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Abstract

     Neu general relativity is a theory o" gravitation based

on the Ueitzenb6ck spacetime endowed with absolu'te

parallelisrn which contains torcn.ion and identically vanishing

curvature. The gravitatiofial equations uhich are derived

from gravitational action quadratic in the torsion with

arbitrary weights cl, c2 and c3 can naturally incorporate

the Dirac "ield as a source term.
                                      '     In this paper, we shou some exact solution$ of'the

gravitational field equations ifi neu general relativity.

Statiofiary and axially symmetric solutions in the case with

Cl = c2 = O , homogeneous afid isotropic solutions, and
Kasner type solutions are presented. ouF stationary and

axially symmetric solutions have a non-vanishing

axial'vec+vor part of the torsioi-} uhich is coupied with the

intrinsic spin of matter. In the homogeneous and isotropic

solutions, we show that the absolute parallelism is

inconsistent with the closed, homogeneous and isotropic

universe. The Kasner type solutions in n+1 dimensional

Ueitzenb6ck spacetime are examined in detail and several

differences from those of general relativity are discu$sed.
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S 1 !ntroduction

     In the history o" physics, it ha$ been confirmed that

Åíunclamefital forces oF nature are expressed in the frameuork
               1)                   In 1956, Utiyama pointed out thato" gauge theory.
general relativity2)N4) is a gauge theory of a group of

local Lorentz transFormatiofis.5) This idea was extended by

Kibble.6) He introduced a group of translations ol world

coordinate in addition to the greup of local Lorentz
   ..
trans"ormations.

     In 1967, Hayashi and Nakano proposed a translation

gauge theory of gravitation with a group oF "globalS rather
than "local' Lorentz trans"ormations.7) Fundamental entity

of thbir trafislation gauge theory is fiot the metric tensor

but vierbein fields. the results oe general relativity

uhich have been confirmed by observations can be also

reproduced by the translation gauge theory. Furthermore,

the framework o" this theory includes in a consistent mafiner

a notion of intrinsic spin angular-momentum ee source

matter. Miyamoto and Nakano estimated the energy of the

spin-spin gravitational interaction oe the Dirac spinor
fields.8)

     On the other hand, geometrical extension ol the

gravitational physics has been discusened ever since the

discovery o'F general relativity. In 1928, Einstein

introduced a notion of absolute parallelism to uniFy the
gravitation and the electro-magnetisfi}.9) The spacetime

underlying this theory is called the Ueitzenb6ck spacetime,

which is characterized by torsion. His idea, however,
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Åíailed because the theory could not give correct

gravitational field equations coupled uith the electro-
magnetic {ield.Ie) In 1967, MOI1er revived the notion oi

ab$olute parallelism to construct a neu theory ol
gravity.11) peHegrini and plebanski found a Lagrangian

                                        12)eormulation for the absolute paral1elism.
     In 1977, these two stream'n' uere unified by Hayashi.i3)

He "ound that geometry underlying the translation gauge

theory i$ the Weitzenbb'ck spacetime. He caHed this theory

'neu general relativity". Finally, the basis o" new general
                                                ia)relativity was completed by Hayashi and Shira"uji.
                                  '
     The basic entity oF new general relativity uhich is

called parallel vector Pie' lds is vierbein fields endoued

with ab.solute parallelism. Strength of gravitation is
caus. ed op.ly t.7y t!,e torsio,'L, Fielu"s.*> The gravitational

Lagrangian o" new general relativity is constructed "rom

three terms of invariants quadratic in the tor-oion and a

cosrnological term which i3 usually neglected.' It is the

most attractive point oi new general relativity in contrast

to general relativity that the Dirac spinor field can be

regarded as a source oF gravitation without dilficulty•

This seems very important for a microscopic theory of

gravitation and ior unification with the theories of

matters. In ifivestigations oF nature oF the gravitational

") A theory ol gravitation ba$ed on the Riemann-Cartan
                          9   $pacetime which is char-acterized by the torsion afid
   curvature is caned poincar6 gauge theory,15)
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sy$tem governed by new general relativity, exact solutions

oe the gravitational "ield equation$ wil} great}y contribute

to these problems. Uneertufiately, exact solutions oG fiew

general relativity have not yet been studied with suF"icient

generality because of cemplexity of the gravitational "ield

equations. A statiÅë and isotropic solution uas Pound by
Hayashi and ShiraPuji.la) They also showed BirkhofÅí's

theorem of new general relativity. Other types o"

solutions, for example, axially symmetric so}utÅ}ons and

cosmological solutions, etc., had not been discussed unt"

1981.

     In this paper, a series oe theoretical ef"orts of the
present author ior Finding exact solutions in Several cases

are summarized and examined in details. Here stationary and
axia"y syrnmetric solutions,16> homogeneous afid i$otropic

solutions,17) and homogeneous and anisotropic solutions18)

             *)are discussed.

     It shovld be emphasized that our stationary and axially

syrnmetric gravitational field couples with intrinsic spin of

the system, This is the most characteristic point oi new

general relativity. On the other hand, we are interested in

cosmological models oS neu general relativity. It is very

important to examine uhether homogeneity and isotropy are

compatible uith the absolute paraHelism. Ue shall ansuer

this question and show that new gefieral relativity leads to

*) Prototypes of these solutions in gefieral relativity have
                 '                              19)  beefi studied by many people.
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'Friedmann type' metric in this case. In the early

universe, we cannot potn'tulate apriori the isotropy of t5e

universe. The simplest models ol the homogeneous and

anisotropic universe which we shall call 'Kasner type'

universe are obtained.

     In order to prepare for the presefit uork,. ue brieÅíly

review new general relativity in S 2 . In S 3 , the

stationary and axially symmetric solutions are discussed.

We examine the homogeneous and isotropic universe in S 4 ,

and the Kasner type universe in S 5 . The last section is

devoted to summary and discussion.
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S 2 New general relativity

'

2--1) Gravitational "ield equations

     In neu general relativity, fundamental entity is
parallel vector fie.lds, bk = <bk it> , with those inverse,
bk = <bkLt> .*) The metric tensor gLev is defined as

  guv=nk. bkitbMv , (2.ia)
                                              '
                      'uith its inverse,

  gpaV=nk" bkSh).V . (2.lb)
             kmHere n         and n                are the metric o" the Minkowski spacetime:      km
         km           = diag( -1 ,1 ,1,1) . (2.2)  nkm = n

        ILvUe use g           and g                  for raising and lowering the Greek               ftv
             kmindices, and n                        lor raising and lowering the Latin                and n                     km                                                    '
indices, respectively.

     Spacetime o" new general relativity i'o' the Weitzenb6ck

spacetime endowed uith absolute parallelism for the internal

Lorentz "rafne as

   v

*) In this paper, we use Greek letters lor world indices and

  Latin letters for internal Lorentz indices labeling the

  parallel vector "ields. The middle part of the Greek

   alphabet, k, IL, v, ''' , re"ers to O, 1, 2 and 3, while

   the initial part, a, B, T, ''' , denotes 1, 2 and 3. In

  a similar way, the middle part o" the Latin alphabet, i,

   j, k, ''' , means O, 1, 2 and 3, wNle the initial part,

   a, b, c, ''' , denotes 1, 2 and 3.
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or equiva1ent1y,

  D.bkf, E a.bki, - rZi,.bkz =o . (2.3b)
From this equation, the aFPine connection rk can be solved
                                           ptv
as

  rZL,v=bkia.bkpt . (2.4)
Curvature tensor field and torsion tensor "ield are given by

  RPoltv(r) E eLLrPav - avrPalL + rPklLrXav - rPzvrZoLt = o ,

                                                    (2.5)

    "v           uv                  v Jee

Here we use (2.4) in (2.5), uhich leads to the identically

vafiishing curvature.

     From a gauge theoretical point oe vieu, trafislation
gauge sields ck pt are delined by ck " i bk "-6k u , and the

torsion iield is regarcled as a field strength.

     The 1ine element ds in this cJ.pacetime is represented as

  ds2=gLevdxptdxV . (217)
Orbits oF a freely "al1ing point particle are given by the

geodesic equatiofis:

or equivalent1y,

  glZ+<z.> ,d.Å~" g\" -o , . (2.sb>

with <illv> denoting the Christoifel symbol and dldT

representing di"ierentiation uith respect to a proper' time T

along the trajectory of the particle.

     In order to construct gravitational Lagrangian LG , we

require that LG is quadratic in the torsion field besides a
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cosmological term, and that it is invariant under general

coordinate transformations, under "global,' proper and

orthochronous Lorentz transFormations, and under parity

operat1on.

