(wo)))

where for each b’ (1 < A’ < d(label(v;))) there exist unique h and ! such
that h' = §;(h,l) by the non-erasing condition, that is, each component
g% (v;) of g(v;) (1 < k' < d(label(v;))) appears exactly once in g(v,). Let

REP(v;)2(&(1,1)(1,2) - - (1, nyj),
.. ,fj(d(label(v,-)), 1) v Q(d(label(vi)), nd(label('v,-))j))'

For example, if

g(vi) = (9°(v;)g° (v;), €, 9°(v;)g" (v1), 9" (v3))
then REP(v;) = (53,¢,24,1). The number of distinct REP(v;)’s

among v;’s labeled with an identical nonterminal symbol is not greater
(2m — 1)!
(m—1)!"

Assume that k& > M|Vy|. Then there exist distinct nodes v, and
14(0 < p < g < k) such that label(v,) = label(v,) and REP(p) = REP(q).

Let t' denote the tree obtained from ¢ by replacing the subtree whose

than

root is v, with the subtree whose root is v,. It is obvious that ¢’ is also a
derivation tree of w and the size of ¢’ is less than that of ¢, a contradiction.
That is, k < M|Vy|. Let v denote the maximal number of arguments of
a function in F'. By Step 2 of the construction of G’, the definition of
path p and the fact that ¢ is minimal, an e-production is applied at every
child of v; other than v;4; (0 < j < k). It follows that the size of “upper
part” of ¢t (that is, “the size of ¢” minus “the size of subtree whose root
is v;”) is not greater than 2(v — 1)k + k = 2kv — k.
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If I = 1, then the size of the subtree whose root is u; is 2 by the
definition of path p. In this case, the size of ¢ is not greater than

2k —k+14+2v <2kv+1+2v=2(k+1)v+ 1.
Since k < M|Vy| and both v and |V}| are less than |G/,
2k + 1)v+1 < 2M|Vi|v +1 < 2M|G'|%.

Clearly, 2M|G'|? < 2M(2|w| — 1)|G’|? and the lemma holds.

If I > 2, then by the inductive hypothesis, the sizes of the sub-
trees whose roots are uy, us, ..., and u; are not greater than 2M(2|w;| —
D|G'|3, 2M(2|w2] — 1)|G'%, . .., and 2M(2|@,;| ~ 1)|G’|?, respectively. The
size of ¢ is not greater than

1
2kv —k+1+2(v = 1) + > 2M(2|w| — 1)|G'*. (21)

i=1

By using |@1| + |@Ws| + - - - + |@i| = |@|,! > 2 and the following inequality
2kv —k+1+2v —1) < 2(k+ 1)v +1 < 2M|G'|%,

the expression (21) is upper bounded by
2M|G'|* + 2M(2|@| — D)|G')? < 2M(2|@| — 1)|G'|2.

Thus the induction completes. It follows that if w € L(G"), then w has a
derivation tree in G’ whose size is O(|w||G'|?). 0

For a derivation tree t, it can be easily shown that linear time to the
size of t is sufficient to test whether ¢ is a derivation tree of w. Since
|G'| € O(]G|), Lemma 3.14 implies the following lemma.

Lemma 3.15: For any fixed m (m > 2), the universal recognition prob-
lem for m-MCFG belongs to N'P. [

Next, the problem is shown to be NP-hard. It is sufficient to consider
the case m = 2, since any 2-mcfg is also an m-mcfg for every m > 2.

By the following deterministic algorithm 3.6, 3SAT (the satisfiabil-
ity problem of 3-conjunctive normal form Boolean expressions), which
is known to be N"P-complete!®], is reducible to the universal recognition
problem for 2-MCFG in polynomial time. The formal description of the
algorithm is given first, followed by a simple example.
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Algorithm 3.6:
input : 3-CNF Boolean expression F.

output : 2-mcfg G = (Vy, Vr, F, P, S) and string w
such that E is satisfiable iff w € L(G).

Let E = Ey ANE; A+ ANEy, and E; = (I;; V12 V li3) where [;; is a
literal (1 <i<g¢,1<j5<3).

Step 1. Count the distinct variables appearing in £. Let r be the num-
ber of them and let those distinct variables be py,ps,..., and p,.

Step 2. Let m; and m} (1 < i < r) be the numbers of the occurrences
of positive literal p; and negative literal —p; in F, respectively.
Without loss of generality, assume that m; > m/. Furthermore,

let t = ) (m; —mj}). In Step 4, yi’s (1 < ¢ < t) will be used as

=1
fillers if the number of the occurrences of p; is strictly greater than
that of —p;.

Step 3. Let Vpr = {$,#,1} and Vy = {S,X,Y, A}, where d(X) =
d(A) =2, d(Y) =d(5) =1

Step 4. Let F' = {f} where f is defined as follows.

f[a’la vy (_1,., a_;lla 5:12) 5:13a 5321, vy i"qI‘Ia Y1, -- ayt]
= Z111%121T131F T211T221 Ta31 FF -+ #$q11-’13q2193q31
1 ! /
$a11z11212 * ot Zmy #211212 * 0t Zm, A12 (22)

! ! !
$a1‘1z1‘1z1'2 e Zrm, #zrlzrz e zrm,. a1'2

where i,‘j = (a:ijl,w,-]-z) (1 S 7 S q,] = 1,2,3) &Ild (ii = (ail,aﬁ)
(1<i<r).

For each z,, and 2}, (1 <u < 7,1 <v < my),
Zuny Zy € {Tij2 | 1 <9< g7 = 1,2,3} U{me [ 1 <k <t}

and they must satisfy the followings.
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(a) If the literal ;; (1 <i < gq,j =1,2,3) is the vth occurrence of
P from the left, then z,, = ;.

(b) If the literal I;; (1 <¢ < ¢,j = 1,2,3) is the vth occurrence of
—p,, from the left, then z,, = ;.

(c) The number of 2,,’s which are not defined by the above (a) or
(b) equals to t. Those 2 ’s are equal to y, . .., y;, respectively.
(Since m; > m/, it is sufficient to consider only 2], ’s.)

Step 5. The rewriting productions are defined as:

Vv

P = {§—fIAA. AXX,. XYY, Y]

X - (1,1 (Ts,l | (e,€) q (23)
A - (#,6) | (e, #)
Y - 1]|¢}

Step 6. Define the input string w as

w= 1413 - L SHI™ HSHI™ #S - $HI™H.  (24)
e e’

gl’s

Il

Example 3.1: Let £ = (p; V- p2 Vp3) A(p1 VP2V ps) A{—p1 Vp3 Vp2)
be an input. The word w and the function f are:

w=1#1#1S#11H# SHL1H#SH#11# (25)
N’
(*)
fla1, @, @s, Z11, E12, T13, To1, - - - , £33, Y1, Y2, Y3
= 331113’?12133131#x211$221$231#533115532143331 (I)
$a11m112m212#w312y1a12 (H) (26)
$a21m222w332#m122y2a22 (IH)
$a31:1:132x322#a:232y3a32. (IV)

In Figure 6, the components of the same variable are linked by a line.
Intuitively, the part (I) of f corresponds to the expression F, and parts
(I1),(III) and (IV) correspond to p;, p; and ps, respectively.



