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Abstract

The integration density of VLSI (Very Large Scale Integration) is steadily increasing
every year, and the pérformance of VLSl is also improving. In the year 2012, feature
size (design rule), highest clock frequency, and density on microprocessor chip are
predicted as 0.05 pum, 10 GHz, and 1.4 Billion transistors, respectively. Then, an
Application Specific Integrated Processor (ASIP), which contains a CPU core and
peripheral circuits, will also include large memory units (for instruction and data)

on the same chip by using Deep Submicron Technology (DSM).

However, as the size of design increases rapidly, the time and effort to design
the ASIP would exceed the ability of designers. As a result, so called “design
productivity erisis” will become a serious problem. Furthermore, an ASIP would be
not only a large hardware system but also a very complicated one, which is composed

of large amount of hardware and software components.

One of the key issues in the ASIP design is the optimization of instruction set
architecture and CPU architecture. Because the performance of an ASIP is heavily
affected by the choice of these architectures, it is essential to select an optimum
instruction set architecture and CPU architecture under given design constraints.
Consequently, in order to develop an ASIP with specific instructions, it is necessary
to generate a set of software tools to develop application programs, which includes
a compiler, an assembler and a debugger. These software tools would require a long

term effort to develop manually even if efficient software generation tools were used.

Another important problem is the optimization of architecture including memory
units in the ASIP. Because the clock frequency of CPU core is usually higher than the
access cycle frequency of on-chip memories and is much higher than that of off-chip

memories, fast cache memories are required between CPU core and on-chip memory,



and on-chip and off-chip memories, to fill the frequency gap. Furthermore, embedded
systems for specific application domain such as for multimedia processing, require
huge memory space, then additional external memory would be indispensable to
realize such application systems. However, fast and large memory is very expensive.
In order to satisfy these requirements, an optimization method to decide an efficient

on-chip memory configuration is required.

In an ideal ASIP development environment, the optimization of ASIP architec-
ture should be performed automatically. While many of high-level synthesis systems
concentrate on generating hardware design of ASIPs, most of them do not employ

any mathematical methods to optimize system architectures.

In this thesis, a method to optimize the design of ASIPs including on-chip mem-
ories is proposed. First, a design framework to optimize the ASIP architecture is

introduced. Then, an optimization method of on-chip memory for ASIP is described.

The proposed method was realized as PEAS-I (Practical Environment for ASIP
Development - type I), which is a hardware/software codesign system for ASIP
development. PEAS-I system can decide an optimum instruction set and its imple-
mentation method under the given design constraints taking advantage of analytical
results of application programs. Thus, PEAS-I system can reduce the execution time
of application programs, for example. Moreover, the performance of ASIP can be
improved by considering tradeoffs of the amount of hardware of the CPU core,

memory, peripheral circuits, etc.

The efficiency and effectiveness of PEAS-I system were confirmed through several
experiments. According to the experimental results, PEAS-I system gives accurate
estimation of the chip area and performance of ASIPs before the detailed hardware
design is completed. The experimental results also show that PEAS-I system is able
to generate both hardware design and a set of application program development
tools for a typical size ASIP within several hours. Then, the proposed effectiveness

of the design methodology was demonstrated through several design examples.

In the second half of this thesis, a performance optimization method is pro-
posed for hierarchical memory system in ASIPs, which consists of on-chip fast cache

memory, a large amount of on-chip ordinary memory, and a huge off-chip memory.
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Using the hierarchical on-chip memory system, the performance of an ASIP could
be improved up to 50 % compared to that with conventional cache memory system.

The performance optimization method includes hit-ratio prediction, write-back
penalty prediction and average memory access time estimation. From the experi-
mental results, it is known that the proposed method can decide an optimal configu-
ration of the on-chip memory much more efficiently than conventional optimization
methods based on the iteration of cache simulation. The proposed method can es-
timate the average memory access cycle very accurately for fully associative caches.
Even when the cache memory is non-fully associative, the performance of the on-
chip memory configurations obtained by the proposed method was found to degrade

only up to 5 % compared to that by the conventional cache simulation method.
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Chapter 1

Introduction

1.1 Background

The integration density of VLSI (Very Large Scale Integration) is steadily increasing
every year, and the performance of VLSI is also improving. In the year 2012, feature
size (design rule), highest clock frequency and density on microprocessor chip are
predicted as 0.05um, 10GHz and 1.4B transistors, respectively [1]. For example,
high clock frequency microprocessors are already developed or released [2] [3] [4] [5]
[6], and related technologies to achieve 1GHz clock operation for microprocessor are
being developed|7][8][9][10]. It is already possible to integrate a processor core and
memories, such as DRAM and SRAM on the same chip [11]. Then, an Application
Specific Integrated Processor (ASIP) [12], which contains a CPU core and peripheral
circuits, will also include a large amount of memory block (for instruction and data)
on the same chip by using Deep Submicron Technology (DSM). Throughout this
thesis, “ASIP” is defined as a Systems on a Chip (SOC) that contains a CPU core,
memory, and peripheral circuits.

ASIPs can be very effective when applied to specific domains of application such
as communication, digital signal processing, image processing, mechatronics control,
etc. The advantages of ASIPs are as follows:

(1) Better Cost-Performance.

(2) Design Flexibility.

(3) Higher Reliability.

ASIP can be used effectively in specific applications, such as embedded systems.

1



ASIP consists of highly functional blocks such as CPU, memory and peripherals,
where conventional ASIC (Application Specific Integrated Circuit) can be viewed as
one of peripherals of an ASIP.

One of the most distinguished features of ASIPs, compared to general-purpose
processor is that their instruction set are sometimes originally designed for specific
application domains in order to maximize the performance under the constraints of
chip area, performance, or power consumption. Secondly, on-chip memories often
play an important role in ASIPs. Where wide bandwidth and short access time of
these on-chip memories enhance the performance of ASIPs considerably.

Other important features of ASIPs, compared to general-purpose microproces-
sors, are that typical ASIPs are fabricated in smaller volume and the expected design
TAT (Turn Around Time) is much shorter than general-purpose microprocessor.

Considering these features, processor architecture design methodology based on
hardwére/software codesign method, which takes on-chip memory into account,

would be most suitable for designing ASIPs.

1.2 Design Methodology for ASIP Development

1.2.1 CPU Core Design

There are two possible approaches to develop a CPU core in ASIPs.
1. Reuse an existing CPU core [13] [14] [15] [16].
2. Modify an existing CPU core [17].

3. Design a dedicated CPU core by modifying an existing CPU core or from
scratch [18] [19] [20].

In the “general-purpose CPU core approach,” predesigned application program de-
velopment tools can be used. However, a general-purpose CPU core is not always
most efficient in specific applications because the instruction set and hardware re-
sources (such as register size, etc.) may not fit given application programs. More-
over, it is very difficult for application system designer to improve the design of

the general-purpose CPU, because abundant experiences and deep knowledge are

2



necessary for tuning the CPU architecture, and the redesign of application program
development tools are needed.

In the “modified CPU core approach,” a designer can change the architectural
papameters of existing CPU core to fit the target application, if the CPU core
description is given in an HDL (Hardware Description Language) and the designer
has a skill to improve the design using logic synthesis tools. This approach is based
on the concept of design reuse. But, generally, the detail CPU design is not always
disclosed as in an HDL description. Even if a synthesizable HDL design is available,
the license fee of the CPU design is very expensive. And specific compiler for
designed CPU core is needed as well as the dedicated CPU core approach, when the
instruction set architecture is changed to improve the performance.

In the “dedicated CPU core approach,” the CPU core that best fits the target
application or application domain under design constraints, such as performance,
hardware cost, power consumption, etc., can be provided by tuning the architectural
parameters. It is possible to design a CPU core suitable for the application or
application domain compared to a general-purpose CPUs. However, it is necessary

to establish following technologies.

1. Optimization of instruction set and hardware architecture for given application

programs.
2. Generation of synthesizable CPU core design.

3. Generation of application program development tools such as compiler, simu-

lator and debugger.

The instruction set optimization problems is studied in Refs. [21] [22] [23]. Datapath
synthesis and control logic synthesis techniques can be used to perform the CPU core
design generation. Application program development tools generation problems are
studied in Refs. [26] [20] [27] [28]. By integrating these technologies, the “dedicated
CPU core approach” would be able to generate more efficient CPU cores than the

“modified CPU core approach”.



1.2.2 On-chip Memory System Design

Because the clock frequency for CPU core is usually higher than the access cycle fre-
quency of on-chip memories and is much higher than that of off-chip memories, fast
cache memories are required between CPU core and on-chip or off-chip memories to
adjust the frequency gap [29]. Furthermore, embedded s'ystems for specific applica-
tion domain, such as multimedia processing, require huge memory space, additional
external memory would be indispensable to realize such systems efficiently.
Required memory size of instructions and working data set strongly depend on
the feature of the target application. Generally, the larger the portion of instructions
and data are stored in the on-chip miemory, the higher the system performance will
become. Hence, an efficient memory system, which is able to manage several kinds

of large on-chip memory and off-chip memory, is required.

1.3 Organization of the Thesis

This thesis is organized as follows.

In chapter 2, Flexible Servo Control Processor is introduced as a design case
study of ASIP including data memory.

In chapter 3, the aim and goal of the PEAS project are described, where the
requirements to ideal ASIP development environment are discussed. Then, the
assumptions and restrictions of the PEAS-T system are described. Next, the outline
of the implementation of the PEAS-I system is described. Finally, some experimental
results are illustrated.

In chapter 4, a performance optimization method is proposed for hierarchical
memory system in ASIPs, which consists of on-chip fast cache memory, a large
amount of on-chip ordinary memory, and a huge off-chip memory. The performance
of ASIP using the hierarchical on-chip memory system is evaluated first. Then,
experimental results of the performance optimization method includes hit-ratio pre-
diction, write-back penalty prediction and average memory access time estimation

are described.



Chapter 2

A Case Study of ASIP
Development

In order to achieve required performance, an ASIP can include specific instruction
set, on-chip memory and some peripherals. In this chapter, the usage of on-chip
memory in ASIP and the benefit of on-chip memory are explained with Flexible

Servo Motor Control Processor as an ASIP design example.

2.1 Background

Currently, many of servo motor control systems are manipulated by means of soft-
ware. However, conventional general-purpose microprocessors are not sufficient for
the application to servo motor control systems from several reasons.

One of the most serious problems of a conventional microprocessor based sys-
tem, when applied to servo motor control systems, is that such microprocessor is
not powerful enough to execute the feedback control algorithms in a reasonable
time duration. Then, frequent memory accesses to read parameters and to store
data from/to slower memory such as PROM and DRAM decrease the system per-
formance.

On the contrary, if the dedicated processor and memory is on a chip, the Flexible
Servo Control System (FSC)[30] can be effectively realized. In this system, various
kinds of servomotors, such as DC, AC synchronous, and AC induction motors, can
be controlled by the same kind of hardware with different control software.

In this chapter, the requirements to the FSC are described first. Then, the



architecture of the FSP-3 (Flexible Servo motor control Processor - 3)[31][32] is
proposed. Next, the implementation of the FSP-3 chip is illustrated. The FSP-3

has several advantages suitable for servo motor control applications.

2.2 Requirement to FSC

Generally, servo motor control algorithms consist of following feedback control pro-

cedures, as shown in Figure 2.1:
1. Current feedback control loop.
2. Velocity feedback control loop.

3. Position feedback control loop.

.................................................................

— PC VC [ CC | PuM SPD P
5 ADC fe
i CFL P
e et
M : Servo motor ADC: A/D converter

PC : Position control block  PVD: Position/Velocity detecter
VC : Velocity control block IE © Incremental encoder

CC : Current control block PFL: Position feedback loop
PWM: PWM signal generator VFL: Velocity feadback loop
SPD: Servo pre-driver CFL: Current feedback loop

Figure 2.1: Block Diagram of a Servo Motor Control System

Among them, current feedback control loop constructs the innermost loop, which

should be executed as quickly as possible in order to reduce the response time of
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the whole control system. A typical expected response time of this feedback con-
trol loop is about 25 microseconds. The calculation to be performed in this loop
includes complicated operations such as coordinate transformation using trigono-
metrical functions and multiplication.

On the other hand, the expected response times for the velocity and position
feedback control loops are, for example, several ten milliseconds and several hun-
dred milliseconds respectively. While these response times depend on specific ap-
plicét.ions, these are typically much longer than the response time for the current
feedback control loop. These two feedback control loops include multiplication and
division operations to calculate complex control parameters. Theoretically, these
three feedback control loops can be executed as communicating sequential tasks.

In summary, following functional requirements should be fulfilled to realize an
efficient FSC:

1. Fast trigonometrical operations.
2. Fast arithmetic operation including multiplication and division operations.
3. Fast task switching.

4. Memory accesses Reduction.

2.3 The Architecture of FSP-3

2.3.1 Architecture Outline

The architecture of the FSP-3 is based on the following RISC (Reduced Instruction

Set Computer) architecture with following features:
1. simple instruction set as shown in Table 2.1,

2. on-chip data memory and register file, which includes 16 bit 192 word data
memory to store control parameters and 32 bit 29 word registers as accumu-

lators,

3. two-stage pipelining.



Table 2.1: Instruction Set of the FSP-3

Mnemonic | Description

ADD Addition

SUB Subtraction

MUL Signed Multiplication
DIV Unsigned Division
SHR Arithmetic Shift Right
SHL Arithmetic Shift Left
AND Logical AND

OR Logical OR

NXOR Logical Not Exclusive OR

MOVP Move from PC Reg.

MOVU Unsigned Move from Reg. to Reg.
MOVS Signed Move from Reg. to Reg.
MOVM Move between Mem. to Reg.
MOVI Move Immediate Date to Reg.
JUMP Jump Conditionally

Harvard Architecture, which physically split instruction and data buses, is adopted
in order to broaden the bandwidth of instruction and data buses. The width of each
instruction, data and address buses is 16 bit.

