

Title	複合機能微小回折光学系の開発とその応用に関する研 究
Author(s)	辰巳, 賢二
Citation	大阪大学, 1997, 博士論文
Version Type	VoR
URL	https://doi.org/10.11501/3129263
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

複合機能微小回折光学系の開発と その応用に関する研究

1996年12月

辰巳賢二

第1章	緒	論		•
1.	1		研究の背景と言	日本
1.	2		本研究の目的と	-
1.	3		本研究の概要	
第2章	回打	斤光学素	§子における結像幣	寺
2.	1		序 言・・・	
2.	2		回折光学素子0	D
	2.	2. 1	主光線近傍の対	ť
		(a)	主光線の追跡・	•
		(b)	主光線近傍の対	ť
	2.	2. 2	結像点・・・	•
2.	3		非球面項を含む	3
	2.	3. 1	非球面項と結婚	家
		(a)	直角座標系によ	よ
		(b)	極座標系による	3
		(c)	E.B.Champagne	27
	2.	3. 2	光源が平面内は	*]
2.	4		結 言・・・	•
			Appendix:主头	ť
			ξ	11
第3章	高1	JA無収	R差微小回折格子1	/
3.	1		序 言・・・・	
3.	2		球面収差除去微	政
			の設計・・・・	
	3.	2. 1	格子パターンの	2
	3.	2. 2	集光特性···	
	3.	2. 3	マイクロゾーフ	ť

複合機能微小回折光学系の開発とその応用に関する研究

		目			次																	
																					~	- ジ
			•			•				•	•	•		•								• 1
日天	頁																					• 1
夏	主	義																				• 3
																						• 3
F	生																					• 5
																						• 5
)糸	古	像	関	係																		• 6
余	泉	追	跡																			• 6
																						• 6
永	泉	追	跡																			• 7
																						.9
よ	日初	合	の	結	像	関	係															13
E.	É.	0	関	係																		13
1	3	表	記																			13
T	長	記																				15
が	道	算ノ	11	_1	こ国	区核	西マア	RI.	20	170	57	見言	5									17
5	ち	る	2	き	0	結	像	関	係													18
																						20
彩	泉	沂	傍	0	入	射	光	線	2	入	射	È	光	線								
0	5	方	向	余	弦	0	関	係														21
	/	ズ																				23
																						23
V	1		折	格	子	V	2	ズ	(7	1	ク		· /"	_	プ	V	_	F	V	~	ズ)
																						23
	几天	計																				23
																						27
°۲	1.	_	1	V	2	ズ	0	光	線	追	跡											29
								_	-													

i

3.	3		実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32		4.	6.3	フォーカス誤差信号特性・・・・・・・・・・・・・・ 67
	3.	3.1	製作法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32		4.	6.4	回折効率・・・・・・・・・・・・・・・・・・・・・ 67
	3.	3.2	格子形状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34		4.	6.5	信号再生特性····· 69
	3.	3. 3	集光特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36	4.	7		結 言・・・・・・・・・・・・・・・・・・・ 72
	3.	3. 4	回折効率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37				Appendix:金属蒸着膜と反射率との関係・・・・・・・ 73
3.	4		アプラナティック回折格子レンズの設計・・・・・・・・	37				
	3.	4.1	アプラナティックダブル回折格子レンズ・・・・・・・・	38	第5章	2分	割反射刑	6回折格子レンズの開発と光ピックアップ光学系への応用・・・77
		(a)	設計法 · · · · · · · · · · · · · · · · · · ·	38				
	3.	4.2	アプラナティック平凹回折格子レンズ・・・・・・・・・	40	5.	1		序 言 · · · · · · · · · · · · · · · · · ·
		(a)	設計法 · · · · · · · · · · · · · · · · · · ·	40	• 5.	2		光学系の構成とフォーカス誤差信号発生法・・・・・・ 78
		(b)	残留コマ収差の評価量・・・・・・・・・・・・・・・・・・・	42	5.	3		2分割反射形回折格子レンズの設計・・・・・・・・ 80
	3.	4.3	計算結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42		5.	3.1	格子パターン・・・・・・・・・・・・・・・ 80
		(a)	正弦条件不満足量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42		5.	3.2	近軸結像・・・・・・・・・・・・・・・・・・・ 81
		(b)	収差曲線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43		5.	3.3	波長変化時の主光線の移動方向・・・・・・・・・ 82
		(c)	スポットダイアグラム・・・・・・・・・・・・・・・	44		5.	3.4	集光特性 · · · · · · · · · · · · · · · · · · ·
3.	5		結 言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46	5.	4		フォーカス誤差信号特性・・・・・・・・・・・・ 85
					5.	5		実験結果・・・・・・・・・・・・・・・・・・・・ 87
第4章	非	点光束発	生反射形回折格子レンズの開発と光ピックアップ光学系への応用	47		5.	5.1	格子形状と0次回折光波面収差・・・・・・・・・・ 87
						5.	5.2	各1次回折光の集光特性・・・・・・・・・・・・・ 91
4.	1		序 言・・・・・・・・・・・・・・・・・・・・・・・	47			(a)	集光パターン・・・・・・・・・・・・・・・・・・ 91
4	. 2		光学系の構成とフォーカス誤差信号発生法・・・・・・・・	47			(b)	焦点位置での集光スポット・・・・・・・・・・ 92
4	. 3		非点光束発生反射形回折格子レンズの設計・・・・・・・	49			(c)	回折効率・・・・・・・・・・・・・・・・・・ 93
	4.	3.1	非点光束を発生する格子パターンの計算式・・・・・・・	49		5.	5.3	フォーカス誤差信号特性・・・・・・・・・・・・・ 99
	4.	3.2	非点隔差の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50		5.	5.4	信号再生特性・・・・・・・・・・・・・・・・・・・・・・・100
	4.	3.3	スポットダイアグラムによる1次回折光ビーム形状の評価・・	53	5.	6		結 言・・・・・・・・・・・・・・・・・・・・・・・100
4	. 4		フォーカス誤差信号・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	53				
4	. 5		許容収差と受光量の見積もり・・・・・・・・・・・・・・	55	第6章	反射	形回折注	光学素子を用いた固体レーザ励起光学系・・・・・・・・・102
	4	. 5. 1	許容収差・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55				
	4	. 5. 2	受光量の見積もり・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56	6.	1		序 言・・・・・・・・・・・・・・・・・・・・・・・102
		(a)	0次回折効率と1次回折効率の積を最大にする格子溝深さ・・	56	6.	2		励起光学系の構成と設計・・・・・・・・・・・・・・・・102
		(b)	受光量見積もり・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58		6.	2.1	励起光学系の設計・・・・・・・・・・・・・・・・・・・・・・・102
4	. 6		実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58		6.	2.2	Nd:YLFの特性・・・・・・・・・・・・・・・・・・ 106
	4	. 6. 1	格子形状と0次回折光波面収差・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58		6.	2. 3	レーザ出力特性・・・・・・・・・・・・・・・・・・・・・・107
	4	. 6. 2	1次回折光の特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	65	6.	3		実験結果・・・・・・・・・・・・・・・・・・・・・・108
		(a)	集光パターン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	65		6.	3.1	反射形回折光学素子(RTG)の特性・・・・・・・・・・・108
		(b)	集光位置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67		6.	3. 2	C W 動作特性 · · · · · · · · · · · · · · · · · · ·

iii

		6.	3.	3		Q	_	ス	1	ッ	チ	動	作	特	性	•	•		•	•	•	•	•	•	•	•	•	•	•			•	•	113
	6.	4			.,,	結							•	•		•	•				•	•	•		•		•	•	•	•				117
第7	章	総	括·																															118
	7.	1				結	-	論	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	118
	7.	2				今	後	の	課	題	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	121
		謝	辞·	·	•		•	•																										122
		参考	文献	•		•	•	•			•									•		•								•				123
		関係	発表	論	文																								•					130

♦ (x,y):回折格子パターンの位相関数 ♦_a(x,y):回折格子パターンの非球面位相関数 $F_x(x,y)$, $F_y(x,y)$:局所空間周波数 $U_1(x_1,y_1): z=z_1$ 上での複素振幅分布 U₂(x₂,y₂): z₂面上での複素振幅分布 J₀(x): 第1種0次ベッセル関数 u_n, v_n:Lommel関数 (*I_c*, *m_c*, *n_c*):再生時における再生照明光線(入射光線)の方向余弦 (1, m, n):回折された光線(出射光線)の方向余弦 (L_c, M_c, N_c):入射主光線の方向余弦 (L₁, M₁, N₁):射出主光線の方向余弦 λ_c:再生光の波長 λ₀:設計時の基準波長 F:F数 D_f:有效直径 NA:像側開口数 n:屈折率 q:回折の次数 f:焦点距離 r_c:原点から再生照明光源までの距離 r_o:点光源(物体光源)の位置ベクトル r_r:点光源(参照光源)の位置ベクトル r_c:入射主光線ベクトル r'c:主光線近傍の入射光線ベクトル S':回折光の方向を示す単位ベクトル S:入射光の方向を示す単位ベクトル N:回折格子が形成されている面の単位法線ベクトル q:回折格子の溝に沿う単位ベクトル

本論文で用いている主な記号の意味

Emax:最大出力エネルギー

R_{opt}:最適反射率

V_{eff}:モードボリューム

L_{cav}:共振器光路長

L_{rod}:レーザロッド長

L_{loss}:共振器内部損失

N;:Qスイッチをかける直前の初期反転分布

go:小信号利得係数(cm-1)

σ:誘導放出断面積

τ_f:蛍光寿命

てn;パルス幅

τ。:共振器内の光子寿命

γ:動作点が閾値の何倍かを表わすパラメータ

と:エネルギー引き出し率

第1章 緒 論

1.1 研究の背景と課題

光の回折,干渉を利用する光学素子は回折光学素子(DOE:Diffractive Optical Elements) と呼ばれており^{1~19}),結像性能,複製などの面で従来の光学素子にない優れた特長を 持っている.すなわち,(1)任意の波面を所望の波面に変換することができる,(2)1つの 回折光学素子でレンズ,ビームスプリッタ,干渉フィルタなどの複数機能を持たせること ができる,(3)無収差結像が可能である,(4)同一の場所に複数の機能を持つ素子を作るこ とができる,(5)数µmの厚さにおける光の回折を利用するので,薄い形状で軽量な素子が できる,(6)複製が簡単にでき低コストである,(7)平面以外の任意の曲面上に素子を作製 することができる,などである.このような回折光学素子は光束を収束・発散させる働き を含めた波面変換機能が最大の特長であり,その回折光学素子を用いることにより,従来 の光学システムの大幅な簡略化や従来にない全く新しい光学システムを構成することが可 能となる.

このDOEはホログラム素子(HOE:Holographic Optical Elements)とCGH(Computer Generated Hologram)を基本とする素子に大きく分類できる.ホログラム素子は可干渉性の高い複数 の光束を写真乾板などに照射して形成したホログラムを光学素子として用いるものである 19~23).干渉させる光波の波面を選択することにより再生時に各種の光束を発生させるこ とができる,特定の条件では無収差で光を収束できる,記録材料が写真乾板やフォトレジ ストであるため薄型・軽量である,フォトレジストを用いたものは凹凸を金属薄膜に転写 することができ,プレス成形による量産の可能性をもっているなどの特長がある.しか し,その研究過程でいくつかの課題が指摘されている.たとえば,作製時の波長と使用波 長との違いによる収差が避けられない,作製時の光学系配置によりインライン型レンズ²³⁾

これに対し、レーザ光の干渉縞を直接ホログラムとして記録するのではなく、電子ビ ームリソグラフィ技術及び電子ビーム描画したフォトマスクを用いたフォトリソグラフィ の手法で、表面レリーフ形のホログラムを作製することが一般化してきている^{24~27)}.

1

これは電子ビーム描画によるCGHの作製が技術的・経済的に可能になったためである. この素子はホログラム素子の特長に加えて、ホログラムでは実現が容易でない任意の再生 波面を得ることができる,感光材料の波長特性に関係無く任意波長に適応したホログラム が得られる特長がある.本論文で取り上げる微小回折格子レンズは、CGHを基本とした 一種の表面レリーフ形ホログラムであり、透過もしくは反射形で素子寸法が5mm程度以下 のレンズである.

この微小回折格子レンズの光学系への応用として、光ディスク装置への適用が盛んに なってきている. 高密度光記録技術に基づく光ディスクは、コンパクトディスク(CD)、レ ーザディスク(LD)あるいは光磁気ディスク(MO)として我々の生活に定着し、さらにはビ デオテープに代わる動画が録画再生可能なディジタルビデオディスク(DVD)として実用化 されている. その光ディスクに信号を記録もしくは信号を読み出す光ピックアップを小 型・軽量化する手段としてホログラムの応用が1980年頃から検討され始めた.初期には He-Neレーザを光源とするホログラムレンズの研究が行われた23).しかし,再生用光源で ある波長780nmの半導体レーザで記録可能な感度と分解能のあるホログラムの記録材料が 開発されていなかったことから、光ピックアップ光学系対物レンズへの応用は中止され た.これに、代わってCGHや電子ビームリソグラフィ技術による微小回折格子レンズの 研究が多くの研究機関で行われている24~27).しかし、今まで製作されたレンズのNAは 0.1~0.3であり、光ピックアップ光学系の対物レンズに用いられるようなNAが0.4以上の ものは無かった、また、電子ビーム直接描画法では製作に時間がかかりすぎ、大量生産が 可能というリソグラフィの利点が生かせない.これを解決する方法として、本研究では通 常のUVリソグラフィで780nmの波長で使用できるNAが0.45のインライン型微小回折格子 レンズ(マイクロゾーンプレートレンズ)を作製することを提案し、実証を行った28~30).

一方,光ピックアップの機能の見直しが行われ,微小回折格子レンズを光ピックアッ プに応用する場合、従来のレンズの置き換えとしてよりもむしろビームスプリッタなどの 構成要素として用いる方がその特性を生かせるという考えが支配的になってきている. す なわち,光ピックアップの機能は光ディスク上へ半導体レーザのビームを集光するだけで はなく、信号光である光ディスクからの反射光のみを分離するビームスプリッタの機能,

焦点誤差検出機能及びトラッキング誤差検出機能を持っている、従来の光ピックアップ光 学系では、これらの3つの機能を実現するために、各機能ごとに、たとえばビームスプ リッタ、円筒レンズ、球面レンズといった体積、重量の大きい研磨された光学素子を複数 個用いており、このことが光ピックアップ光学系の小型化、軽量化の実現を妨げていた. そこで、これら3つの機能を1個の微小回折格子レンズで実現しようとする研究が著者ら によって行われ31~35,46)、まずCD用の光ピックアップが実用化された、現在、CD用に続 いてLDプレーヤ用, 光磁気ディスク用の光ピックアップの開発が行われている36~45).

1.2 本研究の目的と意義

以上の背景から、本研究は、回折光学素子を光ピックアップ光学系など回折限界の光 学特性を要求する光学系に適用あるいは複数機能を有する光学系を1枚の微小回折格子レ ンズで構成する際の諸問題を明確にし、応用光学の観点からその解決方法を見いだすこと 及び設計法の確立を目的とするものである.

本論文では以下の4点に的を絞り、研究を行った.

- 析手法を確立すること.
- 立と実験により確証すること.
- こと.

1.3 本研究の概要

第2章では、主光線近傍の光線追跡(いわゆる非点追跡)を用いて非球面位相項を持つ 回折光学素子の結像の一般的特性について検討し,その結像位置を与える解析式を導出す

(1) 主光線近傍の光線追跡(いわゆる非点追跡)を用いて、一般に良く用いられる多項式 展開した非球面位相項を持つ軸外結像系である回折光学素子の結像特性について解

(2) 平板構造のインライン型微小回折格子レンズでNA0.4以上を実現すること、及びコ マ収差を除去するための構成法と新しい設計法を確立すること.

(3) 複数機能を有する光学系を1枚の微小回折格子レンズで構成するための設計法の確

(4)回折光学素子の特長を発揮しうる新しい応用分野を見つけ、その有用性を提示する

第3章では、微小回折格子レンズをCD用光ピックアップ光学系の対物レンズとして 用いることを念頭におき,NAが0.45の球面収差を除去した平板構造のインライン型微小 回折格子レンズ (マイクロゾーンプレートレンズ)と、コマ収差も除去したアプラナテ ィック回折格子レンズについての設計法を提案し,NA0.45のマイクロゾーンプレートレ ンズをUVリソグラフィで作製した検証実験の結果について述べる.また、アプラナテ イック回折格子レンズでは正弦条件不満足量のrms値を残留コマ収差の評価パラメータと する新しい設計法を提案する.

第4章では光ピックアップ光学系の小型・軽量化と光学系の簡素化を図るため、光 ピックアップで必要なビームスプリッタ、センサレンズ及び反射鏡の3つの機能と薄型と するための反射鏡の機能を1個の反射形回折格子レンズで実現することを提案し、その設 計と機能検証実験の結果について述べる.ここではフォーカス誤差信号を得る方法として 非点収差法を採用し,非点光束を反射型回折格子レンズで発生するようにした.非点光束 を発生する反射型回折格子レンズの位相は、反射形回折格子レンズ面上の座標で展開され た多項式で表し,所要の非点隔差となるように係数を決定する.

第5章では光ピックアップ光学系に用いる,新しい波長依存性が小さいフォーカス誤 差信号検出方式を提案すると共にその設計法と性能評価実験の結果について述べる.本方 式では入射光を2分割しそれぞれの焦点位置が異なる回折光を発生する2分割反射形回折 格子レンズを用い,2つの回折光の焦点位置をそれぞれ光検出器の前後になるように設定 した.

第6章では従来のフラッシュランプに代わって高効率が期待できる半導体レーザ励起 固体レーザに着目し,反射形回折光学素子(RTG)を用いた新しい側面励起方式を提案 し、その有効性を実験により確認する.そして、回折光学素子が光ピックアップ光学系だ けでなく新しい応用面にも重要な役割を果たすことを示す.

第7章では、本研究の成果を総括し、結論とする.

第2章 回折光学素子における結像特性

2.1 序言

一般のレンズ系では、レンズの曲率中心を通る光線を光軸として、光軸に垂直な物体 面もしくは像面を考えるのが普通である。回折光学素子(DOE)でこのような結像系に対応 するのはインライン型フレネルレンズのようなGabor型のIn-lineホログラムであり、一般 性は少ない、一方、レンズの曲率中心を通らない光線を光軸として、その光軸に垂直な物 体面/像面を考えることは一般のレンズ系ではほとんど無いが、DOEではほとんどの場合 がこの結像系に相当する軸外結像系である.

このような結像系でも、再生照明光源とDOEの相対位置関係がDOE作製時の光源配 置と同じであれば無収差の結像が得られるが、それ以外の配置では収差を生じる、このと き発生する収差の主なものは非点収差とコマ収差である.このように、軸外結像系では一 般に非点収差を伴ったものになっている.

さて、DOEの結像式としては R.W.Meier⁴⁷⁾, E.B.Champagne⁴⁸⁾の導いた計算式が有名 であるが、波面展開の3次近似より得られたものであり、Gabor型のIn-lineホログラムに 近い場合と特殊な条件の場合にしか成立しない. これを改良するものとして, R.W.Smith の導いた式⁴⁹⁾やR.Dandlikerの式⁵⁰⁾がある.これは、非点光束を仮定しそれらの係数の関 係式より結像点を算出するものである.しかし、DOEでよく用いられる多項式展開した非 球面項を含む場合には適用できない.

軸外結像系を考える場合には、波面展開を用いるより、光線追跡によって考える方が 意味が明確になる、J.N.Latta⁵¹⁾は計算機による数値解析を行っている.また、J.F.Miles⁵²⁾ はDOEの波面収差に関する一般式を導出しているが、この場合も多項式展開した非球面項 を含む場合には適用できない.

本章では、主光線近傍の光線追跡(いわゆる非点追跡)を用いて、多項式展開した非 球面項を含む位相関数を持つDOE結像系の特性53)について検討する.

3.

2.2 回折光学素子の結像関係

2.2.1 主光線近傍の光線追跡

(a) 主光線の追跡

ここで解析するDOEの座標系は直角座標系とし、DOEはxy平面上にあり、z軸はその 平面に垂直とする.原点はDOEの中心にとる.Fig.2.1に座標系を示す.

Fig. 2.1. Coordinate system.

再生照明光は点 $P_c(x_c,y_c,z_c)$ にあり、結像点は $P_I(x_I,y_I,z_I)$ に出来るものとする.主光線近傍 の光線追跡では、まず最初に像のできる方向を知らねばならない. すなわちDOEの場合、 基準となる主光線の回折方向を知る必要がある. DOEは参照光と物体光によって作成され た干渉縞から成る回折格子であるから、 $\phi(x,y)$ を回折格子パターンの位相関数とすると、 入射光と出射光の関係は良く知られた回折格子の方程式で計算できる54~56).

$$l_l = l_c + \frac{q\lambda_c}{2\pi}\phi_x(x, y)$$

$$m_I = m_c + \frac{q\lambda_c}{2\pi}\phi_y(x, y)$$

$$l_c^2 + m_c^2 + n_c^2 = 1, \quad l_l^2 + m_l^2 + n_l^2 = 1$$

$$\phi_x(x, y) = \frac{\partial}{\partial x} \phi(x, y), \quad \phi_y(x, y) = \frac{\partial}{\partial y} \phi_y(x, y)$$

長, qは回折の次数である.

(2.2.3)より,

$$L_{I} = L_{c} + \frac{q\lambda_{c}}{2\pi}\phi_{x}(0,0)$$
$$M_{I} = M_{c} + \frac{q\lambda_{c}}{2\pi}\phi_{y}(0,0)$$

線の方向余弦である.