E=(PVvTPVEYA(PVERVTER)A(ThHVE VD)

FCeoe) = Xppp Xpop Xp31 # X211 X221 X231 # X311 X321 X331

a part for P; $ 11 X112 X212 # X312 Y1 9
a part for P, $ 9y X222 ¥332 # X133 Y5 9y
a part for P, $ 37 X132 X320 # X232 V3 93

Figure 7: An example of the function f

_gg_
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The value of variable p; (1 < i < 3) is represented by &@; as

@ = (#,¢) iff piis “TRUE”,
& = (e,#) iff p;is “FALSE”

and the value of literal [;; (1 < 4,j < 3) is represented by Z;; = (1, Tij2)
as

{ Z; = (1,1) or (¢,1) iff [;is “TRUE”, (27)

T = (g,¢€) of 1 is “FALSE”.
The first component z;j; of Z;; appears in the part (I) of (26) and is used
for checking that the value of 7th clause is “TRUE” or not, and the second
component z;;, appears in either (II),(III) or (IV) and is used for checking
that, for each variable, the same value is assigned to every occurrence of
the variable and the values assigned to positive and negative literals are
distinct.

If the variable p; is to be “TRUE”, then a;; and a;» are replaced
by # and ¢, respectively. To satisfy w € L(G), the part (II) in (26)
must yield the part (%) in (25), which implies that z112, Z212, Z312 and y;
must be replaced by 1,1,¢ and ¢, respectively. By (23) in the algorithm,
z111 and zy1; which correspond to p; are replaced by 1 or ¢, and z31;
which corresponds to —p, is replaced by ¢. In the case where p; is to
be “FALSE”, and in the cases of py and ps3, a similar discussion follows.
Hence, the first component z;;; which corresponds to the literal [;; to be
“TRUE” is replaced by 1 or ¢, and the one which corresponds to the
literal to be “FALSE” is replaced by €.

Now, it is clear that the part (I) in (26) can generate 1#1#1 if and
only if at least one literal in each clause are to be “TRUE”, that is, F is
satisfiable. In this example, F is satisfiable and w € L(G). (]

Apparently, Algorithm 3.6 can be executed in O(p(|E|)) time for some
polynomial p where |E| is the length of a description of E.

Lemma 3.16: F is satisfiable ¢ff w € L(G).

(If part) Assume w € L(G). Then there exist &, (1 < u < 7), B (1 <
1<¢,7=1,2,3) and 7; (1 < ¢ <t) such that

f[&lw . "dr)ﬂ_lla' . a/éq3371)' o 7’713] =w € LG(S) = L(G) (28)
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By the definition of f, P and w (see Steps 4 through 6 in Algorithm 3.6),
either &, = (#,¢) or &, = (¢, #) for each 1 < u < r. Define (vy,...,v,)

as
[ “TRUE” if &, = (#,¢)
v { “FALSE” if &, = (¢, #)
for 1 < u < r and assign v, (1 <u < r) to the variable p,.
Consider a clause I;; V12 Vi3 (1 €i < q). Since w = 141 .- #1$#
T
---# € L(G) and Lg(X) = {(1,1),(g,1), (e, )}, exactly oneqof Bi1, Bia
and f;3 is (1,1) by the definition of f. Without loss of generality, let
Bir = (1,1). If l;; = p,, then z15 is on the left of the (¢ — 1 + u)th # by
the definition of f. Hence, by (28), w can be written as

(29)

w:"'$au1"'1"'#'°'au2$"')

where &, = (Qu1, ®y2). By the definition of w in (24) of Algorithm 3.6,
&, = (#,¢) and the value v, assigned to l;; is “TRUE” by (29). If [;; is
—p., then I is also shown to be “TRUE” in the same manner. It follows
that F is satisfiable.

(Only if part) Assume F is satisfiable, then there exists an assignment
(v1,v2,...,v,) which makes the value of E “TRUE”, where v; is the value
assigned to p;. Under this assignment, at least one of l;;,l;; and l;3 is
“TRUE” for each ¢ (1 < i < ¢). Choose one of such literals for each ¢,

say lij,, 24,5+ - ., 1gj,- Under the above assignment, let

o - (#,¢) if v, =“TRUE”
| (e,#) if v, =“FALSE”

for 1 <u <7 and let

(1,1) if the value of l;; is “TRUE” and j = j;
Bi; ={ (g,1) if the value of I;; is “TRUE” and j # j;
(€,€) if the value of I;; is “FALSE”

for1<i<gandj=1,2,3 Ifz, =y at Step 4 (intuitively, y; is a filler
for the variable p, ), then let

{1 ifv, =“FALSE’
%=\ ¢ if v, =“TRUE”
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for1 <1<t
By the definition of G, &, € Lg(A),ﬁ_ij € Lg(X) and y; € Lg(Y). By
(22) and (24) in Algorithm 3.6,

f[alv"wdmglla"',Bq3)71)"'a7t] =wE LG(S) = L(G)
[

Lemma 3.16 implies that by using Algorithm 3.6, 3SAT is reducible
to the universal recognition problem for 2-MCFG.
The following theorem summarizes the above results.

Theorem 3.17: For any fixed m (m > 2), the universal recognition
problem for m-MCFG is A/P-complete. [

3.3.2 m-PMCFG withm > 1

In this section, it will be shown that the problem for m-PMCFG
(m > 1) is also N"P-complete.

Lemma 3.18: For any fixed m (m > 1), the universal recognition prob-
lem for m-PMCFG belongs to N'P.

Sketch of Proof: Let p : vy, vq,...,v; be the path as described in Lem-
ma 3.14. Since G does not always satisfy the condition (f2) in this case, a
copy operation is permitted, and the length of the string derived from the
node v; (0 <7 < k) can be greater than that of v;1; (see Example 2 in 2).
Let len(v)=|g(v)|, that is, the length of the tuple derived from a node v.
By the assumption, len(vy) = ||, and by the condition 2 of the definition
of the path p, len(vk) > 1. Let 4p,2y,...,2. (0 =39 <43 < -+ < i, = k)
be the integers such that

|w| = len(vs,) = len(vy,) > len(vi 11) = -+ - = len(v;,) > - - len(v;,) > 1.

Clearly, ¢ < |w|, and it can be easily shown that 5,1 — % < M|Vx| (0 <
b < c). Therefore, k < M|Vy||w|.

