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§
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Abstract

New general relativity is a theory of gravitation based
on the Weitzenbock spacetime endowed with absolute
parallelism which contains torsion and identically vanishing
curvature. The gravitational equations which are derived
from gravitational action quadratic in the torsion with
arbitrary weights Cqs Co and €4 can naturally incorporate
the Dirac field as a source term.

In this paper, we show some exact solutions of the
gravitational field equations in new general relativity.
Stationary and axially symmetric solutions in the case with
€5 = 0 , homogeneocus and isotropic solutions, and
Kasner type solutions are presented. Our stationary and
axially symmetric solutions have a non—-vanishing

.
l-vector

al—u part of the torsion which is coupied with the

(W

ax
intrinsic spin of matter. In the homogeneous and isotropic
solutions, we show that the absolute parallelism is
inconsistent with the closed, homogeneous and i1sotropic
universe. The Kasner type solutions in n+l dimensional
Weitzenbock spacetime are examined in detail and several

differences from those of general relativity are discussed.



§ 1 Introduction

In the history of physics, it has been confirmed that
fundamental forces of nature are expressed in the framework
of gauge theory.l) In 1956, Utivama pointed out that

2)~4)

general relativity is a gauge theory of a group of

local Lorentz transformations.S) This idea was extended by
Kibb]e.é) He introduced a group of translations of world
coordinate in addition to the group of local Lorentz
transformations.

In 1967, Hayashi and Nakano proposed a translation
gauge theory of gravitation with a group of "global® rather
than "local' Lorentz transformations.?) Fundamental entity
of their translation gauge theory is not the metric tensor
but vierbein fields. The results of general relativity
which have been confirmed by observations can be also
reproduced by the translation gauge theory. Furthermore,
the framework of this theory includes in a consistent manner
a notion of intrinsic spin angular—-momentum of source
matter. Miyamoto and Nakano estimated the energy of the
spin—spin gravitational interaction of the Dirac spinor
fields.®’

On the other hand, geometrical extension of the
gravitational physics has been discussed ever since the
discovery of general relativity. In 1928, Einstein
introduced a notion of absolute parallelism to unify the

?) The spacetime

gravitation and the electro—-magnetism.
underlying this theory is called the Weitzenbock spacetime,

which is characterized by torsion. His idea, however,



failed because the theory could not give correct

gravitational field equations coupled with the electro-

109

magnetic field. In 1967, M@iler revived the notion of

absolute parallelism to construct a new theory of

1

Pellegrini and Plebanski found a Lagrangian

2)

gr‘avit}.1
formulation for the absolute parallelism.

In 1977, these two streams were unified by Hayashi.13)
He found that geometry underlying the translation gauge
theory is the Ueitzenbﬁck spacetime. He called this theory
‘new general relativity'. Finally, the basis of new general
relativity was completed by Hayashi and Shirafuji.ld)

The basic entity of new general relativity which is
called parallel vector fields is vierbein fields endowed
with absolute parallelism. Strength of gravitation is
caused only by the torsion Fie!ds.*) The gravitational
Lagrangian of new general relativity is constructed from
three terms of invariants quadratic in the torsion and a
cosmological term which is usually neglected. It is the
most attractive point of new general relativity in contrast
to general relativity that the Dirac spinor field can be
regarded as a source of gravitation without difficulty.
This seems very important for a microscopic theory of

gravitation and for unification with the theories of

matters. In investigations of nature of the grawvitational

*) A theory of gravitation based on the Riemann-Cartan

spacetime which is characterized by the torsion and

13)

curvature is called Poincaré gauge theory.



system governed by new general relativity, exact solutions
of the gravitational field equations will greatly contribute
to these problems. Unfortunately, exact solutions of new
general relativity have not yet been studied with sufficient
generality because of complexity of the gravitational field
equations. A static and isotropic solution was found by

14> They also showed Birkhoff’s

Hayashi and Shirafuji.
theorem of new general relativity. Other types of
solutions, for example, axially symmetric solutions and
cosmological soclutions, etc., had not been discussed until
1981.

In this paper, a series of theoretical efforts of the
present author for finding exact solutions in several cases
are summarized and examined in details. Here stationary and
axially symmetric so]utions,lé) homogeneous and isotropic

7) 18)

. 1 . . .
solutions, and homogeneous and anisotropic solutions
*)
are discussed.

I+ should be emphasized that our stationary and axially

symmetric gravitational field couples with intrinsic spin of

the system. This is the most characteristic point of new
general relativity. On the other hand, we are interested in
cosmological models of new general relativity. It is very

important to examine whether homogeneity and isotropy are
compatible with the absolute parallelism. UWe shall answer

this question and show that new general relativity leads to

*) Prototypes of these solutions in general relativity have

been studied by many peop]e.19)



"Friedmann type' metric in this case. In the early
universe, we cannot postulate apriori the isotropy of the
universe. The simplest models of the homogeneous and
anisotropic universe which we shall call ‘Kasner type"
universe are obtained.

In order to prepare for the present work, we briefly
review new general relativity in § 2 . In § 3 , the
stationary and axially symmetric solutions are discussed.
We examine the homogeneous and isotropic universe in § 4 ,
and the Kasner type universe in § 5 . The last section is

devoted to summary and discussion.



§ 2 New general relativity

2-1) Gravitational field equations

In new general relativity, fundamental entity is
k

parallel vector fields, bk = (b u} , with those inverse,
*

bk = {bku} . ) The metric tensor =Py is defined as

o, =7 _ b<pm (2.12)

“y km 7l VIR
with its inverse,

My _ _km v
g = " M V. (2.1b)

Here nkm and ka are the metric of the Minkowski spacetime:

2, = 2™ = diag(-1,1,1,1) . (2.2)

We use gﬂv and g U for raising and lowering the Greek

M
indices, and ka and nkm for raising and lowering the Latin
indices, respectively.

Spacetime of new general relativity is the Weitzenbock

spacetime endowed with absoclute parallelism for the internal

Lorentz frame as

Db™ =0 , (2.3a)

*) In this paper, we use Greek letters for world indices and
Latin letters for internal Lorentz indices labeling the
parallel vector fields. The middle part of the Greek
alphabet, 2, 4, v, -+ , refers to 0, 1, 2 and 3, while
the initial part, a, 8, 7, -+ , denotes 1, 2 and 3. In
a similar way, the middle part of the Latin alphabet, 1,
i» ky =+, means 0, 1, 2 and 3, while the initial part,

a, b, ¢, - , denotes 1, 2 and 3.



or equivalently,

k - k yi k _

Dvb u = aub P r ﬂub 1 o . (2.3b)
From this equation, the affine connection rxuu can be solved
as

A _ A le
r o bk 8vb P (2.4)

Curvature tensor field and torsion tensor field are given by

p - p _ o P A _ P i -

R c.rm)(r) = a,ur ov aur ou + T iur ov r lur o U 0,
(2.5)

A =pk _pt (2.6)

Ky MY Vi

Here we use (2.4) in (2.5), which leads to the identically
vanishing curvature.

From a gauge theoretical point of view, translation

k k k

gauge fields ¢ are defined by c = b 40 and the

73 /] u’
torsion field i1s regarded as a field strength.
The line element ds in this spacetime is represented as

2 _ 73NV, ‘
ds™ = gﬂvdx dx . (2.7)

Orbits of a freely falling point particle are given by the
geodesic equations:!
o} j ds =0 , (2.8a)

or equivalently,

2 2 y7) v
d % A dx” dx~ _

with (iu} denoting the Christoffel symbol and d/dt
representing differentiation with respect to a proper time T
along the trajectory of the particle.

In order to construct gravitational Lagrangian LG ., we

require that LG is quadratic in the torsion field besides a



cosmological term, and that it is invariant under general
coordinate transformations, under ‘global,’ proper and
orthochronous Lorentz transformations, and under parity
operation.

For the general form quadratic in the torsion, it is

useful to decompose the torsion field to its irreducible

parts,
£, ET, 4T )+ iig, votg. u,-2g, v ) (2.9a)
Ay 2 AMY Uiy 6 Av u SuuT i Ay ’
hond l
vy = T g (2.9b)
=1 vpea
a, =5 SuupaT , (2.%c)
with auupo being the totally antisymmetric tensor normalized
as €gy55 = -v-g .