The main features of the FSP-3 architecture are as follows:

1. A RISC concept and Harvard Architecture are adopted.

2. 32 bit arithmetic operations can be executed in one instruction cycle.
3. Fast parameter read/write is available.

4. Special operations, such as multiplication, division and trigonometrical func-

tions, are implemented as hardware.
5. A fast task switching mechanism is implemented.

6. Peripheral circuits, such as PWM (Pulse Width Modulation) signal generator

and counters, are included.



7. Cast operation, such as 32 bit to 16 bit and 16 bit to 32 bit, can be performed

by a register-to-register move operation.
8. The architecture is simple, comprehensive and easy to program.

The block diagram of the FSP-3 architecture is shown in Figure 2.2. The FSP-3

is constructed with the following six modules.

2.3.2 Control Module

The Control Module (CTRL_MOD) performs instruction fetch, instruction decode
and external RAM access, as well as the control of other modules. The task switching

control is also performed by this module.

2.3.3 Arithmetic and Logical Operation Module

The Arithmetic and Logical Operation Module (ALU_MOD) performs arithmetic
and logical operations. This module contains an ALU, a barrel shifter, a multiplier
and a divider. In order to perform trigonometrical operation, a sine look-up table
is implemented as 16 bit 512 word ROM.

In order to accelerate the task switching, four sets of dedicated register files are
included in this module. Each of three register files out of four is dedicated to one of
three feedback control tasks respectively, and the other one can be used to execute
another task such as interrupt handling. Each of these register files contains 32 bit

28 word registers.

2.3.4 RAM Module

In the RAM Module (RAM_MOD), 16 bit 192 word memory is supplied to store
parameters; and 16 bit 64 word memory is also supplied to communicate with Pe-

ripheral Module and 1/0 Module.

2.3.5 Peripheral Module

The Peripheral Module (PEPRIPHERAL_MOD) includes a PWM signal generator.

This module also includes counters used to detect the motor rotational position and

9



1/0_MOD » ADC, etc
o 1/0 ports
PERIPIERAL_MOD » tHotor
PWM Generator,
Counters
RAM_MOD
| Control sigﬁal
A
RAM < ?
ALU_HOD | CTRL_MOD

|

Inst. Data

ALU,
Multiplier,
Divider, etc

Y

Control signal

4 for test
i

TEST_MOD

[ 3

Accumlator

Test in Test out

Figure 2.2: Block Diagram of the FSP-3 Architecture
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the motor rotational velocity.

2.3.6 1/0 Module

The I/O Module (I/O_MOD) contains three 16 bit I/O ports and several special
purpose registers, which can be accessed from external devices. These registers
are used for communication with other external processors and peripherals without

synchronization.

2.3.7 Test Module

The Test Module (TEST-MOD) is used to detect the internal status and behavior
of the FSP-3 from outside of the chip. When the “Test Mode” is selected, RAM
and ROM can be accessed from outside of the chip, and the data values on internal

buses can also be monitored from outside of the chip.

2.4 Design Results of the FSP-3

The design results of the FSP-3 are summarized in Table 2.2; and the chip layout
is shown in Figure 2.3. The FSP-3 is able to execute most instructions in 100ns.
The FSP-3 has been designed using commercial silicon compiler GENESIL. The
chip was fabricated by using 1.0um CMOS technology from Toshiba Co. While the
FSP-3 consists of 143,230 transistors, the design time of the FSP-3 was only about
six man-months due to the use of the silicon compiler. The details of the design
time are shown in Table 2.3.

The dedicated instructions reduce the program code size and improve the per-
formance of FSP-3. And, as the on-chip data memory in FSP-3 reduces memory
accesses to slower memory, the total system performance is improved. Then, the
reduction of external memory access can achieve low power consumption of the

system.

11



Figure 2.3: The FSP-3 Chip Layout
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Table 2.2: Design Results of the FSP-3

Design time 1.0 CMOS
Clock Frequency 10 MHz
Transistor Count 143,230 Tr.
Number of Basic Instruction | 15

Instruction Execution Cycle | 2 clocks
Pipeline Stage 2 stage

Power Consumption (Est.) |29 W

Chip Size 13.0x12.7 mm?
Package Type 299 pin PGA
Design Tool GENESIL

Design time

6 man-months

Table 2.3: Design Time of the FSP-3

Work

Design Time

Architectural Design

1 month

Logic Entry, Module Generation | 4 months

and Floorplaning (on GENESIL)

Design Verification including
Test Vector Generation
(on GENESIL)

1 month

13




2.5 Consideration of ASIP Development

FSP-3, which is an example of ASIP include dedicated CPU core, memory and
peripherals, is effective system LSI to implement servo control applications. But
throughout the development of FSP-3 by “dedicated CPU core approach,” there are
following problems should be solved in the ASIP development.

1. System architecture optimization
The performance of ASIP can be improved by considering trade-offs of the
amount of hardware of the CPU core, memory, peripherals and so on. More-
over, the CPU architecture optimization for the target application domain is

the most important issue.

2. Software development
An ASIP is the complex system which contains hardware and software mod-
ules. Then, in order to develop the ASIP in short TAT, optimal hardware
and software modules automatical generation are required. Especially, the op-
timal software generation for specific CPU core is difficult without dedicated

software development tools.

According to the development of FSP-3, integrated design method and environment

for ASIP development is required.
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Chapter 3

ASIP Development Environment

In this chapter, a hardware/software codesign system for ASIP development PEAS-I
(Practical Environment for ASIP Development - type I) is described. PEAS-I system
can decide an optimum instruction set and its implementation method under the
given design constraints taking advantage of analysis results of application programs.
Thus, PEAS-I system can reduce the execution time of application programs.

The efficiency and effectiveness of PEAS-I system were confirmed through several
experiments. According to the experimental results, PEAS-I system gives accurate
estimation of the chip area and performance of ASIPs before the detailed hardware
design is completed. The experimental results also show that PEAS-I system is able
to generate both hardware design and a set of application program development
tools for a typical size ASIP within several hours. Then, the effectiveness of the
design methodology in PEAS-I system was demonstrated through realistic design

examples.

3.1 Aim and Goal of the PEAS Project

Most of electronic systems consist of hardware components and software compo-
nents. These systems have been partitioned into hardware and software components
by architects, then designed in detail by hardware and software engineers. In order
to achieve the highest performance design at the least hardware cost, it is necces-
sary to optimize the system at a higher level. However, the optimum solution of

this problem is not obvious for most architects and designers. Therefore, so far this
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problem has been solved by a talented architect based on his/her experience and
intuition. '

A hardware/software codesign is a method to design large and complex electronic
systems, such as ASIP which include hardware and software components. The
hardware/software codesign method consists of system design, hardware design and
software design. Optimization problems of an ASIP design can be classified into

three types as follows:

1. Highest performance ASIP design under hardware cost and power consumption

constraints.

2. Least hardware cost ASIP design under performance and power consumption

constraints.

3. Lowest power dissipation ASIP under hardware cost and performance con-

straints.

In order to perform the system optimization, it is necessary to establish the

following technologies:

1. Rapid prototyping: In order to estimate the performance, hardware cost and
other design quality metrics of the target system at an early stage of the design
process, the rapid prototyping at a high level of design abstraction is a key

issue.

2. Accurate estimation: This is another key issue for codesign method to avoide
miss-selection of architecture as well as to guarantee the optimality of the
solution. There is a trade-off between design abstraction level and accuracy
of the estimation. Therefore, it is necessary to develop a method to obtain an

estimation as accurate as possible at a higher design level as possible.

3. Optimal partitioning: This is main issue to define hardware and software
components of the system. The most important issue in solving optimization
problems to achieve an optimal design of ASIP. There are three levels for

partitioning process: process level, task/function level, and instruction level.
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The aim of PEAS project is to investigate and establish an ideal environment for
ASIP development. Several version of PEAS systems have been developed according
to this aim, such as PEAS-I, PEAS-II and PEAS-III. Especially, PEAS-I system,

which is the first implementation of PEAS concept, realizes following features:

1. Generate the highest performance ASIP hardware design as possible, where
performance and resource cost estimations before detailed design completion

would benefit the ASIP designers in making architectural decisions.

2. Generate software development tools for application programs simultaneously,
which will also benefit the ASIP system designer if application program devel-

opment tools are automatically generated.

In order to decide the optimum instruction set architecture on PEAS-I system,
several optimization methods were implemented such as IMSP-1 (Instruction ser
implementatin Method Selection Problem - type I)[22], IMSP-2[23], IMSP-3[24] and
IMOP (Instruction set processor and Memory Optimization Problem)[25].

There are several issues to be considered. The first issue is the architecture model
selection, that is, what kind of architecture is to be used for the given application.
There are many candidate architectures which might be suitable for the given ap-
plication programs. In the case of scalar architecture, the candidates would include,
for example, RISC, CISC, and their variations. In the case of parallel architecture,
there are superscaler and VLIW (Very Long Instruction Word) architectures to be
considered. It is not obvious which kind of architecture would fit best to the given
application and constraints.

The second issue is the detailed optimization of ASIP hardware. That is, what
kind of and how many computing modules and memory modules including register
file, are to be used in order to maximize the performance for the given application.
Generally, it is not easy to predict the chip area, power consumption, and perfor-
mance of an ASIP before the detailed design is completed. Therefore, it is very
important to obtain as accurate estimations of these results as possible at an earlier
stage of the design.

The third issue to be considered is how to provide a set of software tools for appli-

cation program development. Most application programs are written in a high-level
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programming language, such as C, Pascal or Fortran. When a high-level program-
ming language is used to describe the algorithms in the application, then a compiler,
an assembler; and a simulator are necessary to develop application programs. As al-
ready mentioned, it is not also an easy task to develop these software tools manually
even if good software generation tools were available.

The goal of the first stage of the PEAS project was to solve the above mentioned

three issues. That is, the current PEAS-I system goals are:

1. optimize the instruction set architecture for the given set of application pro-

grams and

2. generate application program development tools for the generated ASIPs.

3.2 Assumptions and Restrictions

Following assumptions were made to simplify the implementation of the system,
because the main objective of this research is to demonstrate that the proposed
method in this chapter is effective to generate both the ASIP hardware design and

application program development tools automatically.

3.2.1 Target Applications

PEAS-T is assumed to synthesize ASIPs for specific application domains. General-
purpose functionality is sacrificed for performance and efficiency. While the inputs
to most high-level synthesis systems are structural or behavioral descriptions of the
target architecture, PEAS-I system accepts a set of application programs written in

C language and associated data set as input.

3.2.2 Design Optimization

The optimization is done in terms of instruction set selection and implementation.
Maximizing the performance of an ASIP in executing the application programs
under the constraints of chip area and power consumption is the primary goal of
PEAS-I system. The secondary consideration is the efficient utilization of hardware

resources.
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3.2.3 Instruction Set Architecture

In the C language, operators and functions are treated apparently distinguished. In
the design of the instruction set, to establish a new concept to treat them uniformly
is needed. In the following description, “functionality” is defined as any of the
operators or functions in the C language, independent of their implementation.
The functionality set can be divided into two subsets: operators and functions.

The reasons are as follows:

1. It is easier for a C compiler to generate instructions corresponding to operators

than to generate ones corresponding to functions.

2. While the set of operators can be clearly defined, the set of functions including

user-defined ones cannot be given a priori.

Then, the set' of operators is divided into two subsets: primitive operators
and basic operators. The set of primitive operators is chosen so that any basic
operators or functions can be realized by a series of primitive operators. Thus, the

functionalities are divided into three classes as follows:

1. Primitive Functionalities
The Primitive Functionalities (PF) can be realized by minimal hardware com-
ponents such as ALU and shifter. The instruction set of the ASIP to be
generated by PEAS system includes all the functionalities in PF.

2. Basic Functionalities
The Basic Functionalities (BF) include the set of operators used in C language
except those included in PF. Each functionality in BF can be implemented by

one of the hardware modules, microprogram, or software subroutine.

3. Extended Functionalities
The Extended Functionalities (XF) include those that correspond to library
functions or user-defined functions. The functionalities in XF can be im-
plemented by one of complex hardware modules, microprogram, or software
subroutine. The hardware modules could be constructed as co-processors or

peripheral modules.
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3.2.4 Hardware Model

Only the CPU core of the ASIP is to be generated in PEAS-I. The instruction set
architecture model is based on the abstract machine model of the GNU C Compiler
(GCC) [33]. In this model, the full set of instructions that can be generated by
GCC is treated as a base for the instruction set architecture generator. According
to the classification of the functionalities which is described below, the full set of

instructions is divided into three categories:
e Primitive RTL (PRTL)
e RTL (BRTL)
e Extended RTL (XRTL)

Where RTL stands for the Register Transfer Language, which is the intermediate
language of GCC. The PRTL is always included in the ASIP instruction set as a
core. Any C program can be executed, using PRTL. The BRTL corresponds to other
operators in C language, and the XRTL corresponds to pre-defined or user-defined
functions. The BRTL and XRTL are optional.

The PRTL can be implemented by minimum hardware components and some
control logics. The BRTL and XRTL can be implemented in several ways. They
could be implemented by hardware modules, microprogram, software subroutines
using only the PRTL and part of the BRTL or XRTL. The minimum portion of the
generated CPU core is called the “kernel” which consists of an ALU, a 1bit shifter
and a register file. The kernel coressponds to Primitive operations.

The CPU core may include other functional units (FUs) auch as multiplier,
divider, barrel shifter and so on. Then, these FUs coresspond to Basic operations
and Extended operations.

The pipeline stages of the CPU core consist of following four stages:
(1) IF (instruction fetch and decode),
(2) EX (execution),
(3) MEM (memory access), and
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(4) WR (write back to register).

While each of IF, MEM and WR stages takes only one cycle, EX stage takes one or
more cycles.
Table 3.1 shows the PRTL, BRTL and XRTL that can be generated by PEAS-I

system.

