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ABSTRACT 

The present thesis is concerned with estimation and learning 

techniques in pattern recognition, and consists of 8 chapters 

including an introductory chapter (Chapter 1) and a concluding chapter 

(Chapter 8). Chapter 2 presents a supervised learning procedure for 

constructing a piecewise linear discriminant function which is com­

posed of local minimum number of linear discriminant functions. 

Chapter 3 deals with the problem of nonsupervised signal detection. 

It is shown that an adaptive signal detector converging to the optimal 

machine can be designed without knowing the probability of signal 

occurrence. Chapter 4 treats the problem of self-learning of a 

finite mixture. An effective decomposition algorithm of a finite 

mixture, called WDDM, is presented along with its convergence proof. 

In the following three chapters, non supervised algorithms are con­

sidered in terms of nonparametric learning. In Chapter 5, the two­

category problem is discussed, while Chapters 6 and 7 deal with the 

multi-category problem. In Chapter 5, a linear discriminant function 

is obtained, and it is shown to be effective even when the a priori 

probability of each category is unknown. In chapter 6, an algorithm 

for estimating one of the modes of a multidimensional probability 

density function is proposed by using hyper-cubic window function. 

Chapter 7 treats the problem of cluster detection. An efficient 

cluster detection algorithm is obtained by introducing hierarchical 

structure into data set. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL BACKGROUND 

Pattern recognition is one of the most important problems in the 

area of artificial intelligence. Since the advent of the digital 

computer, a constant effort has been made to design pattern recogni­

tion machines. Mathematically, pattern recognition is a classifica­

tion problem, and a number of problems can be formulated as those of 

pattern classification. In signal detection, for example, the problem 

is to classify observed waveforms into one of the two classes, contain­

ing signal and not; in character reading of uppercase alphabet, the 

observed characters are classified into one of 26 classes. Although 

there exist various approaches to the problem of classifier design, 

the common and major goal is to have a low probability of misclassifi­

cation. 

A pattern recognition machine can be divided into two parts, a 

feature extractor and a classifier, as shown in Fig. 1.1. There is 

no general theory of feature extraction because the extraction usually 

depends on the pattern structure of the particular problem under con­

sideration. On the other hand, the problem of classifier design has 

the mathematical aspects common to all pattern recognition problems, 

so that the mathematical theory of classifier design has been developed 

very extensively. 

Suppose that we intend to design a pattern classifier. If the 

probability distributions of the different categories are known, the 
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statistical theory of classification may be used to design a classifier. 

Such a classifier is optimal in terms of probability of misc1assifi­

cation. In practice, however, we rarely have this kind of complete 

knowledge about the probability structure of the patterns. Usually, 

we only have some vague, general knowledge about the situation, together 

with a number of samples - particular representatives of the patterns 

we want to classify. The problem, then, is to find some way of design­

ing the classifier by using the sample patterns and the a priori knowl­

edge. The process of acquisition of necessary knowledge for design 

from the samples is usually called 'learning'. 

In the present thesis, the learning theory of classifier design 

is studied, and several learning algorithms for designing classifiers 

are proposed. Learning algorithms are generally divided into four 

groups according to the information available during the learning 

period (See Fig. 1.2). In order to clarify the purpose of this thesis 

we give in the following a brief survey of the learning theory in 

pattern recognition. 

1.2 BRIEF SURVEY OF THE LEARNING THEORY 

The problem of supervised parametric learning (Bayesian learning 

[9],[10],[38]) is completely solved in statistics. 

The problem of supervised nonparametric learning was originated 

by Rosenblatt's perceptron [70]. Since then, there have been proposed 

many training algorithms for designing linear discriminant functions 

(LDF's) called error-correction procedures [62]. However, these 

algorithms do not converge on nonseparable problems. There is another 

type of algorithms based on stochastic approximation method [95]. The 
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performance of this type of algorithms is preferable to the error­

correction procedures. 

The stochastic approximation method was originally proposed by 

Robbins and Monro [69] in 1951. Since then, a number of contributions 

to this problem have been made by many authors [5],[17],[18],[24],[39], 

[40],[88]. The method of stochastic approximation is now an efficient 

tool in the area of learning theory [13],[74]. 

Nonsupervised parametric learning began to be studied in the early 

1960's. Until 1970, signal detection [11],[12],[65],[75],[76],[83], 

[97], which is a special case of the two-category problem, had been 

discussed instead of the multi-category problem. However, since 

Yakowitz [94] pointed out that the multi-category problem was equivalent 

to the problem of identification of a finite mixture, nonsupervised 

parametric learning has been considered as a theory of decomposition of 

a finite mixture. Although many algorithms have been proposed [32],[36], 

[68],[79],[96], such an algorithm that can be easily executed independ­

ently of the dimensionality of the distributions has not been found yet. 

The problem of nonsupervised non parametric learning is further 

divided into two groups. One does not store sample patterns, and the 

other does. The former problem is considerably difficult to solve 

because of a complete lack of knowledge of the patterns. Therefore, 

only two-category problem has been studied [6],[81]. The latter 

problem is well-known as cluster analysis [3],[4],[23],[34],[41],[98]. 

Although the problem has been considered for many years, satisfactory 

results have not been known yet. 

4 



1.3 ORGANIZATION OF THIS THESIS 

This thesis is organized as listed in Table 1.1. In Chapter 2, 

the problem of designing piecewise linear discriminant functions (PLDF's) 

is discussed based on a new algorithm for obtaining one of the optimal 

solutions of linear inequalities. The new algorithm has advantages 

over the computational time and the storage size. Our PLDF is con­

structed rather fast and is composed of local minimum number of LDF's, 

so that the proposed algorithm can be an effective solution to the 

problem. In Chapter 3, considered is the signal detection problem, 

which has not been yet solved satisfactorily in spite of its popularity 

in nonsupervised learning. Two adaptive detectors converging to the 

optimal machine are obtained without knowing the probability of signal 

occurrence. In Chapter 4, decomposition of a finite mixture is treated. 

By extending DDM (decision-directed-machine) a decomposition algorithm 

of a finite mixture is proposed, which is called WDDM (weighted­

decision-directed method). Whereas previous algorithms are rather 

complex and fail to decompose a multidimensional finite mixture, WDDM 

has a simple structure and can be easily executed independently of 

the dimensionality of the distribution under study. 

The following three chapters deal with the problem of non super­

vised nonparametric learning. In Chapter 5, a design algorithm of 

an LDF is discussed by using the first principal component. An ef­

ficient threshold value is obtained by estimating the unique minimum 

point of probability density function, so that our LDF works well even 

when the a priori probability of each category is unknown. In Chapter 6, 

a mode estimation algorithm of an unknown multidimensional probability 

5 
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Table 1.1 Organization of the present thesis. 

Chapter 2 ?upervised nonpara~etric learning 

(piecewise linear discriminant) 
function 

Chapter 3 Nonsupervised parametric learning 

(two-category problem) 

Chapter 4 Nonsupervised parametric learning 

(multi-category problem) 

Chapter 5 Nonsupervised nonparametric learning 

(two-category problem) 

Chapter 6 Nonsupervised nonparametric learning 

(multi-category problem) 

Chapter 7 Nonsupervised nonparametric learning 

(cluster analysis) 



density function is proposed by employing a new hyper-cubic window 

function. This algorithm makes it possible to design a discriminant 

function for multi-category problem without memorizing patterns. An 

application of the mode estimation algorithm to nonsupervised nonpara­

metric signal detection is studied and its effectiveness is demon­

strated. In Chapter 7, an efficient cluster detection algorithm is 

presented. In the algorithm, by associating potential with each point, 

which is an excellent measure of point density, hierarchical structure 

is introduced into data set. This operation makes it possible to give 

the algorithm a high ability to detect clusters. Furthermore, it is 

shown that our algorithm has a flexible structure, that is, it can 

detect only the specific types of clusters satisfying users' require­

ments by adjusting parameters appropriately. 

All the proposed learning algorithms are verified by computer 

simulation, and some results are presented at the end of every chapter. 
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CHAPTER 2 

PIECEWISE LINEAR DISCRIMINANT FUNCTIONS 

2.1 INTRODUCTION 

The purpose of learning classification problems is to construct 

appropriate discriminant functions by estimating the statistical 

structure of pattern distribution based on given sample patterns. 

Since the advent of Rosenblatt's perceptron, a number of researches 

as to supervised learning have been made. Although excellent results 

about linear discriminant functions (LDF's) are obtained, many problems 

are left unsolved concerning nonlinear discriminant functions (NLDF's). 

It is one of the merits of LDF's that the learning algorithms are very 

simple and easy to execute. However, their performance is rather poor, 

since they assume the pattern set to be linearly separable in spite of 

the fact that most real world patterns are not linearly separable. 

On the other hand, NLDF's have a great ability to realize any type of 

decision surfaces, so that the performance is very good. Unfortunately, 

however, general design algorithms of NLDF's are not established yet. 

We know another type of discriminant functions called piecewise 

linear discriminant function (PLDF). PLDF's are composed of a finite 

number of LDF's, and they can approximate arbitrary decision surfaces 

in spite of their simple structure. Therefore, PLDF's can be useful 

classifiers provided an efficient training algorithm is available. 

For this reason, we focus our attention on PLDF in this chapter. 
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In order to improve the performance of perceptron type algorithms 

in the case where training patterns are not linearly separable, 

various modifications by memorizing the patterns have been proposed [26], 

[29],[61],[82],[90],[92]. It is well-known that the problem of con-

structing an LDF is reduced to that of solving a set of linear inequa1-

ities when all the training patterns are memorized. Linear separability 

and nonlinear separability of the training patterns correspond to the 

* consistency and inconsistency of the linear inequalities, respectively. 

Therefore, it is sufficient for constructing a reasonable LDF to obtain 

such a solution of the linear inequalities that maximizes the number 

of the satisfied inequalities. In this chapter, we consider the 

problem of obtaining an optimal solution which locally maximizes the 

number of the satisfied inequalities. 

A number of algorithms for solving linear inequalities have been 

discussed in the last decade. Ibaraki and Muroga [29] and Warmack and 

Gonzalez [90] have proposed algorithms for obtaining the optimal solu-

tions. However, their algorithms take a rather long computational 

time and need the extra-storage requirem.ents. Many results have also 

been reported as to design algorithms of PLDF's [7],[8],[25],[42]. 

However, all the proposed algorithms construct rather redundant PLDF's. 

In the next section the author proposes an algorithm for obtaining 

one of the optimal solutions of a set of linear inequalities. It has 

advantages over the computational time and the storage. In section 2.3, 

* A set of linear inequalities is said to be consistent when it has 

a solution and said to be inconsistent when it does not have any 

solution. 
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a PLDF is constructed by connecting LDF's in a tree structure, where 

each LDF is determined by the algorithm mentioned above. If the 

training pattern set is linearly separable, our PLDF is composed of 

* one LDF. Otherwise, it is composed of local minimum number of LDF's, 

since every LDF is determined according to the optimal solution of the 

linear inequalities. In section 2.4, a learning algorithm for design-

ing a PLDF without memorizing patterns is considered based on an LDF 

with a window. Finally, some results of computer simulation of our 

algorithms are shown in section 2.5. 

2.2 LINEAR INEQUALITIES 

Our algorithm proposed in this section is based on the idea that 

if the training patterns are linearly separable, then an arbitrary 

** weight vector can reach the solution.region without going out any 

correct region of pattern which it entered before, otherwise, there 

exists at least one correct region of pattern such that the weight 

vector cannot reach without going out a certain correct region of 

pattern. 

Now, let us define a matrix ~ as 

where x. are d-dimensional patterns, and M and N - M are total numbers 
1 

* This is not global minimum, so that more LDF's than the LDF's of 

the global minimum number may be needed when bad initial values are 

used. 

** All the discussions in this chapter are made in the weight space. 

10 



of patterns of categories 1 and 2, respectively. Then, a set of linear 

inequalities can be written as 

~W > o. (2.1) 

where W denotes the weight vector. 

We here consider the following subproblem instead of solving (2.1) 

directly: 

Subpltob£.e.m Z. 1 : Given the following k linear inequalities and 

one of the solutions WO: ~W > O. Suppose that a new linear inequality 

T 
xk+lW > 0 is added to XkW > O. If ~+lW > 0 has some solutions, then 

find one of them. Otherwise, let Wo be the solution of Xk+lW > O. 

Assume that there exists an algorithm for solving the above sub-

problem, and we call it Algorithm 2.0. Then, one of the optimal 

solutions can be found as follows: 

Aeg a fl-Uhm z. 1 : 

Step 1: Set n = 0, and choose Wo arbitrarily. 

I T I T Step 2: Xt = {xi xiWO > 0 } and Xf = {xi xiWO 
s; 0 }. 

Step 3: If X
f 

is empty, then terminate. Otherwise, go to Step 4. 

Step 4: Choose a pattern arbitrarily, say x
j

' from Xf' 

T Step 5: If x.W > 0, then X = X U {x.} and go to Step 9. 
J n t t J 

Otherwise, go to Step 6. 

Step 6: n=n+1. 

Step 7 : Call Algorithm 2.0 and store the solution in W • n 

Step 8: IfW = W l' then go to Step 9. Otherwise, n n-

Xt Xt U {x. } and go to Step 9. 
J 

Step 9: Xf Xf {x. } 
J 

and go to Step 3. 
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One can see that the problem of finding one of the optimal 

solutions of (2.1) is reduced to that of constructing Algorithm 2.0. 

Note that Subproblem 2.1 can be reformulated as follows: 

subpJtoblem 2.2: Find W# such that 

max 
W 

where Wo is one of the solutions of ~W > 0 and i (1 ~ i ~ k) is 

arbitrarily fixed. If ~+lW# > 0, then W = w#. Otherwise, W = wOo 

Of course, Subproblems 2.1 and 2.2 are equivalent to each other, 

so that we can obtain Algorithm 2.0 by solving Subproblem 2.2 instead 

of Subproblem 2.1 as follows: 

* 

Algotc.Uhm 2.0: 

# T 
Step 1: m = 1 and W = WO' and store xi in the first row of the 

Step 

Step 

Step 

Step 

matrix Xi· mn 

- XT. (X . XT. ) + X * 2: y = (I . )xk+l . m1.n m1.n m1.n m1.n 

3: Ify 0, then go to Step 8. Otherwise, go to 

4: x . m1.n = arg[ min <s(x)] where <s(x) = xTW#/lxTYI 

and X 
Y 

x e: Xy 

{xl xTy < O} A {xl' x2'···, xk}· 

5: W# = W# + <S(x i )y. 
mn 

Step 6: m = m + 1. 

Step 4. 

T Step 7: Store x. in the m-th row of the matrix X . , and m1.n m1.n 

go to Step 2. 

Step 8: Zj-l = xj. 
m1.n 

·T . 
(X]. x.)xi/1Ix.112 where 2 < j < m and ZJ m1.n 1. 1. 

+ A denotes the Moore-Penrose pseudoinverse of matrix A [2] and 

I denotes identity matrix. 
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denotes the j-th row vector of the matrix Z. 

Otherwise, go to Step 10. 

Step 10: Delete the row vector corresponding to the maximal 

element of (ZZT) +Z (xk+1 - (x~+lxi)x/11 xiii 2) from the 

matrix Xi' mn 

Step 11: m = m - 17 and go to Step 2. 

Step 12: If x~+lW# ~ 0, then W = Wo and terminate. Otherwise, 

W = W# + a(w - W#)/2 and terminate, where o 
T # I If I a = xk+1W / xk+1 (WO - W ) • 

Before proceeding to the proof of the convergence of Algorithm 2.0, 

a lemma is presented. 