     For the general "orm quadratic in the torsion, it i$

useFul to decompose the torsion field to it$ irreducible

parts,

  tz iLv i ;l' ( Tz ftv +T,etxv ) + 6'i-- ( gzv 'v' ,"+g,ctv vz "2gz ,c,evv ) , ( 2 , 9a )

        Z  "pt !lT.l.Lt, (2.9b)
  a,cLE6;L e,ttvpaTVPa, (2.gc)
uith eltvpe being the totally antisymmetric tensor normalized

as eo123 = -V-g •

     The gravitational Lagrangian LG is givefi by

  LG = al(tZILVtzLtv) + a2(v;Lv") + a3(aXLaLe) - A .. (2.Ie)

Here al, a2 and a3 are parameters which should be determined

by observations and A is a cosmelogical constant. To

c}arify di""erence "rom general relativity, we reurite the

expression (2.10) as the "ollowing way,

  LG = t" [ R(o) + 2cl(tZPeVtlLLv) + 2c2(vitviL) + 2c3(aLtaiL>

                                          '
           - 2NA ]+ (total derivative) , (2.11)
where

  Cl = Mal + {; , c2 = ua2 -s, c3 = rca3 + zv . (2.12)
                                                        '
The symbol re represents the Einstein constant; rc = 8nG ,' and

R(O) denotes the Riemann-Christoflel scalar curvature
constructed From the Christoffel symbols <Z LLv> . Finally,

the gravitational action IG is given by
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  IG = ft Iditxvr5[ R(o) + 2c1(tZ'LtVtz,L,tv) + 2c2(v;"iv,a)

                   + 2c3(aLealL) - 2NA ] ,                                                    (2.13)

      Next, we turn our attentiofi to matter lields. In the

Weitzenb6ck spacetime accompanied with the absolute

parallelism, covariant derivative for the Dirac spinor field

di is represented as

  Dzqts=azqb , - (2.14)
because oi the requirement (2.3). Lagrangian LD For the
                               *)Dirac spinor field th S$ given by

  LD = S bkL` <O-7kDi,gP-(Df,di)7k<b> - mth-ut , (2.lsa)

or equiva1ent1y,

  LD = g bki` <di7ks7L,di-(vi,i5>7kth> - i} ake-75' Tkth --"'rndi'{p , -(2.isb)

wherv'" V is the foemal covariant differentiation of the       pt

spinor "ield,' .
  VLte =- (apt+ii AijftsiJ> <p , (2.16)
uith respect to the Ricci rotation coeeiicients Aij;t ,

  Aijk = bkZ`Aij,et ! - 2-1 (Tijk-Tjik-Tkij) '                                                   (2.17)

and the generators of the Lorentz group siJ ,

  siJ E 4-i [7i,7J] . -                                                   (2.18)

                                        '     The Dirac equations are written as ,.
  < ibk'Li7k(D," + ll v/t) ' m > di = o ,                                                   (2.19a)

") Our convention oi the gamma matrices is as foHous:
     <7i,7•j> = - 2-,?ij , 75 = iT071T2T3 .
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or equivalent1y,

  < ibk'"TkVI, ' i-i ak75Tk -m> <S; =O . (2.lgb)

From this equation, new genera} relativity predicts spin
pre$sesion of the spinor "ield:14)

  D ,LL  d-t s = (AZ"V-AZV")uzsy , (2.2ea)
or equivalent1y,

  v"           3 "vpu  d--t-'S =-7e uvapsa , (2.2eb)
with sLt representing the spin vector and u                                          defioting
                                        v
four-velocity o" semi-classical wave packet. Here D!dT ii
u llD     and V/dT i ultv                    raean covariant diÅí"erentiation along   Jce Jetthe classical trajectory xLt(T) which is given by the

geode$ic equatiofis (2,8b). •                           '
     Next, we study the Yang-Mills Pield A = <Aa '> whose
                                        xt u
field strength Fptv = <Fa fLv> should be delined as")

  Fitv E aitAv - avALe - a[Apt,Av] , (2.2i)
where a is a coupling constant. The Lagrangian L                                                  eer the                                               YM
Yang-Mills lield is quadratic in the tield streRgth FLev ,

  LyM = - 4-1-- FJLeVF,ttv .
                                                   <2.22>

Equatiofis ol motion are given by

  vvFjzeV - ct[Av,FJeev] . j,Lt ,                                                   (2.23)

where jiL represents a source current. This is just the

*) If we define the field strength,

    F,LLv E D/,eAv - DvALt - a[AJLL'Av] '

   it is not gauge invariant. Noticing that 01tAv-avALL is

   also a tensor, ue therefore adopt the deeinition (2.21).



                            -!2-

Yang-Mi1ls equations in general relativity.

     A total action is a sum o" the gravitational action

IG and matter action IM uhich is an integratiofi oF matter

              . Variating the total action I uith respectLagrangian L            M
  '                              kto the parallel vector iields b iL , we obtain the

gravitational fie1d equations:

  I"V i GitV(o) + 2DzFltVk + 2.xFLLV2 + 2HltV - gLtvL. . ntLLv ,

                                                   (2.2a)

                                          c  FltVl E cl(tPeVk-tLeZV) + c2(gLtV.X-gLeZ.V) - 3-3 eXtVkPap

       .d Flt•]LV , (2.25a)
  DzFLeVZ E azFitVi + rLepzFPVZ + rVpzFitPk + rZpf/tVP , (2.2sb)

  HPtV E TPaiLF paV - i> TVPUFfLpa =,HViL , (2.2sc)

  L' E cl(tkitVtkiLv) + c2(viLvLt) + c3(a;taft) - rcA , (2.25d)

  TZ`V :- (ilv'--g)"kJ'bj'"" 6(V-TLM)!6bk. , (2.25e)

Here the tensor GLLV(O) is the Einstein tensor oe general

relativity uhich is made o" the Christo"fel symbols. The
        "v           denotes an energy-momentum tensor oi the mattertensor T

fields, which is respectively defined "or the Dirac spinor

field and for the Yang'Mills "ield as

  TDX"eV = - ti bkV<di7kD)tect,--(DPeiii)7kth> + gjL`VLD ,- (2.26)

  TyJtMV=FLLPFVagpa+gLeVLyM . (2.27)
It should be noted that the gravitational equations (2,24)

are in general asyfnmetric Åíor the indices Lt and v , which

allows the spinor' "ield as a source of gravitation.
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2'2) Ueak fieid approximatiofi

     ln order to consider physical meaning$ o" solutions of

the gravitational field equations (2.24) in case they being

Found, we can derive useful in"ormation 'From the weak Åíield

approximation which ue here discuss. In the weak Pield
                                         kapproximation, the parallel vector fields b                                            caR be written                                          u
as

  bk"= 6k#+ ak" , ( lak,e,l << 1) . (2.28)
                       kIn the louest order of a                          , the Greek indices cannot be                        pt
distinguished from the Latin indices: Ue adept the Greek

indices,

   ptv         ptv              #p                  v
                                 LtvHere we use the Minkouski metric n                                   and n                                           "or raising'afid                                        "v
lowering the indices. We c"'haV decompose the Åíield a into                                                   ,EtV
its symmetric and antisymmetric parts,
                                        '  aitv =i hLtv + Aptv '                                                   (2.3e)

with hltv = hvL{ and Aiev =- Avtt . The metric tensor gL{v

is given by

  g#v=n"v+hLtv . (2.31)
     By substituting (2.3e) into (2.24) uithout the

cosmological constant A and keeping only the lowest terms,

gravitational Åíield equations eor hLtv and A,ctv are given as
        *)foH ows:

") In this paper, we express symmetric and antisymmetric
   parts o'f a tensor TitV as T<XLV) Iii 2}• (T'ÅítV+TL'`ÅíL) and

    [#v]   T ! i (T;tV-TVLe) , respectively.
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  -; ll:i(1-3c1)Bh'--UV + i(1-2c1+c2)(a"aph-PV+aVaph-Ppt)

     - 2-i ( i-ci+2c2 )nUV eP aa Fpa - 2-1 < ci+c2 ) ( nptVuF -- apaaVK)

     + (cl+c2)(aitapAPV+aVopAPiL> . rcT(Leii) , (2.

  2-i-(c"c2)(oPtapKPV-aVapFPit) + (ci-8-c3)mAitV

     +(c2+g.3)(eXLapAPv-ovopAplt) . rcT[Lev] , (2.

where K#v = hgv - 2-ln"vh and K= FP p =- hP p =.-h.
!t will be Found that these equations are very important

understand physical meanings of integration cons'tan'ts in

obtained exact solutions.

32a)

32b)

to
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2-3) A $tatic and isotropic solution

     A static and isotropic solution in vacuuta in new

general relativity without a cosmological constant A has
                                     14)been obtained by Hayashi and ShiraÅíuji.                                          This

gravitational field is induced by a static, isotropic and

spinless source localized at the origin.

     From the discussion in Appendix A, if we require

isotropy oF space, it is possible to lind q set of
coordinates, xO = t and Å~cr , of which the parallel vector

Fields bk ft are Form invariant under space rotation,'

  Å~'a -- RctB.B , [b'a = RacbC , (2.33)

where R " <RaB> = <Rab> is a constant 3 x 3 orthogonal

rnatr1Å~t

  RRt=Rt R=I , det R=1 . (2.34)
The most gefieral "orm of the isotropic parallel vecter
fie}dE.K bk can be given by
        pa

        ic ,:pta
            H.-X D6.a+EÅ~2Å~+FeactBrX
                              rs
with r ii (xCtxa)112 and eactB being a totally antisymmetric

tensor of the 3 dimensional Eucliclean space normalized a$

e123 =1• The Functiofis, C, D, E, F, G and H, depend om t

and r. By a suitable rede"inition of t and r, the parallel

vector fields (2.35) are reduced without loss o" genera]ity

to the "orm,
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        "c o   kk                                                    (2.36)
            H iE-- D6aa + FeactB iE- .

     By assuming the parallel vector fields static, the

functions, C, D, F and H, depend only on r. I" we irnpo$e

time reversal invariance ior the parallel vector "ields, the

eunction H should be vanishing. IF we "urther require

Gorm invariance oG the parallel vector eields eor space

inversion, F should be alse vanishing. This means tha't

macroscopic spin polarization $ oÅí the ;eoource oS gravitatioR

is negligibly small. It is reminded that the spin S is

changed to -S by the space inversion. Finally, by rewriting

C and D as VA and VB ,                     ,, the parallel vec,tor fields are
                                  -                                              {     ;t                                         t tttreduced to the .formi "' . /
                                           '                  '                                    '         •" VA'- '- O
    ,t,e

             e vE6                             aa .
      By substituting (2.37) into <2.24) in vacuum uith

A = O , the gravitational field equations are given by

  e(A'IA)' + (1-2e)(B'IB)' + 2 <e(A'/A)+(1-2e)(B'IB)>
                            r
   + 4-e-(A'IA)2 + 2-e-<A'IA)(B'/B) + 4-lq-4e)<B'/B)2 = o , (2.3sa)

                                          '
  (1-2e)(A'IA)' + (B'IB)" + 2L <(1-2e)(A'/A)+(B'!B)>
                           r
   + 2-1(1-3s)(A'!A)2 + e(A'!A)(B'!B) =6 , (2.38b)
                                                       '
  (1-2e)(A'/A)" +(B'!B)' - ;L- <(1'2E)(A'IA)+(B'!B))
                          r.
   + il(1-4e)(A"!A)2 -- (1-3e)(A'/A)(B7B) - i5(B'IB)2 = o ,

                                                   (2.38c)
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where

  e = (cl+c2)/(1+cl+4c2) .