The gravitational Lagrangian L[3 is given by

L. = a (tlﬂv

5 1 tom) az(vﬂvﬂ) + a3(a“a ) - A . (2.10)

M

Here a4 a5 and ag are parameters which should be determined
by observations and A is a cosmological constant. To
clarify difference from general relativity, we rewrite the

expression (2.10) as the following way,

= 1 A 7 u
LG = 5 £ R({>) + 2c1(t tluu) + 2c2(v v#) + 2c3(a au)
- 2xkA 1 + (total derivative) s (2.11)
where
- 1 - _ 1 = 3
The symbol x represents the Einstein constant; x = 8xG , and

R({}) denotes the Riemann—Christoffel scalar curvature

A

uu} . Finally,

constructed from the Christoffel symbols ({

the gravitational action IG is given by
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Yy, /]

=t (A /=
IG = 5. jd xvV—gl R({>) + 2c1(t tlﬂu) + 2c2(v VM)
+ 2c3(auau) - 2kA 1 . (2.13)
Next, we turn our attention to matter fields. In the

Weitzenbock spacetime accompanied with the absolute
parallelism, covariant derivative for the Dirac spinor field

¢ is represented as
Dl¢ = 81¢ R (2.14)

because of the requirement (2.3). Lagrangian LD for the
*
Dirac spinor field ¢ is given by

LD = 2 k {¢T D ¢ (D ¢)T ¢} - moy (2.15a)

or equivalently,

L = £ camrRy -9 BT “r - 22 77750 —mdw , (2.150)

i
D 2 k
where Vﬂ is the fTormal covariant differentiation of the

spinor field, -

= i 1]
?ﬂw = (3# + 5 Aijﬂs y ¢, (2.165
with respect to the Ricci rotation coefficients Aiju s
A . = b Ha. LT T T D) (2.17)
ik k 1Ju - 2 ik i1k k1 ’ '
and the generators of the Lorentz group st ,
std = 3 crt,791 . , (2.18)
The DBirac equations are written as
¢ ib Tk(D + i,y -m>e=0 (2.19a)
k 2;4 * *

*) OQur convention of the gamma matrices is as follows:

cri iy = — opid 5 . ;,0.1.2.3
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or equivalently,

Louko _ 3 . Sk _ _
< 1bk 7 V# 73T T m>¢e=0 . (2.19b)

From this equation, new general relativity predicts spin

pressesion of the spinor Field:ld)

D _u _ Auy_ L AVi

ar s = (A A )ulsv , (2.20a)
or equivalently,

V_ 4 _ _ 3 _uvpo

37 ° > € u,a,S, (2,20b)
with su representing the spin vector and u, denoting
four—velocity of semi-classical wave packet. Here D/dT =

uﬂDﬁ and V/dt = uMV# mean covariant differentiation along
the classical trajectory x*(1) which is given by the
geodesic equations (2.8b).

Next, we study the Yang—-Mills field Aﬂ = (Aau} whose

*
field strength F = (F? > should be defined as )
Y J2A0)

Fﬂu = BﬂAV - 8UAﬂ - aEA#,Av] s (2.21)

where a is a coupling constant. The Lagrangian LYM for the

Yang-Mills field i1s quadratic in the field strength Fﬂv .

_ _ 1 —uy
LYM = a F Fﬂu . (2.22)

Equations of motion are given by
vUF“” - atAU,F“”J = ;% (2.23)

where ju represents a source current. This i1s just the

*) If we define the field strength,
Fﬂu = DMAU - DUAM - aEA#’AU] ,

it is not gauge invariant. Noticing that 8HAU—BUAM is

also a tensor, we therefore adopt the definition (2.21).
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Yang—Mil1ls equations in general relativity.

A total action is a sum of the gravitational action
IG and matter action IM which is an integration of matter
Lagrangian LN . Variating the total action 1 with respect

to the parallel vector fields bk we obtain the

u !

gravitational field equations:

14 = g®V((3) + 2D, FAVA 4 o, PV o oMV | MY - o piu

2 2
(2.24)
where _
C
gVl = mvd_ iy (gﬂuvl_gulvv) _ 3 cHvie
1 2 3 p
= - pHv (2.252)
i - m & -Pvi v “pr i wp
D,F = 8F R LA RN o S , (2.25b)
A = pPOM v L queoph i (2.25¢)
po 2 pa .
- = Ay u i - :
L™ = Cl(t tluu) + c2(v vu) + c3(a a#) N, (2.25d)>
TH = (1/¢35>nkaj# B(VCELM)/Eka . (2.25¢)

Here the tensor G“V({}) is the Einstein tensor of general
relativity which is made of the Christoffel symbols. The
tensor TMU denotes an energy—momentum tensor of the matter
fields, which is respectively defined for the Dirac spinor

field and for the Yang-Mills field as

me _ 1 veg ko, gk My
T8 = - 5 b Y@ ofe-fdrrer + My (2.26)
Tow = F#PFY9g + gL (2.27)

YM oo M
It should be noted that the gravitational equations (2.24)
are in general asymmetric for the indices # and v , which

allows the spinor field as a source of gravitation.
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2-2) \UWeak field approximation

In order to consider physical meanings of solutions of
the gravitational field equations (2.24) in case they being
found, we can derive useful information from the weak field
approximation which we here discuss. In the weak field

approximation, the parallel vector fields bkﬂ can be written

as
k

b = 8 + a s ( la 4 <15 . (2.28)

In the lowest order of aku s the Greek indices cannot be

distinguished from the Latin indices: We adopt the Greek

indices,
b =7 +7_ a° . (2.29)
Hu P15V P71 Y
Here we use the Minkowski metric nuu and nuu for raising and
lowering the indices. We shall decompose the fTield aﬂu into
its symmetric and antisymmetric parts,
a, =:1h +aA (2.30)
Ju 2 " uv w
with hﬂu = hvu and Auv = - Auu . The metric tensor gau
is given by

Ly Hy y22v
By substituting (2.30) into (2.24) without the
cosmological constant A and keeping only the lowest terms,
gravitational field equations for h#u and Aﬂu are given as

]
follows:

*) In this paper, we express symmetric and antisymmetric

parts of a tensor T'LLu as T(Mv) = % (THU+TUH) and
TE“U] = % (TﬂU—Tuu) , respectively.



~1h-

D PN Ay 1,4 Loy =PV, Vo OU
2(1-3¢ DOR® + 2(1-2¢,+c,) (a%a FPV+8Va RPH
_ 1. mapo- 1 M= H Vi
S, +2c,07™5P5°R - S, +ey) (n*VOR-0%0VR)
+ (cyrey) (%9 APY+aYa AP = KTV (2.32a)
1 Mo —PU —PU 4 1Y
2(cl+c2)(3 8, FFV-8"8 R**) + (cy-3egdmA
+(c Y84 APV-3Y5 APH) = eTEd (2.32b)
ot 9 3
. _ 1 gy Y
where hﬂu = hﬁu 2W h and h h o h P h .

It will be found that these equations are very important to
understand physical meanings of integration constants in

obtained exact solutions.
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2-3) A static and isotropic solution
A static and isotropic solution in vacuum in new
general relativity without a cosmological constant A has

18 1his

been obtained by Hayashi and Shirafuji.
gravitational field is induced by a static, isotropic and
spinless source localized at the origin.

From the discussion in Appendix A, 1f we require
isotropy of space, it is possible to find a set of
coordinates, xO = t and x% , of which the parallel vector

. k . . )
fields b y are form invariant under space rotation,

~O 8 -a _ c
X = Raﬁx , b =R_ b~ , (2.33)

ac
where R = (R 5,2 = {R ,2Y is a constant 3 x 3 orthogonal
aB ab

matrix,

RR"=R"R=1 , det R =1 . (2.34)

The most general form of the isotropic parallel vector

fields bkM can be given by

o
i C G *—
K r
b u = a a o 8 (2.35)
xZ x”x x_
H r Daaa +E r2 * FeaaB r
with r = (xaxa)l/Z and 8aaﬁ being a totally antisymmetric

tensor of the 3 dimensional Euclidean space normalized as
E403 = 1 . The functions, C, D, E, F, G and H, depend on t
and r. By a suitable redefinition of t and r, the parallel

vector fields (2.35) are reduced without loss of generality

to the form,
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-
]
O

ok = g (2.36)

x_ X
H r Déaa * FaaaB r .