Lemma 2.1: (Farkas) Let A and ~ be an mxn matrix and an m-dimen-

siona1 vector, respectively, and let ~ and n be n-dimensional vectors. 

Then, a necessary and sufficient condition of ~Tn ~ 0 for any ~ such 

that A~ ~ 0 is that n can be written as n = ATs where ~ ~ O. 

P4oo6: See [48]. 

Now, we have the following theorem: 

Theo4e.m 2.1: Algorithm 2.0 can find one of the solutions of the 

equivalent Subproblems 2.1 and 2.2 in a finite number of steps. 

P4oo6: Algorithm 2.0 is based on gradient projection method [48]. 

From the theory of generalized inverse matrix [2] it is well-known 

+ that A s gives the least squares error solution of the minimum norm 

of A~ = ~, and that 

13 



A+ = AT(AAT)+ 

A = AA+A. 

+ * One can easily see that I - A A is the projection matrix on N(A) from 

= At. At. 

o. 

Therefore, the vector y defined in Step 2 is the orthogonal projection 

of x
k

+
l 

on the intersection of all the patterns contained in Xmin . 

It is seen from the above discussion that moving W in the direction y 

can increase x~+lW without going out the subspace M defined as 

M 

Next, we examine the termination conditions. II W corresponds to 

one of the vertexes of the convex set M when y = O. Therefore, if 

y = 0, then WII is tested whether it is a solution or not in Steps 8 

and 9, since our solution must be one of the vertexes of M. In order 

to employ the Farkas' lemma we here show the correspondence between 

our notations and those used in the lemma: 

z A 

* N(A) denotes the null space of the matrix A. 

14 



n 

(2.2) 

Considering that y = 0, one can see from (2.2) that s is the solution 

of 

(2.3) 

T 
where n is the orthogonal projection of xk+l on the hyperplane xiW O. 

Therefore, if s ~ 0, then from the lemma we have 

11 for an arbitrary vector W - W such that 

In other words, it is impossible to increase X~+lW by moving w1I 
in 

any interior direction of the convex set M. Hence, the weight vector 

w1I is a solution when s ~ 0. 

We next examine the case where s $ 0, say sl > 0, for some i. 

From (2.3) we have 

n = 
d . 
L s .ZJ • 

j=l J 
(2.4) 

where zj denotes the j-th row vector of the matrix Z. From sl > 0 

since x~+lW can be 

zl increase. In this 

11 and (2.4), W turns out to be not a solution, 

increased by moving W1I in the direction where 

case, therefore, the searching process can be continued by deleting 

the pattern corresponding to zl. 

15 



Note that the convex set M is contained in the hyperplane 

T T 
xiW = xiW

O
• This hyperplane intersects all other hyperplanes, but 

x~W = 0, supporting the convex cone composed of XkW ~ 0, since the 

T 
hyperplane x.W = ° is one of the supporting hyperplanes of the convex 

1 

cone. Therefore, it is sufficient for our purpose to seek for a 

T T solution on the hyperplane xiW = xiWO• Hence, considering the operation 

in Step 12, Algorithm 2.0 can find a solution of Subproblems 2.1 and 

2.2 with a finite number of steps. !Q.E.V.J 

We also have a theorem about Algorithm 2.1. 

Theo~em 2.2: Algorithm 2.1 finds one of the optimal solutions of 

the set of linear inequalities (2.1) with a finite number of steps. 

P~oo6: Proof is omitted, since it is obvious from Theorem 2.1 

and the procedures of Algorithm 2.1. !Q.E.V.J 

2.3 PIECEWISE LINEAR DISCRIMINANT FUNCTION 

There are two approaches to the problem of constructing PLDF's. 

One [8] is based on the adjustment of a set of LDF's whose number and 

functional form are determined beforehand. The other [7],[25],[47] 

employs the method of generating LDF's sequentially. In this chapter 

the latter approach is taken, that is, we construct a PLDF by connec-

ting LDF's in a tree structure, where each LDF is determined one by 

one according to the optimal solution of the linear inequalities. 

First, the training patterns are divided into two groups by an 

LDF obtained by Algorithm 2.1. Next, each of the two subgroups is 

again divided into two groups by Algorithm 2.1. This process is con-

tinued until all the subgroups of the training patterns consist of 

patterns of just one category. An example of a PLDF constructed in 

16 
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the above manner is shown in Fig. 2.1. 

Let us investigate the characteristics of an optimal solution of 

linear inequalities. When the set of linear inequalities is consistent, 

that is, when the training patterns are linearly separable, it is obvious 

that an optimal solution linearly separates the patterns. Note that 

Algorithm 2.1 is a procedure for finding a weight vector maximizing 

the number of correctly classified patterns under the constraint that 

the weight vector must not go out of the correct regions of the 

patterns which were correctly classified by the weight vector. In 

Fig. 2.2 (a) and (b), the optimal solutions WI and W2 are obtained·by 

1 2 
using the initial vectors Wo and WO' respectively. These examples 

demonstrate that an optimal solution of linear inequalities corres-

ponds to a locally optimal LDF, and this fact shows the effectiveness 

of Algorithm 2.1 in constructing a PLDF. We here note, however, that 

the above correspondence does not always hold. For example, in 

Fig. 2.2 (b) no desirable solution is obtained when l.J
3 is used as an o 

initial vector. 

From the above discussion, it is seen that our algorithm can 

design a PLDF with the global minimum number of LDF's as shown in 

Fig. 2.3 in the case where appropriate initial weight vectors are 

available. Even if such weight vectors are not available, a PLDF with 

a local minimum number of LDF's is obtained, since every LDF is deter-

mined so as to locally maximize the number of patterns classified 

correctly. 

2.4 LINEAR DISCRIMINANT FUNCTION WITH A WINDOW 

All the algorithms we have discussed thus far are based on the 

analyses of the stored training patterns. In this section, we consider 



(a) 

A 

A B 

(b) 

Fig. 2.1 Piece~se linear discriminant fUnction 

~ith a tree structure. 
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Fig. 2.2 Two-dimensional patterns and optimal solutions. 

A B 

Fig. 2.3 Piecewise linear discriminant function. 
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the problem of constructing a PLDF without memorizing patterns. In 

order to do this a new learning algorithm of an LDF with a window 

(WLDF) is proposed, which corresponds to that for obtaining an optimal 

solution of a set of linear inequalities discussed in the previous 

section. 

It is well-known that the so-called error-correction procedure 

cannot find any reasonable solution in the linearly nonseparable case. 

What we need for design of a PLDF is the locally optimal LDF's such 

as W
l 

and W2 shown in Fig. 2.2. Therefore, 'local learning' seems to 

be more useful than 'global learning' like the error-correction learning 

algorithm. The fact that wl and w2 in Fig. 2.2 correctly discriminate 

the patterns near them suggest the necessity of 'local learning'. 

Now the author proposes the learning algorithm of WLDF. 

AlgolLUhm 2.2: 

where 

W

k 
= I Wk_l - ( 1 + a ) °kdkxk 

Wk_l 

Wk = wk/llwk" 

dk 
T 

= xkWk_l 

l: 
if Idkl ::s Dk and I (~-l 

ok = 

otherw:Lse 

if dk < 0 and xk E CA 
or dk > 0 and xk E CB 

otherwise 

- xk)TWk_ll ::s Lk 

Dk = 
(3 

D/Yk' Lk = 
(3 

L/Yk' o < a, (3 < 1 



CA and CB denote the pattern categories A and B, 

respectively. 

WLDF is literally an LDF having a window-like region perpendicular 

to its hyperplane. The adjustment of the weight vector is made only 

when a pattern is observed within the window. Let us take the patterns 

in Fig. 2.4 as examples. The patterns of the category A consist of 

two clusters, and all the patterns of the right cluster are misclassi-

T fied by the LDF x W
k 

= 8k • However, these misclassified patterns are 

neglected, since they are outside the window. In this case it is 

21 

T clear that the LDF x W
k 

8
k 

converges to such an LDF that discriminates 

between the left cluster of the category A and the category B. 

As is seen from the above algorithm, the window is made smaller 

when a pattern is observed within it. This reduction operation enables 

us to obtain a reasonable LDF even when the training patterns are not 

linearly separable. The learning process is terminated when training 

patterns within the window become linearly separable. After obtaining 

an LDF, its window is removed. Then, a PLDF is constructed in the 

same way as in Section 2.3. Thus, a PLDF can be obtained without 

memorizing patterns. 

2.5 COMPUTER EXPERIMENTS 

Computer simulation of our algorithms was made, and reasonable 

PLDF's were obtained in every case. It took 12.7 seconds and 2.9 

seconds to construct a PLDF composed of 3 LDF's to 72 two-dimensional 
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(a) 

Fig. 2.4 Linear discriminant function with a window. 



patterns by Algorithm 2.1 and Algorithm 2.2, respectively. Furthermore., 

the precise experiments showed that the required learning iterations 

2 
for Algorithm 2.1 and Algorithm 2.2 were in proportion to Nand N, 

respectively. 

2.6 CONCLUSION 

In this chapter we have discussed nonparametric algorithms for 

constructing a PLDF. Our PLDF has been obtained by connecting LDF's 

in a tree structure, where each LDF is determined by solving linear 

inequalities. We have proposed an algorithm for finding one of the 

optimal solutions of a set of linear inequalities using gradient 

projection method. This algorithm can find it in a finite number of 

2 
steps in proportion to N. Furthermore, a design algorithm of a PLDF 

without memorizing training patterns has also been proposed by emp1oy-

ing a learning algorithm of an LDF with a window. Although the 

required steps for this algorithm is in proportion to N, much of its 

performance has been left unknown: 

The algorithms proposed in this chapter seem to be rather com-

p1icated. This is because the training patterns of interest are not 

simple, that is, each category is composed of a nong1obu1ar cluster 

or many clusters. In these cases, our design algorithms of a PLDF 

come to be useful, since the performance of an LDF is unacceptably 

poor. 

Our PLDF has been constructed with the aid of a teacher. In the 

succeeding chapters, we shall deal with the nonsupervised problems. 
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CHAPTER 3 

AN APPROACH TO NONSUPERVISED LEARNING CLASSIFICATION 

-- THO-CATEGORY PROBLEH --

3.1 INTRODUCTION 

In nonsupervised learning for two-category problems, the decision­

directed type of algorithm has been frequently used, because it can 

provide a means of nonsupervised adaptation without complexity associ­

ated with other nonsupervisedlearning techniques. Scudder [75],[76] 

and Tanaka [83] have discussed the learning algorithms for binary 

detection of unknown signal versus null signal embedded in Gaussian 

noise, and shown that though asymptotically biased, the estimate of 

unknown signal converges. Patrick and Costello [65] have extended the 

scheme for detection of two unknown signals. In their systems, however, 

the a priori probability of signal occurrence is assumed to be known. 

Davisson and Schwartz [12] have discussed the behavior of the 

decision-directed algorithm in the case where the a priori probability 

is unknown. They obtained the estimate of the probability of signal 

occurrence using its relative frequency. Furthermore, the prob-

ability of a runaway (the estimate converges to 1 or 0) is analyzed, 

and it is shown that if the signa1-to-noise ratio is below a critical 

value, the probability of a runaway is equal to 1. 

Young and Cora1uppi [96] have discussed a simple self-learning 

algorithm for decomposing a Gaussian mixture. The algorithm is derived 

from an information criterion by using stochastic approximation. In 



their method, however, one of the local maxima is sought instead of 

the global maximum of the criterion function. Therefore, there is 

positive probability of not converging to the correct value. 

This chapter discusses a class of nonsupervised pattern classi­

fiers. The classifiers show an asymptotically optimal behavior without 

knowing the a priori probability of the occurrence of each category. 

The most related work is that of Chien and Fu [10]. They discussed 

the scheme of obtaining the moments of the mixture distribution using 

stochastic approximation and applied to the pattern classification 

problem similar to that treated here. In their method, however, the 

input patterns are assumed to be one-dimensional, while the classi­

fiers discussed here can be used for multi-dimensional patterns and 

the classification algorithm can be easily executed. In our method, 

25 

the mean vector and covariance matrix of the mixture distribution are 

estimated by using the law of large numbers. The estimate of the prob­

ability of each category's occurrence is calculated by using the above 

estimates of the mean vector and covariance matrix, and is shown to be 

consistent. Using the consistent estimate of the probability obtained 

in the above manner, we have the estimates of the mean vector and co­

variance matrix of each category, which are also proved to be consistent. 

The discriminant function is then constructed by using the consistent 

estimates of all unkown statistics of input patterns. 

The analytical result of the learning process shows that the 

classifiers converge probabilistically to the Bayes' minimum error 

classifier, which is also verified by some computer experiments. 



3.2 DESCRIPTION OF THE PROBLEM 

Consider the problem of classifying the Gaussian patterns with 

common covariance matrix into two categories. Let Xt = 6t S + Nt be the 

t-th pattern, where S is the unknown mean vector of category C1 , Nt is 

the t-th random sample from a Gaussian distribution with mean vector 0 

and covariance matrix ~, and 6
t 

is a binary variable such that 6t = 1 

indicates the occurrence of C1 and 6
t 

= 0 the occurrence of CO. 

According to unknown parameters of input patterns, the following 

two cases arise. 

1) In Case 1, both mean vector S and the probability of category C 's 
1 

occurrence P are unknown, but covariance matrix ~ is known. 

2) In Case 2, both probability P and covariance matrix ~ are unknown, 

but the mean vector's power W is known. 

If statistics P, S and ~ are given, classification of patterns 

is performed based on the Bayes' rule as follows: 

Cl ' if A > 0 

decide: X £ (3.1) 

where 

(3.2) 

3.3 NONSUPERVISED LEAEU~ING ALGORITHMS 

Let vt be the frequency of occurrence of the category Cl during 

the learning period up to time t (v < t). Then, from the definition 
t -

the following relations are obtained: 
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Vt t-v 
- t 1 X(l) 1 

t 
X(O) l r p s --=:Jft -- +-- ) 

tk tk 
vt vt k=l vt k=l t -+ ex> 

(3.3) 
vt p p 

t t + ex> 

where 

and X(l) and X(O) are the input pattern vectors of the categories C
1 

and CO' respectively. 
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We here assume that the input pattern X is a sample from the mixture 

distribution with mean vector S and covariance matrix A. That is, 
m 

A 

Note that 

= lim 
t+ex> 

where W is the mean vector's power and tr (A) is the trace of the 

matrix A. 

Now we state the following lemmata. 

Lemma. 3. 1 : 

t - Vt T 
MM t t· 

(3.4) 

(3.5) 

(3.6) 



Then, 
p 

o (3.7) 

where 0 is an nXn zero matrix. 

Pnoo6: See Appendix 3.1. 

(3.8) 

Then, 
p 

o. (3.9) 

From (3.5) the proof is trivial. 

Now let us consider the learning algorithms for obtaining the 

probability of Cl's occurrence. 

Case 1: 

Theonem 3.1: Define a value v
t 

by 

= min Itr Ut(k) I 
l~k~t 

and also define a vector St and a probability P
t 

by 

(3.10) 

* It is important to calculate the estimate of v
t

' However, it 

takes a comparatively long ti~e to calculate vt defined here. In the 

actual calculation, v~ defined in Appendix 3.2 is much easier to 

obtain and can be used instead of vt ' See Appendix 3.2. 
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St 
t =-M 

vt t 

-
i\ Vt 

=-
t 

Then, we have 

p ·s ) S 
t t + 00 

p 

. i\ ) P. 
t +00 

Pnoon: From (3.10) 

Itr Ut(Vt )I ~ Itr Ut(Vt )I . 