Table 3.1: PRTL, BRTL and XRTL

class | category | functionality

PRTL | arithmetic | add, sub, and, ior, xor,
one_compl, neg,

ashll, ashrl, Ishll, Ishrl
transfer mov, set,

control jmp, nop, beq, bne, bgt, blt,
bltu, bge, bgeu, bleu, bgtu,
_ call, return

BRTL | arithmetic | mul, umul, div, mod, udiv,
umod, trunc, extend,
zero_extend, rotate, ashr,
ashl, Ishr, Ishl

transfer movpc

XRTL | arithmetic | abs, sqrt, ffs,

sin, cos, tan,

user-defined functions, etc.

3.3 Implementation of PEAS-I system

PEAS-I system consists of four subsystems: the Application Program Analyzer
(APA), Architecture Information Generator (AIG), CPU Core Generator (CCG)
and Application Program Development Tool Generator (DTG). The configuration
of PEAS-I is shown in Figure 3.1.

3.3.1 Application Program Analyzer (APA)

The APA profiles application programs with corresponding data sets. The output

of the APA includes an execution frequency count of operators and functions used
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Figure 3.1: Configuration of PEAS-I System
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in the application programs. The APA accepts application programs written in C
language and associated data. The execution frequency count of functionality is
measured by compiling the input programs and executing the programs with the
simulator. When a set of application programs are given, the profiled results of
each program are to be mixed with an appropriate ratio. A sample program and its

analyzed results are shown in Figure 3.2 and Figure 3.3, respectively.

#define ABS(X) ((X < 0) 7 (-X) : (X))

main()
{
int i, x, y, Z;
x=3; vy =12;
for(i = 0; i < 10; i++) {
X++; yHE;
x = psqrt(x, y);
}
}
int psqrt(x, y)
int x, y;
{
int a, b, result, dummy;
x = ABS(x); y = ABS(y);
if (x >= y) {
a=x; b=y;
} else {
a=y; b=x;
}
result = ((@a *x 7) + (b * 7)) > 2;
dummy = result & 0x00000001;
result = (result / 2) + dummy;
if (a > result) result = a;
return(result);
}

Figure 3.2: A Sample Input Program for APA
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kernel 704
mulsi 10
umulsi 0
divsi 0
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## Number of F’ty 744
## Execution time 904 clock

Figure 3.3: The Output Result of the APA

24



3.3.2 Architecture Information Generator (AIG)

The AIG accepts the profiled results from the APA, and decides the instruction
set architecture of the ASIP. This task can be performed by tuning parameters in
the architecture models for the instruction set and CPU core, so that the perfor-
mance of the ASIP can be statistically maximized regarding the given application
programs under the constraints of chip area and power consumption. An example

of architecture information is shown in Figure 3.4.

#deifne IBUS 32
#tdeifne DBUS 32
#deifne REG 8
#deifne MOVPC 0
#deifne MULT 1
 #deifne DIV 0
#deifne SHIFT 1
#deifne EXTEND O
#deifne TRUNC 0
#deifne ROTATE O

Figure 3.4: An Example of Architecture Information

Out of the full set of instructions which include BRTL and XRTL, the AIG selects
an optimum instruction set that maximizes the performance of a given application
program. PRTL with the selected subset of BRTL and XRTL implemented by
hardware represents an optimum instruction set of the designed ASIP. This problem
can be formalized as an integer-programming problem and can be solved, using a
branch-and-bound method.

In order to decide the optimum instruction set, AIG uses a design method based
on a combinatorial optimization technique which formulates the Instruction set im-
plementation Method Selection Problem (IMSP). Three types of IMSP problems are
solved by AIG to support PEAS-I system as follows:

1. IMSP-1 [22]: A design problem that considers the performance of the chip as
the main factor in the design and tries to maximize it under the constraints

of the chip area and power consumption. This problem does not take the
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function module sharing among operations into consideration. IMSP-1 was

formalized as an integer programming problem.

2. IMSP-2 [23]: A design problem that considers the performance of the chip as
the main factor in the design and tries to maximize it under the constraints of
the chip area and power consumption. This problem takes into consideration
the functional module sharing among operations. IMSP-2 was formalized as a

comninatorial problem.

3. IMSP-3 [24]: A design problem that considers the hardware resources as the
main factor and tries to minimize them under the constraints of chip perfor-
mance and power consumption. IMSP-3 was formalized as a comninatorial

problem.

One of the advantages of using a formal optimization method to design the
instruction set is that the performance prediction of the designed ASIP can be done
before the completion of detailed design. This prediction feature is very effective in
designing a high quality design of ASIP in a short TAT. Here, the unit of MFPS
(Million Functionalities Per Second) is defined to measure the performance of ASIPs
as follows:

i1 fi

MFPS =
e fixt

x F ' (3.1)

where

n denotes the total number of functionalities,

fi denotes the execution frequency count of functionalities #t,

t; denotes the execution cycle of the modules that implements the functionalities
#i and F denotes the clock frequency in MHz.

MFPS represents the normalized performance of the target CPU. In order to
evaluate the performance of the CPU when the design constraints are changed, the
estimation in MFPS is useful. When such estimation is performed, the total results
of area and power consumption are obtained by calculating the sum of each value

that is taken beforehand for each hardware module.
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3.3.3 CPU Core Generator (CCG)

In PEAS-I, the generated architecture is based on the pipelined Harvard Architec-
ture. In order to generate the CPU core design description easily, implementation
method of each instruction, size of register file, and bus width are parameterized.
In the following discussion, instruction- and data-bus widths are both fixed to 32
bit. Register count in the register file is assumed to be given by the designer. To
facilitate the generation of the CPU core design, the method to add a necessary
pre-designed hardware module for the framework of CPU core is adopted.

CCG generates the CPU core design in the form of an HDL using the archi-
tecture information obtained by the AIG. Then, the actual CPU core design can
be obtained by compiling the HDL description using a logic synthesis tool. In the
current implementation, SFL[34] description is used as the final output of CCG.
The actual desigh (netlist description) can be synthesized by the PARTHENON
system[35][36] from NTT.

3.3.4 Application Program Development Tool Generator (DTG)

DTG generates a set of application program development tools, which includes a C
compiler, an assembler and a simulator. These tools run on a workstation to develop

ASIPa and their application programs.

1. C compiler
PEAS-I system generates a C compiler for the ASIP synthesized by PEAS-
I. This task can be performed by assigning values to the parameters in the
“md” file and the header files in GCC. The “md” file defines the instruction
set architecture information such as instruction patterns, and the header files
define other architecture information, such as bus width, register configuration,
etc., of a target CPU. The C compiler generator of PEAS-I consists of the “md”
file generator and the header file generator, which generates “md” and header

files respectively, from the architecture information decided by AIG.

2. Assembler

The assembler generated by PEAS-T system translates the intermediate lan-
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guage (RTL) into the binary machine code for the synthesized ASIP CPU.
The assembler is generated as a C program and is compiled because it should
take the architecture information into account. It is possible to construct the
assembler as a kind of interpreter, but a compiled program will be much more

efficient.

While the GCC takes care of the code optimization, in the current implemen-
tation of PEAS-I, the generated C compiler only takes care of the intermediate
instruction (RTL) generation and register assignment optimization. Then, the
assembler translates the RTL code into machine code, where such RTL instruc-
tions that are not directly implemented by hardware modules are expanded

into a sequence of directly implemented machine instructions.

3. Simulator
A simulator is also generated by PEAS-I system, because the simulator should
also take into account the architecture information such as the valid instruc-
tions and register count. The simulator is able to report the performance
profile of the application program, such as total execution cycles, execution

frequency of each instruction, etc.

The simulator diagnoses the machine code generated by the assembler so that
possible defects of the implementation of PEAS-I system can be recognized;
this feature was found to be very effective in developing the whole PEAS-I
system. These tools can also be used for tuning PEAS-I system as well as for

developing the application programs of the target ASIP.

3.4 Preliminary Experiments

3.4.1 Objective

Several experiments have been performed to confirm the effectiveness and efficiency

of PEAS-I system, which include the following observations:

1. Estimation accuracy of gate count and performance:

Obtaining accurate estimations of gate count and performance before logic
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synthesis is essential in achieving a high quality design in short TAT.

2. Architectural adaptability of the generated ASIP CPU:
PEAS-I system should generate an appropriate architecture for the given ap-

plication under the design constraints.

3. Computational efficiency:

Short design TAT is quite important to develop ASIPs.

3.4.2 Sample Programs

The sample programs used in the experiments are as follows:

1. NORM: A program that calculates an approximate integer value of /22 + y?,

where z and y are both integers.

2. FPE: A floating point emulator program, which emulates floating point -+, -,

* and / operations using integer arithmetic and shift operations.

3. GCD: A program that calculates the GCD (Greatest Common Divisor) using
Euclid’s method.

These programs were fed to the APA to get the execution frequency count of
each instruction. Parts of the execution frequencies of operators in these programs
are shown in Table 3.2. In this table, “kernel” represents the minimum hardware
modules, which consist of an ALU, a 1-bit shifter and some control logic to imple-
ment the PRTL mentioned in Section 3.2.4. The “mul”, “ashl”, “Ishr” and “div”

represent multiply. arithmetic left shift, logical right shift, and division, respectively.

3.4.3 Experiment

In this experiment, NORM program is used as an input application program. Ac-
cording to the execution frequency count shown in Table 3.2, a barrel-shifter and a
hardware multiplier are known as hardware component candidates which could be
included in the target CPU core. The specifications of part of the computing mod-

ules are shown in Table 3.3. Where “b_sht” denotes a barrel-shifter, and “mul_1",
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Table 3.2: Relative Execution Frequency of each Operation in Sample Programs

Instruction execution count (%)

, FPE | NORM | GCD
PRTL Operations 95.1 944 | 93.9
multiplication 0.4 14 0.0
barrel arithmetic shift 3.7 4.2 0.0
barrel logical shift 0.8 0.0 0.0
division 0.0 0.0 6.1
others 0.0 0.0 0.0

“mul_17” and “mul_32” denote multipliers that execute a 32 x 32 bit multiplica-
tion in 1, 17 and 32 clock cycles, respectively. Accordingly, there are eight different
effective CPU core designs (A through H) for this application as shown in Table 3.4,

Table 3.3: Specification of part of Computing Modules

module | gate | power execution | implied
name | count | (mW/MHz) | cycles instruction
kernel | 15809 - 59.88 1 | PRTL
mul_1 7781 30.16 1 | mul, umul
mul_17 | 3924 16.15 17 | mul, umul
mul 32 | 2938 12.38 32 | mul, umul
b_asht 852 3.37 1 | ashr, ashl
b_lsht 844 3.32 1 | Ishr, 1shl
b_alsht 855 3.82 1 | ashr, ashl,
Ishr, Ishl
div_19 7095 28.25 19 | div, udiv,
mod, umod
div_35 5334 21.50 35 | div, udiv,
mod, umod

3.4.4 Estimation Accuracy

Using the NORM sample program, the gate count and performance of each of the
CPU core design A through H in Table 3.4 were estimated and shown in Table 3.5.

Power consumption constraints were ignored to simplify the experiment combina-
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Table 3.4: Eight Possible CPU Core designs for NORM Application Program

design | constraint

kernel

kernel + b_sht

kernel + mul_32

kernel + mul_17

kernel + mul_1

kernel + b_sht + mul_32
kernel + b_sht + mul_17
kernel + b_sht + mul_1

T QT m| O Q| W

tions. These designs were synthesized, using PARTHENON and cell library VT1.lib
from VLSI Technology Inc. Then, their execution cycles were measured, using the

simulator.

1. Gate Count Estimation
Part of the estimated gate count is compared with the measured values in
Table 3.5. From this table, each estimated gate count was found to be very
accurate — at most 3.4% different from the measured value. This is because

the estimation is performed using already optimized modules.

2. Performance Estimation
The estimated and measured performances are shown in Table 3.6. The esti-
mated performances were found to be fairly accurate: at most 256% different
from the measured value. It is also observed that the more the functionali-
ties are implemented by hardware modules, the more accurate the estimation
becomes. The reason behind this phenomenon can be interpreted as follows:
when a BRTL or an XRTL operation is implemented by software subroutine,
the execution cycle of the instruction can distribute on a certain range. Note
that the execution cycle of a PRTL is a constant, because it is implemented

by hardware module.
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Table 3.5: Comparison of Estimated and Actual Gate Count

design | (a) (b) | error (%)
A 15809 | 15809 0.0
B 16653 | 16678 0.11
C 16661 | 16685 0.14
D 16664 | 16700 0.21
E 19599 | 19218 1.90
F 19602 | 19221 1.98
G 20588 | 20121 2.32
H 24445 | 24707 1.06

(a) estimation (b) measurement

Table 3.6: Comparison of Estimated and Measured Performance

design | (a) | (b) | error (%)
A 4.04 | 4.61 12.3
B 440 5.23 15.0
C 6.41 | 6.54 13.0
D 737 | 7.87 6.3
E 7.95 | 7.27 9.0
F 8.99 | 8.99 0.0
G 9.45 | 9.45 0.0
H 10.0 | 10.0 0.0

(a) estimated average (b) measurement

3.4.5 Architectural Adaptability

All three samples to confirm the adaptability of PEAS-I system are designed. Figure
3.5 summarizes the performances of NORM, FPE and GCD sample programs for
different gate count constraints. From this figure, it is known that PEAS-I system
adaptively generates ASIP CPU cores according to the features of applications. That

is:

1. The more the constraint is relaxed, the better the performance of the ASIP

becomes.

2. PEAS-I system generates different architectures for different applications even

32



if gate count constraints are the same.
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Figure 3.5: Comparison of Performance Estimation and Measurement

3.4.6 Efficiency

The efficiency of PEAS-I system can be evaluated by measuring the total computa-
tion time to generate the HDL description of an ASIP and to generate application
program development tools. PEAS-I system was found to be very efficient. For ex-
ample, typical computation times for APA, AIG, CCG and DTG to generate a 20K
gate ASIP CPU and its software tools were a few minutes, 1 second, 3 hours and 20
minutes, respectively, on an NS SUN4/40 (about 15.8 MIPS as fast). Thus, the total
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computation time of PEAS-I system to synthesize the 20K gate ASIP hardware and
software tools would be at most 3.5 hours, which is remarkably short compared to

conventional ASIP design methodologies.

