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ASYMPTOTIC BEHAVIOR OF RADIAL SOLUTIONS
TO AN ELLIPTIC-PARABOLIC SYSTEM
WITH NONLINEAR BOUNDARY CONDITIONS

MasAaTo IIDA

1. Introduction

Chemical reactions that take place in a bounded domain are often described by
some reaction-diffusion systems with linear boundary conditions. Such kinds of reaction-
diffusion systems have been investigated by many researchers, e.g., Rothe [16], Feng [4],
Hoshino-Yamada [5], and others (see also Ruan [17, Theorem 5.1]). On the other hand
interfacial reactions, i.e., chemical reactions that take place on the interface between
two phases (as oil and water), are often described by systems of diffusion equations with
coupled, nonlinear boundary conditions. Also some important interfacial reactions in
chemical engineering are described by elliptic-parabolic systems with coupled, nonlin-
ear boundary conditions. Unfortunately it is difficult to deal with coupled, nonlinear
boundary conditions by standard techniques. In fact, not so many fundamental theo-
ries are known concerning parabolic systems with non-monotonous, coupled, nonlinear
boundary conditions. Recently, surmounting these difficulties, several mathematicians
have investigated some systems of 1-dimensional diffusion equations with nonlinear
boundary conditions that are related to interfacial reactions (see Yamada-Yotsutani
(19], Shinomiya [18], Nagasawa [15], Iida-Yamada-Yotsutani [7], [8], [9], Iida-Yamada-
Yanagida-Yotsutani [11], Iida-Ninomiya [6]; see also [17] and the references therein). As

for elliptic-parabolic systems related to interfacial reactions, however, there seems to



have been no investigations except Yotsutani [21], in which the existence and uniqueness
of solutions are shown. The present paper is a first trial to construct a fundamental
theory on asymptotic behavior of solutions to such an elliptic-parabolic system with
coupled, nonlinear boundary conditions.

Let 7o, 71 be given numbers with 0 < ry < r; < 1, and put
Qo = {z € R?; |a| < 1o}, To = {x € R?; |z| = ry},
Q-{.@GR,70<|1?|<7'1}, I = {z € R?; |z] =1},
MW ={reR* r<|z|<1}, To={reR? |2|=1},
Q=R UN U

(see Fig. 1). We will consider an elliptic-parabolic system in a cylindrical domain

Q2 x (0,00) :
Azu — a(|x|)u, =0, (z,2) € 9 x (0, 00),
Av* =0, A,w* =0, _ (z,2) € 0, x (0 00),
Ayv = b(|2))v. =0, Apw = c(|z))w, =0, (,2) € Q; x (0, 00),

where A, denotes Laplacian with respect to £ = (21,22). The coefficient a(jz]) i
positive in {1y and vanishes on I'y; the coefficients b(|z|), ¢(|z|) are positive in €; and
vanish on I') UT';. The unknown functions u, v*, w*, v and w are related to one another
by the following boundary conditions. Let v; be the outward normal unit vector on a

circle I'; and 9/0v; the derivative in the direction of v; (j = 0,1,2). On Iy X (0, 00) we

impose
* *

'(,'9—0 = moR(’LL,’U , W ), 31/0

Ju v
o = R(u,v",w"),

where R(u,v*,w") is a nonlinear function and mg, ng are positive constants. On I x

= —noR(u,v", w"),

(0,00) we impose

vt =, w* = w,
ov* Jdv  ow* Jduw

=M1z, — =nh1—
01/1 (91/1 ’ 81/1 81/1 ’

where m; and n; are positive constants. On I'y X (0,00) we impose homogeneous

Neuwmann conditions:
ov ow




At = = 0 we impose

U(.’l’,O) = UO(I.'LI) 2 01 (IS QO,
v(x,0) = vo(|z]) > 0, w(z,0) = we(|z]) >0, z€Qy,

where wug, v and wy are given radially symmetric functions.

This boundary value problem was proposed by Yoshizuka-IKondo-Nakashio [20] as
a chemical model. It describes some interfacial reactions that take place in a membrane
extractor using a hollow fiber (see Fig. 2). In their model, « denotes the concentration
of the metallic reactant A in the aqueous solution ﬁ'owing through Qg x (0, 00); v (resp.
w) denotes that of the organic reactant B (resp. the product AB,) in the organic
solution flowing through §; x (0,00); v* (resp. w*) denotes that of B (resp. AB,)
permeating through the hollow fiber Q, x (0, 00). Since the hollow fiber is hydrophobic,
the interface between the aqueous and organic phases in 2 x (0, 00) is the inner surface
of the fiber (g x (0, 00)). Thus a chemical reaction such as A+ 2B = AB, takes place
only on the interface I'y x (0,00). In order to see the essential effect of the interfacial
reaction on the extraction of A by B from the aqueous phase, they considered a simple
situation: the reaction has attained a stationary state; the streams through 2 x (0, 00)
and € x (0, 00) have become laminar flow. In this situation they derived the boundary
value problem stated above. In their model a(r), b(r), ¢(r) and R(u,v,w) are given by

[ a(r) = ao(r§ ~ 1?),

logr
N — a2 (1.2
| b(r)=byql—r“—(1 Tl)logrl ,
(1.1) 9 9\ logr
C(T) Co r ( rl ) log " )
uv? —w
\ R(u,v,w) = e

where aq, by, co, 51, 82 are positive constants and r = |z (cf. [20]).
If we restrict our attention to solutions that are radially symmetric with respect to z,
then the boundary value problem is reduced to the following system on [0, 1] x [0, o) for

w(r,z) (0 <r <o), v*(r,2) and w*(r,2) (ro < 7 < rp), v(r,z) and w(r, 2) (1 < r < 1):



1
[ a(r)u. = v, + U, (r,2) € (0,79) x (0,00),
1 1
ve + ;v: = w;, + ;w: =0, (ryz) € (r9,7m1) X (0,00),
b(r)v, = v + S Urs c(rw, = wr + %w,, (r,z) € (r1,1) x (0,00);
u-(0,2) =0, z € (0,00),
(EP) { —unlro,2) = Lx(ro,2) = ~ Lui(ro, 2)
= R(u(ro, 2), v*(ro, 2), w* (1o, 2)), z € (0,00),
v*(r1,2) = v(ry, 2), w(ry,2) = w(r, 2), z € (0, 00),
vr(r1, 2) = mo(ry, 2), wi(ry, z) = mw.(ry,2), z € (0,00),
ve(1l,2) = w.(1,2) =0, z € (0,00);
u(r,0) = up(r) > 0 r € (0,70),
\ ’U(T,O) = UO(T) 2 Ov ’U)(T,O) = wO(T) Z 07 T e (T17 1)

As to this system, Yotsutani [21] has shown the existence and uniqueness of a nonnega-
tive global solution in the framework of Sobolev spaces. Moreover it can be shown that
the solution is actually of class C* up to the boundary by developing the method of
[21]. The detail will be announced in lida-Yamada-Yotsutani [10].

The aim of the present paper is to investigate the asymptotic behavior of the solu-
tion as z — oco. From chemical viewpoint, it is expected that the reaction approaches
a chemical equilibrium as z increases. We will show that the solution to (EP) actually
converges to an equilibrium as z — co and will give the rates of the convergence.

The nonlinear parts of our boundary conditions are essentially in the same form as
those of the boundary conditions that are treated in the recent works ([19], [7], [11]) by
a group including the author. However, our system (EP) is quite different from theirs in
the following sense: in their 3-component parabolic system for u, v and w, u is explicitly
associated with v and w by nonlinear boundary conditions; in our 5-component elliptic-
parabolic system for u, v*, w*, v and w, u is only implicitly related to v and w through
v™ and w* (see Fig. 1). Therefore we must solve the elliptic equations for v* and w* with
nonlinearly coupled boundary conditions in order to understand the interaction among

u, v and w. This fact makes our analysis more complicated than theirs. Fortunately the




equations for v* and w* can be solved explicitly. Hence (EP) is reduced to a parabolic
system for u, v and w with nonlinear boundary conditions (see §3). Nevertheless, this
system is not easy to analyze. The main difficulties come from the following facts:
the nonlinear terms in the reduced boundary conditions are much more complicated
than those of the original boundary conditions; comparison principle does not hold;
the principal eigenvalue of the linearized operator at an equilibrium is always zero. To
overcome such difficulties we employ some devices such as to make use of the fact that
R(u,v,w) is “component-wise monotonous” in respective components (see (R.2) of §2),
to introduce a Lyapunov function fitting in with the nonlinearity peculiar to chemical
reactions, to construct infinite number of energy inequalities systematically, and to take
advantage of “mass-conservation” law (see Proposition 2.2).

The organization of this paper is as follows. In the next section we state our main
results with the assumptions for a(r), b(r), c(r) and R(u,v, w). In §3 we reduce the
elliptic-parabolic system (EP) to a parabolic system (P). This reduction is the basis
of the whole argument in the subsequent sections. In §4 we give fundamental lemmas
that are useful throughout the paper. In §5 we give a Lyapunov function together
with several energy functionals and derive differential inequalities for them. Those
inequalities imply the uniform convergence on 2 of the solution to an equilibrium. We
devote §6 to the spectral analysis for the linearized system. In particular, we introduce
a quadratic form associated with the linearized operator. Applying the results of §6,
we seek the optimal rate of the uniform convergence of the solution in §7. Moreover,
in 888 and 9 we give the optimal rates of decay for all derivatives of the solution by

constructing infinite number of energy inequalities.

Notation
Let ¢ be one of the subscripts 0, * and 1. Throughout the paper we denote by

CH(Qu) (resp. LP(SY), ..., etc.) the subspace of radially symmetric functions that




belong to C*(€Y;) (resp. LP(£Y), ..., etc.). We also use some weighted L2-spaces. For a

nonnegative function w € L(8;), L2(Qy;w) is the Hilbert space of radially symmetric
functions ¢ on §; satisfying

/r' &(r)2 w(r)rdr < oo,

where

(Eﬂv ) O TO) Ly T ) (70,711)3 (Elvrl) - (Tl’ 1)

We use the following symbols to represent various norms of a radially symmetric function
¢ on (;:

11, = lllp.0: = {/ |¢(T)|”rdr} ”

(1 <p<o0),
6l =

[8llo,0: == esssup |¢(r)],

F'_ 1/2
[l = 6l 00 = { [ ot

When we use high order differential operators, we sometimes abbreviate them as

a\* o\*
ko_ k_
Df“<az) : D: (ar> :

where £ is a positive integer.

