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Abstract

We investigate the multi-loop correlators and the multi-point functions for
all of the scaling operators in unitary minimal conformal models coupled to
two-dimensional gravity from the two-matrix model. We show that simple
fusion rules for these scaling operators exist, and these are summarized in a
compact form as fusion rules for loops. We clarify the role of the boundary
operators and discuss its connection to how loops touch each other. We derive
a general formula for the n-resolvent correlators, and point out the structure
similar to the crossing symmetry of underlying conformal field theory. We
discuss the connection of the boundary conditions of the loop correlators to
the touching of loops for the case of the four-loop correlators.
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1 Introduction

Quantization of gravity is one of the most important issues in physics. The
understanding of two-dimensional quantum gravity, which is the simplest quantum
gravity, has experienced great progress through the study of matrix models.H It was
proposed [P that the integral over the geometry of two-dimensional surface can be
descretized as a sum over randomly triangulated surfaces and such regularized two-
dimensional gravity can be realized by hermitian matrix models. Feynman diagrams
of the matrix models correspond to the dynamically triangulated surfaces and the
continuum limit of the models then describe the theory of two-dimensional gravity.

Due to the double scaling limit [§] the sum of the contributions from all topologys
of two-dimensional surface can be treated, and thereby the matrix models have been
drawn much attention as a non-perturbative definition of non-critical string theories.
Following the discovery of the double scaling limit, many important structures of
the models have become clear; for example, the connection to KdV flow [f], the
Virasoro and W constraints 0 B, B, [ Field theory of non-critical strings [g,
has been constructed based on the matrix models.

The matrix models include infinite critical points, which are considered to repre-
sent certain conformal matters coupled to two-dimensional gravity. The m-th criti-
cal point of the one-matrix model corresponds to the (2m 4 1,2) minimal conformal
model coupled to two-dimensional gravity. The general (p,q) minimal conformal
model, where the central charge is ¢ =1 — %, can be realized as the continuum
limit of the discrete system where the degrees of freedom are points on the A(DE)
Dynkin diagram [[2]. Multi-matrix chain model has been introduced as a model
which includes the critical points corresponding to the general (p, ¢) minimal mod-
els coupled to gravity. In this model, ¢ matrices interact as a chain. The two-matrix
model [[3, [4, [3], which is the simplest multi-matrix chain model, however, turned
out to include all (p, q) critical points, which was pointed out in [[3, [4] and shown
explicitly in [[3]. We use the two-matrix model to investigate the unitary minimal
model (m + 1, m) coupled to two-dimensional gravity.

The emergence of the infinite number of scaling operators is one of the most
important properties of the matrix models. Before coupled to gravity, the minimal
model has finite number of primary fields. Coupled to gravity, however, infinite
number of scaling operators emerge. This phenomenon can be understood as fol-
lows. In the Kac table we can divide the primary fields @, ; into those which are

3See for example [l] for review.
4The corresponding structures in continuum framework have been shown also in [E]



inside the the minimal conformal grid 1 < r < ¢—1, 1 < s < p—1 and those
outside, which correspond to the null states. Before dressed by gravity, the fields
outside the minimal conformal grid decouple [[7 from physical correlators. After
gravitational dressing, they cease to decouple [[§, [9] and become infinite number
of scaling operators. The similar phenomenon has been shown in continuum frame-
work. Through the examination of the BRST cohomology of the coupled system
composed of Liouville theory, the ghosts and the minimal matter, infinite physical
states were shown to exist [B0, BI]. These states have their counterparts in the
matrix models as the scaling operators. Some of the scaling operators do not have
their counterparts in the BRST cohomology, which we will discuss later.

In ordinary (p,q) minimal conformal model the primary fields satisfy certain
fusion rules [[[]]; three-point function (®,, s, P, 5, Py s5) 18 nON-vanishing only when

L+ |r — 7ol <rg <mim{r; +ry — 1,p}, 1+ 19+ 73 =0dd
1+ |81 —82| S S3 S mim{sl + 89 — 1,q}, S1 + So + S3 = odd . (11)

It is interesting to examine how the fusion rules change when the matter couples
to gravity. In particular, we are interested in the fusion rules for the gravitational
descendants (0, j = ¢+ 1,¢+ 2,---), most of which correspond to the operators
outside the minimal conformal grid. Before coupled to gravity the corresponding
fusion rules do not exist. Such three-point functions were examined from the point
of view of the generalized KdV flow in [P9] for lower dimensional scaling operators in
the case of (m+1, m) unitary matter. It was shown that the gravitational primaries
o; (j =1,---,m — 1) satisfy fusion rules of BPZ type; for j; + jo + j3 < 2m — 1,
(0,04,0j,) is non-vanishing only when

L+ —del <js<ji+j2—1. (1.2)

The fusion rules were also examined in continuum framework [[9]. As for the grav-
itational descendants, however, we think clear results have not been obtained. In
this paper we would like to clarify the fusion rules for all of the scaling operators
including the gravitational descendants in the case of unitary minimal model. This

paper is based on 3, P4, B3, B4

Macroscopic loop correlators 2§, B9, which are the amplitudes of the surfaces
with boundaries (loops) of fixed lengths, are the fundamental amplitudes of the
matrix models. Although these amplitudes are hard to treat in the continuum
framework [BZ], they are defined quite naturally in the matrix models. It was shown
[BO, BI)] that these correlators have more information than those of local operators
and that the latter correlators can be extracted from the former correlators explicitly
in the case of ¢ = 0,1/2,1. They argued there that macroscopic loops could be
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replaced by a sum of local operators in a certain situation and thereby obtained the
correlators of local operators from those of macroscopic loops.

One of the purposes of this paper is to generalize the idea in [B(] to the cases of the
general unitary minimal models and to clarify the fusion rules for macroscopic loops
and all of the scaling operators. First, we derive the three- and n-loop correlators
from the two-matrix model at the general unitary critical points [24, 9], and then
derive the explicit forms of the correlators of the scaling operators Pf]. The main
conclusion is that the three-point correlators of all of the scaling operators satisfy
certain simple fusion rules [2f] and the fusion rules for all of the scaling operators
are summarized in a compact form as the fusion rules for three-loop correlators [P4].

In matrix models, there are infinite subset of the scaling operators which do not
have their counterparts in the BRST cohomology of Liouville theory. In the case
of one-matrix model, Martinec, Moore and Seiberg [BJ] argued that these operators
are boundary operators, which correspond to the vertex operators of open string
and couple to the boundaries of two-dimensional surface. They proved that one of
them is in fact a boundary operator which measures the total loop length. We think,
however, the roles of the rest of these operators were not clear. We also clarify the
role of these operators and its connection to the touching of loops in the case of
general unitary models [2§].

We also determine completely the forms of the multi-resolvent correlators, which
are the Laplace transform of the multi-loop correlators, and point out that the loop
correlators have the structures similar to those of the crossing symmetry of the
underlying conformal field theory [BF]. In the cases of four- and five-loop, we discuss
the connection of the boundary conditions of the loops to the touching of the loops
4.

As another formulation of 2D gravity with matter system, models of string whose

target spaces are the Dynkin diagrams have been investigated [B4]. We also comment
on the connection of our results to those from these models.

The paper is organized as follows. Sect. 2 is devoted to the review of the matrix
models and the macroscopic loops. We limit our discussion to the subjects that have
direct connections to the subsequent sections.

In sect. 3 we derive the three-loop correlators and extract the three-point func-
tions for all of the scaling operators through expansion of loops in terms of the
local operators. We then show that certain simple fusion rules exist for these local
operators or loops. We also discuss the role of the boundary operators there.

We derive the formulas for the multi-resolvent correlators in sect. 4, and give the



explicit forms of the four- and five-loop correlators. We point out that the structure
corresponding to the crossing symmetry of the underlying conformal field theory
exists in the multi-loop correlators. We also discuss the connection of the boundary
condition of the loops to the touching of the loops.

Sect. 6 is a summary.



2 Conformal field theory coupled to
two-dimensional gravity (review)

2.1 Matrix models and two-dimensional gravity

Let us briefly review the matrix models and the connection to the Liouville theory,
emphasizing on the notion of the scaling operators and that of the macroscopic
loops. We limit our discussion to the subjects which have direct connections to the
later sections.

2.1.1 Matrix models and random triangulation

Let us consider the model defined by the path integral with respect to an N x N
hermitian matrix ®,

_/dcpe‘ TRt e et (2.1)
where the measure is
do = 1_[d<1>Z HdReCI)Z dImCDZ (2.2)
7 i<j

The propagator is <(I>i j<1>kl> = 5}5;?, and is represented by the double lines in
fig. [l. (a). The arrows connect the upper matrix indices to the lower ones. The
vertex in the action is represented by fig. [] (b). Expanding the partition function in
term of g, we find that the each Feynmam diagram represents a net on an orientable
two-dimensional surface. Taking the dual of such a diagram, the vertices turn into
triangles and the dual diagram represents a random triangulation of two-dimensional
surface. Therefore, the model specified by eq. () can be considered to represent
a theory of random triangulation of 2D surfaces and is expected to be a theory of
2D quantum gravity when we take continuum limit.

Let us count the power of N associated to each diagram. Changing variables
® — ®/y/N, the action becomes N Tr (—%Tr ®% 4+ ¢gTr (I>3). From this form of
action it is clear that each vertex contributes a factor of N, each propagator (edge)
contributes a factor of N=! and loop (face) contributes a factor of N due to the

index summation associated. Each diagram has thus an overall factor
NV—E+F — NX — N2—2h ’ (23)

where x and h are the Euler character and the number of genera of the surface
associated to the diagram respectively. From (B.3), the partition function can be
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(@) (b)

Figure 1: propagator and vertex

expanded as
Z(9) =Y N*"*"Zu(9) (2.4)
h

where Z;,(g) represents the contribution from the surfaces of genus h. In the large
N limit, the contribution from the planar surfaces dominate.