3.5 Effectiveness Evaluation

3.5.1 Experiments

Five sample programs have been used in the experiment as shown in Table 3.7.
The input/output data and internal operations of the sample programs are both of
integer type. The features of general-purpose CPUs for this experiment are shown

in Table 3.8. The general-purpose CPUs are classified into three classes:

1. Old generation (non-pipelined scaler processor), which includes Motorola MC68030
and Intel 386SX,

2. New generation (pipelined scalar processor), which includes Intel 486DX, MIPS
R3000, etc.,

3. Latest generation (super-scaler and super-pipeline proceossor), which includes

Intel Pentium, Sun Microsystems SuperSPARC, etc.

Table 3.7: Sample Programs

Sample Description
ADP | ADPCM Decode/Encode (256 data)
DCT | Discrete Cosine Transform (8 points)
FFT | Fast Fourier Transform (128 points)
HUF | Huffman Decoding (100 char.)
PAR | PARCOR Filter (128 data)

The execution time of Intel 386SX, IBM 486SL.C2, Intel 486DX and Intel 4861DX2
has been measured using DOS Extender (GO32). The execution time of other
general-purpose CPUs has been measured on workstations when the load average

was low. The compiler used in this experiment was GCC except for MIPS R3000
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Table 3.8: General-Purpose CPUs

CPU Clock Freq. | Cache Size [Kbytes] Used machine
[MHz] | Primary | Secondary

PEAS 16 0 0 | Simulator
MC68030 20 0.5 0 | Fujitsu S-3/80
i386SX 16 0 0 | Toshiba J3100
i486DX 33 8 128 | IBM PS/V
1486DX2 66 8 128 | Gateway P4D-66
IBM486SLC2 66 16 64 | SusTeen WinMaster66i
R3000 32 0 128 | Kubota Titan750
R6000 60 80 512 | MIPS RC6280
SPARC 40 0 64 | Fujitsu S-4/2
microSPARC 50 6 0 | Fujitsu S-4/LX
Pentium 60 16 256 | Gateway P5-60
SuperSPARC 40 36 0 | Sun SPARCStationl10
R4000PC 80 16 0 | NEC EWS4800/310
R4400PC 133 32 0 | NEC EWS4800/330
PA-RISC 66 0 384 | HP9000/730
Alpha21064 150 16 256 | DEC3000/300
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and DEC Alpha21064. For latter CPUs, CC has been used because GCCs for these
CPUs were not available.

PEAS-I system generates the CPU core under the following design conditions:
(1) target clock frequency is 16MHz and (2) Cell library is VSC470 (0.8m, CMOS).
When a CPU core requires multiplication and/or division instructions, a multiplier
which executes 32-bit signed-fixed-point multiplication in 1 cycle, and a divider
which executes 32-bit signed-fixed-point division in 17 cycles are used. The execution
timme of PEAS-I CPUs was measured by using a simulator. The simulator reports

the execution time including the pipeline interlock delay.

3.5.2 Results

The execution frequencies of functionalities of each sample program are shown in
Table 3.9. Where “mul”, “div”, “shift” and “extend” correspond to multiplication,
division, barrel-shift and sign extension instructions respectively. And “kernel” cor-
responds to primitive instructions such as load, store, branch, etc. Table 3.10 shows
the specification of PEAS-1 CPUs. Table 3.11 compares the execution time of sample
programs on a PEAS-I CPU and general-purpose CPUs.

Table 3.9: Execution Frequency of Functionalities (unit[%)])

Category | ADP | DCT | FFT | HUF | PAR
kernel 894 8.8 | 83.6 | 89.5| 74.2

mul 0.0 7.1 8.0 0.0 | 189
div 0.0 0.0 0.0 0.0 3.1
shift 9.3 7.1 8.4 9.6 3.5
extend 1.3 0.0 0.0 0.9 0.3

The following observations are obtained from the experiment results.

1. Comparison to old generation DPrOCESSOrs:
Because the PEAS-I CPU performs pipeline processing, it might be obvious
that PEAS-I CPU is more efficient than old generation processor. However, the
comparison 1s significant because these processors are often used for embedded

applications. Throughout the samples, the execution time of the PEAS-I CPU
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Table 3.10: Specification of PEAS-I CPU

Sample | Reg. Count | Exec. Cycle | Gate Count

ADP 19 36610 21214

DCT 22 123 30204

FFT 28 26574 32958

HUF 19 81727 21214

PAR 20 69744 35170

Table 3.11: Experiment Results

CPU PAR FFT HUF ADP DCT

@ B @] B @] 0] @] 6] @]
PEAS 4.4 1| 1.7 11 5.1 1 2.3 1| 7.7 1
MC68030 48.7 | 0.09 | 18.0 | 0.09 | 16.0 | 0.32 | 5.6 | 0.41 | 64.0 | 0.12
i386SX 33.1(0.13{16.3]0.10 | 31.1 {0.16 | 15.6 | 0.15 | 72.0 | 0.11
i486DX 841052 30057 31165 1.5 153 54143
1486DX2 411107 1.2(142] 19268 |0.77 299 2.9 2.66
IBM486SLC2 | 4.6 | 096 | 1.6 |1.06 | 3.3[155| 14164 | 50| 1.54
R3000 56 1079 12142 24213088261 | 54143
R6000 451098091187 1.7(3.00|0.57|4.04| 1.2]|6.42
SPARC 14.1 1031 | 3.5(049| 25204 |0.71|324| 87]|0.89
microSPARC | 11.0 | 040 | 2.710.63 | 29176 | 0.61 | 3.77 | 45| 1.71
Pentium 2.6 1169065262 1.0|5.10|069|3.33| 23335
SuperSPARC | 10.3 | 043 | 2.0 085 | 1.7(3.00]0.46 |5.00| 1.1|7.00
R4000PC 321138061279 12425044 |5.23|0.76 | 10.1
R4400PC 1912321036 472070 7.29|0.28 | 821 |0.44 | 175
PA-RISC 3711191094 |1.81 | 1.3(13.920.52|4.42| 28275
Alpha21064 2511751031548 | 0.60 | 8.50 | 0.23 | 10.0 | 0.72 | 10.7

(b) Performance Ratio (Perf. of PEAS-I1 CPU/Perf.

(a) Execution Time [ms],
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is about 70% to 90% shorter than those CPUs i.e., PEAS-I CPU is 3 to 10
times as efficient as those CPUs. Moreover, the amount of hardware of the
PEAS-I CPU is much smaller than those of CPUs.

2. Comparison to new generation (pipelined) processors: -
The execution time of PARCOR filter on the PEAS-I CPU is shorter than new
generation CPUs. The reason is mainly due to the efficiencies of multiplication
and division in PEAS-I CPU. The execution time of other samples programs

on the PEAS-I CPU is roughly as same as that of new general-purpose CPUs.

3. Comparison to the latest generation processors (superscalar and super-pipeline)
The execution time of PARCOR filter on PEAS-I CPU is almost as same as
that of these processors. This is due to the difference of the execution time
of multiplication and division instructions. Especially, SuperSPARC dose not
has multiplication and division instructions, the execution time of PARCOR
filter and FFT is longer than PEAS-I CPU. The execution time of other sample
programs on the PEAS-T CPU is up to 17 times of those of these processors.

The general-purpose CPUs used in this experiment do not have high-speed hard-
ware multiplier or divider. Therefore, these CPUs are not suitable for execution of

application programs with high execution frequencies of multiplication and division.
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Chapter 4

On-Chip Memory System for
ASIPs |

In this chapter, a performance optimization method is proposed for hierarchical
memory system in ASIPs, which consists of on-chip fast cache memory, a large
amount of on-chip ordinary memory, and a huge off-chip memory. Using the hierar-
chical on-chip memory system, the performance of an ASIP could be improved up
to 50 % compared to that with conventional cache memory system.

The performance optimization method includes hit-ratio prediction, write-
back prediction and average memory access time estimation. From the
experimental results, it is known that the proposed method can decide an optimal
configuration of the on-chip memory much more efficiently than conventional opti-
mization methods based on the iteration of cache simulation. The proposed method
can estimate the average memory access cycle very accurately for fully associative
caches. Even when the cache memory is non-fully associative, the performance of
the on-chip memory configurations obtained by the proposed method was found
to degrade only up to 5 % compared to that by the conventional cache simulation

method.

4.1 Hierarchical On-Chip Memory System
The configuration of on-chip memory system is categorized as follows:

1. Cache Only Configuration (COC)
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2. Ordinary Memory Configuration (OMC)
3. Composite Memory Configuration (CMC)

The COC consists of fast cache memory only. The OMC consists of ordinary memory
such as SRAM and DRAM, without cache memory. The CMC consists of both
cache memory and ordinary memory. The configuration of CMC includes following

components:
1. cache memory,
2. ordinary memory,
3. external (off-chip) memory, and
4. TLB (Translation Look-aside Buffer),

where internal (on-chip) memory consists of cache memory and ordinal memory.

The features of this memory system can be summarized as follows.
1. Large amount of on-chip storage with access control logic is included.

2. On-chip cache memory works as a buffer among internal functional unit (such
as CPU core), on-chip ordinary memory such as DRAM and external (off-chip)

Memory.
The organization parameters for each component of CMC are as follows:
1. Cache Memory

e Block Size
e Number of Blocks

e Degree of Associativity
2. Ordinary Memory

o Bit Width
. N-umber of Words
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3. External Memory

o Bit Width
o Number of Words

4. TLB

e Number of Entries

4.2 Modeling the On-Chip Memory System

4.2.1 Hardware Cost and Performance Model

The hardware cost and the performance can be estimated by using the parameters

described in the previous section. Hardware cost can be estimated as follows:

Hardware_Cost = Clache_-Cost + Internal_Mem_Cost
+ TLB_Cost+ FExternal_Mem_Cost (4.1)
= hyx(Block_Sizex Number_of _Word)
+ hoxAssociativity
+ 7 x(Bit Widthx Number_of Word)
4 mx (log(Number_of _Word))
4+ txNumber_of _Entry
+ ex(Bit_-Widthx Number_of Word) (4.2)

where the dimension of the coefficients hq, ho, 71, 79, t; and e; is area per unit.

Then, the performance can be estimated as follows;

C = Ci+C+Cy (4.3)
T = ]C1X01+]€2X02+k3><03 (44)

where C is the total memory access count and 7 is the total memory access time.
Cy, Cy and C3 are memory access count of cache memory, internal memory and
external memory, respectively. Coefficients &y, k2 and k3 denote access times for

cache memory, ordinary memory and external memory, respectively.
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4.2.2 Assumptions

In order to evaluate the effectiveness of the memory system configuration, the exper-

iment, described in the next section, was carried out under following assumptions.

1. The hit-ratio of the instruction cache is high enough to ignore the effect of
instruction cache miss-hits. Because the program code size is small in most

embedded applications so that all instructions can be stored in the cache.

2. Both replacement strategies of cache and ordinary memory are based on an
LRU (Least Recently Used) method. In the experiment described in the next

section, the LRU algorithm is assumed to be an-ideal one.

3. The hardware cost of external memory is not counted, because the experiment

targets on the memory trade-off on a chip.

4.2.3 Preliminary Analysis

Let us consider the behavior of the system model. In the following discussion,
the hardware cost of the internal memory is fixed at constant K. In general, the
larger the cache size becomes, the higher hit-ratio can be expected and the average
memory access time can be reduced. However, as the proportion of cache memory
increases, the hit-ratio of ordinary memory becomes lower and the total miss-hit
penalty increases. Therefore, the optimal proportion of cache (S,) can be decided
by considering above-mentioned effects, where S,,; will be the optimal proportion of
cache. Please note that (1) the unit hardware costs of cache and ordinary memory
are different, and (2) S, depends on the sum of hardware costs of both cache and

ordinary memory.

4.3 Exffectiveness of Hierarchical Memory Sys-
tem

4.3.1 Experiment

In this section, the performance trade-off between the total memory access time

and the proportion of cache under given hardware cost constraint was examined
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using a simplified model of the memory system. In this experiment, following key
information has been investigated to estimate the hit-ratios of cache and ordinary

memory:
1. total access counts to cache memory,
2. total access count to ordinary memory, and
3. total access count to external memory.

Target core processor was assumed to be DLX[29]. A DLX simulator and its cross
C compiler[37] were used to obtain the bus trace information for this experiment.
This trace information was analyzed by dinero cache simulator[38]. Sample
programs used in this experiment were PVRG-JPEG[39], PVRG-MPEG[40] and
PVRG-P64(ITU-T H.264)[41] programs. The parameters used in this experiment

were fixed é,s foll<l)ws:

1. Let both block sizes of cache and bit width of ordinary memory be 256 bit

each,
2. Let bit width of external memory be 64 bit,
3. Let association method be a direct—mapping,
4. Let data replacement method be write-back,
5. Let memory access time kq, ko aﬁd ks be 1, 5 and 40, respectively, and

6. Let the proportion of hardware costs (area coefficients) r; of internal memory

to h; of cache be 1:10.

4.3.2 Experimental Results

Figure 4.1 through 4.6 show the results of memory access time v.s. the proportion
of the cache memory size, where S is the proportion of cache in the given hardware
cost constraint of internal memory size, then “X K” designates the hardware cost
constraint which means the hardware cost of X Kbytes cache. Figure 4.7 through

4.12 show the speedup of the memory configuration compared to the cache only
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configuration (COC). The speedup is defined by Eq. (4.5), where T(X) is the total

memory access time when proportion of cache is X %.

T(100) — T(X)
7/(100)

Speedup = (4.5)

In Eq. (4.5), T(100) is the total memory access time when COC was used.

4.3.3 Consideration

Experimental results can be summarized as follows.

(1) Execution cycles can be reduced for the same amount of internal memory by

using hierarchical memory configuration.
(2) Hierarchical memory configuration could reduce internal memory area.