     By dernanding the boundary condition,

  lim A<r) = 'l im B(r) = 1 ,
  r->cp r-n)
the solution eP Eqs. (2.38) are obtained by

  A(r) = (1'ctlpr)P(1+orlqr)-q ,

  B(r) = (1-a/pr)2-Pa+a!qr)2+q ,'

where
  P i 1.2-se <V(1--e)(1-4e) - 2e> ,

       2  q E 1-se <V(1-e)(1-4e) + 2e> .

    '
Here a is an ifitegration constant with the dimension

length and e is assumed as e < 114 .

(2.39)

<2.40)

(2.41)

(2.42)

of
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2'4) Comparison uith observations

     Ue consider meaning o" the constant a and restrict the

parameters cl and c2 by the Newtonian 1imit and solar-system

experiments. The constant ct is restricted to the mass ol
t h e i s o t r o p i c a n d R o n - r el a t i v i s t i c eJ. o u r c e a t t h e o r i g i n w i t h

         aB oo    >> IT iNO . By the use o" the expression (2.37) inT

Eqs. (2.32), the equation3 in the ueak field approximation

are given by
                  tt
  ' (1+Cl+4c2)[ eA" + (1--2e)B"

                + :2=<eA'+(1-2e)B'> ]= xTOO , (2.a3a)
                  r

  (1-2e)A'+B' =O , <2.43b)
in which only TOO is taken into account as localized static

source.

     The sel'v'tior, is givert by

                     2 GM  A(') =i' (i-e)(i-4e)(i+ci+4c2) dF ' (2'44a)

                  2(1--2e) GM  B(") =1+ (1-e><1-4e)(1+cl+4c2) -F ' (2'44b)
                                 '
where G is the Neuton coRstant and M represents the mass oP

the source centered at the origin,

  Mi 4zJTOOr2 dr . (2.4s)
     On the other hand, Newton's law o" motion demands

                     GM  goo =-A=-1'2 -F , (2.46)
because ol the geodesic equation (2.8b). By comparing

(2.44a) with (2.46), it should be require that

  (1-e)(1'4E)(1+cl+4c2) =1 , (2.tll.7a)
or equiva1ent1y,
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  aCl+C2+9clc2 =e . (2.47b)
In terms oF the parameter e deeined by (2.39), cl and c2

satisfying (2.47) can be uritten as

           e 4e  Cl =- 3(1-e) ' C2 = 3(1-4e) ' (2.a8)
From this re$triction, the parameter ct i$ related to the

                                                     'mass o" the central source as

The "inal Form oi the static and isot.repic metric o'F new

general relativity is expressed by

  ds2 = - q-GM/pr)Pa+Gwqr)'qdt2

         + q-GMipr)2-"P(i+GM/qr)2+qdxctdxa . (2.so)

It should be noted that in the case with e = O , (2.50)
reduce to the Schuarzschild rnetric,20)

  d.2 = - (liGGi:f;f)2dt2 + (1+GM/2.>ad.ctd.ct , (2.sl)

because of the definition (2`42).

     By the use of this metric (2.50), several compari$ons

with observations such as, for example, solar deilection and

periherion advance, etc, , have beefi discussed. All the
known data21) have been consistently explained by a choice

o" the parameters ,

  cl = e•OOI Å} O.OOi , c2 =- O.O05 Å} O.O05 , (2.s2a)
namely,

  e=- e.oe4Å}o.oo4. (2.s2b)
It is very small. This is the reason why a special case

cl = c2 = e (or e = O) is discu$sed.
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2-5) The case with cl =' C2 =O

     It is impor-tant to discuss a special case uith cl = c2

= O because the eramework is somewhat di"Ferent lrom the

case with cl iO S c2 . The notion oF the absolute

parallelism is extended in this case. In the ueak Field

approximation, definite particle picture can easi1y

obtained•

ln the case with cl = c2'  = O , the gravitational action

(2.23) is reduced to
                                                   '  iG = tt JTd4Å~ vt ;g: [ R(O) + 2c3(a/talt) -- 2rcA ] . (2.53)

It should be noted that this action is invariant under a

restricted local Lorentz transFormation which preserves the

Form o" the axial-vector Field ape . By dividing the

gravitational field equations into tn'ymmetric and anti-

symrnetric parts For the indices IL and y , they become in

this ca$e,

              '  plLV :. GLtV(o) + KLeV + MAgLtV . rcT(LeV) ,                                                   (2,54)

  QL`V E bi/`bj"'ap(vt=g JijP) . zv :g:' T[J"V] ,                                                   (2,55)

uhere

  KitV ii l: E li <etLPaZ(TVpa-TpaV)+eVPaZ(TJtpff-Tpaft)> az

            3 "v 3 nvp          - 2- aa - 4-' g a ap ] ,                                                   (2.57)

  J#VP = biitbjVJijP i - i e"VPUau .                                                   (2.58)
                         '
According to the restricted local Lorentz invariance o" the

gravitational action (2.53), there might be a local Lorentz
                                                    'translormatien, b'k fL(Å~) = Ak m(Å~)bMIL(Å~) , which 1eaves net
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           'only the axial-vector field a# but also the gravitational
Held equations (2.5.4) and (2.ss) unchanged.14)'22) This

transFormation also does fiot change the equations oF motion

"or the gauge eields and the Dirac field.

     For example, i" ait = O , a local Lorentz trafi$forrnation

uhich preserves the relation a' " = O does not change the

gravitaional eield equations because they coificide uith the

Einstein equations. This local Lorentz transFormation cannot

be observed by experiments. ThereÅíore, we can regard these
two parallel vector "ields b'k ,LL(Å~) and bk jLt(Å~) as equivalent

objects.

     In the case with cl = c2 = O , HayaR.hi and Shirafuji
shoued BirkhoÅí'F's theorem in neu general relativity.14)

They started uith the rnost general i$otropic parallel vector

eields (2.36). By eo'ubstituting (2,36) into the

gravitational Held equations (2.54) and (2.55) in vacuum,
 LtV    = O , uithout the cosrnological constant A , theT

equations "or the Punctions, C, D, F and H, are obtained.

They found that the axial'vector lield a                                        should be                                      pa
identically vanishing iF the boundary condition,

  lim bk,,,=6kl, , (2'59)
  r->a,

is imposed. Then the gravitational Pield equatiofis are

reduced to the Einstein equations uhich satisfy Birkhoff's
        23)theorem. In the case with cl = c2 = O , the isotropic

gravitational "ield in empty space with the boundary

condition (2.59) is the 'static" Schuarzschild solution.

     Next, we examine ueak field approximation. In the case

with cl = c2 = e , the gravitational "ield equation$ in the
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weak eield approximation (2.32) are reduced to

 uKptv - (e"aPFpv+avaPKp") + nvvePaai;pa = - 2nt("v), <2.6o)

 DAILv - (aL,aPApv-avaPApit) =- kT[pLv] . (2.61)

Here the equations for the Pields h- gv and ALev are completely

separated. '

     Under the "oHowing transformations,

  hav =h"v - aLLJv - avJ" , (2.62)
  A22v = A;ev + apeHv ' avHLe , (2.63)
              being small "unctions, the gravitationaluith J and H      " Lt
fieki equations (2.60) and <2.61) preserve their Åíorms.

These transeormatioms can be regarded as gauge

trans"ormatiens. Using these degrees of ereedom, ue cafi

                              't'ake gauge conditions,

  oPKp" = o -,                                                   (2.64)

  aPApxL = o .                                                   (2.65)
                                                      '
Then the field equations (2.60) and (2.61) become

 Rhlty =' 2rcT(ltv) , (2.66)
 UAL`v =- IT[L`v] ' (2•67)
It should be noted that the equation (2.67) represents

coupling oF the antisymmetric "ield AItv with intrinsic spin

of matter because oF the Tetrode formula,

  Tr.s,v]=2;L aPslLvp , (2.6s)
with Sltvp being a spin tensor.

     Solutions o" (O,a) components o" Eqs. (2.66) and (2.67)

which contain e""ects o" the orbital and spin angular-
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momenta ol the matter fields are given by

  hoa(t,Å~)= 2rll' 6aB7 XSJTgt-") , (2.6ga)
                       r
uith
  Jc,(t) = eaB7 Id3Å~ xBT(TO)(t,Å~) , (2•69b>

and
                t.  Aoc,('t,Å~)=tl eaBT xBS7gt-") , (2.7oa)
                       r
with
  s.(t)= il e,,BT Id3x sB70<t,Å~) • (2•7ob)

Here the quantities Ja and Sa are the components o" the

volume integrations oe the total and spin angular-momenta,

respectively. We will utilize these expressions oF (2•69)

and (2.70) in S 3 .
                                                '                                                  +     Spin and'parity o{ the "ields h-                                             are 2                                                    -and                                     and A                                          ptv                                   ptv
g , respectively. The "ield h,Ltv is uell-knoun as graviton

field of general relativity, On the other hand, the Pield

Auv is a characteristic "ield ol neu general relativity.