By assuming the parallel vector fields static, the
functions, C, D, F and H, depend only on r. If we impose
time reversal invariance for the parallel vector fields, the
function H should be vanishing. If we further require
form invariance of the parallel vector fields for space
inversion, F should be also vanishing. This means that
macroscopic spin polarization § of the source of gravitation
is negligibly small. It is reminded that the spin § is
changed to -$ by the space inversion. Finally, by rewriting
C and D as vA and vB », the parallel vector fields are

reduced to the form,

y W VA S 0
b, = k (2.37)
0 vB 5_, )
By substituting (2.37) into (2.24) in vacuum with
A =0 , the gravitational field equations are given by

E(A”/A)" + (1-2)(B"/B)” + % Ce(A”/B)+(1-26)(B”/B))

+ %(A’/A)z + Z(AT/A)(B7/B) + %(1—45)(8’/8)2 =0, (2.38a)
(1-2e)(A"/A)" + (B"/B)~ + % C(1-26)(A"/A)+(B"/B))

+ %(1—3a)(Af/A>2 + e(A"/AY(B"/B) = 0 (2.38b)
(1-28)(A"/B)" +(B"/B)" - %-{(1—28)(A’/A)+(B’/B)}

+ %(1—45)(A”/A)2 — (1-3£)(A"/AY(B"/B) - %cs’/B)2 =0,

(2.38c)
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where

E = (cl+c Y/ {(1+c, +Ac

2 1 ) (2.39)

2

By demanding the boundary condition,

Tim A(r) = 1im B(r) =1 , (2.40)

= | e

the solution of Egs. (2.38) are obtained by

Alr) = (1-a/pr)P(1+a/ar)™ 9,
B(r) = (1-a/pr)? P(l+asqr)?™e - (2.41)
where
P = ti=— (V(I-s3(1-de) - 2> ,
= 2 (A1-e)(1-de) + 2¢> . (2.42)

9= 15¢
Here a is an integration constant with the dimension of

length and € is assumed as & < 1/4 .
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2-4) Comparison with observations

We consider meaning of the constant & and restrict the
parameters €4 and €5 by the Newtonian limit and solar—system
experiments. The constant a is restricted to the mass of
the isotropic and non-relativistic source at the origin with

00 >> ITasl ~ 0 . By the use of the expression (2.37) in

T
Eagqs. (2.32), the equations in the weak field approximation

are given by

- (l+c,+4c,)C £A™" + (1-26)B7"
+ é{eA’+<1—2a)B’} 3 = 790, (2.43a)
(1-2¢)A" + B =0 , (2.43b)
in which only T00 is taken into account as localized static
Souurce.
The solution is given by
o 2 oM |
Alr) =1 (T-e)(1-4e)(i+c, +hc) r (2.44a)
_ 2(1-2¢) GM
Blr) =1 + (T-)(1-4e)(1+c,*4c) r (2.44b)

where G is the Newton constant and M represents the mass of
the source centered at the origin,
M = 4x f 7002 4 ., (2.45)
On the other hand, Newton's law of motion demands
- A = — GM
because of the geodesic equation (2.8b). By comparing

(2.44a) with (2.46), it should be require that
(1—8)(1—46)(1+c1+dc2) =1 , (2.47a)

or equivalentiy,
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dcl + Cs + 9c1c2 =0 . (2.47b)

In terms of the parameter & defined by (2.3%9), = and Co

satisfying (2.47) can be written as

_ de

c. = — ——2
1 3(1-¢>
From this restriction, the parameter a is related to the
mass of the central source as
a = GM . (2.49)
The final form of the static and isotropic metric of new
general relativity is expressed by

2 2

ds® = - (1-GM/pr)P(1+6M/qr) “dt

+ (1-GM/pr)2 P (1+6M/qr )27 9gx%dx® . (2.50)

It should be noted that in the case with & = 0 , (2.50)

reduce to the Schwarzschild metric,ZO)
2 _ _ [1-GM/2r)2.,.2 4. a, o
ds® = [I:§ﬁ7§:] dt™ + (1+GM/2r) dx dx s (2.51)

because of the definition (2.42).

By the use of this metric (2.50), several comparisons
with observations such as, for example, solar deflection and
periherion advance, etc. , have been discussed. &11 the

21)

known data have been consistently explained by a choice

of the parameters ,

cq = 0.001 £ 0.001 , €y = = 0.005 £ 0.005 , (2.52a)
namely,

e = - 0.004 = 0.004 . (2.52b)
It is very small. This is the reason why a special case

Cy = €y = 0 (or ¢ = 0) is discussed.
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2-5) The case with Cq T €y = 0

It is important to discuss a special case with €y = ¢y
= 0 because the framework is somewhat different from the
case with €4 # 0 # Cs -« The notion of the absolute
parallelism is extended in this case. In the weak field
approximation, definite particle picture can easily
obtained.
In the case with cqy = c2‘= 0 , the gravitational action

(2.23) is reduced to

I (a”au) - 2xA 1 . (2.53)

= 5% fddx V=5 [ R(CY) + 2cg4

G
It should be noted that this action is invariant under a
restricted local Lorentz transformation which preserves the
form of the axial-vector field a, - By dividing the
gravitational field equations intoc symmetric and anti-

symmetric parts for the indices 4 and v , they become in

this case,

PAY = G*Y((3) + K¥ + xag® = LT | (2.54)
Q™ = bi”bj“apchS'Jin> = avDg TEA (2.55)
where
2= 9x/bey (2.56)
S R AP SUR SRVl S S S
- 34 -3 gafa, 1, (2.57)
S = p My VYRR 2 8 e, (2.58)

According to the restricted local Lorentz invariance of the

gravitational action (2.53), there might be a local Lorentz

K (x) = Ak

transformation, b P

(x)b™ (%) , which leaves not
m 22



only the axial-vector field a, but also the gravitational

145,22 This

field equations (2.34) and (2.5335) unchanged.
transformation also does not change the equations of motion
for the gauge fields and the Dirac field.

For example, if a, = 0, a local Lorentz transformation
which preserves the relation a”M = 0 does not change the
gravitaional field equations because they coincide with the
Einstein equations. This local Lorentz transformation cannot
be observed by experiments. Therefore, we can regard these

two parallel vector fields b’k

ﬂ(x) and bkﬁ(x) as equivalent
objects.

In the case with €y T €y = 0 , Havashi and Shirafuji
showed Birkhoff’s theorem in new general re]ativity.la)
They started with the most general isotropic parallel vector
fields (2.36). By substituting (2.36) into the
gravitational field equations (2.34) and (2.533) in vacuum,
Tﬂv = 0 , without the cosmological constant A , the
equations for the functions, C, D, F and H, are obtained.

They found that the axial—-vector field a, should be

identically vanishing i1f the boundary condition,

lim b = & (2.59)
o M y24
is imposed. Then the gravitational field equations are

reduced to the Einstein equations which satisfy Birkhoff’'s
23)

theorem. In the case with €y T &y < 0 , the i1sotropic
gravitational field in empty space with the boundary
condition (2.59) is the "static’' Schwarzschild solution.

Next, we examine weak field approximation. In the case

with €y = ¢y = 0 , the gravitational field equations in the



0o

weak field approximation (2.32) are reduced to

= _ P P Y- N s
Oh (3u8 hpu+aua hpﬂ) + U#UB @ hpo 2xT (2.60)

y70) ()’

_ P - P - _
OA (aua Apu aua Apu) AT . (2.61)

yLy; Cuv]
Here the eguations for the fields Eﬁu and Aﬂu are completely
separated.

Under the following transformations,

Aﬂu = Auv + a#HU - avHﬂ , (2.63)

with Jﬂ and Hu being small functions, the gravitational
field equations (2.60) and (2.61) preserve their forms.
These transformatioms can be regarded as gauge

transformations. Using these degrees of freedom, we can

take gauge conditions,

p—
9 hPf-l

]

o (2.64)

o =
a AP# =0 . (2.63)

Then the field equations (2.60) and (2.61) become

Oh

2xT

Ly - Cuvy ° (2.66)

DA&U = - lTEuu]

. (2.67)
It should be noted that the equation (2.67) represents
coupling of the antisymmetric field Aﬂu with intrinsic spin

of matter because of the Tetrode formula,

-1 .0
Tew1 =5 9 S, (2.68)

with Sﬂup being a spin tensor.
Solutions of (0,a) components of Eqgs. (2.46) and (2.67)

which contain effects of the orbital and spin angular-



~23~

momenta of the matter fields are given by

8.7
- £ x'J (t-r)
hoa(t,x) = In EaBT r3 , (2.6%a)
with
— 3 B.(70)
Ja(t) = aaBT jd x x T (t,x) , (2.6%9b)
and
B.7
_ A x S {(t-r)
Aoa(t,x) = 8z saBT ——Tjg——_- R (2.70a)
with
- 1 3 870
Sa(t) =5 EaBT jd x S (t,x) . (2.70b>

Here the quantities Ja and Sa are the components of the
volume integrations of the total and spin angular—momenta,
respectively. We will utilize these expressions of (2.69)
and (2.70) in § 3 .

Sein and parity of the fields Eﬁu and Auv are 2+ and
0—, respectively. The field va is well-known as graviton
field of general relativity. On the other hand, the field
Aﬂu is a characteristic field of new general relativity.
From the positivity of energy of the field AH , the

parameter i1 should be positive.
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S 3 Stationary and axially symmetric solutions

In this section, we examine stationary and axially
symmetric solutions of the gravitational field equations
(2.54) and (2.55) in empty space with A = 0 . In general

relativity, many people have given axially symmetric

193,245~32)

solutions of the Einstein equations. One of the

remarkable points of new general relativity is that a notion
of intrinsic spin of matter can be consistently included in
the framework of the theory; If there is a source of
gravitation whose intrinsic spin cannot be neglected, the

axial-vector field a“ has a finite value. It is very

interesting to get a solution with non-vanishing axial-

vector field a, - We here obtain stationary and axially

symmetric gravitational fields couplied with the orbital and

- - ..'! ________ + Le S‘y‘s‘tem.

