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略語 

ABC   ATP binding cassette 

ABCA1  ATP-binding cassette protein A1 

ACD  acid citrate dextrose 

ATX  -toxin 

BSA  bovine serum albumin 

EDTA  ethylene diamine tetra acetic acid 

HDL  high density lipoprotein 

HEPES  2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid 

KATP  ATP-sensitive K+ channel 

LDH  lactate dehydrogenase 

LTC4  leukotrien C4 

MAPK  mitogen activated protein kinase 

MDR  multidrug resistance protein 

MRP  multidrug resistance-associated protein 

PAF   platelet activating factor  

PC  phosphatidylcholine 

PE  phosphatidylethanolamine 

PG  prostaglandin 

PKC   protein kinase C 

PLSCR  phospholipids scramblase 

PS  phosphatidylserine 

SLO  streptolysin O 

SM  sphingomyelin 

SUR  sulfonylurea receptor 

S1P   sphingosine 1-phosphate 

Thr   thrombin 

TLC  thin layer chromatography 

TPA   12-0-tetradodecanoylphorbol-13- acetate 

Tris  tris (hydroxymethyl)aminomethane 
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TritonX-100 polyetylene glycol mono-p-isooctylphenyl ether 

VGLUT  vesicular glutamate transporter 

VMAT  vesicular monoamine transporter 
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哺乳類を含む多細胞生物は、一群の細胞集団を組織として機能させるため、

常に細胞間で情報伝達物質のやりとりを行い、個体の恒常性を維持している。

細胞間情報伝達物質は、標的細胞の細胞膜に存在する特異的な受容体に結合

し、様々な細胞応答を引き起こすことが知られているが、その細胞応答を制

御する上で情報伝達物質の放出機構が非常に重要なポイントになっている。

神経伝達物質であるグルタミン酸やカテコールアミンは細胞質で合成され、

vesicular glutamate transporter (VGLUT) と vesicular monoamine 

transporter (VMAT)によりそれぞれシナプス小胞へ蓄積され、活動電位の到

達と共に開口放出される(1-3)。また、インスリンなどのペプチド分子は、シ

グナルシークエンスにより小胞体へ輸送され、ゴルジ体を経て分泌小胞に送

られた後に開口放出される(4)。グルタミン酸やカテコールアミン、インスリ

ンなどの水溶性の細胞間情報伝達物質に関しては、細胞外への放出機構が細

かく分かってきている。一方、ホルモンや脂溶性ビタミンなどの生理活性脂

質は脂溶性であるという性質上、それらの産生細胞から単純拡散により細胞

外へ放出されると考えられてきたため(5)、細胞からの放出機構についての解

析はあまり行われていない。 

スフィンゴシン１リン酸（S1P）(Fig.1)は、産生細胞からの放出機構がよ

く分かっていない生理活性脂質の１つである。S1P は、それを特異的に感知

する G 蛋白質共役型の S1P 受容体が 5 種類同定されており、S1P 受容体を

介した細胞内での情報伝達経路に関してはかなり解明されてきている(6)。

S1P が S1P 受容体に結合すると、G 蛋白質を介して、mitogen activated 

protein kinase (MAPK)やアデニル酸シクラーゼ、ホスホリパーゼ C などの

活性が変化する。その結果、細胞の増殖や分化、遊走などが引き起こされる

(6)。S1P 受容体の 1 つである S1P1 のノックアウトマウスでは、血管平滑筋

細胞と血管内皮細胞の遊走が正常に起こらないために、血管壁形成不全を引

き起こし、胎生 13 日程度で出血多量のため死に至ることが報告されている

(7)。S1P によって引き

起こされる細胞応答は、

細胞が正常に機能する

上で極めて重要である

 

Figure 1. スフィンゴシン１リン酸（S1P）の化学構造
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ことから、S1P 産生細胞からの放出機構がどのように調節を受けているかに

ついては解明が待たれていた。 

S1P は親水基（リン酸）を持つ生理活性脂質であることから、単純拡散に

より容易に細胞膜を通過しないと考えられる。細胞膜は、蛋白質とリン脂質、

糖脂質、コレステロールを主成分とする脂質二重層であり、脂質分子の一つ

の層からもう一つの層への移動（フリップフロップ）は高頻度に起こってい

る。しかし、蛋白質を含まない人工的な脂質膜では、脂質分子のフリップフ

ロップは非常に遅い反応であることが知られている(8)。また、細胞膜を構成

する脂質は内葉と外葉において不均一であることが知られており、フォスフ

ァチジルコリン（PC）やスフィンゴミエリン（SM）は外葉に、フォスファ

チジルセリン（PS）やフォスファチジルイノシトール（PI）、フォスファチ

ジルエタノールアミン（PE）は内葉に偏って存在する(9, 10)。この細胞膜に

おける脂質の非対称性は、脂質をフリップフロップする輸送体により作られ

ていることが近年明らかになってきた(11)。脂質は細胞膜を自由に移動する

だけではなく、何らかの輸送体により局在が厳密に制御されている。 

S1P 産生細胞の１つである血小板において生成した S1P は膜を介して自

由に拡散するのではなく、血小板に高濃度に蓄積しており、血管内皮細胞の

Figure 2. 血小板からの S1P 放出機構 
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損傷部位において、トロンビンなどの刺激により S1P を局所的に放出するこ

とが分かっている(12)。この血管内皮細胞の損傷部位で放出される S1P は、

血管内皮細胞の増殖や遊走に重要であることが示されている(13)。私たちは、

刺激依存的な S1P の放出が何らかの輸送体によるものなのではないかと考

え、血小板からの S1P 放出機構の解析を進めてきた(Fig.2) (14)。これまでに、

血小板の細胞膜に異なる大きさの穴を開けたセミインタクト細胞を用いて、

S1P の細胞内局在と放出のエネルギー依存性を調べている。SLO を用いて細

胞膜に少し大きめの穴を開けると、S1P は細胞質の蛋白質である LDH と同

じく細胞外へ漏出するが、分泌顆粒内に存在する物質は漏出しなかった。こ

のことは、S1P が細胞膜の内葉もしくは細胞内膜系の細胞質側に局在してい

ることを示している。さらに、ATX により S1P が漏出しない大きさの穴を

開け、ATP 及び Ca2+を枯渇させた血小板を作製した。この血小板に ATP も

しくは Ca2+を単独で加えた場合、開口放出は起こらずに、S1P が細胞外へ放

出されることを見出した。この ATP 及び Ca2+依存的な S1P の放出が

ATP-binding cassette protein A1 (ABCA1)の阻害剤（Glyburide）及びリン

脂質スクランブラーゼ（PLSCR）の阻害剤（R5421）によりそれぞれ阻害さ

れることを明らかにしている。これらの結果から、血小板においては、ABCA

 

Figure 3. 血小板、赤血球から放出される S1P の役割 

Wound healing 
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タイプの輸送体と PLSCR の 2 種類の輸送体により S1P が細胞外へ放出され