Frowt the positivity of energy ol the {ield ApL , the

parameter Z should be positive.
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S 3 Stationary and axially symmetric solutiofis

     In this section, we examine stationary and axially

symmetric so]utions of the gravitational field equations

(2.54) and (2,55) in empty space with A = O . Ift general

relativity, many people have given axially symmetric
solutions oF the Eifistein equations.19)'24)N32) one o" the

remarkable points of neu general relativity is that a netion

of intrinsic spin oF rnatter can be consistently included in

the framework of the theory. If there is a source of

gravitation whose intrinsic spin cannot be neglected, the

axial-vector Gield a" has a finite value. It is very

interestifig to get a solution uith non-vanishing axial-

                . Ue here obtain stationary and axiallyvector Åíield a
             pt
symrnetric gravitational fields coupled with the orbital and
                                                    'i,fi,tr-insic s-pin ar,guilar-n.omertta o'F the $ys'te-m.
                                                     '
     First oi all, ue shall deternine a Åíorm of stationary

and axially symmetric parallel vector fields. As For the

general coordinate sy$tem, ue use the cylindrical coordinate
   'system uith ne = t , ni = ni, n2 = n2 and n3 = o , uhere <b

is a polar angle around the direction oe b(2) .") Then the

parallel vector field b(2> is parallel to the symmetric '

                                    'axis. The axial symmetry of bk                                is de"ined as Åíollous:                              pt
The parallel vector Fields bk are "orm invariant under the
                            u
trans"ormation,

") In this paper, numbers of the Latin indices are enclosed

   in''parenthesis in order to avoid con"usion.
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 b'(1) = b(1)cos 6di - b(3)sin 6di ,

 b'( 3) = b(1)si fi sdi + b(3)c os 6Åë . (3•lb)

They are given by

       k         BcosÅë-Bsindi FcosO-Hsin<b JcosO-LsinÅë Ncosqb-QsinÅë  bk .
    pa
         BsinO+DcosO Fsindi+Hcosab JsinÅë+Lcosdi Nsindi+Qcosdi ,
                                                   (3.2)
whet-e A, B,''', P and Q are lunctions of nt, n2 and t .

                                               k     Ue require that the parallel vector Helds b pt are

statiofiary, thus having no dependence on tirt!e t . We
eurther as$ume that bk are lorm invariant under the PT
                     pt
operat1on;

  V='t, Åë'=-Åë, <3.3a)  b.(e) .- b(O) , b.(3) = -. b(3) . (3.3b)

The parallel vector fields become

         SA OO M       '   k k -Dsindi Fcosqb Jcosdi                                     'QsinÅë,

             DcosÅë Fsindi Jsin<b Qcosdi ,
uhere A, D,''', M and Q depend on nl and n2 . using a

freedom oi coordinate transFormation por nl and n2 , we can

take the metric g constructed from (3.4) as                Lev

  gll=g22, g12=O. ' (3.5)
                                k                                   can be uritten asThefi the parallel vector fields b                                 Je,e

  bkz,=k -Ds6nO CEoc:;y,c.o.sdi Cs8n.u.c.o.sdi -Qs6nÅë (3•6)

             Dcosdi CcosusinO CsinusinÅë Qcos(b ,
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uhere c and u are "unctionr. of nl and n2 .

     De"iru"ng new functions, ", a}, 7, p and X, which depend
ofi nl and n2 , ue can rewrite the expression <3.6) to the

 . " fÅ}/2cosh} O
   k -"1!2sinhi21Isino F-112e7cosucosÅë
  b pt =
                               -11?.. 7 ,       •o                             -f e slnu
             el!2sinhl21ieosÅë f-1!2e7cosusino

                             -112             o pÅí sinh:- "1/26ac osh}
      F'1!2e7sinucosÅë -(pl'i!2cosh2-X - fl/2tz,sinh2dZ)sindi

        "'i/2ercos. ' o
                                             '      F-1/2e7sinusinqb (pf'1!2-cosh2-X - fl/2a}sinh2-2)cosO , •

                                                   (3.7)

From the expression (3.7), the metric becomes the weli--known
papapetrou25)- Ernst26) form,

  ds2 = - Åí(dt-axidi)2 + f-i[e27<(dnl)2+(dn2)2>+p2ddi2].(3.s)

                                 `
It should be noted that the Åíunctions f and p cannot be

vanishing because oP

  v5= p"-le27 >o. (3•9)
                                          '
     For later use, ue show the asymptotic lorrn of ((O),a)

and (a,O) components of the parallel vector fields. In the

asymptotic region Par frofn the central -aource, our
cylindrical coordinate n" is related to the rectangular

coordinate Å~" as

  .e N nO, Å~1 N "coso, Å~2 N n2, Å~3 N nlsinÅë. (3. lo)
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In this cylindrical coordinate system, the solutions <2.69)

and (2.70) in the weak Field approximation are reduced to

  b(o)1 A• e ,

  b(o)2 No ,

  b(o)3 N tg <rcJ+ks) (nig2 ,

                      r
  bq)e fi" - t" (MJ-zs) t/Z2L sindi ,

                      r

  b(2)o No, .
  b(3)o N gi\ (rcJ--is) !Z5i cosÅë , <3.io
                    r
with r2 iE (T?1)2 + (n2)2 . Here we assume the volume

integrations oF the total and spin angular-rtiornenta are in
the direction of b(2) :

  $2 Es, J2 =. J =- L+s,

  sa =o, Ja =o, (ai2) (3. n)
                                            '
with L representing a volume integration oÅí the orbital

angu1ar-momentum.

     On the other hand, the ((e),ct) and (a,O) components of

the parallel vector Fields (3.7) are given in the lowest

order o" the weak field approximation as

  b(o)i = O ,

  b(o)2 = O ,

            11  b(o)3 "J '7nX+w,

  b( oo '"" -' > z sindi ,



  P=
  p03 .

  p33 .

  pll +

  P" -

  p12 .

  Other

and For

  Q03 .
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  b(2)o = O ,

  b(3)o "" 71 z cosÅë . (3.13)
                                                      1!fi this approximation, we ce.hould take l -1 and p -> n

because of the "unctions a) and r being small quantities.

Comparing (3.13) with (3.11), ue get the asymptotic eorms oF

a) and X in the weak Field approximatiofi as
 '

  a}asy fi" zt;ti (L+s) (nig2 , - (3.Å}4a)
                   r
                         1•  zaSY N t?: [L+(1-Z!re)S] ag . (3.14b)
                        r
     Nou, let us look lor exact solutions. Substituting

(3.7) into the gravitational Gield equations .(2.54) and

(2s55) with A = O , ue obtain the field equations for the

symetric part,
           '   oo' -2T -2 a, f2tz}2)L IN].e
                                       p

                         + o,

e [f !+-K              p

p30 = .-27 [ tl K

 -27 "2

e iL=O,     p
            2 22 -47 fP =e --N=           p
            2 22        -47 fP =2e ---'F=            p
           2 21 -4T -FP =e 'H=           p

components Ee ,

the antisymrnetric

   3e 1-Q =- 2-pU=O

(1--    p2

f2w
    L] p2

o,
 o,

o,

part,

  '

, (3.15a>
    '

  (3.15b)

  (3•15c)

  (3.15d)

  (3.15e)

  (3.15F)

  (3.iSg)

(3.16a)
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 Q12 =- Q21 = 2;L e-7 Åíp v ,

 Other components !O ,

where
 i i fv2f + Åíp vpvf - (vF)2 + Åí-2--4 (va})2

                     p        3     rc f            Ow                   ew    - A- -p2 ( Al anl ' A2 an2 )=e '

 K =- v,( S:2L vce ) - l: < SeTcoshii ( Aicosu + A2

                p
   + l)• ( Al glil + A2 aa.i?2 )- STt ( Al aenPl + A2

 L E v2T + lt F'2(vF)2 + {t Si?+ (va))2 + i: < 4t2 (

    - t" ( A, gli,.+ A2 g#2 )>-O •

 N ! v2p - i: l'l eTsinh2-X ( Alcosu + A2sinu ) = O

FE-
i(,gif,2-,gi;,2'"` gii ggi -- gf2

    '- rr' p"-2< (gSi)2 - (aaS2)2 > + k'- ei}2 < (aaca-

    .f<- il f( Al aoW" - A2 ea`.02 )

    + il( Al aa,X?1 - A2 g;2 )>=O ,

 HE' an021aPn2 '( aanPi aOi2 ' aanP2 aeil )- 21 pF-2

    ' 2-i ll:2L aa".'i ,a,"'2 " if <- lt S( Ai aO,W2 ' A2

               ' lt` "i g;2 ' "2 oO,Xi ''

 u ii glll + gli - lr eTcosh2-x ( Alcosu + A2sinu )

 ,slnu

ap
an2

A12

 '
 0p
 an2

)2 .

 a"
  1 an

aw
 1an

=o

=o

 (3.16b)

 (3.16c)

 (3.17a)

)

) > = o ,
 (3.17b)

   2)+A  2
 (3.17c)

 (3.17d)

)

(aaWn2)2 >

 (3.17e)

af
  2an

)

, (3.17f)

,(3.17g)
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  V =. sinh2-X ( Alsinu ' A2cosu ) = e . (3.i7h)

                                                  eoHere V is the two dimensional gradient operator, (                                                       2)'                                                   1'                                                 an                                                     an
and Al and A2 are related to the axial-vector Field aLt as

 '
  ai =- tl A2 =- 3-ip s 2eTsinh2-X sinu - -f ga,?)2 +p gli2 ) ,

  a2 = 3-lp Al i t"( 2e7Si"h2"X- COS" 'S Oa(nZ)1 +P aanZl ), (3'18b)

               '

Combining (3.17g) with (3.17b), we obtain

  Kts-• -.- K -- li• i:' U

    = v•( f:2L va,) -' {l < o.01< S AI) ' a,e2( S A'2) > = O ' (3•19)

                                                  '                    '
The equations (3•17e) and (3.17i) are not independefit of the

others by the relation,

                '  g;i + g".2 - -- ll sgiiÅíi N] + 50;i[{i, N] + 3ali!r{;, L] + li :a:;E[{.`Z', KNi

              -gpf-3:as![{,"in+{<l3a;r[;iu]'iEgi?Åí2pV]

                                 + lel;ir[;1 v] >=o, (3.2oa)

                                 '  - g;2 + g:i = -- ;l sigl?-[2 N] + :a Iz7[i2 N] + iaS7[S2 L] + l-' ia;:)7[S2 R]

               -2-ipf-3ia;?Åíf2!]+{-<l--=g-ex{.X2u]+tlsg;i{ipv]

                                   + iasii{:2 v] ) = o . (3.2ob)

     Ue now take notice oi Eq. (3.17h). It requires

  Alsinu-A2cosu =O, (3.21)
or
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Ue exafRine these two cases separately.