. .
~
ntrins sSein angu

~
i L9

First of all, we shall determine a form of stationary
and axially symmetric parallel vector fields. As for the

general coordinate system, we use the cylindrical coordinate

system with nO = + , nl = nl, n2 = ﬂz and WB = ¢

*
is a polar angle around the direction of b(z) . ) Then the

(2)

,» Where ¢
parallel vector field b is parallel to the symmetric
axis. The axial symmetry of bku is defined as follows:
The parallel vector fields bk are form invariant under the

74

transformation,

" =@ + 50 , (3.1a)

*) In this paper, numbers of the Latin indices are enclosed

in parenthesis in order to avoid confusion.
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b’(l) = b(l)cos 8¢ — b(3)sin 6d
b3 = b Vgin 50 + b cos 50 . (3.1b)
They are given by
KA A E I M
K k Bcos¢p-Dsind Fcos¢-Hsind Jcos@-Lsind Ncosd-Qsind
o c G K P
Bsin@+Dcosd Fsind+Hcosd Jsind+tlcosd Nsind+Qcosd
(3.2)
where A, B, -, P and Q are functions of nl, Wz and t .
We require that the parallel vector fields bkﬂ are
stationary, thus having no dependence on time t . le

further assume that bk# are form invariant under the PT
operation;

= -t , ¢ =-9¢, (3.3a)

t‘-"
-0 = _ 0 (3 L (3 (3.3b)

The parallel vector fields become

s ~

-l Fal 0 0 M
bk - k -Dsing Fcos¢ Jcos¢ -Qsing (3.4)
# 0 G K 0
Dcose Fsing Jsing Qcosd s
where A, D, ---, M and Q depend on ﬂl and 02 + Using a
freedom of coordinate transformation for nl and nz , wWe can

take the metric guu constructed from (3.4) as
941 T 9pp 940 = o . (3.5)

Then the parallel vector fields bku can be written as

( 3

1 A 0 0 M
k  _ k -Dsin¢g Ccosucos® Csinucos¢® -Qsing
b z = (3.6)
0 -Csinu Ccosu 0
Dcos¢® Ccosusin® Csinusing Qcoso ’
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2

where C and u are functions of nl and 7 .
Defining new functions, ¥, w, 7, p and ¥, which depend

on ?1 and WZ , we can rewrite the expression (3.6) to the

form,
$ Fl/zcosh% 0
k
K —F1/2sinh%sin¢ F-l/ZeTcosucosé
b =
M —
‘ 0 - l/?‘e"rsinu
Fl/zsinh%cos¢ F-l/zeTcosusin¢
0 pf V2 0nE - £ 2c0snd
2 2
F—i/zeTsinucos —(Pf—i/zcosh% - F1/2wsinh%051n¢
F_1/2eTcosu ' 0
2.7 nusin (pf—l/zcosh% - Fljzwsinh%)cosé .
(3.7)
From the expression (3.7), the metric becomes the well—-known
PapapetrouZS)— Ernst26) form,
ds? = - f(dt-wd®)? + £ 1re?7C(dnl)2+(dn?) % +0%d0%1.(3.8)

A ]

It should be noted that the functions ¥ and 2 cannot be

vanishing because of
veg = pf 12T >0 . (3.9)

For later use, we show the asymptotic form of ((0),a)
and (a,0) components of the parallel vector fields. In the
asymptotic region far from the central source, our
cylindrical coordinate n* is related to the rectangular

. /4
coordinate x° as

O n® b o pleose, %2~ 72, X3 ~ nlsine. (3.10)
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In this cylindrical coordinate system, the solutions (2.69)

and (2.70) in the weak field approximation are reduced to

bigyr ~ 9 >
gy ~ 0
1.2
1 (n™)
beigys ~ gx (#J*49) 3
1
_ 1 _ 7 .
vb(l)0 ~ Sn (xJ-19) r3 sin® ,
bioyg ~0 »
b ~ =L (xJ-29) nt & (3.11)
(3)0 ~ 8% 3 cos® .
with r2 = (7?1)2 + (n2)2 . Here Qe assume the volume

integrations of the total and spin angular—momenta are in

the direction of b'%)

2

s =8, Jm=J

L +5,

s*=90, J*=o0, (a #2) (3.12)

with L representing a volume integration of the orbital
angul ar—momentum.

On the other hand, the ((0),a) and (a,0) components of
the parallel vector fields (3.7) are given in the lowest

order of the weak field approximation as

bigyy =0 >

gy =0

b ~ = nlx + @ ,

(013

N

N

b(l)O ~ - Z ¥ sind ,
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bioyg =0 >

b(3)0 ~ = X cos® . (3.13)

N+

1

In this approximation, we should take f - 1 and p - 7
because of the functions @w and ¥ being small gquantities.
Comparing (3.13) with (3.11), we get the asymptotic forms of

w and ¥ in the weak Tield approximation as

asy X (7?1)2
1) ~ In (L+S) —3 (3.14a)
r
asy K nl
X ~ In CL+(1-1/x>S1 ;§ . (3.14b)
Now, let us look for exact solutions. Substituting

(3.7) into the gravitational field equations (2.54) and
(2.35) with A = 0 , we obtain the field equations for the

symetric part,

_ _ 2 2
pPO0 — o727 [ p 72 y @ By L ya-0 , (3.15a)
e p2 e

03 _ .30 -27 1 20
p03 - p30 _ o ctk+82, -9 , (3.15b)
20 92
33 27 £2
o
w2
pll , p22 _ 47 g_ N=0 , (3.15d)
11 22 —47 §£2
Pl - P22 =2 L p =g (3.15e)
12 21 —47 £2
pl2 - p21 _ Fw=0, (3.15¢)
Other components = 0 . (3.15g)

and for the antisymmetric part,

30

_ I
Q = Q = 55 U o , (3.16a)
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l? = - @21 = % TRy, (3.16b)
)
Other components = 0 , (3.16c)
where
2. f > gt 2
I = fV2F + L yovf - (9802 + = (v
e 92
P (a, 30 L a5 8@, g (3.17a)
12 1 gyl 2 5,2
— F2 X 7 P4
K = ¥« e Vo ) - T { ;§ e coshi ( Alcosu + A2sinu )
sloa o B o5 A, 224 a 88y 520,
o 1 gl P2 2 2 1,1 2 5.2
(3.17b)
_ 2
Lzvir + L2992 4 L8 v+ £ ¢ L a2+a2)
z 3 1 > 1 2
, p dp
1 a1 a1
5o 1 5ol 2 5.2 _
NZvp - 2L 70i0hd (A cosu + Assinu ) = 0 (3.17d)
- AP 2 1 2 ’ ¢
- 1 829 azp ar ap ar ap
T 12 o2t T 1" -3 .3
(an™) (am™) an- am anT axn
_ 2
- Lo (EEn? - (2, 4 L E— ¢ B2 - (222,
an an an’ a
X 1 w Jw
e LE o, 80, o,
1 i 1 gl 2 402
+ % ¢ A, Qli-- A, 915 y>Y=0 |, (3.17e)
an am
2
H = - alp 5 + apl 372 + apz 871 y - % pg 2 QfT Qig
an-an an- an an- oam an- an
2
an~ an an an
+ % ¢ A §l§ + A, QlT Y Y =0, (3.176)
am am
3A 3
U = ——% + ——% -1 eTcosh% ( Alcosu + Azsinu ) =0 ,(3.17g)
an an P .
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v = sinh% ( Agsinu - Ajcosu ) = 0 . (3.17h)
Here ¥ is the two dimensional gradient operator, (—Q—, —Q—),
anl’ am?

and Al and AZ are related to the axial-vector field aa as
1 1 R w 3%
a, = — 5= A, = - 5= ( 2’ sinh% sinu - f =& + p == ) ,
1 3 2 3p 2 an2 3n2
(3.18a)
1 - 1 T . ¥ oW aY
8, = == A, = 5= ( 2e'sinh% cosu - f — + p =—=— ), (3.18b)
2 30 1 3p 2 Bnl a.‘?1
ag = ag = 0 . (3.18c)

Combining (3.17g) with (3.17b), we obtain

U

~
]

K -

N
v |b

¢ ‘QI(
an

A,

2) > =0 . (3.1

8
A+ =5t

£
= °

= g I - f
= V( Vo) )

©
b by

1

The equations (3.17e) and (3.17f) are not independent of the

others by the relation,

aF1 .\ 8H2 _ % altN] . aTltN] . apitL] .\ % am1EK3
am an an am an am
an an an
+ QETEV] =0, (3.20a)
an
- s e - 5 Doy v Iy« B8+ L 22y
an on an an an an
an am an
+ QH§£VJ Yy =0 . (3.20b)
3
T)
We now take notice of Egq. (3.17h). It requires

Alsinu - Azcosu =0 , (3.21)

or
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i

P4 o .