2.1.2 Continuum limit

When expanded in the coupling g, for large order n, Z, behaves as

Zofg) ~ Lt () ~ gn — g (25)

and the expectation value of the number of vertices (triangles in the dual diagram)
is given by

0 1
ny = —1In 7 ~ .
)= L)~

The partition function Zy(g) thus becomes non-analytic and (n) diverges when g ap-

(2.6)

proaches some critical value g,. Since (n) diverges as g — g., it is expected that the
contribution from the continuum surface with finite area can be obtained by rescal-
ing the area of the individual triangles to zero accordingly. The contribution from
the continuum surface is considered to correspond the non-analytic part of eq. (B.5).
Therefore, the behavior of the model (R.I]) near the critical point is considered to
represent two-dimensional quantum gravity.



2.1.3 Multi-critical points and multi-matrix models

So far, we have considered the model(2.]), which consist of one kind of vertex in the
action. As a generalization of this model, let us consider the the model specified by
the action

N
S =5 TtV(®) (2.7)

where V(@) is some polynomial of matrix ®. This model can represent a series
of systems of consisting of matter and two-dimensional gravity. By tuning the
couplings in the potential, various critical points are obtained. The m-th critical
point corresponds to the (2m + 1,2) minimal conformal model coupled to two-
dimensional gravity.

As another generalization, let us consider the multi-matrix chain model,

()
e? = /H@a e, (2.8)

v—1 v—2
S= V(@) =3 c,@@olth (2.9)
a=1

a=1

Here the different matrices ®® represent v — 1 different matter degrees of freedom
that can exist at the vertices. Note the couplings ¢, in the action (.9) couple the
matrices along a line (chain).

It was pointed out, however, in [[J, [4] and shown explicitly in[I5] that it is
sufficient to consider the two-matrix model in order to generate the most general
critical points, which correspond to the ¢ < 1 minimal conformal models. We will
thus use the two-matrix model to examine the minimal models coupled to two-
dimensional gravity in this article.

2.2 Scaling operators in matrix models
2.2.1 KdV flows and scaling operators
Consider the two-matrix model with symmetric potential,
o? — / dAdB e~ & r(UA+UB)-4B) (2.10)

where U is an arbitrary polynomial of order m. In this article, we limit our discussion
to the two-matrix model with symmetric potential and to the critical points which
correspond to the unitary minimal models. In the case of asymmetric potential, some



of the boundaries (loops) of the surface would have fractal dimensions different from
the usual dimension of length.

Integrating out the “angular” variables, we have [[[q]
o = / ANALMANA(R) e X SU00+U6)-2%) (2.11)

Here A()) is the Vandermonde determinant, A and A represent the eigenvalues of
the matrices A and B respectively.

We introduce the orthogonal polynomials [j) = &;(A) and (k| = & () by the
orthonormality relation

Gk = [ & (&) = 8

dp = dAdN e X (VOFTR-M) (2.12)

We define matrices A and P by
Apm = (n|A|m) (2.13)
Py = (n] (% lm) . (2.14)

It is obvious from the definition (R.13) and (R.I4), that A and P obey the Heisenberg
commutation relations
[P,A =1. (2.15)

Now the important fact is that the operators P and A have non-zero matrix elements
P,j and A;; only if |i—j| is sufficiently small. Since the bounds are independent of N,
in the limit N — oo, P and A become differential operators (in z, the cosmological
constant) of finite order. The continuum scaling limit of the two-matrix model is
abstracted to the mathematical problem of finding solution to eq. (EI5). Let us
consider the (m 4+ 1,m) critical point which corresponds to the (m + 1, m) minimal
model. After suitable renormalization, A is given by

A=D" + U(I)m_gDm_z + U(I)m_gDm_g + -+ U(SL’)O 3 D = 896 . (216)

(By a change of basis of the form A — f~!(x)Af(x), the coefficient of D™~! may
be always be set to zero.) and P is given by [H]

P = (L™, . (2.17)
Here L = A'Y™ is a pseudodifferential operator satisfying
A=L", L=D+a D' +a;D %4 --- | (2.18)
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and (L*); denotes the nonnegative (differential operator) part of L*. Substituting
egs. (.1G) and (R.17) into eq. (B.15), we find that differential equations for u(zx);.
These equations determine u(x); up to m—1 integration constants t; (1 = 1,---, m—
1). The dependence of L on the constants t; is given by the first m — 1 generalized
KdV flows:

9 i
ol = (L), L] (2.19)
In general, the perturbation from the (m + 1,m) point is represented by the inde-
pendent flows in term of commuting operators {L‘|i = 1,2,--- # 0 (mod m)}:
oA = ()., A=~ [, 4]
atZ ) Y Y
0 i Z-
al = (L), Pl =—=[(L)-, P] . (2.20)

The infinite number of directions of the perturbation correspond to flows along
RG trajectories between various critical theories, identified with the (p, ¢) minimal
model coupled to two-dimensional gravity. Since the perturbation is realized by
adding an infinite number of relevant matter operators dressed by gravity to the
original critical action, the correlation functions of the scaling operators are defined
by the following relation:

R TR T

log Z . (2.21)

In
2.2.2 Correlators from KdV flow

The correlation functions of the scaling operators o; on the sphere were calculated
in [PZ] for lower j from the point of view of the KdV flow.
Let us define the following infinite number of commuting operators on the sphere:
1 X p—j—1\ (—du) .
—Qn = ( . ) —2 D (2.22)
n ]z:% J—1 J

with
(Qn, Q] =0 . (2.23)
The operators A and P on the sphere are given by

A = (Qm)+:Lm:Dm—%mqu‘2+~-~ ,
P == (Qm+1)+ 5 (224)



where u is the two-point function of dressed identity operator. Substituting egs.

(B:24) into eq. (:17), we have

:( “ )l/m. (2.25)

m—+1

|

The correlation functions of o; for lower j can be calculated from the KdV flow.
For example, from eqgs. (P.20), we obtain the following expression for the one-point
function:

3} n,
0—tnu = —2(Res L") , (2.26)

where Res L™ is the coefficient of D™! in L™ and L" (n < 2m — 3) can be replaced
with @, due to the relation

Qn—L" = %an"_zm +O(D2m2) (2.27)

The two-point functions can be calculated from

o0 o
g it = 2Res (L2, L)) (2.28)

As for explicit results of the correlators, we mention these in sec. B.5.

2.2.3 Connection to continuum theory

The m-th critical point of one-matrix model corresponds to the (2m + 1,2) mini-
mal model coupled to two-dimensional gravity. The scaling operators are naively
expected to correspond to the following operators in the (2m + 1,2) minimal model
coupled to Liouville theory in the continuum framework:

o; o /e%%l,m_l_j i=0,--.m—2, (2.29)

Iy(m — j), ®,, are the primary fields of the corresponding conformal

where o; = 5

field theory.

This correspondence fails however. In [B(], it was argued that the discrepancies
were due to contact terms which arise when two operators are at coincident points.
They showed explicitly the correct correspondence by the analytic redefinition of
coupling constants t;

tn=Clt;+ CUtit; + - | (2.30)

mainly for the case of one-matrix model. The original frame of operators ¢; and
couplings ¢; is referred to as the KdV frame and the new frame of operators o; and

10



fj is referred to as conformal field frame. The wave function of &; is proportional
to the modified Bessel function K;(2,/zf) so that it satisfies the (minisuperspace)
q

Wheeler-deWitt equation

[— (z%)Q b Apl® (é)2

which is a desirable property.

U;(0)=0, (2.31)

The BRST cohomology of the coupled system of Liouville theory, ghosts and
the (p,¢) minimal matter was examined in [20, BJ|. It turned out that the BRST
cohomology is spanned by infinite operators of the form

@ _pta—J

5 2 j>1, #0 (mod p), # 0 (mod q) , (2.32)

where ¢ is the Liouville field and v = (v/25 — ¢ — /T — ¢)/v/12. The operators O,
are made of ghosts, matter and derivatives of ¢. On the other hand, the scaling
operators o; of matrix model at the (p, ¢) critical point scale like Liouville operators
of the form ,

O, e, Y _PTA=J

gl 2q

Apart from the discrepancy of the operators with j = 0 (mod p), the two calculations
are in remarkable agreement. It was argued in [BJ] that the scaling operators with

j>1,#0 (modq) . (2.33)

j = 0 (mod p) are boundary operators, which couple to the boundaries of two-
dimensional surface and correspond to the vertex operators of open string.

2.3 Macroscopic loops
2.3.1 Macroscopic loops in two-matrix model

In the two-matrix model, the operators
Tr A™ | TrB™ (2.34)

create holes WithAboundariAes of lattice lengths n; and ny respectively. The correlation
functions of Tr A™ or Tr A™ are expected to become those of macroscopic loops in
the limit an; — ¢; with ¢; finite, when the unit lattice length a approaches zero.
It is convenient to consider first the correlators of the resolvents
Wt () = Tr—— | () = Tr——
pi—A pi— B

, (2.35)

11



where p; is a parameter corresponding to the bare boundary cosmological constant
of each loop. Due to the formal expansion

A o Tr An

WHp) = —1 (2.36)

n=0 Pi

the resolvents include the contributions from loops of any length. The correlators
become singular when p; approach some critical value p,. Since the contributions
from loops of finite continuum length corresponds to those of infinite lattice length,
continuum loop correlators are defined as the inverse-Laplace image of non-analytic
part of the resolvent correlators with respect to ¢; = (p; — p«)/a.

2.3.2 ‘Classical’ solutions to Heisenberg relation

In later sections we will use extensively the ‘classical’ solutions to the ‘classical’
Heisenberg relation. Let us explain these in this subsection P.3.3.

Since we would like to examine the correlators on the sphere, we are interested
only in the planar limit ( large N limit ). The Heisenberg relation (:.13) turns into

_A
==

after rescaling P — S P. From eq. (E337), we see that & plays the role of Planck
constant. It is thus expected that the corresponding ‘classical’ functions would be

[P, A] (2.37)

much easier to handle than the operators A and P in the large N limit.