From Lemma 3.1 
p 

Itr Ut(vt ) I o. 
t + 00 

Then we have 

= t rUt ( V t) + ( 1 - \) t ) t r (.-!. M MT) vt Vt t t 

Using (3.14) and (3.15), and considering that 

we have 

tr (_t_ M MT) ? tr MtMT
t Vt t t 

p 

t + 00 

p2w (>0), 

1. 
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(3.11) 

(3.12) 

(3.13) 

(3.14) 

p 
o. 

t + 00 

(3.15) 

(3.16) 



Therefore, the following relations are obtained: 

p 

t -+00 

p 

t -+ 00 

which prove the theorem. 

Case 2: 

The.OJl.eJrI 3. Z: Define a value v
t 

by 

min IVt(k) I 
l~k~t 

S 

P 

-and also define a probability Pt , vector St' and matrix Lt by 

Pt 
\It 

St 
t Mt 

=-
t \It 

-
1 t 

_ M )T 
t - \I T 

, Et L ( ~ - Mt ) ( ~ 
t 

= MtMt • 
t - 1 k=l 

- t \It 

Then the following relations are obtained: 

r 

- p 
Pt P 

t -+00 

P I 
! St S 

I 
t -+ 00 

l - p 
Lt L. 

t -+ 00 

* See Appendix 3.2. 
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(Q.E.D.) 

(3.17) * 

(3.18) 



PIl.OO 6 : From (3.17) 

Then, from Lemma 3.2 we have 

and hence 

p 
1. 

Therefore, we obtain 

p 

t -+ 00 

p 

t t -+ 00 

By using Lemma 3.1 we have 

These results prove the theorem. 

p 
o 

s 

P. 

t - v 
___ t M MT 

V
t 

t t 

p 
l:. 
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(3.19) 

(3.20) 

(3.21) 

(Q.E.V. ) 



We have shown the method of obtaining consistent estimates, St 

and Pt by (3.10) and (3.11) in Case 1, and St' Pt , and f t by (3.17) 

and (3.18) in Case 2. If these estimates are used in the optimal 

decision rule (3.1) instead of the true statistics S, P, and L, we 

obtain the following' decision rule: 

if \ > 0 

decide: x (3.22) 

otherwise 

where 

for Case 1 

for Case 2. 

One can easily see that this decision rule converges probabilistically 

to the Bayes' optimal decision rule after a sufficient large number 

of iterations, since St(or St)' pt(or Pt ), and It converge probabili­

stically to the mean vector S, probability of Cl's occurrence P, and 

covariance matrix L, respectively. 

3.4 COMPUTER EXPERIMENTS 

Some results of a computer study on the classifiers are presented 

below. In the experiment, 20-dimensional normal patterns are classi-

fied into two categories Cl and CO' where P = 0.5 and L = 0 21. The 

signal-to-noise ratio is defined by SiN 

mean vector S is a random sample from a normal distribution with mean 

vector 0 and covariance matrix 0 21. 
s 
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The learning processes of v~ and v~ are shown in Figs. 3.1 and 

3.2, respectively. The performance of the classifiers is shown in 

Fig. 3.3 as the probability of error versus times. ~rom Fig. 3.3 it 

is seen that the learning procedures in Case 2 takes less time than 

that in Case 1, though the probability of error in both Cases 1 and 2 

converges to the minimum error probability which is indicated by 

arrows in the figure. This arises from the fact that the term l/(t-l) 

Lk(Xk-Mt ) (Xk-Mt)T in Ut(Vt ) causes some error in estimating v~, 

especially when the signal-to-noise ratio is comparatively low, while 

in estimating v~, only the term tr(t/Vt)2MtM~ is used. However, the 

method proposed here compare favorably with the decision-directed 

method as shown in Fig. 3.4. 

3.5 CONCLUSION 

33 

In this chapter, a new type of nonsupervised adaptive pattern 

classifiers has been discussed. The main mechanism of the classifiers is 

based on estimation of the probability of each category's occurrence 

under the assumption that the input patterns are of a mixture distribu­

tion. Utilizing this mechanism, the consistent estimates of unknown 

statistics of the input patterns were obtained, and then discriminant 

functions were constructed. It has been shown that the machines with 

these discriminant functions converge to the Bayes' minimum error 

classifier. In order to verify their learning processes, some com-

puter experiments have been made and satisfactory results have been 

obtained. 

This chapter has dealt with signal detection problem as a special 

case of the two-category problem. In the next chapter, we shall 

discuss the multi-category problem. 
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APPENDIX 3.1 PROOF OF Lemma 3.1 

From the definition of a mixture, we obtain 

S = -_P- f X exp [ -1/2 ( X - S ) T l: -1 ( X - S )] dX 
m 127fl: 11/2 

= PS 

A = P f ( X - S )( X _ S )T 
127fl:11I2 m m 

T -1 'exp[ -1/2 ( X - S ) l: (X - S )]dX 

(3.23) 

(3.24) 

Substituting (3.3), (3.4), and (3.23) into (3.24), we obtain the proof. 
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-APPENDIX 3.2 ACTUAL CALCULATION OF v
t 

AND v t 

It has been pointed ,out that tr U (k) (1 ~ k ~ t) is a monotone t . 

increasing function with respect to k for arbitrarily fixed t, and 

that vt ' the estimate of vt ' must satisfy the following relation in 

order to get the optimal performance: 

p 
1. 

We now define a positive integer v~ in Case 1 by 

ifk ? v' 
t 

otherwise. 

Note that V~ is calculated more easily than V
t

. We show that V~ 

defined above can be used instead of V
t

. From the monotony of tr Ut(k) , 

we have 

and hence, 

v 
t 

-, 
v t - 1, 

-, 
v , otherwise . t 

1. 

Therefore, the mean vector of the category C
1

, S~ estimated and the 
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probability of C
1 ' s occurrence, P~ calculated by using v~ converge 

probabi1istica11y to Sand P, respectively as follows: 

-, t ..!..M 
vt p 

St =;-M -, S 
v t t t Vt Vt t -+ 00 

-, -, p -, Vt v t vt 
P. P

t 
--

t t vt t -+ 00 

-, This result guarantees that v
t 

can be used instead of v
t 

in our 

algorithms. 

-, We also define a positive integer v
t 

in Case 2 by 

~ 0, 

Vt(k) 

" < 0, otherwise. 

- , In the same manner as in Case 1, it can be shown that v
t 

can be used 

instead of v
t

. 
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CHAPTER 4 

A PARAMETRIC LEARNING METHOD HITHOUT A TEACHER - HDDM 

- MULTI-CATEGORY PROBLEM-

4.1 INTRODUCTION 

Self-learning of a finite mixture belongs to nonsupervised para­

metric learning and is one of the most significant problems in pattern 

recognition. Recently, some self-learning algorithms are reported, 

which are divided into two groups. Algorithms of one group are based 

on the empirical cumulative distribution function (ecdf) constructed 

beforehand [36],[79], and those of the other group employ stochastic 

approximation method without using ecdf [32],[36]. The former algo­

rithms need the extra-storage requirements for obtaining ecdf, so that 

it is rather difficult to execute them in multidimensional cases. On 

the other hand, the latter algorithms are superior to the former ones 

in point of economical use of storage. However, they are also difficult 

to execute in mutidimensional cases, because the integral over variable 

domain is included in them. 

In this chapter a nonsupervised learning algorithm called WDDM 

(weighted-decision-directed method) is proposed. This algorithm is 

applicable to all the identifiable distributions having the second 

moment and is easy to execute even in multidimensional cases. Although 

WDDM may be considered as an extended version of DUM (decision-directed 

machine) [75],[76], it differs from DDM in the way of processing input 

patterns. DDM performs self-learninp, by using its own decision on the 



category which the k-th pattern xk belongs to. On the other hand, WODM 

performs self-learning by not deciding on xk's category but regarding 

it as belonging to every category with the weight p(cil xk ' Xk- l ), 

i il where c , Xk and p(c xk ' Xk- l ) denote the category i, the sequence 

of k patterns, and the conditional probabilities of xk belonging to c
i 

given Xk- l , respectively. 

The convergence theorem of WDDM is proved by showing the fact 

that every sequence of learning parameters is a bounded martingale. 

Some computer simulation of the learning processes of HDDM is made in 

the problems of decomposition of 4 and IO-dimensional normal mixtures 

and of detecting a signal embedded in IO-dimensional Gaussian noise. 

The results of the computer experiments are shown in Section 4.5, where 

the influence of initial estimates on the performance of WDDM are also 

considered along with its modification. 

4.2 DESCRIPTION OF THE PROBLEM 

i i 
Let N, P , and e be the number of categories, the a priori prob-

abilities of the categories c i , and unknwon parameters of c i , respec-

tively. Then, a finite mixture F(x) can be written as 

N 
F(x) I pif(xle i ) 

i=l 

where f(xle
i

) are density functions of x with parameters e i . Now, 

suppose that unlabeled samples from F(x) are given successively. and 

functional form of f(xle i ) and N#, the upper bound of the number of 

the categories are known. Under these circumstances the problem of 

decomposition of a finite mixture can be stated as follows: 
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Pnoblem: Estimate all the unknown parameters of F(x) without 

memorizing any sample pattern. 

We here consider an algorithm for estimating all the unknown para­

meters of a given finite mixture in the case where they are the a priori 

probabilities pi, the mean vectors wi, and the covariance matrices ~i 

of all categories. 

Agrawa1a [1] has proposed a nonsupervised parametric learning 

algorithm by introducing a probabilistic teacher based on Bayesian 

learning theory, where the distribution of interest is assumed to 

have the reproducing property. In Bayesian learning, the estimation 

of the unknown parameter 8 is performed by obtaining a posteriori 

density of 8 given the pattern sequence X
k 

under the assumption that 

the unknown parameter 8 is with the a priori density p(8). Therefore, 

the conditional density of the pattern x
k
+1 given Xk must be calculated 

as 

where ~ denotes the domain of 8. 

On the other hand, there is another way of estimation, stochastic 

approximation for example, that obtains the k-th estimate of e, 8
k

, 

without assuming the density function of e. In this type of algorithms, 

8k is determined directly when Xk is given as p(ei X
k

) is determined 

in Bayesian learning. Therefore, the conditional density of x
k
+

l 
given 

Xk is obtained as 
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The purpose of this chapter is to consider a self-learning algorithm 

applicable to the distributions including the ones without the repro-

ducing property. Hence, we employ stochastic approximation type of 

method instead of Bayesian learning. 

4.3 WDDM 

Before showing the learning algorithm of WDDM, we present an 

example of DDM type of algorithm for estimating the a priori probabi1i-

t · pi hid h . . "i f 1es , t e mean vectors ~ , an t e covar1ance matr1ces ~ 0 cate-

gories i 
c • 

i 
i i Dk+1 i 

~k+1 ~k + . (xk+1- ~k) 
Kf+l 

i 
i 

L:
i Dk+l 

L: k+1 
+ k 

~+l- 1 

i 
. ( Kk+1 

(xk+1- ~~)(Xk+1- i)T 
~ -

r1+l- 1 k 

where the superscripts i indicate the categories ci (i 

and 

1, 

0, otherwise 

(4.1) 

(4.2) 

L: i) 
k (4.3) 

:# 
1, 2, ••• , N;') 

42 



i 
Kk+l = 

k+l 
L Di 

t=l t 

It xt's label (category) decided by the 

machine itself. 

It is clear from the law of large numbers that all the parameters 

defined in (4.1)-(4.3) converge to the correct values with probability 

one if all the assignments of input patterns to the categories are 

correct. In practice, however, the above parameters are known not to 

converge to the correct values because of an infinite number of false 

assignments. 

Now, we present lIDDM in the following: 

i pi + 1 
( p(c

i I Xk) - P~) (4.4) Pk+l = xk+l ' k k + 1 

i i 
p(cil xk+l ' Xk) i 

llk+l = llk + ( xk+l - llk ) (4.5) 

~ 

i 
L:

i 
+ 

p(cil xk+l ' Xk) 
L: k+l = k Ki 

k 

i i)T L:
i ) (4.6) . « xk+ 1 - II k ) ( xk+ 1 - llk - k 
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~ Ki + 
K 

where I p(cil Xt ' xt - l ) 0 t=l 

If 
Xo ~, i = 1, 2, ... , N' . 

From (4.4)-(4.6) it is seen that WDDM is applicable to all the identi-

fiable distributions with finite mean vectors and covariance matrices, 

and that it is easily carried out independent of the dimensionality. 

Furthermore, the above algorithms show that the main difference between 

WDDM and DDM lies in that learning mechanism of DDM is based on its 

own decisions on the observed patterns' categories, while WDDM does 

not make any decisions but regards the k-th pattern x
k 

as belonging to 

every category with the weight p(cil xk ' Xk-l). The following discus­

sion will reveal the fact that this difference is essential. In the 

next section, we shall show that the parameters defined in (4.4)-(4.6) 

are bounded martingales with respect to the pattern sequence X
k

. In 

Section 4.5, some results of computer simulation of the learning 

processes of WDDM are presented. 

4.4 CONVERGENCE OF THE ALGORITHM 

We here present the convergence theorem of wnDM. 

TheoJtem 4. 1 : i i "i The sequences Pk , ~k' and ~k defined in (4.4)-(4.6) 

are bounded martingales in element-wise with respect to X
k

. 

PJtoofi : From (4.4) 

E[lp!+ll] E[I p! 
1 ( p(cil i 

I ] + xk+l ' Xk)-Pk ) 
k + 1 

1 k 
p(cil E[ I L xj +l ' Xj)l] ~ 1. 

k + 1 j=O. 
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By similar manipulation, we have 

where (.) and (.) denote the m-th entry of the vector and the mn-th m mn 

entry of the matrix, respectively. 

We next show the sequences to be martingales. 

= E[ pi + 
k 

i 
= 

1 Pk + 
k + 1 

( Ix 
P(xk+l , c

i
! Xk) 

P(xk+l ! Xk)dxk+l - p~) 
P(xk+l!Xk) 

pi + 1 ( p(c i ! Xk) Ix P(xk+l ! 
i i 

k c , Xk)dxk+l - Pk ) 
k + 1 

where we used the relation 

* See the footnote on the next page. 
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i J:- Ix ( 
i P(xk+l , cilx

k
) 

P(xk+llxk)dxk+l = ].lk + Xk+l 
-].l ) 

r<k k P (xk+ll xk) 

i 
p(cilx

k
) 

I x (xk+l - ].l~) p (xk+ll 
i 

Xk)dxk+l = ].lk + c , 

~ 

* p(cilxk) denot: the conditional pr~babilities of the occurrence 

of the categories c
1 

given Xk ' and p (c
1

1 xk+l ' Xk) denote t~e con­

ditional probabilities of xk+l belonging to the categories c
1 

given 

Xk • In other words, the difference between these two notations is 

that the former denote a priori probabilities, while the latter denote 

a posteriori probabilities with respect to x
k

+
l

• 
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P(X
k
+

l
, cilXk ) 

P(xk+IIXk) 

(Q. E. V. J 

From the above theorem and convergence of bounded martingales, 

p~, ~~, and L~ converge with probability one. However, whether or not 

their limiting values agree with those of the unknown parameters still 

remains unknown. 