We examine these two cases separately.
(1)

The case Alsinu - Azcosu =0

Using the asymptotic form (3.14) in (3.18)

the limit £ -1 and 7 - 0 , the functions Al
expressed 1n a region far from the central body
aAZSY o _ AS ¢ 2 Ei _ 3 (n1)3 3
1 an 3 5 ’
r r
pA2SY o 3 AS (Ul)znz
2 Am r5 *

Here the function u seems to vanish in this far

Hence, from (3.21), it should be satisfied that
|A2l » which is inconsistent with (3.23) except
In the exceptional case with S = 0, or with
Al = 2eTsinh% cosu - f QQT + p QLT =0 ,
an on
AZ = 2eTsinh% sinu — f QQf + p QLE =0 ,
on an

the gravitational field equations (3.17) are reduced

those of general relativity:

A
#v2f + Lgove - (w2 + L vy?2 =0,
) 0?2
: 2
W -
w vy =0,
2 1 .-2....2 1 f2 2
v2r + L e 292 + L (9?2 =g
a L2
v2p=0 ’
-1 829 - 82p y + ¢ 81_382 31 _23dr
2 (a2 (9792 anl amt  am? gn?

(3.22)

with taking
and A2 are

as

(3.23)

region.
lAll >>

for S =0 .,

(3.24)

to

(3.25a)
(3.25b)

(3.25¢)

(3.25d)
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- % pF—2{(a<F_1)2 <Qf§>2>
a7 an
1 2 3w .2 dw .2
+ 222 - (2255 =0 (3.25e)
P a7 an
8%p _, 3087, 8 3T, _ 1 -2 3F 2f
1.2 T .2 5 1 5 1.2
an-an an- an oan= an an- an
2
+ le 1;— ail aw2 =0 . (3.25¢)
an an

By taking a solution g = nl of (3.25d), these equations

are reduced to the Ernst equation which has been well

investigated by many people.28)~30)

We expect Egs. (3.24) to have a solution for X and u.

The function Y will be determined by the following equation,

g

2

VoVy + ﬁ-z- (Vo)
p

2

(v + 2 £

]

2 -4 fTsinkd)? = 0, (3.26)
/)

where the functions, ¥, w and 7, are determined by Egs.

(3.25). The existence of the solution for } in (3.26) 1is

not at present well—-known. In the weak field approximation,

however, it 1s given by

asy _ EE_(nl)z

) asy el 7 (3.27)

ax 3 *+ % iz 3
r

We will have to examine the existence of the solution of

(3.26) exactly.

(i11) The case with Y =0
We examine the case (3.22) in which the axial-vector

field aﬂ has the form,

@

w

- fdw_ a
’
3p 7 0

f —
a, 35 5+ A, =0 . (3.28>

@
3
[v2)
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The gravitational field equations (3.17) are reduced to

a4

Y% + % VoVE - (VE)2 + (14x/1) fg Vo)l =0, (3.29a)
p
£2
(/DM vey =0, (3.29b)
2 1 =2,0..2 . 1 £2 2
v2r + L5292 + L e & vn?2 =0, (3.29¢)
7 Z 2
2 _
v2p =0 (3.29d)
1 ¢ azp _ 829 Y o+« 87 _8p _ 31 3p )
27 (a2 (92 anl anl  an? an?
- L2 (EEZ - (8552,
am am |
1 £2 dw .2 dw .2
+ 3 ey T 27 o (8852, g (3.29e)
an an
3%p o 3y . 8p o7 1 -2 3f af
P - S W S S ML L N W
an—an an- 3an am- an an- an
2
+ % (146/2) %— QQT QQ§ =0 |, (3.29F)
anl an
V(fY0) - £ &7¢ QQT cosu + ng sinu ) = 0 . (3.29g)
a7 an

The last equation is obtained from the antisymmetric part of
the gravitational field equations.

If we replace w by

» = 1+ 2%, (3.30)

Egs. (3.2%9a) ~ (3.29f) are reduced to the Einstein equations
(3.23) which have been already solved. Thus our problem is
to find a solution for the function u which satisfies Eg.
(3.29%g). UWe emphasize that Eq. (3.29g) does not include a

derivative of the function u , so we can easily get a
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solution. In the case with @ # 0 , 1t is given by
sin u = 21 5 € YZ % X(x2+y2-72y1/2 1
XE+Y
cos u = 21 > C XZ * v(x2sy2_z2y172 4 (3.31a)
XE+Y
where
X = el QQT , Y = el §9§ , 7= pf lvirve . (3.31b)
an an

Here the double signs in (3.31a) are in the same order.

We consider physical meaning of this gravitational
field. Our solutions couple with the orbital and intrinsic
spin angular—momenta of the system under a special
condition. In the weak field approximation, the functions @
and ¥ are given by (3.14). The condition ¥ = 0 demands the

relation, +
L = (1/e-1) S . (3.32)

In this sense, our solutions might as well be called as
"special’ solutions.

We now examine the function u which does not appear in
the metric (3.8). From (3.31la), the reality condition for
the parallel vector fields is given by

2 2

X2+ ¥2 y 72, (3.33)

*
which may not be always satisfied. ) In the case of (3.33),

*) It might be possible to reformulate new general
relativity so that the complex parallel vector fields
could be accepted. At present, it i1s not known to us

whether such a reformulation is indeed possible.
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|sin ul and lcos ul are equal to or smaller than unity. On

the other hand, in the weak field approximation, the

as
asy | y3SY and 7297

asymptotic functions X are given by

1 1.3
asy _ _X& n (7))
X T= (L + $)C 2 % 3 5 ), (3.34a)
1.2.2
yasy  _ 3%  , gy L2200 (3.34b)
arn PS
1 1.2
7% & 32— 3 &251_ y ~ X3SY (3.34¢)
r r
which lead to
sin u = 1 [ x3SYy3SY , y3sy yasy; j
’ (Xasy)2+(Yasy)2
cos u = 1 [ (x3SY)2 1 yasy|yasy| 7  (3,35)
(x3SY)24(y35Y)2

If we require that u vanish asymptotically, we must choose

the upper siéns in the region ¥ < 0 ( ﬂz > 0 ) and the

lower one in the region Y > 0 ( 02 < 0 )Y . This choice
might break the condition of continuity of the function u .

As an example, we examine the reality and continuity of

u using the Kerr so]ution:zS)’ze) It is given by
2 2 2
_ r =26Mr+a“cos”8
r~+a“cos“8
2GMarsin2g 1/2
w = > > = {(1+g/2) @ , (3.36b)
r°-—2GMr+a“cos“#¢
27 _ r2—ZGMr+a2cos29
r=2GMr+(GM)“sin"8+a"cos" 8 v
p = (r2-26Mr+a2)t%5ing (3.36d)

in terms of the polar coordinate (t, r, 8, ®) relating with

the cylindrical coordinate (t, Wl, ﬂz, @) as



-36—~

Vo (r2-ooMr+a) %5500 (3.37a)

n

2

n (r-GM)cosé@ . (3.37b)

Here G is the Newton constant, M denotes mass of the system

and a is a parameter representing the total angular—-momentum
- -1/2

J of the system as J = (1+x/2) ma .

After numerical ca]cu]ation, we find that the function

u cannot be continuous by requiring lim u = 0 , and cannot
o

be real 1in a region near the event horizon. We show the

region where the parallel vector fields cannot be real, in

Figure. However, a remark should be in order. A certain

class of local Lorentz transformation might have some
relevance on this point. Such a transformation leaves the
axial-vector Fie\d’aﬂ unchanged. If this transformation
reflects an unphysical freedom of the theory, we might
utilize it to save from the difficuity of the paraliei
vector fields. At present, physical meaning of such

transformation is left as an open question.

In the case with # = 0 , the axial—-vector field au
vanishes identically and the gravitational field equations
are reduced to those of general relativity with w = 0 ‘2d)’

29)

From the results of the weak field approximation of
(3.14), L =S = 0 are required. This gravitational field
is created by a source without orbital and spin angular-
momenta. The function u cannot be determined from the
gravitational field equations. We have a freedom of
unphysical local Lorentz transformation which changes u in
this case.