At this point it is useful to change notation for the indices of the matrix elements:
Ak(n) = An—k,n 5 Pk(n) = Pn—k,n . (238)

Here n represents the position of the matrix element on the diagonal, and k is its
deviation from it. Then the action of the operators A and P on the orthogonal
polynomial basis is described by

m—1 (m—1)2

A=Y -k Ayn) . Plo)= Y |n-kP(n) . (239)

k=-1 k=-1

The ‘classical’ functions are defined by

Alw,s) = ﬂiz_: e Ay (n)
(m-1)2
P(w,s) = kz_j ™ P(n) , (2.40)

12



where s is the continuous variable
s=—A (2.41)

and w is its conjugate coordinate.

The equation of motion

A , .
~ P = QU V1) = A (2.42)
which is obtained by doing an integration by parts, reads
Ao Ao
P =U'(A ———))-1-A(— ——5)-1 2.4
(@ s)=U'(Aw.s = 550)) 1= Al-wt poos) 1, (243)

when expressed in term of the classical functions. In the planar limit, eq. (R.43)
reads

P(w,s) =U'(Aw,s)) — A(-w,s), (2.44)
and the Heisenberg commutation relation (B.37) is replaced by the Poisson bracket
_0OPO0A 0POA

Note that in the large N limit the classical functions A and P depend on A only
through s, which is easily seen from eqs. (.43) and (2.44).

Let us find the solution to the classical Heisenberg relation eq. (.43) near the
(m+1,m) critical point, which corresponds to the (m + 1,m) unitary minimal con-
formal model.

At the critical point, one expects the following singular behavior of A and P:
A(z) = Au~(1—=2)", P(z) = P.~ (1 —2)™". (2.46)
From the scaling laws (R.44), the solution to the Heisenberg relation is given by [[[J]
A(z,s) — Ay, = 21n™ coshmb

P(z,8) — P, = 2n™ cosh(m + 1)0
s—A, = (m+ 1. (2.47)

Here P,, A, and A, denote the critical values of the corresponding quantities and
the parametrization
w = 2ncosh (2.48)

is used. We will use the classical functions (R.47) extensively to calculate the loop
correlators in later sections.

13



2.3.3 Loops in semi-classical Liouville theory

When we discuss the loop correlators, it turns out to be very helpful to consider
these correlators semi-classically in Liouville theory. Let us explain these [B0] briefly
in this subsection P.3.3. In the continuum framework, two-dimensional gravity part
of the coupled system can be described by Liouville theory based on the action,

. 1 ~
Silesgl = o /E 42€\/G5DapOysp

+—§%<Ld%¢§§¢+ﬁ;dgaﬁ

a /d2 Gelo+ L dserer 2.49
* 812 Jx éh\/;e@jL47w2 o O (249)

where g, is a reference metric and g,, €7% is a physical metric, R and k are respec-
tively the curvature and the extrinsic curvature of the boundary with respect to the
reference metric g,,. We denote by p and p bulk and boundary cosmological con-
stants respectively. Classically, @ = 2/ where v is the Liouville coupling constant.
Let us consider the correlation function

<Heaw(%)> = /Dso e S [T eet=) . (2.50)

We obtain the classical equation of motion:

1 _ o 5@y ) =
47TA<p 876 +;a15 (z—2)=0. (2.51)

Since the curvature of the physical metric is
Rle™g] = —e" T A(vep) (2.52)

eq. (B.51) describes a surface with constant negative curvature and the inserted
operators e #(#) play the role of the sources of curvature. Note that in the absence
of a boundary a solution exists only when

X=>ai+ %(% ~2) (2.53)

is positive, where h is the number of handles. The nature of the surface and hence
the nature of associated quantum states depend crucially on the sign of X. When
there are boundaries, a classical solution always exists. Let us restrict our attention
to the case with a single boundary and discuss whether the boundary can be replaced

14



by local sources of curvature. In this case the nature of the surface depends crucially
on the sign of

Y:X+%Q:Zai—%c)x. (2.54)

Case 1: Fixed pu, Y > 0. When the loop is shrunk to a point, there exists a
classical solution with constant negative curvature. A small loop behaves like a
local source of curvature /2.

Case 2: Fixed u, Y < 0. When the loop is shrunk to a point, there is no classical
solution with constant negative curvature. We can understand this case better if we
constrain the area of the surface to be A.

Case 2-1: Fixed A > (2, Y < 0. The classical solution has positive constant
curvature and the small-¢ limit is smooth and the loop becomes as a puncture with
curvature Q)/2.

Case 2-2: Fixed A < /2, Y < 0. The classical solution has negative constant
curvature and the loop cannot be thought of as a local disturbance.

So far we have discussed classically. Semi-classically, ¥ must be modified by
Y = X + tmim & (2.55)

where iy is the curvature associated with the lowest dimension operator O, (
the dressed identity operator, in the case of the unitary minimal matter) because
this is the maximum curvature that can be localized in a point in the quantum
theory. Similar observations follow in semi-classical discussion. In case 1 and case
2-1 the loop can be replaced by a sum of local operators and the contribution to
the amplitude give rise to non-analytic terms in p. In case 2-2 the loop cannot be
replaced by a sum of local operators and the contribution to the amplitude give rise
to analytic terms in p; the loop length ¢ plays the role of ultraviolet cutoff.
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3 Three-loop correlators and fusion rules

In this section we consider the loop correlators in the unitary minimal models
(m + 1,m) coupled to two dimensional gravity and the physical information we
can extract from these. As shown in the case of one-matrix model [B{], the loop
correlators are expected to have much more information than those of local opera-
tors. We calculate the three-loop correlators in the systems stated above, from the
two-matrix model with symmetric potential, at the (m + 1,m) critical points and
show that simple fusion rules exist for the loop correlators and for all of the scaling
operators.

3.1 Formula for n-resolvent correlator

Consider the connected part of the n-point correlators of the resolvents, which we

introduced in sec. .3.1]:

. 1 < 1
Wt (p;) = Tr - , W™(p;) =Tr - . 3.1
(p:) A (p;) - (3.1)

First, let us show briefly the formula for the n-resolvent correlators we obtained
in [@]E The explicit derivation of the formula will be shown in section [L.1]later. At
the (m + 1,m) critical point, we obtained the following formula for the n-resolvent
correlator:

&) <<H o A>> -1 (‘a&)) RG,A)

Here we denote by ((---)) the connected part of the averaging with respect to the

Aeh (3.2)

matrix integrations and R™ is some function of ¢; and A; through 2z’ and their
derivatives with respect to the bare cosmological constant A;. Note that we intro-
duced independent cosmological constants A; for each loop for the convenience of
the calculation. We put A; = A at the end of the calculation in eq. (B-3). The
function 2! of (; and A; is parametrized as follows,

2! = exp(2n; cosh 6;) , (3.3)
where

Di — P« = CLCZ' = A(Z* Az) — A* = CLMZ' cosh m@l y n; = (CLMZ/2)1/m y (34)

7

5The formula for the multi-loop amplitudes in the case of the general one-matrix model was
derived in [R9].
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M;\? L
;T = — 2m = — 2 . _Z — i
A; — A, (m+ 1)n; a’p; ( 5 ) 1 (3.5)

where p, and A, represent the critical values of p; and A(z; A) respectively. We
denote by (; and p; the renormalized boundary and bulk cosmological constants for
the corresponding loop respectively.

The origin of the parametrization eq. (B.3) comes from the planar solution to the
Heisenberg algebra (R.47). In fact, the function A(z, A) in eq. (B.4) represents the
solution at the (m + 1,m) critical point.

The function R™ is easily written down for lower n. For n = 2,3, we have

a 2 az* 2
—__ R® _ i _
6AR ;OAZ Il G -2 (3.6)
i= J(#4)
3 82: 3
R® = Z@A Il G -2 . (3.7)
=1 70 ()

For n = 4,5, the correlators can be written compactly using graphs as introduced
below:

N Z{ s iy iz i } | (3.8)
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In these figures a double line linking circle ¢ and circle j, a single line having an

arrow from circle i to circle j and a solid circle i represent (z; — 25)72, (2 — z5)~!

and g/zé respectively. The summations are over all possible graphs that have the

same topology specified. Each graph appears just for once in the summation. Note

that the links to the external circles are not double lines but the single ones with
arrows and that the internal circles are solid circles.

For general n, the function R™ is expressed in the same way. The rule is as
follows. First, we consider all possible graphs which have n circles and n — 1 links in
the same way as in the case n = 5. Second, if the internal solid circle ¢ has [; links

li ‘
in each graph, the graph is operated by Hi(a%i) *. Then the summation over all

graphs gives the expression for R

3.2 Three-loop correlators
3.2.1 Derivation of three-resolvent correlators

As a example, let us calculate explicitly the three-loop correlator, which we examined
in [B4], in order to understand how we got the formula from the classical solution to
Heisenberg relation at the (m + 1,m) critical point.

In the second quantized free fermion formalizm ( see, for example, 2§, fi] ),
the connected part of the correlator consisting of the product of arbitrary analytic
functions f)(A) in two-matrix model can be expressed as

(fim o)

N|H [ anw (00 FO0) B - )
= (VT - el IV TT f dite (510008, (1)

= (NIT] : af,a, - IN H kil fO (ALY (3.10)
i=1 1=1
where

A) = Zak (A, (3.11)
= Y a&) (3.12)

are second quantized free fermion fields constructed from the orthogonal polynomials
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&, and |N)) is a state corresponding to the filled fermi sea,

ag [N) =0 for k> N (3.13)
al IN) =0 for k<N —1. (3.14)
The normal ordering : --- : is with respect to |N)). The connected three-point

correlator consisting of arbitrary analytic functions f(A), g(A), and h(A) can thus
be expressed as

i

NE
NE

(Tr F(A) Trg(A) Ten(A)) = (Ao [9(A)]w [B(A)]:

2
Tl
Bl
Il
=
T
=

|
hE

P

Lf (D)]ire [R(A)]wa [9(A)]ii » (3.15)

~
Il
o
£
g
o~
Il
o

where [f(A)]ix = (@] f(A)|k).