(3) Proportion of cache memory in CMC must be decided carefully, taking into

account the size of working data set of target applications.
These results can be interpreted as follows:

(1) Performance Improvement

Figure 4.7 through 4.12 show the improvements of execution cycles when the
proportion of cache to the amount of internal memory of CMC was varied. In
this experiment, the optimal proportion of cache (S,,:) dropped between 25%
and 50%. The hierarchical memory configuration achieved up to 50% improve-
ment compared to a traditional cache only memory configuration (COC) in
execution cycles. The improvement ratio under tight hardware cost constraint
(that is, under tight internal memory area constraint) was generally larger
than that under loose hardware cost constraint. However, there were some
exceptions in this experiment. Execution cycles under the area constraint
that was equal to the 32 K byte COC had the largest speedup in P64 decode

program.
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(2) Memory size reduction

Figure 4.1 through 4.6 show the execution cycles v.s. cache proportion of CMC.
By choosing appropriate proportion of cache, CMC using less memory area
had a chance to achieve higher performance than COC with larger memory
area. For example, the CMC execution cycles of 1K byte cache and 30K byte
ordinary memory where cache proportion is 25% in internal memory area is
almost the same as the one with 32K byte COC for JPEG decoder program.
In this example, the hierarchical memory system, CMC with 4K byte cache
area achieved the performance of 32K byte COC. The performance of 16K
cache area CMC that had 8K byte cache and 80K byte internal memory was
almost equal to the performance of 64K byte COC.

(3) Decision of cache proportion
Sept depends not only on the hardware cost constraint but also on the feature
of target application. In order to realize optimal execution cycles under given
constraint, the decision of the most suitable cache proportion for target appli-
cation becomes indispensable step in design.

The reason behind this phenomenon can be explained as follows:

(a) Casel: Cache size is larger than the size of working data set.
Internal memory reduces the access count to external memory. The effect
of internal memory depends on the size of working data set of target
application. When cache size is much larger than the working data set,
ordinary memory has less advantage. In this case, whole working data set
can be stored in the cache and the access to the ordinary memory becomes
overhead. In this experiment, JPEG, MPEG and P64 required 34K byte,
404K byte and 386K byte for working data set, respectively. 128K byte
cache area constraint of JPEG and 1M byte cache area constraint of

MPEG and P64 are the case.

(b) Case2: Cache size is smaller than the size of working data set.

When cache proportion is much smaller, the cache miss-hit penalty will
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become dominant compared to the miss-hit penalty of ordinary memory.
The execution cycles also become larger in this case. 4K byte cache area

constraint of JPEG and 8K byte cache area constraint of other programs

are the case.

T [Cvcle]
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Figure 4.1: Performance v.s. Cache Proportion for JPEG Decode (128 X 128 pixels)
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Figure 4.2: Performance v.s. Cache Proportion for JPEG Encode (128 X 128 pixels)

47



5.E+07
el
el 4 BK
4 EHOT _.// - {16K
/'/:/ s 32K
* ol B 64K
g EHO7 T \-\&_‘,q_ P ——128K
S T —&— 56K
9. : B 51 2K
73BT | T T g M
3E+07 |
2 E+07 : : :
40 60 80 100

0 20
Proportion of Cache [%]

Figure 4.3: Performance v.s. Cache Proportion for MPEG Decode (4 frames)
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Figure 4.4: Performance v.s. Cache Proportion for MPEG Encode (4 frames)
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Figure 4.5: Performance v.s. Cache Proportion for P64 Decode (2 frames)
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Figure 4.6: Performance v.s. Cache Proportion for P64 Encode (2 frames)
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Figure 4.8: Performance Improvement for JPEG Encode (128 X 128 pixels)
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Figure 4.9: Performance Improvement for MPEG Decode (4 frames)

o4



Speedup [%]

{7 T p——

Figure 4.10

Proportion of Cache [%)

: Performance Improvement for MPEG Encode (4 frames)

%)



Speedup [%]

Proportion of Cache [%]

Figure 4.11: Performance Improvement for P64 Decode (2 frames)
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Figure 4.12: Performance Improvement for P64 Encode (2 frames)
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4.4 On-chip Two level Cache Memory System

4.4.1 Characteristics of On-chip Two Level Cache Memory
System

The structure of on-chip two level cache memory system is shown in Fig. 4.13. In
this memory system, it is assumed that all blocks in the primary cache memory are
contained in the secondary cache, and all blocks in the secondary cache memory are
contained in the external memory. Integration of two level cache with a CPU core

and peripherals on the same chip have following advantages.

e On-chip secondary cache memory is not necessarily a fast memory likes SRAM.
Even if it is the same device as the off-chip memory like DRAM, on-chip wide
bus-width enable data transfer to send/receive rapidly and the access time to

the on-chip DRAM is much shorter than that to the external memory.

e The performance can be optimized by tuning the proportion of on-chip primary
and secondary caches by using a profile of given set of application programs

under the given hardware cost constraint of on-chip memory area.

4.4.2 Qualitative Analysis of an On-chip Two Level Cache
Memory System

Let us consider the behavior of the on-chip two level cache memory system. In
general, the larger the proportion of primary cache memory is in the fixed on-chip
memory area, the higher hit-ratio to primary cache memory can be expected and
this may lead to the reduction of the average memory accesses time. However, if the
proportion of primary cache memory is too large in the fixed space, total on-chip
memory size (the number of blocks) becomes smaller due to the difference of the
unit costs between primary and secondary cache memories, then the access to the
low-speed off-chip external memory will increase unexpectedly. Hence, the optimal
proportion of two cache memories should be determined carefully by considering
such characteristics.

Because the behavior of cache memory is difficult to analyze, most of the conven-

tional optimization methods are based on simulation of memory system|[85][86]. If
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Figure 4.13: On-chip Two Level Cache Memory System.

simulation is iterated many times until the minimum point of the total access time is
found, we could obtain the optimal configuration of on-chip memory. However, this
takes enormous time, and are not time-efficient. Therefore, more efficient method

to solve the optimal configuration is required.

4.5 Hardware Cost and Performance Model

In this section, we describe the hardware cost and performance model of on-chip
two level cache memory system. We assume write back policy for both of primary

and secondary cache.

4.5.1 Hardware Model

In the rest of discussion, hardware cost is represented as gate count. Fig. 4.14 shows
assumed block diagram of cache memory model.

Table 4.1 shows parameters of cache configuration. The hardware cost of logic
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Figure 4.14: Block diagram of cache memory model.

part depends on the block size, block count and associativity of the parameters
shown in table 4.1. Therefore, we represent the hardware cost of the primary and sec-
ondary cache as Lcost,(BS;, BCy, W AY1), Lcosty(BS,, BCy, W AY;), respectively.

The hardware cost of memory part, Mcost, is the sum of the tag memory cost
(T'Mcost) and the data memory cost (DMcost). The tag memory cost can be

represented as follows.

T Mcost(tm, BS, BC) = tmxBCx Entry (4.6)

Entry denotes the bit count per entry of tag memory. Each entry includes dirty
bit, valid bit and tag address.

BSxBC

Entry = 2 + adr_bit — logg(——m

); (4.7)
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Table 4.1: Cache memory parameters.

BS Block Size (byte)

BC Block Count

WAY Associativity

tm HW Cost per Bit of Tag Memory (gate)
dm HW Cost per Bit of Data Memory (gate)

where adr_bit represents bit width of address.

The hardware cost of data memory can be calculated as follows.

DMcost(dm,BS, BC) = 8xdmx BSxBC (4.8)

From the above equations, the hardware cost of on-chip two level cache memory

can be represented as follows.

HWcost = L1_Cost(dm,, tm,, BS,, BC,, W AY})
+L2_Cost(dm2, th, BSQ, BCQ, WA}/'Q) (49)

L1 _Cost(dmi,tmy, BS;, BC;,WAY,) = Lcost,(BS:, BCi, WAY;)
+ Mecost(dmy,tm,, BS1, BCy) (4.10)
L2_Cost(dmg,tmy, BSy, BCy, WAY;) = Lcosty(BSy, BCy, W AY,)
+ Mecost(dmg, tme, BSs, BCy) (4.11)

4.5.2 Performance Model

When C and T denote total memory access count and total memory access time

respectively, C' and T can be represented as follows.

c = C . | (4.12)
T = TixCi+ToxCy+ Ty xClop
+ DT1XD01 + DTQXDCQ, (413)
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where C, Cy and C; are access counts to primary cache, secondary cache and main
memory, respectively. 77, T, and T, are access time to primary cache, secondary
cache and main memory, respectively. DT} and DT, are overhead time required to
write the block data to be replaced out of the cache should be written back to the

lower memory. DC, and DCj is write-back counts on primary and secondary cache.

4.6 Performance Optimization Method

4.6.1 Estimation of Average Memory Access Time

First, when H; and H, denote hit-ratio to primary and secondary cache, average

memory access time can be represented as follows:

T = T1+T2X (1—H1)+TEEX (1—H1)(1—H2)
+ DT1XD1+DT2XD2, (414)

where H,; means local hit-ratio. D; and Dy denote probability of write-back on
primary and secondary cache, respectively.
Secondly, the condition for hardware cost constraint can be represented as follows

with models in Section 4.5.1.

Ll_Cost(dml, tml, BSl, BCl, SETl)
+ L2_Cost(dms,tms, BSs, BCy, SET) < Cost (4.15)

where Cost means hardware cost constraint(gate count).

Next, suppose that a cache memory size, block size and a memory access sequence
are given, the hit-ratio to the cache memory can be uniquely determined if other
parameters of the cache memory, such as write policy, block size, associativity, and
replacement policy, are fixed. Then, we suppose that a function hit(blockcount)
returns the hit-ratio to the cache memory possessing the given block counts under
fixed parameters. Using this function, hit-ratio of primary cache memory, Hy, is

represented as
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H, = hit(BCy). (4.16)

When H;, denotes the hit-ratio of on-chip memory, Hi, can be represented as

follows.

H12 = H1 + (1 - Hl)XHQ (417)

Since all the data in the primary cache is contained in the secondary cache, H

is equal to the hit-ratio of cache memory whose block count is BC,. Therefore,

From Eq. (4.17) and (4.18), we have

(1 — Hy)xH, = hit(BCs) — hit(BCY). (4.19)

As Dy and D, is determined by primary and secondary cache size, we assume

dirty() as follows.

Dy, = dirty(BCy) (4.21)

From Eq. (4.16), (4.19), (4.21) and (4.21), Eq. (4.14) can be represented as

follows.

S~
I

Ty+ Ty x (1= Hy) +Toy x (1— H)(1 — Hy)
+ DTy xdirty(BCh) + DTy xdirty(BCy)

Ty + (Ty + Top) x (1 — Hy) = Top x (1 — Hy)H,
+ DTy xdirty(BCy) + DTy xdirty(BC3)
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Ty + (T + Tep) x (1 — hit(BCh)) — Tey x (Rit(BC2) — hit(BCy))

+ DTy xdirty(BCy) + DTy xdirty(BCy)

Ty + Tox(1 — hit(BCL)) + T x (1 — hit(BCs))

+ DTy xdirty(BCy) + DT, xdirty(BC,) (4.22)

4.6.2 Algorithm

From Egs. (4.15) and (4.22), an optimal sizes of primary and secondary cache can
be found by searching the combination of two cache memory sizes to minimize the
average access time(7 in Eq. (4.22)), which satisfies the cost constraint Eq. (4.15).
The algorithm to find the optimal sizes are outlined in Fig. 4.15.

4.6.3 Hit-ratio Prediction

The remaining problem to calculate T in Eq. (4.22) is how to determine function
hit(). To caluculate hit() in Fig. 4.15 with cache simulator spends enormous time.

In this subsection, efficient implementation of function hét() is described.

In the following experiments, following assumptions are made.

1. Replacement policy is LRU (Least Recently Used).

2. Association method is fully associative.

When main memory consists of M blocks, the hit-ratio of cache memory can be

estimated by the following expression:

M-1
hit-ratio = Z Pi X q; (423)
i=0

where p; : probability that block 7 is accessed

g; : probability that block i exists in the cache memory

Let AC; denote the access count to block 7, then p; can be represented as follows:
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INPUT: HW cost constraint (Cost)
Block Size (BS:, BS2)
Associativity (WAY;, WAY>)
Access Time (Ti, T2, Tez)
Write-back Overhead Time (DT, DT5)
Memory Cell Size (dm1, dms, tmy, tms)
OUTPUT: Optimal Cache Size (Sopt1, Sopt2)
' Minimum Average Memory Access Time (Tmin)
Algorithm:
begin
BC, = 0;
BC, = L2BC(Cost);
Topin = To + Tex * (1 — hit(BC2)) + DTa*dirty(BCs);

Soptl = 0,
Sopt2 = BCa * BSy;
BC, = 1;

BC2 = L2BC(Cost-L1_Cost(dm,,tm1,BS1, BC1, W AY1);
while BC, < BCs do
begin
T=T1+ (Tz -+ Tem) * (1 - hlt(BCl))
A Ten * (h'it(BCz) — hit(BCl))
+ DT *dirty(BC1) + DTe*dirty(BC2);
if (T < Tynin) then
begin _
Tonin =T
Sopt1 = BC1 x BSy;
Sopt2 = BCQ * BS)
end
BC1++;

BC3; = L2BC(Cost-L1_Cost(dm,tmy, BS1, BC1, WAY1);
end
BC1 = L1BC(Cost);
BCy = 0;
Trpin =T1 + Teg * (1 — h'Lt(BC])) + DTz*diTty(Bcl);
if (T < Tynin) then
begin
Tmin = T;
Sopt1 = BC1 * BSy;
Sopt2 =0
end
end.
function L1BC(Budget)
begin
BC = 0;
whileL1_Cost(dmi,tm1, BS1, BCi, WAY1) < Budget do
BC++;
return(BC)
end;
function L2BC(Budget)
begin
BC = 0;
whileL2_Cost(dmz, tmg, BSy, BCy, WAY2) < Budget do
BC++;
return(BC)
end;

Figure 4.15: Algorithm to solve the optimal cache memory sizes.
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p; = AC;/C (4.24)

where C denotes total access count, i.e. C' = M1 AC;. Note that p; is independent
of memory size and other cache parameters, but g; is not. ¢; can be determined by

the following procedure. Let BA,; ; denote the kth access to blocks.