It should be noted that in the region in which a matter
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field exists, Egs. (3.29) might not agree with the Einstein
equations by the replacement (3.30) because of Eq. (3.29b).
For example, it is difficult to find Kerr—Newman type

solutions in which the electro-magnetic field is contained

263,315,32)

as a source of gravitation.
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§ 4 Homogeneous and isotropic universe

In this section, we examine models of the homogeneous
and isotropic universe. Recently, grand unified theories of
weak, electro-magnetic and strong interactions predict that
the cosmological constant A might has a finite value as

33D

energy of vacuum in the early universe. Therefore, we

should consider the gravitational field equations with A .
At first, we construct homogeneous and isotropic
parallel vector fields using the method of Appendix A . In
this case, the metric is given by the Robertson-Walker
metric3d) which takes the following form in a comoving

frame,

2 kxaxB

2
6 L+
aB 1—kr2

ds? = - dt2

8

+ R(t) Ydx%dx” (4.1)

where R(t) i1s the radius of the universe depending only on

2

time and k is a constant with dimension (length) < . Since

the parallel vector fields are isotropic, we can use the

form (2.35). Then we assume the form invariance under space
inversion, x %= - x%and b~ = - b , which enables
(a) (a)
xB
us to drop a term proportional to saaB o in (2.35). The

parallel vector fields which are related to the metric (4.1)

are represented as

1 . o ]
4 sinhy} X
) coshy R —
i i (1-kr2y172
bu: a o
. hy x_x
sinhy R (6 _ + ( —=22 - 1) >
\ aa (1-kr?)1/2 2 ),
(4.2)

where ¥ is an unknown function of r and t to be determined
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by requiring that blﬂ is form invariant under an isometry
and a "global’ Lorentz transformation.
The isometry of the Roberson-Walker metric (4.1)

consists of spatial rotations and quasitranslations:

1/2

-2y , (4.3)

£t =+, x = x + £ g + c%*(1-k

with Bas = - SBa and % being infinitesimal constants. The
infinitesimal Lorentz transformation which compensates an
infinitesimal coordinate transformation to preserve the form
of the parallel vector fields, is given by (A.6) in

Appendix A as

i ip, 1 i W
From (4.3), the Killing vector £¥ is given by
£0 - g, %= o2 B 25V 2 (4.5)

Bx

Substituting (4.2) and (4.5) into (4.4), we obtain

Q1D _

w 0y = c , (4.6a)
b0V Ly 217208 | yeq 2,172 _ sinhy
a (0) r

o x a
x( c? - 9—555— ), (4.6b)
r
ab b a
o = &2+ { (U-krH)Y2 | oehy 3y X TS X (4.6c)
b b r2
Wwith ¥~ representing 8%/8r . In order for wim to be

x—independent, the function ¥ should be chosen as

1/2 1/2

~2) ,  sinhi = (-k)1/2- (4.7)

cosht = (1-k
172

The choice with sinh} = - (-k) r is also possible.
However, this case 1s obtained from the case with (4.7) by

time reversal. So we shall restrict ourselves to the choice
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(4.7), since the gravitational field equations are invariant
under time reversal.
Thus the parallel vector fields of the homogeneous and

isotropic spacetime are given by

. 1/2

. (1—kr2)1{2 R(-k) &
. i (1-k 2)1/2
b = : r (4.8)
4
Ly 1/2 a
| (-k) X R 6aa .

They satisfy the requirement of x—independence of wlm as

(0

@ " gy =0

o) _ a _\1/2.a
o' =0 = ol %R,
a _ _a

If the universe is closed ( namely, if k > 0 ) , the
~ Ti x va?ued,vand aiso
the transformation parameter, @ a and @ (g) * are pure
imaginary. In the present formulation of new general
relativity, the parallel vector fields are assumed to be
real. Therefore, we cannot take (4.8) as the parallel
vector fields if the universe is closed. In other words,
new general relativity with & # 0 seems to be incompatible
with the closed, hqmogeneous and isotropic universe. On the
other hand, if the universe is open ( namely, if k {( 0 ) ,
the parallel vector fields are uniquely determined by the
requirement of homogeneity and isotropy.

In the special case with £ = 0 , however, the situation

is changed and the underlying spacetime which is called the

extended Weitzenbock spacetime allows a restricted local
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Lorentz transformation which leaves the axial-vector field
a, and the gravitational field equations unchanged. On the
other hand, in the expression (4.2), a, is identically
vanishing. As is mentioned in Appendix A, a freedom of
local Lorentz transformation which leaves a, vanishing is
really allowed. Then the function % cannot be determined by
the gravitational field equations and is left arbitrary.
Consequently, although in the case with k > 0 , the
parameter & should be chosen as € = 0 , in the case uifh
k £ 0, there is no restriction for ¢ .
Next, we turn our attention to the function R(t) of
(4.1) which describes the evolution of the universe. We

shall now use the gravitational field equations to derive

the equations for R{t) . At first, we assume that the
parameter & is nonvanishing. Then the universe should be
open.

As for the source of the gravitational field, we assume
as usual that cosmic matter can be approximated by perfect
fluid with the energy-momentum tensor,

T Ly pIav)

= (p + prd*Y + pg , (4.10)

with uu being the four—-velocity of the fluid. In the
comoving frame, it is given by

100 =5, e g0 g, qaB_ B (4.11)

where p and p are functions of time t denoting the energy
density and the pressure of the perfect fluid in the
comoving frame.

Using (4.8) and (4.11) in (2.24), we finally get
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00 3 RZ + k
I = - xA = ko, (4.12a)
1-4¢ R2
a2 _ 120 _ g | (4.12b)
af 1 2R|.2 + é2 + k aB a8
I = [- =4 > + xA Jg = kP g y» (4.12¢)
€ R
or equivalently,
R? + k = L (1-de)(p + MRZ (4.13)
2RR + RZ + k = — x(1-4e)(p - AIRZ . (4.14)

These equations give the conservation law of energy,

gﬁ CCp + ARSI = - 3(p - AIRZ . (4.15)

We can take (4.13) and (4.15) as the independent equations.
The equation of energy conservation (4.15) is also satisfied
in general relativity and, therefore, (4.13) characterize

1d e

. | IR I
quatlons O'F new gener‘al TEIAaTiVITY .

the gravitational i

4

These equations (4.13) and (4.15) are reduced to those of
general relativity with a cosmological constant by replacing
the Einstein constant x as £ = (1-4ed)x . Since the
parameter £ is expected to be very small, new general
relativity gives homogeneous and isotropic models of the
open universe nearly the same as those of general
relativity.

In the case with A = 0 and p = 0, or A = 0 and p = p/3,

35) In

the solutions are the well-known Friedmann models.
the case with A > 0 and p = o =0 , it is called the de

36) Here we can get the homogeneocus and

Sitter universe.
isotropic solutions of new general relativity with € # 0 .
When the parameter £ is vanishing, the underlying

spacetime i1s the extended Weitzenbdck spacetime. The
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function ¥ of (A.2) is left undetermined. The gravitational
equations coincide with those of general relativity. New
general relativity with ¢ = 0 thus gives same homogeneous
and isotropic models of the universe as those of general

relativity.
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§ 5 Kasner type universe

In this section, we examine models of the universe
which is homogeneous and anisotropic. UWe now observe that
the present universe is isotropic with high accuracy. In
the early universe, however, we do not know the isotropy of
the universe. In general relativity, one of the models of
the anisotropic universe is the well-known Kasner solution.
Here we study this type of the universe in new general
relativity. For forthcoming applications of the Kaluza-

373,38)

Klein theory, we consider solutions of new general
relativity in n+l dimensional spacetime. Short review of
n+l dimensional new general relativity is given 1in
Appendix B'.

We restrict ourselves to diagonal and space—independent

- CRURE RN
i ‘F;ciu::‘,

o 1 0
b = k (5.1)

exp la(t) 5aa ’

where the indices a and ¢ run from 1 to n. The functions la
depend only on time. We shall call the form (5.1) "Kasner
type" parallel vector fields. This spacetime is spatially
homogeneous.

We substitute the expression (5.1) into the
gravitational field equations (B.9) without matter fields to

get the equations for la as

1 2 2 3 2.2 _
S0 - (1-3c,) Z (L) + (1-=_+2c X 2 2> 1 - xA =20,
2 1 a=1 & n 1 2 -1 &
(5023)
L 3 * n . 1 n L] 2
(1-3c, )L A + A Z A, - =2 (2,071
1 @ ag=q 8 23=1 B
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n * & n *
m (43¢, 42e 00 T A, v+ X s a1+ xA=0 ,  (5.2b)
n-1 2 =78 2 .-, B
8=1 g=1
where the dots represént derivatives with respect to t . At

present, we have no way to restrict the values of 4 and €5
in general dimensions. In view of the fact that Icll and
lczi are both known to be very small in the case of n = 3 ,

we hereafter postulate

1 -3c, >0, 1-2¢c +2c.>0. (5.3)
n “1 2

1
We take summations over o« in (3.2b),

N LR

n L] 2 n ) 2
(1-3e )L £ 2+ ( £21)° - % £ 41
a=1 a=1 a=1
_ 3 (2 TP 1 R o5 7 _
(1-=c,+2cA)NC 2 2 + =2C 2 A X" 1+ nekAh =20 . (5.4)
n 1 2 a=1 & 2 =1 fod

Using (5.2a) i1n (5.4), we get the equation,

o la)z
1 =1

A+ ( = 2neA/C(n-1)+2nc,J . (3.5)

2

M2
i ™MD

14

The spacetime is classified by the sign of the cosmological

n .
constant A . Solutions for z i are obtained as
a=1
for A =0,
n . B
(i) zZ A =0, (5.6a)
«a
a=1
N . 1
(11) E la = 33 ° (5.6b)
=1
for A > 0 ,
n oo
(1) 21 =4+20 , (5.7a)
a
a=1
n .
(11) > la = 2p coth(2pt+d) , (5.7b)
a=1
n .
{(111) 2 A2 = 2p tanh{(2pt+d8) |, (5.7c)
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for A< 0O,
n .
(i) 2 A =% 2p1 (5.8a>
o
o=1
n .
(11) z la = 2p cot(2pt+d) , (5.8b)
a=1
where
p = [ nelAl/20(n-1)+2nc,) 1272, (5.9)
with 8°s being integration constants. Using constant
transformations of time t , we can take d = 0 without loss

of generality. Here we consider that the universe begins at
t =0 , except for (5.7a) and (5.8a). The solutions (5.7c)
and (5.8a) lead to complex valued parallel vector fields.