4.5 COMPUTER SIMULATION 

In order to verify the effectiveness of WDDM we made computer 

simulation of its learning processes. Some results are presented below. 
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4.5.1 DECOMPOSITION OF A MULTIDIMENSIONAL NORHAL MIXTURE 

In computer study, a 3-category normal mixture 

3 
F(x) L pi'N(xl~i, Li) 

i=l 

was used. Fig. 4.1 (a) depicts the learning processes of lIDDM in 

decomposing a 10-dimensiona1 mixture with the following parameters: 

0.2 'P_2=03 . 

1 
~ 

T (2,2, ... ,2) 

3 T 
~ = (-2,-2, ..• ,-2) 

2 
~ 

0.5 

T (0,0, ... ,0) 

Li I (i=1,2,3). 

Initial values of the estimators are as follows: 

P~ = 1/3, 

T (3,3, ... ,3) 

3 T Po (-1,-1, ... ,-1). 

(i=1,2,3) 

T (1,1, ... ,1) 

An example of the estimated value of the covariance matrix is 

r 1.04 0.02 0.03 0.03 0.f)1 0.06 -0.00 -0.05 0.04 
0.97 0.03 0.01 0.01 0.02 0.07 -0.01 -0.01 

! 
0.93 0.01 -O.f)O 0.07 0.03 0.02 -0.03 

2 1.01 0.01 -0.02 0.01 -0.01 0.00 

L10000 0.97 0.00 -0.03 0.01 -0.01 
0.97 0.01 -0.02 -0.01 

1.01 -1).01 0.02 

* r).99 0.03 
1.01 

f).02 
-0.02 
-0.05 

0.04 
0.02 
1).01 
0.01 
0.04 
0.01 
0.98 
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Fig. 4.1 (b) depicts another result of the simulation of the same problem 

as (a) using different random samples. These results show that decom-

position of 3-category mixture is performed successfully. Moreover, 

it is seen from both figures that the estimation of mean vectors 

proceeds in the desirable direction even when the estimate of a priori 

probability is decreasing. This is one of the remarkable features of 

WDDM. Fig. 4.1 (c) depicts the result under the following conditions: 

P2 = 0 5 . 

1 T 
~ = (2,2,2,2) 

0.251 

2 
~ 

o 

T 
(0,0,0,0) 

where 4-dimensiona1 distribution was used. Initial estimates are 

pI p2 p3 1/3 1 T 
~o = (3,3,3,3) 

0 0 0 

2 T 3 T 
~o (1,1,1,1) 110 = (-1,-1,-1,-1) 

2: i 
0 

31 (i=1,2,3). 

The estimates of the covariance matrices at k 10000 are 

1 = [0.2*4 
2:10000 

-0.03 -0.03 
0.24 -0.03 

0.22 

-0.02 ] 
-0.04 
-0.03 

0.24 

1 = [(). 2*5 
2:10000 

0.03 -0.01 
0.24 0.01 

0.23 

0.02] 0.03 
0.02 
0.25 
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3 = [0.24* 
E10000 

0.00 -0.00 _0.00] 
0.24 -0.01 -0.00 

0.24 0.01 
0.24 

At the first glance this result appears to be wrong, that is, the 

given 2-category mixture seems to be decomposed into 3 categories. 

However, the detailed results 1 2 
of P10000 + P10000 = 0.504, 

1 . 2 d E1 . 
~10000 ~ ~10000' an 10000 ~ 

2 
E10000 show the success on the decom-

position of the 2-category mixture. 

4.5.2 SIGNAL DETECTION 

We also made computer simulation of the learning processes of 

WDDM in nonsupervised detection of a signal embedded in 10-dimensiona1 

Gaussian noise where the signal vector, the probability of signal 

occurrence, and the covariance matrix of noise were unknown. The 

results are shown in Fig. 4.2. The probabilities of error of a signal 

detector constructed by WDDM are depicted against learning iterations. 

From Fig. 4.2 it is seen that the probabilities of error of the signal 

detector converge to those of the optimal machine in all SN-ratios 13, 

9, 6, and 3dB. Parameters used in the simulation are as follows: 

P = 0.3 

0.5 

T 
~ = (2,2, .•• ,2) 

T = (-0.9,-1.4,-0.4,-0.9,0.6,-0.8,-1.6,-1.2,0.6,-0.8). 
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Examples of the estimates of the signal vector and the covariance 

matrix at k = 5000 are 

T 
~5000 = (2.08, 2.02, 2.00, 2.11, 1.98, 2.18, 1.89, 2.03, 2.26, 1.86) 

"'1 
9.72 0.50 -0.12 0.07 -0.01 0.10 -0.07 0.29 0.08 0.46 ; 

I 

10.05 -0.46 -0.19 -0.51 0.09 -0.36 0.29 -0.04 0.13 

I 9.70 -0.04 -0.14 -0.11 0.06 -0.14 0.04 0.44 
9.31 -0.12 -0.17 0.04 -0.44 -0.00 0.35 I ~5000 = 9.40 0.11 0.13 0.10 0.36 -0.04 

10.22 0.02 0.06 0.10 0.05 

I 9.33 0.13 0.14 -0.15 

* 9.60 -0.04 -0.55 I 
I 9.52 0.07 
J 9.49 

where SiN = 6dB. We here refer to the experimental result that the 

performance of DDM was very poor in both cases of decomposition of a 

finite mixture and signal detection. 

4.5.3 INITIAL ESTIMATES PROBLEM 

In the simulation of signal detection, various initial estimates 

• of signal were used, and satisfactory results were obtained in every 

case. Especially, the signal vector (2,2, ••. ,2)T was estimated suc-

T cessfu11y even when ~O = (-0.5,-0.5, ... ,-0.5) . These results show 

that nonsupervised signal detection by WDDM without the knowledge of 

the signal vector, the probability of signal occurrence, and the 

covariance matrix of noise is made successfully almost independent of 

initial estimates of these parameters. 

In the case of decomposition of a finite mixture, however, it 

may happen that the performance of WDDM is influenced by initial 

estimates particularly by those of mean vectors. This is of course 
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undesirable, though it is common to all nonsupervised learning algo-

rithms based on minimization of certain criterion functions. 

In order to investigate the influence of initial estimates of 

mean vectors on the performance of WDDM, computer experiments were 

made. In the experiments, a 2-category and 2-dimensional normal 

mixture with parameters 

PI = p2 = 0 5 . 

was used. Initial estimates were 

pi = 1/3-o 

2 ].l T (-1, -1) 

IE 
(i=1,2,3) (N"= 3, N = 2). 

Uniform random numbers in (-2, 2) were used as the initial estimates 

].l~ to give the results objectivity, and 97 successful results were 

obtained out of 100 sets of initial estimates. In three cases where 

WDDM failed in decomposing the mixture, great differences of the values 

of pi arose at about n = 100. Considering these results, the following 
n 

modification of our algorithm was made. That is, estimation of the 

a priori probabilities pi is not performed until n = 100, and the other 

parameters are estimated as usual by using the fixed a priori prob­

abilities p! = P~. Then, after n = 100 the full scale estimation of 

11 . f db· i i d ~i . . . 1 a parameters 1S per orme y uS1ng PO' ].lIDO' an ~100 as 1n1t1a 

56 

estimates. This modified algorithm succeeded on decomposing the mixture 

in all the cases of the above 100 initial estimates. Fig. 4.3 shows 



• 

(a) 

(b) 

• 

o 

• 

true values 

initial values 
i 

\1100 

i Fig. 4.3 Learning processes of mean values (loci of \1 ). 
n 
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i the learning processes of ~n of the modified algorithm using the ini-

tial estimates far from the true values, where the a priori probabil-

ities and the covariance matrices are unknown. In the figure, the 

marks. 0, and ~ designate the true values, the initial estimates, and , 
the estimates at n = 100 of the mean vectors, respectively. All the 

results obtained above show that WDDM is an effective self-learning 

algorithm which is easy to execute independent of the dimensionality. 

4.6 CONCLUSION 

In this chapter, a nonsupervised parametric learning algorithm 

has been proposed which is called WDDM (weighted-decision-directed 

method). WDDM is an extended version of DD11, and it performs self-

learning by regarding the k-th input pattern xk as belonging to all 

categories with the weights p(cil xk ' X
k

- l ). Convergence of the 

algorithm was proved by employing convergence property of bounded 

martingales. In order to verify the efficiency of l~DM, computer 

simulation of the learning processes of the algorithm was made in 

decomposing multidimensional normal mixtures and in detecting a signal 

embedded in Gaussian noise, and satisfactory results were obtained. 

We have discussed nonsupervised parametric learning in this 

chapter. The last three chapters will treat nonsupervised nonpara-

metric learning. 
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CHAPTER 5 

NONPARAMETRIC LEARNING WITHOUT A TEACHER 

- TWO-CATEGORY PROBLEM -

5.1 INTRODUCTION 

The problem of constructing nonsupervised nonparametric learning 

algorithms is rather difficult, since no a priori knowledge of pattern 

distribution is available. Most algorithms reported previously were 

based on analyses of stored sample patterns, so that they were rather 

complicated and comparatively difficult to execute. In this chapter 

we consider a nonsupervised nonparametric algorithm for designing a 

linear discriminant function (LDF) by limiting the discussion to 2-

category problem, where no sample pattern is stored. 

59 

D. B. Cooper and P. W. Cooper [11] and Shimura and Imai [81] have 

discussed the first principal component in the problem of constructing 

an LDF WTX = e without knowing the a priori probability of each category. 

As pointed out in the above literatures, the first principal component 

of pattern distribution can be used as the weight vector H. In our 

system an algorithm due to Krasurina [42] for estimatinp, the first 

principal component is employed and its simpler convergence proof is 

presented. In order to obtain a reasonable LDF, the threshold value e 

must be determined appropriately. Now assume that we have a set of 

one-dimensional patterns with the probability density shown in Fig. 5.1. 

Considering that we intend to design a nonparametric algorithm, it is 

reasonable to set the threshold value e at the minimum point of the 



2 
.L pif(xlc i ) 
, =1 

x 

8 

Fig. 5.1 Threshold value 8 . 

. Fig. 5.2 A reasonable linear discriminant function 
for two-dimensional distribution. 
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mixture density. Therefore, the problem of determination of the thresh-

old value is reduced to that of estimating a minimum point of a density 

function. 

Generally speaking, stochastic approximation method is useful for 

the estimation problem of an extremum point of an unknown function. 

Unfortunately, it cannot be applied to the problem concerning prob­

ability density function (pdf). Recently, Hassel and Sklansky [91] 

have proposed Window Training Procedure (~ITP), which makes it possible 

to treat the est~mation problem as to pdf. However, WTP is an algo-

rithm for estimating a unique intersection of two unknown pdf's with 

supervision. In this chapter, the author proposes a nonsupervised 

algorithm for estimating a unique maximum point of an unknown pdf by 

extending WTP. 

In the case of multidimensional distribution, the mixture pdf 

does not have any minimum point but has a saddle point when the pdf of 

each category is unimodal. From Fig. 5.2 it is seen that the neck 

between the two clusters corresponds to a saddle point of the mixture 

pdf and that the threshold value 8 should be so determined that the 

T LDF W X = 8 pass through the neck. In order to do this, the saddle 

point must be estimated, but it is difficult to detect directly. 

We here note that a minimum point of the one-dimensional pdf produced 

by projecting the pattern space on to the first principal component W 

corresponds to the neck of interest. Then our estimation algorithm can 

be used for obtaining the threshold value 8. 

From the above discussion one can see that some assumptions are 

needed to obtain a reasonable LDF. That is, we assume that the patterns 

of each category are well clustered and with unimodal pdf. These 



assumptions are usually met, though they impose some restrictions on 

pattern distribution. In this chapter, all considerations are made 

under the above assumptions. 

5.2 LEARNING OF THE WEIGHT VECTOR W 

Let E be the covariance matrix of the mixture distribution of 

input patterns, and let ~ and W be the largest eigenvalue and the 

first principal component (the eigenvector corresponding to ~) of the 

distribution, respectively. Then, we have 

T max n En 
IInll =1 

(5.1) 

By using this property the following theorem about estimation algorithm 

of W is obtained: 

The.oJz.e.m 5.1: Assume that the following conditions are satisfied: 

00 00 

I a = 00 

n=l n ~ 
n=l 

< 00 

E[E ] = E n E [II E I j2] < 00. 
n 

Then, for an arbitrary vector vI ( to), Wn defined as 

r Vn+l 

VT E V 
V + a ( E V n n n V ) = n n n n VTV n 

I n n 
! (5.2) 

W 
Vn+l = . n+l 

Ilvn+lll L 
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converges to the eigenvector corresponding to AM (the first principal 

component) of L with probability one. 

P~oo6: Considering that 

we have 

Let define v as 
n 

Then, we have 

00 

00 

• 

E[Vn+llvn ] = E[ IT (1 + a~E("L."2])IIV +1" 2 Iv ] 
i=n+l 1 1 n n 

00 

= v . 
n 

From the assumptions we also have 

00 

Therefore, we obtain 

00 

(5.3) 

(5.4) 

(5.5) 
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From (5.4) and (5.5) and E[vn ] ~ 0, the sequence {v
n

} turns 

out to be a semi-martingale. Hence, we have [15] 

p[ lim Ilv 112 = y ] 
n+ 00 n 

By a simple manipulation, we have 

Considering that (5.1) is equivalent to 

we obtain 

We also obtain from (5.6) 

and hence, 

We here note that 

< 00 , 

1, for some y. 

with probability one. 
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(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 



? l'lv + 2 
1 

By using (5.8), (5.10), and (5.11) and La. = 00, we have 
1 

vT 
2: V 

00 00 

\1 - = 0 
VTV 

00 00 

or 

(WTV )2 = 0 
00 

(5.11) 

(5.12) 

(5.13) 

with probability one. However, from (5.9) E[(WTV )2] is monotone 
n 

non-decreasing, so that the probability that (5.12) holds is one. 

Hence, from the definition we obtain 

P[ lim W = W ] = 1. 
n 

n+ oo 

This proves the theorem. 

(5.14) 

(Q.E.V. ) 

Thus, a learning algorithm for estimating the weight vector W of 

the LDF WTX = 8 has been obtained. In the following sections, a 

learning algorithm for the threshold value 8 is discussed. 

5.3 ESTIMATION OF A MAXIMUM POINT OF PDF 

As is discussed in Section 5.1, it is necessary to estimate a 

minimum point of the pdf of input patterns in order to obtain a reason-

able threshold value. We now present an algorithm for estimating 

a maximum point of pdf. 

Let us define T
n
+l as follows: 
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Tn+1 = T + a Z n n n 

where T1 is arbitrarily determined and 

Z = .!2/rr 
n 

x - T 
-=.:n,--_n_ exp [ - ( x 

n 
b 

n 

(5.15) 

(5.16) 

In (5.16), Z gives some information about the gradient of the pdf of 
n 

the input patterns, and then hill-climbing method is used. As to the 

above algorithm the following theorem is obtained: 

The.M.e.m 5.2: Assume that the following restriction conditions are 

satisfied: 

2) 

3) 

4) 

5) 

lim a = lim b = a 
n+ oo n n+ oo n 

00 

I a b2 = 00 

n=l n n 

00 

I a 2b < 00 

n=l n n 

x is the n-th random sample vector from an unknown 
n 

one-dimensional pdf p(x). 

6) The derivative of p(x) is continuous and bounded 

at every point. 

7) p(x) takes its unique maximum at x = / (It"l < (0). 
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Then, T defined in (5.15) converges to t# with probability one. 
n 

That is, 

P[ lim (5.17) 
n-+ OO 

Pnoo6: See Appendix 5.1. 