る可能性を示している。 

一方、S1P は血小板以外にもマスト細胞や赤血球などの細胞にも存在する

ことが示されていた。しかし、血液中に最も多く存在する赤血球において S1P

が合成される生理的意義がこれまで不明であった。最近になって、この赤血

球において産生される S1P の役割が明らかになってきた。血小板から刺激依

存的に放出される S1P が血管内皮細胞損傷部位で局所的に作用するのに対

し、赤血球から放出される S1P は血漿中に一定濃度存在する S1P の主要な

供給源になり、この血漿中の S1P が胸腺、脾臓からのリンパ球の放出に重要

だということが報告された(Fig.3)(15)。そこで本研究では、これまで我々が

解析してきた血小板からの S1P 放出機構との比較により赤血球からの S1P

放出機構を明らかにすると共に、その輸送体同定のため、S1P 輸送体の酵素

化学的性質を解析した。 
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1-1: 赤血球の調製 

 10 週齢から 14 週齢の Wistar ST ラットをジエチルエーテルで麻酔し、外

頚静脈から採血を行った。採血はテルモ静注針 23G と抗凝固剤として Acid 

citrate Dextrose (ACD) 溶液(0.8% citric acid, 2.2% sodium citrate, 2.45% 

glucose)を用いた。血液を 800 µl 程度採り、1.5 ml のチューブに移してから

遠心分離(20˚C、500 x g、15 分、ブレーキオフ)した。2 層に分離したものの

うち、下層の赤血球を 50 µl 取り、そこに 1% (w/v) BSA (fatty acid free BSA 

(sigma))を含む Buffer A (20 mM Hepes-NaOH (pH=7.4), 138 mM NaCl, 

3.3  mM NaH2PO4, 2.9 mM KCl, 1 mM MgCl2, 1 mg/ml glucose)を 1 ml 加

え、懸濁した後、遠心分離(20˚C、500 x g、10 分、ブレーキオフ)した。上

清を取り除き、1% (w/v) BSA を含む Buffer A を 1 ml 加え、懸濁した後同様

に遠心分離した。得られた沈殿を 1000 倍希釈し、血球計算盤により赤血球

数を計測した。赤血球の懸濁液に適当な量の 1% (w/v) BSA を含む Buffer A

を加え、1x107 cells/ml の濃度にした。 

 

1-2: 赤血球からの S1P 放出の測定 

 赤血球懸濁液(1x107 cells/ml)180 µl を阻害剤存在下で 37˚C, 60 分間保温、

もしくは非存在下で 37˚C, 5 分間保温した。その後、0.4 µl の 5 µM [3H]スフ

ィンゴシン (0.1 µCi) と 9.6 µl の 1% (w/v) BSA を含む Buffer A の混合液

を加え、37˚C で任意の時間保温した。ラットトロンビン (Sigma,終濃度 5 

NIH Unit/ml), TPA (Sigma, 終濃度 0.16 µM), A23187(Sigma, 終濃度 10 

µM), CaCl2 (ナカライテスク, 終濃度 2 mM)を加える場合には、[3H]スフィ

ンゴシンを添加してから 2 min 後に 10 µl の溶液を加えた。37˚C で保温した

後、遠心分離(4˚C、12000 x g、5 秒)を行い、バッファーと赤血球を分離し

た。沈殿は 200 µl の 1% (w/v) BSA を含む Buffer A に再懸濁し、それぞれ

に含まれる脂質を以下の方法に従って解析した。 

 

1-3: 脂質分析法 (16) 

  1 volume のサンプルへ 3.75 volume の  chloroform/MeOH/ conc.HCl 

(100:200:1)を加え、激しく攪拌した。そこに、chloroform と 1% KCl を 1.25  
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volume ずつ加え、激しく攪拌した後、遠心分離(常温、1000 x g、10 分)した。

下層を別のチューブに取り、遠心エバポレーターで乾燥させた。乾固物を 15 

µl の chloroform/MeOH (2:1)に懸濁した後、Thin layer chromatography 

(TLC) プレート (MERCK HPTLC plate 1.05641)に全量アプライし、

BuOH/acetic acid/water (3:1:1)を展開溶媒として展開した。TLC プレートを

乾燥させた後、imaging plate と FLA 3000G fluorescence image analyzer 

(富士フイルム)を用いて、放射活性を画像化した。 

 

1-4: 赤血球反転膜小胞の作製 

赤血球反転膜小胞の作製は、Steck らの方法(17)を改変して行った。10 週

齢から 14 週齢の Wistar ST ラットをジエチルエーテルで麻酔し、心臓採血

を行った。採血はテルモ翼付静注針 19G と抗凝固剤として Acid citrate 

Dextrose (ACD) 溶液を用いて行った。採血した血液を 15 ml のプラスティ

ック遠心管に移し遠心分離(20˚C、500 x g、10 分、ブレーキオフ)した。上

清を取り除き、1 volume の 1% (w/v) BSA を含む Buffer A と 0.4 volume の

ACD を加えて再懸濁し、遠心分離(20˚C、500 x g、10 分)した。上清を取り

除き、再度 1 volume の 1% (w/v) BSA を含む Buffer A と 0.4 volume の ACD

を加えて懸濁し、遠心分離(20˚C、500 x g、10 分)した。上清を取り除き、5 

volume の 1% (w/v) BSA を含む Buffer A と 1.2 volume の ACD を加えて懸

濁し、遠心分離(20˚C、500 x g、10 分)した。上清を取り除いた後、氷上に

置き、20 volume の RBC lysis buffer (20 mM Tris-HCl (pH=7.4), 1mM 

EDTA )を加え、溶血させた。遠心分離(4˚C、28000 x g、10 分)した後、上清

を取り除き、同量の RBC lysis buffer により沈殿を 2 回洗浄した。得られた

沈殿(ghost)に 40 ml の Vesiculation buffer (0.5 mM Tris-HCl (pH=8.1), 

0.1% BSA ) /1 ml ghost を加え、懸濁した後、一晩氷上に放置した。それを

遠心分離(4˚C、30000 x g、30 分)した後、上清を取り除き、1 ml の Vesiculation 

buffer (0.5 mM Tris-HCl (pH=8.1), 0.1% BSA ) /1 ml ghost により沈殿を懸

濁し、3/4 inch の 27G 注射針（トップ）を 5 回通過させた。1 ml の Vesiculation 

buffer /1 ml ghost を加えて懸濁した後、4.5 ml の Dxtran barrier solution 

(0.5 mM Tris-HCl (pH=8.1), 4.46% (w/v)dextran 70) /1 ml ghost に重層し、
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遠心分離(4˚C、30000 x g、40 分、ブレーキオフ)した。上層と下層の界面の

層(vesicles)を分取し、40 ml Vesiculation buffer /1ml vesicles を加えて懸濁

した後、遠心分離(4˚C、30000 x g、30 分)した。上清を取り除き、沈殿を同

様の操作により洗浄した後、0.1% (w/v) BSA を含む 10 mM Tris-HCl 

(pH=7.4)を 200 µl /1 ml ghost 加え、懸濁した後に液体窒素中で凍結させ、

使用するまで-80˚C で保存した。 

 