2. Main results

Throughout the paper we assume the following conditions on a(r), b(r), ¢(r) and
R(u,v,w) :

a(|z]) € C=(), a(r)>0 on[0,ry),
(An{bQ)ecw"
(I

o ‘
)€ C=(), or >0 on (1) \
|) € C=(€), ¢(r)>0 on(r,1). \
(A.2) There exists a constant dy > 0 such that
lim a(r) >0 lim b(r) >0 lim e(r) >0
r—rg—=0 (1o — 7)% rori+0 (1 — 1 )%




(R.1) There exist an open subset O of R? and a positive function S(u,v,w) € C®(O)

such that
O D [-bs,65)> U0, 00)3,
ulvm —w" 3
R(u, U,'LU) = m on [0,00) ,

where ds is a positive number and [, m, n are positive integers.
OR OR

(R.2) ——(u,v,w) >0, —(u,v,w) <0 for every (u,v,w) € [0,00)3.
ov ow

(R.3) There exists a positive constant Cg such that

max{—u*"'R(u,v,w), —v* ' R(u, v, w), w? ' R(u, v, w)} < Cr(u®+v*+w?)

for all (u,v,w) € [0,00)® and p € [1, 00).
Clearly the functions a(r), b(r), ¢(r) and R(u,v,w) given by (1.1) satisfy these

conditions. For the boundary data (ug, vo, wg) we put

) n 1
M, = /0 ugardr + — [ wgcrdr,

g Jry ,
my ! ny [!
My = — | vobrdr+ — | wocrdr.
mg Jry No Jr

For the subsequent arguments, we summarize fundamental facts. The following two
propositions are essentially obtained in [21] (see also [10]).
PROPOSITION 2.1. In addition to (A.1), (A.2), (R.1), (R.2) and (R.3), assume

that (up, v, wo) satisfies

ug € L*>(0, 1), ug > 0 in (0,79),
v, W € L*®(r1,1), v9 20, we >0 in (ry,1).

Then the boundary value problem (EP) has a unique nonnegative solution (u, v*, w*,v,w) €
C*°([0,70] x(0,00)) xC>=([rg, r1] X (0, 00))2x C*°([r1, 1] x (0, 00))? satisfying the boundary

condition at z = 0 in L?-sense, i.e.,

l%{l'U(,Z) - u0”2,ﬂo + “U(', Z) - v0”2,91 + “w(’ Z) - wOHQ,Ql} = 0.




Moreover the solution is bounded uniformly with respect to z and its positivity is deter-
mined by that of M, My, in the following way :

(>0 on [0,r9] x (0,00), v* > 0,w* >0 on [ry, 1] X (0, 00),
v >0, >0 on[r,1] X (0,00) if Myw > 0 and M,, > 0;

u >0 on [0,7] X (0,00), v* =w* =0 on [rg, 1] x (0,00),
v=w=0onr,1] x(0,00) if Myw > 0 and M,,, = 0;

u =0 on[0,r) x (0,00), v* > 0,w* =0 on [r, 1] x (0, 00),
v>0,w =0 onr,l] x(0,00) if My =0 and M,,, > 0;

=0 on [0,7¢] X (0,00), v* = w* =0 on [ry, 1] x (0,00),

v=w=0 on|r,l] x (0,00) if Myw =0 and M,,, = 0.

The solution satisfies the law of “mass-conservation.” Precisely the following holds.

PROPOSITION 2.2. Let (u,v*,w*,v,w) be a solution to (EP). Then (u,v,w) satis-

fies

ro . 1
/ u(r, z) a(r)rdr + o w(r, z) e(r)rdr = My,,
M) 0 Ng Jry

( my [l ny !

——/ v(r,2) b(r)rdr + — | w(r,z) e(r)rdr = My,

mg Jnr Ng Jn
for z € [0,00).

Consider an “equilibrium” for (EP), i.e., a solution that is independent of z. It
is easy to see that an equilibrium for (EP) should be a set (oo, Voo, Weo, Voo, Woo) Of
constant functions if it exists. As for the equilibrium to which the solution of (EP)
converges as z — 00, we should take Proposition 2.2 and the nonnegativity of the

solution into consideration. Then the constants e, Ve and we, should satisfy

Uoo 2 0, Voo 2 0, wee > 0,
R( Yoo, Voo, woc;l) =0,

(EP°°) ”anl,ﬂouoo + n_(l)”c”LQl Woo = My,
m

n
E{;”b“l,ﬂlvoo + i”cnl,ﬂlwoo = Mvw-

We can see the following by Theorem 2 in [7].
PROPOSITION 2.3.  Suppose that (A.1) and (R.1) hold. Then, for each pair

(Myw, M,,,) of nonnegative numbers, there ezists a unique solution (Uoos Vooy Weo ) L0

8




(EPo). More precisely,

[ Uoo > 0, Voo > 0 and wy, > 0 if Myw > 0 and M,, > 0;
1 T
uoo=——/0u0ardr>0, Voo = Woo =0 if My, > 0 and M, = 0;
J " T ol o
Voo = ———/ Vobrdr > 0, Uy = Woo =0 if My, = 0 and M,, > 0;
”b”LQl 1 '
| Uoo = Vo = Weo = 0 if My, =0 and M,,, = 0.

Now let us consider the asymptotic behavior of solutions as z — co. When M,,=0
or M, = 0, we can easily obtain the asymptotic behavior from Proposition 2.1. For
instance, we briefly explain the case M, = 0 < M,,. Since u = 0, w*=0and w =0,

v* and v satisfies

( 1
vy, + ;v: =0, (r,2) € (ro,71) X (0, 00),
1
b(r)v, = v, + ;vr, (r,z) € (r1,1) x (0,00);
q vi(re,2) =0, z € (0,00),
v*(ri,2) = v(ry, z), vi(ry,z) = m1v(ry, ), z € (0,00),
v,(1,2) =0, 2 € (0,00);
L v(7,0) = vo(r) > 0, r€(ry,l).

Hence
v(r,z) = v(r,2) - for (r,2) € [ro, 1] x (0, 00),

and v satisfies a linear diffusion equation with homogeneous Neumann boundary con-

dition. Then the standard Energy Method leads us to

/1 v brdr

— = O(exp(—=A;12)) asz — oo,
1oll1.00 I

U('» Z)

00,8
where Ay is the least positive eigenvalue for
1 .
—Upp — ;vr = \b(r)v in (ry,1),
v(r1) = v.(1) = 0.
For this reason, here and hereafter we will consider only the case My, > 0 and

A{vw > 0.



THEOREM A. In addition to (A.1), (A.2), (R.1), (R.2) and (R.3), assume that
M, > 0 and My, > 0 hold. Let (u,v*,w*, v, w) be the solution to (EP) and (Ueo, Voo, Weo)

the solution to (EPy ). Then

U+, 2) — Uoo uniformly on §y
V(+,2) = Voo, W*(+,2) — Wo uniformly on Q. as z — 00.
V(+,2) — Voo, wW(+,2) — We  uniformly on €

To investigate the behavior of solutions near the equilibrium we will study the

linearization of (EP) at (Ueo, Voo, Weos Veos Weo) from spectral analysis. For (u,v,w) € R

we set
(2.1) RY(u,v,w) = R%u + R®v + R®w
with
w OR o OR o OR
Ru - EL'(uooavoo,woo)a Rv - %(uooavoo,woo)» Rw - aw(uooavomwoo)'

We introduce an eigenvalue problem associated with the linearization of (EP) at
(Yoo, Voo, Woos Vooy Wao ). It is a linear boundary value problem for a set (u, v*, w*, v, w) of

radially symmetric functions u on g, v* and w* on 2., v and w on ; with a parameter

A
[ —Upr — Tu, = Aa(r)u in (0, 7o),
_U:r - %U:{ = —Iw:r - %w: =0 in (TOa 7‘1)a
—Upr — 20, = ANV, =W, — Lw, = Ae(r)w in (ry,1);

(EV) { u.(0)=0,

-—UT(TO) mo U’ (70) = _%w:(/l‘()) = RL(U(TO)’ ’U*(To), ’LU*(T())),
v*(ry) = v(r), w*(r;) = w(ry),
vi(r) = mlvr(n) wr(ry) = mw,(ry),

v.(1) = w.(1) = 0.
We say that a number ) is an eigenvalue for (EV) when there exists a set (u, v*, w*,v,w) #
(0,0,0,0,0) of radially symmetric functions satisfying (EV). We will prove the following

proposition in §6.
10




PROPOSITION 2.4. In addition to (A.1) and (R.1), assume that M,, > 0 and
My > 0 hold. Then there exist countably many eigenvalues for (EV). They are all
nonnegative, and the set of them has no accumulation points.

As will be seen in §6, an eigenvalue zero for (EV) always appears. This fact seems
to make our analysis complicated. But we can get rid of this difficulty by virtue of
Proposition 2.2. Indeed, in an appropriate Hilbert space, the solution moves in the
direction normal to the eigenspace corresponding to the eigenvalue zero (see §§6, 7).
Thus the least positive eigenvalue for (EV) plays an important role in the local behavior
of solutions near the equilibrium. |

THEOREM B. Under the same assumption as that of Theorem A, the solution

(u,v*, w*,v,w) to (EP) satisfies

[u(; 2) = toolloo .0 + 107 (+, 2) = Voo lloo, + 107 (-, 2) = Weo lac,c,
Hv(, 2) = veolloo,0: + [[w(- 2) = Weollw i, = Olexp(=A12)) a5 2 — o0,

where Ay is the least positive eigenvalue for (EV).

Moreover the solution converges in a much stronger sense than in Theorems A and

THEOREM C. Under the same assumption as that of Theorem A, the derivatives

of the solution to (EP) decay like

1D Diu(-, 2)llso0q + | DiDIv"(, 2)lso0. + 1D;DIw(-, 2)]l o 02,
+|DLDIv(+, ) |loor, + | DiDIw(-, )|ty = Olexp(—Ay2)) as z — 00,

where Ay is the least positive eigenvalue for (EV) and i, j are arbitrary nonnegative
integers with (i,7) # (0,0).

Remark. It also holds that

22) IDDIDE( = too)llootp = O(exp(=As2)) a5 2 — 00
' (620, >0,k 2>0),
where
T =(r1,22) € Qo; D, = 9 (p=1,2)
L= L], L2 0 p — a.’L'p pP=1i,2).

11



In fact, as shown in §9, it holds that
DY (= ueo)]li = Ofexp(=As2))  asz—o00 (i>1,k3>0),

where |[']|; denotes the usual norm in a Sobolev space Hi(£;). Needless to say, Theorems
B and C imply the corresponding result for v* (w*, v or w) to (2.2).

In what follows, the symbols C; Cy, Cy,. . .; Co0,Coy-.- C10,C11,. .., etc. denote
positive constants that are independent of z unless otherwise stated. For simplicity, we

sometimes denote several different constants by one of them if there is no confusion.