5.4 LEARNING OF THE THRESHOLD VALUE e AND LDF 

Let Y, Y , and W be a random vector with the pdf p(Y), the n-th 
n 

random sample vector from p(Y), and the maximal eigenvector, respec-

tiveLy. Then, an LDF is wriiten as WTy = e, where e is the minimum 

T point of the pdf p(W Y). In the rest of this chapter, it is assumed 

that the expected value of WTy lies between the two maximum points of 

T p(W y). Fig. 5.3 shows an example of such pdf, where G and cr are the 

mean and the standard deviation of p(WTy), respectively, MO and M2 are 

T 1 T both maximum points of pO-I Y), and M is the minimum point of p (W y) . 

We have already obtained an algorithm for estimating a maximum point 

of one-dimensional pdf in the last section. By changing the sign of 

the gradient estimator Z , an algorithm for estimating a minimum point n . 

of an unknown pdf is obtained as follows: 

T 
n 

a Z 
n n 

(5.18) 

It is seen from Fig. 5.3 that (5.18) needs a certain modification 

in order to estimate the minimum point H1, since Tn diverges with 

positive probability when the initial estimate TO is not between MO 

and M2. To avoid this difficulty the minimum point M1 is sought in 

the interval (MO, M2) and the initial estimate TO is set at G. 
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Fig. 5.3 Locations of several parameters. 



Let Ti be the estimates of Mi (i=O,I,2). We now have the following 
n 

design algorithm of an LDF: 

= + 1 (Y _ ~ ) 
~n ~n-l n n-l n 

l: = l: + ~( ~(Y - ~ ) ( Y 
n n-l n-l n-l n n n 

W = 
n 

V 
n 

. TI i m' 
TI =1 m l Gn#+m' 

T 
G = tv ~ n n n 

V
T 

l: V 
n-l n-l n-l 

VT V n-l n-l 

T 1/2 
a = (W l: ) n n n 

otherwise 

if TO < TI < T2 
m m m 

otherwise 

otherwise 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 
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(5.27) 

T 
x = W ~tJ.-.y I~-,--. m n .f .m n" .m 

(5.28) 

Then, the LDF is defined as 

r- WTy G 1 ~ n ~ 
If n n n 

(5.29) 

T Tl (m 0) , If 
W * .y = ~ n ~ n . 
n+m m 

Learning up to the n#-th step is for getting initial estimates of 

After the time n#, the estimation of the minimum point is performed 

by using these initial estimates. As is described above, Tl is restric­
m 

. . 021 
ted in the interval (T , T ), so that T converges with probability one 

m m m 

to Ml which is the unique minimum point in (MO, M2). The LDF obtained 

in (5.29) works well even if the a priori probability of each category 

is unknown, since the threshold value e is so determined that the 

hyperplane of the LDF pass through the minimum point of p(WTy) cor-

responding to the neck between the two pattern distributions. 

5.5 COMPUTER EXPERIMENTS 

In the computer study, 20-dimensional normal distribution 
2 
\' iii i L P N(x ~ , L ) was used, where 

i=l 

PI = ° 7 . 0.3 

1 T 
~ = (2,2, ••• ,2) 2 T 

~ = (0,0, ••• ,0). 



Fig. 5.4 shows the learning processes of W , and Fig. 5.5 shows the 
n 

probabilities of error of the LDF. Our algorithm was performed in the 

case 

a = b = 2.5 

a = 0.5 B = 0.25 

n# = 100 k = 1.5. 

In Fig. 5.5, arrows indicate the probabilities of error of the optimal 

machine. From this figure one can see that the probabilities of error 

of our LDF converge to those of the optimal machine in all SN-ratios. 

5.6 CONCLUSION 

We have discussed a nonparametric learning algorithm for designing 

an LDF without supervision. An algorithm for estimating the eigen-

vector corresponding to the largest eigenvalue was presented along 

with its simple convergence prrof in Theorem 5.1. Also, we obtained 

an algorithm for estimating a maximum point of an unknown one-dimen-

siona1 pdf and its convergence proof in Theorem 5.2. By using these 

algorithms, a design algorithm of an LDF which works well even if the 

a priori probabilities are unknown has been obtained. The effective-

ness of our algorithms were verified by computer experiments. 

This chapter has been concerned with the 2-catesory problem. 

Next chapter will deal with the multi-category problem by extending 

the mode estimation algorithm discussed here. 
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APPENDIX 5.1 PROOF OF Theonem 5.2 

pnoo6: First, we consider the gradient estimator Z • 
n 

From 

~ E[ ZiT = t ] = 
2b2 n n 

00 

f~ 
_00 ili 

x - t exp [ _ (x - t ) 2 ] P (x)dx 
b 3 2b2 

n n n 

00 

= f 1 
_00 ili b 

exp [ .,.. (x - t ) 2] P I (x) d~ 
2b2 

n n 

we have 

p ( t, b ) _1_ E[ Z I T = t ] -n n 2b 2 n n n -+ 00 

p' (t) 

n 

tt~ tt.~ 
n n -+ 00 

where t# is the zero point of p ( t, b ), that is, n n n 

o. 

Let 0 2 be the variance of Z , then 
Zn n 

0 2 ~ E[ Z2] 
Zn n 

00 

( x - Tn) 2 [ ___ ::.-... exp 
b2 

(x - T )2 __ --::n:.....] p(x)dx 
b 2 

2 f 
_00 1T 

n n 

(5.30) 

(5.31) 

(5.32) 

(5.33) 
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and 

where 

=E [_2_ 
Tn IiTb 

n 

:$ ~ M b 
liT n 

From (5.30) 

where 

0 2 /b $. ~ 
Zn n I nf 

sup 1 p(x) 1 ~ M < 00. 

x 

IE[ ZiT ]1 < M' 
n n 

sup 1 p' (x) 1 S M' < 00. 

x 

(5.34) 

(5.35) 

Furthermore, from (5.31) and (5.32) and the constraints 6) and 7), 

we have 

_1_ E[ Z 1 T ] > 0 
b2 n n 

n 
3N1

, Vn > N1 ~ 

~ E[ Z 1 T ] < 0 
b2 n n 

n 

Now, we rewrite (5.15) as 

= T + ~ + a E[ ZiT ] n n n n n 

_co < T 
n 

til < T 
n n 

(5.36) 

< 00 (5.37) 

(5. 38 ) 
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where' 

Let define ~ as 
n 

then we have 

Hence, 

00 

L 
n=l 

t; = a (Z - E[ ZiT ]). n n n n n 

~ = E [ t; I t;l ' t;2 ' •• '., t; l] n n n-

= o. 

~ = 0 n 

- E [ ZiT , t;l ' t;2'···' t; l] ) n n n-

From (5.34) and the constraint 4), we also have 

00 00 

L a 2 

n=l n 
( E[ (Z - E[ ZiT ] )2] 

n n n 

- E[ Z - E[ ZiT ] ] ) n n n 

00 

= L a 2 

n=l n 
( E[ Z2 ] - E2[ Z ]) 

n n 
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00 

= I a 2 0'2 
n=l n Zn 

':M 
00 

< I a 2 b < 00. (5.40) 
ITI n=l n n 

It is seen from (5.39) and (5.40) that I~ converges with probability 
n 

one [46]. Considering that (5.38) can be written as 

Tn+l = 
n 

Tl + L 
j=l 

n 
~. + I a. E[ z.1 T. ], 

J j=l J J J 

one can see the existence of a random variable U such that 

n 

P[ lim ( Tn+l - I 
n+ oo j=l 

a. E[ z.1 T.]) =U] =l. 
J J J 

Next we shall show 

p[ lim T = ±oo o. 
n n+ oo 

Now, suppose that 

p[ lim T = 00 ] > o. n n+ oo 

Then, from the constraint 7) and (5.32), we have 

T 
n 

(5.41) 
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Therefore, from (5.37) 

Hence, we have 

00 

l 
.1=1 

P[ lim ( T n n+ oo 

a. E[ Z.I T. ] < 00. 

J J J 

n 

l 
j=l 

a. E[ z.1 T. ]) 
J J J 

00 ] > 0, 

which contradicts (5.41). Similarly, in the case of P[ lim Tn=-oo] > 0, 

a contradiction is also derived. Therefore, we have 

P[ lim 
n+ oo 

Next, we shall show 

P[ lim 
n+ oo 

Suppose that 

P[ lim 
n+ oo 

T = ±oo] 
n 

0. 

T = T ] = 1, 
n 

T = T ] < 1, 
n 

for some T. 

for any T. 

Then, from (5.42) there exists such a sequence {T } with positive 
n 

probability that satisfies (5.41) and 

lim inf 
N+oo n~N 

T 
n 

< lim sup 
N+oo n~N 

T . 
n 

The following discussion is made in the case where 

lim sup 
N+oon2:N 

T 
n 

> /. 

(5.43) 
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I h h h 1 · T If "1 d' . b n t e ot er case were l.m sup < t , a Sl.ml. ar l.SCUSSl.on can e 
n 

made. Now, we can take two numbers Y and 0 such that 

lim inf 
N+oon~N 

T < Y < 0 < 
n 

lim sup 
N+oo n,2:N 

T 
n 

(5.44) 

(5.45) 

From (5.32) and (5.41) and the constraint 3), one can see that both 

Y and 0 satisfy the following relations: 

3 N
3

, 

1 Tk - T m 

k > m > N3 ~ 

k-1 
I a j E[ z.1 

J j=m 

Y > til. 
m 

a b 2 0- Y 
~--m m 4M' 

o-y 
T. ] 1 :::;. 

J 2 

Then, considering (5.43) and ITn+1- Tn l ----+ 0, we can take 

both k and m such that 

T < Y m 

Therefore, from (5.37), (5.48), and (5.51) we have 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 
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T. > t" 
J m' 

and hence, 
k 

S - I a
j 

E[ z.1 T. ] < o. (5.52) 
j=m+l J J 

Furthermore, from (5.35) and (5.46) we obtain 

a 1 E[ Z 1 T ] 1 ~ 2ab2M' 0 - y 
:5: m m m mm 

2 

Therefore, 

0 
k-l 

-s + 0 -s - - y 
S - I a. E[ z.1 T. s - Y (5.53) 

2 j=m J J J 2 

Now, considering that 

T - T > 0 - y > ° 
k m 

2 

and 

-s > 0, 

by substituting (5.53) into (5.47) we obtain 

o - y 0 - Y 
T -T -S---.;.-:5:---

k m 2 2 

and hence, 

T -T <o-y k m - , (5.54) 

which contradicts (5.49) and (5.50). Therefore, there exists a 



random variable T such that 

P[ lim T = T ] 
n 

n+ oo 

Finally, we shall show that 

P[ T = til ] = 1. 

1. 

The following disc4ssion is made in the case where 

P[ T < l ] > o. 

(5.55) 

In the other case where P[ T > til ] > 0, a similar discussion can be 

made. Then, there exist two numbers rand s such that 

-00 < r < s < t 
II 

P[ r < T < s ] > o. 

Therefore, from (5.32) we have 

Hence, from (5.33) and (5.36) 

J! 
r :s T :s s < til. 

n n 

(5.56) 

(5.57) 

1 E[ ZiT 
b 2 n n 

n 

= 2p ( T , b ) > €. n n n 
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Consequently, by using 3) we obtain 

(X) (X) 

\;/n «00), I a. E[ z.1 T. ] > £ L 
j=n J J J j=n 

Hence, 

(X) 

I a. E[ z.1 T. = (X) , 
j=l J J J 

which contradicts (5.41) and (5.55). Therefore, 

P[T tt,]=l. 

Hence, from (5.55) and (5.59) we obtain 

P[ lim T = t# ] = 1, 
n 

n-+ oo 

which proves the theorem. 
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a. b~ 00. 
J J 

(5.58) 

(5.59) 

(Q. LV.) 



CHAPTER 6 

NONPARAMETRIC LEARNING WITHOUT A TEACHER 

BASED ON MODE ESTIMATION 

-- MULTI-CATEGORY PROBLEM-

6.1 INTRODUCTION 

Parametric learning schemes, with or without a teacher, have been 

studied very extensively over the last ten years, whereas nonparametric 

learning schemes without a teacher do not seem to have been considered 

to the same extent in spite of their importances. Braverman [6], 

Shimura and Imai [81], and the author (Chapter 5) have discussed the 

nonsupervised algorithm for obtaining linear discriminant functions in 

two-category problems. Braverman has derived a learning algorithm 

based on potential functions. Shimura and Imai have discussed a learn­

ing algorithm for estimating the principal component of the mixture 

distribution of input patterns to construct a linear discriminant 

function. In chapter 5, the author has presented a learning algorithm 

for obtaining a linear discriminant function by estimating the unique 

minimum point of a univariate probability density function (pdf). 

Although some interesting ideas that are useful for the two-category 

problem are considered in the above literatures, multi-category 

problems are not dealt with. 
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Cluster detection techniques applicable to the multi-category 

problem have been studied by Gitman and Levine [22], Gitman [23], Koontz 

and Fukunaga [41], Zahn [98], and Jarvis and Patrick [34]. In their 



algorithms, all sample patterns are stored in order to make up for the 

a priori information about the distribution of the patterns. Such 

algorithms are rather different from those discussed here. 

This chapter discusses a nonsupervised multi-category problem in 

terms of nonparametric learning where no input pattern is memorized. 

In order to achieve our purpose a cluster detection algorithm is con­

sidered under the assumption that there exists a one-to-one correspon­

dence between clusters and categories. We also assume that each mode 

84 

of the mixture pdf of input patterns represents each cluster. As is 

discussed by Gitman and Levine [22] and Gitman[23], this assumption is 

rather reasonable, since unimodal pdf's can represent quite general 

distributions of patterns. Therefore, it can be an efficient way to 

estimate modes of the pdf of input patterns for constructing discrimi­

nant functions by nonparametric learning without a teacher. The problem 

of seeking modes of a pdf has been considered by Parzen [63] and Ryzin 

[72]. In their algorithms, modes are obtained by using the estimated 

pdf. However, it is comparatively difficult to estimate pdf's and 

besides, the whole schemes become rather complicated because they 

consist of two stages. For this reason, the author proposes a new mode 

estimation algorithm in which the pdf is not necessary to be estimated 

beforehand. 

For seeking modes of a pdf, the hill-climbing method can be a use­

ful technique provided that an efficient gradient search technique with 

respect to pdf's is available. In this chapter, therefore, a hyper­

cubic window function is considered which gives some information about 

the gradient of a multivariate and multimodal pdf without memorizing 

input patterns. As is well-known, a mode estimator goes up the slope 
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of the pdf according to the estimated gradient. The hyper-cubic window 

function can be considered as an extended version of the window function 

introduced by Wassel and Sklansky [91]. Their window function operates 

with the aid of a teacher, while our window function operates without 

supervision. Furthermore, their window function is made smaller when­

ever an input pattern is given in the pattern space, while our window 

function is made smaller only when an input pattern is observed within 

the window. A detailed discussion about our window function will be 

made in the following sections. 

As is discussed above, the estimate of each mode can be considered 

as a good approximation of the location of each cluster. For this 

reason, by using the estimates of the modes of the mixture pdf, a mini­

mum-distance classifier [62] is constructed which assigns each input 

pattern to the category (cluster) corresponding to its nearest mode. 