Because we are interested in the case of large N limit only, it is convenient to
use the ‘classical’ function introduced sect. P.3.2. Note that the ‘classical’ function
depends on the bare cosmological constant A only through s when we take N — oo
limit. It is, therefore, legitimate to introduce A(z,s) = ]\}I_I)ICIXJ A(z,s,A) :

A(z,5,A) = A(z,s) + O(1/N) . (3.16)

Since the matrix elements A;; only near the diagonal are not zero, the matrix
element [f(A)](i)x = [f(A)]i—x; can be replaced with the coefficient of z* for the
‘classical’ function A(z,s = A),

FANN = 5 f o f (A s = AD+O/N) , (317)

27
at large N limit.

In the right-hand side of eq. (B.13), the leading terms in 1/N of the first term
and those of the second term get cancelled. We have to consider the next leading
terms. For any integer €, we obtain

FANN 4 = oo § S2F (Al s = A)
Ae 1 dz 0A(z,s) af (A(z,N))
N 27i 74 1 0s |, 0A

+ (the part independent of €¢) +O(1/N?) . (3.18)

The part independent of € comes from the terms O(1/N) in eq. (B.I7). The sec-
ond term is responsible for the computation in what follows. Using eq. (B.1§) and
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considering the terms 1/N in eq. (@) we obtain

(Tr F(A) Trg(A) Trh(A >>: = Z Z Z

=0 6,=06=0
0

{(52 = 01) S L (AN (N)sr a1 [9 (AN )5-6 [R(A)](N)-5-51-1

9
0s

+ (0= 01) [f(AIN) 514501 [9(A)(N)o-s, %[h(A)](NM—&l—l }
O(1/N?) . (3.19)

(0 + 02 + 1) [f(AI(N)sy 1241 7 [9(A)(N)s-6, [PA)](N) 55,1

Here we have used the fact that at large N, the original summations in eq. (B.19)
can be safely replaced with the triple summations from zero to infinity.

The summations can be carried out after putting this equation into the form of
contour integrals using eq. (B.I7). The three-point function eq. (B.I7) in the planar
limit can thus be expressed in terms of the ‘classical’ function in the form of contour
integrals,

i 3 - A1
<<Trf(A) Trg(A) Tr h(A)>> =~ N(on AE jl%21>|22>|23|d21d21d23
{ e g A (A A (A()
22 0
(22 - 21)2(22 - 23) ! ( ( )) 8—]\ [(A(Zz))}h (A(Z3))
zZ3 a
b A s () e AG)] b ea0)

where we set A(z) = A(z,s = A). The condition for the contour paths |z;| > |2z5| >
|z3| follows from the condition that makes the infinite summations converge.

From the above expression (eq. (B.20)), the three-point resolvent in the planar
limit is expressed as

N 1 1 1 1
— <<Tr ~ Tr yi Tr >> = 7% dzidzodzs
A, p—A  py— ps — (2m3)3 Jiz1|> |z2l> 2

{ (21 — Zz) 21 — 23)° %[ 1 —14(22)]93 —14(23)
" (22 — 21)222 — 23)* ;1 —IA( )8/\ lpz f‘l( )] b3 — {4(23)

2 1 10 1
* == P A = A OA lpg - A(a)] } - (3:21)
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where the contour of z; encircles that of z; and similarly the contour of 2z encircles
that of z3. We pick up only the contributions form the poles at z; = 2] of the parts
1/[pi — A(2)]. The contributions from the poles at z; = 2} (i # j) give rise to terms
which do not have the inverse Laplace image. We thus discard these terms.

We obtain the following rather simple expression for the three-resolvent correla-
tor,

N 1 1 1
—<<Tr ~ Tr ~ Ir A>>
A, p— A pr— A ps— A

1 (0 1 02| 025 023 }
- _ +(1—=2)+(1<3

% {aAl l(zf — 5 - 37 aa] a0, TS
_ 19099 { ! 04

a3 0C1 0G2 G | (27 — 23) (27 — 25) OMy

—l—(1<—>2)—|—(1<—>3)}

A=A
(3.22)

Here, the poles z are determined through the classical solution to the Heisenberg
relation and are parametrized as eq. (B.J).

Eq. (B:22) agrees with the set of eq. (B.J) and eq. (B.7), the formula for three-
resolvent correlator. We have shown how we can get the formula for n-resolvent
correlators for the case of n = 3 explicitly.

3.2.2 Three-loop correlators in terms of loop lengths

Next, let us consider to how to get the expression for three-loop correlators in
terms of the loop lengths, performing inverse Laplace transformation with respect
to the renormalized boundary cosmological constants (;. We will show, later, that
much physical information can be extracted from the three-loop correlator. The
generalization to higher loop will be discussed in sect. 4.

First, we will show we can put eq. (8:29) into a form in which the correlator is
expressed as a sum of the product of three factors each of which depends only on
¢; corresponding to individual loop. In order to show this, first note that eq. (B.29)
can be written as

E <Tr 1 ~ Tr 1 ~ Tr 1 A>
A« pl—A p2—A pg—AC
1 aM\"27V" 9 9 9
— = F(6,.0,.0
a322m(m+1)( 2 ) dC1 OCs DG (61,05,65)
(3.23)
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where

1 sinh(m — 1)6;
F(ela ‘927 93) (COSh 91 — cosh 92)((308}1 (91 — cosh ‘93) sinh mel
+ (12 + (1<3) . (3.24)

Here the following identity is crucial;

1 < sinh(n — k)a sinh(n — k)p )

cosh o — cosh 3 sinh na sinh n(
nwkF osinh(n —j —i+4 1)a sinh(n —j — k+4)3
= —2 3.25
]Z:l ZZ: smh nao sinh n( ( )

Making use of the above identity twice, we find that eq. (B.24) is written as a triple
sum where the summand factorizes into three factors associated with individual

loops:

F(elu 927 93)
B 4m—1 m—ki sinh(m — ]{3)91 sinh(m —j — 1+ 1)92 Sinh(m —k— j -+ 1)93
B k=1 j=1 i=1 sinh mf, sinh mb, sinh m#6s

(3.26)

Here, we should specify the definition of continuum amplitudes at large N. Since
the leading term of << " W(p2)>> is of order of a™"k""2, where k = a~ > w (A, /N),
we should renormalize to obtain continuum quantities. The renormalized resolvent

is defined as " . 1
W) == Wip) = - T _ 3.27
(€)= 7 W) = 2T (327)

and the renormalized expectation is defined as

(ceeee VI — 2 N (3.28)

We will omit the superscript ren from now on. The continuum three-loop correlator
(wr(l)w* (ly)w™(L3)) is defined by the inverse Laplace image of the continuum
resolvent correlator, that is,

(WHQWH(G)WH(G))
_ /0 ey /0 e, /0 " dlyem e et (w6t (G)w (6)
= L [(w (C)wt (L) (6))] (3.29)
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where w®(¢) is an operator which makes hole with finite boundary (loop) length .
Due to the following formula for the inverse Laplace image

1| O sinhkf ——%gsink—ﬂ %
OCsinhmf |

(MO) (3.30)

k
™ m m

where K, (z) is the modified Bessel function, we can obtain the continuum three-loop
amplitude in a rather compact form:

(wh (C)w* (L) (L))
B 1 <M )‘2‘%
m(m+1) \ 2
M 3 m—1m—-k k __ —
<—) Orlol S Kok (M) Koioies (M) Kises (MUs) |
k=1 j—1 i=1 m m m
(3.31)
where we introduced a notation,
~ sin 7 |p|
K,(M?) = K,(M . .32
1) = S0 K (ar0) (3.32)

The expression for the summation in eq. (B:3]]) looks asymmetric with respect to
the loop indices. By elementary algebras, we can convert it into a form which have
explicit symmetry with respect to the interchange of loops:

(w(t)w* (L)w* (¢5))

(7))

My? =
(3) atts X R a(ME) R, g (Mb) R, (0Mb) |

1
(k1—1,kg—1,kz—1)

E‘Dém)
(3.33)
Here we have denoted by D{™
3
Dém) = {(&1,&2,@3) ’ > ai—a;>0forj=1~3,
i(#7)
3
Zai:even§2(m—2),ai:O,l,Q,---}. (3.34)
i=1

Eqgs. (B:33) and (B.34) give the final expression for the three loop correlator at
the (m + 1,m) critical point. It is interesting that the selection rule obtained in
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eqs. (B33) and (B34) agrees exactly with the fusion rules for the diagonal primary
fields in the Kac table of underlying conformal field theory of the unitary minimal
model (m + 1,m) [[7]. In fact, the fusion rules for the diagonal primary fields read
as

(Gii bjj dxr) #0 (3.35)

if and only if i + j > k 4+ 1 and two other permutations and i+ j + k (= odd)
< 2m — 1 hold. This set of rules is nothing but Dém).

3.2.3 Boundary conditions of loops

A similar expression to eq. (B:33) was obtained in [B4]], where loop correlators were
examined for closed string with one-dimensional discrete target space, that is, the
degrees of freedom for matter part are labeled by the points of Dynkin diagram. The
matter degrees of freedom are labeled also by the discrete momentum p instead of
the discrete target space coordinate x. They examined the loop correlators treating
the boundary condition of each loop ¢; to be specified by a single momentum p;.
Thus, it follows directly that the three-loop correlator which is specified by three
momenta pp, po and ps and loop lengths, is proportional to the expectation value for
wave functions for matter part, that is,

éplpzpa = Z Sgﬂpl)sé)z)sgﬂps)/sm ) (3.36)

where Sz’cpi) and S* are the wave function of a point particle moving on the discrete
target space with momentum p; and that for ground state respectively,
2 1/2
S]gﬂ = (z|p) = <m> sin wpx (3.37)
r=12,--- h—1

p=1/h,2/h,--- (h—1)/h .