3. Reduction to a parabolic system

In this section we only impose (R.1) and (R.2).
LEMMA 3.1. Let d, and d,, be given positive numbers. For any (u, v,w) € [0,00)3

there ezists a unique pair (v*,w*) € [0,00)? such that
{ v =v* +d,R(u,v*, w*),
w = w* — dy,R(u, v*, w*).
Moreover the implicit functions v* = f(u,v,w) and w* = y(u,v,w) defined by this
relation are of class C*([0,00)3).

Proof. Let u, v and w be any nonnegative numbers. The given relation is equivalent

to

E3

vow v v
dy dy, d, d,’
v* — v+ d,R(u,v*,w*) = 0.

For this reason, we eliminate w* and consider the following equation for v*:

Fw*)=v'-v+d,R (u,v*,w + %i]lv—(v — v*)) =0.

21

It is easy to see from (R.1) and (R.2) that

( F(0)=—-v+d,R <u, 0,w+ ((li—wv> <0,
J F (v + ;(l%w> = ((l%w +d,R <u,v + %w,O) >0,
OR d OR d
/ — —{. Py — —_ g Xy —
F() = 1+d, 5 (u,f,w+ dv(v {)) dwé)w (u,f,w+ dv(v 5))
> 1 for £ € [O,v + :l]—"w} .

12




Thus the equation F(v*) = 0 has a unique solution v* € [0,v 4 d,w/d,,]. Consequently
there exists a unique pair (v*, w*) € [0, 00)? satisfying the given relation. The regularity
of # and 7 is shown by Implicit Function Theorem. O

Let us introduce a function .J(u,v,w) that plays an essential role in the reduction

of (EP) to a parabolic system:
1
J(u,v,w) = 1 +dv/ 2Jz(u,ﬂv + (1 = 8)v*, 0w + (1 — §)w*) dd
(3.1) o
—d.w/ =(u, 00 + (1 — 0)v", 6w + (1 — 0)w") b,
0o Ow
where d,, d,, are the constants in Lemma 3.1 and v* = /}(u, v, w), w* = y(u,v,w).
LEMMA 3.2. The function J(u,v,w) satisfies the following for (u,v,w) € [0,00)3 :
(i) J(u,v,w) > 1,
(i) R(u,v*,w*) = J(u,v,w) ' R(u,v,w),
where v* = f(u,v,w) and w* = y(u, v, w).
Proof. Since u, v, w, v* and w* are nonnegative, (i) follows from (R.2) and (3.1).
Observe that
1
R(u,v,w) = R(u,v*,w*) +/0 Z%R(u, v+ 0(v - v"), w0 + 0w — w*)) dd
1
= R(u,v*,w*) +(v- v*)/ %Tl?(u,ﬂv + (1 —=0)v*,0w + (1 — 6)w*)dd
0
19
+(w — w*)/ —li(u,ﬂfu + (1 =80)v*, 0w+ (1 — 6)w*) do.
0 Jw
The right-hand side equals J(u, v, w)R(u, v*, w*) by virtue of Lemma 3.1. Thus we get
(i). O
Here and hereafter we set

(3.2) d, = myrolog(ry/ro), dy = noro log(ry/ry).

Now we are ready to reduce the elliptic-parabolic system (EP) to a parabolic system

(P).

PROPOSITION 3.3. Let (u,v*,w*,v,w) be a solution to (EP). Then the following
relation holds between (v*, w*) and (u,v,w):
’U*(TO,»V) - /3(U(T ) 7la ) w(rlv")
3.3 2 € (0,00).
(33) { w10, 2) = 2(u(ro, 2), v, 2), w(rs, 2)), (0, 00)
13




Moreover, (v*,w*) satisfies

3.4 * * * T
( ) w*(T,Z) =w (7‘07’3) - n’OTOR(u(rOaz)’v (’I'(),Z)’U) (7'0,2))108;;

{ v*(r,2) = v*(ro, 2) + meroR(u(ro, 2), v* (1o, z)w*(ry, 2)) log =
on [ro,71] X (0,00), and (u, v, w) does

1
r a(r)u, = tp + Uy for (r,z) € (0,19) x (0,00),

1 1
b(r)v. = v, + ;zr,., c(rw, = w,, + ;wr for (r,z) € (r1,1) x (0,00);

J(u(ro, 2),v(ry, 2),w(ry, z))
v.(1,2) =w.(1,2) =0 for z € (0,00);
u(r,0) = u(r) for r € (0,7),
[ v(r,0) =wvo(r),  w(r,0) = wo(r) forr € (ry,1).

Conversely, let (u,v,w) be a solution to (P), and let (v*,w*) be defined by (3.3) and
(3.4). Then (u,v*,w*,v,w) satisfies (EP).

Proof. Suppose that (u,v*,w*,v,w) is a solution to (EP). A radially symmetric
solution v™(+, z) of the 2-dimensional Laplace equation satisfies (rv}), = 0 for z € (0, %0).

Hence we have
(8.5) rui(r,z) = moroR(u(re, 2),v"(ro, 2), 0 (10, 2)), (r,2) € [rg,11] X (0, 00),

which implies the first equality of (3.4). We also see that

mir rve(ry, 2) N .
ve(r1,2) = ————= = R(u(ry, 2), v (19, 2), w*(1rg, 2
MoTo 1( 1, ) MoTo ( ( 07"")a ( 0 )7 ( 0y ))

by (3.5). Similarly we can derive the corresponding results for w*. Since v(ry,z) =
v*(r1,z) and w(ry,z) = w*(ry,2), we obtain (3.3) from (3.2) and (3.4) by virtue of
Lemma 3.1. Then Lemma 3.2 leads us to

Ru(ry, = 1, 2), w(ry, 2
R, = M2t

Thus (u, v, w) satisfies (P). The converse is easily verified. O
14




The following lemmas will be useful when we derive several estimates for derivatives
of solutions.
LEMMA 3.4. Letk be a positive integer. For a function (u, v, w) = (u(z), v(z), w(z)) €

C*([1,00);[0,00)3) put
vi(2) = plu(2), v(z), w(z)), w(2):=y(u(z),v(z),w(z)).

Suppose that (d/dz)u, (d/d:)v and (d/dz)'w are bounded on [1,00) (0 < j < k —1).
Then it holds that

dw
dzi

diy
dzj

d*w* dfu

dax

dFv*
dz* +

ent (2] 2] 2] oo

where By, is a positive constant independent of z.

Proof. We have

dv* Oﬂ du c'?ﬂ dv %iu_!
dz ~ Oudz  Ovdz @ Owdz

Differentiate both the sides £ — 1 times with respect to z by using Leibniz’ formula.

Then we get

d* v _ ’;5 k- & (0F\du | & (95 dIu & (9 dTw
P j dzi \Ou ) dz*=7 " dzi \ Qv ) dz¥7 " dzi \ow ) dz*i [
Since 7 € C*([0,00)*), the derivatives (d/dz)'(3/0u), (d/dz)}(dB/v) and (d/dz) (83 /Ow)
(0 <j <k —1)are bounded on [1,00). Thus

ax; (1]
LEMMA 3.5. Letk be a positive integer and let u(z),v(z),w(2),v*(2), w

d'w

dzi

d’ v
dzi

d*v* diu

d~k

We can obtain a similar inequality for w*(z). O

*(z) be the
functions that satisfy the conditions in Lemma 3.4. Then it holds that

a3 (13

diw
d 23

d'y d’v

d

ke
%R(u v

) ontuco

where By, is a positive constant independent of z.
15




Proof. An application of Leibniz’ formula to

d . _ OR . du w* dv*  OR dw
IR(U v, w) = 8—u(u v )d~ + (u )dz + Bw(u
leads us to
d* (k-1 d’ (OR d=iy
TR0 §=: < ) {Ez—f <(9 (u,v*, w )) e
' d’ (OR dF-iy*

* £ 3
dzi \ Ov (u, 07, w) dzk—i

L& OR (v, w0 4w
dzi \ dw v, ) dzk=i |~

It follows from Lemma 3.1 that

which implies the boundedness of v* and w* on [1,00). Thus, with the aid of Lemma

3.4, we see that

il j j
d—. (gﬂ(u,v*,w*)> , d . <8R u, v, w )) , d— (a—lz(u,v*,w*)) (0<3<k=-1)

dzi \ du dzd 8)( 23\ Ow

are bounded on [1,o0). Consequently we obtain

<ot

j=1

k

d dw*
Ez_’“R(U’ vt W) it

dzi

div*
dzI

diu

), z € [0, 00).

Applying Lemma 3.4 to the right-hand side of this inequality, we can obtain the con-
clusion. O
COROLLARY 3.6. Letk be an integer with k > 2 and let u(z), v(z), w(z), v*(z), w*(2)

be the functions that satisfy the conditions in Lemma 3.4. Then it holds that

<5 (|7

where By, is a positive constant independent of z.

dk
dz*

d*w
dzx

drv
dz*

dk

R(u,v*,w") PR

+ 1) on [1,00),

4. Lemmas

In this section we prepare fundamental lemmas that will be used in the proofs of

Theorems later.
16




LEMMA 4.1. For a positive integer ko, let {pr(2)}o<i<ty {Dr(2) }1<k<ky» {ax(2)Yo<k<ko,

{@(2)}o<k<ko—1 be sequences of nonnegative functions of class C'[1,00) and let so(z) be

a nonnegative function of class C[1,00). Suppose that

r

dp
]—B+(10+8030,

1
——+q < ;(171 + Q),
1 k-1 k—1
j=1 =0

J

k—1

k
Qopi+da) (k=2 k)

for z € [1,00), where 1 is a positive constant. Then

/oosodz < 00,
1
lim pe(2) =0 (k=1,2,...,k).

For the proof see [8, Lemma 3.2].

LEMMA 4.2. For a positive integer ko, let {pe(z)}o<r<t, be a sequence of nonneg-

ative functions of class C'[3,00) and let {qi(2)}ock<tor {Pr(2)}o<h<r, be sequences of

nonnegative functions of class C[2,00). Suppose that

fork=0,1,... k.

p=sup{pi(z); 0<k < koz>2}<1,
k

dpy.
- tas<n > 4,
A J=0

Ape < G,

z € [3,00),
2 €[5, 00)
where A is a positive constant. Then

Pr(2) = O(exp(—Az)) asz— o0 (k=0,1,...,k).

Here \ € (0, X) is an appropriate constant such that 5\/ A depends only on p. Moreover,

if pr(z) € L'(2,00)

(k=0,1,...,k), then we can choose X as \.
17




For the proof see [11, Lemmas 3.2, 3.3].