(i) The case Alsinu ' A2co-su = O

     Using the asymptotic form (3.14) in (3.18) with taking

the limit f.1 and 7 ->e, the Fufictions Al and A2 are

expressed in a region Far from the central body as

  A?SY e- - 2ii-i < 2 !!tis . 3 (nig3 ) ',

                 rr
  Assy N3 tj};zl (nig2n2 . (3.23)
               r

Here the Punction u $eerns to vanish in this iar region.

Hefice, from (3.21), it should be satisfied that IAII >>

   l , uhich is inconsistefit with (3.23) except for S = O .IA
  2
     In the exceptional case with S = O, or with

  Al E 2.7sinh2-Z cosu -f gllll + p g;1 =o ,

  A2 i 2e7sinh2-r sinu -f giil2 +p aanX2 =O , (3.24)

the gravitational "ield equations (3.17) are reduced to

those oÅí general relativity:

  fv2f +S vp•vf - (vf )2 + t2 (vto )2 =o , (3. 2sa)
                         p
                                          ' 'v'< "-p2 vw ) = o , (3•2sb)
  v2T + il F-2(vf)2 + il S2 (va,)2 =e ,
                                                   (3.25c)
                      p

  - l( ,gl;,, -- ,gig,2 )+( gii g.Pi - gi2 g,P2 )
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    - ,-i pÅí-'2<(gS,)2 - (gS,)2>

         2    +X f: <(g,W,>2-(g9,)2> -o , (3.2se)
  - o,a?2ign2 +( aa,P?i oai2 + aOnP2 aanTi )- $ pf'2 ae,{?:i eani2

      i f2 ata ato
                  =O. (3.25e)    +--           ani en2      ap

                          1By taking a solution p = n o" (3.25d), these equations

are reduced to the Ernst equation which has been uell
                                                      '
                           28)N3e)investigated by many people.

     Ue expect Eqs. (3.24) to have a solution for X and u.

The function X will be determined by the eollowifig equation,

   -  (ez)2 + 2 fl vLevz + S2 (vw)2 - i e2T(sifihl)2 = o , (3.26)

                    pp                  '
where the functions, ", w and T, are determined by Eqs.

(3•25). The existence of the solution eor X in (3.26> is

not at present well-known. In the ueak field approximation,

however, it is given by

  a)asyNz.-L-z (ng)2 , zasyNx-Lz n-3i . (3.27)

             rr
Ue will have to examine the existence oe the solution of

(3.26) exact1y.

Gi) The case uith Z=O
     Ue examine the case (3.22) in which the axial-vector

Held aiL has the "orm,

        Faw "aa}  al = -3p an2 ' a2 =' 3"p onl ' ae = "3 =O. (3.28)



-33-

The gravitational eield equatioas (3.17) are reduced to

  Fv2e + "-p vpvf - (v")2 + (i+ntz) f-24 (va})2 =o ,
                                                   (3.29a)
                                 p
           f2
  (1+re/k)V(           ii-- VW )=O , (3.29b)
  v2T + ii "-2(ve)2 + 4-i- (i+ntk) "-i (vt]o)2 = o , (3•2gc)

                             'p

  -><,gk,2-,,a2.2P,2'+` ,aii aa,Pi '- gi2 oD."2'

    - ,-i pÅí-2< (gS,)2 - (g#,)2 }

    + 2t (i+rc/x) S:2L < (gnWi)2 - (aanW2)2 ) = o , (3•2ge)

'p

 ,Sig,2+( gsi gi2+ 2;2 gii )-ipf'-2 gs, gs,

    + ll (i+?c/z) f:2i aaWni aaWn2 = o , (3.29f)

  v•(fva)) - 1} eT( gllll cosv + gll2 sifiu )=o . (3.2gg)

The last equation is obtained from the antisymmetric part of

the gravitational eield equations.

     I" we replace a7 by

  "to' -:- (1+rc/z)1/2w , (3.3o)
Eqs. (3.29a) N (3.29F) are reduced to the Einstein equatSons

(3.25) which have been already solved. Thus our problern is

to find a solution Por the Åíunction u uhich satisPies Eq.

(3.29g). We emphasize that Eq, (3.29g) does not include a
                              'derivative of the eunction u , so we can easily get a
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selution. !fi the case with di iO , it is given by

  Si" u = x21y2 ['yz Å} x(x2+y2-z2)y2 ] ,

  cos u= Å~21y2 [ xz ; y(Å~2+y2-z2)i/2 ] , (3.3i.)

where
                              '  x =- er glli , y i e7 oa n`Z}2 , z i pf -iv•( Fv a,) . (3.3ib)

Here the double signs in (3.31a) are in the same order.

     Ue consider physical meafiing o'F this gravitational

field. Our solutions couple uith the orbital and intrinsic

spin angular-momenta oF the system under a special

condition. In the weak iield approximation, the Functions a}

and X are given by (3.14). The condition X = O demands the

re1 atiofi , -'

  L= (2/re-1)$. - (3.32)                           '                                   '
In this sense, our solutions might as weM be caNed as

'special' solutions.

     Ue now examine the eunction u uhich dees not appear in

the raetric (3.8). From (3.31a), the reality condition For

the paral]el vector "ields is given by

  Å~2.y2 .> z2, (3.33)
                                 *)which may not be always satis"ied. In the case oe (3.33),

") It might be possible to reforrnulate new general

   relativity so that the complex parallel vector fields

   could be accepted. At present, it is not known to us

   whether such a reeormulation is indeed possible.
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lsin ul and lcos ul are equal to or smaHer than unity. On

the other hand, in the ueak Åíield approxirnation, the

asyrnptotic functiofis XaSY, YaSY and ZaSY are given by

  xaSY N 4-ren (L + s)( 2 !Zl} - 3 (ni)3 ) , (3.34.)

                      rr
  yasy ,.. - a3-: (L + s) (ni)in2 , (3.34b)
                        r
  zasy .. teq (L +s)( 2 zzl;.3 (nl;)2 ) .. xasy , (3.34.)

                      rrwhich lead to

  Sin U =, (xasy)2t(yasy)2 [ xa$YyaSY Å} xaSylyasyl ] ,

  cos u = (Å~..y)21(yasy)2 [ (xaSY)2 ÅÄ' yaSYIyasyt ] . <3.3s)

IF ue require that u vanish a$ymptotically, we must choose
            •:,"the upper signs in the region y< o ( n2 >o ) and the

lower one in the region y>o ( n2 <o), This choice

might break the cofidition of continuity oi the function u •

     As an exarnple, ue examine the reality and continuity of
u using the Kerr solution:25)'28) It is given by

      r2-2c)Mr+a2cos2s

  "= .2+.2.o.2e ' (3.36a)
  di = .2-;::fi:i."2..e2e = (i+rc/k)ii2 w , (3.36b)

   27 r2-2GMr+a2cos2e
  e = r2-2GMr+(GM)2sin2e+.2cos2e' .(3'36C)

  p= (r2-2GMr+a2)1/2sine , (3.36d)
in terms oG the polar coordinate (t, r, e, qb) relating with
the cylindrical coordinate (t, nl, n2, di) as
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                                                     '  nl = (r2-2GMr+a2 )1/2sine , (3.37a)

  n2=(r-GM)cose. (3.37b)
Here G is the Newton constant, M denotes ma3s oÅí the sy$tem

and a is a parameter representing the total angular'momentum
J eF the system as J= "+ntz)-1!2ma ,

     After numerical calculation, ue eind that the function

u cannot be continuous by requiring lim u = O , and cannot
                                    r-"o
be real in a regi.on near the event horizon. Ue show the

region where the parallel vector Fields cannot be real, in

Figure. However, a remark should be ih order. A certain

class of local Lorentz transforrfiation might have some

relevance on this point. Such a transformation leaves the

axial-vector Pield aLt unchanged. If.this transfermation

rellects afi unphysical Freedom oF-the theory, we might

 .elt l. . t- .r te nel s. fi .i "t suutlze lr ro save rrom rne alrncutry or the para"et
vector Fields. At present, physical meaning oe such

transeormation is left as an open questiofi•

     ln the case uith w = O , the axial-vector Åíield a                                                    "
vanishes identicaHy and the gravitational Pield equations
are reduced to those oÅí general relativity with a; = o .24)'

29) F'rom the result"clt of the weak "ield approximation oF

(3.14), L = S = e are required. This gravitational Field

is created by a e".ource uithout orbital and spin angular-

momenta. The Fufiction u cannot be determined From the

gravitatiofial Field equations. We have a "reedom o'F

unphysical local Lorentz transformation which changes u in

this case.

     It should be noted that in the region in which a matter



-37 --

"ield exists

equations by

For exarnple,

solutions in

as a sellrce

, Eqs. (3.29) might not agree with 'the Einstein

 the replacement (3.3e) because of Eq. (3.29b).

 it is diÅíficult to "ind Kerr-'Neuman type

 uhich the electro-magnetic "ield is contained
oF gravitation.26),31),32)
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S 4 Homogeheou$ and isotropic universe

     In this section, we examine models oF the hornogeneous

a"d isotropic universe. Rece"tly, grand uniHed theories oF

weak, electro-magnetic and strong interactions predict that

the cosmological constant A might has a 'Finite value as
energy ol vacuum in the early universe.33) ThereFore, we

should consider the gravitational Pield equations uith A .