1-5: 赤血球反転膜小胞への S1P 取り込み活性の測定 

凍結させておいた赤血球反転膜を 37˚C で融解し、氷上に置いた。50 µg の赤

血球反転膜と 1 µM の sphingosine 1-phosphate (Avanti)、66.6 pM の

[33P]sphingosine 1-phosphate (ARC)、10 mM MgCl2、0.1% (w/v) BSA を含

む 90 µl の 10 mM Tris-HCl (pH=7.4)溶液を 37˚C で 5 分間保温した。10 µl

の 200 mM の MgATP または MgAMP、MgCl2 を加えて反応を開始し、37˚C

で任意の時間保温した後に 850 µl の ice-cold buffer (10 mM Tris-HCl 

(pH=7.4), 10 mM EDTA, 10 mM Vanadate, 1% BSA)を加え、反応を停止し

た。反応液を遠心分離し(4˚C、100000 x g、5 分)、上清を取り除いた後に 1 ml

の ice-cold buffer (10 mM Tris-HCl (pH=7.4), 10 mM EDTA, 10 mM 

Vanadate, 1% BSA)で超遠心チューブの内側を 2 回洗浄した。沈殿に 100µl

の 10 mM Tris-HCl (pH=7.4), 1% TritonX-100 溶液を加え、溶解した後に、

10 ml の Ultima GoldTM XR (Perkin Elmer, Boston, MA, USA)と混合し、10 

min 放置した後にカウントを測定した。 

 

1-6: 赤血球反転膜小胞への cGMP 取り込み活性の測定 

1-5 の方法で、sphingosine 1-phosphate と[33P]sphingosine 1-phosphate を

1 µM の[3H]cGMP に置き換えて行った。 
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2-1: はじめに 

S1P は血液中に豊富に存在する細胞間情報伝達物質であり、血漿中には

150 nM 程度の S1P が存在している(18)。一定濃度の S1P が存在する血液と、

S1P が低濃度に保たれているリンパ球産生組織との間の S1P の濃度勾配が

リンパ球産生組織からのリンパ球の放出に重要であることが知られている

(19-21)。また、S1P 受容体の１つである S1P1 を欠損させたマウスを用いた

解析から、S1P1 がリンパ球産生組織からのリンパ球の放出に必要であること

が示されている(20, 22, 23)。しかし、血漿中に一定濃度存在する S1P がどの

細胞からどれくらい供給されるのかについては、ほとんど明らかになってい

なかった。血小板には高濃度の S1P が蓄積されていることから、かつては血

漿中の S1P は血小板から放出されたものであると考えられていた(24)。 

最近になって、赤血球から放出される S1P の役割が明らかになってきた。

赤血球は血液中に最も豊富に存在する細胞成分で、全血液量の約 45％を占め

ている。赤血球は細胞質に大量のヘモグロビンを保持しており、酸素と二酸

化炭素の運搬に重要な働きをしているが、細胞間情報伝達物質を豊富に蓄積

している血小板などとは違って、情報伝達物質の放出細胞としてはほとんど

注目されることがなかった。しかし最近、赤血球から放出される S1P が血漿

中に存在する S1P の主要な供給源になっており、胸腺や脾臓からのリンパ球

の放出に重要であることが報告された(15)。赤血球から放出される S1P の役

割が明らかになってきたのと同時期に、私も S1P が赤血球において合成され、

細胞外へ放出されることを見出した（本章 2-2）。赤血球からの S1P 放出機

構の解析は、血漿中の S1P 濃度を維持する仕組みを理解する上で非常に重要

であると考えられる。すでに血小板からの S1P 放出機構に関しては、S1P の

放出が刺激依存的であり、ATP 及び Ca2+依存的な２つの輸送体により S1P

が放出されることを明らかにしている(14)。このことから、赤血球からの S1P

放出の刺激依存性（本章 2-3）と、S1P 放出機構における輸送体の関与（本

章 2-4）について解析を行った。 
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2-2: 赤血球における S1P の合成と、細胞外への放出の時間依存性 

 ラット赤血球を用いて、スフィンゴシンの細胞内への取り込みと S1P の合

成、細胞外への S1P 放出の時間依存性を調べた。すでに、血小板からの S1P

の放出には、S1P のキャリアー蛋白質として BSA が必要であることが分か

っていることから(14)、赤血球からの S1P 放出もキャリアー蛋白質として

BSA を用いた。スフィンゴシンは赤血球懸濁液に添加すると速やかに取り込

まれ、細胞内で S1P に変換された(Fig.2-1)。スフィンゴシンを加えてから 4 

分後には細胞外のスフィンゴシン量は約半分に減少し、細胞内の S1P 量は最

大値に達した。スフィンゴシンを添加してから 2 分後に S1P の細胞外への

放出が始まり、時間依存的に放出量が増加した。これらの結果から、スフィ

ンゴシンの取込み後、S1P の合成は非常に速い速度で起こり、また、赤血球

に対して特に刺激を与えなくても細胞内の S1P は細胞外に放出されること

 

Figure 2-1. 赤血球における S1P 放出の時間依存性 

赤血球懸濁液に[3H]スフィンゴシンを添加し、37˚C で任意の時間保温した後、

遠心分離によりバッファーと赤血球を分離した。バッファー(A)と赤血球(B)から脂

質を抽出して TLC により展開し、[3H]スフィンゴシン及び[3H]S1P の放射活性を

Imaging plate により画像化し、定量した。黒丸はスフィンゴシンを、白丸は S1P を

それぞれ示している。グラフの縦軸はバッファーまたは赤血球中の活性が全体

の活性に占める割合で記した。実験は２回行い、同様の結果が得られた。 
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が明らかになった。これは、血小板がトロンビンなどの刺激に依存して S1P

を放出する(14)という特徴と大きく異なっている。また、血小板にスフィン

ゴシンを添加した場合には S1P と共にセラミドが合成されるのに対して、赤

血球にスフィンゴシンを添加した場合にはセラミドが合成されなかった

（data not shown）。したがって血小板とは異なり、赤血球にはスフィンゴ

シンからセラミドを合成する酵素が存在しないと考えられる。 

 

2-3: 赤血球からの S1P 放出の刺激依存性 

 

Figure 2-2. 赤血球からの S1P 放出の刺激依存性 

赤血球懸濁液に[3H]スフィンゴシンを添加し、37˚C で 2

分間保温した後、トロンビン(5 NIH U /ml)、TPA (0.16 

µM)、A23187(2 µM)をそれぞれ単独もしくは Ca2+ (2 

mM)と共に添加し、37˚C で 10 分間保温した。遠心分

離によりバッファーと赤血球を分離し Fig.2-1 と同じ方

法で[3H]S1P 量を定量した。グラフの縦軸は、それぞれ

の S1P の全体量に占めるバッファー中の量の割合を示

す。 

本章 2-2 の結果から、血小板とは異なり、赤血球からの S1P の放出にはトロ

ンビンなどの刺激が必要ないことが明らかになった。ここでは、赤血球に対

してトロンビンなど

の刺激を与えた場合

に S1P の放出が促

進されるか否かにつ

いて解析を行った

(Fig.2-2)。血小板に

おいて S1P の放出

を促進したトロンビ

ンや PKC (protein 

kinase C)の活性化

剤である TPA、Ca

イオンを赤血球に対

して加えたが、S1P

の放出量はほとんど

変化しなかった。こ

のことから、血小板

とは異なり、赤血球

からの S1P の放出

はすでに活性化され

ていて、刺激により
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さらなる活性化は起こらないことが分かった。また、Ca イオンにより S1P

の放出が促進されないことから、赤血球においては、血小板とは異なり、Ca2+

に依存した S1P の放出機構が存在しないと考えられる。 

 