In a similar way to the proof of Lemma 3.14, it can be shown that if
w € L(G) then w has a derivation tree whose size is O(n?). 1
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It has already shown that the problem for m-MCFG is N"P-hard for
m > 2. For m-PMCFQG, the lemma holds for m > 1. Basic idea is the
same as that for MCFG, and the differences are:

e For MCFG, the second component z;;; of Z;; = (x;;1, Z;j2) is used to
ensure that an identical value (“TRUE” or “FALSE”) is assigned
to each occurrence of a variable. This technique cannot be used
for 1-PMCFG since only strings (1-tuples of a string) are available.
Instead, the same mechanism is realized by copy operations.

e For MCFG, the first component z;;; of Z;; = (z;j1, ij2) can be any
of 1 and € when the value of the corresponding literal /;; is “TRUE”
(see (27) in Example 3.1). Hence, the number of 1’s in ;11 Z;21, Zi31
for the clause l;; V l;3 V ;3 whose value is “TRUE” can always be
made one. For 1-PMCFG, only 1 is allowed to represent the cor-
responding literal to take “TRUE” as the value and the number of
1’s for each clause varies from 1 to 3. To make the number of 1’s
be a uniform value, say 4, for each clause whose value is “TRUE”,
three fillers (y3i—2, ¥3i—1,¥3; in Step 3 of Algorithm 3.7) are added
for each clause.

By the following deterministic algorithm, 3SAT is reducible to the
universal recognition problem for 1-PMCFG in polynomial time.

Algorithm 3.7:
input : 3-CNF boolean expression F.

output : 1-pmcfg G = (Vy,Vp, F, P, S) and string w
such that F is satisfiable iff w € L(G).

Let E = El A Ez AN A Eq and let Ei = (lil \% li2 \% li3) where lij is a
literal.

Step 1. Count the distinct variables appearing in E. Let 7 be the num-
ber of them and let those distinct variables be py,p, ..., and p,.

Step 2. Let Vp = {8,#,1} and Vy = {5, X, Y}, where d(X) = d(Y) =
d(S)=1.
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Step 3. Let F = {f} where f is defined as follows.

f[l‘n,l'lz, T21,%22y.. ., 271, Tr2,Y1,Y2,. .. ,yaq]
= zn212213%1Y2Y3H# -+ #quzq2zq3y3q—2y3q—ly3q
$1,‘11.’1212$.'L'21£L'22$ s $£L'p1.’13p2.

For each z;; (1 < ¢ < ¢q,j = 1,2,3), z;;j = @,y if I;; = p, and

zij = Ty2 if li; = —py.

Step 4. The rewriting productions are defined as

P = {§—-fXX,... XYY, . Y]
2r 3q
X—-1]e
Y —-1]e}

Step 5. Define the string w as

w= 111141111 --- #1111 $1$1$-- - $1.

q1111’s T 1ls

The readers can easily verify that
E is satisfiable iff w € L(G)

and that this algorithm can be executed in polynomial time, that is,
the universal recognition problem for 1-PMCFG is ANP-hard, and the
following theorem holds.

Theorem 3.19: For any fixed m (m > 1), the universal recognition
problem for m-PMCFG is N'P-complete. 1
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3.4 Bounded Degree

This section introduces subclasses of pmcfg’s and mcfg’s for which the
universal recognition problems can be solved in deterministic polynomial
time. Refer to the definition of the degree in Section 2.1. Notice that,
by the definition, for each e (e > 1), there exists m (m > 1) such that
every pmcfg with degree e or less is an m-pmcfg. On the other hand, for
each m (m > 1) and e (e > 1), there always exists an m-pmcfg G with
degree greater than e. That is, every pmcfg with bounded degree has also
a bounded dimension, but not vice versa.

Lemma 3.20: For any fixed e (e > 1), the time complexity of the uni-
versal recognition problem for MCFG, is O(|G|*|w|®).

Sketch of proof: In Ref.[15], a fixed-language recognition algorithm for
a language generated by a mcfg with bounded degree is presented. Al-
though the algorithm assumes that a given mcfg satisfies (f3) in Lem-
ma 2.1, e-production freeness and some other conditions, it can be easily
extended so as to be directly applicable to an arbitrary mcfg (without
any equivalence transformation of the grammar). The analysis of the
complexity is analogous to that of O(|G|?|w|?) time algorithm for CFG[]

A modified head grammar (MHG) is introduced in Ref.[25] to define
the syntax of natural languages. It has been shown in Ref.[16] that the
generative capacity of MHG is equal to that of head grammars!'® and
that of tree adjoining grammars'), which are also introduced to define
the syntax of natural languages. Since every mhg is a 2-mcfg with degree
6 or less by definition['®, the following holds as a corollary of Lemma, 3.20.

Corollary 3.21: The universal recognition problem for MHG is solvable
in deterministic O(|G|*|w|®) time. ]

Lemma 3.22: The universal recognition problem for 1-MCFG with de-
gree 3 or less is P-hard.

Sketch of proof: By Corollary 12 in Ref.[10], the universal recognition
problem for Chomsky normal form CFG is P-complete. Since any Chom-
sky normal form cfg is also a 1-mcfg with degree 3 or less!'4, the lemma
is proved. (]
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The next theorem is obtained from lemmas 3.20 and 3.22.

Theorem 3.23: For any fixed e (e > 3), the universal recognition prob-
lem for MCFG, is P-complete and solvable in deterministic O(|G|?|w|®)
time. 0

In a similar way, the following theorem can be proved.

Theorem 3.24: For any fixed e (e > 3), the universal recognition prob-
lem for PMCFG, is P-complete and solvable in deterministic
O(|G|?|w|**!) time. M
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3.5 Results and Their Implication

In this section, significance and implication of the results are dis-
cussed informally. Computational complexities of universal recognition
problems are sometimes considered to have strong relation with “diffi-
culty” of acquisition of a language: Suppose that one learns a language
from a description of a grammar G. By compiling G (in mental repre-
sentation), one will acquire an efficient parser of L(G), by which one can
decide whether a given text w belongs to the language generated by G or
not. This process can be modeled as in Figure 7, using a parser generator
for a class G of grammars to which G belongs. If the “acquisition of a
language” means a construction of an efficient parser, the difficulty of the
acquisition can be measured by the complexity of the parser generator.
Let Ug, PGg and Pg be the computational complexity of the universal
recognition problem for a class G of grammars, the computational com-
plexity of the parser generator to produce a parser for a given G in G,
and the computational complexity of the parser to decide w € L(G) for
a given w, respectively. We obtain Ug; < PGg + Pg. If the parser is
efficient enough compared with the parser generator, i.e., P; < PGg,
the difficulty of acquisition of a language is estimated by the complexity
of the universal recognition problem. As for acquisition of a language,
our intuition tells that an acquisition of a language from a grammar will
be more difficult if the grammar allows “omissions”. In the case of PM-
CFG, an omission of a word corresponds to an erasing of a variable on
the right-hand side of the expression (2). Thereby, it is quite suitable
to our intuition that the universal recognition problem for PMCFG with
no constraint is more difficult than that for NEPMCFG. As mentioned
above, non-erasing condition does not weaken the generative power of
grammars. Now, one may think to transform a pmcfg G that violates the
non-erasing condition into another weakly equivalent pmcfg G’ that sat-
isfies the non-erasing condition, and apply a polynomial space universal
recognition algorithm to G’. But elimination of productions that vio-
late the non-erasing condition may make the grammar size exponentially
larger than the original onel'* 22 and hence the complexity of the uni-
versal recognition problem cannot be reduced by such a transformation.