We discard these two cases because we consider real
spacetime.

Inserting (5.4)~(5.8) into (5.2Z2a), we get the

N .
expressions of > (A ) s
[# 4
a=1
for A =0,
n.2
(i) S (AN =0 , (5.10a)
[# 4
a=1
n o . 1-(3/n)c, +2c _
(ii) T (1% = 1t 72 2 (5.10b)
- o 1-3¢
a=1 1
for A >0 ,
n v o a 2
(1) S (2 ) = - (5.11a)
T, T n
a=1
AN S 3 2
(ii) £ (2% = =B — [ (1-2c,+2c,)(coth 2pt)
- @ 1-3c n 1 2
a=1 1
- L ctn-1r+2mey 1, (5.11b)
n 2
for A< O,
(1) T (12 = _4p® [ (1-3c.+2c.)(cot 2pt)2
11 « 1-3c nC174Cp/tcot <P

=1 1
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+ L C(n-1)+2nc,> 1 . (5.12)
N

The expression (5.10a) leads to

la = constant , (5.13)

representing the n+l dimensional Minkowski spacetime.
Substituting (5.6)~(5.8) and (5.10)~(5.12) into (5.2b),

we get the equations for each la as

for A =0 ,

(i) 1+ X2 =90 , (S.14)
x t @

for A > 0 ,

(i) 1 % 201 - 4p3/n = O (5.15a)
o o ’

(ii) 2 + 2p(coth 2pt)1_ - apl/n =0 , (5.15b)

for A< O,

(i) A + 2plcot 2pt)A_ + ipl/n = 0, (5.16)

solutions of (5.14)~(5.16) are given by

for A =0,

, P
(11) la = log t + Ta R (5.17)
for A > 0 ,
(i) 2 = 2Bt 4 o exp(~2pt) + T (5.18a)

e n « a ! :
2
A n Ja
(11) la = Jog (sinh pt) " (cosh pt) + Ta , (5.18b)
for A< 0,
2

. . Sa n S
(11) la = log (si1n pt) “(cos pt) + Ta . (5.19)
where U and Ta are i1ntegration constants. Using constant

. . o
scale transformations of the coordinate x, we can take
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T = 0 without loss of generality. The solutions are
considered to be realizable while -= < t < = for (5.18a),
t >0 for (5.17) and (5.18b), and 0 < t < =n/2p for
(5.19). In (5.18a), we choose expanding universe, taking
the upper sign of (5.7a).

Substituting the derivatives of (5.17)~(5.1%9) into
(5.6)~(5.8) and (5.10)~(3.12), we find that the constraints
for a, should be irrespectively of the signs of A ,

n

[}
Zqgq =1, z (g )
a=1 & a=1 &

1—(3/n)c1+2c2

1—3c1

2:

(35.20)

except for the solution (5.18a). In the case of (5.18a), a,
should be vanishing.

The parallel véctor fields are given by

‘For‘ A = 0 ’
. Kk ok )
(i) b u = é_u ’ (5.21a)
o 1 0
(ii) b%, =8 a, " (5.21b)
0 £ %5
ax ,
for A > 0 ,
o 1 0
(1) b, =k (5.22a)
! 0 exp{2pt/n) 6aa ,
of 1 0
(ii) b< =K 2 (5.22b)
K U n S
0 (sinh pt) {cosh pt) o]
. ac 14
for A< O ,
1 0
(ii) b< = 2 (5.23)
“ q =-q

. o n oo
0 {sin pt) “(cos pt) 6aa ’
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with the condition (5,20) and the definition (5.%9). OFf

course, our solutions include those of general relativity

with a cosmological constant as a limiting case of cq = co
=0 . The solution (5.21b) corresponds to the Kasner
solutionsg) in general relativity. The solution (5.22a)

should be called the de Sitter universe36) in new general
relativity. It should be noted that this solution was
obtained in § 4 by assuming the homogeneity and isotropy of
the universe. In general relativity, the solutions with

A # 0 like (5.22b) and (5.23) were discussed by Saunders.dO)

The solutions obtained above are classified into two
cases as whether space is isotropic or not. The cases (i)
are isotropic. In the case with A < 0 , there is no real
isotropic solution having the expression (5.1).

Hereafter, we mainly discuss the solutions in 3+1
dimensional spacetime. As already mentioned in 8§ 2 , the
condition (5.3) seems to be reasonable in 3+1 dimension. UWe
should take n = 3 in the expressions (5.21)~(5.23). In
terms of the parameter & , the definition (5.9) and the

constraints (5.20) are respectively expressed as

p I L 2 (1-de)xlAl 172 (5.24)

3 3
- 2 _ 1-2¢
T g =1, azl(qa) = 1"a: * (5.25)

In the constraints (5.25), all the three parameters Ay
cannot have a same value, exept for the case with &£ =1
which is inconsistent with (2.52). When two of them have a

same value, they arc given by

— 1 -, (1= }1/2 .1 1-¢ J1/2
a = ap, = 3 C1 [T:EE} 1, Aq = 3 E1+2(I:ZE} 1 ,(5.26a)
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_ 1 1 e \1/2 _ 1 1 1-g 1/2

When all of them are different, they are restricted in the
region,

% E1—2[ }1/2 ( }1/2 ,

1 1-¢ 11/2 1 {1 )1/2

3 [1- (1 an d ey Sy

i 1-¢ (1/2 1 1-g )1/2

3 E1+[1 py ] 1< Ag < 3 E1+2(1 0z } J. (5.27)

Here we assume without loss of generality, ay < A, < a5 or

Ay < a5, £ ag
For (5.21b) with n = 3 and A = 0 , in the case with
e = 0 , distances parallel to two of three spatial axes must

expand and those parallel to another axis must contract
W

except for (5.26a). ) However, in the case with ¢ > 0 ,

distances parallel to one of three axes expand and those

parallel to the other axes contract for the condition

(5.26a). In the case with ¢ < 0 , distances parallel to all
the axes expand for (5.26a). In general relativity, there
is no solution of these two types. Developments of the

other universes with A # 0 can be easily examined.

Finally, a comment should be noted. We are mainly
considering the anisotropic space in the early universe.
However, mechanisms such as quantum mechanical back reaction
which suppress this anisotropy in the development of the

A1) his

early universe have been discussed by many people.
problem should be reconsidered in the framework of new

general relativity.
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Footnote to p. 50
*y In the case with € = 0 , the condition, g, = a5 = 0 and
1 2
ag = 1 , leads to the following line element,

2 2 2

ds®™ = - dt“ + dx™ + dy2 24,2

+ t°dz" .
By the coordinate transformation,

T=tcoshz, §=x, 7=y, {=+tsinhz,
the line element is reduced to Minkowskian. Then the

parallel vector fields become

r 5

; /(222 g g —gs(P-g?ylse
bkﬂ ) 0 1 0 0 8
0 0 1 0
Lr(2-tH2 g ¢ T/(T2-¢2y1/2 J

Furthermore, new general relativity allows a restricted

local Lorentz transformation which leaves the

axial—-vector field a vanishing.ld)’zz) Due to this

n
local Lorentz covariance, the parallel vector fields (#)

can be regarded as to be equivalent to bkﬂ = ﬁkﬂ .
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§ 6 Summary and discussion

The geometry underlying new general relativity is the
Weitzenbdck spacetime imposed with absolute parallelism.
This spacetime is characterized only by the torsion field.
The gravitational field equations which are derived from the
gravitational Lagrangian quadratic in the torsion can
include the Dirac spinor field as a source of grawvitation.
In this sense, new general relativity seems more suitable
for microscopic system than general relativity.

In this paper, we have obtained some exact solutions of
the gravitational field equations in new general relativity
for spinning black hole and the universe. These solutions
have several differences from related sclutions of the
Einstein equations. In the following, we will express these
erences fTor each lution separately.

In the past, no one has exactly discussed possible
effects of finite polarization of spin to the black hole
solution. This problem is, in some sense, beyond the scope
of general relativity because the symmetry of the
gravitational field equations is inconsistent with that of
energy—momentum tensor for the Dirac field. In new general
relativity, a part of the torsion field couples with the
antisymmetric part of the energy—-momentum tensor. Actually,
in the case with ¢ = 0 , we could find stationary and
axially symmetric solutions which are coupled with the
intrinsic spin of source. Although the metric of the
solutions can be obtained from relevant solutions of general

relativity, the existence of the axial-vector field au
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reflecting the effects of the intrinsic spin is essential.
If such a type of black hole is permitted, fermion feels the
torsion and is expected to make precession of the spin.