A nonparametric signal detection problem is also discussed as an 

example of the two-category problem to compare our algorithm with 

others. Under the assumption that the distribution of noise is sym­

metric with respect to its mean vector, both the input signal and the 

mean vector of noise are estimated by using our mode estimation algo­

rithm. Moreover, it is shown that the probability of the signal occur­

rence and the covariance matrix of noise can be estimated. The thresh­

old value of the linear discriminant function of the signal detector 

is determined for the discriminant hyperplane to pass through the 

valley lying between the two clusters. By using all the estimates, 

an adaptive signal detector converging hearly to the optimal machine 

is designed without supervision. 



Some results of computer simulation of our learning algorithms 

are presented. The results show that the performance of our methods 

compares favorably with that of other methods. 

6.2 ALGORITHM FOR ESTIMATING ONE OF THE MODES OF PDF 

In this section we consider a nonsupervised multi-category problem 

in terms of nonparametric learning under the assumption that N#, the 

upper bound of the number of categories contained in the mixture dis-

tribution, is given. As is discussed in Section 6.1, we take the 

approach of estimating the modes of the mixture distribution of input 

patterns. In the algorithm the mode is estimated by using a hyper-

cubic window function proposed here. 

6.2.1 NOTATION 

X n-th input pattern. 
n 

Z 
n 

n-th mode estimator. 

n-th window function. 

Total number of input patterns observed within 

the window up to the n-th step. 

Size of the n-th window. 

A positive coefficient. 

i-th subregion of the n-th window. 

i-th direction that the n-th mode estimator 

can move in. 

6.2.2 BASIC MECHANISMS OF THE HYPER-CUBIC WINDOW FUNCTION 

A maximum point of an unknown function is generally found by the 
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hill-climbing method according to the estimated gradient of the function. 

Our problem is to find the maximum point of a pdf of input patterns, 

so that it is necessary to obtain the estimate of the gradient of the 

pdf for using the hill-climbing method. 

Wassel and Sklansky have proposed the window training procedure 

(WTP) which finds the unique intersection of two unknown univariate 

pdf's with the aid of a teacher. The author here introduces a new 

hyper-cubic window function and discusses an algorithm for estimating 

* one of the modes of an unknown multimodal and multivariate pdf without 

supervision. The hyper-cubic window is made smaller only when an 

input pattern is observed within the window. Therefore, our method 

makes it possible to decrease the influence of both the input pattern 

sequences and the initial estimate of a mode on the performance of the 

mode estimation algorithm. This is because if the window is made 

smaller whenever an input pattern is given as in the WTP, it sometimes 

happens that almost all the input patterns cannot be observed within 

the window. In such a case the window becomes so small that the per-

formance of the algorithm decreases, particularly when the pdf of 

interest is a multimodal and multivariate one, or when the initial 

estimate is far from the mode. 

Now, the author proposes the following mode estimation algorithm 

using the hyper-cubic window function mentioned above: 

* In spite of the assumption that each cluster consists of a uni­

modal pdf, a mode estimation algorithm applicable to multimodal pdf 

needs to be developed because the mixture pdf of input patterns is 

multimodal. 



(6.1) 

where 

r 1, for any d 

(6.2) 

L 0, otherwise 

m(n+1) = men) + t;n+1(Zn), m(O) = 1 (6.3) 

-2 
if t;n+1 (Zn) 1 and Zd < Xd b = m(n) , n - n+1 

d" 
t;n+1(Zn) ° (6.4) I;n+1 (Zn) = 0, if 

-2 
if t;n+1 (Zn) 1 and d < Zd -b = Xn+1 men) n 

and the superscript d indicates the d-th component of each vector. 

Here the author gives an intuitive interpretation of the above 

algorithm before proceeding to its convergence proof. An example of 

a two-dimensional hyper-cubic window function is shown in Fig. 6.1, 

1 2 1 4 which consists of four regions (W , W , W-, and W). 
n n n n The n-th mode 

estimator Z 
n 

is located at the center of the n-th 2bm(n)x2bm(n) window. 

The window function I; (Z 1) takes vector n n-
( -2 -2 

values -bm(n)' -bm(n»' 

( b-2 b -2 ) (b -2 b- 2 ) (b- 2 b- 2 ) (0 0) d' - men)' m(n)' men)' - m(n)' men)' men) , or , , accor 1ng 
. 123 4 as the n-th input pattern is observed within the reg10n W , W , W , W , n n n n 

or outside the window. When an input pattern is observed within the 

window, bm(n) decreases and then the window is made smaller. Note that 

bm(n) --+ ° as men) -+ 00. When an input pattern is not observed within 
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p(x) 

Fig. 6.1 Two-dimensional window function. 



90 

the window, no change of the window is made. At every learning step, 

am(n+1)~n+1(Zn) is added to Zn' so that the estimator moves in the 

123 4 direction d , d , d , or d according as the n+1th input pattern is n n n n' 

observed within the region W1 , W2 W3 or W4 • Clearly, when no input n' n' n' n 

pattern is observed within the window, Z does not move in any direction. 
n 

In the above example, the region ~ is ~earer the mode than the other 
n 

regions are, so that the probability of an input pattern being observed 

within W1 is higher than within the other regions. Therefore, the mode 
n 

1 estimator moves probabi1istica11y in the direction d and approaches 
n 

one of the modes of the pdf with a reducing window. The convergence 

theorem is presented below. 

6.2.3 CONVERGENCE THEOREM OF THE MODE ESTIMATION ALGORITHM 

Theo~em 6.1: Assume that the following conditions are satisfied: 

1) X is the n-th random sample vector from an unknown L-dimen­
n 

siona1 continuous pdf p(X) which has N maxima at X = i Z (II izil <00, 

i=1,2, ••• ,N) and has a finite number of singular points. 

2) lim ak = lim b
k = 0 (a

k
, b

k 
> 0). 

k-+oo k-+oo 

00 

3) L -1 
akbk 

00. 

k=l 

00 

4) L -2 2 
(akbk ) < 00. 

k=l 

Then, Z defined in (6.1)-(6.4) converges to one of the maximum points 
n 

of p(X) with probability one. That is, 

P [ min { 1 im II Z - j z I il = 0 ] 
. n 
J n-+ oo 

1, for some j. 



Pnoo6: Proof of this theorem is divided into four parts. 

First, we begin the proof by showing 

P[ men) --~) 00] = 1. 
n+ oo 

Second, we show 

Vi (i=1,2, ••• ,N), P[ lim Ilzm(n) - izil = 00] = o. 
men) + 00 

Third, we show 

3
i

e2:0 (i=1,2, ••. ,N), P[ lim II Zm(n) - i Z II = i e] = 1. 
men) + 00 

And finally, by showing 

P[ min je = 0] 1 
j 

the proof is completed. Convergence property of semi-martingales plays 
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a prominent role in the detailed proof, which is presented in Appendix 6.1. 

6.3 CONSTRUCTION OF A DISCRIMINANT FUNCTION 

If our purpose were to estimate one of the modes of a pdf, then 

the proposed algorithm would perform the estimation successfully regard-

less of whether the initial estimate is far from the mode or not. As 

is discussed in Section 6.1, however, it is necessary for the design 

of a discriminant function to estimate all modes of the mixture pdf of 

input patterns. Unfortunately, the mode estimation algorithm that we 
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have discussed thus far is designed to seek one of the modes of a multi-

modal pdf, so that it does not assure us of success on the estimation 

of all the modes. We shall describe a procedure for estimating all the 

modes below. However, because of a difficulty in determining appro-

priate initial estimates, it does not guarantee that all the modes can be 

always detected, as will be discussed later. 

Before executing the algorithm, a rough estimate of the range of 

the pattern distribution is obtained by observing input patterns. 

Th d i id ' h i Nil Nil . .. . 1 t . t en, v 1ng t e range nto n parts, we set n 1n1t1a es 1ma es 

at the center of each subrange which is the hyper-cubic window, where 

Nil is the upper bound of the number of categories~ (Usually, n is so 

chosen that nNII is much larger than the number of the modes.) After 

determining the initial estimates the mode estimation algorithm is 

performed. In a sufficiently large number of learning iterations, the 

II nN estimators are expected to form N (actual number of the modes) 

clusters, since each estimator converges to one of the modes. There-

fore, the mean vector of each cluster formed by the estimators can be 

the estimates of the modes. 

As described before, there is no guarantee that the above pro­

cedure always succeeds on estimating all the modes. That is, nNII esti-

mators may not reduce in number to approach the actual number of the 

modes N. For example, in the case of the initial estimates shown in 

* Since we earlier assumed that there is a one-to-one correspondence 

between categories and modes, Nil can be the upper bound of the number 

of the modes. 



I Fig. 6.2, it may occur that Z, 
n 
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78943 Z Z Z --+- Z, and Z may n' n' n 
not be detected. In most cases, however, 

we can avoid such a difficulty by setting the range and n sufficiently 

large. In the above example, it is seen that all the modes can be 

detected with larger range and n. Generally, in nonsupervised algo-

rithms, whether the global optimum is found or not depends on the ini-

tial estimates. Such a difficulty is not peculiar to our algorithm 

but common to other nonsupervised algorithms particularly based on 

minimization of criterion functions. 

Thus, we have the following discriminant rule: 

decide: X E C
i (6.5) 

i 
where Z 

n 
is the n-th estimate of the mode iZ. It is easily seen that 

this discriminant rule is constructed based on minimum-distance clas-

sifier [62] by using only the knowledge of the locations of the modes 

of the mixture pdf. Our discriminant rule works well especially when 

input patterns of each category cluster globularly. In order to 

obtain an efficient classifier of the performance free from the struc-

ture of the mixture distribution, the mixing coefficient, and the 

covariance matrix of each cluster need to be estimated in addition to 

the modes. The problem of getting such additional information is 

considered in the next section. 

6.4 TWO-CATEGORY UNIMODAL CLASS DENSITY PROBLEM 

A nonparametric signal detection problem is discussed here in 

order to demonstrate the efficiency of our mode estimation algorithm. 
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-3 
Z 

• Initial estimates 

• Modes of a pdf 

Fig. 6.2 An example of initial estimates where some mode 
may not be detected. 
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In the last section we have obtained a multicategory classifier based 

on the knowledge of the modes' locations, where the structure of each 

cluster and mixing coefficient have not been taken into account. We 

shall show that a signal detector with the ability to estimate such 

parameters as well as the -input signal can be constructed without 

supervision. 

Let P, ~, v, and L be the probability of signal occurrence, the 

signal vector, the mean vector of noise, and the covariance matrix of 

noise, respectively. Assume that the pdf of noise is unimodal and sym-

metric with respect to its mean vector v. Under this assumption, 

the mixture pdf of input patterns has two modes and each of them cor-

responds to either ~ or v. These two mean vectors can be estimated by 

using our mode estimation algorithm. Also, P and E can be obtained by 

using the estimates of ~ and v. Therefore, an adaptive signal detector 

which can estimate all the unknown parameters is constructed in the 

following manner. 

Let M be the mean vector of the mixture distribution of input 

patterns, then we have 

M = P~ + ( 1 - P )v. (6.6) 

Let ~ and v be the n-th estimates of ~ and v, respectively, and X. 
n n 1. 

be the i-th input pattern. 

obtained as follows: 

P = U[ IlL 
n 

From (6.6) the n-th estimate of P, P is 
n 

L 

I 
d=l 

vd ) I (~d _ vd ) ] 
n n n 
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where 

0.5, if 1 < t;, 

u[ t;,] = t;" if a :s: t;, :s: 1 

0.5, ift;, < a 

n 
M = l/n I x. 

n i=l l. 

and the superscript d indicates the d-th component of each vector. 

Now, we have the covariance matrix S of the mixture distribution 

of input patterns as follows: 

S = E[(X - M)(X _ M)T] 

= E + p( 1 - P )( ~ - v )( ~ - v )~ 

From (6.7) the n-th estimate of E, E is obtained as follows: 
n 

where 

E = S - P ( 1 - P )( ~ - v )( ~ - v )T 
n n n n n n n n 

n 
S = 1/ (n - 1 ) 
n I (x. 

i=l l. 

T 
M ) ( x. - M) • 

n l. n 

(6.7) 

(6.8) 

It is easily seen that P and E converge to P and E, respectively, if 
n n 

and only if ~ and v converge to ~ and v, respectively. Hence, for a 
n n 

coefficient vector of the linear discriminant function wTX = e we can 
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use W defined in the following: 
n 

where the structure of each cluster is taken into account. 
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(6.9) 

Let us consider a two-dimensional case as an example (See Fig. 6.3). 

When the mean vectors are estimated, we usually construct a discrimi-

nant function of the form (d.f.l). However, when both the mean vectors 

and the covariance matrix are estimated, we can use (d.f.2) which is 

obtained by rotating (d.f.l) appropriately. It is obvious from Fig. 6.3 

that (d.f.2) is superior to (d.f.l). 

The remainder of this section deals with a decision algorithm of 

the threshold value e. As is discussed in Chapter 5, the neck between 

the two clusters shown in Fig. 6.4 seems to be reasonable threshold, 

and it corresponds to the minimum point of the univariate pdf produced 

by projecting the original pattern space to the direction of W. There-

fore, we use the minimum point of the pdf as the threshold value e, 

which can be estimated by our mode estimation algorithm. 

The n+lth estimate of the threshold value e, en+l is obtained 

in the following manner: 

en+1 

if 

otherwise 

where 

= 1/ (n+ 1 ) 
n+l 
I 

i=l 
X. 

l. 

(6.10) 

(6.11) 
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Fig. 6.3 Improvement of a linear discriminant function. 
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and am(n)' bm(n)' and m(n) are defined in the same way as in Theorem 6.1. 

Hence, from (6.9)-(6.11) we have the following discriminant rule: 

€ [cu, 
if WTX ~ e 

n n 
decide: X 

Cv ' otherwise 

where C~ and Cv indicate the categories corresponding to ~ and v, re­

spectively. The above classifier shows almost optimal behavior because 

its decision is made by using the information about the probability of 

each category's occurrence, the mean vectors, and the covariance matrix. 

This fact is verified by computer simulation in the next section. 

6.5 COMPUTER EXPERIMENTS 

In this section, some results of a computer study of our learning 

algorithms are presented. 



6.5.1 MODE ESTIMATION 

In the computer study, modes of a two-dimensional normal mixture 

\ 3 T distribution F(X) = £i=l P'N(~i' E) are estimated, where P = 1/3, ~1 = 

TTl 0 (0, 2), ~2 = (2, -2), ~3 = (-2, -2), E = (0 1)' The mode estimation 

algorihtm is implemented in the case where N# = 4, n = 9/4, ak = 2/k, 

and b
k 

= 2/kO. 2 , so that nine initial estimates are determined 

as shown in Fig. 6.5. This figure also shows the loci of the mode 

estimators for 600 input patterns using the above parameters. It is 

seen that the mode estimators converge to the points corresponding to 

the modes in a.large number of learning iterations and that in this 

case three clusters (IZ & 2z & 5Z 6z & 9Z 4Z & 7z & 8Z ) 
n n n' n n' n n n 

appear. Note that 3Z cannot be a mode because it still stays at the 
n 

initial point. We conclude, therefore, that the mixture pdf has three 

modes in all and each mode is located at the center of each cluster 

formed by the estimators. 