Generally speaking, there is not much difference between the complex-
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ities of the problems for PMCFG and for MCFG with the same restriction
(compare results for PMCFG and MCFG in the same row in Table 2).
It seems that copy operations do not have an effect on the succinctness
of a grammar, which is a quite interesting contrast with the fact that
erasing operations (which are inhibited by (£3)) have a great effect on the
complexity of the problem.

The problem can be solved efficiently if one fixes the degree of gram-
mars. In the language acquisition example, this result means that the
acquisition of a language is tractable (i.e. performed in polynomial time)
if the languages to be acquired are modeled by PMCFGor MCFG with
fixed degree e. The remaining question is; “does the class of pmcfg’s with
fixed degree have enough generative power to describe the syntax of nat-
ural languages?” Our answer is positive to this question in the following
sense.

Head grammars (HG)® and tree adjoining grammars (TAG)! have
been widely accepted as grammatical formalisms to describe the syntax of
natural languages. It has already been shown that the class of languages
generated by HG and TAG coincide, and it is a proper subclass of lan-
guages generated by mcfg’s with dimension 2 and degree 6122, Of course
one can choose a larger degree and pay more to the universal recognition.
This result agrees with our intuitive understanding that, for any gram-
mars, there is a trade-off relation between the generative capacity and
the difficulty of acquisition.
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G w
([ R true
(fparser generator j? parser or
. generate for false
or G as an | L(G)
output
k PG 3 Fq
_ Us )

Figure 7: A model of acquisition of a language from a description of a
grammar
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4 Generative Powers of FSTS

This section is devided into two parts. In the first section, it is shown
that yL(DFSTS), the class of yield languages generated by deterministic
FSTS, equals to PMCFL. Based on this result, the concept of degree
of PMCFG is extended to deterministic FSTS, and the fixed-language
recognition problem for yL(DFSTS) is shown to be recognized in O(n®t!)-
time where n is the length of an input word and e is the degree of the
deterministic fsts. In Section 4.2, in contrast to these results, it is shown
that there is a nondeterministic mondaic fsts with state-bound 2 which
generates an A/'P-complete language.

4.1 Deterministic FSTS
4.1.1 yL(DFSTS) C PMCFL

Let (M, G) be a deterministic yT-fsts where M = (Q, X, A, ¢;, R) and
G = (Vy,Vr, P, S). We assume that Q = {q1,...,q}, Vr = {a1,...,a,}
and the productions in P are labeled with r{,...,7,. Since the input
domain of M is the set of derivation trees of GG, we assume that ¥ =
{r1,...,Tm,0a1,...,a,} without loss of generality.

A pmcfg G' = (V}, V), F', P',S") such that yL(M, G) = L(G') 0 A*
is constructed as follows. Let V; = AU{b} where b is a newly introduced
symbol and let

V](] = {Sl,Rl,...,Rm,Al,...,An}

where d(R;) = d(A4;) = £for 1 <i <m and 1 < j < n. Note that each
R; (1 <i <m)and A4; (1 <j < n) correspond to production r; and
terminal a; of cfg G, respectively. Productions and functions of G’ will
be constructed to have the following property.

Property 4.1: There is (aj,...,a;) € Lg/(Rs) (resp. Lg/(Ap)) such

that
{ each of a,,,...,a,, does not contain b, and

each of the remaining a4, ..., @ containsb

if and only if there is a derivation tree t of G such that the root of ¢t is 7},
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(resp. a;) and

g5, [tI=a, (1<p<u)
g, [t] derives no output (1 < p < v).

i

The basic idea is to simulate the move of tree transducer M which is
scanning a symbol 7, (resp. a;) with state g; by the ith component of
the honterminal R, (resp. Ap) of pmcfg G'. During the move of M, it
may happen that no rule is defined for a current configuration and hence
no output will be derived. The symbol b is introduced to represent such
an undefined move explicitly.

To construct productions and functions, Define RS(X) (X € VyUVr)
as follows.

{Rx | the left-hand side of r, is X} if X € Vy

RS(X) = {{Ah} if X = ay € Vi

Productions and functions are defined as follows.

Step 1: For each production 7 : Yy — Yi---Y, (Yy € Vy,Y, € Vy U
Vr for 1 < u < k) of cfg G, construct nonterminating productions

Rh d frh[Zh- . 'aZk]

for arbitrary combinations of Z, € RS(Y,) (1 < u < k) where f,,
is defined as follows: For 1 <i < ¢,

e if there is no rule whose left-hand side is ¢;[r(z1, - - ., zx )|, then
fillzy, ..., @] =0, (30)
e if the transducer M has a rule g¢frp(zy,...,zk)] — wia

In()[ZTu(, 0| Wi2 * Wi, Gni ) [Tu(in) | Wimir1, where 1 < n(i,
j)<tand 1< pu(4,j) < k(1 <j<n;), then

fr[i][fl,---,fk] = Wi 1T p(i,1)m(,1) Wi,2 *

wi,nimp(i,ni)n(i,n,-)wi,n.;+1 (31)

where Z, = (Ty1,.. ., 7u) (1 < u < k).



-71-

(Since M is deterministic, there exists at most one rule whose left-

hand side is ¢;[ra(- - -)] and hence the above construction is consis-
tent.)

Step 2: For each a), € V7, construct a terminating production 4, — f,,
where f,, is defined as follows: For 1 <1 < ¢,

o if there is no rule whose left-hand side is g;[as], then fﬂéb.

o if g;[as] — w;, then fiﬂéwi.

Step 3: For each R, € RS(S), construct S’ — fa[R1] where fare[(z1,
..+, 2¢)]=x;. Intuitively, the right-hand side of this production cor-
responds to the configuration that M is in an initial state ¢; and
scanning the root symbol 7, of a derivation tree, where 7, is the

label of a production of G whose left-hand side is the initial symbol
S.