Stepl. For each BA,j (i=0,...M, k=1,..,AC; — 1), investigate the distances which
mean the number of different blocks been accessed between BA,; ;, and BA, x41.
Let DB, denote the distance of BA; .

Step2. For each i (¢=0,..,M), count the number of DB, ;’s (k=1,..,AC; — 1) which are
equal to j, and represent the number as AC;(j).

Step3. Calculate ¢;’s (i=0,..,M) by dividing the sum of AC;(j)’s by AC; where j is
less than the number of blocks in the cache memory, denoted as N.

Figure 4.16: Procedure to calculate g;.

The idea behind this procedure in Fig. 4.16. is as follows. The block stored in
the cache memory by a certain access becomes the least-recently-used block after
succeeding accesses to N — 1 difference blocks. Therefore, the block is replaced out
by the access that causes the next replacement of the memory. Hence, when the

cache memory consists of IV blocks, ¢; can be determined by the following equation:

N-1
Y AG()
4 = ———]_OAC- (4.25)

4.6.4 Example

We show an illustrative example to calculate hit(). Let us determine the function
hit() for the access sequence in the following order. The numbers represent accessed

blocks in the main memory (N=10, C=23).

g8 8 7 1 2 2 3 2 8 6 6 1 15 4 5 4 1 4 8 0 0 S
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First, AC; and p; are found from the trace data as follows.

|« ] o 1 2 3 4 5 6 7 8 9]
BC;| 2 4 3 1 3 2 2 1 4 1
pi | 2/234/233/231/233/232/232/231/234/231/23

Next, g; can be obtained as follows.

Stepl. The distances between BA;; and BA,,(1=0,..,9) are shown in the next
figure. The small numbers represent the distances.

9

6 5 0 0
] L N

From the above distances, DB; ;’s are calculated as shown in the following table:

Access Distances of BA,; ;.

block No. 1
DBix f001 2 3 4 5 6 7 8 9
1]0 4 0 - 1 10 - 0 -
El2l- 01 -1 - - - 4 .-
30- 2 - - - - o - 4 .

Step2. From the result of Step 1, AC;(7), access distances of block i, are calculated
as shown in the following table:

Access count table of block :.

| ) block No. 1
AGG) 0 1 2 3 25 6 7 8 9
0 /1 110001010
110010210000
il 210100000000
3100000000 TGO0O0
4101000000 2 0

Step3. ¢’s (i=0,..,9) are calculated by Eq. (4.25) and the above table. The results
are shown as follows:
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Probability that block i exists in the memory.

block No. i

i 0 1 2 3 4 5 6 7 8 9
0 O 6 0 0 0 O O 0 0 O
1{1/21/41/3 0 0 0 1/2 01/4 0
N|2|1/21/42/3 02/31/21/2 01/4 0
3(1/2 2/42/3 02/31/21/2 01/4 0
41/2 2/4 2/3 02/31/21/2 01/4 0
511/2 3/4 2/3 02/3 1/21/2 03/4 0

From the tables of p; and ¢;, and Eq. (4.23), the relation between the cache

memory size (number of block:M) and the hit-ratio is calculated as follows:

| M Jo 1 2 3 4 5 .- 10 ]
[hit() [0 5/21 9/21 10/21 10/21 13/21 --- 13/21]

The advantage of this method is that once AC;(j) is investigated on all blocks,
¢; can be calculated by only adding AC;(j). The proposed method can avoid the
re-investigation of AC;(j), even if the cache memory size is changed. Note that all
values BA;, AC;(j), AC; are given from profiling the application program by an

analyzer to be addressed in the next section.

4.6.5 Write-Back Prediction

In a cache memory with write-back policy, when the replacement of dirty block
(called write-back) occurred, the block should be write-back to the lower memory.
In this subsection, the prediction method of write-back count is described to consider

the overhead time caused by the write-back.
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The accesses to block 7 can be divided into read accesses and write accesses as
follows, where R and W represent read access and write access, respectively, and x

represent the access to any block except block 7.

..Xx Ri x..x Ri x..x Wi x..x Ri x..x Ri x..x Ri x..x Wi x..x Ri x..x Wi x..x..

Only when the write access are done, the block becomes dirty. Here, we divide
the accesses to block 7 into w; periods, and represent kth period as P, as follows.

w; represents the write access count to block i.

[ P i,0 i P i,1 H P i,2 "_P i3
X Ri x..x Ri x..x Wi x..x Ri x..x Ri x..x Ri x..x Wi x..x Ri x..x Wi x..x..

Next, we focus on period F;;. When the block count of the cache memory is
N, the dirty block in the period P, is not replaced from cache memory, unless the
access distances of the succeeding accesses to block ¢ exceed N — 1. Therefore, all
of the access distances in the period P, is less than NNV, write-back does not occur.
Also, once a write-back occurs, another write-back does not occur in this period,
because the block i is not dirty until the next write access to block i. Hence, when

the maximum distance in the period P4 is PD, , the following relations hold.

(1) if PD;y < N — 1 then write-back doesn’t occur,

(2) if PD;y > N — 1 then one write-back occur.

When PC;(j) is the number of period P, ;’s (k =0, .., w;) whose PD;; = j, the

write-back count to block 7 is as follows.

> POG) =i Y. POG) (426)

i=N
Therefore, when the main memory has M blocks, from Eq. 4.26, the write-back

count is as follows.

69



M~-1 M-1N-1
i=0 =0 j5=0
M-1N-1
=0 ;=0

where WC represents total count of write accesses.

4.7 Experiments

4.7.1 Assumptions

The following experiments were performed on the WS N EW S50000(200MHz). Ta-

ble 4.2 shows parameter values of on-chip memory system.

Table 4.2: Parameter values.

adr_it bit width of address 32 bit
word_byte | bytes per word 4 byte
BS; block size of primary cache 32 byte
BS; block size of secondary cache 32 byte
tmy cost per tag memory bit of primary cache 0.31 gate
tmo cost per tag memory bit of secondary cache 0.31 gate
dm, cost per data memory bit of primary cache 0.31gate
dms cost per data memory bit of secondary cache | 0.031 gate
T; access time of primary cache 2 cycle
15 access time of secondary cache 3 cycle
Tex access time of main memory 32 cycle
DT write-back overhead time of primary cache 4 cycle
DT, write-back overhead time of secondary cache 33 cycle

Some values
memory system model description. To solve the hardware cost of cache memory,

this description was synthesized by a logic synthesis tool. The hardware cost can be

estimated using following formula.
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of table 4.2 were determined based on the VHDL simulation of




B
1 42 x 1o, B2 B

LCOStl(BShBCl,WAYi) = 29X

W AY; W AY,
+261.2 x WAY, — 7.2 x WAY; x ZOQZ%%&
+ 8.1x BC, x WAY; — 5.3 x BCy +5716.5  (4.28)
Lcosty(BSs, BCy, WAY,) = 2.9 x lefié —42x lOggBCYV?/—j;YB;S'Z
2612 x WAY, — 7.2 x WAY, x zogfz%—z;i—&

8.1 x BCy x WAY; — 5.3 x BCy +4416.9  (4.29)

The hardware cost of single cache memory was larger than those cost due to its

intricate interface mechanism.

BC BC x BS

LCOSt(BS, BC, WAY) = 29X —I/I/—Ai; — 4.2 % loggw
BC x BS
+ 2612 X WAY = 7.2 X WAY x logy— >

+ 81x BC x WAY — 5.3 x BC' + 10336 (4.30)

4.7.2 Accuracy of Proposed Method

Table 4.3 shows the relation between hit-ratio and size of cache memory. Sample
application is a JPEG decoder program. The values in column 2 are the predicted
values, and values in column 3 are the results of cache simulation using dinero
simulator. From this table, it is known that function hit() returns very accurate
hit-ratio values.

Table 4.4 shows the relation between write-back count and cache memory size.
Where sample application is JPEG decoder program. From this table, the proposed
method of write-back prediction is found very accurate.

Fig. 4.17 shows the average memory access time obtained by the cache simulation
and by the proposed method. Both of the primary and secondary caches were fully
associative caches. The hardware cost constraint was 100 Kgate. This figure shows

that the proposed method solves average memory access time very accurately against
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Table 4.3: Relation between hit-ratio and size of cache memory — hit() v.s. simula-

tion.

Table 4.4: Relation between write-back count and size of cache memory — dirty()

v.s. simulation.

JPEG decoder program

cache size | (a) hit() | (b) Simulation | Difference
(Byte) (b) — (a)
256 | 0.832393 0.832394 | 0.000001

512 | 0.932639 0.932639 0

1K | 0.958007 0.958007 0

2K | 0.969314 0.969315 | 0.000001

4K | 0.997620 0.997624 | 0.000004

8K | 0.998215 0.998215 0

16K | 0.998364 0.998366 | 0.000002

JPEG decoder program

cache size | (a) dirty() | (b) simulation
(Byte)

256 121916 121916

512 00237 20237

1K 33256 33256

2K 21689 21689

4K 3488 3488

8K 2607 2607

16K 2250 2250
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fully associative cache. In this experiment, the optimal configuration obtained by

the proposed method and the cache simulation are the same.

JPEG decode HW cost : 100K gate
L1,L2 : fully associative cache
)
E ) )
= + simulation £ pr:z::(l')]z?jd
% [ [rreerere e R R
? i
g 57
<
g% ) ( ¥ ’ 2 o8 ® 3
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O~
= 2
D
Mo
[, :
g O 1 ] 1 1 ] i
0 500 1000 1500 2000 2500 3000
Primary Cache Size (byte)

Figure 4.17: The average memory access time of fully associative cache.
HW cost constraint: 100K gate

The computation time of the proposed method and the simulation method are
shown in table 4.5 and 4.6, respectively. Both of the primary and secondary cache
were 2-way associative cache. The proposed method can be implemented in two
phases: analyzer and solver. The analyzer is used to analyze trace data, and
solver is used to find the optimal configuration based on the algorithm shown in

Fig. 4.15, using the results of analyzer. The computation time of the proposed
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method is the sum of the analyzer execution time and solver execution time. The
analyzer does not depend on hardware cost constraint. The computation time of
the simulation method is the product of the execution time of cache simulation and
the iteration count. From table 4.5 and 4.6, it is known that the proposed method

is much more efficient than a simulation method.

Table 4.5: The computation time of the proposed method (unit: second)

HW cost JPEG JPEG | MPEG
decoder | encoder | decoder
| ] analyzer ] 16 | 27 | 398 |

solver 1.2 1.3 2.1

20K gate |Tgota] 17.2 28.3 | 400.1
solver 1.2 14 | 21

30K gate yotal 172 784 | 400.1
solver 1.3 1.5 2.2

50K gate |Total 173 985 | 400.2

Table 4.6: The computation time of the simulation method (unit: second)

HW cost JPEG JPEG | MPEG
decoder | encoder | decoder
cache
simulation 22 31 324
iteration count 38 38 38
20K gate opal 836 1178 | 12312
iteration count 78 78 78
30K gate oo 1716 | 2418 | 25272
iteration count 158 158 158
50K gate oo 3476 | 4808 | 51192

4.7.3 Effectiveness for Non-fully Associative Cache Memory

We applied the proposed method to non-fully associative cache. Fig. 4.18 shows the
result against 2-way primary cache and 4-way secondary cache. Sample program was

JPEG decoder program. Although the estimation of the average memory access time
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included larger error than that for fully associative cache, the difference between the
average memory access time of the configuration obtained by the proposed method
and by the simulation was within about 5%, which were not so large. Fig. 4.19
shows the result against JPEG encoder program.

According to the results, the accuracy of predictions is lower using proposed
method for non-fully associative cache memory. However, the estimation error is
not so large, then the exploration time to decide the optimal configuration of non-

fully assciative cache memory would be reduced by using proposed method.

JPEG decoder HW cost : 20K gate
L1 2way, L2 dway
b}
E ¢ simulation 5 proposed
= method
3‘3 [ [eeeeeeeeeeee e
o 1
g 4%
o -
E’_U 8 =
%
i
=
o 1
5
1 1 1 1 1 1 ]
§ 0 optimal
< 0 500 1000 1500 2000 2500 3000 3500
Primary Cache Size (byte)

Figure 4.18: The average memory access time of non-fully associative cache.

HW cost constraint: 20K gate
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Average Memory Access Time
(cycle)

JPEG encoder HW cost : 20K gate
L1 2way, L2 2way
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Figure 4.19: The average memory access time of non-fully associative cache.

HW cost constraint: 20K gate
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Chapter 5

Conlusions and Future Work

In this thesis, a design optimization method for Application Specific Integrated
Processor including dedicated CPU core and on-chip hierarchical memory system is
proposed. The concluding remarks are described in sections 5.1 and 5.2. In section

5.3, future work in this research area is discussed.

5.1 CPU Core Design Method for ASIPs

In chapter 2, the architecture and ASIC implementation of FSP-3 were described for
a case study of an ASIP. FSP-3 is expected to be an efficient special purpose micro-
processor for flexible servomotor control systems, because FSP-3 has an appropriate
architecture for this application and reduces external data accesses.

Chapter 3 describes PEAS-I: a hardware/software codesign system for ASIP
development. The effectiveness and efficiency of the system were confirmed through
several experiments. According to the primary experimental results, PEAS-I system
gives accurate estimation of the chip area and performance of ASIPs before the
detailed hardware design is completed. The experimental results also show that
PEAS-I system is able to generate both hardware design and a set of application
program development tools for a typical size ASTP within several hours.

In a general-purpose CPU, the tuning of the architecture to a specific applica-
tion by changing hardware resources and instruction set architecture is very difficult.
PEAS-I system can decide the best instruction set architecture and its implemen-

tation method from analytical results of the application programs under the given
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design constraints. Thus, PEAS-I system can reduce the execution time of applica-
tion programs. Moreover, the functionality of ASIP can be improved by considering
the tradeoffs of the amount of hardware of the CPU core, memory, peripheral cir-

cuits, etc.