     At First, we construct homogeneous and i$otropic

parallel vector lields using the method oF Appendix A . !n

this case, the metric is given by the Robertson-Ualker
metric34) which takes the Åíonowing "orm in a comoving

frame,

                                        tt  ds2 =" dt2 + R<t)2< 6aB+ Iiiiikail!ill >dxctdxB , (4'1)

                                                  .t
                                    '      '
uhere R(t) is the radius oP the universe depending only on
time and k is a con$tant uith dimension (length)-2 . since

the paralle} vector fields are isetropic, ue can use the

for-m (2.35). Then we assume the "orm invariance under space
inversion, Å~'a = - xcr and b' (a) = - b(a) , uhich enables
                                        B
us to drop a term proportional to eaaB ilE- in (2.35). The

parallel vector fields uhich are related to the metric (4.1)

are represented as

                       '   , t' coshX R(IS-ki".2hly2t)iEE

  bi . .
    ,cie
                                                 aa           sinhx R< 6aa+( aEOkS.Ill/2 -1)'Xrii > ,

                                                   (4.2)

where X is an unknown Function of r and t to be determined
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                  1                     is "orm invariant under an isometryby requiring that b                   "
and a "global" Lorentz transFormation.

     The isometry oF the Roberson-Ualker metric <4.1)

consists oe spatial rotations and quasitranslations:

  -t' = t , Å~'C'k: = xCC + eCtBxB + cct(1-kr2)1!2 , (4•3)

with ea B = -- eB ct and ca being inFinitesimal constants. The

inFinitesiraal Lorentz transformation which compensates an

in"initesimal coordinate transformation to preserve the form

oÅí the parallel vector fields, is given by (A.6) in

Appendix A as

  a}i.=biPb.2vEp+Ki.keZ . (4.4)
From (a.3), the Killing vector ePe is given by

  6e =o, ga=ectBxB+ca(!-kr2)ii2 . (4.s)

     Substituting (4.2) and (4.5) into (4.4), we obtain

   (e)  w (o) =O,                                                   (4•6a)

  w(O). = wa(o) = x'(1-kr2)1/2ca - < x'(1-kr2)1!2 - Si".hZ >

                                          aaa                                     a cxx                                       - 2 ), (4.6b)                                  x< c
                                           r
                                    ab ba  wab = 6ab +< (i-kr2)i/2 - coshx )c Å~ --i Å~ ,                                                   (4.6c)
                                       r
with x' representing ex/ar . In order for a)i to be
                                           m
x'independent, the "unction Z should be chosen as

  coshx = qdkr2)1!2 , sinhx = ('k)1/2r . (4.7)

The choice with sinhx = ' (-k)112r i$ also possible.

However, this case is obtained lrom the case uith (4.7) by

time reversal. So ue shall restrict ourselves to the choice
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(4.7), since the gravitational Field equatiofis are invariant

under time reversal.

     Thus the parallel vector iields of the hornogeneous and

isotropic spacetime are given by

                                1/2   i ,S, ( i - k r 2 ) i 1 2 ( 6 i 'k k. i )i / 2 x a

  b"
                         '             (-k)i/2.a R6
                                 aa .
They satisFy the requirement ol Å~-'independence o" a)i as
                                                  m
   (o)  w (o) =O,

   (O> a                     1!2 a  W a= a} (o) = (-'k) c ,

   aa
     !f the universe is c}osed ( narnely, if k > O ) , the

p a r- al i, e i, tvt ec `.' or F i el d s ( 4 . 8 ) b ec ome c om pl e x v al u e d ,, an d al s e

the transformation parameter, tz)(O) a and (ea (o) , are pure

i;naginary. !n the present "orraulation oS new general

relativity, the parallel vector fields are assumed to be

real. ThereÅíore, we cannot take (4.8) as the parallel

vector fields if the universe is clesed. !n other words,

new general relativity with e i e seems to be incompatible

with the closed, hgmogeneous and isotropic uRiverse. On the

other hand, iP the universe is open ( namely, iP k <- O ) ,

the parallel vector eields are uniquely determined by the

requirernent oF hornogeneity and isotropy.

     In the special case with e = O , however, the situation

is changed and the underlying spacetime uhich i$ called the

extended Ueitzenbb'ck spacetime allows a restricted local
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Lorentz trafislormation which leaves the axial-vector Field

a ancl the gravitational Field equations unchanged. On the u
other hand, in the expression (4.2), alL is identically

vanishing• As is mentioned in Appendix A, aIreedom o"

1ocal Lorentz transForTnation which leaves a,ÅíL vanishing is

really aHoued. Then the Function Z canfiot be determined by

the gravitational eield equations and is leFt arbitrary.

     Consequently, although in the case uith k > O , the
                                                     .parameter e should be chosen as e = O , in the case with

k S O , there is no restriction for e .

     Next, ue turn our attention to the function R(t) oe

(4.1) which describes the evolution o" the universe. We

shall nou use the gravitational "ield equations to derive

the equations for R(t) . At first, we assume that the

parameter e i$ nonvanishing. Then the universe shou]d be

open.

     As for the source o" the gravitational "ield, we assume

as u$ual that cosmic matter can be approximated by perlect

Fluid with the energy-mornenturn tensor,

  Tj"v.(p+p)uJLeuV+pg,LeV , (4.lo)
uith uLL being the four-velocity oF the fluid. In the

comoving frame, it is given by

  TeO .p, TOa . TaO .o, TctB .p gaB , (4.11)

where p and p are Functions of time t denoting the efiergy

density and the pressure of the perlect Fluid in the

comoving "rame.

     Using (a.8) and (4.11) in (2.24), ue finally get
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   oo 3 ft2 .k
  l = 1--4e R2 - reA = reP '

  IOa . 1ctO =o ,

  IaB = [- 1-2. 2Rk :2k2 "k+ MA ] gaB = rcp gctB ,

or equivalently,

  ft2 +k =' g "-4e)(p + A)R2 ,

                    '  2Rk'+ k2 + k = - rcq-4e)(p -- A)R2 .

These equations give the cofiservation law of energy,

  gt [(p+ A)R3] =- 3(p -- A)R2 .

                                            '
Ue can take (4•13) and (4.15) as the independent

The equation of energy conservation <4.15) is also

in general relativity and, thereeore, (4.13)

t!.e gr'atyjitational "ield e".uatior,s ol r,ew, ger,eral i

These equations (4.13) and (a.15). are reduced to

general relativity uith a co'J'mological cofistant by

the Einstein constant re as reN -: (1-4e)rc . Since the

parameter e is expected to be very small, neu general

relativity gives homogeneous and isotropic fnodels oF

open univer$e nearly the $ame as those of general

relativity.

     In the case uith A = O and p = O, or A = O and

the solutions are the wel1-known Friedmann models•
                                              'the case uith A > O and p = p = O , it is called the
sitter universe.36) Here ue can get the homogeneous

isotropic solutions ol neu general relativity with e

     When the pararneter e is vanishing, the

spacetime is the extended Weitzenb6ck spacetime.

(4

(4

(4

<4

(4

.

.

.

.

.

12a)

12b)

22c)

t3)

i4)

        (4.Å}5)

    equatzons.

      satisfied

characterize

    retativ'ity.

    those oe

     rep1acing
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        p = p!3,
      35)          In

        de

         and

         x o .

under1ying

      The
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Åíunctiofi X of (4.2) is

equation$ coincide uith

general relativity with

and isotropic mode]s of

re1ativity.

leFt undetermined

 those o" general

 e = O thus gives

the universe as

. The gravitational

 relativity. New

 same homogeneous

those oP general



-4U-

S 5 Kasner type universe

     In this section, we exarnine model$ of the ufiiverse

which is homogeneous and anito'otropic. We now observe that

the pre$ent universe is isotropic with high accuracy. In

the early universe, however, ue do not know the isotropy of

the universe. In general relativity, one oF the models ol

the anisotropic universe is the well'known Kasner solution.

Here ue study this type of the universe in new general

relativity. For lorthcoming applications oe the Kaluza-
             37),38)K1ein theory,                    ue consider solutions oÅí new general

relativity in n+1 dimensional spacetime. Short review o"

n+1 dimensional new gefieral relativity is given in

Appendix B .

     Ue restrict ourselves to diagonal and space-indepefident

parali,cA;1 v'ector Fields,

  bk"="( ei exp z2(t) 6.. ], (5'O

where the indices a and a run frorn 1 to n. The functions l
                                                         ct
depend only on tiffie. Ue shall call the "orm (5.1) "Kasner

type" parallel vector Fields. This spacetime is spatially

homogeneous.

     Ue substitute the expression (5.1) into the

gravitational eield equation'n' <B.9) without matter Fields to

get the equations "or k as                      a
  i [ -- ( i-3ci) ,,;i ( •2• ,, )2 + (Å}'" g-ct +2c2 )( ct;iia )2 ] - "A :s92A )

  "-3ci)[ ji• , + i.B."2iiB - 2}'B2i(•IB)2 i
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    ' (i"F3;ci+2c2)[ B2i2b + 2'i(B2tiis)2 ] + MA = e , (s•2b)

where the dots repre3ent derivatives with respect to t . At

present, we have no uay to restrict the values oF cl and c2

in general dimensions. In vieu o" the fact that lc" and

Ic2I are both known to be very small in the case oi n = 3 ,

we hereafter postulate
                                   .t
  1 'b 3cl >O, 1' n3' cl + 2c2 >e.                                                   (5.3)

     Ue take summations over ct in (5.2b>,

  (1-3Cl)[ .;3t' (./Llia)2 - ;.2.1(ia)2 ]

    - (i-'ft'-ci"2c2)n[ ,,;Ba ' ii(.2z3.)2 ] '+ nxA = o . (s.a)

                                               tt.
U$ing (S.2a) in (5.4), ue get the equation,

   fi .. n.                2  ailla + (ailXct) = 2rircAl[(n-1)+2nc2] ,                                                   (5.5)

                              '
The spacetime is cla$sified by the sign o'F the cosmological
                             n.constant A. Solutions eor ZZ are obtained as                                a                            a=1
"or A=O,

(i) 2Z =O,                                                   (5.6a)          a      ct=1

       n,               1(ii) ailAa = t+6 '                                                   (5.6b)

for A>O,
       n.(i) ai ia =Å} 2P '                                                   (5.7a)

       n.(ii) ailZa=2P COth(2Pt+6> ' (5.7b>
       n.(iii) ailXct=2P ta"h<2Pt+6) , (5.7c)
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for A<O,
       fi -(i) ZX =Å} 2pi , (5.8a)          cr      a=1

       n.(ii) 2Z =2p cot(2pt+6) , (5.8b)          ct      a=1

uhere

  pE[nreIAI!2<(n--1)+2nc2> ]i!2 , (5.g)

uith 6's beÅ}ng integration constants, Using constant

transformations oP time t , we can take 6 = O uithout loss

o" generality. Here ue consider that the universe begins at

t = O , except lor (S.7a) and (5.8a). The solutions (5.7c>
                                                       'and (5.8a) lead to complex valued parallel vector fields.