(b) 主光線近傍の光線追跡

と,

(2.2.1)(2.2.2)

 $\phi(x,y)$

(2.2.3)

の関係がある.ここで (I_c, m_c, n_c) 及び (I_I, m_I, n_I) はそれぞれ再生時における再生照明 光線(入射光線)と回折された光線(射出光線)の方向余弦であり、λ。は再生光の波

主光線はDOEの原点に入射・出射する光線とする.主光線の光線追跡は式(2.2.2)~

(2.2.4)

(2.2.5)

となる.ここで、 (L_c, M_c, N_c) 及び (L_I, M_I, N_I) はそれぞれ入射主光線と射出主光

結像位置を求めるためには, 主光線に従属する細い光線束の光線追跡を行い, 主光線 との交点を求める必要がある. Fig.2.1において, 主光線に従属する細い光線束が入射する DOE上の点Q (x_0, y_0) は原点近傍の点とし、 x_0, y_0 は十分小さいものとする. DOE干渉縞 の局所空間周波数と関係する $\phi_x(x, y)$, $\phi_v(x, y)$ を原点近傍でTaylor展開により近似する

$$\phi_x(x_Q, y_Q) = \phi_x(0, 0) + \phi_{xx}(0, 0)x_Q + \phi_{xy}(0, 0)y_Q$$
(2.2.6)

 $\phi_{y}(x_{Q}, y_{Q}) = \phi_{y}(0, 0) + \phi_{xy}(0, 0)x_{Q} + \phi_{yy}(0, 0)y_{Q}$ (2.2.7)

となる.したがって,この式を式(2.2.1)~(2.2.3)に代入すると,主光線近傍の光線追跡式 が求まる.

$$l_{l} = l_{c} + \frac{q\lambda_{c}}{2\pi} \Big(\phi_{x}(0,0) + \phi_{xx}(0,0)x_{Q} + \phi_{xy}(0,0)y_{Q} \Big)$$
(2.2.8)

$$m_{I} = m_{c} + \frac{q\lambda_{c}}{2\pi} \left(\phi_{y}(0,0) + \phi_{xy}(0,0)x_{Q} + \phi_{yy}(0,0)y_{Q} \right)$$
(2.2.9)

ここで,主光線近傍の入射光線と入射主光線との方向余弦の関係は, Appendixの結果より

$$l_{c} = L_{c} \pm \frac{1}{|\mathbf{r}_{c}|} \left(1 - \frac{x_{c}^{2}}{|\mathbf{r}_{c}|^{2}}\right) x_{Q} \mp \frac{x_{c} y_{c}}{|\mathbf{r}_{c}|^{3}} y_{Q}$$
(2.2.10)

$$m_{c} = M_{c} \mp \frac{x_{c}y_{c}}{|\mathbf{r}_{c}|^{3}} x_{Q} \pm \frac{1}{|\mathbf{r}_{c}|} \left(1 - \frac{y_{c}^{2}}{|\mathbf{r}_{c}|^{2}}\right) y_{Q}$$
 (複号同順 +:発散, -:収束) (2.2.11)

である. ここで, r_cは原点から再生照明光源までの距離である. 式(2.2.10), (2.2.11)を式 (2.2.8), (2.2.9)に代入すると,

$$l_{l} = L_{c} \pm \frac{1}{|\mathbf{r}_{c}|} \left(1 - \frac{x_{c}^{2}}{|\mathbf{r}_{c}|^{2}} \right) x_{Q} \mp \frac{x_{c} y_{c}}{|\mathbf{r}_{c}|^{3}} y_{Q} + \frac{q \lambda_{c}}{2\pi} \left(\phi_{x}(0,0) + \phi_{xx}(0,0) x_{Q} + \phi_{xy}(0,0) y_{Q} \right)$$
(2.2.12)

$$m_{l} = M_{c} \mp \frac{x_{c} y_{c}}{\left|\mathbf{r}_{c}\right|^{3}} x_{Q} \pm \frac{1}{\left|\mathbf{r}_{c}\right|} \left(1 - \frac{y_{c}^{2}}{\left|\mathbf{r}_{c}\right|^{2}}\right) y_{Q} + \frac{q\lambda_{c}}{2\pi} \left(\phi_{y}(0,0) + \phi_{xy}(0,0)x_{Q} + \phi_{yy}(0,0)y_{Q}\right)$$
(2.2.13)

これを変形すると,

$$l_{l} = L_{c} + \frac{q\lambda_{c}}{2\pi}\phi_{x}(0,0) + \left\{\frac{\pm 1}{\left|\mathbf{r}_{c}\right|^{2}}\left(1 - \frac{x_{c}^{2}}{\left|\mathbf{r}_{c}\right|^{2}}\right) + \frac{q\lambda_{c}}{2\pi}\phi_{xx}(0,0)\right\}x_{\varrho} + \left(\frac{\mp x_{c}y_{c}}{\left|\mathbf{r}_{c}\right|^{3}} + \frac{q\lambda_{c}}{2\pi}\phi_{xy}(0,0)\right)y_{\varrho}$$

となる.ここで、式(2.2.4)の関係を用い $l_{I} = L_{I} + \left\{ \frac{\pm 1}{\left|\mathbf{r}_{c}\right|} \left(1 - \frac{x_{c}^{2}}{\left|\mathbf{r}_{c}\right|^{2}}\right) + \frac{q\lambda_{c}}{2\pi}\phi_{xx}(0,0) \right\}$

となる. 同様にして,

$$m_{I} = M_{I} + \left(\frac{\mp x_{c} y_{c}}{\left|\mathbf{r}_{c}\right|^{3}} + \frac{q\lambda_{c}}{2\pi}\phi_{xy}(0,0)\right)x_{Q} + \left\{\frac{\pm 1}{\left|\mathbf{r}_{c}\right|}\left(1 - \frac{y_{c}^{2}}{\left|\mathbf{r}_{c}\right|^{2}}\right) + \frac{q\lambda_{c}}{2\pi}\phi_{yy}(0,0)\right\}y_{Q}$$

である.

2.2.2 結像点

2.2.1節では,主光線近傍の細い光線束の光線追跡式を導出した.ここでは,結 像点の位置を求める計算式を導出する.式(2.2.14), (2.2.15)を書き直すと次式のように書 ける.

$$L_{l} = L_{l} + a_{11}x_{Q} + a_{12}y_{Q}$$

 $m_I = M_I + a_{21} x_Q + a_{22} y_Q$

$$u_{11} = \pm \frac{1}{|\mathbf{r}_c|} \left(1 - \frac{x_c^2}{|\mathbf{r}_c|^2} \right) + \frac{q\lambda_c}{2\pi} \phi_{xx}(0,0)$$

$$a_{12} = a_{21} = \mp \frac{x_c y_c}{|\mathbf{r}_c|^3} + \frac{q\lambda_c}{2\pi}\phi_{xy}(0,0)$$

$$a_{22} = \pm \frac{1}{|\mathbf{r}_{c}|} \left(1 - \frac{y_{c}^{2}}{|\mathbf{r}_{c}|^{2}} \right) + \frac{q\lambda_{c}}{2\pi} \phi_{yy}(0,0)$$

$$\left\{ x_{Q} + \left(\frac{\mp x_{c} y_{c}}{\left| \mathbf{r}_{c} \right|^{3}} + \frac{q \lambda_{c}}{2\pi} \phi_{xy}(0,0) \right) y_{Q} \right\}$$

(2.2.14)

(2.2.15)

(2.2.16)

(2.2.17)

さらに、次式のように書くことが出来る.	
$l_I = L_I + \Delta l_I$	(2.2.18)
$m_I = M_I + \Delta m_I$	
ここで、	
$\Delta l_I = a_{11} x_Q + a_{12} y_Q$	(2.2.19)
$\Delta m_1 = a_{21} x_Q + a_{22} y_Q$	

である.次に、 Δ 1_I、 Δ m_Iは微小量であるので、式(2.2.2)の関係よりn_Iを求めると、

$$n_I \approx N_I \left(1 - \frac{\Delta l_I L_I + \Delta m_I M_I}{N_I^2}\right)$$
(2.2.20)

となる. ここで,
$$L_{I}^{2} + M_{I}^{2} + N_{I}^{2} = 1$$

の関係を用いた.

主光線と主光線近傍の光線を表す方程式は、それぞれ

$$\frac{x}{L_{I}} = \frac{y}{M_{I}} = \frac{z}{N_{I}}$$
(2.2.21)

$$\frac{x - x_Q}{l_I} = \frac{y - y_Q}{m_I} = \frac{z}{n_I}$$
(2.2.22)

と書くことができる.回折された光線が像を結ぶためには、回折光の主光線と主光線近傍 の光線は交わる必要があり、そのための必要十分条件は、以下のように書くことができ 3.

$-x_Q$	$-y_Q$	0		
L_{I}	M_{I}	$N_I = 0$		
l_{I}	m_{I}	n_1		

ただし, $L_{l}m_{l} - l_{l}M_{l} \neq 0$, $M_{l}n_{l} - m_{l}N_{l} \neq 0$, $N_{l}l_{l} - L_{l}n_{l} \neq 0$ である.

式(2.2.16)を式(2.2.23)に代入し,整理すると

 $A\tan^2\psi + B\tan\psi - C = 0$ となる.ここで、係数A、B及びCはそれぞれ次のように書ける. $A = a_{12} \left(L_{I}^{2} + N_{I}^{2} \right) + a_{22} L_{I} M_{I}$ $B = a_{11} \left(L_l^2 + N_l^2 \right) - a_{22} \left(M_l^2 + N_l^2 \right)$ $C = a_{12} \left(M_I^2 + N_I^2 \right) + a_{11} L_I M_I$ また,角度ψは次式で定義される. $\tan \psi = \frac{y_Q}{2}$ わち,角度ψによらず式(2.2.4)が成り立つ必要がある.したがって, A = 0, B = 0, C = 0いう必要条件であり、一点に集まるという条件ではない.

になっているのがわかる.

は.

$$x_I = \frac{n_I L_I}{n_I L_I - l_I N_I} x_Q$$

(2.2.23)

$$y_I = \frac{n_I M_I}{n_I L_I - l_I N_I} x_Q$$

(2.2.25)

(2.2.24)

(2.2.26)

(2.2.27)

(2.2.28)

DOEが点像として結像するなら瞳を通るすべての光線は少なくとも主光線と交わらな ければならないから, 瞳上の位置によらず式(2.2.24)が成り立たなければならない. すな

(2.2.29)

でなくてはならない.ただし、この条件は瞳上の点を通る光線はすべて主光線と交わると

式(2.2.24)は2次方程式であるから、一般に式(2.2.24)を満足する解は2つある.した がって、主光線を含む面で、DOE面(x-y平面)との交線がx軸となす角度が式(2.2.28)を満 たすようなψになる平面内で2本の線像を形成することになる. Fig.2.2にこれらの関係を 示す. すなわち, DOEでは一般に直交しない2本の近軸線像が得られ, 回折光は非点光束

次に、この線像の位置を与える式を導出する.式(2.2.21)、(2.2.22)より、交点の座標

(2.2.30)

11

$$z_I = \frac{n_I N_I}{n_I L_I - l_I N_I} x_Q$$

となる. これより, 原点からの距離R_Iを求める. 式(2.2.20)を代入し, x_Q,y_Qに関し1次の 項までを取って近似すると,

$$R_{i} = \sqrt{x_{i}^{2} + y_{i}^{2} + z_{i}^{2}} = \left| \frac{n_{i}}{n_{i}L_{i} - l_{i}N_{i}} x_{\varrho} \right| \approx \left| \frac{x_{\varrho}}{\left(1 - \frac{\Delta l_{i}L_{i} + \Delta m_{i}M_{i}}{N_{i}^{2}} \right) L_{i} - l_{i}} \right|$$

ここで,式(2.2.18)~(2.2.19)の関係及び式(2.2.28)を用いると,

$$R_{i} = \left| \frac{N_{i}^{2} x_{o}}{(L_{i}^{2} + N_{i}^{2})(a_{11}x_{o} + a_{12}y_{o}) + L_{i}M_{i}(a_{12}x_{o} + a_{22}y_{o})} \right|$$
$$= \left| \frac{N_{i}^{2}}{A \tan \psi + a_{11}(L_{i}^{2} + N_{i}^{2}) + a_{12}L_{i}M_{i}} \right|$$

となる. また,式(2.2.24)の解を ψ_{1} , ψ_{2} とする
 $\tan(\psi_{1} - \psi_{2}) = \frac{\tan \psi_{1} - \tan \psi_{2}}{1 + \tan \psi_{1} \tan \psi_{2}} = \frac{\sqrt{D}}{A + C}$
で求められる.ここで,Dは2次方程式(2.2.24)の
 $D = B^{2} + 4AC$
である.
2.3 非球面項を含む場合の結像関係
2.3.1 非球面項と結像点の関係

(a) 直角座標系による表記

は,

(2.2.31)

 $\phi(x, y) = \phi_o(x, y) - \phi_r(x, y) + \phi_a(x, y)$

と書ける. 但し,

$$\phi_o(x, y) = \frac{2\pi}{\lambda_0} \left(|\mathbf{r} - \mathbf{r}_o| - |\mathbf{r}_o| \right)$$
$$\phi_r(x, y) = \frac{2\pi}{\lambda_0} \left(|\mathbf{r} - \mathbf{r}_r| - |\mathbf{r}_r| \right)$$

(2.2.32)

ると2つの線像のなす角度は,

(2.2.33)

の判別式で,

ここでは、DOEの位相が非球面項を含む場合について考察する. 位相関数 φ(x,y)

(2.3.1)

(2.3.2)

(2.3.3)

である.ここで、式(2.3.1)における第1項と第2項は2つの球面波による位相差を表す項 であり、第3項が非球面項である。 λ_0 はDOE設計時の基準波長、 \mathbf{r}_o 、 \mathbf{r}_r はそれぞれの 点光源(物体光源と参照光源と呼ぶ)の位置ベクトルである. 第3項はDOE面上の座標 (x,y)で多項式展開した項で,一般的に次式のように書かれる.

$$\phi_a(x,y) = \frac{2\pi}{\lambda_0} \sum_{i,j=0}^{\infty} C_{ij} x^i y^j$$
(2.3.4)

C_{ij}は非球面の係数である.実用上i,j=0~10程度を考えればよい.式(2.3.1)~(2.3.4)よ り,局所空間周波数 $F_x(x,y)$, $F_y(x,y)$ を求めると,

$$F_{x}(x,y) = \frac{\lambda_{c}}{2\pi}\phi_{x}(x,y) = \mu \left(\frac{x-x_{o}}{|\mathbf{r}-\mathbf{r}_{o}|} - \frac{x-x_{r}}{|\mathbf{r}-\mathbf{r}_{r}|} + \sum_{i=1,j=0}iC_{ij}x^{i-1}y^{j}\right)$$
(2.3.5)

$$F_{y}(x,y) = \frac{\lambda_{c}}{2\pi}\phi_{y}(x,y) = \mu \left(\frac{y-y_{o}}{|\mathbf{r}-\mathbf{r}_{o}|} - \frac{y-y_{r}}{|\mathbf{r}-\mathbf{r}_{r}|} + \sum_{i=0,j=1} jC_{ij}x^{i}y^{j-1}\right)$$
(2.3.6)

となる.ここで,

 $|\mathbf{r} - \mathbf{r}_{o}| = \left\{ \left(x - x_{o} \right)^{2} + \left(y - y_{o} \right)^{2} + z_{o}^{2} \right\}^{1/2}$

$$\mathbf{r}_{o} = \left(x_{o}^{2} + y_{o}^{2} + z_{o}^{2}\right)^{1/2}$$

$$|\mathbf{r} - \mathbf{r}_{r}| = \left\{\left(x - x_{r}\right)^{2} + \left(y - y_{r}\right)^{2} + z_{r}^{2}\right\}^{1/2}$$

$$|\mathbf{r}_{r}| = \left(x_{r}^{2} + y_{r}^{2} + z_{r}^{2}\right)^{1/2}$$

$$\mu = \frac{\lambda_{c}}{\lambda_{0}}$$

$$(2.3.7)$$

である.

主光線を光線追跡するのに必要な、原点における局所空間周波数F_x(0,0),F_y(0,0)は、

$$F_{x}(0,0) = \frac{\lambda_{c}}{2\pi}\phi_{x}(0,0) = \mu \left(-\frac{x_{o}}{|\mathbf{r}_{o}|} + \frac{x_{r}}{|\mathbf{r}_{r}|} + C_{10} \right)$$

$$F_{y}(0,0) = \frac{\lambda_{c}}{2\pi}\phi_{y}(0,0) = \mu \left(-\frac{y_{o}}{|\mathbf{r}_{o}|} + \frac{y_{r}}{|\mathbf{r}_{r}|} + C_{01} \right)$$
(2.3.8)

さらに、2階微分を計算すると、

$$F_{xx}(x,y) = \mu \left(\frac{1}{|\mathbf{r} - \mathbf{r}_{o}|} - \frac{1}{|\mathbf{r} - \mathbf{r}_{r}|} - \frac{(x - x_{o})^{2}}{|\mathbf{r} - \mathbf{r}_{o}|^{3}} + \frac{(x - x_{r})^{2}}{|\mathbf{r} - \mathbf{r}_{r}|^{3}} + \sum_{i=2,j=0}^{\infty} i(i-1)C_{ij}x^{i-2}y^{j} \right)$$

$$F_{yy}(x,y) = \mu \left(\frac{1}{|\mathbf{r} - \mathbf{r}_{o}|} - \frac{1}{|\mathbf{r} - \mathbf{r}_{r}|} - \frac{(y - y_{o})^{2}}{|\mathbf{r} - \mathbf{r}_{o}|^{3}} + \frac{(y - y_{r})^{2}}{|\mathbf{r} - \mathbf{r}_{r}|^{3}} + \sum_{i=0,j=2}^{\infty} j(j-1)C_{ij}x^{i}y^{j-2} \right)$$

$$F_{xy}(x,y) = \mu \left(-\frac{(x - x_{o})(y - y_{o})}{|\mathbf{r} - \mathbf{r}_{o}|^{3}} + \frac{(x - x_{r})(y - y_{r})}{|\mathbf{r} - \mathbf{r}_{r}|^{3}} + \sum_{i=1,j=1}^{\infty} ijC_{ij}x^{i-1}y^{j-1} \right)$$
(2.3.9)

$$F_{xx}(x,y) = \mu \left(\frac{1}{|\mathbf{r} - \mathbf{r}_{o}|} - \frac{1}{|\mathbf{r} - \mathbf{r}_{r}|} - \frac{(x - x_{o})^{2}}{|\mathbf{r} - \mathbf{r}_{o}|^{3}} + \frac{(x - x_{r})^{2}}{|\mathbf{r} - \mathbf{r}_{r}|^{3}} + \sum_{i=2, j=0}^{j} i(i-1)C_{ij}x^{i-2}y^{j} \right)$$

$$F_{yy}(x,y) = \mu \left(\frac{1}{|\mathbf{r} - \mathbf{r}_{o}|} - \frac{1}{|\mathbf{r} - \mathbf{r}_{r}|} - \frac{(y - y_{o})^{2}}{|\mathbf{r} - \mathbf{r}_{o}|^{3}} + \frac{(y - y_{r})^{2}}{|\mathbf{r} - \mathbf{r}_{r}|^{3}} + \sum_{i=0, j=2}^{j} j(j-1)C_{ij}x^{i}y^{j-2} \right)$$

$$F_{xy}(x,y) = \mu \left(-\frac{(x - x_{o})(y - y_{o})}{|\mathbf{r} - \mathbf{r}_{o}|^{3}} + \frac{(x - x_{r})(y - y_{r})}{|\mathbf{r} - \mathbf{r}_{r}|^{3}} + \sum_{i=1, j=1}^{j} ijC_{ij}x^{i-1}y^{j-1} \right)$$
(2.3.9)

$$F_{yx}(x, y) = F_{xy}(x, y)$$

となる. したがって, 式(2.2.17)の係数 aijは次式のようになる.

$$a_{11} = \pm \frac{1}{|\mathbf{r}_{c}|} \left(1 - \frac{x_{c}^{2}}{|\mathbf{r}_{c}|^{2}}\right) + qF_{xx}(0,0) = \pm \frac{1}{|\mathbf{r}_{c}|} \left(1 - \frac{x_{c}^{2}}{|\mathbf{r}_{c}|^{2}}\right) + q\mu \left(\frac{1}{|\mathbf{r}_{o}|} - \frac{1}{|\mathbf{r}_{r}|} - \frac{x_{o}^{2}}{|\mathbf{r}_{o}|^{3}} + \frac{x_{r}^{2}}{|\mathbf{r}_{r}|^{3}} + 2C_{20}\right)$$

$$a_{12} = a_{21} = \mp \frac{x_{c}y_{c}}{|\mathbf{r}_{c}|^{3}} + qF_{xy}(0,0) = \mp \frac{x_{c}y_{c}}{|\mathbf{r}_{c}|^{3}} + q\mu \left(-\frac{x_{o}y_{o}}{|\mathbf{r}_{o}|^{3}} + \frac{x_{r}y_{r}}{|\mathbf{r}_{r}|^{3}} + C_{11}\right)$$

$$a_{22} = \pm \frac{1}{|\mathbf{r}_{c}|} \left(1 - \frac{y_{c}^{2}}{|\mathbf{r}_{c}|^{2}}\right) + qF_{yy}(0,0) = \pm \frac{1}{|\mathbf{r}_{c}|} \left(1 - \frac{y_{c}^{2}}{|\mathbf{r}_{c}|^{2}}\right) + q\mu \left(\frac{1}{|\mathbf{r}_{o}|} - \frac{1}{|\mathbf{r}_{r}|} - \frac{y_{o}^{2}}{|\mathbf{r}_{o}|^{3}} + \frac{y_{r}^{2}}{|\mathbf{r}_{r}|^{3}} + 2C_{02}\right)$$

$$(2.3.10)$$

以上の式がDOEの位相が多項式展開された非球面項を含む場合の一般的な結像関係を 計算する式である.

標系での式を導出する48).

(b) 極座標系による表記

である.係数C10, C01はそれぞれ回折角のx,y成分にオフセットを与えることがわかる.

今までは, 直角座標系で記述したが, 場合によっては極座標系その他の座標系で表示 した方が便利な場合がある.以下では極座標系による表記とE.B.Champagneが導入した座

: 直角座標の変換は	極座核
$\theta \cos \varphi$	x = rs
$\theta \sin \varphi$ (2.3.11)	y = rs
θ	z = r c
これを式(2.3.1)~(2.3.10)に代入する.まず,主光線に対する局所空間周波数	である.
_v (0,0)はそれぞれ,	F _x (0,0),

$$F_{x}(0,0) = \mu \left(-\sin\theta_{o}\cos\varphi_{o} + \sin\theta_{r}\cos\varphi_{r} + C_{10}\right)$$

$$F_{y}(0,0) = \mu \left(-\sin\theta_{o}\sin\varphi_{o} + \sin\theta_{r}\sin\varphi_{r} + C_{01}\right)$$

$$E_{x} = 1 \text{ たがって 主光線の回折方向の関係式は次式となる.}$$
(2.3.12)

$$\sin \theta_{1} \cos \varphi_{1} = \sin \theta_{c} \cos \varphi_{c} - q\mu (\sin \theta_{o} \cos \varphi_{o} - \sin \theta_{r} \cos \varphi_{r} - C_{10})$$

$$\sin \theta_{1} \sin \varphi_{1} = \sin \theta_{c} \sin \varphi_{c} - q\mu (\sin \theta_{o} \sin \varphi_{o} - \sin \theta_{r} \sin \varphi_{r} - C_{01})$$
(2.3.13)

また,

$$\frac{1}{|\mathbf{r}_{k}|} - \frac{x_{k}^{2}}{|\mathbf{r}_{k}|^{3}} = \frac{1}{|\mathbf{r}_{k}|} \left(1 - \frac{x_{k}^{2}}{|\mathbf{r}_{k}|^{2}}\right) = \frac{1}{|\mathbf{r}_{k}|} \left(1 - \sin^{2}\theta_{k}\cos^{2}\varphi_{k}\right)$$
$$\frac{1}{|\mathbf{r}_{k}|} - \frac{y_{k}^{2}}{|\mathbf{r}_{k}|^{3}} = \frac{1}{|\mathbf{r}_{k}|} \left(1 - \frac{y_{k}^{2}}{|\mathbf{r}_{k}|^{2}}\right) = \frac{1}{|\mathbf{r}_{k}|} \left(1 - \sin^{2}\theta_{k}\sin^{2}\varphi_{k}\right)$$
(2.3.14)

$$\frac{\mathbf{x}_{k}\mathbf{y}_{k}}{\left|\mathbf{r}_{k}\right|^{3}} = \frac{\sin^{2}\theta_{k}\cos\varphi_{k}\sin\varphi_{k}}{\left|\mathbf{r}_{k}\right|} = \frac{\sin^{2}\theta_{k}\sin2\varphi_{k}}{2\left|\mathbf{r}_{k}\right|}$$

の関係を用いると、以下のようになる.

$$a_{11} = \pm \frac{1}{|\mathbf{r}_c|} (1 - \sin^2 \theta_c \cos^2 \varphi_c) + qF_{xx}(0,0)$$

= $\pm \frac{1}{|\mathbf{r}_c|} (1 - \sin^2 \theta_c \cos^2 \varphi_c) + q\mu \left(\frac{1 - \sin^2 \theta_o \cos^2 \varphi_o}{|\mathbf{r}_o|} - \frac{1 - \sin^2 \theta_r \cos^2 \varphi_r}{|\mathbf{r}_r|} + 2C_{20} \right)$

$$a_{12} = a_{21} = \mp \frac{\sin^2 \theta_c \sin 2\varphi_c}{2|\mathbf{r}_c|} + qF_{xy}(0,0)$$
$$= \mp \frac{\sin^2 \theta_c \sin 2\varphi_c}{2|\mathbf{r}_c|} + q\mu \left(-\frac{\sin^2 \theta_o \sin 2\varphi_o}{2|\mathbf{r}_o|} + \frac{\sin^2 \theta_r \sin 2\varphi_r}{2|\mathbf{r}_r|} + C_{11}\right)$$

$$a_{22} = \pm \frac{1}{|\mathbf{r}_c|} \left(1 - \sin^2 \theta_c \sin^2 \varphi_c \right) + q F_{yy}(0, q)$$
$$= \pm \frac{1}{|\mathbf{r}_c|} \left(1 - \sin^2 \theta_c \sin^2 \varphi_c \right) + q \mu \left(\frac{1 - q}{q} \right)$$

(c) E.B.Champagneが導入した座標系による表記⁴⁸⁾
E.B.Champagneが導入した座標系で記述する.この場合,角度
る.
$$\sin \alpha_k = -\frac{x_k}{|\mathbf{r}_k|}$$