2-4: 赤血球からの S1P 放出に対する ABC 輸送体の阻害剤の影響 

前述の通り、血小板においては ATP

及び Ca2+依存的な輸送体が S1P を放

出することを明らかにしており、それ

ぞれ ABCA タイプの輸送体とリン脂

質スクランブラーゼ（PLSCR）が S1P

輸送体であることを報告している(14)。

本章 2-3 の結果より、赤血球において

は Ca2+依存的な S1P 輸送体が存在し

ないことが示唆されたことから、脂質

の輸送体として知られる ATP binding 

cassette (ABC)輸送体が血小板と同様、

S1P を輸送する可能性が考えられた。 Figure 2-3. 赤血球からの S1P 放

出に対する ABC 輸送体の阻害剤

の影響      赤血球を阻害剤

存在下、37˚C, 60 分間保温した

後、[3H]スフィンゴシンを加え 37˚C

で 20 分間保温した。その後、バッ

ファーと赤血球を遠心分離し、そ

れぞれに含まれる[3H]S1P 量を定

量した。グラフの縦軸は全体に含

まれる[3H]S1P 量のうちバッファー

中に含まれる量の割合を示す。阻

害剤は、500 µM Glyburide もしくは

50 µM MK571 、 10 µM Cyclos- 

porine A のいずれかを添加した。 

赤血球からの S1P 放出に対する

ABC 輸送体阻害剤の影響を調べたと

こ ろ 、 multidrug resistance- 

associated protein (MRP)の阻害剤で

あ る MK571(25) や multidrug 

resistance protein (MDR)の阻害剤で

ある Cyclosporine A(26-28)によって

は放出が阻害されず、ABCA1 の阻害

剤である Glyburide(29, 30)により放

出が約 35%阻害された(Fig.2-3)。この

ことから赤血球においても血小板と同

様、ABCA タイプの輸送体が S1P を放

出している可能性が示唆された。 
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2-5: 考察 

本章 2-1 の結果より、赤血球にスフィンゴシンを添加すると速やかに細胞

内に取り込まれ、直ちに S1P が合成されることが確認された。一方、赤血球

からの S1P 放出の時間依存性は、細胞内での S1P 合成の時間依存性とは一

致せず、S1P の放出はスフィンゴシンを添加してから少し遅れて 2 分後に開

始される。このことから、S1P が単純拡散により細胞外へ放出されるのでは

なく、何らかの輸送体が介在している可能性が示唆される。また、赤血球の

調製は常温で行っており、バッファーにより赤血球を 2 回洗浄していること

から、細胞内にもともと存在していた S1P は調製段階で、細胞外にほとんど

抜け出てしまっており、この実験での S1P の挙動には影響を与えていないと

考えられる。 

生理活性脂質である S1P は疎水性が高く、単独では水に溶けないことから

実験では BSA などのキャリアー蛋白質により可溶化する必要がある。血漿

中に存在する S1P のほとんどが high density lipoprotein (HDL)と血清アル

ブミンに結合して存在しているが(31)、血小板からの S1P の放出は、HDL

の構成成分である apoA-I 依存的には起こらずに、BSA 依存的に起こること

をすでに明らかにしている(14)。今回私は赤血球からの S1P の放出実験を

BSA 存在下で行った。例えば、ABC 輸送体の 1 つである ABCA1 によるコ

レステロールの放出には BSA ではなく apoA1 が必要であることが分かって

いる。一方、ABCG1 からのコレステロール放出には HDL が必要である(32)。

このことは、輸送体によってキャリアー蛋白質が異なっていることを示して

いる。このことから、赤血球からの S1P の放出も血小板と同じように BSA

をキャリアーとして用いていて、HDL もしくは apoA-I 依存的ではないと考

えている。 

本章 2-4 において、赤血球からの S1P の放出は、MRP の阻害剤である

MK571(25)や MDR の阻害剤である Cyclosporine A(26-28)によっては阻害

されず、ABCA1 の阻害剤である Glyburide(29, 30)により阻害されるという

結果が得られた(Fig.2-3)。これらの ABC 輸送体阻害剤の効果は、血小板か

らの ATP 依存的な S1P の放出に対する効果と同様であった(14)。このこと

から、赤血球においても血小板と同一の ABCA タイプの輸送体が S1P を放
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出していると考えられる。一方で、血小板からの放出が刺激依存的であるの

に対し、赤血球からの放出は刺激非依存的であるという明確な違いが存在す

る。この違いは、血小板においては輸送体の活性化が一過性であるのに対し、

赤血球においては輸送体が常に活性化された状態にあることから生じると考

えている。血小板においては、トロンビンによる血小板の活性化シグナルは

プロテインキナーゼ C（PKC）を介しており、また、セミインタクトの細胞

からの ATP 依存的な S1P の放出がトロンビン刺激により活性化されること

から、ABCA 輸送体のリン酸化により輸送が活性化される可能性を示してい

る(14)。実際、ABC 輸送体の中で、ABCA1 や ABCC2 はそれぞれ PKA と

PKC によりリン酸化され、活性化されることが知られている(33, 34)。赤血

球においては S1P 輸送体がリン酸化された状態にあり、輸送体が常に活性化

されていると考えている。 

血小板と赤血球のもう１つの大きな違いは、血小板には Ca2+依存的な S1P

の放出機構が存在するのに対して、赤血球には Ca2+依存的な機構が存在しな

いことである（本章 2-3）。血小板における Ca2+依存的な S1P の放出輸送体

は、リン脂質スクランブラーゼ（PLSCR）であることを示唆している(14)。

PLSCR は、Ca2+依存的にリン脂質をランダムに二方向に輸送する蛋白質で

あり(35)、血小板と赤血球にも発現している。血小板の活性化や赤血球のア

ポトーシスの際に起こるリン脂質の非対称性の消失との関わりが指摘されて

いるが、まだ不明な点が多く、その機能についてはまだ議論が分かれている

(11)。血小板において我々が報告した Ca2+依存的な S1P の放出は、血小板に

対して過剰量の Ca2+をイオノフォアと共に添加したことにより生じた現象

である。生理的条件下では、血小板も赤血球も細胞内の Ca2+濃度は非常に低

く保たれており(36, 37)、Ca2+依存的な機構が動くことはない。血小板がト

ロンビンなどの刺激により活性化した際に、一過性の細胞内 Ca2+濃度の上昇

が起きるが、その条件では、PLSCR は働かないことが報告されている(38)。

つまり、血小板においても、トロンビンなどの刺激に応じて活性化される S1P

の生理的な輸送には ATP に依存した輸送体が働いていると考えている。 

本章では、血小板だけではなく、赤血球においても S1P が合成され、細胞

外へ放出されることを明らかにした。しかし、血小板と赤血球からの S1P 放
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出機構にはいくつかの相違点があることが分かった。Table.2-1 に、血小板

と赤血球に含まれる S1P 量と S1P 放出様式の違いについてまとめた。血液

を構成する成分の約半分が赤血球であり、血液中の S1P の約半分が赤血球に

存在していることが最近明らかになっている(18)。S1P は赤血球から恒常的

に放出されることから、血漿中の S1P の大部分は赤血球由来であると考えら

れる。血小板には S1P が高濃度に蓄積されているが、血球数が赤血球よりも

圧倒的に少ない。しかも血小板からの S1P 放出は刺激依存的で局所的な現象

であり、血小板から放出される S1P は血漿中の S1P 濃度には影響を与えな

いことも明らかになっている(15)。したがって、血小板と赤血球では同じ S1P

輸送体を用いているにも関わらず、その制御機構が異なることによって、異

なる放出様式を実現していると考えられる。 

 