In the following, it is shown that the pmcfg G’ defined as above has
Property 4.1.
(Only if part) It is shown by induction on the number of applications of

(L1) and (L2) in section 2 to obtain a tuple of strings (a,...,a). For
the basis, assume that & = (a1,..., ) € Lg/(X) is obtained by only one
application of (L1). It is clear that the applied (terminating) production
is constructed in Step 2, and hence there is some h such that X = A4,,
Ap — f,, and f,, = &. Let t = a), and consider how derivations proceed
from g;[t] for 1 < i < £. If a; = b then fi‘g = b and hence there should
be no rule whose left-hand side is g;[ax]. If o; does not contain b, then
transducer M has a rule g;[ay] — a;, and the property holds.

Assume that the property holds for every tuple of strings which can be
obtained by d' applications or less, and suppose the case that (ay,. .., a,)
€ La(X) is obtained by d' + 1 applications. The last (nonterminating)
production applied in (L2) must be constructed in Step 1, hence there is
some h such that X = Rj, and the applied production is

Rh - f,.h[Zl,...,Zk]. (32)

Furthermore, there exist 8, = (Bu1, ..., Bu) € Le(Z,) for 1 < u < k such
that (au,...,a¢) = £, [B1,...,5]. For each u (1 <u < k), if Z, = Ry,
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for some h, (resp. Z, = Ay, for some h,), then 3, € La/(Ry,) (resp.
B. € Lg(Ap,)), and by the inductive hypothesis there is a derivation
tree t, which satisfies Property 4.1 with §,. That is, the root of ¢, is 74,
(resp. an,), and for v (1 < v < ¥),

{ @o[tu]=Buv if 8., does not contain b,

33
¢»(t.] derives no output if B, contains b. (33)

We note that since (32) is constructed in Step 1 as a production of pmcfg
@', cfg G has a production 7, : Yy — Y7:--Y; and Z, € RS(Y,) holds
for 1 < u < k. Now, Z, = Ry, € RS(Y,) (resp. Z, = A, € RS(Ys,))
holds and it follows that the left-hand side of production 7 is Y, by the
definition of RS (resp. Y, is the terminal symbol a, ). Hence, if we take
t = ru(ty,...,tx) then t is a derivation tree of cfg G. Now, consider a
derivation of M from ¢;[t] for 1 <i < £.

e If a; contains b, then there are two cases.

- f,[’h] is defined to be b by (30). In this case, there exists no rule
whose left-hand side is g;[ra(z1,...,z%)]. Hence g;[t] derives
no output and the property holds.

— f is defined by (31). In this case, o; can be written as

@ = Wi 1Bu(i)n(,1)Wi2' * Wi, Bulimiym(iing Wins+1 304 Byt iyni.)
contains b for some 7 (1 < j < n;). By the construction of
function f,, in Step 1, there is a derivation from g¢;[t];

alt] = qlra(ty, ... te)] =

Wi 1 GG 0 [Eu, )| Wi 2 * + * Wi, Gn(ime) [Eugims) | Wi 1

and there are no other derivation since M is deterministic.
If Buijn,j) contains b, then by (33), gy ;)[tu,;)] derives no
output and hence ¢;[t] also cannot derive output.

e If o; does not contain b, then fr[;] is defined by (31), o; can be writ-
ten as a; = w;10,3i,1)n(,1)Wi2 ** * Win:Bu(imi)n(ing Wini+1 and each
Bu(iim(i) (1 < j < n;) does not contain b. By (33), gn(ij)ltuii )
éﬂﬂ(i,j),,(,-,j) holds for 1 < j < n;, hence

alt] = qlralts,. .. t)]
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= Wit e Wiz Wi, Gt [Euti g [ Wit
D Wi Bu G, Wi2 * Wi Bulimeyn(ime) Wimit 1

=
and the property holds.

(If part) If part is shown by induction on the size of a derivation tree ¢
of G. (The size of a tree t is the number of occurrences of symbols of the
ranked alphabet appearing in ¢.) For the basis, assume that the size of ¢
is one, that is, t = a, for some a; € Vp. By Step 2, there is a production
Ap — f,, and the property holds.

For the inductive step, assume that the property holds for every
derivation tree whose size is not greater than d’, and consider a deriva-
tion tree t = 74(t1,...,t) with size d' + 1. Since t is a derivation tree
of cfg G, r, is a production of the form Yy — Y;---Y; and the root of
te (1 <u<k)is;

rn, (label of a production whose left-hand side is ¥,) if Y, € Vi
ap if Y, =ap, € Vr.

u

By the definition of RS, R, € RS(Y,) (or 4;, € RS(Y,)) holds for
1 < u < k, and hence pmcfg G’ has a production Ry, — f.,[Z1,..., Z]
where Z, = Ry, (or Z, = A;,). (See the construction of productions in
Step 1.)

Here, the size of each subtree ¢, (1 < u < k) equals to or less than d',
by the inductive hypothesis, there exist B, = (Bu1,-..,8u) € La(Ry,)
(or Lei(Ap,)) such that G, and t, satisfy Property 4.1. That is, for
v(1<v<¥),

Buv does not contain b if gy[tu]= B, (34)
Buv contains b if ¢,[t,] derives no output.
Now, let
a=(a,...,a) = fr,[B1,-- -, 0] € Lor(Ra)
and consider how «; is defined for 1 < i < 4.
o If there is no rule whose left-hand side is ¢;[rs(x1,...,2x)], then

¢i[t] derives no output. In this case, f,[’h] is defined to be b and hence
a; = b, the property holds.
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o If the transducer M has a rule g;[ra(zy, ..., k)] = Wi gy 1)[Tu)]
Wi 2" Win,Qn(in) [ Tuting) Wins+1, then we can write a; as
@ = Wi B )06, Wi2 " Wi BulimnGimg) Wignit1 (35)
by the construction of functions in Step 1. There are two cases:

— For some j (1 < ¢ < n;), @ngijyltui,)] derives no output and
hence g;t] also. In this case, B, jyn(i,j) contains b by (34) and
it follows from (35) that «; also contains b, the property holds.

~ For every j (1 < j < ), qui,j)ltui,)] derives some output.
Since M is deterministic, and by (34), the derived string should
be B, jyn(,;) Which does not contain b.

Gltl = alra(ts,. . te)]
= Wi Gl a0 Wi2 Wi, G ) [Eptimg) | Wi 41
:’f} wz,lﬂy(z,l)?](z,l)wz,2 e wi,""iﬁ“(iyni)n(i7ni)wi)ni+1

= o
and the property holds.

The proof of if part is completed and Property 4.1 has been proved.

i

Lemma 4.1: yL(DFSTS) C PMCFL.