 $\sin \beta_k = -\frac{y_k}{|\mathbf{r}_k|}$
まず,主光線に対する局所空間周波数F_x(0,0), F_y(0,0)はそれぞれ,

 $F_x(0,0) = \mu \left(\sin \alpha_o - \sin \alpha_r + C_{10} \right)$

 $F_{y}(0,0) = \mu \left(\sin \beta_{o} - \sin \beta_{r} + C_{01} \right)$

となる.したがって,主光線の回折方向の関係は次式となる. $\sin \alpha_{I} = \sin \alpha_{c} + q\mu (\sin \alpha_{o} - \sin \alpha_{r} + C_{10})$

 $\sin\beta_{t} = \sin\beta_{c} + q\mu(\sin\beta_{o} - \sin\beta_{r} + C_{01})$

次に,

$$\frac{1}{|\mathbf{r}_k|} - \frac{x_k^2}{|\mathbf{r}_k|^3} = \frac{1}{|\mathbf{r}_k|} \left(1 - \frac{x_k^2}{|\mathbf{r}_k|^2}\right) = \frac{1}{|\mathbf{r}_k|} \left(1 - \sin^2 \frac{x_k^2}{|\mathbf{r}_k|^2}\right)$$

(2.3.15)

,0)

 $\frac{\sin^2\theta_o\sin^2\varphi_o}{1-\sin^2\theta_r\sin^2\varphi_r} + 2C_{02}$ |r_o| r,

票系による表記48)

で記述する.この場合,角度α,βを次式で定義す

(2.3.16)

(2.3.17)

(2.3.18)

これは、良く知られた回折の式で、回折方向に関してはE.B.Champagneの式は成り立つ.

$$\alpha_k = \frac{\cos^2 \alpha_k}{|\mathbf{r}_k|}$$

$$\frac{1}{|\mathbf{r}_{k}|} \left(1 - \frac{y_{c}^{2}}{|\mathbf{r}_{k}|^{2}}\right) = \frac{1}{|\mathbf{r}_{k}|} \left(1 - \sin^{2}\beta_{k}\right) = \frac{\cos^{2}\beta_{k}}{|\mathbf{r}_{k}|}$$

$$\frac{x_{k}y_{k}}{|\mathbf{r}_{k}|^{3}} = \frac{\sin\alpha_{k}\sin\beta_{k}}{|\mathbf{r}_{k}|}$$
(2.3.19)

の関係を用いると、係数 a ij は次のように書くことが出来る.

$$a_{11} = \pm \frac{\cos^{2} \alpha_{c}}{|\mathbf{r}_{c}|} + qF_{xx}(0,0) = \pm \frac{\cos^{2} \alpha_{c}}{|\mathbf{r}_{c}|} + q\mu \left(\frac{\cos^{2} \alpha_{o}}{|\mathbf{r}_{o}|} - \frac{\cos^{2} \alpha_{r}}{|\mathbf{r}_{r}|} + 2C_{20}\right)$$

$$a_{12} = a_{21} = \mp \frac{\sin \alpha_{c} \sin \beta_{c}}{|\mathbf{r}_{c}|} + qF_{xy}(0,0) = \mp \frac{\sin \alpha_{c} \sin \beta_{c}}{|\mathbf{r}_{c}|} + q\mu \left(-\frac{\sin \alpha_{o} \cos \beta_{o}}{|\mathbf{r}_{o}|} + \frac{\sin \alpha_{r} \cos \beta_{r}}{|\mathbf{r}_{r}|} + C_{11}\right)$$

$$a_{22} = \pm \frac{\cos^{2} \beta_{c}}{|\mathbf{r}_{c}|} + qF_{yy}(0,0) = \pm \frac{\cos^{2} \beta_{c}}{|\mathbf{r}_{c}|} + q\mu \left(\frac{\cos^{2} \beta_{o}}{|\mathbf{r}_{o}|} - \frac{\cos^{2} \beta_{r}}{|\mathbf{r}_{r}|} + 2C_{02}\right)$$
(2.3.20)

2.3.2 光源が平面内にあるときの結像関係

本節では光源がすべて y-z平面内にある特殊な場合について考察し, 2.3.1節で導出 した式がJ.F. Milesの導いた式と一致することを示す.

光源がすべて y-z平面にあるとすると, $L_I = L_c = L_o = L_r = 0$ (2.3.21)

である. したがって, 式(2.2.25)は

$$A = a_{12}N_I^2$$

$$B = a_{11}N_I^2 - a_{22}$$
(2.3.22)

 $C = a_{12}$

となる.また、結像距離 R_I と角度 ψ との関係式は次式となる.

$$\tan \psi = -\frac{1}{a_{12}} \left(\frac{1}{R_I} + a_{11} \right)$$
(2.3.23)

これらを,式(2.2.24)に代入し,整理すると,

$$f_{I}^{2} \left(\frac{1}{R_{I}}\right)^{2} + \left(a_{11}N_{I}^{2} + a_{22}\right)\frac{1}{R_{I}} + \left(a_{11}a_{2}\right)^{2}$$

これを解くと, $\frac{N_I^2}{R_I} = -\frac{a_{11}N_I^2 + a_{22}}{2} \pm \sqrt{\left(\frac{a_{11}N_I^2 - a_{22}}{2}\right)}$

となる.

a12=0の場合,式(2.3.25)は次式のように簡単になる.

$$\frac{N_I^2}{R_I} = a_{22} \quad or \quad a_{11}N_I^2$$

極座標系で記述すると,

$$\varphi_o = \varphi_r = \varphi_c = \frac{\pi}{2}$$

に相当し,係数 a11, a 22 は次式となる.

$$a_{11} = \frac{1}{|\mathbf{r}_c|} + q\mu \left(\frac{1}{|\mathbf{r}_o|} - \frac{1}{|\mathbf{r}_r|} + 2C_{20}\right)$$

$$a_{22} = \frac{\cos^2 \theta_c}{|\mathbf{r}_c|} + q\mu \left(\frac{\cos^2 \theta_o}{|\mathbf{r}_o|} - \frac{\cos^2 \theta_r}{|\mathbf{r}_r|}\right)$$

したがって、 $N_I = \cos \theta_I$ の関係を用いると、

$$\frac{1}{R_{ls}} = \frac{1}{|\mathbf{r}_{c}|} + q\mu \left(\frac{1}{|\mathbf{r}_{o}|} - \frac{1}{|\mathbf{r}_{r}|} + 2C_{20}\right)$$

$$\frac{\cos^2 \theta_I}{R_{lt}} = \frac{\cos^2 \theta_c}{|\mathbf{r}_c|} + q\mu \left(\frac{\cos^2 \theta_o}{|\mathbf{r}_o|} - \frac{\cos^2 \theta_c}{|\mathbf{r}_o|}\right)$$

である.式(2.3.28)は球欠像に相当する結像式であり、式(2.3.29)は子午像に相当する結像 式である.非球面係数C20, C02がC20=0, C02=0のとき, 式(2.3.28), 式(2.3.29)は J.F. Miles⁵²⁾とR.W. Smith⁴⁹⁾の導いた式と一致する.

$$+a_{12}^2)=0$$

(2.3.24)

$$\Big)^2 - a_{12}^2 N_I^2$$

(2.3.25)

(2.3.26)

 $-+2C_{02}$

(2.3.27)

(2.3.28)

 $\frac{|\mathbf{s}^2 \theta_r|}{|\mathbf{r}_r|} + 2C_{02}$

(2.3.29)

2.4 結言

本章では主光線近傍の光線追跡(いわゆる非点追跡)を用いて非球面位相項を持つ DOE結像系の一般的特性について検討した.得られた結果を要約すると次のようになる.

- (1) DOEでは一般に直交しない2本の線像が得られ、回折光は特殊な配置を除いて非 点光束になっていることが分かった.
- (2)回折光の主光線と主光線近傍の光線が交わるための必要十分条件より、線像の結 像位置及び原点からの距離を与える解析式を導出した.
- (3) DOEの位相項にDOE上の座標で多項式展開した非球面項が有る場合,それぞれの 2次の係数が非点光束に関係していることを明らかにした.
- (4) ここで得られた解析式はJ.F. Miles, R.W.Smithらが導出した結果を包含しており DOE結像系のより一般的な結像式であることを明らかにした.

本章で得られた結果は、第4章の非点光束発生反射形回折格子レンズの解析・設計 で用いる.

Appendix:主光線近傍の入射光線と入射主光線との方向余弦の関係(式(2.2.10)と(2.2.11))

入射主光線ベクトルをrc,主光線近傍の入射光線ベクトルをr'cとすると,

 $\mathbf{r}_{c}' = \mathbf{r}_{c} \pm \mathbf{r}$ +:発散光, -: 収束光

が成り立つ. ここでそれぞれの単位ベクトルをS. S'とすると.

 $|\mathbf{r}_c'|\mathbf{S}' = |\mathbf{r}_c|\mathbf{S} \pm \mathbf{r}$

である. 式(A.2)より,

$$\mathbf{S'} = \frac{\left|\mathbf{r}_{c}\right|}{\left|\mathbf{r}_{c}'\right|} \mathbf{S} \pm \frac{1}{\left|\mathbf{r}_{c}'\right|} \mathbf{r}$$

となり,主光線近傍の入射光線ベクトル r'cの大きさを次式で近似する. $|\mathbf{r}_{c}'| = |\mathbf{r} - \mathbf{r}_{c}| = \left\{ \left(x_{Q} - x_{c} \right)^{2} + \left(y_{Q} - y_{c} \right)^{2} + z_{c}^{2} \right\}^{1/2}$ $|\mathbf{r}_{c}'| \approx |\mathbf{r}_{c}| - \frac{x_{c}}{|\mathbf{r}_{c}|} x_{Q} - \frac{y_{c}}{|\mathbf{r}_{c}|} y_{Q}$

式(A.4)を式(A.3)に代入すると、 $\mathbf{S'} \approx \frac{1}{1 - \frac{x_c}{|\mathbf{r}|^2} x_Q - \frac{y_c}{|\mathbf{r}|^2} y_Q} \mathbf{S} \pm \frac{1}{|\mathbf{r}_c|} \mathbf{r}$

となり、さらにTaylor展開して近似すると、

$$\mathbf{S}' \approx \left(1 + \frac{x_c}{\left|\mathbf{r}_c\right|^2} x_Q + \frac{y_c}{\left|\mathbf{r}_c\right|^2} y_Q\right) \mathbf{S} \pm \frac{1}{\left|\mathbf{r}_c\right|} \mathbf{r}$$

$$E^{\star} z \exists z \exists z \exists z \\ \mathbf{S}' = (l_c, m_c, n_c)$$
$$\mathbf{S} = (L_c, M_c, N_c) = \left(\mp \frac{x_c}{|\mathbf{r}_c|}, \mp \frac{y_c}{|\mathbf{r}_c|}, \mp \frac{z_c}{|\mathbf{r}_c|} \right)$$
$$\mathbf{r} = (x_Q, y_Q, 0)$$

の関係を用いると、式(2.2.10)と(2.2.11)が得られる.

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

$$l_c = L_c \pm \frac{1}{|\mathbf{r}_c|} \left(1 - \frac{x_c^2}{|\mathbf{r}_c|^2} \right) x_Q \mp \frac{x_c y_c}{|\mathbf{r}_c|^3} y_Q$$
$$m_c = M_c \mp \frac{x_c y_c}{|\mathbf{r}_c|^3} x_Q \pm \frac{1}{|\mathbf{r}_c|} \left(1 - \frac{y_c^2}{|\mathbf{r}_c|^2} \right) y_Q$$

第3章 高NA無収差微小回折格子レンズ

3.1 序言

(A.7)

(A.8)

光学系を小型・軽量化する手段として1970年頃からホログラムの応用が検討され始め た^{22,23,58~60)}. 当初, He-Neレーザを光源とするホログラフィックレンズの研究が行われ たが,赤外光で記録可能な感度と分解能のあるホログラムの記録材料が開発されていな かったことから,波長800nm帯の半導体レーザ等の赤外光用のホログラフィックレンズは 可視光で作製せざるを得ず、記録波長と使用波長の違いによる収差が生じるという課題が 残った59).

これに対して,同じ回折型のレンズであるフレネルレンズ⁶¹⁾,ゾーンプレートレン ズ⁶²)では、それらを構成する同心円状の円環格子を正確に偏心無く描画出来れば使用波 長での収差の問題は解決される.このようなリソグラフィ技術による回折格子レンズは, 従来のホログラフィックレンズのように感光材料などの制限を受けず任意波長に対して設 計製作が可能で、レーザ光を回折限界近くまで集光することが出来る.しかし、今まで製 作されたレンズのNAは0.1~0.3であり、光ピックアップ光学系の対物レンズに用いられる ようなNA0.4以上のものは無かった^{19~21,24~27,63,64)}

本章では,回折格子レンズをCD用光ピックアップ光学系の対物レンズとして用いる ことを念頭におき、NA0.45の球面収差を除去した平板構造のマイクロ回折格子レンズ (マイクロゾーンプレートレンズ) 28~30)と、コマ収差も除去したアプラナティック回折 格子レンズ⁶⁵⁾の設計法及びNA0.45のマイクロゾーンプレートレンズをUVリソグラフィ で作製した実証実験の結果について述べる.

3.2 球面収差除去微小回折格子レンズ (マイクロゾーンプレートレンズ) の設計 3.2.1 格子パターンの設計 Fig.3.1にマイクロゾーンプレートレンズの構成を示す. このレンズは入射平行光を屈 折率 n ≥ 1 の透明物質中で回折限界のスポットに集光する. k番目の格子に入射した光線

Fig.3.1. Geometry for the design of the micro zone plate lens.

は回折され,角度 θ1で透明物質に入射し,界面で屈折されて集光点Fに到達する.この 条件を満たすk番目の格子パターン境界部の半径 rkは, 光路差を計算することにより求め られる.透明物質境界での屈折を考慮すると, $d/\cos\theta_1 + nt/\cos\theta_2 - (d+nt) = k\lambda/2$ $(k = 1, 2, \cdots)$ (3.2.1)

 $\sin\theta_1 = n\sin\theta_2$ (3.2.2) $r_k = d \tan \theta_1 + t \tan \theta_2$ (3.2.3)

となる. ここで、nは透明物質の屈折率、dはマイクロゾーンプレートレンズと透明物 質までの距離(作動距離), t は透明物質表面から集光点までの距離, λ は波長である.

このマイクロゾーンプレートレンズの焦点距離をf, F数をFおよび有効直径をDf とすると、 F数の定義より,

 $F = f / D_f = f / 2R_f$ (3.2.4)

である. ここで, R はマイクロゾー プレートレンズのF数および集光点ま ように求まる. Fig.3.1を参考にし、入身 $\tan \theta_{1m} = R_f / f = 1/2F$ $a = t \tan \theta_{2m}$ $d = \left(R_f - a\right) / \tan \theta_{1m}$ が成り立つ. これらの関係より、 $d = 2F(R_f - t\tan\theta_{2m})$ となる. また, θ_{2m}は式(3.2.2)の屈折 $\theta_{2m} = \sin^{-1}(1/n\sin(\tan^{-1}(1/2F)))$ となる. 次に、n=1として、式(3.2.1)~(3.2.3)を解くと $r_{k} = \sqrt{\frac{\lambda k (\lambda k/2 + 2f)}{2}} \cong \sqrt{k} \sqrt{\lambda f}$

$$k_{\max} = \frac{2f}{\lambda} \left(\sqrt{1 + 1/4F^2} - 1 \right)$$

となる. これは、通常のゾーンプレートレンズの設計式である. 求められないが、概算見積もりは式(3.2.10)を用いて行うことができる.

 $\Delta r_{\min} = r_{k\max} - r_{k\max-2}$

-ンプレートレンズの半径である. マイクロゾーン
での距離tが与えられたときの作動距離dは以下の
射角度 θ_1 の最大値を θ_{1m} とすると,

	(3.2.5)
	(3.2.6)
	(3.2.7)
	(3.2.8)
の式と式(3.2.3)より	

(3.2.9)

(3.2.10)

(3.2.11)

マイクロゾーンプレートレンズは同心円状の格子より構成されており, その格子間隔 は周辺部分ほど狭くなっている.一方,焦点面における集光スポット径はF数に比例して おり, F数が小さいほど集光スポット径は小さくなるが, 格子の間隔も小さくなり, 製作 可能な格子間隔を考慮するとF数には下限がある.球面収差を除去したマイクロゾーンプ レートレンズの最小格子間隔は式(3.2.1)~(3.2.3)を用いて数値計算しなければ正確な値は

格子間隔が最小になるのは、マイクロゾーンプレートレンズの半径に一致する格子半 径 r_{kmax} とその2つ前の半径 r_{kmax-2} との差である. その間隔を Δr_{min} とすると,

(3.2.12)

で与えられる.

$$r_{kmax}$$
はレンズの直径をD_fとして,
 $r_{kmax} = D_f/2$

である. 一方, r kmax-2は式(3.2.10)より

$$r_{k\,\max-2} = \sqrt{\frac{\lambda k_{\max}(\lambda k_{\max}/2 + 2f)}{2} - 2\lambda f - \lambda^2 (k_{\max} - 1)}$$
(3.2.13)

となる. ここで,式(3.2.13)の平方根内の第1項は(D_f/2)² である.第3項は波長λの2乗 に比例する項であり、他の項に比べて1桁以上小さいので無視できる.また、 $\sqrt{1-x} \cong 1-x/2$ の近似を用いると、

$$r_{k\,\mathrm{max}-2} = D_f / 2 - 2\lambda F \tag{3.2.14}$$

となる. したがって, 最小格子間隔 Δr_{min} は,

 $\Delta r_{\min} = 2\lambda F$

(3.2.15)

となる. すなわち, 最小格子間隔 Δ r min は使用波長 λ と F 数により決まることが分か

3.

本研究での設計ではCD用の対物レンズを想定した.パラメータの値をTable 3.1に示 す.透明物質としては光ディスクに用いられるポリカーボネート樹脂を考えた.このと き、フリンジの本数は599本であり、最小の格子ピッチは1.744µmである.

Table 3.1. Design parameters of the micro zone plate lens.

Eocal length	f	2	mm
Diameter	D	2	mm
F Number	F	1	
WaveIngth	λ	780	nm
Refractive index of the glass p	plate n	1.5	
Thickness of the glass plate	t	1.2	mm
Working distance	d	1.25	mm

3.2.2 集光特性

折の積分式より,

$$U_2(x_2, y_2) = \iint U_1(x_1, y_1) \exp(jk\frac{x_1^2 + y_1^2}{2f}) \exp(j2\pi \frac{x_1x_2 + y_1y_2}{\lambda f}) dx_1 dy_1$$

ているときは、円筒座標で表現し、z軸回りに積分すると、 $U_2(\rho) = 2\pi \int U_1(r) \exp(jk\frac{r^2}{2f}) J_0(k\frac{\rho r}{f}) r dr$

$$r = \sqrt{x_1^2 + y_1^2}, \rho = \sqrt{x_2^2 + y_2^2}$$

を得る.ここで、rは物体面での半径座標、 ρ は像面での半径座標、 $J_0(x)$ は第1種0次 ベッセル関数である.

口によるフレネル回折は,式(3.2.17)に

 $U_1(r) = 1$; $0 \le r \le a$ =0; $a \leq r$

を代入すれば求まる. その結果,

 $U_2(\rho) = 2\pi \int_0^a U_1(r) \exp(jZr^2) J_0(Rr) r dr$

$$Z = \frac{k}{2f}, R = \frac{k\rho}{f}$$

を得る.ここで,式(3.2.19)の積分をn次のベッセル関数の公式

ここでは、マイクロゾーンプレートレンズの集光特性について検討する. z軸を光軸 とし、それに垂直なxy平面上にレンズがあるものとする. z=z1上での複素振幅分布を $U_1(x_1,y_1)$,距離f伝播したときの z_2 面上での複素振幅分布を $U_2(x_2,y_2)$ とすると、フレネル回

で表される⁶⁶⁾. ここで λ は入射波の波長, $k=2\pi/\lambda$ である. U_1 が光軸に対称な分布をし

(3.2.17)

(3.2.16)

次に、マイクロゾーンプレートレンズによるフレネル回折を求めるためE. Lommelの 級数を用いた級数展開表示を示す.光軸に平行な平面波が入射するとき,半径aの円形開

(3.2.18)

(3.2.19)

$$x^{n}J_{n-1}(x) = \frac{d}{dx} \left\{ x^{n}J_{n}(x) \right\}$$
(3.2.20)

を用いて,部分積分を繰り返すと,

$$U_{2}(\rho) = \lambda f \exp(ja^{2}Z) \{ u_{1}(\rho) - ju_{2}(\rho) \} ; \rho \ge a$$

= $j\lambda f \{ \exp(-j\rho^{2}Z) - \exp(ja^{2}Z)(v_{0}(\rho) - jv_{1}(\rho)) \} ; \rho \le a$

が得られる.ここで、un、vnはLommel関数と呼ばれ、

$$u_n(\rho) = \sum_{p=0}^{\infty} (-1)^p (\frac{a}{\rho})^{n+2p} J_{n+2p}(aR)$$
(3.2.22)

$$v_n(\rho) = \sum_{p=0}^{\infty} (-1)^p (\frac{\rho}{a})^{n+2p} J_{n+2p} (aR)$$

で定義される.

次に、N個の同心円環状開口による回折を考える.半径bmと半径amの間の円環開口で回折される光による振幅Umは式 (3.2.17)により、

$$U_m(\rho) = 2\pi \int_{a_m}^{b_m} \exp(jZr^2) J_0(Rr) r dr$$
(3.2.23)

$$a_m = \sqrt{(2m-1)\lambda f}, b_m = \sqrt{2m\lambda f}$$

である.この積分も,式(3.2.22)のLommelの式で求めることができる. マイクロゾーンプレートレンズ全体の回折光による焦点面上の強度は,構成する輪帯の数 をNとすると,

$$I = |U_2(\rho)|^2 = \left|\sum_{m=1}^{N} U_m(\rho)\right|^2$$
(3.2.24)

である.式(3.2.24)を数値計算すれば強度分布が計算出来る.しかし,Nが十分大きい場合には漸近解として次式が得られる⁶⁷⁾.

この式はN番目の透明輪帯の外側の 点距離fの無収差レンズをおいたとき、そ エアリー分布)と一致している、輪帯の数 を持つ無収差レンズの強度分布に近づく、 したがって、強度が中心の1/2、1/4 $2w_{1/2}, 2w_{1/e^2}とすると、$ $2w_{1/2}, 2w_{1/e^2}とすると、$ $2w_{1/2} = 1.04\lambda F$ となる、最小格子幅 Δd_{\min} は最小格子間隔 いると、式(3.2.26)は以下のようになる、 $2w_{1/2} = 1.04\Delta d_{\min}$ $2w_{1/e^2} = 1.64\Delta d_{\min}$ これから、マイクロゾーンプレートレンス ことがわかる、すなわち、実現できる解像 まる、

(3.2.21)

(3.2.25)

$$\mathbf{S}' \times \mathbf{N} = \frac{n}{n'} \mathbf{S} \times \mathbf{N} + \left(\frac{m\lambda}{n' d}\right) \mathbf{q}$$

ここで、S'は回折光の方向を示す単位ベクトル、Sは入射光の方向を示す単位ベクトル、Nは回折格子が形成されている面の単位法線ベクトル、qは回折格子の溝に沿う単位ベクトル、nは入射側媒質の屈折率、n'は射出側媒質の屈折率、mは回折の次数、λは 波長、dは回折格子の周期である. Fig.3.2にこれらベクトルの関係を示す.