Table.2-1 血小板と赤血球に含まれる S1P量と S1P放出様式の違

い 

  血小板 赤血球 

血液中の全血球数に占める割合 約 5％ 約 95％ 

血液中の全 S1P 量への寄与率 約 30％ 約 51％ 

細胞あたりの S1P 量 非常に多い 少ない 

血漿中の S1P への寄与 なし あり（大部分）

S1P 放出の刺激依存性 あり なし 

S1P の放出部位 局所的 限定されない

S1P の放出時間 一過性 恒常的 

S1P 輸送体 ABCA タイプ 
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第三章 

S1P 輸送体の酵素化学的解析 
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3-1:はじめに 

第 2 章で、赤血球においても血小板と同様、S1P が合成され細胞外に放出

されることを明らかにし、ABC 輸送体の阻害剤を用いた解析から、ABCA

タイプの輸送体が S1P を放出する可能性を示唆した。しかし、これらの結果

はすべてインタクトの赤血球を用いたものであり、用いた阻害剤は、輸送体

以外にも作用する蛋白質が存在するため、輸送体への効果を見る場合には細

胞質に存在する蛋白質の影響を無視できないという問題点がある。また、酵

素活性を指標とした輸送体本体の同定を目指すためには、膜小胞による S1P

輸送活性の測定により輸送体の酵素化学的性質を明らかにする必要がある。

そこで本章では、赤血球反転膜を用いて ATP 依存的な S1P の輸送活性を測

定する系を構築し、S1P 輸送体の酵素化学的性質を解析した。赤血球の反転

膜は作製が容易であり(17)、これまでに反転膜を用いて様々なトランスポー

ターの活性が測定されている(39, 40)。また、赤血球は血小板とは異なり、

S1P の放出に輸送体の活性化を必要としないことから、反転膜を用いて S1P

の取り込みを測定することが可能であると考えた。 

赤血球は細胞内小器官を持たない無核の細胞であるが、細胞膜上の glucose 

transporter 1 (GLUT1)(41)を介してグルコースを細胞内に取り込み、嫌気的

解糖により 1 分子のグルコースから 2 分子の ATP を合成している(42)。細胞

内には約 1 mM の ATP が存在しており、膜骨格を構成する蛋白質のリン酸

化や、細胞膜に存在する ATPase のエネルギー源として利用される。赤血球

の細胞膜には Na+-K+ ATPase や Ca2+-ATPase などの ATP 依存的イオン輸送

体が存在しており、それらの輸送活性が赤血球の反転膜を用いて測定されて

いる(43, 44)。 

脂質の輸送に関わる輸送体としては、いままでに P-type ATPase と ABC

輸送体、PLSCR の 3 種類が知られている(11)。P-type ATPase と ABC 輸送

体は ATP 依存的、PLSCR は Ca2+依存的であるが、赤血球には Ca2+依存的

な S1P 輸送体が存在しないことから、P-type ATPase もしくは ABC 輸送体

が S1P を輸送する可能性が考えられる。 

P-type ATPase としてよく知られているものは、Na+-K+ ATPase や

Ca2+-ATPase、H+-K+-ATPase などのイオン輸送体(45)であるが、脂質輸送
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を行う P-type ATPase としては、1996 年、ウシクロマフィン顆粒から ATPase II

が精製、クローニングされており、その酵母ホモログである Drs2p を欠損した酵母では、

NBD 標識した PS の取込みの阻害が確認されている(46)。現在では、Drs2p はト

ランスゴルジネットワークで PS を輸送することが明らかとなっており(47)、形質膜

で機能する P-type ATPase としては Dnf1p と Dnf2p が同定されている(48)。し

かし、P-type ATPase はいずれも脂質を細胞内に取り込む方向に輸送するこ

とから、S1P 輸送体になりうる可能性は低いと考えられる。 

 ABC 輸送体は、ATP の加水分解と共役して基質を輸送する膜蛋白質であ

り、動物細胞では、ABCA から ABCG までの 7 つのサブファミリーに分類

される。現在、脂質輸送に関わるものとして、ABCA1, ABCA3, ABCA4, 

ABCA7, ABCB1 (MDR1), ABCB4(hMDR3, mMDR2)が報告されている。

ABCA1(ABC1)は、Tangier 病という遺伝性疾患の原因遺伝子で(49-51)、

ABCA サブファミリーのなかでは、生化学的解析がかなり進んでいる輸送体

である。ホモ接合体の Tangier 病患者では HDL が欠損しており、細網内皮

系に多量のコレステロールエステルの沈着が認められる。今までに、ABCA1

は細胞内のコレステロールを apoA1 に受け渡すことで HDL 形成に関与する

ことが明らかになっている(52, 53)。その後の解析から、ABCA1 によるリン

脂質の輸送を伴ったコレステロールの放出メカニズムが提唱された(54)。そ

れによると、ABCA1 は apoA-I に直接結合すると同時に、リン脂質を細胞膜

の外葉へ輸送することにより、細胞外に湾曲した膜ドメインを形成する。さ

らに、そのドメインに対して apoA-I が高い親和性で結合し、apoA-I により

リン脂質およびコレステロールが可溶化され、HDL が形成される。

ABCA4(ABCR)は、Stargardt 病の原因遺伝子である。Stargardt 病は、萎縮

性の斑状病変を伴う黄色斑眼底であり、失明に至る重篤な疾病である(55)。

ABCA4 は網膜に特異的に発現しており、レチナール誘導体である N-レチニ

リデンフォスファチジルエタノールアミンを内葉へと取り込むことで、レチ

ナールの再生に関わることが知られている(56)。ABCB1(MDR1)は、多剤耐

性の原因となる薬剤排出蛋白である。ABCB1 は基質の特異性が非常に幅広

く、PC や PE、SM、グルコシルセラミド、ガラクトシルセラミドなどを輸

送することが知られている(57)。また、ABCB4(hMDR3, mMDR2)は、遺伝
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性肝内胆汁鬱滞症の原因遺伝子で、主に肝臓の肝細管膜に局在しており、肝

臓から胆汁中への PC の分泌に関与している(58)。これらのうち、ABCA4 以

外はいずれも脂質を細胞外へと輸送する方向に運ぶ。そこで本章では、赤血

球反転膜への ATP 依存的 S1P 取込みに対する、ABC 輸送体の阻害剤の効果

を調べることで S1P 輸送体の同定を試みた。 
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3-2 赤血球反転膜小胞への ATP 依存的 S1P 取込み活性の測定 