LEMMA 4.3. Seti = 0 ori = 1. Let a function w € L:(Q;) be positive almost

everywhere in ;. Then, for any € > 0 there exists a positive number K, such that

u(r)? < ellur3g, + Kellul g,
s, < ellusl3o, + Kellul o

for all w € H(Y;).
Proof. We will show the inequalities for i = 0 (the proof for i = 1 is easier). Fix

any number 6 € (0,79/2). For p, p' € (0,79] we have

o) =)+ [ 2= )V

Applying Schwarz’ inequality to the right-hand side, we get

/ g u? 7‘d7', .
pl

Multiply both the sides by w(p')p’ and integrate them with respect to o/ over [0 =6, p]

u(p)? < 2u(p')? + 2

P
log /7

for p € (r9/2,79]. Then we get

p p
u(p)g/ wrdr < 2||u||390.w + 2log p / wrdr Hu,.”%no.
p—6 oo p—0Jp-6 ’

Hence
Cs "e0s p— 1) »eo 2 ’

where

0
Cs = min / wrdr > 0.
8<p<ro Jp—6

In particular, we get the first inequality in this lemma by putting

p=r9 and e=2logr 7’06.
0 —

Similarly we can derive

2 . p+ 6 To
2 2 . 2
u(p)” < (_,6”“”2,90;‘0 + 2log p llurllZ,,» pEe (0» 9 ] -
18




Consequently we have

o 72 o/2 + 4
/0 u’® pdp < o Nullagy + 2l [0, {/0 plog 2= dp + plog — dp}

Observing that

ro/2 ro/2 p+6 1
/ plog (lp / / —drdp

1’0/2-{-61 1‘0/2
—/ / pclp(h +/ / pdpdr +// 7/' s pdpdr,
: ro/2 " Jr—

we can find a positive constant C satisfying

"o 6d 1 dp < C§
/0 plog 222 4y + m/z” 5 - 5 P

for 6 € (0,79/2). Thus we obtain the second inequality in this lemna by putting
e=2C6. 0
LEMMA 4.4. Seti =0 ori=1. Let u be a radially symmetric function on ;.

Suppose that

u € L2 (%), Au = u,, + %u € LA(Q).
Then v € H2(Q:) N CHQy). Moreover, if i = 0, then
(4.1) w0 (p)? 2/ |AulPrdr  p € [0, ro);
if i =1 and if u.(1) = 0, then

, _1—p2
(4.2) u(p)? < Tpr—/ |Au|? rdr p € [r1,1].
P

Proof. For simplicity we define r; and 7; (i = 0,1) by
(EOaTO) = (Oarﬂ)a (I.larl) = (Tlvl)-
Since u and Aw belong to L2, (€;), the regularity theory for elliptic equations leads us

to the fact u(|z|) € Hf, (), which yields ru,(r) € L'(p,p) with 7, < p<Pp<Ti On

the other hand, we have (ru,), = rAu € L(r;,7;). Hence

5
pu.(p) — pu.(p) = / rAudr, <p<p<Ti
14
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In view of Au € L?(f2;), we can derive from this equality that

| C(0,70) ifi=0,

Consider the case i = 1 under the condition u-(1) = 0. Letting p tend to 1 and
using Schwarz’ inequality, we get

2 2 ! ! 2 1-p* 1 2
p-ur(p) S/ 7‘dr/ |Au|® rdr = = / |Awu|® rdr,
- T Tk 2 2 Jp

which implies (4.2).
Now we consider the case i = 0. We will show (4.1) and
(4.4) l_iH(l) ur(r) = 0.
Observing ru,(r) € L'(0,r,), we can see that ru,(r) is absolutely continuous on [0, rq]
and satisfies
11_1}(1) ru.(r)=mn,

P P

(4.5) pu.(p) =1 +/0 (ru).dr =1 +/ rAudr, p € (0,1
0

for a number 7. Suppose that > 0. Then we have

n
Uy >_1 Oa(S
up(r) > 5 r € (0,6)

for some 6 € (0,7). Since u(r) € CY(0,7y], we see that

u(p)—u(e):/pu,.drzg/pfg—‘, 0<e<p<o.

The right-hand side of the inequality tends to oo as € — 0. This contradicts the fact
v € H.(Qo) C C(fp). Similarly n < 0 implies contradiction. Therefore (4.5) is

rewritten as

P
puL(p) =/0 rAudr, p € (0,7¢].

By virtue of Schwarz’ inequality, we have

20 (2 [P [P A2 e — 2 [P A2, :
pru(p) < | rdi A | Aul|® rdr =5 |Au|®rdr,  p € (0,79),
0 0
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which implies (4.1) and (4.4).

To conclude the proof, we verify the regularity of u in both the cases i = 0,1. Tt
follows from (4.3) and (4.4) that u € C}(€;). Moreover, the boundary values of u(|z|)
on J); equal a constant or two constants. Thus we can see that u € H2(Q;) by the
regularity theory for elliptic boundary value problems. O

LEMMA 4.5. Let I be a closed interval in R with I 5 0; Q) an open subset of R?
with smooth boundary; F(£) a sufficiently smooth function on I with F (0) = 0; u(z,z2)
a sufficiently smooth function from Q x [1,00) to I; ky a nonnegative integer.

(i) Suppose that D*u (0 < k < ko) are bounded on {1 x [1,00). Then
ko ko
Z I[DfF(u('v:"))”l,ﬂ < LZ ”Dfu("z)]ll,ﬂ’ z € [1,00)
k=0 k=0

holds for a positive constant L that is independent of = but dependent on k.
(ii) Let ig be an integer with iy > 2. Suppose that |[D*u(-, z)]|i0 (0 <k < ko) are

bounded on [1,00). Then

ko ko
Z ”DfF(u("z))”ioyﬂ < NZ I[Dfu('vz)”io,ﬂ, RIS [1’00)
k=0 k=0

holds for a positive constant N that is independent of z but dependent on iy
and k.
Here |[]|ia denotes the usual norm in a Sobolev space H “(9).
Proof. According to the convention, we use the following abbreviation for differen-

tial operators with respect to x = (z1,25):

a = (aj, ag), la| = a1 + a,
O\ [ o\*®
DY = — -
£ (81'1> <6$2> ’

where a; and @, are nonnegative integers. We also abbreviate |[]]iq to |[]|:.

(i) Seeing that F(0) = 0, we have

1Pl = | [ e ae

< sup [F(E] [lull2.
27 fel<supul
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Moreover we have

k—1 _ i )
DYF(u) = DY Y{F'(u)D.u} = Y (k j 1) DIF'(u) D¥u, 1 <k <%k
j=0
k > . .
DgD:F(u) = D¥{F'(u)Diu} = > (?) DIF'(u) D2D 7, |al=1, 0<k < k.
j=0

Hence the uniform boundedness of D*u leads us to
k .
IDEF(w))l < Cx S |[Diu]|s, 0<k < k.
=0

(ii) Since H2(Q) C C(§2), D¥u (0 < k < ko) are bounded on Q x [0,00). Then the

argument in (i) is still valid, so it suffices to show that
k .
(4.6) ID;DIF(u)llz < Cigro D_ |[Du]lig, 0 <k < ko
j=0

for all a with 2 < |a] < 4. In the case |a| = 2, setting a« = B+ v with |5| = |y| =1,

we have
D¢DF(u) = D¥{F'(u)D%u + F"(u)DPuDu},

which implies

J

k k
|2 + (E ||D5D§U||4) (Z ||D3D§U||4) } :

=0 =0

k
IDZDYF (u)lls < Ck{ | DEDiu
=0

Recall the fact H'(Q) ¢ L*(2). Then the boundedness of |[D¥u]|, leads us to (4.6)
with |a| = 2. For 4y > 3 we will show (4.6) with 3 < |a| < 4y by induction. Let 7 be
an integer with 3 <4 < iy, and suppose that (4.6) holds for all @ with |a| =i —1. In
this case we may further assume the same inequality where F(u) is replaced with F'(u).

Setting a = (ay, a2), # = (31, 02) and v = (71,72) with
la| =14, [Bl=]y=1, f+7v<aq,
we have

D3 D*F(u) = DY[D*DS=#={ F'(u) DJu}]
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J=00<é<a—p—y

k A . .
= D" { > ¥ < ;) Capys DS DIF'(u) D;’“/""Df‘fu}
ko (ks ‘ .
+D2 ¢y ( J.> D=~ Di F'(u) D) D* Iy
Jj=0

k L . .
=3 (;” ) Capys DEYEDIF' (u) D~P~8 Dh=iy,

+ ( f) D87 Dj F'(u) DP*1 D,
7=0

Here cq,5 is a positive integer determined only by a, 3, v and 6. Besides D%+%Di F'(v),
D;D{F'(u), D} D¥~7u and D3~ Di F'(u) are bounded on §3x[1, 00), because Ho(Q) C
C~2(Q) and |8] < iy — 3. Hence
IDDEF(e < Cux 3(1D2ull+ D DEF (W)
i=
Since |a — 7| = i — 1, the assumption in the induction leads us to (4.6) with |a| = i.
Thus we complete the proof. O

In the same manner we can prove the following lemma.

LEMMA 4.6. Let K be a closed subset of R* with K 3 (0,0,0); Q an open sub-
set of R* with smooth boundary; F(&,n,¢) a sufficiently smooth function on K with
F(0,0,0) = 0; u(x, 2), v(z,z2) and w(z, z) sufficiently smooth functions on Q x [1,00)
with (u(z, z),v(x, ), w(x,2)) € K on 0 x [1,00); ky a nonnegative integer.

(i) Suppose that D¥u, D¥v and D¥w (0 < k < ko) are bounded on Q x [1,00).