Ue discard the$e two cases because we consider real
spaceti ine .

                                          '                                 '
     Ifi.serV:ng (5.6)N(5•9> into <5.2a), we get the
                n.                      2-expressions oe ctk(Xa) '

"or A=O!
       n.(i) 2(z )2 =e ,                                                   (5.iOa)          ct      a=1
(ii) .22-,(i.)2 . i-(3f!g.cii2c2 ,.?- , .
                                                   .(5.10b)

for A>e,
                        '(i) 2d )2. 4L!E2 ,
                                                   (5.1la)          .a                  fi      a=1
(ii) .21(la)2 = lrf/llli:-3cl [ (1--3.c1'2c2)(coth 2pt)2

                         1                       d .- <(n-1)+2nC2) ] , (5.lib)

Por A<e,
(ii) .2-i(i.)2 " i{/\l':-3.1 [ (1-ftci+2c2)(cot 2pt)2



-U 7-

                       + t7 <(n-1)+2nc2> ] .

The expression (5.10a) leads to

  Z = constant s   a

representing the n+i dimensional Minkowski spacetime•

     Substituting (5.6)N(5.8) and (5.10)ty(5.12) mto

we get the equations "or each Zcc as

"or A=O,
<") ia +e i. -e ,

Åíor A>O,
(i) 2' Å} 2p2 -- 4p2/n =e ,
       aa
(ii) i' + 2p(coth 2pt)i - 4p21n =o ,

for A<O,
(i) 2' + 2p(cot 2pt)i + ap2/n =o ,
       a ct
     solutions oF (f-5.14)N(5,16) are given by

"or A=O,
               qa(ii) 1 = log t +7 ,       ct ct
For A>O,
         - 2pt(i) Za - n + qaeXP<-2Pt) + 7a ,
                                  2
                                  "q(ii) Za = log (sinh pt) or(cosh pt)n ct + 7a ,

"or A<O,
                                2
(ii) ia = iog (3in pt)qa(cos pt)Hdqa + Tct ,

where qa and 7a are integration constants. Using
scale transeormations of the coordihate xa, we can

(5.!2)

(5.13)

(5.2b),

(5.la)

(5.15a)

(S.15b)

(5.16)

(5.17)

(5.18a)

(5.18b)

(5.i9)

constant

 take



                           -U 8-

        '

7a = O uithout loss oF generality. The solutions are

considered to be realizable uhile -co < t < co "or (5.18a),

t > O eor (5.17) and (S.18b), and O < t < n!2p eor

(5.19). In <5.18a), we choose expanding universe, taking

the upper sign oe (5.7a).

     Substituting the derivatives o" (5.17)'v(5.19) into

(5.6)N(5.8) and (5.10)"-(5.12), we Pind that the cofistraints

For qct should be irrespectively oi the signs oi A ,

  a2iqa =i' a2i(qa)2 = i-(3f2g.Cii+2C2 , (s.2e)

except Sor the solution (5,18a>. In the case o" <5.18a), q                                                         a
should be vanishing.
                     t.
     The parallel vector eields are given by --'' '' ' ' '='

for A=O,
") bk "=6ts.", .' ' (5.21a)
   '            il                          o
(ii) bk"=k o tq.6 - ' (5.21b)
                           aa s
eor A>O,
            ll O       kk(i) b =                                                   (5.22a)        uo    . exp<2pt/n) 6                                 aa !

            Sl O
        pt q                                      -q               o (sinh pt) a(cosh pt)n a6
                                            act t

Por A<O,
               1O
                                    -dq               o (sin pt) a(cos pt)n a6
                                          act t
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with the condition (5.2e) and the deeinition (5.9). Of

course, our solutions include those of general relativity
                                                      'uith a coswtological constant as a limitifig case o" cl = c2

= O . The solution (5.21b) corresponds to the Kasner
solution39) in general relativity. The solution (5.22a)

should be caHed the de sitter vniverse36) in new general

relativity. It should be noted that this solution was

ob,tained in S a by assuming the homogeneity and isotropy ofi

the universe. In general relativity, the solutions uith
                                                       40)A l O like (5.22b) and (5.23) were discussed by Saunders.

     The solutions obtained above are classieied inte two

cases as whether space is isotropic or not. The cases (i)

are isotropic. Ifi the case uith A<-6 , there is no'real

isotropic $olution having the expre$sion (5.Å})•

     Herealter, ue mainly discus$ the sLiolutions in 3+1

dimefisional spacetime. As already mentioned in S 2 , the

condition (5.3) seems to be reasofiable in 3+1 dimension. We

should take n = 3 in the expressiens (5.21)N(5.23). In

terms oi the parameter e , the deeinition (5.9> and the

constraints (5.20) are re$pectively expressed as

  pi[i"-4e)rctAl ]112 , (s•24)
                      2 1-2e -  a-Z--.lqct=1' aidl(qa) =1-4e' (5.25)
     In the constraints (5.25), all the three parameters q                                                        a
cannot have a same value, exept "or the case uith e = 1

which is inconsistent with (2.52). Uhen tuo o" them have a

same value, they are given by

  qi = q2 = g [i-(l'."ae,]i!2.i , q3 = g [i+2(ii--.Xe]i/2] ,(s.26a)
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  qi = 3-i u-2[li2.)ii2] , q2 = q3 = 3-i [i+[l.-.ae.)i!2] .(s.26b)

Uhen all oF thefn are diflerent, they are re$tricted in the

reg1ons
  g [i-2 (l .-. 2e ,] i!2] < qi < g [i- GiS ,] i!2] ,

  3-1- [1'- [liZe)112: < q2 < 3-1 [1'[liX,)1!2] ,

                        '  g "+(liZ,]1i2] < q3 < g [1+2 (}X,jl12] • (s.27)

Here we assume without loss oe generality, ql <. q2 < q3 Or
                         '

     For (5.21b) with n = 3 afid A = O , in the case uith

e = O , distances parallel to tuo oi three spatial axes must

expand and those paraHel to another axis must contr'act '
                  *)except for (5.26a).                      However, in the case uith e >O ,,

distances parallel to one oÅí three axes expand and those

parallel to the other axes contract eor the condition

(5.26a). !n the case uith e < O , distances parallel to all

the axes expand for (5.26a). In general relativity, there

is no solution o" these tuo types. Developments oi the

other universes uith A t O can be easily examined.

     Finally, a comment should be noted. Ue are mainly

considering the anisotropic space in the early universe.

However, mechanisms such as quantum mechanical back reaction

which suppress this anisotropy in the development o'P the
early universe have been discueJ.sed by many people.41) This

problem should be reconsidered in the framework o" new

genera1 relativity.



- 51-

Footnote to p. 50

*) In the case uith e =O , the condition, ql = q2 =O and

   q3 = 1 , leads to the follouifig line elernent,

     ds2 = - dt2 + dx2 + dy2 + t2dz2 .

   By the coordinate transformation,

     T=t cosh z, g=Å~, n=y, C=t sinh z,
   the line element is reduced te Minkouskian. Then the

   parallel vector Pields become

          kS T !( T2 - r. 2 )1 ! 2 o o - c / ( T2 - g 2 )1 ! 2

                              10 O

              -gl(T2.c2)112 o e Tl(T2-c2)112
                                                     .
   Furtherrnore, new general relativity allows a refstricted
                            '   local Lorentz transÅíormatiofi which 1eaves the
   axial-vector eield atL vanishing.14)'22) Due to this

   local Lorentz covariance, the parallel vec'tor fields (#)
   can be regarded as to be equivalent to bkpt = 6kpt .
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S 6 Summary and discussion

     The geometry underlying new general relativity is the

Weitzenbb'ck spacetime imposed uith absolute parallelism.

This spacetime is characterized only by the torsion "ield.

The gravitational 'Field equations uhich are derived from the

gravitational Lagrangian quadratic in the torsion can

include the Dirac spinor iield as a source oF gravitation.

!n this sense, fiew general relativity seems rnore suitable

for microscopic system than general relativity.

     In this paper, ue have obtained some exact solutions oP

the gravitational eield equations in new general relativity
                                             '                   'for spinning black hole and the universe. These solutions
                           '
have several diiIerences From related solutions ol the

Eifistein equations. In the Follouing, we will express these

di""erences for eac5i solution separately.

     In the past, no one has exactly discussed possible

e""ects of finite polarization o" spin to the black hole

solution. This problem is, in sorne sense, beyond the scope

ot geReral relativity because the symmetry oi the

gravitational "ield equations is inconsistent with that of

efiergy-momefitum tensor eor the Dirac "ield. In neu general

relativity, a par't oF the torsion "ield couples uith the

antisymmetric part oF the energy-momentum tensor. Actually,

in the case with e = O , we could "ind st.Tationary and

axially symrnetric solutions uhich are coupled with the

intrinsic spin ol source. Although the metric o" the

solutions can be obtained erora relevant solutions o" general

relativity, the existence oF the axial-vector lield a                                                   pa
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reflecting the ellects oF the intrinsic spin is essential.

I" such a type of black hole is perfnitted, fermion feel$ the

torsion and is expected to make precession oi the spin.