この式はN番目の透明輪帯の外側の半径b_Nと同じ半径を持つ円形開口のすぐ後に焦 点距離fの無収差レンズをおいたとき、その焦点面に作られる点像の強度分布(いわゆる エアリー分布)と一致している。輪帯の数Nを増やしていくと、同じ開口と同じ焦点距離 を持つ無収差レンズの強度分布に近づく。

したがって, 強度が中心の1/2, 1/e²となるところでのスポット直径をそれぞれ

(3.2.26)

となる. 最小格子幅 Δd_{min} は最小格子間隔 Δr_{min} の1/2であり、また、式(3.2.15)の関係を用

(3.2.27)

これから、マイクロゾーンプレートレンズの解像限界は最周辺の格子の幅とほぼ一致する ことがわかる.すなわち、実現できる解像限界は最も細い格子の幅の加工精度によって決

レンズの光線追跡

る光線追跡式はG. H. Spencer⁶⁸⁾らにより導出されて

(3.2.28)

次に、式(3.2.28)の見通しと計算を容易にするため、以下のように変形する、補助べ クトルPを考え,

$$\mathbf{P} = \mathbf{q} \times \mathbf{N}, \quad \mathbf{q} = -\mathbf{P} \times \mathbf{N} \tag{3.2.29}$$

と置く. 式(3.2.29)を式(3.2.28)に代入すると,

$$(\mathbf{S}' - \mu \mathbf{S} + \Lambda \mathbf{P}) \times \mathbf{N} = \mathbf{0}$$
(3.2.30)

$$\mu = \frac{n}{n'}, \quad \Lambda = \frac{n n'}{n' d}$$

となる.式(3.2.30)において、ベクトル積の公式より、Γを定数としてΓN x N=0である ので,

 $S' = \mu S - \Lambda P + \Gamma N$

と変形出来る.ここで、定数 Гは | S' |=1 より求められる. | S' |=1 と式(3.2.31) より、

$$\mu \mathbf{S} - \Lambda \mathbf{P} + \Gamma \mathbf{N} |^{2} = \mu^{2} |\mathbf{S}|^{2} - 2\mu \Lambda (\mathbf{S} \bullet \mathbf{P}) + \Lambda^{2} |\mathbf{P}|^{2}$$

+ $2\Gamma \mu (\mathbf{S} \bullet \mathbf{N}) - 2\Gamma \Lambda (\mathbf{P} \bullet \mathbf{N}) + \Gamma^{2} |\mathbf{N}|^{2} = 1$ (3.2.32)

となる.ここで、 $|S|^{2}=1$, $|N|^{2}=1$, $P \cdot N=0$ の関係を用いると、 Γ に関する2次方 程式が得られる.

 $\Gamma^2 + 2b\Gamma + c = 0$

但し,

(3.2.31)

 $b = \mu(\mathbf{S} \bullet \mathbf{N})$

 $c = \mu^2 - 2\mu\Lambda(\mathbf{S} \bullet \mathbf{P}) + \Lambda^2 |\mathbf{P}|^2 - 1$

である.式(3.2.33)を解くことにより、 Гは $\Gamma = -b + \sqrt{b^2 - c}$

と求められる.このΓを式(3.2.31)に代入すれば回折光の方向S'が求まる. 式(3.2.28)をマイクロゾーンプレートレンズに適用する場合、考慮すべきパラメータ は、ベクトルN、ベクトルq及び周期dである.まず、ベクトルNであるが、通常のマイ クロゾーンプレートレンズでは輪帯を平面上に形成することを考えると, 光軸方向に取っ て良い.次にベクトルqはマイクロゾーンプレートレンズが同心の円環状輪帯より構成さ れていることを考えると、輪帯が形成されている平面上の半径rの円の1点における接線 方向のベクトルに一致する. すなわち, 入射光線のマイクロゾーンプレートレンズ上での 点を(x,y), そのときの原点からの距離をr, ベクトルqの成分を(q_x,q_y,q_z)とすると,

 $x^{2} + y^{2} = r^{2}$, $xq_{x} + yq_{y} = 0$, $q_{x}^{2} + q_{y}^{2} = 1$, $q_{z} = 0$

が成り立つ. したがって, ベクトルqの成分は

 $q_x = -\frac{y}{r}$, $q_y = -\frac{x}{r}$

となる.

式(3.2.28)のベクトル式は、格子周期が部分的に異なる場合でも、回折格子のその局 所領域について成り立っており、その局所的な格子周期を考えて、これをdとして用いれ ばそのまま適用することが出来る. 回折光の位相差をφとすると、マイクロゾーンプレー トレンズの輪帯半径を設計するときに用いる主光線と回折光の光路差OPDと,

(3.2.33)

(3.2.34)

(3.2.35)

(3.2.36)

$$\phi(r) = \frac{2\pi}{\lambda}(OPD)$$

の関係がある.今の場合,マイクロゾーンプレートレンズが軸対称であるので,位相差 ¢ は半径 r のみの関数である.したがって,局所的な格子周期 d は,式(3.2.37)を r で微分して,

$$d = \left(\frac{1}{2\pi}\frac{\partial\phi}{\partial r}\right)^{-1}$$

となる.以上の式(3.2.31)~(3.2.38)を用いれば光線追跡が出来る.

3.3 実験結果

3.3.1 製作法

本研究では格子パターンをもつマイクロゾーンプレートレンズを、フォトリピータで 作製した原寸のフォトマスクを用いた密着法によりフォトレジスト(AZ1350J;Shipley製) 上に作製した¹⁹.作製手順をFig.3.3に示す.フォトマスクは輪帯半径をコンピュータに入 力し、50倍に拡大したパターンを光学式描画装置で描画した.このときの最小解像限界は 5µmである.次にこのパターンをフォトリピータを用いて2段階で縮小し、原寸大のフ ォトマスクを作製した.フォトマスクは2.5"角で、厚さ1.6mmの石英ガラス基板上に Cr+CrO₂を蒸着した低反射形のものを用いた.Fig.3.4に作製したフォトマスクの描画線幅 の測定例を示す.図中(a)はレンズ中心付近を示し、(b)は輪帯のエッジ近傍を示してい る.いずれも線幅の測定値は計算値と良く一致している.また、このように作製したフォ トマスクの最終パターンでの最小描画線幅は0.75µmである.UVリングラフィでも1µm 以下の線幅のパターンが作製可能であることが分かった.

回折効率を最大にするため、フォトレジストの厚みd_pは、次式を満足するように制 御した.

 $d_p = \lambda/2(n_p - 1)$

(3.3.1)

ここでnnはフォトレジストの屈折率である.フォトレジストは85℃で20分間プリベーキ

Pattern generator (Reticle 50x)

Actual size photo-mask (Photo-repeater 1st step:1/10x 2nd step:1/5x)

Photolithography (Contact exposure)

Development

-

using UV lithography.

(3.2.37)

(3.2.38)

Fig.3.3. Fabrication process of a micro zone plate lens

(b) near the edge of the mask.

Fig.3.4. Zone width of the photo mask.

ングを行った. AZ1350Jの場合、プリベーキング後の屈折率は1.68であるので、最適膜厚 は0.57µmである. また, 現像時間は約30秒である.

3.3.2 格子形状

Fig.3.5に試作したマイクロゾーンプレートレンズの外観写真を示す. また, Fig.3.6は SEMで観測した円環状格子の作製状態を示したものであり、(a)はレンズ中央部分、(b)は レンズの周辺部分である.最小の格子幅は0.87µmであり、フォトマスクの測定値0.75µm Glass substrate

width is $0.87 \,\mu$ m.

Fig.3.5. Photograph of the micro zone plate lens.

(b)

Fig.3.6. SEM photographs of the micro zone plate lens : (a) Central region, (b) Enlarged view near the edge of the lens. Minimum zone より若干大きいが、ほぼ同程度のパターンが転写されていることが分かる.

3.3.3 集光特性

試作マイクロゾーンプレートレンズにレーザ光を照射したときの集光点での光強度分 布は,集光点でのスポット像を顕微鏡の対物レンズで拡大し,その像面をピンホールで走 査することにより測定した. Fig.3.7に測定装置のブロックダイアグラムを示す. 測定で用 いた半導体レーザは横モードおよび縦モードとも単一であり、波長は780nmである.顕微 鏡対物レンズはNA0.9であり、スポット像は100倍に拡大した.顕微鏡対物レンズの前に 光ディスクを模擬するため、厚さ1.2mmのガラス板 (BK7,屈折率1.5115)を設置した. また,光検出器の前に設置されたピンホールの直径は5µmである. Fig.3.8に測定結果を

Fig.3.7. Schematic diagram for measuring the intensity distribution in the focal plane.

算でき、 $W_{1/e^2} = 1.3 \, \mu \, \text{m}$ でありほぼ回折限界の値が得られていることがわかる.

Fig.3.8. Experimental intensity distribution in the focal plane.

3.3.4 回折効率

1.4µmのスポット径を得たときの回折効率の最大値は38%であった. 矩形断面をも つ位相型回折格子の回折効率の計算値は40.5%75)であり、これに近い値が得られているこ とがわかる.

アプラナティック回折格子レンズの設計 3. 4 通常の回折格子レンズは平板ガラスの一面に同心円環状の格子を形成し作製する.こ の構成では、いわゆるザイデルの5収差のうち、球面収差は、輪帯半径を系の条件に合わ

示す. 光強度がピーク値の1/e² となる幅W_{1/e²}は1.4µmである. 解析値は式(3.2.26)で計

37

せて設計することにより完全に除去することができるが、残りの収差は除去することはで きない.特に,入射光線が光軸に対して傾き,斜め入射になったときには正弦条件を満た さないためコマ収差が顕著に現れる.コマ収差を除去するには,主平面が焦点を中心と し、半径が媒質の屈折率と焦点距離の積に等しい球面に一致するようにすればよい69). これを実現する方法として、アプラナティックホロレンズ70~72)と同様に上記球面上に回 折格子レンズを形成することが考えられるが、製作面を考えると難しい.

ここでは、コマ収差を除去しうるアプラナティック回折格子レンズを構成する2つの 方法を提案し、その設計法について述べる、本研究で提案する1つの方法は、平行ガラス 板の両面に回折格子レンズを作製したものであり,正弦条件を完全に満たすものである. 他の1つは入射側を凹面とし、出射側を平面とした平凹レンズの平面側に回折格子レンズ を作製したもので、正弦条件はすべての光線については満足せず、コマ収差は完全に零で はないがその値の小さなものである.

3. 4. 1 アプラナティックダブル回折格子レンズ

(a) 設計法

本研究で考察した屈折率が1以上のガラス板に平行光を集光し, 集光点で球面収差及 びコマ収差を生じない2枚の平面回折格子レンズを用いたダブル回折格子レンズ (WGL)の構成と設計法について述べる.

Fig.3.9に構成を示す. WGLは屈折率 n₁, 厚さ d の平行 ガラス板の 両面 S₁, S₂上に 作製する.入射平行光は第1及び第2の回折格子レンズによって回折され、ガラス表面で 屈折したのち点Fに集光する球面波に変換される. 無収差で集光する条件は,

 $(n_1 d / \cos \theta_3 + 1 / \cos \theta_1 + n_2 t / \cos \theta_2) - (n_1 d + 1 + n_2 t) = k\lambda/2$ $(k = 1, 2, \dots)$

 $\sin\theta_1 = n_1 \sin\theta_2$

(3.4.1)

(3.4.2)

である.ここでn2はガラス板の屈折率, tは厚さ, 1は作動距離, λは波長である. 次に、コマ収差を生じないようにするためには、正弦条件を満たす必要がある.すな わち, Fig.3.9において, 集光点Fから屈折光の方向に沿って光線を延長した直線が入射光

Fig.3.9. Layout for the design of the double grating lens.

線を延長した直線と交わる点が点Fを中心とする半径n2fの球面上にあり,かつ,射出 光の高さが入射光の高さ r に等しくなる条件である.この条件は, $r_k = n_2 f \sin \theta_2$

と書くことが出来る.

第2の回折格子レンズの輪帯半径r'kは,

 $r_k = t \tan \theta_2 + l \tan \theta_1 = r_k + d \tan \theta_3$

で求められる.以上の式(3.4.1)~(3.4.4)が格子パターンを計算するための方程式である. この場合には変数の数と方程式の数が一致し、正弦条件をすべての光線が満足するので、 ザイデルの3次収差の範囲でコマ収差を除去することが出来る.

(3.4.3)

(3.4.4)

3. 4. 2 アプラナティック平凹回折格子レンズ

(a) 設計法

Fig.3.10に平凹回折格子レンズの構成を示す.回折格子レンズは屈折率n2,厚さd2 の平行ガラス板の面S上に作製される. 凹レンズは凹面の曲率中心がOで曲率半径が r で あり,他方の面は平面である.屈折率はn1で,厚さはd1である.Fig.3.10において,入 射の平行光線が集光点Fに球面収差が零で集光する条件は次式で書ける. $r\cos\theta_1 + (n_1r(1-\cos\theta_1)+d_1)/\cos(\theta_1-\theta_2) + n_2d_2/\cos\theta_4 + l/\cos\theta_5 + n_3t/\cos\theta_6$ $-(r+n_1d_1+n_2d_2+l+n_3t) = k\lambda/2 \quad (k=1,2,\cdots)$

(3.4.5)

ここで、1は作動距離であり、tはガラス板の厚さ、λは波長である.

 $\sin \theta_1 = n_1 \sin \theta_2$ $n_1 \sin \theta_3 = n_2 \sin \theta_4$ $\sin\theta_5 = n_3 \sin\theta_6$ である. ここで、 $\theta_3 = \theta_1 - \theta_2$ である.

> $r_{\rm L} = l \tan \theta_{\rm S} + t \tan \theta_{\rm S}$ $= r\sin\theta_1 + (r(1 - \cos\theta_1) + d_1)\tan(\theta_1 - \theta_2) + d_2\tan\theta_4$

が成り立つ.

により、kの値に対する光路が決定される. る. この焦点距離fの値を入射光の第1輪帯に対する入射高さをhiとして,

 $f \equiv h_i / n_3 \theta_6$

 $h_i = (r \sin \theta_1)_{k=1}$

 $\theta_{5m} = \sin^{-1}(NA)$

$$\theta_{6m} = \sin^{-1}(NA/n_3)$$

と求まる. この θ_{5m} と θ_{6m} の 値を式(3.4.8) に代入して

 $r_{km} = l \tan \theta_{5m} + t \tan \theta_{6m}$

となる.

また、点B,点Cおよび点Eにおけるスネルの法則は,

(3.4.6)

(3.4.7)

面Sにおける回折格子レンズの輪帯半径をrkとすると,

(3.4.8)

式(3.4.5)~式(3.4.8)は角度 $\theta_1 \sim \theta_6$ を変数とする連立方程式であり、これらの方程式

Fig.3.10のレンズ系において、各パラメータの値が与えられると焦点距離が決定され

(3.4.9)

で定義する.次に、このレンズの明るさを開口数NAで表わす.NAが与えられると、回 折格子レンズの最大輪帯半径 r kmが次式により求められる. ΝΑの定義より,角度θ5

(3.4.10)

(3.4.11)

(b) 残留コマ収差の評価量

コマ収差を生じないためには,正弦条件を満足する必要があるが,今の場合必ずしも すべての入射光線に対して,正弦条件を満たすようにすることはできない. 正弦条件の不満足量をO.S.Cで表わすと、定義により

 $O.S.C. = r\sin\theta_1 / \sin\theta_6 - n_3 f$

(3.4.12)

と書ける. 理想的には、すべての光線に対してO.S.C=0である. 式(3.4.12)において O.S.C=0として式(3.4.5)~(3.4.8)の連立方程式と連立した場合,変数 $\theta_1 \sim \theta_6$ に比べて方 程式の数が1つ多く,一意的に解くことはできない. そのため, O.S.Cの値がなるべく 小さくなるようにパラメータの値を変化させて式(3.4.5)~(3.4.8)を解くようにしなければ ならない.

本研究では残留コマ収差の評価量として2乗平均

$$D.S.C._{rms} = \sqrt{\frac{1}{k_{max}} \sum_{k=1}^{k_{max}} (O.S.C._{k})^{2}}$$

(3.4.13)

を導入し、パラメータ n_1 , n_2 , d_1 , d_2 などを与えたとき、この値が極小になるよう に凹レンズの曲率半径 r を変化させた.

3.4.3 計算結果

CD光ピックアップの対物レンズとして使用可能な開口数0.45のレンズを想定し、計 算に用いるパラメータの値を設定した.計算に用いたパラメータの値は, NA=0.45, 波長 λ=780nm, 基板厚さd₂=0.5mm, 屈折率n₂=1.5, 作動距離1=2mm, ガラス板の厚さt =1.2mm, 屈折率 n₃=1.5である.次に,残留コマ収差を小さくするため変化させたパラメ ータは、凹レンズ部分の屈折率 n₁,厚さd₁及び曲率半径 r である.

(a) 正弦条件不満足量

凹レンズ部分の厚さを一定として, 曲率半径の変化と正弦条件不満足量との関係を Fig.3.11に示す. パラメータは凹レンズの屈折率 n1 である. これらの図から分かるよう に、曲率半径の変化に対して正弦条件不満足量O.S.C.msは最小値を持ち、しかも最小値付

(d1=1.0mm, d2=0.5mm, n2=1.5).

近におけるO.S.C.msの変化は急峻である.また、屈折率n1 が大きいほど最小値は小さく なる. 凹レンズの厚さが厚くなると、最小値をとる曲率半径 r の値は小さくなり、正弦条 件不満足量も小さくなる.

(b) 収差曲線

が十分小さくなっていることがわかる.

Fig.3.11. Plots of the O.S.C.rms versus radius r

Fig.3.12に凹レンズの屈折率をn1 =1.7, 厚さをd1=1mm として正弦条件不満足量が 最小になる曲率半径付近の収差を示す.曲率半径 r を1.5,1.6,1.7mmと変化させた. Fig.3.12のグラフの縦軸は最大値で規格化した入射高さであり、横軸は式(3.4.12)で与えら れるO.S.Cの値である. Fig.3.12(b)は正弦条件不満足量が最小になるときであり、コマ収差

Fig. 3.12. Coma aberration curves in the vicinity of the minimum value of the O.S.C.rms.

(c) スポットダイアグラム

入射光の入射角度を変化させて光線追跡を行った結果をFig.3.13, Fig.3.14に示す. Fig.3.13は子午面における光線追跡の結果である.Fig.3.14は集光点におけるスポットダイ アグラムである.図中の(a)はアプラナティックフレネルレンズのスポットダイアグラム であり、入射光が2°傾いたとしてもスポットは2µm∮の円の中に入っており広がりは小 さく、コマ収差は予想通り抑制されている.入射角度が大きくなるにつれて高次の収差が 顕著になってくる.一方、(b)は平板上に作製された通常のフレネルレンズのスポットダ イアグラムを示している.入射角度0.2°でもコマ収差が顕著であり、スポットの広がり が大きいことがわかる.

Fig.3.13. Raytrace in the meridional plane for the plano-concave grating lens.

Fig.3.14. Spot diagrams in the focal plane.

(a) In case of aplanatic micro grating lens

Incident angle 0.2°

(b) Conventional micro grating lens

3.5 結言

本章では、回折格子レンズをCD用光ピックアップ光学系の対物レンズとして用いる ことを念頭におき,NAが0.45の球面収差を除去した平板構造のマイクロゾーンプレート レンズと、コマ収差も除去したアプラナティック回折格子レンズについての設計法及び NAが0.45のマイクロゾーンプレートレンズをUVリソグラフィで作製した性能評価実験 の結果について述べた、得られた結果をまとめると次の通りである.

- (1) フレネルレンズによるフレネル回折の無限級数展開式を示し、輪帯の数が多いとき には焦点面での光強度分布はエアリー分布に漸近することを示した.
- (2) マイクロゾーンプレートレンズの解像限界は最周辺の格子の幅とほぼ一致し、実現 できる解像限界は最も細い格子の幅の加工精度によって決まることを示した.
- (3) NA0.45のマイクロゾーンプレートレンズを、UVリソグラフィにより原寸のフォ トマスクを用い密着法によりフォトレジスト(AZ1350J;Shipley製)上に作製した. 集光特性は良好で、ほぼ回折限界のスポット径1.4µmであること、回折効率は、矩 形位相格子の回折効率の計算値40.5%に近い38%であることを明らかにした。最小 格子幅は0.87µmで、UVリソグラフィでも1µm以下のパターンが作製可能である ことを示した.
- (4) コマ収差を除去するための構成を2種類提案するとともに、残留コマ収差の新しい 評価量を基にして設計する新しい方法を提案した.
 - (a) 第1の方法は平板ガラスの両面に回折格子レンズを作製するものでありコマ収 差を完全に除去できることを示した.
 - (b) 第2の方法は入射面を凹面とし出射面を平面とした平凹レンズの平面側に回折 格子レンズを作製するものである.正弦条件不満足量のrms値を残留コマ収差 の評価パラメータとする新しい設計法を提案し、コマ収差を完全に除去するこ とはできないが実用上問題のない程度に小さくできることを明らかにした.

第4章 非点光束発生反射形回折格子レンズの開発と光ピックアップ光学系への応用

4.1 序言

光ディスクシステムではより高速のアクセスを実現するため、小型、軽量な光ピック アップが要求されている、これらの課題を解決し、小型・軽量化を実現するためには光 ピックアップを構成する部品点数を減ずることが重要である。特に光学系では1個の光学 素子に複数の機能を持たせることが有効である.光の回折を利用する回折光学素子は.任 意の波面変換機能を持ち、複数のホログラム領域を一枚の基板上に形成出来るので1個の 素子で複数の機能を持つ光学素子の作製が可能である³¹⁾.

本章では新たに提案した^{32,33,73)}、ディスク照射光とディスクからのピット情報を含 む反射光とを分離する機能、集光スポットを常にピット列に追従させるためのフォーカス 誤差信号とトラッキング誤差信号を得るためのセンサ光学系の機能及び光路の折り曲げ機 能の複数機能を有する反射型回折格子レンズ(以下RGLと略す)の設計・試作と実験結果 について述べる. さらにCDを用いた信号の再生結果について述べる.

フォーカス誤差信号を得る方法として非点収差法を採用し, 非点光束を反射型回折光 学素子で発生するようにした. 非点光束を発生する反射型回折格子レンズの位相を, 反射 型回折格子レンズ面上の座標で展開された多項式で表し、第2章の解析結果を基に所要の 非点隔差となるように係数を決定した.

4.2 光学系の構成とフォーカス誤差信号発生法

Fig.4.1に, RGLを用いた光ピックアップ光学系の構成を示す.光ピックアップ光学系 は半導体レーザ(LD), 4分割光検出器(QD), RGL及び非球面レンズから構成されて いる.RGL光ピックアップでは、光ピックアップ光学系に必要とされる3機能、 1)レーザ光を光ディスク面上に回折限界で集光する機能, 2)ディスク照射光とディスクからのピット情報を含む反射光とを分離する機能. 3) 集光スポットを常にピット列に追従させるためのフォーカス誤差信号とトラッキング 誤差信号とを発生する機能,

と、光ピックアップを薄型にするための追加機能である

4)光路の折り曲げ機能,

を、非球面レンズとRGLの2光学素子により達成している.上記1)の機能は非球面レンズ が,2)~4)の機能はRGLが有している.

Fig.4.1. Schematic view of an optical head with the reflection-type grating lens.

ング誤差信号はプッシュプル法で得ている.

4.3 非点光束発生反射形回折格子レンズの設計 4.3.1 非点光束を発生する格子パターンの計算式 RGLの格子パターンは、LDと4分割光検出器およびRGLの配置関係とLDの発振波長 および1次回折光に付加する収差によって決まるものであり、式(4.3.1)で定義される位相 差がπの整数倍となる等位相曲線として表現される56). すなわち,

$$\phi = \phi_{ID} - \phi_{PD} + \frac{2\pi}{\lambda_0} \sum_{i,j=0} C_{ij} x^i y^j$$

式(4.3.1)において、 Φ_{LD} はLDを点光源としたときのRGL面上での位相、 Φ_{PD} は4分 割光検出器の中心とRGLの中心を結ぶ直線上で受光面近傍に仮想点光源をおいたときの RGL面上での位相, (x, y) はRGL面上での座標, λ_0 は波長である. 第3項は付加収差 を与える項であり、係数Ciiの値と次数i,jを選択することにより1次回折光に種々の収差 を発生させることができる. LDの座標を (x_{LD}, y_{LD}, z_{LD}) , 4分割光検出器近傍の仮想 点光源の座標を(x_{PD}, y_{PD}, z_{PD})とすると,

$$\phi_{LD} = \frac{2\pi}{\lambda_0} |\mathbf{r} - \mathbf{r}_{LD}| = \frac{2\pi}{\lambda_0} \left\{ (x - x_{LD})^2 + (y - x_{LD})^2 + (y - x_{LD})^2 + (y - x_{LD})^2 + (y - x_{LD})^2 \right\}$$

Fig.4.1の構成において、LDからの射出光はRGLに直接入射するが、RGLによる0次 回折光は90°光路が曲げられて非球面レンズに入射する.入射光はこの非球面レンズによ りディスク面上にほぼ回折限界のスポットで集光される.ディスクからの反射光は逆の光 路を通り非球面レンズに入射し、LDの発光点を集光点とする集束光に変換されRGLに入 射する.RGLで発生する回折光のうち1次回折光は光路が曲げられて4分割光検出器に集 光する光に変換される. Fig.4.1に示すように、射出光の光路とは重ならないので、ディス ク面からのピット情報を有する反射光のみを4分割光検出器に導くことができる.フォー カス誤差信号は1次回折光を非点光束とすることにより非点収差法で得ており、トラッキ

(4.3.1)

 $(-y_{LD})^2 + z_{LD}^2 \Big\}^{1/2}$

(4.3.2)

 $(-y_{PD})^2 + z_{PD}^2 \Big\}^{1/2}$

ここで、「IDはRGL上の原点とLDを結ぶベクトル、「PDは4分割光検出器近傍の仮想点 光源までのベクトルである.