Proof. Let Ly=L(G') N A*. Since pmcfl’s are closed under intersection
with a regular set!'¥), L; is also a pmcfl. We show that yL(M,G) = L.
By Property 4.1 and the productions constructed in Step 3, w € L; if
and only if there is a derivation tree t of G such that

e the root of t is 7,
e the left-hand side of rj is the initial symbol S, and
° ¢ [t]-—:>w

and the lemma holds. B
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4.1.2 PMCFL C yL(DFSTS)

Let G = (Vy,Vr, F, P,S) be a pmcfg with dimension ¢. Without
loss of generality, G is assumed to satisfy the non-erasing condition of
Lemma 2.1. Also suppose that the nonterminating productions of G are
labeled with r,...,7,,, and the terminating productions are labeled with

ry,...,r.. Furthermore, for each nonterminal production r, (1 < h <

s Tne
m), we suppose that the function of the right-hand side of rule 7}, is fj
(the suffix of the function is identical to that of the production), hence
each nonterminal production can be written as 7, : Yy, — falYs,...,
Y] (a(fr) = k,Yo,..., Y € V). We also suppose that each terminating
production can be written as 7, : Yy — fi. A yT-fsts (M, G') such that
yL(M,G") = L(G) is constructed as follows.

First, define a cfg G' = (V4, V), P, S') with V4 2{S' Ry,...,Rn}
and VA={ay,...,a,}. Note that each nonterminal R; (1 < i < m) and
terminal a; (1 < j < n) of cfg G’ correspond to nonterminating produc-
tion and terminating production of pmcfg G, respectively. To construct

productions, RS'(X) C V}; UV} for X € Vy is defined as follows.
RS'(X) = {Ra| the left-hand side of rj, is X}
U {ap | the left-hand side of 7} is X'}.
By using RS’, productions P’ of cfg G’ are defined as follows.

Step A: For each nonterminating production 7 : Yo — fi[Y1, ..., Yk] of
pmcfg G, construct productions

Phzy2, : Bn— 21+ 2y (36)
for Z, € RS'(Y,) (1 <u < k).
Step B: For each Z € RS'(S), construct
Potart 0 S’ — Z. (37)

Note that each element in RS'(S) corresponds to the production of
pmcfg G whose left-hand side is the initial symbol S of G.

Define ZQ{the labels of productions in P'} U Vg, p(#hz,..2,) = k for
Phzy2, : Rn = Z1+++ Zy, plan) = 1 for ap € Vi and p(Fsgart) = 1, then &
is a ranked alphabet.
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Next, we define yT-transducer M = (Q,%, A, g1, R) with ¥ defined
above and A=Vy. Q is defined to be {@1,-..,q} (note that ¢ is the
dimension of G).

The rules in R will be defined to have the following property.

Property 4.2: Thereis & = (ay,...,a;) € Lg(X) and the last produc-
tion applied to obtain & is rp : X — fa[¥1,...,Yx] (resp. 7, : X — f})
if and only if there is a derivation tree ¢t of G' such that the root is
Phzizp @ Rn — Z1-+Zx (Zy € RS'(Y,),1 < u < k) (resp. terminal
symbol a;) and ¢[t]=a; for 1 < < s. (g]t] derives no output for i > s.)

[

Intuitively saying, a derivation tree of cfg G’ represents how to apply
productions to obtain tuple of string. The rules of transducer M are
constructed to “expand” the tree into string. The rules in R are defined
as follows.

Step I: For each nonterminating production 7, : Yo — fa[Y1,...,Y%]
with f; defined as

(65 =1
h [xla ) IL‘k] = Wil Tp(i,1)n(;,1)Wi,2 * * * Win, Lu(in)n(in) Win+1

where Z, = (Zu1,. .., Tuqvy)) (1 < w < k), 1 < p(i,j) < k, and
1 < (3, 5) <d(Yij) (1 <j<ny), define rules

qi[fhzl.uzk (:L‘l, e ,.’Ek)] — (38)

Wi 1n(i,1) [T (s, 1) ] Wis2 *  * Win; Gnins) [Tpa(ins) | Wi 41
where Z, € RS'(Y,) (1 <u < k) and 1 <3 < d(Yp).

Step II: For each terminating production 7}, : Yy — f; with f; defined
as f,’jﬂ = w;, define rules ¢;[ap] — w; for 1 <7 < d(Yp).

Step III: Define
a1 [fsta.rt(x)] - QI[-'L‘] (39)

It is clear that the constructed transducer M is deterministic. A
transducer M and a cfg G’ defined as above have Property 4.2. Following
is its proof.
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(Only if part) It is shown by induction on the number of applications of
(L1) and (L2) to obtain a tuple of strings (ai,...,a,). For the basis,
assume that & = (a1,...,0,) € Lg(X) and it is obtained by one appli-

cation of (L1). Then the applied terminating production is 7}, : X — f
where f; = &. If we take ¢ = a;, then t is a derivation tree of cfg G’ and
the property holds by the construction of rules in Step II.

Next, assume that the property holds for every tuple of strings which
can be obtained by d' or less applications of (L1) and (L2), and consider
the case that a = (a1, ...,a,) € Lg(X) is obtained by d’'+1 applications.
Let

th: X — fu[V1,..., Y] (40)

be the last production applied to obtain & where f) is defined as

;[f] [Z1, .. Bk = Wit Zp( () W2 * Wi, T p(iomsniing Wiy +1 (41)
for 1 < i < d(X). Then, there are §, = (Buts -+ > Puava)) € Le(Ya) (1 <
u < k) such that

a= filB,.--, Bl (42)

Each (3, can be obtained by d’ applications or less, and there is a nontermi-
nating production 74, : Yy — fa,[Yu1,-- ., Yuk,] (or terminal production
Th, : Yu — f3,) which is the last production applied to obtain B.. By the
inductive hypothesis, there are derivation trees t, (1 < u < k) such that

Goltu)=Buo (43)

for 1 < v < d(Y,), and the root of ¢, is 7n,z,,..2,,, * Bhy — Zu1* " Zuk,
(or ap,). Note that R, € RS’(Yy) (or ap, € RS(Y,)) holdsfor 1 < u < k.
Since pmcfg G has a nonterminating production r, (see (40)), cfg G’ has

a production #4z,..z, : Ry — Z; -+ Z; such that

Zy = Ry, if theroot of t, is Fh,z,; 2.4, (44)
Zy = ay, if the root of ¢, is ay,.
Hence if we take t = #4z,..7,(t1,...,t,) then ¢ is a derivation tree of G’

and

Glt] = @lfnzyz(ts, ... )]



= W10, a0 Wiz Wini@ninn) Buing | Wini+1 by (38)
= Wi B amE) Wiz WimeBu(imeym(in) Wimi+1 by (43)
= }[:][Bla cee ’Bk] by (41)

for 1 < i < d(X). That is, ¢[t]>a; (1 < i < d(X)) and the property
holds.
(If part) The only if part is shown by induction on the size of a derivation
tree ¢ of cfg G’. For the basis, consider a derivation tree of size one, that
is, t = a), for some a, € V7, and assume that g¢[t]=o; for 1 < i < s and
it derives no output for 7 > s. Then, there are rules g;[as] — a; (1 <
i < s) and by the construction of rules of M in Step II, pmcfg G has a
terminating production 7, : Yy — f; with d(Y;) = s and f,’l[i] = qo; for
1 <4< s. Hence, (ay,...,a,) € Lg(Yy) and the property holds.
Assume that the property holds for every derivation tree whose size
is d' or less, and consider a derivation tree t = #4z,..7, (t1,. .., tx) of size
d' + 1 such that