5.2 Memory Optimization Method for ASIP

In chapter 4, a performance optimization method is proposed for hierarchical mem-
ory system for ASIPs, which consists of on-chip fast cache memory, a large amount
of on-chip ordinary memory and a huge off-chip memory. Using the hierarchical
on-chip memory system, the performance of an ASIP could be improved up to 50%
compared to that with conventional cache memory system.

The performance optimization method includes hit-ratio prediction, write-back
penalty prediction, and average memory access time estimation. From the experi-
mental results, it is known that the proposed method can decide an optimal con-
figuration much more efficiently than conventional optimization methods based on
the iteration of cache simulation. The proposed method can estimate the average
memory access time very accurately for fully associative caches. Even when the
cache memory is non-fully associative, the performance difference between the con-

figurations obtained by the proposed method and by the cache simulation was about

5%.

5.3 Future Work

The proposed method based on Hardware/Software codesign approach will be able
to reduce the design time and effort, and improve the design quality of ASIPs. This
approach has following benefits:

(1) higher abstraction level of design,

(2) accurate estimation of design quality, and

(3) optimization design assistance.

However, in order to design ASIPs using deep submicron technology and to

improve the performance of ASIPs, following problems should be addressed.
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5.3.1 Target CPU Core Architecture

Currently, the processor model to be generated by PEAS-I system has a simple RISC
type pipeline architecture. When an embedded system is required much more high
performance, other processor architectures such as VLIW shuold be considered for
CPU core of ASIP, such as for multimedia application domain. Then, new project
PEAS-II for VLIW processor based ASIP development has been started.

5.3.2 Specific Hardware Design Methodology

One of the major components of ASIP is a specific hardware such as DSP and co-
processor. PEAS-I system has a concept of “Extended Functionarities” that can be
realize by a specific hardware. However, PEAS-I system has no function to support
such hardware modules. Therefore, the protocol and interface to communicate be-
tween CPU and specific hardware is needed. Also the scheme to use a “Intellectual

Property (IP)” in a ASIP is another future work.

5.3.3 Flexible Hardware Model

In the deep submicron technology, wiring delay will become dominant rather than
the switching delay of a gate, and wiring capacitance will become dominant in power
consumption. While simple conventional circuit models were effective in the design
method for 0.5um technology or over, more sophisticated models should be used in
deep submicron technology. Where, the resistance, mutual capacitance and mutual
inductance of wiring cannot be ignored as well as parasitic capacitance.

Because the new wiring model takes into account the features of deep submicron
technology, the estimation is more accurate than the conventional model. However,
the new model takes much longer simulation time than the conventional model,
which makes the estimation much difficult to accomplish.

One of the most effective design methods in the deep submicron technology would
be the “floorplan oriented design method.” A new HW/SW codesign approach based
on this method is proposed to reduce the design time and effort, and improve the
quality of design[73]. This approach consists of the following breakthrough points:

(1) Higher abstraction level of design.
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(2) Higher reusability of pre-designed models.

(3) Accurate estimation of design quality.

(4) Optimization design assistance.

To obtain a more accurate estimation of design quality in an earlier stage of a
design, floorplan oriented design method using Flexible Hardware Models (FHMs)
will be effective. If an accurate design quality of a module can be utilized before
instantiation, chip design can be proceeded without generating real design instance.
We call this design method “Flexible Chip Design” [99], which will reduce design
cost dramatically and chips will be designed concurrently for each design entity.
Floorplan oriented design method will be easily realized if FHM provides a “flexible”
layout at the physical level of design as well.

The concept of the FHM is the key to the proposed design methodology. The
features of FHM can be summarized as follows:

(1) Parametalization.

(2) Instance Generation.

(3) Design Quality Estimation.

If the obtained estimation has a higher fidelity, better partitioning will result.
Thus Flexible Chip Design can be realized. Even if a functionality is implemented by
software, we can estimate the design quality of the software implementation. This
uniform view of design quality will make our codesign methodology very powerful.

In order to overcome difficulties by using deep submicron technology, a new

codesign approach based on PEAS concept must be addressed.

80



Bibliography

[1]

2]

3]

[4]

Semiconductor Industry Association: “The National Technology Roadmap for
Semiconductors Technology Needs 1997 Edition,” 1997.

J. A. Silberman: “Design of a 1.0 GHz 64-bit Integer Processor” Proc.
SASIMI’98, 1998.

B. A. Gieseke, R. L. Allmon, D. W. Bailey, B. J. Benschneider, S. M. Britton,
J. D. Clouser, H. R. Fair III, J. A. Farrell, M. K. Gowan, C. L. Houghton, J. B.
Keller, T. H. Lee, D. L. Leibholz, S. C. Lowell, M. D. Matson, R. J. Matthew,
V. Peng : “A 600 MHz superscalar RISC microprocessor with out-of-order
execution” ISSCC Digest of Tech. Papers, pp. 176-177, 1997.

J. Schutz and R. Wallace: “A 450 MHz IA32 P6 family microprocessor” ISSCC
Digest of Tech. Papers, pp. 236-237, 1998.

N. Rohrer, C. Akrout, M. Canada, D. Cawthron, B. Davari, R. Floyd, S.
Geissler, R. Goldblatt, R. Houle, P. Kartschoke, D. Kramer, P. McCormick,
G. Salem, R. Schulz, L. Su, L. Whitney and J. H. Wuorinen : “A 480 MHz
RISC microprocessor in a 0.12 mum L.sy CMOS technology with copper tech-
nology” ISSCC Digest of Tech. Papers, pp. 240-241, 1998.

C. F. Webb, C. J. Anderson, L. Sigal, K. L. Shepard, J. S. Liptay, J. D.
Warnock, B. Curran, B. W. Krumm, M. D. Mayo, P. J. Camporese, E. M.
Schwarz, M. S. Farrell, P. J. Restle, R. M. Averill ITI, T. J. Siegel, W. V. Huott,
Y. H. Chan, B. Wile : “A 400 MHz S/390 microprocessor” IEEE Journal of
Solid State Circuits, Vol. 32, No. 11, pp. 1665-1675, 1997.

81



[7]

[11]

[12]

[15]

[16]

H. P. Hofstee, S. H. Dhong, D. Meltzer, K. J. Nowka, J. A. Silberman, J. L.
Burns, S. D. Posluszny and O. Takahashi : “Designing for a gigahertz” IFEE
Micro, pp. 66-74, May-June 1998.

D. Boerstler and K. Jenkins: “A phase-locked loop clock generator for a 1 GHz
microprocessor” Proc. 1998 Symp. on VLSI Circuits, pp. 212-213, 1998.

R. Heald, K. Shin, V. Reddy, 1.-F. Kao, M. Khan, W. Lynch, G. Lauterbach, J.
Petolino and J. H. Wuorinen : “64kB sum-addressed-memory cache with 1.6ns
cycle and 2.6ns latency” ISSCC Digest of Tech. Papers, pp. 350-352, 1998.

D. Heidel, Sang Dhong, P. Hofstee, M. Immediato, K. Nowka, J. Silberman and
K. Stawiasz : “High speed serializing/de-serializing design-for-test method for
evaluating a 1 GHz microprocessor” Proc. 16th IEFE VLSI Test Symp., 1998.

T. Shimizu, J. Korematu, M. Satou, H. Kondo, S. Iwata, K. Sawai, N. Okumura,
K. Ishimi, Y. Nakamoto, M. Kumanoya, K. Dosaka, A. Yamazaki, Y. Ajioka,
H. Tsubota, Y. Nunomura, T. Urabe, J. Hinata, K. Saitoh, J. H. Wuorinen: “A
Multimedia 32b RISC Microprocessor with 16Mb DRAM,” IEEE International
Solid-State Circuits Conference, Digest of Tech. Paper, pp.216-217, 1996.

J. Sato, M. Imai, T. Hakata, A. Y. Alomary and N. Hikichi: “An Inte-
grated Design Environment for Application Specific Integrated Processor” Proc.

ICCD’91, pp. 414-417, 1991.

D. E. Thomas, J. K. Adams and H. Schmit: “A Model and Methodology for
Hardware-Software Codesign” IFEE Design & Test, Vol. 10, No. 3, pp. 6-15,
1993.

A. Kalavade and E. A. Lee: “A Hardware-Software Codesign Methodology for
DSP Applications” IEEFE Design € Test, Vol. 10, No. 3, pp. 16-28, 1993.

R. K. Gupta and G. De Micheli: “Hardware-Software Cosynthesis for Digital
Systems” IEEE Design & Test, Vol. 10, No. 3, pp. 29-41, 1993.

R. Ernst, J. Henkel and T. Benner: “Hardware-Software Cosynthesis for Mi-
crocontroller” IEEE Design € Test, Vol. 10, No. 4, pp. 64-75, 1993.

82



[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

H. Yasuura, S. Nakamura, H. Tomiyama and H. Akaboshi: “Hardware-Software
Codesign with a Soft-Core Processor” Proc. SASIMI’95, pp. 79-84, 1995

I. Huang, B. Holmer and A. M. Despain: “ASIA: Automatic Synthesis of
Instruction-Set Architectures” Proc. SASIMI’93, pp. 13-22, 1993.

H. Akaboshi and H. Yasuura: “COACH: A Computer Aided Design Tool for
Computer Architects” Trans. IEICE, Vol. E76-A, No. 10, pp. 1760-1769, 1993.

J. Sato, A. Y. Alomary, Y. Honma, T. Nakata, A. Shiomi, N. Hikichi and
M. Imai: “PEAS-I: A Hardware/Software Codesign System for ASIP Develop-
ment” Trans. IEICE, Vol. E77-A, No. 3, pp. 483-491, 1994.

I. Pyo, C. Su, I. Huang, K. Pau, Y. Koh, C. Tsui, H. Chen, G. Cheng, S.
Liu, S. Wu and A. M. Despain: “Application-driven Design Automation for
Microprocessor Design” Proc. 29th DAC, pp. 512-517, 1992.

A.Y. Alomary, M. Imai, J. Sato and N. Hikichi: “An Integer Programming
Approach to Instruction Set Selection Problem” Trans. IEICE, Vol. E76-A,
No. 10, pp. 1849-1857, 1993.

N. N. Binh, M. Imai, A. Shiomi, N. Hikichi and J. Sato: “An Efficient Schedul-
ing Algorithm for Pipelined Instruction Set Processor and Its Application to
ASIP Hardware/Software Codesign” Trans. IEICE, Vol. ET8-A, No. 3, pp. 353-
362, 1995.

N. N. Binh, M. Tmai, A. Shiomi and N. Hikichi: “A Hardware/Software Par-
titioning Algorithm for Designing Pipelined ASIPs with Least Gate Count,”
Proc. of DAC’96, pp. 527-532, 1996.

N. N. Binh, M. Imai and Y. Takeuchi: “A Performance Maximization Algorithm
to Design ASIPs under the Constraint of Chip Area Including RAM and ROM,”
Proc. of ASP-DAC’98, pp. 367-372, 1998.

I. Huang and A. M. Despain: “High Level Synthesis of Pipelined Instruction
Set Processors and Back-End Compilers” Proc. 29th DAC, pp. 135-140, 1992.

83



[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

H. Tomiyama, H. Akaboshi and H. Yasuura: “Compiler Generator for Hard-
ware/Software Codesign” Proc. 2nd APCHDL, pp. 267-270, 1994.

H. Akaboshi and H. Yasuura: “Automatic Generation of Instruction Level Sim-
ulation Model for Processor from RTL Level Description” (in Japanese) Trans.
IEICFE, Vol. J78-A, No. 8, pp. 919-928, 1995.

J. L. Hennessy and D. A. Patterson: Computer Architecture A Quantitative
Approach. 2nd Edition, Morgan Kaufmann Publishers, 1996.

F. de Schepper, K. Yamazaki, M. Imai and J. Sato: “Application of ASIC-
Technology to Mechatronics Control: Development of the Flexible Servo Pe-
ripheral Chip” Annals of CIRP, Vol. 37/1/1988, pp. 389-392, 1988.

T. Kimura, J. Sato, M. Imai, F. de Schepper and K. Yamazaki: “The Design
of a FSP-3 by using Silicon Compiler GENESIL” (in Japanese) IEICE Tech.
Report, Vol. VLD89-107, pp. 75-81, 1990.

J. Sato, T. kimura, M. Imai, F. de Schepper, K. Yamazaki, M. Nagase and S.
Yamamoto: “The Architecture of a Flexible Servo Motor Control Processor -

FSP-3 -” Trans. IFICE, Vol. E73, No. 4, pp. 513-515, 1990.

R. Stallman: “Using and Porting GNU C Compiler, Version 1.40” Free Software
Foundation Inc., 1991.

Y. Nakamura, K. Oguri, R. Nomura, A. Nagoya and M. Yukishita: “RTL
Behavioral Description Language SFL” Trans. IEICE, Vol. J72-A, No. 10, pp.
1579-1593, 1990.

NTT Data Communications: “PARTHENON User’s Manual” 1989.

K. Oguri, Y. Nakamura, R. Nomura, A. Nagoya and M. Yukishita:
“PARTHENON: Perfect Harmony between Behavioral Language SFL and Syn-
thesizer” Proc. 4th KARUIZAWA Workshop on Circuits and Systems, pp. 198-
203, 1991.

http://www-mount.ee.umn.edu/mcerg/software.html

84



[38] M. D. Hill and A. J. Smith: “Experimental Evaluation of On-Chip Micropro-
cessor Cache Memories,” Proc. of 11th International Symposium on Computer

Architecture, pp. 158-166, 1984.
[39] ftp://havefun.stanford.edu/pub/jpeg/JPEGv1.2.1.tar.Z
[40] ftp://havefun.stanford.edu/pub/mpeg/MPEGv1.2.1.tar.Z
[41] ftp://havefun.stanford.edu/pub/p64/P64v1.2.2.tar.Z

[42] R. Composano and W. Rosenstiel: “Synthesizing Circuits from Behavioral De-
scription” IEEE Trans. CAD, Vol. 8 No. 2, pp. 171-180, 1989.