6.5.2 SIGNAL DETECTION 

Computer simulation of the signal detector discussed as an appli-
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cation of our mode estimation algorithm is made and some of the results 

are presented below. In the experiment, two-dimensional Gaussian noise 

is used, where P = 0.7, ~T T 1 0 
= (2, 2), v = (0, 0), and E = (0 2)' 

Convergence processes of P and Ware shown in Fig. 6.6. Fig. 6.7 
n n 

shows the learning processes of some signal detectors, where marks A, 

0, and 0 indicate the probability of error of the discriminant 

functions 

(~ _ v ) T X ,= (~ _ v ) T M 
n n n n n (dl) 
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Fig. 6.5 Loci of the mode estimators. 
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Fig. 6.7 Learning processes of some linear discriminant functions. 
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(d2) 

(d3) 

respectively. The weight coefficient of (dl) is obtained by using the 

knowledge of the modes' locations alone and the threshold value is 

determined by using the mean vector of the mixture distribution of 

input patterns. On the other hand, the weight vector of (d2) is 

obtained by using the knowledge of the covariance matrix in addition 

to that of the modes' locations. The discriminant function (d3) is 

that proposed in Section 6.4. From Fig. 6.7 it is seen that error rates 

of these discriminant functions become lower in order of (dl), (d2), 

and (d3), and that the probability of error of (d3) converges to that 

of the optimal machine indicated by arrows. These results compare 

favorably with others reported previously [12],[65],[75],[76],[83]. 

6.6 CONCLUSION 

In this chapter we have discussed a nonparametric learning scheme, 

without a teacher, based on mode estimation. A new hyper-cubic window 

function has been introduced, which is useful for estimating the 

gradient of a pdf. By using the hyper-cubic window function, an algo-

rithm for seeking one of the modes of a mixture pdf was proposed and 

its convergence proof was also presented. A minimum-distance classi-

fier for the multi-category problem was constructed based on the esti-

mated modes of the mixture pdf of input patterns. Furthermore, some 

discussions were made on a nonparametric signal detection problem as 

an application of our mode estimation algorithm. We also obtained an 



adaptive signal detector which nearly converges to the optimal machine 

without supervision. In order to verify our algorithms some computer 

simulation of their learning processes was made, and satisfactory 

results were obtained. 

This chapter has treated the problem of nonsupervised nonpara­

metric learning without memorizing input patterns. We have designed 

a minimum-distance classifier for the multi-category problem. However, 

it does not have a satisfactory structure because of a complete lack 

of the information available during the learning period. 

In the next chapter, the same problem as that discussed here is 

studied by memorizing all sample patterns. It will be revealed that 

memorizing patterns makes it possible to realize almost complete 

pattern classification. 

106 



107 

APPENDIX 6.1 PROOF OF Theo~em 6.1 

P~oo6: First we shall show 

P[ m(ri) ---+) 00] = 1. 
n+ oo 

Assume that 

p[ n > nO ~ men) 

then there exists a positive constant C such that 

bm(n) = C, for any n > nO. 

Therefore, the volume of the window converges to CL. However, the 

probability that after the convergence, at least one input pattern is 

L observed within the window of the positi.ve volume C is one. From (6.2) 

and (6.3) this contradicts the assumption. Hence, we have 

P[ men) ---~) 00] 1. (6.12) 

Since a mode estimator and a window are not changed if input 

patterns are not observed within the window, we can neglect such input 

patterns in the following analyses. That is, we renumber the estimator 

Zn and the window function sn as follows: 



Next, we shall show 

'Iii (i=1,2, ••• ,N), P[ lim liz - i Z II = 00] = o. 
m+ oo m 

(6.13) 

Suppose 

3 i, P[ lim liz - i Z II = 00] > o. 
m+ oo m 

From the constraint 4), there exists a random sequence {Z } such that 
m 

P[ lim 
m+ oo 

or 

3 d, P[ lim 
m+ oo 

00] > 0 

Zd = -00] > o. 
m 

(6.14) 

(6.15) 
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* 

d 
If P[ lim m+oo Zm = 00 ] > 0, then from (6.1) and the constraint 1) there 

exists a random sequence {Z } with positive probability such that 
m 

Therefore, Zd is a semi-martingale [15]. From the convergence property 
m 

of semi-martingales, the sequence {zd} converges almost everywhere 
m 

where (6.14) is true. This contradicts (6.14). Thus, P[lim zd =00] = o. 
m+oo m 

* For simplicity, the notation m will be used instead of men). 



Similarly, P[lim Zd = _00 ] = O. Hence, we have m-+oo m 

'If i, p[ lim 1/ Z - i Z 1/ = 00 ] 

m+ oo m 
O. 

Next, we shall show the existence of N nonnegative values 

ie (i=1,2, •.. ,N) such that 

p[ lim 1/ Z 
m m+ oo 

1. 

(6.16) 

(6.17) 

Suppose that (6.17) is not true. Then, from (6.16) there exists a 

random sequence {Z } with positive probability such that 
m 

3 i, S > (). > 0, lim inf II Z - i Z II < (). < S 
M+oo m~M m 

< lim sup" Z - i Z II. 
m M+oo m~M 

(6.18) 
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From the constraints 1), 2), and 4), we can find a subsequence {Zm-} of 
J 

the sequence {Z } such that 
m 

00 

L am - I;; ~ - (Z 1) = 00 
J J mJ--j=l 

or 

(6.19) 

(6.20) 



00 

I 8m.l;~. (z 1) = _00 

J J mJ·-j=l 
(6.21) 

(6.22) 

However, in both cases where (6.20) is true and where (6.22) is true, 

the sequence {\.~1 a_.l;~.(Z I)} turns out to be a semi-martingale. 
L.J - 1I1J J mj-

Therefore, it converges almost everywhere where (6.18) is true. This 

contradicts (6.19) and (6.21). Hence, we obtain 

= 1. (6.23) 

Finally, we shall show that 

p[ min je o ] = 1. 
j 

Suppose 

P[ min je > o ] > o. 
j 

From the proof of (6.23), it is obvious that Z converges with prob­
m 

ability one. Accordingly, there exists a sequence {Z } with positive 
m 

probability such that 

3Q ( t i Z (i=1,2, ... ,N», 

Then, for arbitrary d (d=1,2, .•• ,L) we have 

Z 
m 

Q. (6.24) 
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P 
\jE > 0, 3M2,. P > q > M2 ~ I L amS!(Zm_1) I < E. 

m=q 

111 

(6.25) 

We here assume that Q is a regular point of p(X), that is, there exists 

at least one d such that 

3 0, y > 0, y inf 
IIQ-xlI < ° 

3p(X) 

3Xd 

For such d, we have either of the following two cases: 

In the case of (6.26), we have from the constraint 3) 

E[ 
-1 

ya b 
mm 

= 00 

(6.26) 

(6.27) 

(6.28) 

where the expectation is calculated over all the sequences of the 

observed input patterns which make {Z } satisfy (6.26). Considering 
m 

the constraint 4), (6.28) contradicts (6.25). Similarly, in the case 

of (6.27), a contradiction of (6.25) can be derived. Therefore, Q is 

not a regular point, and hence Q is either a saddle point or a minimum 

point of p(X) because Q is not a mode. Accordingly, there exists at 

d . 
least one component Q corresponding to a minimum point of a univariate 

pdf. It is obvious, however, that the probability of Zd converging to 
m 



one of the minimum points of a pdf is zero. Thus, we have 

p[ min je = 0 ] = 1. 
j 

Hence, from.(6.l2),(6.23), and (6.29) the proof is completed. 
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(6.29) 

(Q.E.V.) 



CHAPTER 7 

A CLUSTER DETECTION ALGORITID1 BASED ON 

HIERARCHICAL STRUCTURE 

7.1 INTRODUCTION 

The main purpose of the cluster detection problem is to develope 

efficient algorithms for partitioning a given data set into a finite 

number of subsets which can be considered as reasonable clusters, 

113 

where no a ppiopi knowledge as to the data is assumed. Cluster detec­

tion is essentially nonsupervised nonparametric learning in pattern 

recognition. However, it has been studied enthusiastically not only in 

pattern recognition but in biological and social scienses [3], [4], [14], 

[20]-[23], [27],[28],[34],[35],[41],[43]-[45],[67],[71],[73],[77],[78], 

[89],[98]. A cluster is loosely defined as a collection of data which 

are similar to each other, though its rigorous definition is not es­

tablished yet. Therefore, various approaches to the problem have been 

discussed. The approaches can be divided into the following six major 

groups: 

1) The approach using centers of clusters such as modes of the 

pattern distribution [4],[22],[23]. 

2) The approach based on minimization of appropriate criteria [21],[41]. 

3) The approach using graph-theoretical methods [3],[98]. 

4) The approach based on hierarchical ordering of data [27],[28],[35], 

[89]. 

5) The approach using nonlinear mapping [43],[44],[67],[73]. 

6) The approach based on appropriate similarity measures [34]. 



Some typical examples of 2-dimensional clusters that are easy for 

man to detect (Zahn [98]) are shown in Fig. 7.1. We now examine some 

of the above algorithms using the clusters in Fig. 7.1. Zahn's algo­

rithm [98] has difficulties in detecting such clusters as shown in (c), 

(e), and (f), though it makes it possible to detect many types of 

clusters. Jarvis and Patrick's algorithm [34] seems to be unable to 

detect the clusters in (e). On the other hand, algorithms of Koontz 

and Fukunaga [41] and Gitman [23] are capable of detecting the clusters 

in (e), but they cannot detect ones in (b). Thus, such an algorithm 

that is able to detect all the clusters in Fig. 7.1 is not known yet. 

It is difficult for man to consider multidimensional clusters . 

directly, since they are invisible. Therefore, after investigating 

2-dimensional clusters thoroughly multidimensional clusters are studied 

by analogy. We here note that the concept of clusters is vague and 

variable, that is, different users may require of the algorithm that it 

detect different types of clusters from the same data set. Considering 

this fact, we intend in this chapter to construct such a cluster detec­

tion algorithm that has a flexible structure so as to meet various 

requirements and that can detect all the clusters in Fig. 7.1 at the 

same time. In the following sections, analyses are made by using the 

relative values, e.g. the dissimilarities, between data instead of 

their absolute locations in order to broaden the scope of data to which 

the algorithm is applicable. 

7.2 DEFINITIONS 
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Definition 7.1: Let Qk(i) be a set of k-nearest neighbors (k-NN's) of 

the point i, where k-NN's are the first k points of a sequence of points 
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Fig. 7.1 Typical examples of two-dimensional clusters. 
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arranged in order of l/d(i,j) (j=1,2, ... ,N), where N is the number of 

data and d(i,j) is the dissimilarity between the points i and j 

(d(i,i) = 0). 

Definition 7.2: The potential Pk(i) of the point i is defined as 

- 11k L d(i,j). 
j dG

k 
(i) 

Definition 7.3: A weakly connected digraph is said to be a hier-

archy if it has neither cycle nor loop. 

Definition 7.4: A hierarchy is said to be a subcluster if each 

vertex is subordinate to at most one point. 

Definition 7.5: A central point i of the subcluster m is the 
m 

unique point subordinate to no point. 

Definition 7.6: W is a set of points contained in the subcluster m. 
m 

Definition 7.7: Two points i and j are said to be k-adjacent to 

each other if i £ Qk(j) and j £ Qk(i). Let Sk(i) be a set of points 

k-adjacent to the point i. 

sc 
=D~e~f~i~n~i~t~i~o~n~~7~.~8: The potential Pk (m) of the subcluster m is defined 

as 

p~c(m) _ 

where a(A) denotes the number of elements of the set A. 

Definition 7.9: The k-boundary point set y~,n of the subcluster m 

to the subcluster n is defined as 
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Definition 7.10: Two subclusters m and n are said to be (~,n)k-adjacent 

to each other where 

and 

The subclusters m and n are said to be in k-touch with each other if 

~ + 0 or n + O. Otherwise, they are said not to be in k-touch with 

each other. 

7.3 CLUSTER DETECTION ALGORITHM 

In this section, detailed discussion is made concerning our 

cluster detection algorithm after presenting it. At a first glance 

the following algorithm may seem to be rather complicated because of 

the presence of four parameters at Step 1. 'However, the parameter 0 

is usually set at infinity and the parameters a, S, and yare fixed 

when users define what a cluster is, so that k is the only parameter 

that varies with the runs, which will be considered later again. 

7.3.1 ALGORITHM 

Step 1: Set ~ a, S, y, and o. 

Step 2: Calculate r.!k(i), Pk(i), and Sk(i) for every i. 

Step 3: Subordinate every point i t~ the point j such that 

min Pk (m) . 
me: Sk(i) 

If i = j, then the point i is subordinate to no point. 

Step 4: Detect all central points. 

Step 5: Assign every point i to the subcluster of the central 

point reachable from it. 



* Step 6: Take a new unordered pair (m, n) of subclusters. If a new 

one can be taken successfully, then continue to Step 7. Otherwise, 

go to Step 12. 

Step 7: If the pair of subclusters (m, n) is in S-touch with each 

other, then continue to Step 8. Otherwise, go to Step 6. 

Step 8: If 

sc sc sc sc 
max [ Pk (m), Pk (n) ] > a'min[ Pk (m), Pk (~) ], 

then continue to Step 9. Otherwise, go to Step 10. 

Step 9: Reassign all the points of y~.n to the subcluster n where 

p~c(m) < p~c(n), and go to Step 6. 

Step 10: If 

l/cr[XmS,n] L Pk(i) < o·max[ Pksc(m), Pksc(n) ], 
. Xm,n 
1. E: S 

then go to Step 6. Otherwise, continue to Step 11, where x~,n 

Ym,n U yn,m 
S S· 

Step 11: If 

m n \ sc sc l/cr[XS'] L Pk(i) > y·max[ Pk (m), Pk (n) ], 
. Xm,n 
1. E: S 

then go to Step 6. Otherwise, assign the two subclusters m and n to 

the same cluster, then go to Step 6. 

* M(M-l)/2 subclusters are taken in all where M is total number of 

the subclusters. Different results may be obtained according to the 

order in which they are taken when some subclusters are changed in 

Step 9. However, this is neglected in our algorithm because the 

difference is very small. 
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Step 12: Construct clusters by collecting the subclusters assigned 

to the same cluster and terminate. 

7.3.2 POTENTIAL AND HIERARCHICAL STRUCTURE 

To begin with, the potential playing a prominent role in con­

structing subclusters is considered. In Definition 7.2 the potential 

of every point is defined as the mean value of the dissimilarities 

between the point and its k-NN's. One can see that the potential is a 

kind of measures of point density when Euclid distance is used as dis­

similarity. Usually, local point density is measured by using the 

number of the points in a distance determined beforehand [23],[41]. 

However, no reasonable method of determining an appropriate distance 

is known. Moreover, in the case where two clusters having a great 

difference in density exist (See Fig. 7.2). every point density of the 

dense cluster is 20 and that of the sparse one is one. Thus. the 

usual measure cannot represent the difference in point density in the 

dence cluster. In our potential, on the other hand, the concept of 

k-NN is employed where the number of the neighbors k is fixed instead 

of the distance. The potential is obtained by making use of the char­

acteristic of the k-NN that the radius of it varies automatically 

according to the point density (it is small when the point density is 

high and is large when it is low). Table 7.1 lists some examples of 

the potentials of some points in Fig. 7.2. One can see from the table 

that our potential is an efficient measure of local point density. 

Next, let us examine the hierarchical structure introduced in 

Step 5. Its introduction is made by subordinating each point i 

to the point of the lowest potential in Sk(i). Thus, the constructed 
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Fig. 7.2 Point density and its measure . 

. Table 7.1 Some examples of potentials. 

P5(l) P5(2) P5(3) P5(4) 

1.35 1.81 0.16 0.21 



hierarchies are subclusters. There is no point belonging to two sub­

clusters or more, so that every point except the central point is sub­

ordinate to exactly one point. Therefore, all subclusters turn out to 

be a partition of the given data set. As is seen from Step 5, each 

subcluster is constructed by regarding the point of minimum potential 

(the point of maximum point density) as its center. It is also seen 

that every point density is detected quite easily by using the hier­

archical structure. 