Then

ko
Z ”D?F(’U,(*,2),’0(-,2’),1{!(-,2’))”1’9
<LZ{HDI‘ e +1[D5v(, 2)lle + |[DEw(-, ]Im} z € [1,00)

holds for a positive constant L that is independent of = but dependent on k.
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(ii) Let ig be an integer with ig > 2. Suppose that [[D¥u(-, 2)]li., [[D5v(-, 2)]li.0

and |[Diw(-, )]0 (0 < k < ko) are bounded on [1,00). Then

Z’[Dk U( 7‘“) ’ll) v"))”zoﬂ
SNZ{I[D‘ Miog + D500 Nlwa + [D¥0(, =) lpa}, =€ [1,00)
k=0

holds for a positive constant N that is independent of = but dependent on i,
and k.
Here [[]|i.o denotes the usual norm in a Sobolev space H ‘().
Finally we give a lemma that is useful when we derive the uniform boundedness of
derivatives of solutions from their L2-boundedness. Only here we use (A.2).
LEMMA 4.7. Let u = u(r,z) be a function of class C* ([1,00); C[0, ro]) N
C([1,00); C*[0, 7)) and v = v(r, 2), w = w(r, z) functions of class C* ([1,0); C[ry,1]) N
C ([1,00); C?[r1,1]). In addition to (A.1) and (A.2), assume that (u,v,w) satisfies

[ a(r)u. = uy + Lu,, (r,z) € (0,79) x [1,00),

b(?')UZ = Upr -+ ,l.vr, C(T)’IUZ = Wrr + ',lfwra (7‘13) € (7‘13 1) X [1700)a
(4.7) { u.(0,2) =0, z € [1,00),
ve(l,2) =w.(1,2) =0, z € [1,00),

|ur(ro, 2)| + [ve(ry, 2)] + Jew,(r1, )]
L S w{fulre, 2)] + [v(r, 2)] + |w(ry, 2)] + 1), 2 €[1,00)

and

K := sub (luflz.gpia + [0ll2.a0s + llwllz.015) < 00,

where k is a positive constant independent of z. Then
lals 2 Mleogo + 100, 2)lloosy + (-, 2) ooy < Ciy 2 € [1,00)

holds for a positive constant Cy; that is independent of » but dependent on ||u(-, Dloo,0 s
”17(', 1)”00791 : ”U’(', 1)“00,(71 , koand K.
Yamada and Yotsutani showed a similar fact to this lemma in [19, Proposition 8.1],

where the inequality corresponding to the last one in (4.7) has no constant term in the
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right-hand side. In our case we can not omit a constant term in the right-hand side
because of later necessity. However, we can prove this lemma in a similar manner to
their proof. The idea of the proof is based on Alikakos (2, Theorem 3.1], which is an

application of an iteration technique due to Moser [12], [13] and [14].

5. Proof of Theorem A

For functions u(r) € CJ0, 7‘0]- and v(r),w(r) € C[ry,1] we use the abbreviation
U = (u,v,w) and define energy functionals:
1
E(U) =5 (lel3 g, + 0130, + lwliZg, ) .
1
E(U;Wval’wQ) = -2— (”u“g,ﬂo;wo + Hvllg,ﬂl;wl + ”w”g,ﬂl;wz) )
where

wy € L},(Qo), wop >0 a.e. in g;
Wwi,WwWs € L},(Ql), w; > 0,we >0 a.e. in Q.

Additionally if u, v and w are all positive functions, we use the energy functional

an(] r UOO

by 1
Y(U) := luoo/ ’ Y (ui) ardr + mvoom Y (_v_) brdr
0 oo
7

1 1 w
FNWeo— w(——) crdr,

ng Jre Woo

where

W(t) == /ltlogTdT =tlogt—(t—1)>0 fort>0
(note that uy > 0, Ve > 0 and wy > 0 ; cf. Proposition 2.3). It is easy to see that
(5.1) Y(U)=0 ifandonlyif U = (Us,Vso,Wso)-

Remark. Rothe [16] employed a Lyapunov function that resembles ¥. He in-
vestigated the asymptotic behavior of solutions to a reaction-diffusion system with
homogeneous Neumann boundary conditions. His system is a mathematical model that
describes chemical reactions not on the boundary but in the domain.

The following energy estimates play an essential role.
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PROPOSITION 5.1. The solution U = (u(r, z),v(r, ), w(r, z)) to (P) satisfies

d

(52) d_\I’(Lr) + GE(D U + 6{11,(7‘0,2,’)11)(7‘1,;‘)"1 - 'w(Tl, 2)71}2 < 01
(—~E(DTU; fr9.h) +2E(D.U;af,bg,ch) = E(D,U),
d

—7E(DZU; a,b,c)+ E(D,D.U) < N\E(D.U;af,bg,ch),

E(D.U;a,b,c) < N\ {E(D.U;af,bg,ch) + E(D,D.U)}

Jor 2 € (0,00). Here €, N, are positive constants that are independent of z, and

fn=[" (f)tlog dt, r € (0,7o),
(7)—/ b(t flog dz‘ h(r) = /c(z‘)tlog—dt r € (r,1),

r1

DU = (ur,vr,wr) D U= (u,,v,,w,).

We prove Theorem A by using this proposition, whose proof is given later.
Proof of Theorem A.. We will show that the solution U = U(z) = (u(-, 2), v(-, 2), w(-,
to (P) converges to the equilibrium Uy, = (teo, Voo, Weo ). Combining the ihequalities in

Proposition 5.1, we can derive

(5.3) /oo{u(ro, o(ry, 2)" = w(7‘1,z)"‘}2d: < 00,
(5.4) lim E(D.U;a,b,c) =0

(use, for instance, Lemma 4.1 with kg = 1). Since u, v and w satisfy diffusion equations,

Lemma 4.4 yields

lerllz + llorllss + Nl i3, < CE(D.Usa,b,0).
Thus we obtain from (5.4) that
(5.5) Jim {ffur(, 2lloo + lve(c, 2o + lwi(, 2) ]|} = 0.

Therefore the family {u(-,z)}.>1 is uniformly bounded and equi-continuous on [0, 7],

so are the families {v(-,2)}.>1 and {w(-,2)}.,>1 on [r},1]. On account of (5.3), there
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exists a sequence {z;};=123.. such that

lim 25 =00 and lim {u(ry, zj)’v(rl,zj)’" —w(ry, 2;)"}2 = 0.
J—oo

j—oo
By Ascoli-Arzela’s theorem we can choose a subsequence from {2;} (denoting it by {z;}

again) such that
Jim {{lut, 25) = @lloo + 01 25) = lleo + [0, 2)) = @]l } = 0.

Here it follows from (5.5) and Proposition 2.2 that @, @, @ are nonnegative constant

functions satisfying

R(3,7, ) =0,
n )
llall1 + nflllclllw = Myu,

m n _
——1'”17“11_) + _'1'”c”1w = Myw.
my No

Recalling Proposition 2.3, we see that (%, 7, W) = U,. Hence
Jim (e, ) = teolloo + 1100, 25) = eslloo + [0, 23) = Wealoo} = 0,
which implies

lim ¥(U(z;)) = ¥(Us) = 0.

J—oo

Moreover we see by (5.2) that ¥(U(z)) monotonically decreases. Thus we obtain

(5.6) lim ¥(U(z)) =0.

00

Since {U(z)}.>1 is uniformly bounded and equi-continuous, the facts (5.1) and (5.6)

lead us to
(5.7) zlln(,lo{lllt('a 7) = Uslloo + [|U(+,2) = Veoloo + lJu(-, 2) — Weo||oo} = 0.

Finally we show the convergence of v* and w*. Using Lemma 3.2 and (3.3), we
obtain from (5.7) that

R(Uoo, Voo, Weo )

=0
J(Uoo s Voos W) ’

(5.8) lim R(u(rg, ), v*(ro, 2), w*(ro, 2)) =
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which, combined with Lemma 3.1, implies
:1220 v (70, 2) = Vso, z121010 W (7, 2) = Weo
Letting = tend to oc in (3.4), we complete the proof. O
In order to prove Proposition 5.1, we prepare some differential (in)equalities.
LEMMA 5.2. The eolution U= (u v,w) to (P) satisfies
d~ l/ —7(1 o ‘Mo Jry luz rdr+n Z(l) i %rdr

( 707 ) (71a"') '117(7"1,3)) =0
(U(TOV" ,U('I‘I,A«),W(Tl,z’)) '

+ro{log u(rg, z)'v(ry, 2)™ — log w (r1,2)" }

We can prove this lemma in the same way as the calculation of d¥(u,u*)/dz in [7,
p.493].

LEMMA 5.3. The solution (u,v,w) to (P) satisfies
1d 1

( il + e - gl
1d

|2 3 gl + el = Sl

1d 9
| 5wl + el = Sl 3

Proof. Observe that
w(0,2) = fr) =0, Jim &0 — g <'f_> ==

r=ro a(r) ra) r

Moreover 7 f,/a is bounded near r = 0. Accordingly we have
1d . )
5@“%”53 :/0 Uzr TUf dr
7o 70
= —/ u, (ru,).fdr —/ u, U, f, dr
0 0
o o fr
= ——/ u, rau, f dr —/ rau, ru, —dr
0 0 ra
70 iy
= —/ wafrdr — / 0(7‘u,.)r7‘ur ﬁ dr
0 Jo ra
1 fmo f,
=l l2 2t RN L
= ~lusll3ar = 5 [ {run?h L ay
1 fro 51
2 2
= —|ull5.,r + —/ TUy —d?'
sl + 5 [ (e

1
= el + 3l
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Similarly the facts

. T Gr 1

v(1,2) = g(r) =0, Jim g((r)) =0 (%) =+
U),‘(I,Z) = ]1,(7-1) = 0’ lim M — 0, (ﬁ_") — l
r—7r) C(T) re ” 7

and the boundedness of g, /b, rh,/c near r = 1 lead us to the equalities for v and w. O

LEMMA 5.4. The solution U to (P) satisfies

%E(DZU; a,b,¢) + E(D,.D,U) < N{E(D.U;af,bg,ch).

Proof. Differentiate equations for u in (P) with respect to . Thereby we have

1d o o
—Q-EHUZH%;(I:/O U, TAU,, d7'=/0 U, (TUsy )y dr

d
= —U;(TO, Z)T()ER(U(T(), 3), U*(T(), Z), ’lU*(TO, Z)) - ”u’“‘”%

(in the last equality we have used (ii) of Lemma 3.2). After similar calculations for v

and w, we see that

Eth(DZU; a,b,¢) + 2E(D,D,U)
m

0 ~ g d
=719 {—uz(ro,z) - Evz(rl, 2) + sz(rl,z)} E;R(U(To, 2), v*(rg, 2), w* (19, 2)).

In view of Lemma 3.5, the right-hand side is bounded from above by
C{U‘Z(rO» 2)2 + ’Uz('f'l, 3)2 + wz(rl, 2)2}

on (0,00). Thus we arrive at the conclusion by using Lemma 4.3. O

Proof of Proposition 5.1. The last inequality immediately follows from Lemma 4.3,

so it suffices to show (5.2). Observe that
(logz —logy)(z —y) 2 w(z —y)*  for 2,y € (0, a0,
where k = 1/zy. In particular, by choosing

Lo = max {sup u(ro, 2) sup v(ry, 2)™, sup w(r, :)"} (< o0),
>0 2>0 z>0
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we obtain that

m n U\, 2),0(T1, 2 u)(r,z
{logu(ro, =)\ v(r1, 2)™ — log w(ry, 2 }J u(T(()) g) ((711 v)) w(rl1 z))))

. /f{u(rg,z)’v(rl,z) —w(ry, 2)" }
- S(u(TOa‘V) U(7la~) w(71,z))](u(r0, ) U(Tl,~) w(71a ))

for z € (0,00). Here we have used the positivity of S and J. Consequently we can

derive (5.2) from Lemma 5.2, because U is positive and uniformly bounded. 0O

6. Eigenvalue problem

In this section we will show that the eigenvalues for (EV) are nonnegative and will

characterize the least positive eigenvalue by a quadratic form.