格子パターンを白黒格子で考えると, 白となる位置は,

 $\phi = 2m\pi$ $(m=0,\pm 1,\pm 2\cdots)$

黒となる位置は,

 $\phi = (2m+1)\pi$ $(m = 0, \pm 1, \pm 2 \cdots)$ (4.3.4)

で求まる.mをパラメータとして式 (4.3.3), (4.3.4)をx,yについて解けば格子パター ンが求まる.また、位相 ¢ を微分することにより、格子ベクトルK(Kx,Kv,Kz)と格子周期 ∧が求まる. すなわち,

$$K_{x} = -\frac{\partial \phi}{\partial x}, \quad K_{y} = -\frac{\partial \phi}{\partial y}, \quad K_{z} = 0$$

$$\Lambda = \frac{2\pi}{\sqrt{K_{x}^{2} + K_{y}^{2}}}$$
(4.3.5)
(4.3.6)

x=0における最大周期と最小周期はFig.4.2のようになる.図において、横軸は回折角 度α (RGL中心とLDを結ぶ直線とRGL中心と4分割光検出器中心を結ぶ直線とのなす角 度) である. 格子パターンをフォトリソグラフィで作製することを考えた場合, 格子幅 (ほぼ格子周期の半分)が1µm以下になると作製が難しくなるので、これを考慮すると 回折角度 a は20°以下でなくてはならないことが分かる.

4.3.2 非点隔差の検討

フォーカス誤差信号は非点収差法で得ているので、誤差信号の感度と関係する非点光 束となっている1次回折光の非点隔差について検討する. RGLと非球面レンズとで構成さ れる光学系の倍率をm'とすると、非点隔差△Rとディスク移動量△zdとの関係は、

 $\Delta R = 4m'^2 \Delta z_d$

となる. また, 倍率m'は非球面レンズの倍率mと


```
m' = mr_{PD} / r_{ID}
```

(4.3.3)

(4.3.7)

は約2.6mmでなければならない.

第2章で述べたように,非球面項C11, C20,もしくはC02を含む場合,回折光は非 点光束となる.ここでは、その結果を用いて非点隔差について計算する.計算条件は、物 体光源: $r_{LD} = r_o = 16 \text{ mm}, \theta_o = 45^\circ, \phi_o = -90^\circ$, 参照光源: $r_{PD} = r_r = 20 \text{ mm}, \theta_r =$ 47.594°, ϕ_{o} = -65.968°, 再生照明光源: r_{c} = 16mm, θ_{c} = 45°, ϕ_{c} = -90°, 回折次数 q=1, 波長比 $\mu=1$ である. また、非球面項 C_{11} は $5x10^{-3}$ 、 $-2.3x10^{-3}$ 、0とし、それ ぞれに対し、C₂₀を-1.0x10⁻³~1.0x10⁻³と変化させた.計算結果をFig.4.3に示す. (a)は各焦線までの距離, (b)は非点隔差を示す.いづれの場合も、C20の値が大きくなる と、一方の焦線位置は参照光源位置に近づく. C11=0の場合、一方の焦線位置は参照光

(4.3.8)

の関係がある.ここで、r_{LD}はRGLとLDとの距離、r_{PD}はRGLと4分割光検出器近傍の 仮想点光源までの距離である. m=5, r_{PD}/r_{LD}~1.3, Δz_d ~20 μ mとすると非点隔差 ΔR

(b) Astigmatic distance

Fig. 4.3. Caluclated focal distance and astigmatic distance.

集光パターンを評価し、非点収差パターンが最適となるようにして決定する.

4.3.3 スポットダイアグラムによる1次回折光ビーム形状の評価

1次回折光の詳細な集光特性は光線追跡により評価を行った^{54~56)}. Fig.4.4 (a)(i) は、観測面とRGLとの距離を変化させたときの観測面上における集光スポットの変化を示 している. 最小錯乱円の位置は無収差時よりRGL側へ1mm近づいたところにあり、スポッ ト径は約260µmとなっている.非点隔差は3.5mmであり,非点光束のパターン形状は最 小錯乱円の前後でほぼ対象な形となっている. Fig.4.4 (b)(i)はディスクと非球面レンズと の距離を変化させたときの4分割光検出器面上における集光スポットの変化を示してい る. 非点隔差は約45µmである. 式(4.3.7), (4.3.8)の関係が成り立っているのがわかる.

4.4 フォーカス誤差信号

フォーカス誤差信号も、光線追跡により計算した. LDの放射パターンは接合面に平 行な放射角度と垂直な放射角度が異なるガウス分布とし、強度に応じて光線に重み付けを した. Fig.4.5は、再生時にLDの波長が変化したときのフォーカス誤差信号の計算値であ る. 直線領域は約40µmであり、これはFig.4.4 (b)(i)における非点隔差45µmと良く一致し ている. 波長変化が5nm以下であればフォーカス誤差信号のオフセットは0.5µm以下であ り,感度の劣化も2dB以下である。組立時におけるLDの波長バラツキは4分割光検出器の 位置を調整することにより補正可能である. LDの波長が温度変化により変化した場合に は、4分割光検出器面上の集光スポットは x 軸方向に移動する.しかし、4分割光検出器 の分割線の1つは x 軸方向と一致しており、さらにトラッキング信号は x 軸を分割線とす るプッシュプル法であるためLDの波長が変化してもほとんど影響を受けない.

源位置に固定されており、C₂₀=0を境として入れ替わる.この図より非点隔差ΔR~ 2.6mmを得るためには、 C_{11} =-2.3x10⁻³、 C_{20} =-2.0x10⁻³とすればよいことがわかる.係 数Ciiの最終値は、次に述べる光線追跡により像面におけるスポットダイアグラムにより

Fig.4.4. Spot diagrams and mesured beam patterns for the firstorder diffraction beam of the RGL.

光ディスクにおいて、ディスクに刻まれたピットを読み出すためには、ディスク面に おける照射光はほぼ回折限界でなくてはならない.回折限界の目安を与える波面収差の評 価量としてMareshal's criterion⁷⁴⁾があり, 波面収差のrms値は0.07 A rms以下でなくてはなら ない.これは、光ピックアップと光ディスクとで構成される光学系に対するものであり、 それぞれrms値で1/2づつに分配されるものと考えると、光ピックアップに許容されるrms 波面収差値は0.049 λ_{rms} となる.ここでは、マージンを見込んで0.039 λ_{rms} とする. RGL光ピックアップ光学系を構成する要素のうち、収差を発生する素子は、LD,RGL及び

非球面レンズである.本光ピックアップ光学系では,読み出し光にRGLの0次回折光すな わちRGLでの鏡面反射光を用い、それを非球面レンズでディスク面上に集光している.し たがって, RGLの0次回折光の波面収差は小さい必要がある. RGLの1次回折光には意図 的に収差を付加しているので, 表面状態などによって生じる収差はあまり問題とならな い. 各光学素子に振り分けられる許容収差は、ガラス光学素子を用いた現在の光ピック アップでの値を基に算定すると、LD:0.01 λ ms, RGL:0.02 λ ms, 非球面レンズ:0.03 λ ms となる.

- 4.5.2 受光量の見積もり
- (a) 0次回折効率と1次回折効率の積を最大にする格子溝深さ

RGLにおけるm次回折光の回折効率は、RGLを薄い位相格子と考えることにより計算 でき、次式で与えられる75)

$$\eta_{m} = \left| \frac{1}{T} \int_{0}^{T} \exp(if(x) \exp(-i\frac{2m\pi}{T}x) dx) \right|^{2}$$
(4.5.1)

ここで、Tは格子の周期、f(x)は位相変化を表す関数である。格子断面形状が矩形であ る場合, f(x)は

(4.5.3)

鋸歯状である場合,

$$f(x) = \frac{4\pi}{\lambda_0} h \frac{\cos \theta}{\cos \alpha} \cdot \frac{\xi - x/T}{\xi - 1} \qquad (0 \le x \le \xi T)$$
$$= 0 \qquad (\xi T \le x \le T)$$

である. ここでhは格子深さ, θは傾斜角度, ξは矩形格子の場合デューティ比, 鋸歯状 格子の場合平坦部分の割合である. Fig.4.6(a)は, 矩形格子の場合, (b)は鋸歯状格子の場

Fig.4.6. Calculated diffraction efficiency.

(a) Lamellar grating

合の ξ をパラメータとしたとき0次回折効率 η_0 と1次回折光回折効率 η_1 の計算値であ る. RGLの場合, 0次と1次回折光の回折効率の積が重要であり, 図より矩形格子で最大 値10.2%が、鋸歯状格子で16.4%が得られることが分かる. RGLの傾斜角度を45°とした ときの格子の最適深さは矩形格子で131.5nm, 鋸歯状格子で263.1nmである.

(b) 受光量の見積もり

CDで用いられているEFM(Eight to Fourteen Moduration)信号の再生に必要とされるHF(High Frequancy)信号の光検出器出力信号は10µAppであり、変調率を考慮したときのDCレ ベルでの光入力パワーは28 µ W(-15.53dBm)である.

LDの出力を3mW,非球面レンズの入射側における結合効率を24%、レンズの透過率 95%, RGLの回折効率は,格子断面の形状を矩形としたとき0次回折効率50%,1次回折 効率20%であり、ブレーズ化するとそれぞれ40.5%、40.5%となる.また、RGLの高反射膜 としてAu蒸着膜を用いたときの反射率は95%以上が期待できる(Appendix参照.) 光デ ィスクの反射率は75%程度である.以上のことより,光検出器の受光量は,RGLの断面を ブレーズ化したとき-11.7dBm, 矩形格子では-13.9dBmが期待できる. これらの値は, 所要 受光量-15.5dBmに比べてそれぞれ3.8dB, 1.6dB大きな値であり, 信号再生に十分な光量が 得られている.

4.6 実験結果

4.6.1 格子形状と0次回折光波面収差

Fig.4.7は, RGLの作製プロセスを示したものである. 格子パターンは式(4.3.3)を解く ことにより得られる曲線で表されるが、これの各点における接線を求めて、折れ線近似を した. 1セルの寸法が5µm x 1µmの矩形を折れ線上に当てはめる方法を取り、パターン データとした.電子線描画により原寸の10倍の大きさのレチクルを作り、フォトリピータ により原寸大のマスクを作製する.この縮小プロセスで電子線描画で生じる量子化ノイズ が低減され、スムーズな格子パターンが得られる.石英基板上のクロム薄膜にパターンを UVリソグラフィで作製した.最大回折効率を得るためクロム薄膜の厚さはできるかぎり

Electron Beam lithography(Reticle 10x)

Actual size photo-mask (Photo-repeater 1/10x)

Photolithography (Contact exposure)

Development

Etching

Cr and Au evaporated

Cutting

Fig.4.7. Schematic diagram of the fabrication process of the RGL.

体の回折効率は10%が期待できる.

Fig.4.8に製作したRGLの外観写真を示す. 寸法は5 x 5 x 1.5mm³である. 格子形状の測 定には、金属用光学顕微鏡(ニコン製:メタフォト)、走査型電子顕微鏡(SEM、日本電

131.5nmになるようにした. 最後に反射率を高めるためAu膜を全面に渡って蒸着した. Au 蒸着膜の厚さは100nmである.波長780nmにおけるAu蒸着膜の反射率は99%以上有り、全

Fig.4.10. Cross sectional trace of the RGL by Talystep.

Table 4.1. Measured values of 1	RGL.
---------------------------------	------

Item Dimensions Substrate		Design Measured value		Notes	
		5x5x1.5mm ³	5x5x1.5mm ³	Cr mask blank	
		Quartz glass	Quartz glass		
Grating	right of center	2.87 μ m	2.96 µ m	Talystep	
	Center	2.59 µ m	2.50 µ m	Talystep	
	left of center	2.41 μ m	2.39 µ m	Talystep	
Duty ratio		50%	49~51%	Talystep	
Cross section of grating		Rectangular	Rectangular	Talystep	
Groove depth		131.5nm	125nm		

Fig.4.11. Schematic diagram for measuring the wave aberration of the zero-order diffraction beam.

(a) Fringe pattern.

Fig.4.12. Typical wavefront error of the zero-order diffraction beam of the RGL.

(b) Isometric plot of OPD data.

102mm ϕ で波面収差のP-V値が0.05 λ 以下の精度を有したものである、測定結果の典型的 な一例をFig.4.12に示す、このときの波面収差はrms値で0.007 λ rmsである、この値は、 RGLに要求される許容波面収差値0.02 λ rms以下を十分満足している、

Fig.4.13は, RGLの0次回折光をNA0.45の非球面レンズで集光したときの光ディスク 面上での集光スポットの測定結果である.図において(a)は集光スポットのパターン,(b) は上記集光スポットの中心を通る断面の強度分布を示している.非点収差,コマ収差等は ほとんど観測されず,強度が最大値の1/e²になる全幅(スポットサイズ)は1.4μmであ

(a) Focused spot

(b) Intensity distribution

Fig.4.13. Focused spot and intensity distribution of the zero-order diffraction beam of the RGL by the single aspherical lens.

る. NA0.45の対物レンズの波長780nmにおける回折限界のスポットサイズの計算値は1.42 μmであり、回折限界の集光スポットになっていることが分かる.

4.6.2 1次回折光の特性

RGLで発生する1次回折光の評価項目としては、1)1次回折光光軸に沿って観測位置 を前後したときの集光パターンの形状変化、2)非点隔差、3)0次回折光に対する分離角 度、4)最小錯乱円位置と寸法、5)焦線の位置と寸法及び傾角があり、さらに、6)0次回折 光の集光位置が必要である.測定方法として、項目1)と2)及び4)、5)の最小錯乱円と焦線 の寸法、傾角については顕微鏡対物レンズとCCDカメラを組合わせた装置を用いた.残り の項目については4分割光検出器を用いて位置座標の測定を行った.

(a) 集光パターン

Fig.4.14に1次回折光の集光パターン測定装置のブロック図を示す.半導体レーザ (三菱電機製:型名ML4402A, 波長 λ=779.7nm)からの発散光をコリメータレンズとビ し、図に示す反射鏡で上部から集光用コリメータレンズを照射するようにした.この集光 用コリメータレンズでNA=0.1の集光光に変換されRGLに入射する. RGLからの1次回折 光の集光パターンの寸法は200~300µm程度であるので,顕微鏡対物レンズは倍率5倍の ものを、フィールドレンズは倍率2.5倍のものを用いた.この測定系の精度は±1µmであ 3. Fig.4.4(a)の(ii)は、観測面とRGLとの距離を変化させたときの観測面上におけ る集光スポットの測定結果である.1次回折光は非点光束になっていることが分かる.最 小錯乱円の大きさは280µm[¢],前側焦線の長さ650µm,傾斜角度53°,後側焦線の長さ 580µm, 傾斜角度37°, 非点隔差は約3.8mmである. これらはFig.4.4(a)の(i)に示す計算 値,最小錯乱円の大きさ260µm^{\$},前側焦線の長さ600µm,傾斜角度51°,後側焦線の 長さ475µm, 傾斜角度39°, 非点隔差3.6mmと良く一致している. また, Fig.4.4(b)の(ii) は、光ディスクと非球面レンズとの距離を変化させたときの4分割光検出器面上における 集光スポットの実験結果である. Fig.4.4(b)の(i)に示したスポットダイアグラムの計算値と

Fig.4.14. Schematic diagram for measuring the beam pattern of the first-order diffraction beam.

良く一致しているのが分かる.

(b) 集光位置

次に,0次回折光の集光位置と1次回折光の最小錯乱円の位置の測定結果について述 べる.測定に用いた4分割光検出器の受光面の大きさは1mm^{\$},分割幅は20µmである. この4分割光検出器を構成する各光検出器の出力が等しくなる所を見いだすことにより, 0次回折光の集光位置と1次回折光の最小錯乱円位置を測定した. 位置測定精度は± 0.2mmである.測定の結果,RGL中心と0次回折光集光位置(LD位置)との距離15.92mm ±0.2mm(設計値16mm),回折角度17.1°±0.3°(設計値17.5°),RGL中心と1次回 折光最小錯乱円位置までの距離18.95mm±0.2mm(設計値19.07mm)と測定値と設計値は 測定精度内で一致している.

4.6.3 フォーカス誤差信号特性

Fig.4.15にフォーカス誤差信号の測定装置を示す.光ディスクを模擬するため、AI反 射鏡の上に厚さ1.2mmのガラス板を貼ったものを用いた.フォーカス誤差信号はこの模擬 ディスクを2μmステップのトランスレータに取りつけて前後に動かすことにより得られ る.4分割光検出器は受光部寸法1200μmx600μm,分割幅10μmのものを用いた.光源 であるLDの発振波長が変化したときの特性を測定するため、本測定では本来のLDチップ の位置に単一モード光ファイバの一方の端面がくるように光ファイバを固定し、他端から LD光を結合するようにした.単一モード光ファイバはコア径6μm,NA0.15である.こ の光ファイバは波長830nmで単一モードであり、780nmでは2モード励振可能であるが、 多モード伝搬時に見られる射出端におけるスペックルは見られず単一モード励振であっ た.Fig.4.16はLDの波長をパラメータしたときのフォーカス誤差信号の測定結果である. 波長が±5nm変化したときのオフセットは0.5μm以下,感度低下は2dB以下,直線範囲 は20μmである.Fig.4.5に示した計算値とほぼ一致していることがわかる.

4.6.4 回折効率

Fig.4.15. Schematic diagram for measuring the focus error signal.

Au蒸着膜の反射率は45°入射で98~99%であった.これは文献^{76,77)}に記載されている 値と良く一致している.RGLの回折効率を測定した結果,0次回折光の回折効率は 51.6%,1次回折光の回折効率は17.2%であった.これらの値は,格子溝深さの測定値 1250Aにおける0次回折光と1次回折光の回折効率の計算値53%,18%にAu蒸着膜の反射 率98.5%を掛けた値52.2%と17.7%に良く一致している.

4.6.5 信号再生特性

Fig.4.16. Measured focus error signal as the disc displacement is changed with the parameter of the wavelength of LD.

最後に,RGLを用いた光ピックアップ光学系の性能を確かめるため,光ピックアップ を試作し,CDの再生実験を行った.試作した光ピックアップの外観写真をFig.4.17に示 す.再生信号のアイパターンをFig.4.18に示す.EFM信号は3~11T(Tは1チャンネルビッ トの周期で約230ns)のパルス幅を持っているため,図のような波形になる.アイパターン の評価は最小パルス幅信号である3T信号のジッタで行う.3T信号に対するジッタは22ns であり,トラッキング幅は0.2mmであった.従来の光学系を用いた光ピックアップと同程 度の性能が得られている.

Fig.4.17. External view of fabricated optical head in which the RGL is mounted.

4.7 結言

光ピックアップ光学系に用いる複数機能を有する反射形回折格子レンズの開発を行 い、その設計法と実験結果について述べた、得られた結果を要約すると次のようになる.

- (1) RGLの座標で多項式展開した非球面項を含む位相関数を用い,展開係数を選ぶこと により,反射形回折格子レンズにより発生する非点光束の焦線位置,最小錯乱円の 大きさ,非点隔差を制御出来ることが分かった.また,所要光学特性を有する格子 パターンの設計法を示した.
- (2) 反射形回折格子レンズは電子線描画とフォトリソグラフィにより精度良く製作でき ることを示した.
- (3) 上記方法で製作した反射形回折格子レンズの光学特性に対する実験結果は理論計算 と良く一致することが分かった.
- (4) 反射形回折格子レンズを用いた光ピックアップでCDの再生実験を行った結果,従 来の光学系を用いた光ピックアップと同程度の性能が得られた.

Appendix:金属蒸着膜と反射率との関係77)

反射型回折格子レンズで高反射率を得るために表面処理を行う金属蒸着膜の種類、反 射率の角度依存性について検討する.条件として、波長 λ=800nm付近で垂直入射時の反 射率が90%以上とする. Table A.4.1に各種金属蒸着膜の反射率の波長依存性を示す. これ より、条件を満足するものとして、Al,Cu,AgおよびAuが上げられる、特にCu,AgおよびAu では反射率は95%以上になっている.このうち、Agは反射率が99.2%もあり理想的である が、表面保護が難しいという問題がある、次にCuも反射率は98.1%あるが、これも表面保 護をしないと反射率が低下する問題がある. AIは反射鏡の反射膜として良く用いられてい るが、波長=800nm付近では反射率が低下しており86.7%しかないこと、表面保護をしない と高反射率を維持できないという問題がある、Auは λ=500nm以下では急激に反射率が低 下するが、波長λ=800nm付近では98%あり、高反射が期待できる.しかも表面保護が不 要という利点を有している.以上より、反射膜用金属としてはAuを用いることにする. 金属膜における反射率の計算は、フレネルの公式において屈折率を複素屈折率

 $n_m = n - i\kappa$ と置くことによって、誘電体と同様に計算できる.ここで、nは屈折率、 κ は 度をθとすると以下のように書くことができる.

 $R_s = \frac{a^2 + b^2 - 2a\cos\theta + \cos^2\theta}{a^2 + b^2 + 2a\cos\theta + \cos^2\theta}$

 $R_{p} = R_{s} \frac{a^{2} + b^{2} - 2a\sin\theta\tan\theta + \sin^{2}\theta\tan^{2}\theta}{a^{2} + b^{2} + 2a\sin\theta\tan\theta + \sin^{2}\theta\tan^{2}\theta}$

ここで.

 $2a^{2} = \sqrt{\left(n^{2} - \kappa^{2} - \sin^{2}\theta\right)^{2} + 4n^{2}\kappa^{2}} + \left(n^{2} - \kappa^{2} - \sin^{2}\theta\right)$ $2b^{2} = \sqrt{\left(n^{2} - \kappa^{2} - \sin^{2}\theta\right)^{2} + 4n^{2}\kappa^{2}} - \left(n^{2} - \kappa^{2} - \sin^{2}\theta\right)$ である.また,入射光が無偏光の場合には次式で定義される平均的反射率 Raveを用いる ことができる.

吸収係数である.入射面に垂直な偏光成分の反射率をR_s,平行な偏光成分をR_p,入射角

(A-1)

(A-2)

wavelength(nm)	Al	Ag	Au	Cu	Rh	Pt
300	92.3	17.6	37.7	33.6	73.4	57.6
320	92.4	8.9	37.1	36.3	75.5	60.0
340	92.5	72.9	36.1	38.5	76.9	62.0
360	92.5	88.2	36.3	41.5	78.0	63.4
380	92.5	92.8	37.8	44.5	78.1	64.9
400	92.4	95.6	38.7	47.5	77.4	66.3
450	92.2	97.1	38.7	55.2	76.0	69.1
500	91.8	97.9	47.7	60.0	76.6	71.4
550	91.5	98.3	81.7	66.9	78.2	73.4
600	91.1	98.6	91.9	93.3	79.7	75.2
650	90.5	98.8	95.5	96.6	81.1	76.4
700	89.7	98.9	97.0	97.5	82.0	77.2
750	88.6	99.1	97.4	97.9	82.6	77.9
800	86.7	99.2	98.0	98.1	83.1	78.5
850	86.7	99.2	98.2	98.3	83.4	79.5
900	89.1	99.3	98.4	98.4	83.6	80.5
950	92.4	99.3	98.5	98.4	83.9	80.6
1000	94.0	99.4	98.6	98.5	84.2	80.7
1500	97.4	99.4	99.0	98.5	87.7	81.8
2000	97.8	99.4	99.1	98.6	91.4	81.8
3000	98.0	99.4	99.3	98.6	95.0	90.6
4000	98.2	99.4	99.4	98.7	95.8	93.7
5000	98.4	99.5	99.4	98.7	96.4	94.9

Table A.4.1 Percent normal-incidence reflectance of freshly evaporated mirror coatings^{76,77}).

$$R_{ave} = \frac{R_s + R_p}{2}$$

(A-3)

(A-4)

式(A-1),(A-2)において垂直入射, すなわち $\theta = 0$ のときは,

$$R_{s} = R_{p} = \frac{(n-1)^{2} + \kappa^{2}}{(n+1)^{2} + \kappa^{2}}$$

となり、両成分の反射率は等しくなる.