     The solutions thus obtained have unusual feature that

reality and coBtinuity ol the parallel vector Iields are not

satisPied even outside oF the event horizon. Houever, thi$
                               'dif'Ficulty might be 'o'uper"icial. There is a lreedom o{

local Lorefitz transformation uhich preserves the eorm ef the

axial--vector field a . This 1ocal Lorentz transiormation                   u
cannot be observed by means of experiments with the Dirac

Fields and gauge Pields because the equations oe motion ior

these Fields are covariant under this transiormation.

Therelore, this 1ocal Lorentz trans'Formation might be

regarded as an unphysical one and could be used to $ettle

the diiiiculty "or the parallel vector Field$. !t is still

an open problem hou to interprete this local Lorentz

trans"ormatiofi. Ue believe that our stationary and axially

symmetric solutions will present a good testing ground to

this prob1em.

     Next, ue turn our attention to cosmological $olutions.

Models oF the universe have been discusfsed in other theories

o" gravitation uith torsion in erder to avoid singularity at
the initial time of the universe by many people.42) on

this problefn, we showed that in new general relativity the

homogeneous and isotropic universe composed o{ matter

without macroscopic spin polarization is quite similar to

those oF general relativity. Then the closed, homogeneous

and isotropic univerR.-e is ificompatible uith the absolute
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parallelism. However, the situation is changed in the case

with e = O . There exists a Freedom of unphysical local

Lorentz transformation uhich leavecJ. not only the axial-

vector field a,a but also the gravitational "ield equations

unchanged. By means o" this transformation, ue ebtained

models o" the universe equivalent to those o" general

relativity. It is very interesting to consider eS"ects oP

macroscopic spin polarization of the cosmic matter uh•ich

might have in"luence on the singularity problem at the

beginning oF the universe.

     Ue have postulated the isotropy of the universe so far.

Houever, we should also construct ani$otropic models oi the

univer$e because it has been recently clari"ied that

anisotropy oi the univet-se in higher dimensional spacetime

presents intereg-ting possibility tou.ard a tvn,ified theory o-f

gravitation and matter. A mechanism oF dimensional

reduction in the Kaluza-Klein theory has been proposed based

on the anisotropic expansion of the Kasner metric in general
relativity.38) Ifi connection with this mechanism, the oirac

hypothesis43) can be realized. ue obtained the Kasner type

solution$ in the n+1 dimensional Ueitzenb6ck spacetime.

When the parameters cl and c2 are not vanishing, expansion

ee the universe could be qualitatively di"Ferent from that

oe general relativity.

     Here we neglected matter fields and stayed in classical

level but it has been suggested that quantum mechanical

creation oe particles in anisotropically expanding spacetirne
may restore the isotropy.41) This problem should be
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reconsidered by means of our solutions in neu general

relativity.

     FinaHy, neu general relativity is a limiting case o"

Poincar6 gauge theory uhich is characterized by the tor$ion
and the curvature.15) It is very important to look for

exact solutions of the .gravitational "ield equations in the

Framework ol Poincar6 gauge theory.
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Appendix A : Absolute parallelism and symmetry of spacetime

     Ue discuR-s symmetry oP spacetime For the parallel

vector fields with absolute parallel1sm. Consider a
                'transiormation o" parallel vector Fields induced by a
coordinate transformation, xXL . Å~'Le , and a global Lorentz

transformation,

                  v  b'kls(.')=Ak. gX..Le bMv(.), (A.i)
where Ak are constant$ satis"yifig
        m

  nijAikAJ.=nk. . (A.2)
When the transiormed parallel vector Helds b'k ,a(Å~') a-e the

same eunctions o" their argument Å~'Lt as the original

paranel vector fields bk ft(Å~) o" their argument xLt ,

  b'k,es<y>=bkit(y) lor an y, (A.3)
we shall call (A.1) a symmetry transformation in the

Weitzefib'o'ck spacetime.

     For an in"initesimal symmetry tr'ans"ormation o'F the

Weitzenb6ck spacetime,
                 '  .-lt . .,L` + eJEt(.) ( le'ac1 << 1 ), (A.4a)
  Akm = 6k. + a}k. ( aik.+ tz)mk= O, l(vkrnl << 1 ), (A.4b)

the "unctions gLt mu$t be a Killing vector satis"yihg the

KHling equations,

   "v v pa
Here VLt denotes a covariant derivative with respect to the

Chr'isto"iel symbol. The condition (A.3) gives

  a}k.=bkPb.O vogp+Kk.zel , (A.6)
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uhere KkmLt i$ the contor$ion tensor related to the torsion

tensor T            as        R ,Ltv

  KJt,LLv = 2'1 (Tz,ctv'T,t`zv-Tv.l,Lt) = ' K,ctzv • (A'7)

Ue can easily see al<m in (A•6) antisymmetric because o" the

properties of the indices in (A.5) afid (A.7). Since only

global LoreRtz translormations are allowed, 6okm in (A.6)

should be X'independen't. This condition imposes a

restriction on the parallel vector Fields. The Kil1ifig

equations (A.5) and this condition can be reuritten a$

  D,L,ev + Dve" + (TLtvz+TvLek)eZ =o , (A.sa)

  Dk[ DvgLt+TL,.peP ]=O, . (A.sb)
                                              'with D,Et denoting a covariant derivative in the Ueitzenb6ck

                                                  'spacet1me.
                                                    '                                     '     In the 'special case with cl = c2 =e ( e=O ), the

situat-rion is changed. There might be a restricted local

Lorentz transformation which leaves the axial'vector part a                                                         pa
of the torsion tensor and the gravitational field equations

unchanged. As Åíor the matter Pields, for example the Dirac

fields and gauge fields, the equations ee motion tire

covariant ufider this local Lorentz translormation. Ue

cannot observe the eefects o" this local Lorentz

transformation, so we should regard these two parallel

vector fields uhich are connected to each other by this

1ocal Lorentz tranFsiorfnation, as physically equivalent

object$.

     New general relativity with cl = c2 = O allows a local

Lorentz transFormation which preserves the iorm oF the
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axial'-vector Pield a and that oe the gravitational field                   pt
equations. Especially, in the case uith ape = e , a local

Lorentz trans'Formation uhich leaves a vanishing is aHowed                                   pt
because the gravitational field equatiofis are reduced to the

Einstein equations which are invariant under local Lorentz

transformations.
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Appendix B : New general relativity in n+1 dirnensional

             spacet1me

     Fundamental entity is parallel vector fields ll)k =<bk,Lt>.

The Greek and the Latin indices run from O to n raferring to

an external general coordinate "rame and an internal Lorentz

erame. The metric is dePined as

  gstv'= '7kmbk,abMv , (B.1)
 '

where n          is the metric in the n+l dimensional Minkowski       km
spacetime: nkm = diag('i,1,''',1) . By requiring absolute
paraHelism Dzbk = O, the afFine connection r'l ,eLv is given by

  VZL,. =bkZa.bkl,. (B,2)
                                       '                   ,l.The torsion tensor T fLv are de"ined by -' . . - --

  Tkisv=Fluv-rZvAc. (B.3)
     Ifi, order to ob"L-aln the most general gravitational

Lagrangian quadratic in the torsion "ields, we should take

the irreducible decomposition For the torsion as

  tJtuv E 2-i (TJtLtv+Tpeiv) + tl (gkvvpa+giLvvz-2gzLtvv) , (B.4a)

        ,1  v =T         k#   rc -

  azitv i 3-i (TJtitv+TiLvk+TvJt;t) . (B.4c)

The gravitational action with a cosmological constant A is

expressed as

  IG = J'cln+1Å~ vt=g [ ai(tZPeVtzLev) + a2(vftvtL)

                   '- ili' a3(aZ '"V al ,av) ' A ] . (B.5)

In order to clari"y the diPference between general

relativity and new general relativity, we rewrite the
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action (B.5> as

  IG = tt Idn+1. v er [ R(o) + 2cl(tJtLtVtziLv) + 2c2(vfLvlt)

                        1                              luv                      -5C3(a aALev) -- 2rcA ]• (B.6)

Here the parameters, cl, c2 and c3, are given by

            1 n-i 3  Cl = rcal + 3- , C?- = rca2 ' 2n , c3 = rea3+ zr , (B.7)

the scalar R(O) is the Riemann-ChrisloiFel scalar curva'ture

in n+1 dimensional spacetime. The total actiofi is givefi by

uhere IM represents the action constructed by the matter

Lagrangian in the n+1 dimeneJ,ional spacetirne. As eor spinor
eield$, ue should take care of their existence.45)

     By taking variation oF the action I uith respect to the
    '                       k                          , we obtain the gravitationalparallel vector fields b                        u
Fie1d equations,

  GitV(o) + 2DJtFiZVZ + 2vzFiLVZ + 2HiLV -giLVL/ . ntiLV , (B.g)

uhere
  FtLVZ ! c1(tlLVZ-tltXV) + c2(gfLVvJt-gitZvV) ' 2} c3afLVZ ,(B.10a)

  DzFLeVA i ezFUVA + rLtpkFPVk + rVpkFLePZ + rZpfUVP , (B.iob>

  HILV =- TPO LtF paV - i TV PaF ILpo = HVU , (B.10c)

  L' i cl( tZ PeV tk ;tv ) + c2(vLtv tL) - 6-1 c3( aX LtV ak itv ) - MA ,

                                                   (B.10d)
  vt=g: TltV = nkMbklt 6(V5 LM)/6bMv . (B.10e)

Here the tensor GiLV(O) icJ. the Einstein tensor in n+1

dimensional spacetime lormed oF the ChristoFFel symbols.
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 Figure caption
     These iigures show the region Å~2+y2 < z2 re"erring to

(3.33) in terTns ol the polar coordinate (3.37). The broken

lines represent in"inite red-shi"t surFacet"'. The regions o"
oblique lines correspond to the regions o" Å~2+y2 < z2 . It

should be noted that we are nou investigating the outside

region oF the infinite redshift sur"ace because this

coordinate system cannot be used inside the sur"ace.



A
c

e=o

.--

N
s

N

N
N

N

`

   -67-
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