LEMMA 6.1. In addition to (A.1) and (R.1), assume that M,, > 0 and M,, > 0

hold. Then
( OR
Rzo = E(uoovvooawoo) > Oa
| Ry = gf(uoo,voo,w ) >0,
OR
{ ?L? - 811)(u00’voo’u} ) < O.

Proof. By Proposition 2.3 we have
Uoo > 0, Voo >0, we >0.

Combined with R(tu, Ve, Weo) = 0, the identity
oS

-1, m —(uooavooawoo)
JR lug v

(U y Voo, Weg) =
8u( 01 Voo, Woo ) S(Uoo, Voos Woo )

- R(uoo, Voo, 'LUOO)

S (Yoo, Voo, Weo )2

implies R® > 0. Similarly we get R® > 0 and R® < 0. O
In the following lemmas d, and d,, denote the positive constants defined by (3.2).
LEMMA 6.2. For any (u,v,w) € R? there ezxists a unique pair (v*,w*) € R? such

that

w = w* — d, R (u, v*, w*).
30
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Proof. It suffices to solve the linear equation

1 +d,RY d,RY v\ [ v—d,R>u
—duyR? 1-d,R¥ w* ] \w+d,R*u

(recall the definition (2.1) of RY). We see by Lemma 6.1 that

I1+d,Ry®  d,RY

_dszo 1 — dsz)o =1+ duRv - dwa > 1;

so that the above linear equation is uniquely solved. O

We denote v*, w* corresponding to u, v, w in this lemma by
v* = B (u,v,w), w*= YE(u, v, w).
For simplicity we put
Joo = J(Ueo, Voo s Weo ).
LEMMA 6.3. It holds that
(i) Jo =1+ d,RP —d R > 1,
(i) R*(u,v*,w*) = J'R (u,v,w)  for (u,v,w) € R,

where v* = f*(u,v,w) and w* = y*(u, v, w).

Proof. Since R(teo, Voo, Woo) = 0, we can see by Lemma 3.1 that
Voo = B(Uoos Voor Woo )y Woo = V(Uso, Voo Weo )-

Thus the definition (3.1) of J implies the equality in (i). The inequality in (i) is derived

from Lemma 6.1.

Recalling (2.1), we see that

RY(u,v,w) = R*(u, v* / ——RL(u, v+ 6(v — v*),w* + 0w — w*)) db

= RL(u,yv W) + (v = v )RY + (w — w*)R.

The right-hand side is equal to Jo R*(u,v*, w*) by virtue of Lemma 6.2. Consequently

we obtain (ii). O
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Using Lemmas 6.2 and 6.3, we can reduce (EV) to an eigenvalue problem for u, v
and w in the same way as the proof of Proposition 3.3:

PROPOSITION 6.4. Suppose that a set (u,v*,w*,v,w) of smooth and radially sym-
metric functions u on . v* and w* on Q, v and w on Q, satisfies (EV) for a parameter

A. Then (u,v,w) satisfies

[~y — L, = Aa(r)u in (0,79),
—Vpr = U, = A1)V, —wyr — Lw, = Ae(r)w  in (1, 1);
!
GO
—u(ro) = Ly, (ry) = = w,(r) = J R (u(ro), v(r1), w(ry)),
| w(l)=w,(1)=0

for the same A. Moreover (v*,w*) is represented by (u,v,w) as

v*(r) = v*(ro) + moroR" (u(ro), v*(ro)w*(r ))108
w*(r) = w*(ro) — noroR" (u(ro), v*(ro)w* (70))108— on [ro,71].

v*(ro) = /3L(U(ro),v(n),w(rl)), w*(ro) = vE(u(ro), v(r1), w(r1));
o |
Conversely, suppose that a set (u,v,w) of smooth and radially symmetric functions u
on (o, v and w on , satisfies (EV) for a parameter . Then (u,v*,w*,v,w), where
v* and w” are defined by (6.1), satisfies (EV) for the same ).
We will formulate (EV)’ as an eigenvalue problem for a linear operator in L2(£2y; a) x

L2(€21;0) x L%(SY; ¢). Define a linear operator £ with its definition domain D(L) by
D(L):={ U= (u,v,w) € L(Qo;a) x L2(Q;D) x LE(Qy;¢) ;

(rtr)e . (rv r)r (rw;), )

a)r € L2(Q; a), brr € L(;b), o € L3 (;¢),

u.(0) = v,(1) = w,.(1) = 0,

~uy(rg) = Dbu (1) = =M, (1)) = J R (u(ro), v(r1), w(r)) },

more noTo

— (rur)r (rvg), (r U)r),. B
= (a(v‘)r ") () ) for U = (u, v, w) € D(L).

By Lemma 4.4 we can see that D(L) is well defined and that
D(L) C (H () N CH()) x (HA(Q1) N CLQ))2.

Clearly A is an eigenvalue of £ if and only if there exists a (u,v,w) # (0,0,0) satisfying

(EV) for A. Thus the set of the eigenvalues for (EV) coincides with that of £. Moreover
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the linearization of (P) at (e, Voo, Weo) can be represented by the abstract form

au .
T + LU =0 in L*(Qo;a) x L2(Q:b) x LA(Qy;c).

Consequently it is important for us to analyze the spectrum of L.

A remarkable point among properties of £ is the fact that £ is self-adjoint in
L% (Q;a) x L2(Q;0) x L2(8; ¢) equipped with an appropriate inner product. We will
show this fact.

Let us construct a symmetric bilinear form associated with £. For (u,v,w) € D(L)

and (v, v, w') € C}{Qp) x C}{£1)? we have

/ro {_(ru,)r} W ardr = — /m(rur)ru' dr = —[ru, U'](r)o + /m T, u, dr
0 ar 0 0
]
= / uqul, rdr + ﬂ-RL(u(/rO), v(ry), w(ry))u'(ry),

Joo
1 TV, 1 T
/n —( br) }v brdr :/r vpul rdr + IOJO RE(u(rg), v(ry), w(r)v'(ry),
1
/ ——M}w'crdr =/ wyw, rdr — Tl RE:(u(ro), v(ry), w(r))w'(r1).
" cr - n1Jeo
Recall the definition (2.1) of RL. Then these three identities lead us to
1 R
R°°/ }1 ardr + —R°° {—%} v’ brdr
1
711( R°°)/ —M}w crdr
(6.2) o r cr
= R°°/ U, 7d1+—R°° vv rdr-f— / ww', rdr
1

J — R*(u(r )’U(T1)7 (r1))R"(u'(ro), U(H) w'(ry)).

Seeing both the sides, we introduce the following symmetric bilinear forms:
U,u'y = RY " ardr + -—R°° vv "brdr +o- 11 R°°)/ ww' crdr
Mo
ford = (u v,w),U = (v, w) € L2(Qo,a x Lz(Ql, b) x L2(y;0);

T 1
QU.U') = R> 0u aul rdr + —LR® [ v rdr + R°°)/ wpw,. rdr

myg Ty
+J—R (u(r0), v(r1), w(r1)) R (u/(ro), v (71) w'(r1))
Y forUd = (u,v,w),U = (', v, w') € HY () x HH{()2

In view of Lemma 6.1, we can define a Hilbert space H by L?(Q; @) x L2(21; ) x L2(Q1; ¢)

equipped with an inner product (-,-). We denote by [||-]|| the norm in H and abbreviate
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QU,U) to QU), i.e.,

mi
my

1

(6.3) AP = BENull} gy + —= R0l 0,5 + —(=RZ) 1wl 0,5

T

for U = (u,v,w) € H and

0 my e n oo
QU) = RZlullg, + =Rl + o (=Rl g,
(6.4) + 25 RE(u(ro), (1), w(ry))?
> 0

for U = (u,v,w) € HQ) x H()% Clearly the identity (6.2) also holds for
(v, v, w') € (H; ()N Cr()) X H}(Q1)?. Thus we have obtained the following lemma.

LEMMA 6.5. The identity
(cU,Uu'y = QU,U')

holds for U € D(L), U’ € (HX() N C,(Q)) x HL( )2

LEMMA 6.6. The operator L is self-adjoint and positive semidefinite in H. It has
a compact resolvent in H.

Proof. Fix an arbitrary element F of H. We see by Lemma 4.3 that (-,-) + Q(-, ")
is an inner product equivalent to the usual inner product in H!(€) x H(Q4)?. Hence
Riesz’ theorem leads us to the fact: there exists a unique element U € H!(§) x H}(;)?

such that
UUY+QUU') = (F,U'y for allU' € HY(Q) x HY(0)2.

By virtue of Lemma 4.4, we can show ¢« € D(L) in the standard manner for elliptic

boundary value problems. Thus, with the aid of Lemma 6.5, we get
U+ LU =F,

L.e., the range of I + £ coincides with 7. On the other hand Lemma 6.5 yields

EfZ’Z?: g{uf”; >0’ } for U,U' € D(L).
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Consequently L is self-adjoint and positive semidefinite. We can derive the compactness
of resolvents for £ by a standard argument about elliptic differential operators in a
bounded domain. 0

By virtue of this lemma, the spectrum of £ consists of countably many nonnegative
eigenvalues and has no accumulation points. We can see that dimKer £ = 2 by the

following lemma.
LEMMA 6.7. Zero is an eigenvalue of L and the corresponding eigenspace consists

of constant functions. More precisely,
Ker £ = {s®, +t®,; s,t € R}

with

1 1 1 1
& = =00, —— Y N )
! (R:"’O’ Rf:)’% <0’R3°’ R.::,°>ER

Proof. We have only to see that U = (u, v, w) € Ker £ if and only if I/ is a constant
satisfying R (u,v,w) = 0.0
On the basis of Lemmas 6.6 and 6.7 we denote the eigenvalues of £ by {Ai}iz123...

with
(0 =)/\1 =)\2</\3£)\4 < --el
Since L is self-adjoint, we have

(6.5) A3 = min {%IETULTII?, UeDL\O, U L KerLlin H}.

Seeing that

To nl 1
U, ®,) = / wardr + — | werdr
0

el Ro L for U = (u,v,w) € H,
3| 1
(U, ®2) = — [ vbrdr+ — | werdr

mo Jrm g Jr

we can easily obtain the following.