 インタクトの赤血球を用いた実験において、S1P の放出が Glyburide によ

って阻害されたことから、ABC 輸送体の関与が考えられた。そこでまず、赤

血球の反転膜小胞を用いた S1P の ATP 依存的な取込みを調べた。 

赤血球の反転膜小胞に S1P と ATP を加えると時間依存的な反転膜への

S1P の取込みが観察された(Fig.3-1)。一方、ATP を加えない場合や AMP を

加えた場合には S1P の取込みは、ほとんど起こらなかった。ATP を加えた

ときの値から加えないときの値を差し引くとグラフは Fig.3-1 B のようにな

り、ATP を添加してから 10 分後までは S1P の直線的な取込みが観察された。 

Fig. 3-1 の結果では、赤血球反転膜に S1P を添加し、5 分間 37˚C で保温

した後に ATP などを加えて反応を開始している。赤血球反転膜に S1P を添

加した直後から 5 分間で、ATP の有無に関係なく反転膜の S1P 量が急激に

増加することが観察された(data not shown)。その影響で Fig.3-1 A の S1P

Figure 3-1.赤血球反転膜小胞への S1P の取り込み 

（A）赤血球反転膜に 66.6 pM [33P]S1P と 1 µM の cold S1P を添加し、37˚C で 5

分間保温した後、2mM ATP（白丸）または 2mM AMP（黒丸）を添加、もしくは何

も添加せずに（黒三角）37˚C で任意の時間保温した。反応液を遠心分離し、反

転膜の[33P]S1P 量を液体シンチレーション法により定量した。（B）（A）の ATP を

添加したときの値から何も添加しないときの値を差し引いた値のグラフを示す。

エラーバーは標準偏差を示す(n≧3)。 

ATP を添加したときと

添加しないときの値の

差 
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量が 0 min で約 80 pmol/mg と高い値を示している。しかし、この現象は一

過性のものであり、反転膜に S1P を添加してから 5 分後以降は取り込みが見

られなくなることから、反転膜表面への S1P の非特異的な吸着であると考え

た。反転膜を調製する過程で、ほとんどの S1P が取り除かれていると考えら

れることから、反転膜に S1P を加えた際、S1P が反転膜へ急激に移動して平

衡状態に達するまでの反応と考えられる。 

 

3-3: S1P 取込みに対する S1P 及び ATP 濃度の影響 

 ATP 依存的な S1P の輸送活性が測定できたことから、S1P の取り込みに

対する S1P と ATP の濃度依存性を調べた。Fig.3-2 に示した通り、それぞれ

S1P と ATP の濃度に依存して S1P の取り込み量が増加し、S1P の方はおよ

Figure 3-2.赤血球反転膜小胞への S1P 取り込みに対する 

S1P 及び ATP 濃度の影響 

（A）赤血球反転膜に 66.6 pM [33P]S1P と任意の濃度の cold S1P を添加し、37˚C

で 5 分間保温した後、2mM ATP を添加、または何も添加せずに 37˚C で 5 分間

保温した。反転膜の[33P]S1P 量を定量し、ATP を添加したときの値から何も添加

しないときの値を差し引いて、S1P の取り込み量を算出した。（B）（A）の実験を、

1 µM の cold S1P、任意の濃度の ATP により行った。エラーバーは標準偏差を

示す(n≧3)。 

 29



そ 50μM、ATP の方ではおよそ 300μM 程度で飽和状態に達し、ミカエリ

スメンテン型の酵素活性を示した。それぞれのグラフから Km 値を求めると、

S1P は 21μM、ATP は 130μM と算出された。ABCA 輸送体の１つである

ABCA1 の ATPase 活性から算出された ATP の Km 値は 112µM であり(30)、

S1P が ABC 輸送体により放出されると考えても矛盾しない値である。 

 

3-4: S1P 取込みに対するイオノフォア及び ATPase 阻害剤の影響 

赤血球反転膜に 66.6 pM [33P]S1P と 1 µM の

cold S1P、阻害剤を添加し、37˚C で 5 分間保

温した後、2mM ATP を添加、もしくは何も添

加せずに 37˚C で 20 分間保温した。反転膜の

[33P]S1P 量を定量し、ATP を添加したときの値

から何も添加しないときの値を差し引いて、

S1P の取り込み量を算出した。実験は２回以上

行い、標準偏差を算出した。 

 ATP 依存的に S1P が輸送されることを示すことができたが、その輸送が

ATPase による直接的なものである可能性と、イオン輸送性 ATPase により

形成されるイオンの濃度勾配などに依存した二次的なものである可能性が考

えられた。赤血球の細胞膜には、Na+-K+ ATPase や Ca2+ ATPase などのイ

オン輸送性 ATPase が発現しており、ATP をエネルギー源としてイオン濃度

勾配を形成することが知られ

ている(43, 44)。これらのイオ

ン濃度勾配をエネルギー源と

するグルコース輸送体など

様々な二次的輸送体が存在す

る。そこで、イオン濃度勾配

の S1P 輸送に対する影響を

調べるために、イオノフォア

で あ る Valinomycin(59) と

CCCP (60)、H+-ATPase の阻

害 剤 で あ る DCCD(61) 、

NaN3(60)、Bafilomycin A1 

(60)、Na+-K+ ATPase の阻害

剤 で あ る Ouabain(59) 、

Strophanthidin(62)存在下で

の ATP 依存的な S1P の取り

込みを調べた。しかし、いず

れを用いた場合でも S1P の
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取り込みは阻害されなかった(Table 3-1)。これらの結果から、S1P の取込み

は、イオン輸送性 ATPase によって形成されるイオン濃度勾配による二次的

な輸送ではないことが分かった。また、赤血球反転膜の調製時には EDTA に

より二価カチオンを除去しており、反応液中にも Ca2+ を加えていないこと

から、Ca2+ ATPase によって形成される Ca2+ の濃度勾配も関係がない。 

 

3-5: S1P 取込みに対する ABC 輸送体の阻害剤の影響 

第 2 章 2-4 において、インタクトの赤血球からの S1P の放出が、血小板の

場合と同様、ABCA1 の阻害剤である Glyburide により阻害されることを示

した。つまり、赤血球からの S1P の放出には ABCA タイプの輸送体が関与

している可能性が示唆された。前述の通り、ATP 依存的に脂質を輸送する輸

送体は P-type ATPase と ABC 輸送体が知られているが、細胞外への物質の

放出方向に関与するのは ABC 輸送体である。そこでまず、赤血球反転膜へ

の ATP 依存的な S1P 取り込みに対する ABC 輸送体阻害剤の影響を調べた

(Fig.3-3. A)。その結果、インタクトの赤血球の場合と同様に、MRP の阻害

剤である MK571 と MDR の阻害剤である Cyclosporine A は S1P の取り込み

を阻害せず、ABCA1 の阻害剤である Glyburide により取り込みが約 31％阻

害された。また、ATPase の阻害剤である Vanadate(63)によっても取り込み

が約 54％阻害された。 

赤血球反転膜には ABCC4(MRP4)及び ABCC5(MRP5)が存在し、ATP 依

存的に cGMP を取込むことが知られており、その酵素化学的解析が進んでい

る(40, 64, 65)。そこで、S1P 取込みを調べた反転膜を用いて cGMP の取込

み活性へのABC輸送体阻害剤の効果を調べた(Fig.3-3. B)。反転膜への cGMP

の取込みに対する Glyburide, MK571, Vanadate の効果を調べたところ、い

ずれの阻害剤を加えた場合にも、S1P の輸送に対する効果を調べる時に用い

たのと同じ阻害剤濃度もしくは低い濃度で、ほぼ完全な輸送の阻害が見られ

た。これはこれまで報告されている結果(40, 66)と一致する。 

これらの結果から、S1P の輸送は、少なくとも MRP4 や MRP5 によるも

のではなく、Vanadate に感受性の ABCA タイプの輸送体によるものである

と考えた。 
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Figure 3-3.赤血球反転膜への S1P 及び cGMP 取り込みに対する 