We here note that our subclusters partition the given data set 

very sensitively to a change of point density. Let us take Fig. 7.3 

as an example. Fig. 7.3 (b) depicts some subclusters constructed from 

the point set shown in Fig. 7.3 (a) for k=4, where seven subclusters 

appear corresponding to seven points of minimum potential. Four sub­

clusters and two subclusters are also obtained according as k=6 and 

k=8, respectively (See Fig. 7.3 (c) and (d». Moreover, the whole set 

becomes one subcluster for k as large as the number of the points N, 

since, for such k, every point is subordinate to the point of the 

global minimum potential instead of the point of the local minimum 

potential. Thus, the following relation hblds for k not so large as N: 

Total number of subclusters ~ Total number of clusters. 

It is seen from the above discussion that no subcluster contain such 

points that ought to be classified into two subclusters or more for 

appropriate k, though the point set may be partitioned into more sub­

clusters than clusters. Therefore, it is sufficient for obtaining 

reasonable clusters to consider some merging operations of subclusters, 

which are discussed in the next section. 
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Fig. 7.3 Hierarchical structure and subc1usters. 
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7.3.3 CONSTRUCTION OF CLUSTERS 

In our algorithm some conditions under which subc1usters can be 

regarded as not being included in the same cluster are employed instead 

of merging operations. All pairs of subc1usters are examined whether 

they meet the conditions or not, and then the pair satisfying none of 

the conditions is regarded as being included in the same cluster. Four 

conditions are obtained by analyzing how man detects such two-dimensional 

clusters shown in Fig. 7.1. 

Condition 7.1: The two subc1usters are not in touch with each 

other (Step 7). 

Condition 7.2: The difference in point density between the two sub-

clusters is greater than a certain index (Step 8). 

Condition 7.3: The size of the touching region of the two subc1usters 

is smaller than a certain index (Step 10). 

Condition 7.4: The difference in point density between the touching 

region and each subcluster is greater than a certain index (Step 11). 

The pairs of subc1usters that meet at least one of the above 

* conditions are regarded as independent of each other. The detailed 

discussion of each condition is presented below. 

a) Condition 7.1 

At a first glance, it may be obvious that two subc1usters which 

are not in touch with each other are regarded as independent of each 

other. As a matter of fact, however, the touch between point sets is 

a rather vague concept. Let us take Fig. 7.4 as an example. In this 

* Two subc1usters are said to be independent of each other when 

they are not included in the same cluster. 
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(a) (b) (c) 

Fig. 7.4 Touching clusters. 

5 8 16 20 

11~3.18 
-~"'--"'-~ 1 17 21 

12 

10 15 19 

3 k=5 

subcluster 1 subcluster 2 

Fig. 7.5 Touching subc1usters. 
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figure the clusters in (c) are the only clusters that can be immediately 

said not to be in touch with each other. Whether or not the two 

clusters in (a), especially those in (b) are in touch with each other 

is rather vague. Thus, it is seen that the concept of touch between 

clusters is not clear even for man. 

We have introduced the concept of k-touch between point sets in 

Section 7.2 in order to treat this problem quantitatively. An example 

is presented below. As to the point set in Fig. 7.5, 

S5(10) = {10, 

S5(11) = {ll, 

S5(12) {12, 

SS(13) = {13, 

yl,2 = {II} 
5 

7, 

9, 

11, 

14, 

9, ll} 

12, 13, 8, 10} 

13; l5} 

12, 16, ll} 

{12, l3} 

are obtained. In this case, subclusters 1 and 2 are (1,2)S-adjacent 

to and hence in 5-touch with each other. One also sees that two 

clusters in Fig. 7.4 (b) are (1,1)5-adjacent to and hence in 5-touch 

with each other, and those in Fig. 7.4 (c) are not in S-touch with 

each other. For k~8, however, the clusters in Fig. 7.4 (c) are in 

k-touch with each other, so that k must be less than 8. In the algo-

rithm 5-touch is employed, which will be discussed in Section 7.4 again. 

b) Condition 7.2 

Two point sets are usually regarded as independent of each othe~ 

if there is a great difference in density between them. However, the 

index of the discrimination is not clear. In our algorithm, therefore, 

a threshold parameter a is introduced and the following decision rule 

is employed: Assign the two subclusters to different clusters when 
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the proportion of the higher potential to the lower potential exceeds 

a. For example, a=1.4 detects the two clusters in Fig. 7.6 (b) and 

(c), and regards the points in Fig. 7.6 (a) as one cluster (See Table 

7.2). Note that a is not fixed at 1.4 but variable. Users can deter-

mine a according to their aims, since different values of a offer dif-

ferent indexes of detecting the differnces in point density. This 

flexibility is also given to the other parameters S, ~ and o. Step 9 is 

for modifying the boundaries between subc1usters (See Fig. 7.7 which 

shows the operation). 

c) Condition 7.3 

Three examples of touching point sets are depicted in Fig. 7.8. 

For detecting touching clusters it is an efficient way to make a 

decision by considering the size of the neck between them. Suppose 

that the two subc1usters m and n are obtained for appropriate k. Then, 

we define the index of touch of the subcluster m to the subcluster n 

m n as a[wm]/a[YS ' ] and that of the subcluster n to the subcluster m as 

n m a[wn]/a[Y
S
']. By comparing the smaller index of the two with an 

appropriate threshold value, a decision can be made on whehter or not 

these two subc1usters are independent of each other. In the case of 

the subc1usters in Fig. 7.S which is constructed from the point set 

in Fig. 7.8 (a), 

are obtained. It is sufficient to set S less than S in order to regard 

the two subc1usters as independent of each other. The latter condition 
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(a) 

• • 
• • • • • • 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
(b) 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
(c) 

Fig. 7.6 Clusters with different point densities. 

Table 7.2 Ratios with the potentials. 

(a) (b) (c) 

ratio 1.22 1.42 1.54 
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Fig. 7.7 Modification of the boundary between subclusters. 

• .. : . • • • • ••••• • •••• • • • • •••• • •••• ••• • ••••• • • • • • ••••• 
• • • • ••• •• • ••• 

• • • ••• • •• • • • • ••• • • • •• • •• • •••• . . ••••• • • •••••• • • ••• • •••• • • •• • 

(a) (b) (c) 

Fig. 7.8 Necks of point sets. 



in Step 10 is for discriminating between the results by Condition 7.3 

and those by Condition 7.4. The threshold parameter 0 is infinity 

when there is no necessity of discriminating between them. 

d) Condition 7.4 
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Let us consider Condition 7.4, taking the point sets in Fig. 7.9 

as examples. The subclusters in (b) and (d) are constructed for k=6 

by using the sets (a) and (c), respectively. The two subclusters in 

(b) are obviously in touch with each other. Moreover, there is neither 

a difference in density nor a neck between the two. Nevertheless, 

the two subclusters should be regarded as independent of each other. 

On the other hand, the point sets in (c) should be assigned to the same 

cluster. In order to distinguish between (b) and (d), a decision is 

made based on the potential of the boundary and that of each subcluster 

in Step 11. For example, from Table 7.3 listing the potentials of the 

subclusters in Fig. 7.9, one can see that it is sufficient to set y at 

about 1.5. 

From the discussion that we have made thus far, it is seen that 

the parameters a, S, and yare threshold values which necessarily 

appear when the human operations of partitioning a two-dimensional 

point set into some clusters are formulated. Therefore, these para­

meters are fixed "at appropriate values when users determine what kind 

of point set to regard as clusters. 

7.4 COMPUTER SIMULATION AND DISCUSSION 

In the computer study, simulation of our algorithm was made in 

detecting various two-dimensional clusters for a=1.4, S=4.8, y=1.4, 



Fig. 7.9 Clusters with gradually varying point densities. 

Table 7.3 Ratios of the potentials of the subclusters 
to those of the touching regions. 

(a) (c) 

1/a[X~,2J I P6(i) 1. 70 1.34 
. X1 ,2 
1 e 5 

max{p~c(l), psc (2)} 
6 1.05 1.11 

ratio 1.52 1.21 
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and 0=104 • All the clusters in Fig. 7.1 were detected successfully 

for k (6 ~ k ~ 10). These results show that our algorithm has the 

ability to detect all these clusters at once from the point set con~ 

taining them all, which demonstrates a great advantage of our algorithm. 

As is described in Section 7.1, our cluster detection algorithm 

has another advantage. It has a flexible structure, that is, by setting 

the parameters appropriately it can detect only the specific type of 

clusters required by users. Let us take the point sets in Fig. 7.1 as 

examples. Suppose that a user does not need to detect such clusters 

in (a) that are in touch with each other, though their point density 

is different. Then, the requirement is satisfied by setting a=oo. 

Suppose that another user intends to detect the difference in point 

density but does not need to detect such clusters in (c) that are in 

touch with each other having the same point density, though there is 

a neck. Then, by determining a appropriately and setting S=oo, only 

the clusters specified by the user can be detected. This is the reason 

why we say the algorithm to have a flexible structure. Furthermore, 

roughly speaking, our algorithm coincides with Gitman's [23] and 

Jarvis-Patrick's [34] by setting a= S =00 and by setting y= 00, respec­

tively, so that it includes their algorithms as its' special cases. 

Our goal is to construct an algorithm for detecting such clusters 

that fit the concept of clusters based on visual intuition of man. 

However, we must note that such clusters are not always detected by 

our algorithm. Concerning the point sets in Fig. 7.10, for example, 

(Cl , C2,···, C6), (Cl , C2 , C3 , C4 U CS' C6), (C l U C2 , C3 , C4 U CS' C6), 

and (Cl U C2 , C3 U •.. U C6) were detected as clusters for k=3, k=4,S, 

k=6,7, and k 2: 8, respectively. In this case, more reasonable clusters 



C1 C3 C4 C5 
• • • • • • • .. 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

C2 C4 

Fig. 7.10 An example of clusters which 
were not detected correctly • 

• • • • • • ••••• 
(a) 

• • 
• • • • ••• •• •• 

• • • • • •••• • • ••••• ••••• 
• • • •••• • • • 

• • 
(b) 

Fig. 7.11 Contacts between clusters. 
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such as (C l , CZ' C3 U C4 , C
S

' C6) or (Cl U C2 , C3 U C4 , CS' C6) were 

not detected. In spite of this failure, the above results reveal a 

remarkable characteristic of the parameter k. The result for k=3 cor­

responds to that of the precisest partition and the result for k2: 8 

corresponds to that of the roughest partition of the points. From 

this one can see that the parameter k indicating the size of neighbor­

hood has a function as a measure representing the degree of roughness 

or preciseness of partitions. 

We next consider the problem bf multidimensional clusters. As is 

mentioned in Section 7.1, clusters of high dimensions are difficult 

to consider directly, since no rigorous definition of a cluster is 

available. In order to avoid this difficulty, we here assume that all 

clusters satisfy the four conditions proposed in Section 7.3.3 inde­

pendently of the dimensionality. If the above assumption is accepted, 

our algorithm applies to every type of data, and reasonable results 
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are expected to be obtained. It seems, however, that the touch between 

clusters needs to be considered again, since there is a little doubt 

on the performance of the 5-touch in the case of multidimensional 

clusters. At a first glance it may be seen that the higher the dimen­

sion of data becomes, the more neighbors need to be referred, so that 

the S-touch defined by using a fixed number of neighbors does not work 

well. As a matter of fact, however, the 5-touch can be expected to show 

rather reasonable performance independent of the dimensionality, as is 

seen in the following. Let us take the point sets in Fig. 7.11 as 

examples. The point sets in (a) and (b) are similar to each other 

except for the dimensionality. According to our algorithm the two 

clusters in (a) are determined to be in S-touch with each other, while 



those in (b) are determined not to be in S-touch with each other. 

However, it is natural for man to regard the clusters in (a) as being 

in touch with each other and those in (b) as not. Moreover, 3-dimen­

siona1 globular clusters seem to be more likely to be regarded as inde­

pendent of each other than 2-dimensiona1 ones do. From the above 

discussion, it may be said that high dimensional clusters generally 

seem to be more compact than low dimensional ones do. Therefore, our 

k-touch·can be a rather efficient measure representing the degree of 

touch between point sets by using a constant k independent of the 

dimensionality of data. 

7.5 CONCLUSION 

In this chapter, we have proposed a nonparametric algorithm for 

detecting clusters. The algorithm has been constructed by introducing 

hierarchical structure into data set based on the potential which is 

an efficient measure of point density. It has been shown that our 

algorithm is applicable to a wide range of data, and, though not com­

plete, it can detect every type of clusters that man usually detects. 

Its flexibility has been also demonstrated. 
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CHAPTER 8 

CONCLUDING REMARKS 

In the present thesis, several estimation and learning algorithms 

have been studied, which are summarized as follows: 
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Chapter 2 has been concerned with the supervised nonparametric 

learning. By developing an algorithm for finding one of the optimal 

solutions of linear inequalities, a design algorithm of a piecewise 

linear discriminant function (PLDF) is obtained. A PLDF can approximate 

every kind of decision surfaces, so that our algorithm applies also 

to complicated pattern distributions. 

Chapter 3 has treated non supervised signal detection. Two adaptive 

signal detectors converging to the optimal machine are constructed 

without knowing the probability of signal occurrence. 

Chapter 4 has handled the problem of self-learning of a finite 

mixture. By extending the learning mechanism of DDM (decision-directed­

machine), nonsupervised algorithm called WDDM (weighted-decision­

directed-method) has been proposed. WDDM has a very simple structure 

and a great ability to decompose a finite mixture independent of the 

dimensionality of the mixture. 

The last three chapters have dealt with non supervised nonpara­

metric learning. In chapter 5, by restricting the discussion to the 

two-categry problem, a learning algorithm of a linear discriminant 

function (LDF) has been constructed. Our LDF works well even wher- the 

a priori probabilities are unknown, since the threshold value of the LDF 



is so determined that the decision surface pass through the neck 

between the two pnttern distributions of interest. 

Chapter 6 has treated nonsupervised nonparametric learning in 
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the multi-category problem. In order to design a discriminant function 

without memorizing patterns, an algorithm for estimating one of the 

modes of multimodal and multidimensional probability density function 

has been obtained. The efficiency of our mode estimation algorithm 

is demonstrated by applying it to nonparametric signal detection. 

Chapter 7 has been concerned with cluster detection problem. 

Cluster detection is essentially a kind of nonsupervised nonparametric 

learning based on the stored sample pa.tterns. In this chapter an 

efficient cluster detection algorithm has been obtained. It has been 

shown that the algorithm has a great abilitY,to detect almost all types 

of clusters. 

The author has been felt attracted to the problem of learning 

since he entered the graduate school. 

Learning is an excellent function of human information processing 

and plays a prominent role in 'intelligence'. In spite of its impor­

tance the human learning mechanism is not known clearly, However, 

the purpose of learning can be defined as the extraction of some 

necessary information for a certain aim from a given stimulus. In 

pattern recognition, the stimulus is a set of sample patterns and the 

aim is to design a discriminant function. Then, the learning problem 

in pattern recognition is how to obtain a discriminant function having 

a low probability of misclassification from the given sample patterns. 

Viewing 'learning' as described above, the author has made a 



constant effort to study the learning problem in pattern recognition 

and obtained several results presented in "this thesis. He believes 

that this thesis makes a steady step toward the completion of the 

theory of learning, particularly nonsupervised learning in pattern 

recognition. 
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