For example, for the A,_; Dynkin diagram, each momentum takes discrete values

of %, cee % and C’mmm is nonvanishing only when hp; satisfy the equivalent rule

we found in eq. (B:33) and eq. (B-39), that is,

(hpy — 1, hps — 1, hps — 1) € D§". (3.38)

The similarity between the three-loop correlator in the case of the closed strings
in discrete target space and that in the two-matrix model we found in eqs. (B.33)
and (B.34) indicates that the each terms in the sum in eq. (B.33) represents the
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amplitude with the the loops specified by the momentum % It appears that we can
decompose the loop operator in the two-matrix into parts each of which specified

by a momentum £:
m

m—1
“wr(l) ~ Z o wy(0)” (3.39)
k=1

From the selection rules in eq. (B:34), we can deduce the fusion rules for the
gravitational descendants as well as for the gravitational primaries. In other words,
some fusion rules are satisfied among all of the scaling operators including the grav-
itational descendants as well. We suggested first that the selection rules in the
three-loop correlator correspond to those for the gravitational primaries by exam-
ining the limit of small loop length [23]. In [2§], we obtained the fusion rules for
all of the scaling operators from the three-loop correlator. We will discuss these
issues in detail in later subsections after we examine the two-loop amplitude and an
expansion of the loop operator in terms of local operators.

3.3 Expansion of loop operators

In [B0, BT it was proposed that a loop operator can be replaced by a sum of local
operators if the loop correlator does not diverge when the loop shrink to a point.
This was discussed explicitly in the case of the one-matrix model and ¢ = 1 case.
We apply this idea to the general minimal models coupled to gravity and discuss
the correlation functions for the scaling operators. In order to derive the form of
the expansion of the loop in terms of the local operators, let us first consider the
two- and one-loop amplitudes.

3.3.1 Two-loop correlators from three-loop correlators

Let us derive two- and one-loop correlators from the three loop correlator eq. (B.33).
As we shrink one of the three loops, the three-loop correlator should approach the
derivative of the two-loop correlator with respect to the cosmological constant. Con-
sider shrinking the third loop M¢3 in eq. (B.33). Since, for M{ < 1, we have

MO~ Ml
S Kis(mb) = {1, e (MO~ 1 (MO)]
M
zTI—H%(]VM)
MOT 1
e 3.40
(2 ) o) (3.40)
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the leading contribution in the summation in eq. (B-33) comes from the part of
ks = 1 and we have

(wh (C)w* (L) (L))

1
1 oy el
~ — 204 K (M¢ MP 3.41
m(m+1)T(1/m) 122 1k 1) 1k( 2) ( )
for M3 < 1. This should be proportional to the derivative of two-loop correlator
with respect to . In fact, by the explicit calculation similar to the case of three-loop,

one can obtain [[5, B3

9 + +
o (T (@)

1 m—1

= i D Mz;( VUK e (MO) Kk (Mb) . (3.42)

It is clear that eq. (B-4]) and eq. (B.42) are consistent.

9 _ 2 9
Due to a relation 95 = iyl Mon

and a formula of a integral (for a # f3),

/ 22K, (02) Ky (32) = ﬁ{ﬁ[(u(az)[(y_l(ﬁz) — oK, 1(a2)K,(52)},
(3.43)
one can obtain the two-loop correlator (for ¢, # ¢5):
(wt (L) w* ()
CIM bl T
=—= 621 : z:: )KL (M) K, (M)
— 6K,k (Mby) K (M) }
m— 1
LM % VR (Mb) Ky (M) . (3.44)

m2€1+ 2k:1

3.3.2 One-loop amplitudes from two-loop correlators

Shrinking ¢, in eq. (B:44) as well, one should have the derivative of the one-loop
amplitude with respect to the cosmological constant. For M/{; < 1, we have

L My
+ + ~ > %2 M )
(wt (e yu(62) ) ~ T (2) Ko (Mb) . (3.45)
In fact by explicit calculation, one can obtain
0 1 (M7
au< o) = — (7) Ro(Mb) . (3.46)
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Note that this amplitude is nothing but the wave function of the dressed identity
operator. Performing the integral with respect to u, one obtain the one-loop ampli-
tude:

(w(tr)) = — <1 + %) = S”;% m (%)H_ Ky s (M) . (3.47)

Note that ¢; (w*(£;)) is the wave function of a boundary operator 4, [BJ] which
couples to the boundary of two-dimensional surfaces (i.e. loops),

b (wh(l)) = <1 + l) (%>H% Ky, 1 (Mby) (3.48)

m 2

3.3.3 Expansion of loops in local operators

In [BQ], in the case of one-matrix, it was argued that the loop operator can be ex-
panded in terms of local operators inside the loop correlators, that is, the loop can be
replaced with the infinite combination of local operators, except some special cases.
Whether this replacement can be done safely or not is connected with whether the
corresponding classical solution exits or not in the limit of small length of corre-
sponding loop. This claim is quite natural because, in the one-matrix model, all of
the scaling operators are expressed in term of one matrix ® as

o; = Tr(l — @)y +/2 = Za n~tTr d" . (3.49)

On the other hand, in the two-matrix model, since there are two kinds of matrix A
and B, there can exist many kinds of microscopic loops, Tr(flmf?”? Ars .. -). In the
case of the two-matrix model, thus, the direct connection of the scaling operators
to the loops Tr AY® or Tr BY/% is not clear. At first sight, the expansion of loops
in terms of local operators is not legitimate. We think, however, this expansion
is possible by the following reason. When one of the loops on two-dimensional
surface shrunk to a microscopic loop, the loop represents local deformation of the
surface. The microscopic loop can be considered to be replaced by the insertions of
local operators. As we will see later, the loop correlators except one-loop case are
continuous when the length of one of the loops approaches zero, so that we expect
that a macroscopic loop can also be replaced by a sum of local operators.

In the following, we find the form of the expansion of the loop operator. First, let
us represent the two-loop correlator in term of off shell renormalizable wave function

B3, B[,
(Esinh 7E)Y2 K;p(MY) . (3.50)
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We show that the two-loop correlators are expressed as

() = 5 5 (Jf)

et 2m
/00 4B EsinhnFE
0 cosh mE — cos T

7 Kig(Mb) Kip(Ml) (3.51)

From eq. (B-42), it is reasonable to assume

k
sin =

in the case of two- and three-loop correlators, where we have introduced loop op-

cc:l:

||P1S

erators wg(¢) which represent loops with some distinct matter boundary condition

(see sect. B.2.3). From eq. (B-49), we have

(W ()w(t)) = mZ (Si:/”f) (i (€ )w(£)) (3.53)

and
8 1M

Making use of a formula

T Y A P s

and replacing ¢ with tM?, we have

Mby K, x (Mb) K, (M)

- [ 2K fita _ _
2/0 t 1—%<t>eXp< 2 21

Carrying out the integral with respect to M, and from eq. (B.54)), we have

~—~

3.56)

(wl)un()) = 1

dt 6162 6162 tM2 6% —+ 6%
—_ K —Z — — . .
/0 t ¢t ( t ) eXp( 2 2t (3:57)

Due to a formula,

EsinhnFE
coshmFE — cosmp

2Ky (2) = /0 T dE Kin(z) (3.58)
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the right hand side of eq. (B-57) turns into

Lo
4dm

o t
[e.e] i ’ i 3

/ dE EsinhnE Koy (%) exp (_tM B 0+ €2> . (3.59)
0

coshmE — cosp 2 2t

Using a formula eq. (B.5]) again, eq. (B.59) turns out to be
1 /00 EsinhmFE

2m Jo
Putting eq. (B.60) and eq. (B-53) together, we have proved eq. (B.51)).

Let us go back to eq. (B-51]) and perform the E-integral. The integral can be
carried out by deforming the contour. The residues for poles

= Kip(Mt,) Kig(Mty) | (3.60)

m

coshmFE — cosm

k
E=i(—+2n)  n=0%L42 - | (3.61)

contribute to the integral and, after all, we obtain the following expansion for the
two-loop correlators (for 1 < ¢5)

(Wi (01)wp(L2))
0 sinmh\ ™!
_1 > (% +2n) <T2m> [‘%4_2”‘(]\461) K%HH(M@)
(3.62)

and

o0 k N
>0 (@) 2| Ny (M) Ko, (M) . (3.63)

Since the two-loop correlators eq. (B-44) or eq. (B.69) do not diverge when the
length of one of the loops approaches zero, we expect that one of the loops can be
replaced by an infinite combination of local operators. From the consideration of the
minisuperspace Wheeler-deWitt equation and the scaling behavior, we expect that
the wave function of the scaling operator &; is proportional to M3/ K im(MY).
Eq. (B49) and eq. (B4Y) indicate that the following normalization of the wave
function

owrt0) = 5 ()" S e
_ %(%)E K (MO, j21 #0(modm) .  (3.64)
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would be reasonable. Note that the normalization factor sin %w in eq. (B:69) is
consistent because there are no scaling operators ¢; for j = 0 (mod m) in the matrix
model. Comparing eq. (B.64) with eq. (B.63), we expect the following expansions of
the loop operators in term of the local operators:

m—-1 oo M —| & +2n|

XY @7(T) T M) G 365)

—0o0

w0 =

These expansions are the generalizations of those in the case of the one-matrix model
B to the case of arbitrary unitary minimal model coupled to two-dimensional
gravity.