Fig.A.4.1にAu蒸着膜の反射率の角度依存性を示す. R_s, R_pの入射角度に対する一般 的な依存性は次のようになっている. R。は入射角度の増加とともに一様に増加し,入射

Fig.A.4.1. Reflectivity of Au evaporated mirror coating (optical constant: n=0.15, κ =4.65 at λ =800nm).

角度90°で1になる.また、Rpは入射角度の増加とともに減少し、角度79.5°で最小値 をとる.その後入射角度を増加すると急激に増加し、入射角度90°で1になる.この図よ り、入射角度45°のときs偏光で98.2%、p偏光で96%の反射率が得られることがわか 3.

この計算結果を確認するため、厚さ1.5mmの石英ガラス基板にAuを電子ビームで蒸着 した試料の反射率測定を行った、下地としてCrを10nm蒸着した、Au蒸着膜の厚さは 75nm, 100nm, 140nm, 220nm, 300nm, 及び360nmである. 45°入射の測定結果を Fig.A.4.2に示す. 測定値はそれぞれの試料5枚の平均値である. Au蒸着膜の反射率は膜厚 に関わらず98~99%あり、計算通りの値となっている.

Fig.A.4.2. Reflectivity of Au evaporated mirror coating. The incident angle is 45° .

第5章 2分割反射形回折格子レンズの開発と光ピックアップ光学系への応用

5.1 序 言

第4章では複数の機能を持ち,非点光束を発生する反射形回折格子レンズとそれを用 いた光ピックアップ光学系について詳述した.しかし,反射形回折格子レンズを用いて非 点収差法でフォーカス誤差信号を得る場合,光源の波長変化範囲が±5nm程度であるとオ フセットは0.5μm以下,感度低下も2dB以下であるが,それ以上の波長変化があるとフォ ーカス誤差信号にオフセットを生じるという問題がある.これを解決する方法として, 回折格子レンズの±1次回折光を用い光検出器上での集光ビームパターンが対称になるよ うに位相伝達関数を最適化し±1次回折光の方向と光検出器の分割方向が平行になるよう な構成⁴²⁾や,ダブルナイフエッジ法を採用し回折格子レンズの1次回折光の方向と光検 出器の分割方向が平行になるような構成の光ピックアップ光学系^{79,80)}が提案されてい る.しかし,前者では面対称の光学系にしなければならず構成に制約を受けること,後者 では光検出器での光量損失が大きいことや位置精度が厳しく,感度の設定がしにくいとい う問題がある.

本章では、入射光を2つに分割しそれぞれの焦点位置が異なる回折光を発生する反射 形回折格子レンズを用い、反射形回折格子レンズで分割された2つのビームの焦点位置を 光検出器の前後になるようにしてフォーカス誤差信号を検出する方式を提案する⁴⁶⁾.本 方式では2つの回折光の方向と光検出器の分割方向を平行にできるので波長依存性が小さ く、光検出器上のスポットを大きくできるので光量損失を小さくでき、また、焦点位置の 差を変化させることにより感度設定が可能である.この反射形回折格子レンズは、ディス ク照射光とディスクからのピット情報を含む反射光とを分離する機能、集光スポットを常 にピット列に追従させるためのフォーカス誤差信号を得るためのセンサ光学系の機能およ び光路の折り曲げ機能の複数機能を有している.以下2分割反射形回折格子レンズ (2divided Reflection Type Grating Lens、以下2分割RGLと略す)と呼ぶ.2分割RGLおよび これを用いた薄型の光ビックアップ光学系の設計と実験結果を述べるとともにCDを用い た信号の再生結果について述べる. 5.2 光学系の構成とフォーカス誤差信号発生法

Fig.5.1に、2分割RGLを用いた光ピックアップ光学系の構成を示す.光ピックアップ 光学系は半導体レーザ(LD), 3ビーム用回折格子, 6分割光検出器, 2分割RGL及び 対物レンズで構成する.ここで、2分割RGLは、xy座標のx軸に沿って上下2つの部分 に分割されたRGL-UとRGL-Lとからなる.この構成において、LDからの出射光は回折格 子により情報読取用の主ビームとトラッキング用の2つのサブビームに分割され2分割 RGLに入射する.2分割RGLの出射光のうち,0次回折光は90°光路が曲げられて対物レ ンズに入射し、ディスク面上にほぼ回折限界のスポットで集光される.ディスクからの ピット情報を有する反射光は逆の光路を通り対物レンズに入射し, LDの発光点を集光点 とする集束光に変換され2分割RGLに入射する.2分割RGLのRGL-U及びRGL-Lでそれぞ れ発生する回折光のうち1次回折光は光路が曲げられ,6分割光検出器に集光する光に変 換される.

Fig.5.1. Schematic view of an optical head with the 2-divided reflection type grating lens.

フォーカス誤差信号はRGL-U及びRGL-Lでそれぞれ発生する1次回折光の集光点が6 分割光検出器の前後になるようにし、ディスクの変位に対して6分割光検出器上での集光 ビームの形状変化がたがいに逆になるようにした方法で得ている.また、トラッキング誤 差信号は、回折格子で発生する2つのサブビームをメインビームの前後で左右にわずかに ずらせて配置し、トラックずれをその強度差で検知するツインビーム法で得ている.

Fig.5.2はフォーカス誤差信号に関し、6分割光検出器上での集光ビームの形状がディ スクと対物レンズの距離によりどのように変化するかを模式的に示したものである. RGL-Uで発生する1次回折光は6分割光検出器を構成する光検出器PD2, PD3上に集光 し, RGL-LのそれはPD1, PD4上に集光する. ディスクのフォーカスずれが無いときには Fig.5.2(b)に示すように、受光面PD1~PD6に入射する集光ビームの形状はほぼ半円形に

and (c) Too near.

(b) Just focus

(c) Too near

Fig.5.2. Spot patterns on the surface of the 6-divided photodiode as the disc is moved. (a) Too far, (b) Just focus,

なっているが、ディスクが対物レンズより遠ざかったとき、もしくは、近づいたときには それぞれFig.5.2(a), (c)に示すようなビーム形状になる. 受光面PD1~PD6の光電流値をI1 ~I_とすると、フォーカス誤差信号FES(Focusing Error Signal)は (5.2.1) $FES = (I_1 - I_4) - (I_2 - I_3)$ の演算により得ることができる. トラッキング信号TES(Tracking Error Signal)は (5.2.2) $TES = I_5 - I_6$

の演算により得ることができ、読みだし信号RFは

 $RF = I_1 + I_2 + I_3 + I_4$ (5.2.3)

で得られる.

5.3 2分割反射回折格子レンズの設計

5.3.1 格子パターン

2分割RGLの格子パターンはLD, 6分割光検出器, 2分割RGLの配置関係およびLD の発振波長と1次回折光の焦点距離によって決まるものであり、式(5.3.1)で定義される位 相差がπの整数倍となる等位相曲線として表現される⁵⁶⁾.

 $\Phi_i(x, y) = \Phi_{LD}(x, y) - \Phi_{Ri}(x, y) \quad (i=U,L)$ (5.3.1)

式(5.3.1)において、座標系 x y z は 2 分割 RGL 面上に x y 軸を, x y 平面に垂直に z 軸を取り、原点は対物レンズの光軸とLDの光軸が交わる点に取っている。 Φ_{LD}(x,y)はLD を点光源としたときの2分割RGL面上での位相, Φ_{Ri}(x,y)は6分割光検出器近傍に仮想点 光源(参照光源)をおいたときの2分割RGL面上での位相である.ここで, i=UはRGL-U に対応する参照光源, i=LはRGL-Lに対応する参照光源を表す.

LDはyz平面内にありz軸に対して角度 θ をなし、原点からの距離 R_{LD} の所に設置 されている.参照光源は原点からの距離がRo;で y z 平面とのなす角度が ø; であり, 原点 と結ぶ直線を y z 平面に射影したときのベクトルが z 軸となす角度を θ; とする.した

がって,各点の座標は次のように表せる. LDの座標点 P_{LD} ; $(0, R_{LD} \sin \theta, R_{LD} \cos \theta)$ 参照光源の座標点 P_{oi} ; ($Ro_i \sin \phi_i, Ro_i \cos \phi_i \sin \theta_i, Ro_i \cos \phi_i \cos \theta_i$) (i=U,L) (5.3.2)2分割RGL上の点P(x,y,0)とLDとの距離を r_{LD} ,点Pと参照光源との距離を r_{0i} 、 λ_0 を

基準波長とすると、位相差Φ_i(x,y)は、

$$\Phi_i(x, y) = \frac{2\pi}{\lambda_0} (r_{LD} - ro_i)$$

となり、これがπの整数倍となるようにx,yについて解けば格子パターンが求まる. ここ で,

$$r_{LD} = \left\{ x^{2} + \left(y - R_{LD} \sin \theta \right)^{2} + R_{LD}^{2} \cos^{2} \theta \right\}^{1/2}$$
$$ro_{i} = \left\{ \left(x - Ro_{i} \sin \phi_{i} \right)^{2} + \left(y - Ro_{i} \cos \phi_{i} \sin \phi_{i} \right)^{2} \right\}^{1/2}$$

である.式(5.3.3), (5.3.4)より格子パターンを表す式を求めると、(x,y)に関する2次式が 得られ, 楕円群を表していることが分かる.

5.3.2 近軸結像

2分割RGLはLDが設置されている点PLDと参照光源の設置位置である点Po;を光源

とする球面波で記録したホログラムと考えることができる. ディスクからの反射光は対物 レンズに入射し、LDの発光点をほぼ集光点とする収束光に変換されて2分割RGLに入射 する.ディスクが合焦位置にあるときには、収束光の集光点はLDの発光部の中心に一致 する.ディスクが変位すると収束光の集光点は、LDの発光部の中心から移動するがLDと 原点を結ぶ光軸上にあるので主光線の回折方向は変わらない. LDの発光部の中心の近傍 Pcに収束する球面波が2分割RGLに入射したとき、回折光は非点光束になるがその近軸 的な結像関係はR.W.Smithの式⁴⁹⁾より次式のように書ける.

 $1/R_s = F_I \cos^2 \psi + G_I \sin^2 \psi + H_I \sin \psi \cos \psi$

$$(5.3.4)^{2} + Ro_{i}^{2}\cos^{2}\phi_{i}\cos^{2}\theta_{i}\Big\}^{1/2}$$

(5.3.5)

81

$$1/R_t = F_I \sin^2 \psi + G_I \cos^2 \psi - H_I \sin \psi \cos \psi$$
(5.3.6)

 $\tan 2\psi = H_1/(F_1 - G_1)$

$$F_{I} = \frac{1}{Ro_{i}} + \left\{ \left(1 - \cos^{2}\phi_{i}\sin^{2}\theta_{i} \right) / \cos^{2}\phi_{i}\cos^{2}\theta_{i} + \cos^{2}\theta\sin^{2}\phi_{i}\tan^{2}\theta_{i} / \left(1 - \cos^{2}\phi_{i}\sin^{2}\theta_{i} \right) \right\} (1/R_{c} - 1/R_{LD})$$
(5.3.8)

$$G_{i} = 1/Ro_{i} + \left\{\cos^{2}\theta / (1 - \cos^{2}\phi_{i}\sin^{2}\theta_{i})\right\} (1/R_{c} - 1/R_{LD})$$
(5.3.9)

$$H_{i} = \left\{ \sin \phi_{i} \tan \theta_{i} \cos^{2} \theta / (1 - \cos^{2} \phi_{i} \sin^{2} \theta_{i}) \right\} (1/R_{c} - 1/R_{LD})$$
(5.3.10)

ここで、Rsは球欠像に相当する像点距離、Rtは子午像に相当する像点距離、Rcは点 Pcと原点との距離である.

式(5.3.5)~(5.3.10)から収束点P_cがLDの発光部中心から移動したとき(R_c≠R_{LD})に は、一般にR_s≠R_t、すなわち非点収差が生じることがわかる.この非点収差が大きくなる とフォーカス誤差信号の直線領域が狭くなったり、直線性が悪くなる.光学系を薄型にす るには角度 θ , θ_i を45°近傍にする必要がある.このとき非点収差を小さくするために は角度 ¢ i を小さくするのが望ましい.

5.3.3 波長変化時の主光線の移動方向

si

LDの発振波長が変化すると2分割RGLによる1次回折光の方向が変化し、集光ス ポットは6分割光検出器上を移動するため、フォーカス誤差信号が影響を受ける.LDの 発振波長が変化したときの光検出器上の集光スポットの位置変化は文献8)に記載されてい る式(9), (10)より求めることが出来る. Fig.5.1の配置を考慮し, 主光線で考えると, 回 折光の方向を決める角度 φ¹, θ¹は, 次式で求められる.

$$n\phi' = \frac{\lambda}{\lambda_0} \sin \phi_i \tag{5.3.11}$$

$$\cos\phi'\sin\theta' = \frac{1}{\sqrt{2}} \left(1 - \frac{\lambda}{\lambda_0} + \frac{\lambda\cos\phi_i}{\lambda_0} \right)$$

位置変化に換算すると,

$$\delta x_i = R_{PD} \tan \phi_i \, \delta \lambda / \lambda_0$$

(5.3.7)

が得られる.同様にして、角度 θ ^Iの角度変化量 δ θ は θ ^I= π /4+ δ θ とおき、 $\cos\phi' = \cos\phi_i - \sin\phi_i\delta\phi_i$ と近似して,式(5.3.12)を用いると,

$$\delta\theta = \frac{1}{\cos\phi_i} \left(\frac{1}{\cos\phi_i} - 1\right) \frac{\delta\lambda}{\lambda_0}$$

となる. 光検出器上での位置変化に換算すると $\delta y_i = -\frac{R_{PD}}{\cos \phi_i} \left(\frac{1}{\cos \phi_i} - 1\right) \frac{\delta \lambda}{\lambda_0}$

することになる. x軸と直線Lのなす角度とは,

 $\zeta = \tan^{-1} \left\{ -(1/\cos\phi_i - 1)/\sin\phi_i \right\}$

となる、したがって、この直線Lと6分割光検出器の分割線を平行に設置すればLDの波 長変化時にフォーカス誤差信号にオフッセットを生じることはない. Fig.5.3に6分割光 検出器上での主光線の移動範囲を示す.この主光線の移動範囲は次節で述べるパラメータ 値を用いると、波長変化量±10nmのとき、約200µmである.

5.3.4 集光特性

(5.3.12)

式(5.3.11) において、回折光の回折角度 ϕ_i は ϕ_i にほぼ等しいので、 $\phi_i = \phi_i + \delta \phi_i$ 、 $\lambda =$ $\lambda_0 + \delta \lambda$ とおいて近似すると、 $\delta \phi_i = \tan \phi_i \cdot \delta \lambda / \lambda_0$ となる、角度変化を光検出器上での

(5.3.13)

(5.3.14)

で求められる.ここで, δλは波長変化量, Rppは原点から6分割光検出器までの距離で ある.式(5.3.13), (5.3.14)から主光線の位置変化量δ x_i, δ y_iは共に波長変化量δλに比 例するので、集光スポットはFig.5.3に示すように6分割光検出器上の直線Lに沿って移動

(5.3.15)

Fig.5.3. Trajectory of principal ray on the 6-divided photodiode as the wavelength change of the LD.

1 次回折光の詳細な集光特性は光線追跡により評価した^{51,55)}.本光学系で用いた主 要な設計パラメータは以下の通りである. LDと 2 分割RGLとの距離R_{LD};16.4mm, 6 分 割光検出器と 2 分割RGLとの距離R_{PD};20mm, RGL-Uの角度 ϕ_U ;20.6°, RGL-Lの角度 ϕ_L ;19.4°, LDの設計中心波長 λ_0 ;780nm. 角度 $\phi_U \ge \phi_L$ は 6 分割光検出器の寸法を考慮 したとき非点収差を小さくするように選んでいる.また,フォーカス誤差信号の直線領域 が約20 μ mになるように光学系の倍率を考慮し, RGL-UとRGL-Lの集光位置間隔を1.6mm とした.Fig.5.4は, ディスクと対物レンズとの距離を2.5 μ mおきに変化させたときの6 分割光検出器面上における集光スポットの変化を示している.ジャストフォーカスのと き,6 分割光検出器面上の集光スポットはいづれも直径は約100 μ mの半円形である.デ ィスクが遠ざかるかもしくは近付くと一方のビームは単に広がるだけであるが,他方のビ ームは非点光束となって収束発散するのが分かる.非点隔差はいづれも約8 μ mである.

Fig.5.4. Spot diagram on the surface of the 6-divided photodiode as the disc is moved.

5.4 フォーカス誤差信号特性

フォーカス誤差信号も、光線追跡により計算した.LDの放射パターンは接合面に平 行な放射角度と垂直な放射角度が異なるガウス分布とし、強度に応じて光線に重み付けを した.Fig.5.5はLDの波長をパラメータとし、ディスク位置が変化したときのフォーカス 誤差信号の計算値である.リニア領域は約±9.4µmであり、これはFig.5.4におけるディ

85

Fig.5.5. Calculated focus error signal as the disc displacement is changed with the parameter of the wavelength of LD.

スクが移動したときに集光スポットが片側の光検出器に移動する量±10µmと良く一致し ている. 波長変化が±10nm以下であればフォーカス誤差信号のオフセットは0.2µm以 下であり、感度の劣化も0.2dB以下である。組立時におけるLDの波長バラツキは6分割光 検出器の位置を調整することにより補正可能である.

5.5 実験結果

5.5.1 格子形状と0次回折光波面収差

Fig.5.6は、2分割RGLの作製プロセスを示したものである.格子パターンは式(5.3.3) を解くことにより得られる曲線で表されるが,これの各点における接線を求めて,折れ線 近似を行った.1セルの寸法が5µm x 1µmの矩形を折れ線上に当てはめる方法を取っ た.電子線描画により原寸の10倍の大きさのレチクルを作り、フォトリピータにより原寸 大のマスクを作製する.この縮小プロセスで電子線描画で生じる量子化ノイズが低減さ れ、スムーズな格子パターンが得られる.石英基板上のCr/CrO2二層構造の薄膜にパター

Electron Beam lithography(Reticle 10x)

Actual size photo-mask (Photo-repeater 1/10x)

Photolithography (Contact exposure)

Development

Etching

Cr and Au evaporated

Cutting

Fig.5.6. Schematic diagram of the fabrication process of the 2-divided RGL.

RGLが作製されている. Fig.5.7(b)は,素子1個の写真で外形寸法は5 x 5mmである.上下 にRGLが作製されている様子が良く解る.

Fig.5.8は、製作した2分割RGL表面中央部分のSEM像である. RGL-UとRGL-Lとの境 界は幅1μmで緩やかに変化しているが、光学特性への影響はない.格子断面形状は触針 式の表面粗さ計(Talystep;Rank Taylor Hobson製)で測定した.結果をFig.5.9に示す.これ より,格子断面はほぼ矩形で,格子深さは125nmであることがわかる.格子周期はRGL-U

the 2-divided RGL.

		1	5	Or	hr	n			
	50			5	p	1	n		-
H	19	1	1	1	A	1	1		1
	30			-			-		
	20-	1		-			14		
	10-	1	-	~			-	-	12
	0	-					-		

Fig.5.9. Cross sectional trace of the 2-divided RGL by Talystep.

Fig.5.8. Scanning electron microscope(SEM) photograph of

で2.02~2.51µm, RGL-Lで2.09~2.74µmであるが,いづれも格子周期の製造誤差は0.1µ m以下であり,格子の曲がり角度もほぼ計算通りである.格子形状の測定結果をTable 5.1 にまとめて示す.

Item Dimensions		Design	Measured value	Notes		
		5x5x1.5mm ³	5x5x1.5mm ³			
Substrate	ıbstrate		Quartz glass	Quartz glass	Cr mask blank	
Grating period		left of center	2.39 μm	2.38 μm	Talystep	
	RGL-U	Center	2.20 μm	2.17 μm	Talystep	
		right of center	2.05 μm	2.00 μm	Talystep	
	RGL-L	left of center	2.58 μm	2.56 μm	Talystep	
		Center	2.34 μm	2.23 μm	Talystep	
		right of center	2.12 μm	2.05 μm	Talystep	
Duty ratio		50%	48~52%	Talystep		
Cross section of grating		Rectangular	Rectangular	Talystep		
Groove depth		131.5nm	125nm			

Table 5.1. Measured values of 2-divided RGL.

(a)

Fig.5.10. Typical wavefront error of the zeroth-order diffraction beam of the 2-divided RGL. (a) Interference pattern, (b) Wavefront error.

5.5.2 各1次回折光の集光特性 (a) 集光パターン

Fig.5.11は、ディスクを固定し、像面(6分割光検出器)を移動したときの1次回折 光集光スポットの変化を光線追跡による計算値と共に示したものである. RGL-U, RGL-L共に集光スポットの測定結果は計算値と良く一致しているのが分かる. RGL-Uと RGL-Lでは像面移動に対する集光パターンの変化が逆になっていることも分かる. 像面が 焦点位置より前後すると集光スポットの強度分布に構造がみられるが、これは回折による ものである。

0次回折光の波面収差の測定にはZYGO干渉計を用いた。2分割RGLの実使用形態に 合わせ、干渉計のビームを2分割RGLに45°で入射させ参照平面で折り返した.測定結果 の一例をFig.5.10に示す.波面収差はrms値で最大でも0.016 λと良好である.

Fig.5.11. Spot diagram and measured beam pattern for the first-order diffraction beam of the 2-divided RGL. (a)RGL-U,(b)RGL-L.

(b) 焦点位置での集光スポット

スポットダイアグラムの大きさが回折限界のスポット径と同程度以下になる焦点位置 近傍での集光パターンの評価は波動光学的に求めなければならない。ディスクが合焦位置 にあるときは、対物レンズの収差を無視すると、LDに集光する球面波が2分割RGLに入 射するので、RGL-Uによる回折光と、RGL-Lによる回折光はそれぞれ設計集光点に回折限 界で集光する光束になる。回折限界の集光スポットで中心強度の1/e²となるスポット径D は,

 $D \approx 0.82 \cdot \lambda / NA$

で与えられる.NAは像側開口数で、2分割RGLでは、x方向とy方向の開口数が異なり

 $NA_x \approx \frac{NA_o \cdot R_{LD} \cdot \cos \phi_i}{Ro_i}$

$$\mathsf{VA}_{y} \approx \frac{NA_{o} \cdot R_{LD}}{2 \cdot Ro_{i}}$$

である.NA。は対物レンズの物点側開口数で、今の場合0.09である.式(5.5.1)~(5.5.3)から 1次回折光の回折限界スポットは、スポット径がx方向で概略10µm、y方向で概略17µ mの楕円形状であることが分かる. Fig.5.12はRGL-Lによる1次回折光の焦点位置における 点強度分布関数の計算値を示したものであり、Fig.5.13は x 及び y 方向の断面の強度分布 を示したものである. Fig.5.13より楕円形状をした集光スポットのy方向のスポット径は 17.63µm, x方向のそれは11.62µmであることが分かる.これらの値は、式(5.5.1)~ (5.5.3)で計算される値とほぼ一致している. Fig.5.14はRGL-Lの焦点面における x方向, y 方向の強度分布の測定値を示したもので、スポット径はそれぞれ17.0µm、10.3µmであ り、計算値と良く一致している. Fig.5.15はRGL-Uの焦点面における集光スポット強度分 布の計算値で、Fig.5.16は測定値である.これも計算値と測定値は良く一致している.