Glt] = windyntu Wiz Win @i Bung | Win 1 (45)
:f> wi,lﬂp(i,l)ﬂ(i,l)w’i,i’ e wivniﬂ“(i,ni)n(ivni)wi7ni+1
for 1 <: <

s. Let #4,2,,..2,,, (or as, possibly) be the root of subtree
t, (1 < u < k). To apply the inductive hypothesis to each subtree
t. (1 < u < k), we first investigate the nonterminal on the left-hand
side of r,, which is a corresponding production of pmcfg G. Since t is
a derivation tree of cfg G’ and the left-hand side of #4,z,,..2,, is Rx,
(see 36), there is a production #z,..z, : Ry — Z---Z; such that (44)
holds. By the construction of productions of G’ in Step A, pmcfg G has
a production
Th :YB - fh[Yla---,Yk] (47)

such that Z, € RS'(Y,) holds for 1 < u < k. By the definition of RS’ and
(44), it follows that the left-hand side of 75, (or 7}, ) is V.

Next, consider the rules of transducer M which are used in (45). Ap-
parently, the rules used are defined in Step I, and it follows that the
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function fj in (47) is defined as

f ;{fl [Z1,..., %] = Wi 1Lp(5,1)9(,1)Wi2 ** * Win; Ty(img)n(imn:) Win+1 (48)

for 1 <14 < d(Yp) = s where Z, = (Zu1, ..., Tugv,)) (1 < u < k). Since
pmcfg G satisfies the non-erasing condition, for every u (1 < u < k) and
v (1 < v < d(Y,)), the variable ., appears at least once on the right-
hand side of (48) for some 7 (1 < 7 < s). Hence, g¢,[t,] appears at least
once on the right-hand side of (45) for some ¢ (1 < i < s), and it follows
that @o[tu]= Buy holds for every u (1 < u < k) and v (1 < v < d(Ya,)).
Since the size of t, (1 < u < k) equals to d’ or less, by the inductive
hypothesis,

Bu = (Buts - Budvyy) € La(Ya) (49)
for each u (1 < u < k). (Remind that the root of ¢, is 74,2,,..z
ap, ) and the left-hand side of 73, (or 7}, ) is Y,.) Now, replacing Z’s with
B’s in (48), and by (46),

(or

uky

}[:][Bl, v 7ﬁ_k]
Wi 1 Bu(i (i, 1) Wiz *** Wims Bu(i,man(ions) Wi, +1
= o (50)
for 1 <1 < d(Yy). By (47),(49) and (50), (e, ...,a) € Lg(Ys) and the
property holds. Hence, Property 4.2 has proved. [

Theorem 4.2: yL(DFSTS) = PMCFL.

Proof. In Lemma 4.1, it has been shown that yL(DFSTS) C PMCFL,
and hence it suffices to show that PMCFL C yL(DFSTS). We show that
L(G) = yL(M,G") for M and G’ constructed as above.

If w € Lg(S), then there is a production of pmcfg

Th : S — fh[yl, . Yk] (51)

which is the last production applied to obtain w. By Property 4.2,
there is a derivation tree ¢ of G’ such that the root is #4z,..z, : Ry —
2y Zy (Z, € RS'(Ya),1 < u < k) and ¢y[t]=>w holds. Let t' = fyr(t)
then, since R, € RS’(S), t' is also a derivation tree of cfg G'. Hence,
w € yL(M, G') holds by (39).

In a reverse way, we can prove that if w € yL(M,G’') then w € Lg(S5),
and the theorem holds. [
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4.1.3 Recognition of yL(DFSTS)

In the previous sections, we show that yL(DFSTS) equals to PMCFL.
Since deterministic polynomial time recognition algorithm for PMCFL
has been proposed!’®, it can be concluded that yL(DFSTS) is in P of
computational complexity. This result has been noted in an earlier paper
Ref.[5] as a corollary of its main result, but the running-time required for
recognition was not analyzed.

By combining the recognition algorithm for PMCFL!'%! and the con-
struction procedure described in Section 4.1.1, we obtain an effective
procedure to recognize yL(DFSTS). In the rest of this section, we inves-
tigate the complexity of the recognition of yL(DFSTS). First, we review
results on the recognition of PMCFL. Please refer the definition of degree
of PMCFG in Section 2.1.

Lemma 4.3"%: A pmcfl which is generated by pmcfg with degree e can
be recognized in O(|w|**!)-time where |w| denotes the length of an input.

i

Next we define the degree of a deterministic y7-transducer M =
(Q,%, A,qo,R). Foro € ¥ and 1 € Q, let n,, denote the number of oc-
currences of variables in the right-hand side of a rule whose left-hand side
is g[o(z1, ..., T,)]- If no rule is defined for g[o(z1,...,z,)], then n,, = 0.
Since the yT-transducer is deterministic, ny, can be defined uniquely.
For instance, in Example 2.4, ng, . = 2 and ng,. = 4. Define the degree
of a symbol o € T as |@Q| + D ng,. If the maximum degree among the

symbol in ¥ is e, then M is gzilQled a yT-transducer with degree e. An fsts
with degree e is an fsts of which yT-transducer is with degree e.

The readers can easily verify that a deterministic fsts with degree e is
translated into a pmcfg with degree e by using the construction described
in Section 4.1.1. Hence the following theorem holds.

Theorem 4.4: The yield language generated by an fsts with degree e
can be recognized in O(|w|®*!)-time where |w| denotes the length of an

input. [
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4.2 Monadic FSTS

In previous sections, the class of yield languages generated by deter-
ministic FSTS is shown to be in P. In Ref.[21], it has been shown that
there is an N P-complete language in the class of yield languages gener-
ated by nondeterministic FSTS. In this section, we give an N P-complete
language in a more “restricted” class of languages, yL(NMFSTS;), the
class of yield languages generated by nondeterministic monadic FSTS
with state-bound 2 (this class is denoted as m-fsts, in Figure 2). First, a
language called Unary-3SAT!", which is N"P-complete, is reviewed, and
then it is shown to belong to yL(NMFSTS,).

A Unary-3CNF is a (nonempty) 3CNF in which the subscripts of
variables are represented in unary. A positive literal x; is represented by
1$ in a Unary-3CNF. Similarly, a negative literal —z; is represented by
14t. For example, a 3CNF

(z1 VoV oz3) A (23 V oy V nzs)

is represented by
181181114 A 111814114

in a Unary-3CNF. Unary-3SAT is the set of all satisfiable Unary-3CNF’s.
Clearly, Unary-3SAT is N"P-complete.