Since the loop correlators are symmetric under the interchange of two kinds of
loops, that is, (w™(¢1) wT(fy)) = (w=(¢1) w™(£y)), the wave functions of the scaling
operators with respect to loop w™(¢) are read as

(65w (0)) = (=1 (5; w(0)) . (3.66)

The wave functions with respect to the loop wy(¢) are

m

~ k M | £ 42n|
(1 2mm i (0)) = e (E + 2n> (7> K s o (MO) . (3.67)

3.4 Relation to the multi-matrix model

Let us comment on the relation between loops in the two-matrix model and those
in the multi-matrix chain models. The lowest critical point of the (m — 1)-matrix
chain model represents also the (m -+ 1,m) minimal model, which corresponds to
A,,—1 Dynkin diagram, coupled to two-dimensional gravity. From the observation,

3

1/2
lr=1) = p=2£) (%) / sinX (3.68)
k=1
- by (2 \Y? ok
lz=m-1) = > |p=4=£) (m) sinm=(m — 1)
k=1
m—1 1/9
= p=L) (%) / (=1)*tsinmL (3.69)
k=1

where (x|p) is the wave function introduced in eq. (B.3§), we think w™(¢) and w™(¢)
should correspond |z = 1) and |z = m — 1) respectively. The loop operator w® (/)
created by the z-th matrix A®@ of the (m—1)-matrix chain model, thus, corresponds
to

lz) = lp=£) (%)1/2 sinTEay | (3.70)



and would be represented accordingly as

mlgin gLy
m

Wil =3 /2

k=1

wg(l) , z=1,---,m—1 . (3.71)

We think this relation is valid at least for loop correlators with less than four loops.
Using the relation, we can construct the loop correlators of the multi-matrix models
from those of the two-matrix model.

3.5 Three-point functions and fusion rules
3.5.1 One- and two-point functions

Let us consider the correlators of the scaling operators. We can extract these from
loop correlators due to the relation eq. (B.63).

Since the one-loop amplitude diverges when the loop length approaches to zero,
this amplitude include the contribution which is not represented by the local oper-
ators. Putting the one-loop amplitude into

(w*(0)) = — (%) o (Kyyx (M0) = K1 (M)

— (%)HE (L (MO =1, 2 (M) =T (M) +1 1 (M) |

L
m

(3.72)

and extracting the parts proportional to [, (v > 0), which parts would be considered
as the contributions from local operators, we can obtain the one-point functions of
the scaling operators:

- M 2=
@) = -m(5) " (373
~ M A
<O'1+2m> = m 7) y 374)
(G;) = 0, j#1,14+2m (3.75)

Let us turn to the two-point functions. Substituting eq. (B:69) into eq. (B:64),
we obtain the two-point functions:

M 2j/m
(6:6,) = 61y j (7> . 0,5 #0 (modm) . (3.76)

Note that we obtain diagonal two-point functions.
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3.5.2 Three-point functions

As for three-point functions, using the formula,

00 ESiIlhﬂ'E
e _ / dE K
2 \p\(z) 0 coshmFE — cosmp E(Z)

N Wn:z_:oo %Imm(@ , (3.77)
we first expand the three-loop correlator eq. (B:33) as
+ + + -1 M\ "2 o0 o oo
(o @ B (6) = oo () IS i o)
(% + 2n1) (% + 2n2) (% + 2n3)]|%+2”1|(M£1)1|%+2n2\(M€2>[‘%+2n3‘(M€3) .
(3.78)

Comparing eq. (B.78) with eq. (B.67), we can extract the three-point functions [R4]:

<O-‘k1 +2mny ‘O-‘kz +2mno ‘ U\k3+2mn3\ >

-1 3 M —2—%+Z?:1%|ki+2mni|
— - 4 omm,) (= .
Ck1k2k3 m(m I 1) 221_[1(]@ + mn,) ( B ) 5 (3 79)
where
o _J 1, (kv —1,ky — 1,k; — 1) € DY (3.80)
Fikaks 0, otherwise '

For n; = 0, eq. (B.79) is nothing but the correlator of the gravitational primaries.
For the gravitational primaries, eq. (B.76) and eq. (B.79) agree with the correlators
obtained in [BF] from the generalized KAV flow up to a factor —2. Note that we
obtain, here, the correlators of the gravitational descendants as well.

In [[9], the fusion rules for the gravitational primaries were examined in contin-
uum framework. Note that we have found here the fusion rules for the gravitational
descendants as well as for the gravitational primaries. These fusion rules are sim-
ilar to those for the gravitational primaries due to the factor Ci, gk, in eq. (B79).
Introducing the equivalence classes [6%] by the equivalence relation

a-k ~ a\k+2mn\ , nE Z ) (381)

we can consider the fusion rules in eq. (B.79) as fusion rules among [5;] (k =
1,---,m — 1). Note, here, that the class [7)] does not correspond to the set
which consist of the gravitational primary Oy and its gravitational descendants
0, (Ok) ,1=1,2,---in [BF introduced from the viewpoint of KdV flow. The three-
loop correlator eq. (B.33) represents the fusion rules for all of the scaling operators
including the gravitational descendants in a compact form.
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3.6 Further on the fusion rules

Let us examine the fusion rules in eq. (B.79) further and consider the relation of the
scaling operators to the primary fields in the corresponding conformal field theory.

In the (p, ¢) minimal conformal model, the primary field @, has the conformal

dimension ) )
4pq
where 7 and s are positive integers. Since
Ar,s = Ar+q,s+p = Aq—rvp—s ) (3-83)

the corresponding primary fields can be regarded as the same one. The integers r
and s can thus be restricted in the range

1<r<qg—-1
1 <s #0 (mod p) (3.84)
pr < qs

(see fig. P ). In fig. B, the primary fields in the region ((2)) or ((2))" are the secondary
fields of those in the region ((1)). In general, the fields in the region ((n + 1)) or
(n 4+ 1)) are the secondaries of the fields in ((n)) or (n)). Since the secondary
fields correspond to null vectors, those fields decouple. One can thus construct
consistent conformal field theory which include only the primary fields in the region
(1)) (i.e. inside the minimal table), that is, the minimal model (p, q) [[7]. Coupled
to Liouville theory, however, the fields outside the the minimal table fail to decouple
MY and infinite physical states emerge accordingly. These states are considered
to correspond to the primaries outside the minimal table. This correspondence is
implied by the BRST cohomology [B0, P of the coupled system.

Denoting the gravitational dimension of the dressed operator for ®, s by Afs =
1— %, in the minimal model coupled to Liouville theory, the following relation was
shown [0, BT],

Qs _ pHq—|pr—gs|
gl 2q
where 7 and s take the values in the range eq. (B.84). On the other hand, in the
matrix model, the corresponding relation for the scaling operator o; is

: (3.85)

Q4 _pta—j

3.86
> 2 (3.86)

From eq. (B-8]) and eq. (B.8q), we should take as
]:|pT—QS| ) ]:1>2a %O(mOdq) ) (387)
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for 7;.

Consider now the relation of |i49mn| to the primary field ®,, of the unitary
(m + 1, m) minimal model. Let us first compare the two sets

Se={lk+2mm| | neZ} (3.88)
and
{ lpr — gs| } = { |(m + 1)r — ms| }
= {r+(s—r-1m}, (3.89)
where r and s are positive integers in the range

1<r<m-1
1<s (3.90)
r+1<s

and " = m — r. Note that we include s = 0 (mod m + 1) here. Dissolving the set

S} into two sets as
Sp=S @S, , (3.91)

where
S¢o= {k+2mm | n=0,1,2-},
Sy o= {m=k)+@+1m | n=01,2-}, (3.92)

and comparing eq. (B.92) and eq. (B-89), we can express the sets S; and S; in terms
of [(m+ 1)r —ms| as

So= {|(m+1)r—ms| | ¥ =k, s—r=2n+1, n:(),l,---},
Sy = {lm+1)r—ms| | r=k s—r=20'+2 0 =01,---}. (3.93)
From eq. (B.93), the following correspondence is obtained:
Oletomn| (N >0) < Pp_pryony1 (n>0)
Oltam(—1-n) (N> 0) e @y pionis (0 >0) (3.94)

where s # 0 (mod m + 1).

In [B]], it was suggested that the scaling operators 7;, j = 0 (mod m + 1),
should be identified as the boundary operators which couple to the boundaries of
two-dimensional surface. These scaling operators do not have their counterparts in
the BRST cohomology of the system coupled to Liouville theory. From

|(m+1)r—ms/=(s—r)(m+1)—s=0(modm+1) , (3.95)
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Figure 2: the range of (r, s)

s = 0 (mod m + 1) in the range eq. (B.90) should correspond to the boundary
operators.

As an example, we depicted the scaling operators on the r-s plane for the case
of m=41in fig. B

Concerning the scaling operators inside the minimal table, the fusion rules in-
volving non-diagonal operators dose not agree with the fusion rules of the unitary
minimal model;

<(I)r1,sl(I)r2,sz(I)r3,53> % 0 lff
(n—1r—1rs—1) €D and (s;— 1,55~ 1,55 —1) € D", (3.96)

For example, in the Ising model (m = 3) the three point function for the energy

operators vanish,
<(I)1,3(I)173(I)1,3> = 0 . (397)

Coupled to gravity, however, the corresponding three point function does not vanish.
3.7 Boundary operators
3.7.1 Boundary operators and touching of loops

In [BJ] it was proposed that the scaling operators which do not occur in the BRST
cohomology of Liouville theory are boundary operators and one of them, which is
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Figure 3: the scaling operators &|;amn in the (5,4) minimal model coupled to 2D
gravity

o3 = 01(01) in the case of pure gravity, was in fact proven to be a boundary operator
for the one-matrix model and the Ising model case. We would like to examine the
role of the operators G, (n11), 7 =1,2,--- # 0 (mod m) as well as &,,1, for general
unitary minimal models.

Let us denote these operators by

B, = Gnmsry, n=1,2,---%0 (mod m) . (3.98)
In the matrix models the loop amplitudes contain the contribution from the con-
figuration with loops touching each other. In two-loop case, let us consider the
configuration in which the two loops touch each other on n points. When we shrink
one of the loops to a microscopic loop, the other loop splits into n loops, which
are stuck each other through the microscopic loop (see figsf, [l and [). Since the
microscopic loop represents a sum of the scaling operators, the wave functions of
some scaling operators contain the contribution from the surfaces with split loop.