(c)回折効率

次に, RGLの回折効率を測定した結果, 0次回折光の回折効率は51.6%, 1次回折光 の回折効率は17.2%であった.これらの値は、RGLを矩形断面を持つ薄い位相格子とし、 格子溝深さの測定値125nmを用いたときの0次回折光と1次回折光の回折効率の計算値75) 53%と18%に良く一致している.

(5.5.1)

(5.5.2)

(5.5.3)

(a) Contour lines of the intensity distribution.

(b) Intensity distribution.

Fig.5.12. Calculated intensity distribution for the first-order diffraction beam of the RGL-L in the focal plane.

Fig.5.13. Calculated intensity distribution for the first-order diffraction beam of the RG-L in the focal plane.

5.5.4 信号再生特性

最後に、2分割RGLを用いた光ピックアップ光学系の性能を確かめるため、CDの再 生実験を行った. 再生信号のアイパターンをFig.5.18に示す. 3 T信号に対するジッタ は22nsであり、トラッキング幅は±0.5mmであった. 従来の光学系を用いた光ピック アップと同程度の性能が得られている.

Fig.5.18. Eye pattern of read-out signal of the CD.

5.6 結 言

光ピックアップ光学系に用いる複数機能を有する2分割反射形回折格子レンズの設 計・試作を行い、波長依存性の小さなフォーカス誤差信号検出法を提案するとともにその 設計法と実験結果について述べた.得られた結果を要約すると次のようになる.

(1)入射光を2つに分割しそれぞれの焦点位置が異なる回折光を発生する2分割反射形 回折格子レンズを用い、分割された2つのビームの焦点位置をそれぞれ光検出器の

前後になるようにしてフォーカス誤差信号を検出する方式を提案した.

- 0.5dB以下である.
- た.
- (4) 2分割反射形回折格子レンズを用いた光ピックアップでCDの再生実験を行った結 果,従来の光学系を用いた光ピックアップと同程度の性能が得られた.

(2)本方式では2つの回折光の方向と光検出器の分割方向を平行にできるので波長依存 性が小さく,波長が±10nm変化したときのオフセットは0.5µm以下,感度低下は

(3) 電子線描画とフォトリソグラフィで製作した2分割反射形回折格子レンズの各1次 回折光集光スポット,回折効率等の実験結果は計算値と良く一致することが分かっ

第6章 反射形回折光学素子を用いた固体レーザ励起光学系

6.1 序言

半導体レーザ(LD)アレーを用い、横方向からレーザ媒質を励起する固体レーザでは、 LDアレーの個数を増加させることで、レーザの高出力化が達成される^{81~84)}.しかし、 いままで報告されているこの方式は、Nd:YLFのような異方性レーザ媒質の励起に用いる 場合には、小さな励起領域に励起光を効率良く吸収させるのに適していない.このため、 反転分布もしくは利得が最大にはならず、光変換効率は10~20%と低かった84).

本研究では異方性レーザ媒質の励起を効率良く行うため,反射形回折格子を一種のカ プラとして用い,側面からの励起光をレーザ媒質の中に閉じ込めてレーザ光伝搬領域内に 励起光を有効に吸収させ高利得を得、光変換効率を改善する新しい横方向励起の方法を提 案する^{85~89)}. このレーザでは、LDアレーからの励起光は、ビーム分割機能を有する反 射形回折光学素子 (Reflection Type Grating: RTG) によりレーザ共振器の光軸方向の小さ な角度で回折され、レーザ媒質中を全反射しながら伝搬するので、薄いレーザ結晶でも十 分吸収される.その結果、このレーザは高利得で動作する.

固体レーザ結晶としては、Qスィッチ動作を考えると、Nd:YLFはNd:YAGに比べて熱 複屈折の影響は小さく,またエネルギー蓄積は上位準位の寿命が長いため大きので, Nd:YLFがNd:YAGより優れている.

6.2 励起光学系の構成と設計

6.2.1 励起光学系の設計

励起光学系および共振器構成をFig.6.1に示す.Nd:YLF結晶は矩形であり,幅1.5mm, 高さ2mm,長さ22mmである.また,用いたNd:YLF結晶のNdイオン濃度は1atm%である. 1.5mmx2mmの端面は光学研磨し,発振波長1047nmに対して反射防止,励起光の波長 797nmに対して100%反射となるようにコーティングした. Nd:YLF結晶は励起用LDアレー とそれに相対するRTGとの間に設置した. RTGは石英ガラス上に製作し、その格子形状は 矩形で、表面には反射率を上げるため金蒸着を施した. RTGはNd:YLF結晶の2mm x 22mm

面に光学的に接着した.

励起用LDアレーには光出力10WのCWレーザを2個用いている(Spectra Diode Laboratories,Inc.SDL-3490S).発振波長800nm近傍のものを選択している.スペクトル幅 は約2nmである.このLDは水冷のヒートシンクにマウントし,Nd:YLF結晶の吸収波長で ある797nmに同調している.励起光は小さな励起領域を形成するため、シリンドリカルレ ンズによりNd:YLF結晶内に集光している.また、励起光の偏光方向は吸収率の大きなπ 偏光とするため、1/2波長板によりNd:YLF結晶のc-軸に一致するようにしている.

共振器は平面の100%反射鏡と球面の部分反射鏡で構成する.共振器長は120mmから 350mmまで変化できる.部分反射鏡の曲率半径は55cmから200cmまで変化できる.

次に, RTGの作用について述べる. Fig.6.2にRTG, LDアレー, Nd:YLFロッドの設置 部分の拡大図を示す. LDアレーからの出射光は, 紙面に垂直な方向の広がり角が紙面に

Fig.6.2. Enlarged view of laser head using RTG.

平行な方向の広がり角に比べて大きいため、紙面に垂直な方向のみ屈折力を持つシリンド リカルレンズによりほぼ平行光束にしている.この平行光束はRTGに入射し、0次回折 光、1次回折光、-1次回折光さらには±2次回折光もしくはそれ以上の高次回折光を生じ る.まず、0次回折光は光軸に垂直な方向でその強度が指数関数的に減衰する吸収を受け ながらNd:YLFロッド内を伝播し、LDアレーが設置されている側面に戻りつつ、LD出射光 とで励起領域を形成する.RTGで回折された1次回折光はRTGの法線と次式で表される角 度θの方向に進行する.ここで、RTGの格子ピッチdは1次回折光がRTGに相対する Nd:YLF結晶の面で全反射するようにきめる.

$$\theta = \sin^{-1} \left(\frac{\lambda}{nd} \right)$$

全反射の臨界角を θ_{tot} とすると,

$$\theta_{tot} = \sin^{-1}\left(\frac{1}{n}\right)$$

である. ここで, λは励起LDの発振波長, nはNd:YLFの屈折率(≒1.48)である.

式(6.2.1)と式(6.2.2)より、1次回折光が全反射し、Nd:YLF内で閉じ込められるため には、格子ピッチdは下記条件を満足する必要がある.すなわち、 $d \le \lambda$ (6.2.3)

でなければならない.上記のように格子ピッチを設定しておくと、1次回折光はRTGに相 対するNd:YLFの界面で全反射しながらNd:YLF内で伝播する.-1次回折光はRTGの法線に 対してほぼ対称となる方向に進行する.同様にLDアレーを形成する複数のLDから出射さ れた励起光もNd:YLF内を伝播することにより励起領域を形成する.したがって、励起領 域はこれら回折光の重なり領域として形成される.また、回折光はNd:YLF結晶の両端面 では反射する.すなわち、RTGはカプラーの役目をしており、回折光はNd:YLF結晶内に 効率良く閉じ込められる.

RTGの±1次回折光に対する全反射の臨界角は42.5°であるので、Nd:YLF結晶内で 共振器光軸に対して26°の角度で伝搬するように設計した. すなわち θ =64°である. 式

(6.2.1)

(6.2.2)

(6.2.1)よりRTGの格子周期は0.6µmとなる. RTGを薄い位相格子と考えると, 第4章の式 (4.5.1~(4.5.2)より、1次回折光の効率を最大にする格子の深さhは、h=λ/4となる.励起 光の波長は797nmであるので,格子の深さは約0.2µmである.

6.2.2 Nd:YLFの特性

Nd:YLFは一軸性の結晶であるため入射光の偏光方向(π, σ偏光)により吸収特性 が異なる、また、蛍光スペクトル強度も偏光方向で異なる.

LDの発振スペクトルは数nmの広がりを持つため、LD励起時の実効的な輝線に対する 吸収係数より低下する. Fig.6.3は分光データを基に、LDの発振スペクトルを半値幅2nmの ガウス型とした畳み込み積分により計算した吸収特性と,使用したLDを用いて測定した 吸収特性である.計算値と測定値は良く一致しており,波長797nmにおいてπ偏光に対し 3.1 cm⁻¹, σ 偏光に対し1.7 cm⁻¹の吸収係数をもつ.

蛍光スペクトルはπ 偏光に対して波長1047nm, σ 偏光に対して波長1053nmが支配的 であり、いづれも励起光の偏光方向による依存性は無い.

Fig.6.3. Calculated and experimental absorption coefficient of Nd:YLF crystal doped with latm% Nd. Spectral width of probe beam is 2nm.

6.2.3 レーザ出力特性 Qスイッチレーザの出力エネルギーとそのときの出力鏡の最適反射率は、レート方程 式より,以下のように解析的に求められる90). 最大出力エネルギーEmax,最適反射率 Roptはそれぞれ次式で与えられる. $E_{\rm max} = h\nu V_{\rm eff} \eta_p n(Z - 1 - \ln Z) / 2\sigma \gamma L_{\rm cav}$ $R_{ont} = X \exp(-X)$ $X = L_{loss} (Z - 1 - \ln Z) / \ln Z$ $Z = 2g_0 L_{rod} / L_{loss}$ はレーザ上位サブレベルの上位準位に占める割合(43%), L_{loss}は共振器内部損失である. モードボリュームVeff, モードフィルファクタッpはそれぞれ次式で定義される.

$$\sigma = \frac{1}{\iiint r(x, y, z) s(x, y, z) dv}$$

$$\eta_p = \frac{v_{eff}}{\iiint r(x, y, z)s^2(x, y, z)dv}$$

レーザ光分布である.

また小信号利得係数g₀は次式で計算できる.

$$g_0 = \sigma N_i L_{cav} / (V_{eff} n L_{rod})$$
$$N_i = \frac{P_{in} \tau_f \gamma \eta_a}{h \nu_a (1 - \exp(-t/\tau_f))}$$

ここで、NiはQスイッチをかける直前の初期反転分布、tは励起時間、Tfは蛍光寿命 (520 μ s), η_a は励起光吸収効率, h_{ν_a} は励起光子エネルギー(2.5x10⁻¹⁹J)である.

(6.2.4)(6.2.5)(6.2.6)(6.2.7)ここで、Veffはモードボリューム、フpはモードフィルファクタ、hvはレーザ光子エネル ギー (1.9x10⁻¹⁹J), nはロッドの屈折率, σは誘導放出断面積 (3.7x10⁻¹⁹cm²), L_{cav}は 共振器光路長(144mm), L_{rod}はレーザロッド長(22mm), g₀は小信号利得係数(cm⁻¹), γ

(6.2.8)

(6.2.9)

ここで, r(x,y,z)は共振器内で規格化した励起光分布, s(x,y,z)は共振器内で規格化した

(6.2.10)

(6.2.11)

式(6.2.4)に式(6.2.10), (6.2.11)を代入すると,

 $E_{\max} = P_{in} \tau_f \eta_a \eta_p \eta_q (1 - \exp(-t/\tau_f))(Z - 1 - \ln Z)/Z$ (6.2.12)となる. η_{q} は ν/ν_{a} で量子ディフェクト (0.76)をあらわす.

式(6.2.12)において、 $\tau_f(1 - \exp(-t/\tau_f))$ は自然放出によりQスイッチのエネルギー蓄 積時に失うエネルギーを示し, η q η a η p はそれぞれ励起準位とレーザ発振準位のエネル ギー差により生じる効率,励起光のうちレーザロッドに吸収される効率,レーザ発振部分 に励起分布が形成される効率を示す.(Z-1-lnZ)/ZがQスイッチをかけたときに, 蓄積エネ ルギーのうち外部に取り出せる出力を示す取りだし効率であり、この値は出力鏡反射率で 決定される.

これらの式を用いて概略計算を行った. 共振器内部損失 Lloss としては次のように見 積もられる. 偏光子透過損失:2%, ポッケルスセル透過損失:1%, 波長板透過損失:1%, レーザロッド吸収・散乱損失:2%,レーザロッドによる回折損失:3%.また,吸収効率 η_a を求めるため、吸収係数はLDのスペクトル幅2 nmの π 偏光励起として3.1 cm⁻¹とし た. このときの吸収効率 η_a は、RTGによる 0 次回折光成分の割合を20%、 ± 1 次回折光 成分の割合を80%、±1次回折光のレーザロッド内伝搬・全反射時の損失10%として見積 もると、84%となる、

これらの値を用い, レーザ光のスポットサイズを500µm, 入力励起パワ-20Wとし てQスイッチ出力エネルギー,光変換効率及び出力鏡最適反射率を計算すると,出力は最 大2.8mJ, 励起光-レーザ光変換効率14%, 出力鏡反射率は73%である.

実験結果 6.3

6.3.1 反射形回折光学素子(RTG)の特性

RTGは2光束干渉とイオンビームエッチングにより作製した.格子周期は0.6±0.01 μ m, 深さは0.3±0.02µm, 格子の断面形状はほぼ矩形で, デューティは0.5±0.1であった. エッチングの深さは200 nm近辺を狙ったが,格子深さは設計よりも100 nm深くなった.こ

の場合の、±1次回折光の回折効率の計算値は20%である.RTGの±1次回折光の回折効 率の測定値はTEモードに対して25.5%, TMモードに対して27%であり, ほぼ計算値と一 致している.

6.3.2 CW動作特性

実験で用いたNd:YLF結晶のスペクトル幅2nmでの実効吸収係数はπ偏光に対して4.0 cm⁻¹, σ 偏光に対して2.2cm⁻¹であった. 吸収係数が, 6.2.2で述べた値3.1cm⁻¹より若干大 きいが、これはNd:YLFのNd濃度にバラツキがあるためと考えられる、この場合、RTGの 回折効率の実験結果を踏まえると、励起光の85%以上が励起体積3.5x10-3cm3で吸収される ことになる.利得分布の測定結果をFig.6.4に示す.縦軸は小信号利得係数であり、横軸は 面内の距離である.利得分布はスポット径250μmのプローブ光をNd:YLF結晶の1.5mmx 2mmの面内で掃引することにより測定した.プローブ光のパワーは100µW,励起光パワ -は20Wである. c軸に平行な利得分布はガウス分布に近いが, c軸に垂直な利得分布は

Fig.6.4. Small signal-gain profile of the Nd:YLF laser with RTG. The spot size of the probe beam was 250μ m.

(b) Perpendicular to c-axis

ほぼ一様である.この利得分布の違いは出力光の横モード分布に影響を与える. Fig.6.5に励起光強度と小信号利得係数との関係を示す.小信号利得係数は励起光強度に比 例して増加することが分かる.

出力鏡の反射率は70%,87%および94%と変化させた.CW動作では出力鏡の反射率 を87%としたときに最大出力が得られた.出力鏡の曲率半径は55cmである.Fig.6.6に入出 力関係を示す.図中,実線がRTGを用いた場合である.励起光パワー20Wにおいて低次モ ードでの最大出力6.4Wが得られている.閾値は2Wであり,スロープ効率36%,光一光変 換効率32%が得られている.RTGを用いた効果を確かめるため,RTGの代わりにNd:YLF 結晶の2mm x 22mmの面を励起光の波長に対して高反射率にするコーティングをほどこし たものに置き代えて実験した.入出力関係をFig.6.6の破線で示している.このときの最大 出力は4.8Wであり,光-光変換効率は24%である.このことより,RTGを用いることにより光-光変換効率は約33%改善されていることが分かる.

Fig.6.6. Output power versus incident pump power for the Nd:YLF laser with RTG and the Nd:YLF laser with high reflection coating.

高利得状態で動作させると、大抵の場合、発振の横モードは複数の低次モードになる.励起光パワー20Wのときの出力光の強度分布の測定結果をFig.6.7に示す.Fig.6.7(a)は c-軸に平行な方向、(b)はc-軸に垂直な方向の強度分布である.共振器の解析から高反射鏡 におけるスポットサイズは280μmとして求まる.c-軸に平行な方向では利得分布とTEM₀₀モードとの重なりは良く一致しているが、c-軸に垂直な方向に対しては利得分布が一様に なっているため、TEM₀₀モードだけではなくTEM_{q0}モードも発振可能になっている.

TEM₀₀モードを得るため,Nd:YLF結晶の1.5mmx2mmの面が制限開口になるように共振器の長さを調節し,高次モードに対して回折損失が大きくなるようにした.Fig.6.8に TEM₀₀モードのスポットサイズと出力との関係を示す.出力鏡の曲率半径は200cm,励起 光パワーは15Wである.Fig.6.8において,実線は計算値,破線は測定値である.出力の計 算にはレート方程式を用い,利得分布と共振器の回折損失は測定値を用いた.出力パワー はスポットサイズに比例して増加するが,モード体積と回折損失も増加するため最大出力 を与えるスポットサイズには最適値が存在する.いまの場合,約500 µmである.実験に

Fig.6.7. Intensity profile of the Nd:YLF laser with RTG.

Fig.6.8. TEM₀₀ mode output power versus spot size. Cavity length is changed from 15cm to 35cm.

の最大出力パワーは3.4Wであり、光一光変換効率は23%であった。出力パワーはスポット サイズの増加につれて計算値よりも急激に減少する.この差異は、Nd:YLF結晶の負の熱 レンズ効果によりスポットサイズが計算値より大きくなっていることと回折損失が大きく なっているためと考えられる.

6.3.3 Q-スイッチ動作特性

Fig.6.9にQスイッチレーザの構成を示す. LiNbO3 ポッケルスセル, 薄膜偏光子およ び1/4波長板で構成されるE/O-Qスイッチを用いた. 偏光子はπ 偏光(波長1047nm)が発 振するようにし、σ偏光(波長1053nm)の発振を抑制するようにした.また、共振器長 はQスイッチの分だけ長くし、出力鏡の曲率半径はレーザ媒質中でスポットサイズが1mm 程度の大きさになるように調節した.

Fig.6.9. Schematic diagram of an Nd:YLF laser with RTG for Q-switched operation.

LiNbO3ポッケルスセルの大きさは3 x 3 x 10mm³ であり、パルス立上がり時間が2ns

以下の高電圧のトランジスタ回路で駆動されている. 駆動回路は2kHzまでの繰り返し動 作が可能である.出力エネルギーは繰返し周波数1kHzで測定した.Fig.6.10に試作装置の 外観及び内部構造の写真を示す. 共振器はセラミックの一体成形筐体で構成されており, 温度変化,振動の影響が小さい構造である.出力光(波長1047nm)を非線型結晶KTPで

グリーン光に波長変換している. Fig.6.11に励起光パワーと出力エネルギー, ピークパワ -およびパルス幅との関係を示す.励起光パワ-20Wで、最大出力エネルギーは1.85mJで あり、このときのパルス幅は22.3nsであった. ピークパワーは83kWである. また、光一光

(a) Assembled optical resonator constructed by ceramics.

(b) External view.

Fig.6.10. Photograph of the laser diode pumped Nd:YLF laser using RTG.

変換効率は9.3%である.出力光のパルス波形をFig.6.12に示す.ピークパワーの変動は5% 以下である.

Fig.6.11. Pulse energy, peak power, and pulse width versus incident pump power. Repetition rate was 1.0kpps.

Fig.6.12. Temporal profile of the output pulse.

このパルス幅は、A.E.Siegmanによる簡単なモデルにより求められる⁹¹⁾. それによる と,パルス幅 τ pは次式で求められる.

 $\tau_p = (\chi - 1 - \ln \chi) / (\chi \xi \tau_c)$

(6.3.1)

ここで、 γは動作点が閾値の何倍かを表わすパラメータ、 ξはエネルギー引き出し率、 τ。は共振器内の光子寿命である.理論計算値は22nsであり、測定値と良く一致してい 3.

Qスイッチ動作において、制限開口を共振器内に入れなくても横モードは最低次で あった. モードプロファイルをFig.6.13に示す. モードプロファイルはわずかに楕円形で ある. 広がり角度は、c-軸に平行な方向で2.5mrad、c-軸に垂直な方向で3.1mradである. これらの値はTEM00モードの広がり角度の計算値2.8mradと良く一致している.

Fig.6.13. Intensity profile of the Nd:YLF laser with RTG for Q-switched operation.

6.4 結言

半導体レーザ励起固体レーザにおいて,反射形回折光学素子(RTG)を用いた新しい 側面励起方式を提案し、その有効性を実験により確認した.得られた結果を要約すると次 の通りである.

- 搬領域内で有効に吸収させることができた.
- (2) 20Wの励起光で6.4WのCW出力を得ており、励起光-レーザ光変換効率は32%であ り,従来の側面励起方式と比べ高い変換効率が得られた.
- (3) 繰返し1kHzのQスイッチ動作で、パルスエネルギー1.85mJ、パルス幅22.3ns、ピー クパワー80kWを得た.また励起光-レーザ光変換効率は9.3%であった.

(1) RTGをカプラとして用い, LDからの励起光の内RTGで発生する±1次回折光をレー ザ媒質の中で全反射させて閉じ込めることにより、励起光の85%以上をレーザ光伝

第7章 総 括

本研究では回折光学素子を光ピックアップ光学系などへ応用するさいの諸問題を,応 用光学の観点から解決することを目的として研究を行い、いくつかの重要な知見を得た. さらに、従来のフラッシュランプに代わって高効率が期待できる半導体レーザ励起固体レ ーザに着目し,反射形回折光学素子を用いた新しい側面励起方式を提案することにより, 回折光学素子が光ピックアップ光学系だけでなく新しい応用面にも重要な役割を果たすこ とを示した.以下、本研究で得られた新しい知見をまとめ、今後の課題について述べる.

7.1 結 論

第1章では、回折光学素子に関する従来の研究概要を示し、本研究の意義を明らかに した、光ピックアップ光学系の小型・軽量化を制約している構成要素を明確にし、解決す べき課題、本論文で採用した解決法を示した、本研究の意義は、複数機能を持つ光学素子 として回折光学素子の新しい設計・製作法を提示し、それを実現した点にある.

第2章では、主光線近傍の光線追跡(いわゆる非点追跡)を用いて非球面位相項を持つ 回折光学素子(DOE)結像系の近軸結像の一般的特性について検討した。得られた結果を要 約すると次のようになる.

- (1) DOEでは一般に直交しない2本の線像が得られ、回折光は特殊な配置を除いて非点 光束になっていることを明らかにした.
- (2) 回折光の主光線と主光線近傍の光線が交わるための必要十分条件より,線像の結像 位置及び原点からの距離を与える解析式を導出した.
- (3) DOEの位相項にDOE上の座標で多項式展開した非球面項が有る場合,それぞれの 2次の係数が非点光束に関係していることを明らかにした.
- (4) ここで得られた解析式はJ.F. Miles, R.W.Smithらが導出した結果を包含しており、よ り一般的な結像式であることを明らかにした。

第3章では、回折格子レンズをCD用光ピックアップ光学系の対物レンズとして用い ることを念頭におき,NA0.45の球面収差を除去した平板構造のマイクロゾーンプレート レンズと、コマ収差も除去したアプラナティック回折格子レンズについての設計法及び

NA0.45のマイクロゾーンプレートレンズをUVリソグラフィで作製した実験結果につい て述べた、得られた結果をまとめると次のようになる. (1) マイクロゾーンプレートレンズによるフレネル回折の無限級数展開式を示し,輪帯 の数が多いときには焦点面での光強度分布はエアリー分布に漸近することを示し te.

- (2) マイクロゾーンプレートレンズの解像限界は最周辺の格子の幅とほぼ一致し、実現 できる解像限界は最も細い格子の幅の加工精度によって決まることを示した.
- ことを示した.
- (4) コマ収差を除去するための構成を2種類提案するとともに、残留コマ収差の新しい 評価量を基にして設計する方法を提案した.
- 差を完全に除去できることを示した.
 - (b) 第2の方法は入射面を凹面とし出射面を平面とした平凹レンズの平面側に回折

第4章では、光ピックアップ光学系に用いる複数機能を有する新しい反射形回折格子 レンズの設計・試作について述べ、実験結果を示した.得られた結果を要約すると次のよ うになる.