The solutions thus obtained have unusual feature that
reality and continuity of the parallel vector fields are not
satisfied even outside of the event horizon. However, this
difficulty might be superficial. There is a freedom of
local Lorentz transformation which preserves the form of the
axial~vector field a, - This local Lorentz transformation
cannot be observed by means of experiments with the Dirac
fields and gauge fields because the equations of motion for
these fields are covariant under this transformation.
Therefore, this local Lorentz transformation might be
regarded as an unphysical one and could be used to settle
the difficulty for the parallel vector fields. It is still
an open problem how to interprete this local Lorentz
transformation. UWe believe that our stationary and axially
symmetric solutions will present a good testing ground to
this problem.

Next, we turn our attention to cosmological solutions.
Models of the universe have been discussed in other theories
of gravitation with torsion in order to avoid singularity at

a2) On

the initial time of the universe by many people.
this problem, we showed that in new general relativity the
homogeneous and isotroplic universe composed of matter

without macroscopic spin polarization is quite similar to

those of general relativity. Then the closed, homogeneous

and isotropic universe is ilncompatible with the absolute
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parallielism. However, the situation 1s changed in the case
with ¢ = 0 . There exists a freedom of unphysical local
Lorentz transformation which leaves not only the axial-
vector field a, but also the gravitational field equations
unchanged. By means of this transformation, we obtained
models of +the universe equivalent to those of general
relativity. It is very interesting to consider effects of
macroscopic spin polarization of the cosmic matter which
might have influence on the singularity problem at the
beginning of the universe.

We have postulated the isotropy of the universe so far.
However, we should also construct anisotropic models of the
universe because it has been recently clarified that
anisotropy of the universe in higher dimensional spacetime
presents interesting possibility toward a unified
gravitation and matter. A mechanism of dimensional
reduction in the Kaluza—-Klein theory has been proposed based
on the anisotropic expansion of the Kasner metric in general

38) In connection with this mechanism, the Dirac

relativity.
hypothesisag) can be realized. We obtained the Kasner type
solutions in the n+l dimensional Weitzenbock spacetime.
When the parameters €4 and ¢, are not vanishing, expansion
of the universe could be qualitatively different from that
of general relativity.

Here we neglected matter fields and stayed in classical
level but i1t has been suggested that guantum mechanical
creation of particles in anisotropically expanding spacetime

a1)

may restore the isotropy. This problem should be
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reconsidered by means of our solutions in new general
relativity.

Finally, new general relativity is a limiting case of
Poincare gauge theory which is characterized by the torsion
and the curvature‘ls) It is very important to loock for
exact solutions of the gravitational field equations in the

framework of Poincaré gauge theory.
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Appendix A ¢ Absolute parallelism and symmetry of spacetime

We discuss symmetry of spacetime for the parallel
vector fields with absolute parallellsm. Consider a

transformation of parallel vector fields induced by a

coordinate transformation, xﬂ - x’# , and a global Lorentz
transformation,
v
b K (x7) = A X ym (A.1)
M m ax/ﬂ U

where Akm are constants satisfying
1 .4 _
nijA kA m nkm . (A.2)

-k (x7) aEe the

When the transformed parallel vector fields b u

& as the original

parallel vector fields bkﬂ(x) of their argument xu s

. . -
same functions of their argument x

-k

I
b u(y) =b

ﬂ(y) for all ¥y , {(A.3)
we shall call (A.1) a symmetry transformation in the
Weitzenbdck spacetime.

For an infinitesimal symmetry transformation of the

Weitzenbdck spacetime,

B o= H* o 200 C 1E¥*] << 1), (A.da)
Kk _ .k k -
A o= ) o T ( gt o= o, Iwkml << 1), (A.4b)

the functions Eu must be a Killing vector satisfying the

Killing equations,

Vﬂfu + Vufﬂ =0 . (A.5)

Here Vﬂ denotes a covariant derivative with respect to the
Christoffel symbol. The condition (A.3) gives

= p_ T A
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where Kkmu is the contorsion tensor related to the torsion
tensor Tluv as
_ 1 _ = —
Kluv =5 (Tlau+Tu1u Tulu) Kulv . (A7)

We can easily see 9 in (A.,6) antisymmetric because of the
properties of the indices in (A.3) and (A.7). Since only
global Lorentz transformations are allowed, 2 in (A.8)
should be x—independent. This condition imposes a
restriction on the parallel vector fields. The Killing

equations (A.5) and this condition can be rewritten as

A _
Dufu + D & + (T et =10, (A.Ba)

vy it Tuur
e -
DL D¢, + T, £ 31=0, (A.8b)

with Dﬂ denoting a covariant derivative in the Uéitzeanck
spacetime.

in the special case with €y = ¢ =0 (e=20) ,‘the
situation is changed. There might be a restricted local
Lorentz transformation which leaves the axial-vector part a,
of the torsion tensor and the gravitational field equations
unchanged. As for the matter fields, for example the Dirac
fields and gauge fields, the equations of motion are
covariant under this local Lorentz transformation. We
cannot observe the effects of this local Lorentz
transformation, so we should regard these two parallel
vector fields which are connected to each other by this
local Lorentz tranfsformation, as physically eqguivalent
ob jects.

New general relativity with cy T ey = 0 allows a local

Lorentz transformation which preserves the form of the
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axial—-vector field a, and that of the gravitational field

equations. Especially, in the case with a, =0, a local
Lorentz transformation which leaves a, vanishing is allowed
because the gravitational field equations are reduced to the

Einstein equations which are invariant under local Lorentz

transformations.
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Appendix B : New general relativity in n+l dimensional

spacetime

Fundamental entity is parallel vector fields bk ={bkﬂ}.

The Greek and the LLatin indices run from 0 to n referring to
an external general coordinate frame and an internal Lorentz
frame. The metric is defined as

_ k . m
| S = kab ﬂb v’ (B.1)

where nkm is the metric in the n+l1 dimensional Minkowski

spacetime: nkm = diag(-1,1,---,1) . By requiring absolute
parallelism lek = 0, the affine connection rluv is given by
A _ s |3
r wo - b|< 8Ub z (B.2)
The torsion tensor Tlﬂu are defined by
y - § _ i
In order to obtain the most general gravitational

Lagrangian quadratic in the torsion fields, we should take

the irreducible decomposition for the torsion as

) + =&

-1
taw = 5 TawtTurw 50 (FaVutom Vi) 0 (Blda)
- LA
vu =T ix (B.4b)
-1 '
G =3 T T Ture’ - (B.4c)

The gravitational action with a cosmological constant A is

expressed as
—_ n+l — A y22
IG = Jd x vV~g [ al(t tluu) + a2(v vu)
_1 ( Any
6 232 2 uv

In order to clarify the difference between general

> - A d . (B.3)

relativity and new general relativity, we rewrite the
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action (B.3) as

luut

_ 1 n+l — “
IG = 3¢ Jd x V—g [ R({3) + 2c1(t luu) + 2C2(v Vu)

% c3(alﬂvaluu) -~ 2kA T . (B.6)

Here the parameters, Cqs €9 and cgs are given by

= L = - n=1 = 3

the scalar R({3) is the Riemann—-Chrisfoffel scalar curvature

in n+l dimensional spacetime. The total action is given by
, ’ (BR.8»

where IM represents the action constructed by the matter

Lagrangian in the n+l dimensional spacetime. As for spinor

fields, we should take care of their existence.aS)
By taking variation of the action I with respect to the

parallel vector fields bku , we obtain the gravitational

field equations,

G¥V () + 20 FVA 4 oy FMVA L ooV MY - o Y (g9

s A
where
Fﬂvl = c (tﬂUl—tﬂxu) + c (guuvl-gﬂlvu) 1 c am})L ,{(B.10a)
1 2z 3 73
“UX - m i 7 pUA v uei F “op
DlF = BIF + T plF + plF + T PZF , (B.10b>
& - PO v _ 1 qvpo-u  _ wH
H4Y = 71 ”Fpa 5 TVPOFE = YR, (B.10¢)
;= Apv 7 1 Ay _
L = Cl(t tluu) + c2(v VM) 3 c3(a a2 kA,
(B.10d)
V=g TH = nkmbk“ 5(v=g L,)/86" ) . (B.10e)

Here the tensor Guu((}) is the Einstein tensor in n+l

dimensional spacetime formed of the Christoffel symbols.
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Figure caption

2

These figures show the region X2+Y < 22 referring to

(3.33) in terms of the polar coordinate (3.37). The broken
lines represent infinite red-shift surfaces. The regions of
oblique lines correspond to the regions of X2+Y2 < 22 . It
should be noted that we are now investigating the outside

region of the infinite redshift surface because this

coordinate system cannot be used inside the surface.
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Figure
a) a/Gm = 1/4
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Figure
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