LEMMA 6.8. ForU = (u,v,w) € H the following holds: U L Ker L in M if and

only if (u,v,w) satisfies
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o ny ! my 1 ny !
(Mo) / wardr + —/ werdr=— [ vbrdr + ———/ werdr = 0.
0 ng Jr mg Jr ng Jry

Now we are ready to characterize Ay by Q(-) and ||| - |||.
PROPOSITION 6.9. The eigenvalues for (EV) are all nonnegative and the set of

them has no accumulation points. The least positive eigenvalue A, is represented as

Ay = inf{l_lcl%/(% . U € (HY Q) x HY(Q)?)\0, U satisfies (MO)} .

Proof. Since the set of the eigenvalues for (EV) coincides with that of £, it suffices
to show the latter part. Observe that we can choose (-,-) + Q(-,-) as an inner product
in H}(Q) x H}()?. Then, by a standard argument about self-adjoint operators, we

can derive

inf{ QL({UI)2 ;U € (HHQ) x HHQ))\0, U satisfies (Mo)}

QU 1 e (HY(Q0) x BXQ))\0, U L Ker £ in H}

= inf{ Q(U) ; Ue DL\, U L Ker L in 'H}

(see, e.g., Courant-Hilbert [3]). O
7. Proof of Theorem B
As an application of the preceding section, we get the positivity of Q(-).
LEMMA 7.1. IfU = (u,v,w) € H} () x H}(Q1)? satisfies (M), then
(7.1) AU < ),
(7.2) w(r0)® + v(r1)? + w(r)? < KQU),

where K is a positive constant independent of U .

Proof. Proposition 6.9 implies (7.1). We can show (7.2) by using (7.1) and Lemma

43.0
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Let (u,v,w) be the solution to (P). Throughout this section we use the following

abbreviation:
U= U— Uy, V=0V — Voo, W= W — Weo,
U(z) = (a(-,2), (-, 2), 0(-, 2)),
D.U(z) = (u( 2), 0.(+, 2), w. (-, z))
()0 := Ha(s 2)lloosre + 11905 2) o2 + [|@(-, )] c0,s -

Since (u, v, w) satisfies (M) for all z € [0,00), we have

'4 T 1
/ 0 i ardr + w crdr
0 o
__/ ua7d7‘+ wcrch My, =0,
(73) J o ) . Ng Jry
Ll / v brdr + w crdr
my Jr no 1
_ vb dr+— wcr(lr—Mvw =0.
\ mo Ng

Hence U(z) satisfies (M) for all = € [0,00). Moreover, by differentiating (7.3) with
respect to z, we can see that D.U(z) also satisfies (My) for all 2 € (0, 00). These facts
play an essential role in the proof of Theorem B.

PROPOSITION 7.2. There exists a positive constant N such that

(1d

S IUEIP + Q)

< NQU)){|a(ro, )] + |9(r1, 2)| + |w(ry, 2)|},
2d~|HD U1+ Q(D. L{( )
S NQ(D.U(2))

(7.4) $

)I+IU(71’ |+|w(r1, )I}

\

for z € (0,00).

Proof. Since [[U(z)||e is bounded on (0,00), it follows from R(Us,Veo, Weo) = 0

that

R(u(ro, 2), (1, 2), (1, ) R
(13) o ey = 7= B0, 2), (0,2, (0,2 + R(),

where R(z) is a function of class C*(0, c0) satisfying

(7.6) |R(2)| < C{a(ro, 2)* + (r1, 2) 2 4 i(ry, 2)?),
d

(7.7) d~R()

< Clatro, )l + [o(ry, 2)| + [@(ry, 2) [ Hla(ro, 2)] + [0 (11, 2)] + |@: (1, 2)I}
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for z € (0,00).

We will show the first inequality of (7.4). Multiplying both the sides of a(r)u, =

Urr + 7 Ve (= 1710w, ),) by 7@ and integrating them from 0 to ry, we have

1 d 7 7 7
525-/0 ’ i (L7’d7: = /0 ’ wau, rdr = /0 ’ w(ru, ), dr

= [aru]y ~ /’0 Uy Uy dr
R(u(ro, z),v(ry, 2 ( ' %)) ",
as rdr
( (7Ua~) 1(r17 ) laz) ‘[) " ro
= —12(7*0,4)']—}? (t(ro, z),0(ry, 2), w(ry, z)) — a(ro, «)TOR(Z) /0 ﬁfrdr.

= —u(ro, z)ro

Accordingly,

1d - . N N
2 dz ” u’“2 ia + ”u7’”2 jo—u(l"()a Z)RL(U’(TO» 3)’ U(Tl, Z)’ 'U)(Tl, Z))
= —roi(rg, 2)R(2).

Similarly we can derive

1d morg . N
2(1 “ “26+” “2+ IJ ’l)(?l,Z)RL('( (TOV") U(Tl, )u)(rlv ))
TI?()?()~ o
= 1 L2 R
o ™ o(ry, 2)R(z),
N NeTo - . ., .
_—”w”2;c + ”wv'llg - 2D 10(7’1,3)RL(U(7‘073)5 U(Tl,Z),'w(T],C))
2dz - n1Jso
= —S)—Ezir(rl,z)f?(:).
1

Summing up these three equalities, we get
1d ) L ) ) )
5%'”“(3)'” + QU(z)) = —roR™(U(ro, 2), 8(ry, 2), w(ry, 2))R(2)

(recall (6.3) and (6.4)). Since U(z) satisfies (Mp), (7.2) holds with & = U(z). Thus,
with the aid of (7.6), we obtain the first inequality of (7.4).
After the differentiation of equations in (P) with respect to z, similar calculation

yields
. N N d -
TIDUGII? + QDY) = ~roB (10, ), 8r4, 2,104, ) (o)

In view of (7.7) and (7.2), we obtain the second inequality of (7.4). O
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LEMMA 7.3. There exists a number € € (0, \}) such that
lU(2))loo = O(exp(=Ayiz +€2))  as z — oo.

Proof. The inequality (7.1) holds with & = U(z) and with & = D,U(z), because
U(z) and D.U(z) satisfy (Mg). Then Theorem A and (7.4) lead us to

U] = Olexp(—Asz + €2)),

HID.U(2)||| = O(exp(—Ayz + €2)) } as = — 00

with some € > 0 (use, for instance, Lemma 4.2 with ky = 1). Now it suffices to show

that
(7.8) ()l < C{NUEI + NIDLUE)]}-
Applying Lemmas 4.3 and 4.4 to the right-hand side of
a(r,2) = o, 2) = [ o, 2) dp,
we get
lallo < Clllullza + [|AE]2)-

Moreover # satisfies a diffusion equation. Thus we have
lalleo < Cllallzia + [l: [l2:a)-

We can derive similar inequalities for ¥ and w. Consequently we obtain (7.8) and
complete the proof. O

LEMMA 7.4. [U(z)|e = O(exp(—As2)) as z — o0.

Proof. We have only to repeat the argument in the proof of Lemma 7.3, using the

fact
li(ro, 2)| + |0(ry, 2)| + |@(r1, 2)] = O(exp(=A;z + €2)) as z — 00

in place of Theorem A. O
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Proof of Theorem B. Using (ii) of Lemma 3.2 and (3.3), we can rewrite (7.5) as

R(U’(TO» :)a ’U*(r(% Z), 11)*(7'01 ’:’y)) - Jo_olRL(ﬂ(,rOa Z)a {](7-1’ Z), 1[7(7'1, ;)) + R(z)a
which, combined with (7.6) and Lemma 7.4, implies
(7.9) R(u(ro, 2), v™(ro, 2),w*(ro, 2)) = O(exp(=Ayz))  as z — .

Hence Lemma 3.1 and (3.3) lead us to

v(rg,2) =V = U(1r1,2) — d,R(u(ry, 2), v*(ro, 2), w*(rg, 2))
= O(exp(—A42)) as z — 00.

Consequently, using (3.4), we obtain from (7.9) that
lv°(-, 2) — Voo |loo = O(exp(—A4 2)) as 2 — 00.

Similarly we can derive the corresponding result for w*; so that the proof is completed.

0

8. Proof of Theorem C — (i) L*-decay of derivatives

In this section we prove that all derivatives of the solution converge to 0 uniformly
for r as = — co. Using it, we will derive the rates of their convergence in the succeeding
section. First we give some energy estimates for derivatives of solutions. Here again we
use the abbreviation and the energy functionals in §5.

PROPOSITION 8.1. Let k be an integer with k > 2. The solution U = (u, v, w) to
(P) satisfies

;idjE(Der—l(ﬁ f, Q, h) + 2E(D5U, a,f, bg’ Ch.) —= E(D,.Df_lU),

E(D{U;a,b,¢) < Ny {E(DSUsaf,bg, ch) + E(D,D*U)}

for z € (0,00). Here Ny is a positive constant that is independent of z; f, g and h are

the weight functions that are given in Proposition 5.1;

DIU = (D¥u, D*v, D*w), D,D*U = (D,D*u, D,D*v, D,D*w).
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Proof. The inequality immediately follows from Lemma 4.3. To obtain the equality,
differentiate (P) & — 1 times with respect to z. Then the same calculation for D1y
as the proof of Lemma 5.3 leads us to the equality. O

PROPOSITION 8.2. Let k be an integer with k > 2. Suppose that Diu(ry,-),
Div(ry,-), Diw(ry,-) (0 < j < k—1) are bounded on [1,00) for the solution U = (u,v, w)
to (P). Then U satisfies

;ld;E(DfU; a,b,¢) + E(D,D*U)

(8.1) k ' k-1 ‘
<N, {Z E(DiU;af,bg,ch) + 3 E(D,.D;U)}

j=1 j=1
for z € [1,00). Here Ny is a positive constant that is independent of z.
Proof. After differentiating (P) k times with respect to z, repeat the same argument
as the proof of Lemma 5.4. O

Let ¢ be a function of class C*[ry, 1] satisfying

0 S ¢(7) _<_ 1 on [7‘11 l]a

2r 1
1 ifr <r< Lt ,

o(r) = .
0 if%grgl.

For the solution (u, v, w) to (P) we use the abbreviation

U=U— Uy, V=V = Voo, W=W— Weo

and introduce three functions

_ _R(u(r,:),v(rl,z),w(7'1,z))

J(u(r, :1%,(1)((7‘1, z%, w((rl,)z)) ’( .
v amoroR(u(re, ), v(r, 2),w(ry, 2
Gu(r,2) = ¢(r) m17‘1.](u((7‘?, 2),)0(7( 2), 11)1(7‘1(, Z)))’)

N norofR(u(re, 2),v(ry, 2), w(r, 2
Gulr,z) = —¢(T)71,17‘1J(u(r0,z),v(rl,z),w(r, 2))

(r,z) € [0,79] x [1,00),

(r,2) € [r1,1] x [1,00),

, (r,2) € [r1,1] x [1,00).