ABC 輸送体の阻害剤の影響 

（A）赤血球反転膜に 66.6 pM [33P]S1P、1 µM cold S1P と、阻害剤を添加、もしく

は添加せずに 37˚C で 5 分間保温した後、2mM ATP を添加、もしくは何も添加せ

ずに 37˚C で 20 分間保温した。反転膜の[33P]S1P 量を定量し、ATP を添加した

ときの値から何も添加しないときの値を差し引いて、S1P の取り込み量を算出し

た。阻害剤は、100 µM Glyburide もしくは 20 µM MK571、10 µM Cyclosporine 

A、1mM Vanadate のいずれかを添加した。（B）（A）の実験を S1P の替わりに 1 

µM [3H]cGMP を添加して行った。阻害剤は、100 µM Glyburide もしくは 10 µM 

MK571、1mM Vanadate のいずれかを添加した。エラーバーは標準偏差を示す

(n≧3)。 
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3-6: GlyburideとVanadateによるS1P取込み阻害の濃度依存性 

本章 3-5 で示したように、100 µM の Glyburide と 1mM の Vanadate によ

り、ATP 依存的な cGMP の取込みはほぼ完全に阻害されたが、ATP 依存的

な S1P の取込みは完全には阻害されなかった。そこで、Glyburide と

Vanadate による S1P 取込み阻害の濃度依存性を調べた(Fig.3-4)。Glyburide

は 1mM まで加えた場合でも S1P の取込みは 50%程度までしか阻害されなか

ったが、Vanadate を 10 mM まで加えたときにはほぼ 100%取込みが阻害さ

れた。Glyburide では 1mM 存在下での阻害を完全な阻害と仮定し、IC50 値

を求めると、Glyburide と Vanadate について、それぞれ 72μM、667μM

と算出された。 

Glyburide は、ABCC サブファミリーに属する sulfonylurea receptor 

(SUR1)に結合し、SUR1 から ATP を解離させることで ATP 感受性 K+(KATP)

Figure 3-4. 赤血球反転膜への S1P 取込みに対する 

Glyburide 及び Vanadate 濃度の影響 

赤血球反転膜に 66.6 pM [33P]S1P、1 µM cold S1P と、阻害剤を添加、もしくは添

加せずに 37˚C で 5 分間保温した後、2mM ATP を添加、または何も添加せずに

37˚C で 20 分間保温した。反転膜の[33P]S1P 量を定量し、ATP を添加したときの

値から何も添加しないときの値を差し引いて、S1P の取り込み量を算出した。阻

害剤は、任意の濃度の Glyburide（A）もしくは Vanadate（B）を添加した。エラーバ

ーは標準偏差を示す(n≧2)。 
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チャネルを閉鎖することが知られている(67, 68)。膵β細胞の KATP チャネル

が閉鎖されることによりインスリンの分泌が促進されることから、血糖降下

剤として使われている。Glyburide による S1P 取込みの阻害効果が限定的で

あるという結果から、ATP 依存的な S1P 輸送体は、Glyburide により非競合

的な阻害を受けている可能性がある。今までに、Glyburide による ABC 輸

送体の阻害作用が競合的なのか非競合的なのかについての報告は存在しない

が、TXA2 受容体が Glyburide により競合的に阻害され (69)、carnitine 

palmitoyltransferase が非競合的に阻害される(70)という報告がある。 

一方、S1P が複数の輸送体により放出される可能性が考えられるが、

Vanadate と Glyburide を同時に加えた場合、S1P の取込みは相加的に阻害

されないという結果を得ていることから（data not shown）、おそらく

Glyburide に感受性の輸送体と、非感受性の輸送体が 2 種類存在する可能性

は少なく、単独の輸送体であると考えている。 
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3-7: 考察 

本研究で、赤血球においても S1P を合成し、細胞外へと放出する機構が存

在することを明らかにし、それが ABCA 輸送体によるものである可能性を示

すことができた。この ATP 依存的な S1P の輸送が実際に赤血球からの S1P

の放出にどの程度寄与しているかを知るためには、赤血球からの S1P の放出

量に対する、ATP 依存的な S1P の放出量の寄与を明らかにすることが非常

に重要である。残念ながら、第 2 章におけるインタクトの赤血球を用いた実

験では、S1P の絶対量を定量していないことから、ATP 依存的な S1P の放

出がどの程度寄与しているかを算出することができない。そこで、最近報告

されたヒト赤血球から放出される S1P の絶対値から、ATP 依存的な S1P の

輸送の寄与を計算してみた。文献(18)より、108 個の細胞を用いた実験系で細

胞内の S1P 量が約 38 pmol のとき細胞外の S1P 量は 10 min で約 16 pmol

増加する。ヒトの赤血球の平均的な容積が 90 fl(71)だとすると、赤血球内の

S1P 濃度は 4.2 µM と算出される。また、ラットの赤血球 1 個から調製でき

る反転膜は 8.56×10-11 mg であることから、これをヒトの赤血球に当てはめ

ると、S1P の放出量は 0.19 nmol/min/mg と算出される。10 µM までの S1P

濃度では、S1P の輸送速度と濃度が比例関係にあることから、赤血球からの

S1P の放出速度は、10 µM S1P のときには、0.45 nmol/min/mg と算出され

る。赤血球反転膜における 10 µM S1P での S1P 取込み速度は 0.18 

nmol/min/mg であるが、これに調製した反転膜の inside-out の割合(0.50)の

逆数を乗じると 0.36 nmol/min/mg となり、赤血球からの S1P 放出速度に近

い値になる。このことから、ATP 依存的な S1P の輸送がインタクトの赤血

球での S1P 放出を担っていると考えられる。 

本研究により、赤血球において S1P が ABC 輸送体により放出されている

可能性が示されたが、ABC 輸送体の中には、生理活性脂質を輸送するものが

すでに報告されている(72)。1997 年には、ABCC1(MRP1)ノックアウトマウ

スの骨髄由来肥満細胞からの LTC4 の放出が顕著に減少することや抗ガン剤

に対する感受性が著しく増加することが明らかとなった(73)。このことから、

ABCC1 は、個体においても LTC4 分泌という役割を担っているものと考え

られている。また、PAF は初代培養細胞において ABCB1/MDR1 によって輸
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送されうること、培養細胞において PGE1, PGE2 は ABCC4/MRP4 によっ