A nondeterministic monadic y7T-fsts (M,G) with state-bound 2
which generates Unary-3SAT is defined as follows. First, define a cfg
G = (Vy,Vr, P,S) where Vy = {S,T, F}, Vr = {e} and the productions
in P are as follows:

rss : S— S Tre T — e
rsy ¢ S—T rer ¢ F o T
rsgp ¢ S— F rpp ¢ F — F
rpp - T — T ree . F — e
rep 1T — F.

Note that G is a regular grammar, and hence this fsts is monadic. Let «
be a derivation tree of G. Then » has a following form;

uéw(“m(u’))) )

m-—1
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where
U = 10 (Tpgps (+* (Tpae(€)) -+ )
and p; € {T,F} for 1 < i < n. The outer m (m > 1) symbols of u are
the rules whose left-hand side is S, and the next n symbols are the rules
whose left-hand side is T" or F.
Next, a yT-transducer M = (@, ¥, A, o, R) is constructed to trans-
duce u into a Unary-3CNF F such that

e F has m clauses,
e there are at most n distinct variables z;,...,2, in F, and

o the value of F becomes true if values are assigned to the variables
as

o = TRUE ifp;isT
"7 | FALSE ifp;is F

Let Q - {qO)qc,qtaqa}a E = {7'557- . 7TFeae} and A = {17/\)$a#} Since

there are many rules in R, we will use an abbreviated notation. For

(1<i<n) (52)

example, the following four rules

qa['rTe(m')] - 1$) qa[TTe(m)] - 1#
qa[rFe(I)] - 1$7 qa['rFe(-'B)] - 1#

are abbreviated as “qu[rre(z)] = qu[rre(z)] — 18 or 1#”. By using this
notation, define R as following rules (R1) through (R9):

(R1) go[rss(e)] = gelz] A gole].

(RZ) qc[TSS(m)] - qc[x]
By the rules (R1) and (R2), M transduces go[u] into

gc[rspl (u’)] ARRRNA QC[‘TSIM (ul)] N qO[TSm (ul)] . (53)

m

As we explain later, each g.[- - -] and go[- - -] derives one clause. Hence
m clauses will be derived from go[u].

(R3)  golrsr(2)] = polrsr(z)] = gelrsr(z)] = ge[rsr(e)] —
9:(z]ga[2]ge(2] or go[z]qi[]ga[z] OF ga[2]ga[e]q:[2]-
By these rules, each g.[rsp, (u')] (go[rsp, (u')]) in (53) derives one of
¢:[w']4alv']ga[t], galu')@s[w]galw] or galu']ga[w]g.[u].



-83-

(R4) qi(rrr(z)] = @lrrr(z)] — 1g:(z] or 18.

(R5) qfrre(z)] — 18.
(R8) q[rrr(z)] = qilrrr(z)] — 1g:lz] or 1.

(R7) qi[rre(z)] — 14
Suppose that a derivation from g,[u'] has been proceeded and the
current configuration is g;[rp,p,, (- - -)]. Now, transducer M has two
choices (see rules (R4) and (R6));
e generate 1 and continue a translation of subtree, or
e generate 18 if p; is T, 1# if p; is F and complete a translation.
If M completes a translation and p; is T (resp. F'), then ¢,[u/] has

derived 1'$ (resp. 1'#). Note that this is a literal z; (resp. Z;)
which becomes “true” under the assignment (52).

(R8)  gulrrr(2)] = qalrrr(2)] = qalrer(2)] = qulrrr(e)] —
1g,]z] or 18 or 1#.

(R9) gu[r7e(T)] = qa[rre(z)] — 18 or 1#.

These are similar to the rules (R4) through (R7); g,[¢'] derives some
literal but it is not guaranteed to become “true”.

Now, the readers can easily verify that this fsts has a state-bound 2, and
that this fsts can derive an arbitrary satisfiable Unary-3CNF.

Theorem 4.5: Unary-3SAT is in yL(NMFSTS,). 0
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5 Conclusions

Computational complexities of the universal recognition problems
have been investigated in this dissertation. It has been shown that the
problems for PMCFG, NEPMCFG, m-PMCFG (m > 1), and PMCFG.,
(e > 3) are EXP-POLY time-complete, PSPACE-complete, N"P-complete,
and P-complete, respectively. Complexities of the problems for MCFG
and its subclasses are almost identical to that for PMCFG, except that
NP-completeness holds for m-MCFG with m > 2 (see Figure 2). Based
on these theoretical results, characteristics and relations among these
subclasses are discussed. Furthermore, the relation between language ac-
quisition and universal recognition is discussed in some detail. The vari-
ation of complexities of the universal recognition problems confirms our
intuitive understanding, from theoretical aspects, that there is a trade-off
relation between the generative power of grammars and the difficulty of
acquisition of languages. Though the universal recognition problems are
intractable for most subclasses of PMCFG, it is tractable for the class of
pmcfg’s (mcfg’s) with bounded degree. It can be concluded that the class
of pmcfg’s (mcfg’s) with bounded degree satisfies properties (i) through
(iii) introduced in the introduction. Thereby, it is a favorable model to
describe the syntax of natural languages. There may be other gram-
matical, or mathematical computational models of which generative (or
computational) power equal to PMCFG. In fact, in the latter half of this
dissertation, FSTS is shown to have the same generative power as PM-
CFG. Clarifying complexities of universal recognition problems for these
models, and comparing the results to that for PMCFG will bring fruitful
implications from both of theoretical and practical viewpoints.

In the latter half of the dissertation, the generative power of FSTS
and its subclasses are investigated. It is an interesting result that de-
terministic FSTS and PMCFG, which were proposed from quite different
viewpoints and developed independently, have the same generative power.
Remark that we can define hierarchies in the class of languages generated
by PMCFG (and hence deterministic FSTS) via dimension of PMCFG,
and via state-bound of deterministic FSTS. It is interesting to clarify
the relation between these two hierarchy. As for nondeterministic FSTS,
it has been shown that there is a nondeterministic monadic fsts with
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state-bound 2 which generates an A'P-complete language. Among the
natural subclasses of nondeterministic FSTS, nondeterministic monadic
FSTS with state-bound 2 is quite a small one. The fact that there is
an N'P-complete language in the class of yield languages generated by
nondeterministic monadic FSTS with state-bound 2 implies that nonde-
terminism brings an essential computational power in FSTS. It is notable
that the relation between the class P and the class of yield languages
generated by monadic FSTS with state-bound 1 remains unclear. Hence
it will be interesting subject to clarify the relation among P, the class of
languages generated by PMCFG, and that of monadic FSTS with state-
bound 1.
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