[43] R. Composano and W. Wolf: “High-Level VLSI Synthesis” Kluwer Academic
Publishers, 1991.

[44] G. De Micheli and D. C. Ku: “HERCULES-A CAE/CAD Tool Development”
Proc. 25th DAC, pp. 483-488, 1988.

[45] S. Devadas and A. R. Newton: “Algorithms for Hardware Allocation in Data
Path Synthesis” IEEE Trans. CAD, Vol. 8, No. 7, pp. 768-781, 1987.

[46] C. H. Gebotys and M. I. Elmasry: “VLSI Design Synthesis with Testability”
Proc. 25th DAC, pp. 16-21, 1988.

[47] C. H. Gebotys and M. I. Elmasry: “Optimal VLSI Architectural Synthesis:
Area, Performance and Testability” Kluwer Academic Publishers, 1992.

[48] M. Imai: “Trend of Hardware Description Language and High-Level Synthesis”
Proc. The Jth KARUIZAWA Workshop on Circuits and Systems, pp. 174-179,
1991.

[49] T. H. Meng: “Synchronization Design for Digital Systems” Kluwer Academic
Publishers, 1991. '

[50] Z.Peng: “CAMAD: A Unified Data Path/Control Synthesis” Proc. IFIP Work-
ing Conf. on Design Methodologies for VLSI and Computer Architecture, pp.
53-67, 1988.

35



[61] H. Trickey: “Flamel: A High-Level Hardware Compiler” IFEE Trans. CAD,
Vol. 6, No. 2, pp. 259-269, 1987.

[52] D. R. Coelho: “The VHDL Handbook” Kluwer Academic Publishers, 1989.
[53] IEEE: “IEEE Standard VHDL Language Reference Manual” IEEE, 1988.

[54] R. Joobbani: “Requirements of a VHDL-Based Design Environment” Proc. 4th
KARUIZAWA Workshop on Circuits and Systems, pp. 180-186, 1991.

[65] S.S.Leung and M. Shanblatt: “ASIC System Design with VHDL: A Paradigm”
Kluwer Academic Publishers, 1989.

[66] Open Verilog International: “Verilog Hardware Description Language Reference

Manual” Draft Release 0.1, Open Verilog International,1991.

[57] D. Rich: “Mixed-Level Simulation and Design Synthesis Based on the Ver-
ilog Hardware Description Language” Proc. 4th KARUIZAWA Workshop on
Clircuits and Systems, pp. 193-197, 1991.

[68] D. Thomas: “The Verilog Hardware Description Language” Kluwer Academic
Publishers, 1990.

[59] T. Hoshino: “HSL-FX: A Unified Language for VLSI Design” Proc. of CHDLS5,
1985.

[60] O. Karatsu: “UDL/I: A Hardware Description Language Standard for Logic
Synthesis Age” Trans. IEICE, Vol. J74-A, No. 2, pp. 170-178, 1991.

[61] UDL/I Committee: “UDL/I language Reference Manual Version 2.0.2” Japan

Electronic Industry Development Association, 1993.

[62] D. Gajski, A. Wu, N. Dutt and S. Lin: “High-Level Synthesis - Introduction to
Chip and System Design -7 Kluwer Academic Publishers, 1992.

[63] M. Imai: “Estimation and Synthesis of Hardware” (in Japanese) Journal of
IPSJ, Vol. 36, No. 7, pp. 614-619, 1995.

86



[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

H. Yasuura: “Basic Software Codesign” (in Japanese) Journal of IPSJ, Vol. 36,
No. 7, pp. 620-626, 1995.

T. Miyazaki: “Hardware/Software Codesign for Digital Signal Processing” (in
Japanese) Journal of IPSJ, Vol. 36, No. 7, pp. 627-632, 1995.

G. De Micheli: “Computer-Aided Hardware-Software Codesign” IFEE Micro,
Vol. 14, No. 4, pp. 10-16, 1994.

P. Chou, R. Ortega and G. Borriello: “Synthesis of the Hardware/Software
Interface in Microcontoroller-Based Systems” Proc. ICCAD’92, pp. 488-495,
1992.

D. D. Gajski and F. Vahid: “Specification and Design of Embedded Hardware-
Software Systems” IEEE Design & Test, Vol. 12, No. 1, pp. 53-67, 1995.

J. Sato and M. Imai: “A Study on the Application Specific Microprocessor
Design Environment” Proc. SASIMI’90, pp. 88-94, 1990.

J. Sato, M. Imai, T. Hakata and N. Hikichi: “Proposal of a New Design Envi-
ronment for Application Specific Integrated Processor: IDEAS” Trans. IEICE,
Vol. E74, No. 5, pp. 1014-1016, 1991.

J. Sato, N. Hikichi, A. Shomi and M. Imai: “Effectiveness of a HW/SW Code-
sign System PEAS-I in the CPU Core Design” Proc. APCHDL’94, pp. 259-262,
1994.

J. Sato, N. Hikichi, T. Nakata, Y. Honma, A. Shiomi and M. Imai: “Effec-
tiveness Evaluation of a Hardware/Software Codesign System PEAS-I” (in
Japanese) Proc. Tth KARUIZAWA Workshop on Circuits and Systems, pp.
309-314, 1994.

M. Imai, A. Shiomi, Y. Takeuchi, J. Sato and Y. Honma: “Hardware/Software
Codesign in the Deep Submicron Era” Proc. IWLAS’96, pp. 236-248, 1996.

T. Morifuji, Y. Takeuchi, J. Sato and M. Imai: “Flexible Hardware Model:
Implementation and Effectiveness” Proc. SASIMI’97, pp. 83-89, 1997.

87



[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

I. Huang and A. M. Despain: “Synthesis of Instruction Set for Pipelined Mi-
croprocessors” Proc. 831st DAC, pp. 5-11, 1994.

I. Huang and A. M. Despain: “Hardware/Software Resolution of Pipeline Haz-
ards in Pipeline Synthesis of Instruction Set Processor” Proc. ICCAD’93, pp.
594-599, 1993.

M. D. Hill and A. J. Smith: “Evaluating Associativity in CPU Caches,” IEEE
Trans. on Computers, Vol. 38, No. 12, pp.1612-1630, 1989.

A. Agarwal, P. Chow, M. Horowitz, J. Acken, A. Salz and J. Hennessy: “On-
Chip Instruction Caches for High Performance Processors,” Advanced Research

in VLSI, pp. 1-24, 1987.

A. J. Smith: “Line (Block) Size Choice for CPU Cache Memories,” IEEE Trans.
on Computers, Vol. C-36, No. 9, pp.1063-1075, 1987.

A. Agarwal, M. Horowitz and J. Hennessy: “An Analytical Cache Model,”
ACM Trans. on Computer Systems, Vol. 7, No. 2, 1989.

R. T. Short and H. M. Levy: “A Simulation Study of Two-Level Caches,”
Proc. of the 15th Annual International Symposium on Computer Architecture,
pp.81-89, 1988.

K. Akeley: “The Silicon Graphics 4D/240GTX Superworkstation,” IEEE Com-
puter Graphics and Applications, Vol. 9, No. 4, pp.41-70, 1986.

S. T. Fu and M. J. Flynn: “Optimal on-chip cache hierarchy synthesis with
scaling of technology,” In Proceedings of 1996 IEEE International Phoeniz Con-

ference on Computers and Communications, pp.129-135, 1996.

N. P. Jouppi and S. J. E. Wilton: “Tradeoffs in Two-Level On-Chip Caching,”
Proc. of 21st Annual International Symposium on Computer Architecture, pp.
34-45, 1995.

R. Hundal and V. G. Oklobdzija: “Determination of Optimal Sizes for a First
and Second Level SRAM-DRAM On-Chip Cache Combination,” Proceedings

88



[86]

[87]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

IEEE INTERNATIONAL CONFERENCE ON Computer Design: VLSI in
Computer €& Processors, pp. 60-64, 1994.

S. T. Fu and M. J. Flynn: “Optinial on-chip cache hierarchy synthesis with
scaling of technology,” Proc. of 1996 IEEE International Phoeniz Conference
on Computers and Communications, pp. 129-135, 1996.

J. Sato, Y. Takeuchi, M. Imai, K. Yoshioka and A. Shiomi: “Evaluation of a
Hierarchical On-Chip Memory System for ASIPs” TECHNICAL REPORT OF
IEICE, pp. 17-24, 1996.

K. Yoshioka, J. Sato, Y. Takeuchi and M. Imai: “A Performance Optimization
Method for an On-Chip Two Level Cache Memory System” Proc. SASIMI’97,
pp. 98-104, 1997.

J. Sato, K. Yoshioka, Y. Takeuchi and M. Imai: “A Configuration Optimiza-
tion Method for On-Chip Two-Level Cache Memory based on Memory Access
Sequence Analysis” Submitted to IPSJ, (Sept. 1998).

D. Kirovski, C. Lee, M. Potkonjak and W. Mangione-Smith: “Application-
Driven Synthesis of Core Based Systems” Proc. ICCAD’97, pp. 104-107, 1997.

M. J. Flynn: “Computer Architecture - Pipelined and Parallel Processor De-
sign” Jones € Bartlett Publishers, 1995.

P. R. Panda, N. Dutt and A. Nicolau: “Exploiting Off-Chip Memory Access
Modes in High-Level Synthesis” Proc. ICCAD’97, pp. 333-340, 1997.

P. R. Panda, N. Dutt and A. Nicolau: “Efficient Utilization of Scratch-Pad
Memory in Embedded Processor Applications” ED&TC’97, 1997.

P. R. Panda: “Data Cache Sizing for Embedded Processor Applications” UCI-
ICS TR97-30, 1997.

P. R. Panda, N. Dutt and A. Nicolau: “Memory Data Organization for Im-
proved Cache Performance in Embedded Processor Applications” ACM Trans.
DAES, Vol. 2, No. 4, 1997.

89



[96] N. Dutt: “Memory Organization and Exploration for Embedded Systems-on-
Silicon” Proc. ICV(C’97, 1997.

[97] H. Tomiyama and H. Yasuura: “Optimal Code Placement of Embedded Soft-
ware for Instruction Cache” Proc. ED&TC’96, 1996.

[98] S. Bakshi and D. D. Gajski: “A Memory Selection Algorithms for High-
Performance Pipelines” Proc. EuroDAC’95, 1995.

[99] M. Muraoka: “EDA Technology Direction Towards 2010” Proc. SASIMI’98,
1998.

[100] H. Yasuura, H. Tomiyama, A. Inoue, and F. N. Eko: “Embedded System
Design Using Soft-Core Processor and Valen-C” Proc. APCHDL’97, pp. 121-
130, 1997.

90



List of Major Publications of the
Author

Journal Papers (Refereed)

(1) J. Sato, T. Kimura, M. Imai, F. de Schepper, K. Yamazaki, M. Nagase, S.
Yamamoto: “The Architecture of a Flexible Servo Motor Control Processor:
FSP-3,” Trans. of IEICE, Vol. E73, No. 4, pp. 513-515, Apr. 1990.

(2) J. Sato, M. Imai, T. Hakata and N. Hikichi: “Proposal of a New Design
Environment for Application Specific Integr=ted Processor,” Trans. of IEICE,
Vol. E74, No. 5, pp. 1014-1016, May 19¢

(3) J. Sato, A. Y. Alomary, Y. Honma, T. Nakata, A. Shiomi, N. Hikichi and M.
Imai: “PEAS-I: A Hardware/Software Co-design System for ASIP Develop-
ment,” Trans. of IEICE, Vol. E77-A, No. 3, pp. 483-491, Mar. 1994.

(4) J. Sato, K. Yoshioka, Y. Takeuchi and M. Imai: “A Performance Optimiza-
tion Method for On-chip Two-Level Cache Memory based on Memory Access
Sequence Analysis,” Submitted to IPSJ (Sept. 1998).

International Conference Papers (Refereed)

(1) J. Sato and M. Imai: “A Study on the Application Specific Microprocessor
Design Environment,” Proc. of the Synthesis and Simulation Meeting and
International Interchange (SASIMI’90), pp. 88-94, Oct. 1990.

(2) J. Sato, M. Imai, T. Hakata and N. Hikichi: “An Integrated Design Environ-

ment for Application Specific Integrated Processor,” Proc. of International

91



Conference on Computer Design (ICCD’91), pp. 414-417, Oct. 1991.

J. Sato, N. Hikichi, A. Shiomi and M. Imai: “Effectiveness of a TW/SW
Codesign System PEAS-I in the CPU Core Design,” Proc. of 2nd Asia Pacific
Conference on Hardware Description Languages (APCHDL’94), pp. 259-262,
Oct. 1994.

K. Yoshioka, J. Sato, Y. Takeuchi and M. Imai: “A Performance Optimization
Method for an On-Chip Two Level Cache Memory System,” Proc. of Synthesis
and Simulation Meeting and International Interchange (SASIMI'97), pp. 98-
104, Dec. 1997.

National Conference Papers (Refereed)

(1)

J. Sato, K. Fukuda, M. Ichida and M. Imai: “A Study on the Application Spe-
cific Microprocessor Design Environment,” Proc. of 3rd Karuizawa Workshop

on Circuits and Systems, pp. 74-81, Apr. 1990.

J. Sato, A. Y. Alomary, Y. Honma, T. Nakata, T. Hakata, N. Hikichi and
M. lmai: “Current Status of a Hardware/Software Codesign System PEAS-I
for ASIP Development,” Proc. of 6th Karuizawa Workshop on Circuits and
Systems, pp. 513-518, Apr. 1993.

J. Sato, N. Hikichi, T. Nakata, Y. Honma, A. Shiomi and M. Imai: “Effective-
ness Evaluation of a Hardware/Software Codesign System PEAS-1.” Proc. of

7th Karuizawa Workshop on Circuits and Systems, pp. 309-314. Apr. 1994.

92