We now show that the boundary operators indeed represent these configurations.
From eqs. (B.64) and (B.47), the wave function of B,, and the one-loop amplitude
are

_ n(+&)
(Bawt(£)) = n(1+ %) (%) Kqs1y(MP) (3.99)
(wh(0)) = (1 + %) ¢! (%)HE Ky, 1 (M0). (3.100)



In the space of Laplace transformed coordinates, we have

L[ Bat(0))] = - (%)"(H%) 2 coshn(m +1)0 | (3.101)
£ [ ()] = - (%) " 9 cosh(m +1)0 | (3.102)

where we have used the relation
L= y| K, (ME)| = 2coshmuf . (3.103)

Note here that w*(¢) represents a loop with a marked point and ¢~'w™*(¢) repre-
sents a loop without a marked point. Since coshn(m + 1) can be expressed as a
polynomial of cosh(m + 1)6,

2coshn(m+1)0 = 27T, (cosh(m + 1)6’)

[n/2]
> ) [2 cosh(m +1)0
r=0

1) _
O ( )n(n 7“)

" n—r r

" (3.104)

where T, is the Chebeyshev polynomial, we obtain the following relation:

[(n=1)/2] w (M 2r(1+57)
()

o[- )]} . (3.105)

o
I
[

L
=
S )
g

+
—~
S
~—
et
I
ﬁﬁ

2

In the space of loop lengths, the above relation means that the wave function of B,
is equivalent to a sum of the convolutions of disk amplitudes:

R [(n—1)/2] ()<M 2r(1+L) n—2r
)

(Bawt(0)) =~ 3 o ()" [0Af]" (@) . (3.106)

T
r=0

Here we introduced a notation Af = (w™(£)), and [@Aﬂs (¢) denotes the convolu-

tion of s Af (£)’s, for example
2 0o 0O
[0Af]" (1) = /0 /0 dlydly 58y + 6y — 0) AT (6)Af () . (3.107)

From eq. (B.104) we can conclude that the operator B, couple to the point to which
s (< n) parts of the loop are stuck each other in the case of one-loop amplitude.
When there are more than one loop, we infer that the operator couples to the point
to which s parts of several loops are stuck each other; the operator will not recognize
that it is touching different loops this time.
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Using the following relation

Y
{2 cosh x} = Y (n) 2 cosh(n — 2r)z, (up to constant) , (3.108)
r=0 r
we also obtain
i (n=1)/2] MA2OEE)
(eaf] (0 = (1 Y <Z> (7> (Buzw™(0)) . (3.109)

r=0
Here we drop the constant term in eq. (B.10§) when we carry out the inverse Laplace
transformation. From eq. (B.109), we see that the boundary operator coupled to the
point on which n parts of loops are touching each other is given by

((n=1)/2) A2
B, =(—1)" 3 (7;) (7> By . (3.110)
r=0

Now let us consider the boundary operators when there are two loops on two-
dimensional surface. As for By, we expect that (w™(¢1)w™(¢3)B;) should be propor-
tional to (¢1 + £3) (w™ (¢1)w™(¢3)). Let us confirm this in the following.

From the three loop correlator (B.33), the expansion of loop operator (B.69) and
the wave function of &jj4omn| (B.64), we obtain the following correlator with two

M R S L
Z CklekS ( )

k —
XMQ(E?’ F2n3) K, x (MO)K,|_ 1k (M) . (3.111)

loops and a local operator:

(0 ()t (02)0 ks romng]) = ——

m

Consider the amplitude for By = B, = Oma1 = 8‘m_4_2|. Since Cl, ky,m—1 1S nonvan-
ishing only for the case of k; + ko = m, we obtain the following amplitude:

1 m—1 M N N
(wH ()t (B)B)) = — > (?) (0K £ (MO)E, s (M) (3.112)
Comparing eqs. (B:1132) to (B-44) we obtain the desired relation:
(w (Q)w" (L2)By) = (€1 + &) (w (L)w™ (6)) - (3.113)

Next, let us consider B,. Since we infer that the insertion of By should play the

role of connecting two parts of loops together, we expect the following relation:
¢
(w* (yw* (£2)Bs) = 26, / Ldty (wt ()t () (wh (6 — )
0

+2/0 /052 dﬁ; <w+(€1)w+(€/2)> <w+(€2 _ 6/2)>
+20165 (w (1 + 6)) (3.114)
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(a) (b)

Figure 4: (a): A surface with two loops touching each other on a point. (b): When
one of the loops shrinks to a microscopic loop the microscopic loop is equivalent to
the insertion of the operator denoted by the dot on the loop.

G- G

(@) (b)

Figure 5: The case of a surface with two loops touching each other on two points.

G -~ K

(@) (b)

Figure 6: The case of a surface with two loops touching each other on three points.
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The third term in the right hand side of eq. (B:II4) represents the contribution from
the surfaces with loops w™(¢;) and w*(¢3) touching with each other on a point.
Let us confirm the relation (B.114) in the following. In this case, it is convenient to
consider in the space of Laplace transformed coordinates (;. In this space eq. (B.111)

reads as
. . -1 M —%—2+\k—n§+2n3| k‘g
<W+(C1)W+(<2) 0|k3+2mn3\> — (7> (E + 2n3)
J 0 sinh(m — ky)6; sinh(m — k2)0s
—_— . 11
% 0¢ 9G, { klz’k:z Chakats sinh m6, sinh m#s (3.115)

Due to the relation

Z Ck1 kaks

sinh(m — k:l)é’l sinh(m — k’g)eg

e sinh m#, sinh m®s
o —1 sinh(m — ]{33)91 _ sinh(m — k’g)eg (3 116)
~ 2(cosh f; — cosh 6y) sinh m6, sinh m0, T

we have

.. - R 1 M\ —m 2+ 52 +2ms kg
<W (COW™ (&) 0\k3+2mn3|> = m (7) (E + 2n3)

Xii 1 sinh(m — ]{33)91 _ sinh(m — k’g)eg
0, Oy | cosh 6, — cosh 0y sinh m6, sinh m®, )

(3.117)

Since we should take ks = 2 for By = =41y (for m > 3), we obtain the amplitude
for BQ

(WHG)WH(G)By)

-1 <%) ™ 0 0 1 sinh(m — 2)6;  sinh(m — 2)6,
m \ 2 0(; 95 | cosh #; — cosh 6, sinh mo, sinh m0s '
(3.118)

On the other hand, from the amplitudes

. . 0 d cosh 6; — cosh 6,
+ + _ Y Y

<W (C)W (C2)> N 0C; 0y . cosh mf@; — cosh mby
) 1 sinh 6, 1

_ 9 _ 11
¢y {cosh 01 — cosh 6y mM sinhmb, ¢ — C2} » (3.119)

<W+(C)> - _ (%) o 2cosh(m + 1)0 | (3.120)
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we obtain the following relation

25 (W@ () (W4} + (12
L0 0 (V@) = (WHG))
¢ 0C, G — G

2 (%)% 9 0 1 sinh 6y cosh(m +1)61 (10 2)
Com\ 2 9, O¢y | cosh 0 — cosh 0, sinh m6; ’

One can easily show that the right hand side of eq. (B.I21]) agrees with that of

eq. (B-I1§). Putting eqgs. (B-I21)) and (B.I1§) together and performing the inverse
Laplace transformation, we obtain the desired relation eq. (B:119).

We have shown that the operator B, connects two parts of loops together in the
case with two loops. We infer that similar phenomena occur in general; the operator
B,, would connect n parts of loops together in the case with any number of loops.

3.7.2 Connection to the Schwinger-Dyson equations

We can observe close relationship between the boundary operators and the Schwinger-
Dyson equations proposed in [[(]. Continuum limit of the Schwinger-Dyson equa-
tions for loops in the two- and multi-matrix models were proposed in [[J] under
some assumptions. It was shown [[I(]] that these equations contain W constraints,
which were derived explicitly in [[]. The integrability of these equations were shown
in [[7]. These facts justify the proposed Schwinger-Dyson equations.

Let us consider the connection of the boundary operators with the Schwinger-
Dyson equations. For the (m+1,m) minimal models, the following Schwinger-Dyson
equations were proposed in [[0]:

/0 Cav (wh (Y™ (€= 0 [H(0)) wh(£y) - -w<l>(en)>’
+ngi <w(1) (g 0 [H(a)]j) wD () wD (l)wD () - - .w(l)(gn)>

/
+(u (@) wd () w(6)) ~0.
for 7=0,---,m—2, (3.122)
and

(w (6 ()™ ) wh () - wM(6,)) ~ 0. (3.123)
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Here (.- -)/ represent loop correlators that are not necessarily connected, and
wM () represents a loop operator corresponding to a loop created by the matrix
AW in the multi-matrix model. The operator H(o) describes an operator which
changes the ‘spin’ on a loop locally from 1 to 2. Also w™ (¢; [H(c))?) describes a
loop with [H(o)}? inserted. The symbol & means that as a function of ¢, the quantity
has its support at £ = 0.

From eq. (B.129) for j = 0 and n = 1, we have the relation
0w (63 H(0) wD(E)) + £ (D () w® (6 H(0)) )
51 !/
A / dt; (D () (6 — £)w D (L))
0

52 /
Sy / dty (w® (0)w® (t)w (6 — 14))

0
+2g01l (wV (6 + 6)) 0. (3.124)

The planar part of the above relation agrees with eq. (B.114)). Note that the loop
amplitudes in eq. (B.114) represent connected correlators.

This agreement implies that  would correspond to B,. Taking into account the
fact that B,, (n = 0 mod m) do not exist and eq. (B-123), it is legitimate to consider
that the amplitude (for j =1,---,m)

(w(0r) -+ w" (€2)B;) (3.125)
corresponds to the connected part of the amplitude
Z]{do'i <w(1)(€1) M (™ (&; [H(ai)]j‘l) w® (L) - .w(l)(gn)> _
i=1
(3.126)
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4 Multi-loop correlators

In this section, we generalize the discussion in sect. f] to the cases of higher-
loop. First, we derive the formula of the n-resolvent correlators, which we quoted in
sect. B.J], and point out that the structure corresponding to the crossing symmetry
of the underlying conformal field theory can be seen in the loop correlators. We
then discuss the four-loop correlator in detail.