て輸送されうることがそれぞれ明らかとなっている(74, 75)。 

本章 3-5 の結果より、赤血球反転膜への ATP 依存的な S1P の取込みは、

MRP の阻害剤である MK571 と MDR の阻害剤である Cyclosporine A によ

り阻害されず、ABCA1 の阻害剤である Glyburide と ATPase の阻害剤であ

る Vanadate(63)により阻害されることが分かった。ここで、ABC 輸送体の

阻害剤と阻害される ABC 輸送体の関係について細かく見てみることにする

（Table 3-2）。Glyburide は ABCA1 を阻害することが良く知られているが、

ABCA1 特異的な阻害剤ではない。これまでに、 MRP1 や MRP5、

CFTR(ABCC7)を阻害することが知られており(76-78)、MDR を阻害すると

いう報告もある(79)。また、Vanadate はリン酸アナログであり、ADP を ABC

輸送体にトラップすることで活性を阻害することが知られている(80, 81)。

Vanadate は、ABC 輸送体に限らず P-type ATPase や phosphatase など様々

な酵素を阻害することが知られている(63, 82, 83)。 

Glyburide と Vanadate が、いずれも MRP と MDR を阻害することから、

これらが S1P 輸送体であることが考えられるが、MRP 全般を阻害すること

が知られている MK571(77, 84-88)や MDR 全般の阻害剤としてよく知られ

ている Cyclosporine A や Verapamil (89)(data not shown)によって S1P の

取込みが阻害されないことから、それらが S1P 輸送体である可能性は低いと

考えられる。一方、ABCA 輸送体に関しては ABCA1 を発現させた細胞から

のコレステロールの放出や、精製した ABCA1 の ATPase 活性に対する阻害

剤の効果が調べられている(30, 53)。それらの結果から、ABCA1 は Glyburide

により阻害されるが、Vanadate によっては阻害されないことが明らかにな

っている。赤血球反転膜への S1P の輸送は Vanadate により阻害されるとい

う結果から、S1P 輸送体は ABCA1 ではないと考えている。ABCA1 の最も

良く知られている基質であるコレステロールの放出には apoA1 が必須であ

るが(52)、血小板からの S1P の放出は apoAI 依存的には起こらないことを確

認している(14)。一方、ABCA タイプの輸送体すべてが、Vanadate によって

阻害されないわけではない。ABCA3 では、Vanadate によるヌクレオチドの

トラップが報告されており(90)、ABCA4 では、Vanadate による ATPase 活
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性の阻害が報告されている(91)。ABCA タイプの輸送体は、その機能さえ明

らかになっていないものが多く、機能の分かっているものでも生化学的な解

析が行われていないものがほとんどであることから、ABCA タイプの輸送体

の中で Vanadate に感受性のものが、S1P を輸送している可能性がある。 

赤血球に発現している ABC 輸送体に着目してみると、これまでに発現し

ていることが明らかになっているものに、ABCC1（MRP1）、ABCC4（MRP4）、

ABCC5（MRP5）がある(92)。しかし、ABCA 輸送体に関しては発現してい

るかどうかがまだよく分かっていない。ABCA 輸送体は、今までに ABCA1

～9、12～16 の 15 種類が報告されている（Table 3-3）。我々が半定量的

RT-PCR により調べた結果では、血小板には ABCA7 が発現しており(93)、

赤血球には ABCA1 と ABCA7 の発現が確認されている(data not shown)。

赤血球に発現している ABCA 輸送体を明らかにし、S1P を輸送するかどうか

を検討することは十分な価値があると考えられる。 

 

Table 3-2. ABC 輸送体に対する阻害剤の効果 

  S1P 輸送体 ABCA MRP MDR 

Glyburide 阻害 
ABCA1 を 

阻害 
阻害 阻害 

MK571 阻害しない unknown 阻害 阻害しない 

Cyclosporine A 阻害しない unknown 
阻害するも

のあり 
阻害 

Vanadate 阻害 
ABCA1 を 

阻害しない
阻害 阻害 
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Table 3-3. ABCA 輸送体の発現部位と機能 

  mRNA expression related disease and function 

ABCA1 macrophage, liver Tangier disease, produce HDL 

ABCA2 brain unknown 

ABCA3 lung surfactant deficiency 

ABCA4 eye transport N-retinylidene-PE 

ABCA5 testis, brain unknown 

ABCA6 liver unknown 

ABCA7 platelet, brain unknown 

ABCA8a lung, heart unknown 

ABCA8b muscle, lung unknown 

ABCA9 heart, kidney unknown 

ABCA12 testis, placenta lamellar ichthyosis type2 

ABCA13 testis unknown 

ABCA14 testis unknown 

ABCA15 testis unknown 

ABCA16 testis unknown 
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 S1P は血液中に豊富に存在する脂溶性の細胞間情報伝達物質であり、特異

的な受容体である S1P 受容体に結合することにより、細胞の遊走や増殖、分

化などに重要な働きをしている(7, 20)。血漿中には一定濃度の S1P が存在し

ており、リンパ球産生細胞からのリンパ球の放出に重要であることが分かっ

ていたが(19-21)、血漿中の S1P がどこから供給されているのかということ

は長らく解明されていなかった。血小板には S1P が高濃度に蓄積されている

ことから、血小板内の S1P が血漿中に存在する S1P の供給源であると考え

られていた(24)。 

しかし、本研究において、S1P が赤血球で合成され、トロンビンなどの刺

激に依存せずに放出されることが明らかになった。赤血球は血液のおよそ半

分の容積を占める細胞成分で、血小板などの他の血球の細胞数と比較しても

圧倒的に多いことから、赤血球から放出される物質は血液に大きな影響を与

えることが予想される。S1P が赤血球から刺激に依存せず放出されるという

結果から、血漿中の S1P は赤血球から供給されることが予想されたが、実際

に血漿中の S1P の主要な供給源が赤血球であることが最近報告された(15)。 

血小板と赤血球は共に S1P を放出する機能を持っているが、その放出様式

の違いから、別々の役割を果たしていると考えられる。つまり、血小板は血

管内皮細胞の損傷部位においてのみ刺激依存的に活性化され、S1P を局所的

に放出する。放出された S1P は血管内皮細胞にのみ作用し、損傷部位の修復

を促す。一方赤血球は、刺激が無くとも S1P を恒常的に放出しており、これ

により血漿中の S1P 濃度を一定に保っている。血漿中の S1P は、血液とリ

ンパ球産生組織との間に S1P の濃度勾配を形成するのに重要であり、これが

リンパ球の放出を促す。S1Pは、非常に幅広い生理活性を持つ物質であるが、

放出される部位を選ぶことによって異なる役割を果たしているのかもしれな

い。 

S1P の放出部位が異なることが重要であるということは、S1P の放出が何

らかの機構により制御されていることの必要性を暗示している。私たちは、

今までに、血小板からの S1P の放出が ATP 及び Ca 依存的な輸送体により

行われることを明らかにしている(14)。S1P は脂溶性の高い物質であること

から、細胞膜を単純拡散により通過して放出されると考えられていた為、こ
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の発見は大きなインパクトを与えた。 

しかし、インタクトの血小板や赤血球からの S1P 放出を見る実験では、細

胞質の蛋白質の影響を無視できないという問題点が存在した。S1P が輸送体

により放出されることをきちんと証明するためには、膜小胞を用いた輸送活

性の測定が必須であった。私は、赤血球の反転膜を用いて、脂溶性の高い物

質である S1P の輸送活性を測定することに成功し、輸送体の酵素化学的性質

を明らかにした。この測定系を用いて S1P が実際 ATP 依存的に輸送される

ことが証明され、ABC 輸送体の阻害剤を用いた解析から、ABCA タイプの輸

送体が S1P を輸送している可能性が示された。 

S1P は幅広い生理活性を持つ物質であることから、S1P の特異的な受容体

に対する薬剤(20)が免疫抑制剤として臨床試験に入っている。今後、S1P 輸

送体が同定され、膜小胞を用いた S1P 輸送活性が測定できるようになれば、

その活性を阻害する物質の探索により、S1P の放出段階を阻害するような薬

剤の開発が可能になるかもしれない。S1P の輸送活性測定系は、そのような

応用的な場面でも活用される可能性を秘めている。 
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