We give a priori estimates for Sobolev norms of the solution to (P).
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LEMMA 8.3. For any nonnegative integer i there exists a positive number L; such

that
|[Dft]liv20, < Li(||D¥ll2.0, + [[DE il e + [[DEGullivrn0)y = € [1,00),
(D5 1]]iy2.0, < Li(|| D vllzn + D i, + [DEGullivra,), 2 €[1,00),
[D¥@llivan, < Li(l|DEtdllo0, + D5 i)li0, + D Gullivia,), 2 € [1,00)

Jor k = 0,1,2,..., where |[]]iq; denotes the usual norm in a Sobolev space H'(Q;)
(j=0,1).

Proof. Since

moroR(u(ro, 2), v(r1, 2), w(ry, 2))
G,(lz],z) = , €Iy,
(I, <) myryJ(u(ro, 2),v(r1, 2), w(ry, z)) TEN
Go(lz], 2) =0, x €Iy,

the function D*%(|x|, z) of 2 satisfies
AD o = b(|z|)D¥'5 in Q,
— D'y = D*G, on I'y,
—D*p = Dta, on I'y

for z € [1,00). Hence we get
[D3)li+20, < Cill|D¥ollag, + |[BDE8]liq, + [[DEG.)livy200,)

by virtue of Agmon-Douglis-Nirenberg [1]. This a priori estimate yields the conclusion
for 9. Similarly we obtain the estimates for & and w. O
Now we prove that

52) IDLD ]y + IDEDIV" . + [ DEDIu s,
+|| D Do) o0y + | DiDiwl|oo0, — 0 as £ — 00
for all nonnegative integers ¢, j with (¢,7) # (0,0) by using Propositions 8.1, 8.2 and
Lemina 8.3.
Proof of (8.2). We divide the proof into three steps.

First we will show that

(8.3) Sup{llDf"l“(w Moo + 1D 0(, 2)lloo + 1 DE (-, 2) oo} < 00,

(8.4) hm ||D‘u 2w + ||D"v( Naw + IID"w Mlae) =0
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for k = 1,2,3,.... We have already verified them for £ = 1 (see (5.4)). Let us con-
sider the case k = 2. By virtue of (8.3) and Lemma 3.5 with £ = 1, we see that
(D:u,D.v, D.w) satisfies (4.7). Hence we can derive (8.3) with & = 2 from (8.4) with
k =1 by using Lemma 4.7. According to Proposition 8.2, we obtain (8.1) with k¥ = 2
from (8.3) with £ < 2. Consequently, as an application of Lemma 4.1, we can derive
(8.4) with k = 2 from Propositions 5.1, 8.1 and (8.1) with k = 2. For k > 3, repeat this
argument with Lemma 3.5 replaced by Corollary 3.6. Then we can inductively prove
(8.3) and (8.4) for k = 3,4,5,....

Next we will show the convergence of Sobolev norms of u, v and w:

(8.5) lim |[DZa(, )]l + |[DSA(:, 2k + |[DEw(, 2)]; = 0
for k =0,1,2,...;i=1,2,3,.... Here we denote by |[-]|; the usual norm in a Sobolev

space H'(2;) (j =0 or j = 1). By Lemma 4.4 we have
|- Dul, < SIADAuIE = ZlleDAul < Llall D5,
which, together with Lemma 4.3, implies
DXl < C(l| D¥illa + | DE ilosa).

Similar inequalities hold for v and w. Thus we obtain

|[DF ]l + 1[D¥3]]: + |[Di )
(8.6) <C (“Dé‘a”?;a + ”Dfi)”%b + “Dfﬁ’”&c
+I| D5 alo + || DEH Bl + (| DEF bl
Consequently we get (8.5) with 7 = 1 from (8.4) and Theorem A. Consider the case
t = 2. Take

R + &,V + 1, Weo + ()
(oo + &, Voo + 1, Weo +C)’

F(&,n,¢) =

Q = Q,
’U,(.'L‘,Z)—"—'ft(yl.l'l,Z), U(.T,Z)Z'[)(Tl,z), U)(JT,Z)Z’lI)(Tl,S)




in Lemma 4.6. Then it follows from (8.3) that
[D*Gul10 < Ci Zk%{l[Diﬂ(ﬂz)H],no + |[D1a(r1, 2100 + [P0, )]0}
J=
<CkZ{I[D’ |190+|D W(ry, 2)| + [Dla(ry, 2)]}-
As a result, we see by Lemma 4.3 that
DGl 00 < Ci Z{I[D’U Nge +[DIo(, 2la, + Db, 2)] e, }-

Jj=0

Combining this inequality with Lemma 8.3, we get

k
|[DYi]ls < Cop {![D’i“ﬂllo +_(I[Dia]ly + |[DIa]], + I[Dilb]ll)} :
Jj=0 .
Similar a priori estimates hold for ¥ and @w. Thus we obtain
[DXa)lz + |[DF )]s + |[DEw))
< Cou {IID* o + (D5 lo + |[D+ g
k

+3 (ID2all + (D2l + (14}

(8.7)

which implies (8.5) with i = 2. In the case ¢ = 3, use the boundedness for the H2-
norms of D¥u, D¥o, D*w instead of (8.3). Thereby we can similarly derive (8.5) with
¢ = 3. Repeating this argument, we can inductively derive (8.5) for i = 4,5,6,....

Consequently we obtain by Sobolev’s lemma that
lim (”D 'DEu(-, 2)||oo + || DED¥( s ) loo + [|DEDFw(-, 2)]|o0) = 0

for all nonnegative integers ¢, k with (i, k) # (0,0).

Finally we will show that
(8.8) lim (1D} D50 (-, 2) oo + | DEDEW™ (-, 2)]|o0) =

for all nonnegative integers i, k with (i, k) # (0,0). Differentiating (3.4) ¢ times with

respect to r, we get

1D (2l + 1D (-, 2)llo0 < C IR(U(70,~) v* (1o, 2), w*(ro, 2))],

(8.9) € (0,000 =1,2,3,....
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Accordingly (5.8) yields (8.8) with i > 1 and k = 0. Differentiate (3.4) ¢ times with
respect to 7 and k times with respect to 2. Then, using Lemmas 3.4 and 3.5, we can

derive
| Di.D%v( )Hoo+||D'D"w( #)loo

(8.10) < Ciy Z{[Dﬁ w(ro, 2)| + [Div(ry, 2)| + | Diw(ry, )|},
j=1
z€[l,0);:1=0,1,2,...;k=1,2,3,....
Consequently we obtain (8.8) with i > 0and k£ > 1. [

9. Proof of Theorem C — (ii) rates of decay

Let (u,v,w) be the solution to (P). Throughout this section we use the following

abbreviation:

U:=U— Ug, V=V — Uy, W= W — Weo,

u(~) = (ﬂ'( )a ~(',Z),'II)(',Z)),

DMU(z) = ( W(-, 2), D¥¥(-, 2), D¥a(-, 2))

IDZU(2)ll == | DYA(:, 2)lo0 g + IDFH(, 2)lloo s + I1DED(-, ) cosr
where k& = 1,2,3,.... It is important that D¥U(z) (k = 1,2,3,...) satisfy (My) for
all z € (0,00). We can see this fact by differentiating (7.3) k times with respect to z.
Consequently the inequalities (7.1) and (7.2) hold with ¢ = D*uU(z) (k =1,2,3,.. .-

PROPOSITION 9.1. Let k be a positive integer. There ezists a positive constant N,

such that

S DI +QUDMU(:)

k
< Ne{| D3 u(ro, 2)| + | DLy, 2)| + [DXi(ry, 2)[} 3 Q(DiU(2))

3=0

(9.1)

for z € [1,00).
Proof. Differentiate (7.5) and each equation of (P) k times with respect to 2. Then

a similar argument to the proof of Proposition 7.2 leads us to

1d . L . N N ko
§E:|”D§U(z)|“2 + Q(DEU(2)) = —roRY(D¥a(ry, z), D¥o(ry, 2), DFa(ry, 2))'@;3(»2)-

Since || DIU(z)|ls (j = 0,1,2,...) are bounded on [1,00), we can easily derive

k

& .
—R(z
dzk (2)

k
< Ce Y {IDdi(ro, 2)? + [ Dia(ry, 2)[2 + |Dia(ry, 2)}, = € [1,00).
7=0
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Thus we obtain the conclusion with use of (7.2). O

Proof of Theorem C. We have obtained by Theorem A and (8.2) that
lim {| D ii(ro, )] + [D¥o(m, )] + ID¥a(r, D)} =0 (h=0,1,2,...).

By similar arguments to the proofs of Lemmas 7.3 and 7.4, we can derive from (7.1),

(7.4) and (9.1) that
ID*U(2)||o = O (exp(=A42)) asz—o oo (k=1,2,3,...)

(use, for instance, Lemma 4.2). Accordingly we obtain from (8.6) that

|[Dtall; + [[Da]ly + |[D; @)l = O(exp(=As2))  asz—o0 (k=0,1,2,...),

where |[]|; denotes the usual norm in a Sobolev space H'(Q;) (j = 0 or j = 1).
Recalling that |[D*4))i, |[D*9]]; and |[D¥@]|; (¢ > 2, k > 0) are bounded for 2 € [1, 00),
we can show in the same manner as the proof of (8.7) that

\[DEal; + |[DF9)]s + [ D5 @]l
< Cig {|[DFF ) |ip + |[DE 9] iz + [[DEH ]2

+Y (IIDfalliz1 +1Dili1 + (Dl icn) §

Jj=0

for ¢ > 2 and k& > 0. Thus, by induction with respect to ¢, we can derive

\[DEal; + |[DEo]]i + |[DEd]ls = O (exp(—A42)) a8z —
(i=2,3,4,...;k=0,1,2,...).

Hence we see by Sobolev’s lemma that

| DiD¥ulleo + | DiD50|oo + | DiDswl|co = O (exp(—A42)) a8z — 0
(1=1,2,3,...;k=0,1,2,...).

On the other hand, in view of (8.9) we get from (7.9) that
D50 loo + | D" [leo = O (exp(—A42)) asz—o00 (i=1,2,3,...)

Moreover, it follows from (8.10) that

| DiD¥v™||oo + | DiDiw*||oo = O (exp(=X42))  as z — 00
(i=0,1,2,...;k=1,2,3,...).
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Thus we accomplish the proof. O
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Captions

Fig. 1 Domain Q

Fig. 2 Chemical situation
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