- (1) DOEの座標で多項式展開した非球面項を含む位相関数を用い、展開係数を選ぶこと
- 子パターンの設計法を示した.

(3) NA0.45のマイクロゾーンプレートレンズを、UVリソグラフィにより原寸のフォ トマスクを用い密着法によりフォトレジスト(AZ1350J;Shipley製)上に作製した. 集光特性は良好で、ほぼ回折限界のスポット径1.4μmであること、回折効率は、矩 形位相格子の回折効率の計算値40.5%に近い38%であることを明らかにした.最小 格子幅は0.87 µmで, UVリソグラフィでも1µm以下のパターンが作製可能である

(a) 第1の方法は平板ガラスの両面に回折格子レンズを作製するものでありコマ収

格子レンズを作製するものである.正弦条件不満足量のrms値を残留コマ収差 の評価パラメータとする新しい設計法を提案し,コマ収差を完全に除去するこ とはできないが実用上問題がない程度に小さくできることを明らかにした.

により,反射形回折格子レンズにより発生する非点光束の焦線位置,最小錯乱円の 大きさ、非点隔差を制御出来ることが分かった.また、必要な光学特性を有する格

- (2) 反射形回折格子レンズは電子線描画とフォトリソグラフィにより精度良く製作でき ることを示した.
- (3) 上記方法で製作した反射形回折格子レンズの光学特性に対する実験結果は計算値と 良く一致することが分かった.
- (4) 反射形回折格子レンズを用いた光ピックアップでCDの再生実験を行った結果,従 来の光学系を用いた光ピックアップと同程度の性能が得られた.

微小回折格子レンズを用いた光ピックアップは、CDプレーヤ、CD-ROM等の光デ イスク装置で現在広く実用化されており、本研究はその先駆をなすものである.

第5章では、光ピックアップ光学系に用いる複数機能を有する2分割反射形回折格子 レンズの開発を行い, 波長依存性の小さなフォーカス誤差信号検出法を新しく提案すると ともにその設計・試作と実験結果について述べた.得られた成果を要約すると次のように なる。

- (1)入射光を2つに分割しそれぞれの焦点位置が異なる回折光を発生する2分割反射形 回折格子レンズを用い、分割された2つのビームの焦点位置をそれぞれ光検出器の 前後になるようにしてフォーカス誤差信号を検出する新しい方式を提案した.
- (2) 本方式では2つの回折光の方向と光検出器の分割方向を平行にできるので波長依存 性が小さく,波長が±10nm変化したときのオフセットは0.5µm以下,感度低下は 0.5dB以下である.
- (3) 電子線描画とフォトリソグラフィで製作した2分割反射形回折格子レンズの各1次 回折光集光スポット,回折効率等の実験結果は理論計算と良く一致することが分か った.
- (4) 2分割反射形回折格子レンズを用いた光ピックアップでCDの再生実験を行った結 果,従来の光学系を用いた光ピックアップと同程度の性能が得られた.

第6章では、回折光学素子の新しい応用を探るため、従来のフラッシュランプに代 わって高効率が期待できる半導体レーザ励起固体レーザに着目し,反射形回折光学素子 (RTG)を用いた新しい側面励起方式を提案し、その有効性を実験により確認した、得ら れた結果を要約すると次の通りである.

(1) RTGをカプラとして用い、LDからの励起光の内RTGで発生する±1次回折光をレー

120

ザ媒質の中で全反射させて閉じ込めることにより、励起光の85%以上をレーザ光伝 搬領域内で有効に吸収させることができた.

- (2) 20Wの励起光で6.4WのCW出力を得ており、励起光-レーザ光変換効率は32%であ り、従来の側面励起方式と比べ高い変換効率が得られた。
- (3) 繰返し1kHzのQスイッチ動作で、パルスエネルギー1.85mJ、パルス幅22.3ns、ピー クパワー80kWを得た.また励起光-レーザ光変換効率は9.3%であった.

7.2 今後の課題

以上の研究成果により,回折光学素子が微小光学系における有用な構成要素となり得 ることを示した.今後,この回折光学素子が将来の微小光学系で確固たる地位を占めるた めには、以下のことが最も重要な課題である.

- (1) 回折光学素子の独自性を用いた機能の実現,
- (2) 設計通りの格子パターンが実現でき、また高効率化のために再現性のある格子形状 制御技術の確立, さらに高精度な微細加工技術の確立.

謝 辞

大阪大学教授一岡芳樹博士には、本論文の執筆の全体にわたり、終始懇切なご指導と ご激励を賜りました.ここに深甚より感謝の意を表します.また、本論文をまとめるに際 し、有益なご討論,ご助言をもってご指導下さいました大阪大学梅野正隆教授,同横山正 明教授ならびに伊東一良教授に深く感謝いたします。

本論文は、主として三菱電機情報技術総合研究所で行った研究をまとめたものである が, 三菱電機株式会社取締役情報技術総合研究所所長野間口有博士, 同研究所副所長片木 孝至博士には、本研究の貴重な機会を与えていただきました.また、本研究の遂行および 本論文をまとめるにあたり,ご指導,ご教示いただきました同社開発本部業務部次長田治 米徹博士,情報技術総合研究所光超音波部部長笠原久美雄氏,同社鎌倉製作所EO開発セ ンター長伊東尚氏に深謝いたします.

本論文の内容について、三菱電機株式会社在職中より貴重なご指導をいただきました 東京工科大学教授橋本勉博士に心より感謝いたします.

本論文における実験及び計算でご協力いただいた三菱電機株式会社情報技術総合研究 所光超音波部主事平野嘉仁氏,同所開発支援部主幹佐伯利一氏,同社通信機製作所衛星通 信部主幹松下匡氏,同生産技術センター温井一夫氏をはじめとする関係各位に感謝しま す.

参考文献

- 1) B.R.Brown and A.W.Lohmann : "Computer-generated Binary Holograms," IBM J. Res. Develop., 1 3, March, 160-168 (1969).
- 2) Yu.S.Mosyakin and G.V.Skrotskii: "Use of holographic optical elements (review)," Sov. J. Quant.Electron.,2,199-206 (1972).
- 3) V.P.Koronkevich, V.P.Kiriyanov, F.I.Kokoulin, I.G.Palchikova, A.G.Poleshchuk, A.G.Sedukhin, E.G.Churin, A.M.Scherbachenko, and Yu.I.Yurlov : "Fabrication of kinoform optical elements," Optik, 6 7, 257-266 (1984).
- 4) W.B.Veldkamp, G.J.Swanson, and D.C.Shaver : "High Efficiency Binary Lenses," Opt.Commun.,5 3,353-358 (1985).
- 5) K.Firth : "Recent developments in diffractive optics," GBC J.of Research,3, 1 - 10(1985).
- 6) T.K.Gaylord and M.G.Moharam : "Analysis and applications of optical diffraction by gratings," Proc. IEEE, 7 3, 894-938 (1985).
- 7) G.Tricoles : "Computer generated holograms: an histrical review," Appl.Opt., 26, 4351-4360 (1987).

- elements," Proc. SPIE, 1136, 126-133 (1989).
- 11) G.J.Swanson and W.B. Veldkamp : "Diffractive optical elements for use in infrared systems," Opt.Eng., 2 8, 605-608 (1989).
- 12) G.J.Swanson : "Binary Optics Technology: The Theory and Design of Multilevel Diffractive Optical Elements," MIT Lincoln Laboratory Technical Report 854, (1989).
- 13) T.J.McHugh and D.A.Zweig : "Recent Advances in Binary Optics," Proc. SPIE, 1052, 85-90 (1989).

8) 小野雄三: "ホログラフィック光学素子とその応用,"応用物理,56,729-733 (1987). 9) N.P.Frolova : "Diffraction optics," Sov.J.Opt.Technol., 5 5, 564-572 (1988). 10) Y.Amitai and A.A.Friesem : "Recent developments in holographic optical
- 14) A.D. Kathman and S.K. Pitalo : "Binary Optics in Lens Design," Proc. SPIE, 1354, 297-307 (1990).
- 15) J.Jahns and S.J.Walker : "Two-dimensional array of diffractive microlenses fabricated by thin film deposition," Appl.Opt., 29, 931-936 (1990).
- 16) G.J.Swanson : "Binary Optics Technology: The Theoretical Limits on the Diffraction Efficiency of Multilevel Diffractive Optical Elements," MIT Lincoln Laboratory Technical Report 914, (1991)
- 17) W.B.Veldkamp and T.J. McHugh : "Binary Optics", Scientific American May, 50-55 (1992). 日本語訳:日経サイエンス, 82-89(1992).
- 18) M.W.Farn and W.B.Veldkamp: "Binary Optics: Trends and Limitations," Conf. on Binary Optics, NASA Conference Publication 3227, 19-30 (1993).
- 19) J.A.Jordan, Jr., P.M.Hirsch, L.B.Lesem, and D.L.Van Rooy : "Kinoform Lenses," Appl.Opt., 9, 1883-1887 (1970).
- 20) J. J. Clair : "New methods to synthesize kinoforms," Opt.Commun.,6, 135-137 (1972).
- 21) A.K. Richter and F. Paul Carison : "Holographically Generated Lens," Appl.Opt., 1 3, 2924-2930 (1974).
- 22) H.Nishihara, S.Inohara, T.Suhara, and J.Koyama : "Holocoupler: A Novel Coupler for Optical Circuit," IEEE J.Quantum.Electron., QE-11, 794-796 (1975).
- 23) C.Kojima, K.Miyahara, K.Hasegawa, T. Otobe, and H.Ooki :"In-Line Holographic Lenses of High Numerical Aperture," Jpn.J.Appl.Phys., 20, Suppl. 20-1,199-204(1981).
- 24)藤田輝雄,西原浩,小山次郎:"電子ビーム描画作製マイクロフレネルレンズ," 信 学論(C), J64-C, 652-657 (1981).
- 25) T. Fujita, H.Nishihara, and J. Koyama : "Fabrication of micro lenses using electron-beam lithography," Opt.Letters, 6, 613-615 (1981).
- 26) T. Fujita, H.Nishihara, and J. Koyama : "Blazed gratings and Fresnel lenses fabricated by electron-beam lithography," Opt.Letters,7,578-580 (1982).

- 27)藤田輝雄,西原浩,小山次郎: "電子ビーム描画作製によるブレーズ化マイクロフレ ネルレンズ,"信学論(C), J66-C,85-91 (1983).
- 28) K.Tatsumi, T.Saheki, and T.Takei: "High performance micro Fresnel lens fabricated by U.V.lithography," Tech. Digest of 4th Topical meeting on Gradient-index optical Imaging Systems, G5, 192-195 (1983).
- 29) K.Tatsumi, T.Saheki, T.Takei, and K.Nukui :"High performance micro (1984).
- 30) 辰巳賢二, 佐伯利一, 竹居敏夫, 温井浩三:"UVリソグラフィによる大口径比フレネ ルレンズ,"昭和58年度電子通信学会総合全国大会予稿1029(1983)
- 31) 木村靖男,小野雄三,須釜幸雄,太田義徳: "複数機能ホログラムを用いた小型光へ ッド," 光メモりシンポジウム'86,93-98(1986).
- 32) K.Tatsumi, T.Matsushita, and S. Ito : "A Multi-Functional Reflection Type Memory 1987, TB7, 191-194 (1987).
- 33) K.Tatsumi, T.Matsushita, and S. Ito: "A Multi-functional Reflection Type 127-130 (1987).
- 34) Y.Kimura, S.Sugama, and Y.Ono: "High performance optical head using optimized holographic optical element," Tech.Digest of Int.Symp. on Optical Memory 1987, TB8, 195-198 (1987).
- 35) Y.Kimura, S.Sugama, and Y.Ono: "High performance optical head using 131-134 (1987).
- 36) V.P.Koronkevich, I.G.Palchikova, and A.G.Poleshchuk: "Data readout from Electron., 18, 1336-1339 (1988).
- 37) G.T. Sincerbox : "Challenges for the use of holographic elements in optical storage," Proc. SPIE, 1136, 80-91 (1989).

Fresnel lens fabricated by U.V.lithography," Appl. Opt., 2 3, 1742-1744

Grating Lens For The OD Optical Head," Tech. Digest of Int. Symp. on Optical

Grating Lens For the OD Optical Head," Jpn.J.Appl.Phys., 2 6, Suppl. 26-4,

optimized holographic optical element," Jpn.J.Appl.Phys., 2 6, Suppl. 26-4,

compact disks by a laser pickup with diffractive optics," Sov.J.Quantum.

- 38) A.Ohba, Y.Kimura, S.Sugama, R.Katayama, M.Okada, Y.Ono, and N.Nishida :" Compact magneto-optical disk head using reflection polarizing holographic optical element," Tech. Digest of 5th Topical Meeting on Optical Data Storage, WB2-1, 86-89 (1989).
- 39) W. H. Lee : "Holographic optical head for compact disk applications," Opt.Eng., 28, 650-653 (1989).
- 40) P. Coops : "Mass Production Methods for Computer-generated Holograms for (D) Optical Pickups," Phillips J. Res., 4 4, 481-500 (1990).
- 41) A.Ohba, Y.Kimura, S.Sugama, R.Katayama, and Y.Ono: "Reflection polarizing holographic optical element for compact magneto optical disk heads," Appl.Opt., 29, 5131-5135 (1990).
- 42) Y. Honguh and I. Hoshino : "Focusing-Error Detection Using a Mixed-Aberration-Generating Holographic Optical Element," Jpn.J. Appl.Phy., 31, 544-547 (1992).
- 43) W. H. Lee : "Recent progress in HOE optical pickup," Tech. Digest of Diffractive optics, design, fabrication, and applications, Topical meeting, TuA1-2, 52-53 (1992).
- 44) Y. Konmma, N.Ito, K.Urairi, H.Hayashi, S.Nishino, and S.Mizuno : "Dual focus optical head for 0.6mm and 1.2mm disks," Tech. Digest. of CLEO/Pacific Rim'95, WL1, 88 (1995).
- 45) Y. Ono : "Magneto-optical disk head using polarizing holographic optical element," Tech. Digest. of CLEO/Pacific Rim'95, WL3, 89 (1995).
- 46) 辰巳賢二, 松下匡:"2分割反射形回折格子レンズを用いた光ディスク光学系," 光学,24,630-637 (1995).
- 47) R.W. Meier: "Magnification and third-order aberrations in holography," J. Opt. Soc. Am., 5 5, 987-992 (1965).
- 48) E. B. Champagne: "Nonparaxial Imaging, Magnification, and Aberration Properties in Holography," J. Opt. Soc. Am., 57, 51-55 (1967).

49) R.W.Smith : "The s and t Formulae For Holographic Lens Elements,"

Opt. Commun., 2 1, 106-109 (1977).

- 50) R.Dandliker, K.Hess, and Th.Sidler:"Astigmatic Pencils of Ray
- 51) J. N. Latta : "Computer-based analysis of holography using ray tracing," Appl.Opt., 10, 2698-2710 (1971).
- 52) J. F. Miles : "Imaging and magnification properties in holography," Opt.Acta, 1 9, 165-186 (1972).
- 53) K. Tatsumi: "Astigmatic characteristics of diffractive optical elements with aspherical phase term," Opt.Review, 3, 319-323 (1996).
- 54) W. T. Welford : "A vector ray tracing equation for hologram lenses of arbitrary shape," Opt.Commun., 1 4, 322-323 (1975).
- 55) H.W. Holloway and R.A.Ferrante : "Computer Analysis of Holographic Systems by Means of Vector Ray Tracing," Appl.Opt., 20, 2081-2084 (1981).
- 56) R. C. Fairchild and J. R. Fienup : "Computer-originated aspheric holographic optical elements," Opt.Eng., 21, 133-140 (1982).
- 57) K. Goto and M. Kitaoka: "Aberrations in nonparaxial holography," J.Opt.Soc.Am.A,5,397-402 (1988).
- 58) 小林道生,西原浩,小山次郎: "半導体レーザ・光ファイバ結合用ホロカップラ、" 信学技報, OQE76-99, 25-31 (1976).
- 59) 内海邦昭,西原浩,小山次郎: "半導体レーザ・光ファイバ結合用ホロカップラの効 率改善,"信学技報, OQE78-121, 25-30 (1978).
- 60) 小島千秋, 大木裕: "インライン型ホログラフィックレンズとその応用,"光学,10, 425-430 (1981).
- 61) K. Miyamoto : "The phase Fresnel lens," J.Opt.Soc.Am., 51, 17-20 (1961).
- Press, NewYork, 1971) p.44-46.
- 63) A. Engel and G. Herziger : "Computer-Drawn Modulated Zone Plates," Appl.Opt., 1 2, 471-479 (1973).

Reconstructed from Holograms," Israel J. Tech., 1 8, 240-246 (1980).

62) R. J. Collier, C.B. Burckhardt, and L.H.Lin: Optical Holography (Academic

- 64) A. H. Firester : "Properties and fabrication of micro Fresnel zone plates," Appl.Opt., 1 2, 1698-1702 (1973).
- 65) K. Tatsumi, T.Saheki, and T.Takei : "Design of Aplanatic micro grating lenses," Proc.SPIE, 503, 9-14 (1984).
- 66) 久保田広: 波動光学 (岩波書店, 1984) p.295-308.
- 67) 鶴田匡夫: 応用光学 I (培風館, 1993) p.189-191.
- 68) G. H. Spencer and M.V. R. K. Murty : " General Ray tracing Procedure," J.Opt.Soc.Am., 5 2, 672-680 (1962).
- 69) 久保田広: 応用光学 (岩波書店,1979) p.70.
- 70) W.T.Welford : " Aplanatic Hologram Lenses on Spherical Surfaces," Opt.Commun., 9, 268-269 (1973).
- 71) W.T.Welford : "Aplanatic Hologram Lenses," J. Photogr.Sci., 2 3, 84-87 (1975).
- 72) W.T.Welford : "Practical Design of An Aplanatic Hologram Lenses of Focal Length 50mm and Numerical Aperture 0.5," Opt.Commun., 1 5, 46-49 (1975).
- 73) 辰巳賢二, 松下匡, 伊東尚: "反射形回折格子レンズを用いたCD光ピックアップ光 学系," 微小光学研究会資料 No.3, 6, 17-22 (1988).
- 74) M. Born and E. Wolf : Principles of Optics, 6th ed. (Pergamon Press, Oxford, 1991) p.469.
- 75) R. Magnusson and T.K.Gaylord : "Diffraction Efficiencies of Thin phase Gratings with Arbitrary grating shape," J.Opt.Soc.Am., 68, 806-808 (1978).
- 76) G. Hass : Applied Optics & Optical Engineering, vol. III, ed. by Kingslake, (Academic Press, New York, 1965) p.309.
- 77) W.L.Wolfe: The Infrared Handbook, (ERIM, 1978) p.7-81.
- 78) 鶴田匡夫: 応用光学 I (培風館, 1993) p.42-45.
- 79) Y.Kimura, S.Sugama, and Y.Ono :"Compact optical head using a holographic optical element for CD players," Appl.Opt., 27, 668-672 (1988).

- 80) Y.Yoshida, T. Miyake, Y.Kurata, and T. Ishikawa: "Three beam (D) optical pickup using a holographic element," Proc. SPIE, Optical Data Storage Technologies, 1401, 58-65 (1990).
- 81) R.D. Burnham and A.D.Hays: "High-power diode-array-pumped frequency-doubled cw Nd:YAG laser," Opt. Lett., 1 4, 27-31 (1989).
- 82) F. Hanson and D. Haddock : "Laser diode side pumping of neodymium laser rods," Appl. Opt., 27, 80-85 (1988).
- 83) T. H. Allik, W.W. Hovis, D.P.Caffey and V.King: "Efficient diode-arraypumped Nd:YAG and Nd:Lu:YAG lasers," Opt. Lett., 1 4, 116-119 (1989).
- operation of a diode pumped Q-switched Nd:YAG laser," Opt. Lett., 1 5, 124-127 (1990).
- 85) Y. Hirano, K. Tatsumi, and K. Kasahara : "Diode pumped high efficiency 490-492 (1991).
- 86) 平野嘉仁, 辰巳賢二, 笠原久美雄: "反射型回折格子を用いたLD側面励起Nd: YLFレ - ザ," 第11回レーザー学会, 31pIV1, 61 (1991).
- 87) 辰巳賢二, 平野嘉仁, 笠原久美雄: "反射型回折格子を用いたLD側面励起Nd:YLFレ -ザ," 第38回応用物理学会, 31p-E-3 (1991).
- 88) 平野嘉仁, 辰巳賢二, 笠原久美雄: "反射型回折格子を用いたLD側面励起Qスイッチ Nd:YLFレーザ," 第38回応用物理学会, 31p-E-4 (1991).
- 89) K.Tatsumi, Y.Hirano, and K.Kasahara : " Diode pumped High Efficiency Nd:YLF Laser with Reflection Type Gratings," Optoelectronics, 8, 249-257 (1993).
- 90) J. J. Degnan : "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron., QE-25, 214-220 (1989).

84) D.C.Gerstenberger, A.Drobshoff, and R.W.Wallace : "High-peak-power

Nd:YLF laser with reflection type gratings," Tech. Digest of CLEO'91,CFC4,

91) A. E. Siegman : Lasers (Univ.Sci.Books, Mill Valley, CA, 1986) p.1017.

1. 論文

- 1) K. Tatsumi : "Astigmatic Characteristics of Diffractive Optical Elements with Aspherical Phase Term," Opt.Review, **3**, 319-323 (1996).
- 2) K. Tatsumi, T.Saheki, T.Takei, and K.Nukui : "High performance micro Fresnel lens fabricated by U.V.lithography," Appl.Opt., 2 3, 1742-1744 (1984).
- 3) K.Tatsumi, T.Saheki, and T.Takei : "Design of aplanatic micro grating lenses," Proc. SPIE, **503**, 9-14 (1984).
- 4) K.Tatsumi, T.Matsushita and S.Ito: "A Multi-functional Reflection Type Grating Lens for the D Optical Head," Jpn. J. Appl.Phy., 26, Suppl.26-4, 127-130 (1987).
- 5) 辰巳賢二,松下匡:"2分割反射形回折格子レンズを用いた光ディスク光学系" 光学,24,630-637 (1995).
- 6) K.Tatsumi, Y.Hirano, and K.Kasahara :" Diode-pumped High Efficiency Nd:YLF Laser with Reflection Type Gratings", Optoelectronics, 8, 249-257 (1993).

2. 国際会議

- K. Tatsumi, T. Saheki, and T.Takei: "High performance micro Fresnel lens fabricated by U.V.lithography," Tech. Digest of 4th Topical meeting on Gradient-index Optical Imaging Systems, G5, 192-195 (1983).
- 2) K. Tatsumi, T. Matsushita, and S.Ito : "A Multi-functional Reflection Type Grating Lens for the D Optical Head," Tech.Digest of Int.Symp.on Optical Memory 1987, TB7, 191-194 (1987).
- 3) Y.Hirano, K.Tatsumi, and K.Kasahara : "Diode pumped high efficiency

Nd:YLF laser with reflection type gratings," Tech.Digest of CLEO'91, CFC4, 490-492 (1991).

3. 研究会及び学術講演発表

1)辰巳賢二,佐伯利一,竹居敏夫,温井浩三:"UVリソグラフィによる大口径比フレ ネルレンズ,"昭和58年度電子通信学会総合全国大会予稿 1029(1983)
2)辰巳賢二,松下匡,伊東尚: "反射形回折格子レンズを用いたOD光ピックアップ光学 系,"微小光学研究会 No.3,617-22(1988)
3)平野嘉仁,辰巳賢二,笠原久美雄: "反射型回折格子を用いたLD側面励起Nd:YLFレ ーザ," 第11回レーザー学会,31pIV1,61(1991).
4)辰巳賢二,平野嘉仁,笠原久美雄: "反射型回折格子を用いたLD側面励起Nd:YLFレ ーザ," 第38回応用物理学会,31p-E-3 (1991).
5)平野嘉仁,辰巳賢二,笠原久美雄: "反射型回折格子を用いたLD側面励起Qスイッチ Nd:YLFレーザ," 第38回応用物理学会,31p-E-4 (1991).