4.1 The derivation of the n-resolvent correlators

Consider in the two-matrix model the connected part of the correlator consisting of

<<li[1 H i i A>> ’ (4.1)

n—2
It should be noted that this expression is at most (%) due to the large N factor-

the product of n-resolvents.

ization of the correlator consisting of the product of singlet operators. In the second
quantized notation, eq. (f.1) is expressible as

ONITT s [ anw! () w0 V)

=wwﬁ:@%»w»ﬁ/m%mm,iM%@»
= (VT - s 99 TIOR8 (4.2)

i=1 i=1
The normal ordering : ... : is with respect to the filled sea |N)). We introduce a
notation
[;](z-']\-AN)ZZZ‘5<]‘-—5|L|‘]7> (4.3)
p— A iy 414y LY, = - i ) p— A 7 .
A; = jiA/N = A+ Aj;/N . (4.4)

The evaluation of (NI~ : ak aj, : |N)) by the Wick theorem provides (n — 1)!
terms of the following structure: each term is given by the product of n-Kronecker
delta’s multiplied both by a sign factor and by the product of n-step functions to en-
sure that the summations over the n-indices ji, j» - - - and j, are bounded either from
below (> 0) or from above(< —1). We denote this product by ©(ji, ja, - - - ju; 7).
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These (n — 1)! terms are in one-to-one correspondence with the circular permuta-
tions of n integers 1, - - - n, which we denote by S,,. The ¢ is an element of S,,. For
large N, we find

<%>H <<lj[1 e i ;1>> (4.5)

= 2 2 OUninni0)sgn(o) (ﬁf—)ﬁ (Z%))jk

J1:525jn TE€Sn

n—2 pn 1

X(nig)! <z:jlai/\z> -,1;[1 Do — Az Ay) la,=a +O (1/N) . (4.6)

iy

Note that in the large N limit, we can use le-'/\-) in place of {ﬁ} (zi; Ai, A, N)
according to the same reason as stated in the case of three-loop correlator. The

sgn(o) denotes the signature associated with the permutation o.

Let us define

m!Do (2, 2) = %ij (+'/2) = —% S ) m=0, . (A7)

3>0 j<—1
In the continuum limit we will be focusing from now on, it is sufficient to use

1

Dl ) > e

=D,(z—2) . (4.8)
Let sgn;(o) be +1 or —1, depending upon whether the restriction on the summation
over j; is bounded from below or from above respectively. It is not difficult to show

sgn(o) ﬁlsgni(a) =-1, (4.9)

for any o and n. The summations over ji, js--- and j, can then be performed for
all o at once, leaving with this minus sign.

Now we turn to the integrations over z; (i = 1 ~ n). The convergence on
the geometric series leads to the successively ordered integrations of z.s for each
0. We assume here that only the poles at z; = 27 give rise to terms with physical
significance. This is the case for three-loop correlators. By simply picking up a pole
of z; at m for i = 1 ~ n and using

i) (o) ()

0 a ¢ 27
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we find that eq. ([£5) is written as

(%)H <<1i[1 B 1 A>> = lill (‘a(f@> R™ , (4.11)
where
= Z(f?i) [+ /UEZ&LD“““’“ l;{l)Do j— o))

> Z(aA )" ()" [ [ Pllis = @) Dl = oti)

m1 +M2 (31,22

x ] Dollj—a(4)])

3(Fisi2)

P> Z( )(a/il 8A,1 )" [+ [ Dol =t

m1+m2+m3 (41,i2,i3)

X Diy ([iz = 0(i2)]) Dy ([is — 0(i)])) [T Do(l5 — o (5)])

J(Fir,i2)
+
0 0
T 2 )(aA,.l)(aAm
n—2
x T Di(li; — o(iy)]) II  Doli—0())) - (4.12)
Jj=1 J (#1192, in—2)

The integrals in the equation above are with respect to z’s and we adopt a
notation

il=z | [i—jl=2 -2 (4.13)

n—2
This expression is in one to one correspondence with the expansion of ( e xl) .
The number of terms appearing is equal to the number of partitions of (n—2) objects

into parts.

In order to put eqs. (1)), (E12) in a simpler form, let us introduce

= - ZS: Doy ([ix = 0(i2)]) Dy ([i2 = 0 (32)]) - - - Do, ([tx = 0 (in)])




In particular,

n—2 0, -, 0
i, iz, oo, 0
<n—& 1, 0,

11, t2, 13, -,

oo
N———
3

Il

e.t.c

In the [Appendix B, we prove that

my, Mo, ---,
11, 12, sy n

as well as

if ng:n—Q

In particular,

n—2,
7;17
and

+

mnp

— > Dyuso(fiv —o(@)])) TI Dollj — o(h)])

0€Sh J(Fi)
— > Dus([in — o(i)]) Di([ia — 0(42)])
geSy
x [ Dollj—a(h)])
j(;’éilvi?)
(4.15)
) 0 if Sm<n—3 (4.16)
n l
0, , 0
ik+17 ) 0 n
my — 1a , My, Oa e
7;(7 ’ 'ék> ) -1
(4.17)

(4.18)
1 n—4, 1, ---
=i\ )
1 n—3, 0, -
; 12 ( i i . ) (4.19)
[ia — iy 1, 2 net

Let us introduce graphs in which the factor 1/[i — j]? is represented by a double

line linking circle ¢ and circle j to handle the quantities defined by eq. (fEI4) more

easily. For example, for n=3,

<1 00) 1
123 ), [&-%

*

Fli-aP - OO0 420
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Using the recursion relation eq. ([EI7) and eq. (1) we have, for n=4,

<2000>: 1 (2—100)
12 34 ), 7 [P 1 23),

= 4123 + 4213 , (4.22)
0=0-6=0) 0=6_0=-0)
and, for n=>5,
<30000>_ 1 3—10 0 0
1 2 3 45 5 [ — 22]? 1 2 3 4

4 5
_ 18 « 81 = o8t (423)
S 2 3 3
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4
+ 2@ X 1
S 2(;'%3

1 2 3 4 2 1 5 2 1
= %500 o+ o+ O=o=o@4
5 3 3
(4.24)

From the examples above, it is clear that the graphs for the general case can be
written down quite easily.

In terms of the quantities defined by eq. (fI4), we obtain a formula for the
n-point resolvent :

N n—2 n n
R B TETR N
A i=1  Di— i=1 )
where
RM(z}, .- .2)
D25 Y R (R
B 1 aAzl 11, 12, y In n
0 \mi, 0 \m my, Mo, 0 0
+ / . / ) 25 ) )
m1+n§ n— 2(212,;2)( Azl) (8A22) < 11, 12, 13, ; UIn n
8 m2 8 m3
+ Y>> / . /
mtmatms (i i 13)( ) (8A22 ) (8A13 )
my, Mo, Mg, O> 3 0
11, i27 'é3, 14, y In n
0 1 0 0
T . (4.26
+(i1 ZZ (aA < Tty ne2, ln—1, In >n ( )
Here m, > 1 and the summation (iq, - - -, ix) denotes a set of k unequal integers from
1,2,---,nand tg,1, -, 1, in the array represents the remaining integers.

From eq. ({.27), eq. (E:2G), we can derive the rule which states how to construct
the n-resolvent correlator graphically. This rule was shown in sect. B.1].
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4.2 The selection rule in summation and crossing symme-
try

In the previous section, we have derive the formula for the n-resolvent correlators,
which were functions of (; and p. In order to obtain the loop correlators, we have
to carry out the inverse Laplace transformation with respect to (; further. In the
processes, the following functions will play a fundamental role.

n 8 n_27 O’ s 0
Pn(91a927”'9n) = Z<0Al>/~/< ila 7;27 Tty Zn)

" 0zF 1
B ) S (4.27)
= O\, .
I1li—J]
J(#4)
where
2 = exp(2n; cosh 6;) (4.28)
pi — ps = a(; = 20" coshmb; = aM;coshmb, , n, = (aMi/Q)l/m (4.29)
A — A= —(m+ D)™ = —a*u; = —(m + 1)(aM;/2)* (4.30)
and
90;| 1 0n coshmb; 0z 5 9\ sinh(m — 1)6; (4.31)
AN G ~ nOAsinhm#; 0N, T \OA sinh m#; ’

The important point here is that the above functions can be written as a sum of
the product of n factors each of which is a function only of the corresponding ; and
i, so that we can obtain the inverse-Laplace images of P, (6, -,0,) immediately.
We conjecture that n-resolvent correlator can be expressed in terms of P, (n’ < n).
In fact, as we will show later explicitly, it is true for the four- and the five-resolvent
correlator.

A key manipulation we will use is the partial fraction

1 1 1
— = = =+ . (4.32)
[ —jlli—k] [ =Kk —=J] [i—Jlli — K]
One can associate a line from ¢ to 7 with [ley} The following identity is responsible
for expressing P, as a sum of the product of n factors each of which depends only

on 6;:

Ik(aa/@am) =

1 sinh(m — k) sinh(m — k)
cosh oo — cosh 3 sinh ma sinh m(

mk Esinh(m —j — i+ 1)a sinh(m —j — k +1)f

TRk

sinh ma sinh mf
(4.33)
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Let us first work out the cases n = 2, 3,4 to get a feeling. For n = 2,

* *
0z} 023

A T A 0 1
— OM OAy U
Py(01,05) = 1= 2] 2 <8A> —Ijy—1 (01,62;m)
_ 87] mil 21: sinh(m — j; — i1 + 1)0; sinh(m — j; + i1 — k1)02
EIN it} sinh m#, sinh m6s
. 877 -1 m-l sinh(m - j1)91 sinh(m — j1)92
=2 <8_A> <7> ].12:1 sinh mo, sinh m#@, ’ (4.34)

where iy = k; = 1. For n = 3, we use eq. ({.33) for the term containing 3—2 to
create a link [1 — 3], which is originally absent. This relates P3 to P,. We find

P3(017 927 93)

— 9 877 11(927‘91, )_11(92,93””)
oA 13|

—HEN(EE)(2E) 0

smh(m — ]2 — ’ég + 1)91 sinh(m — jl + il — k1)92 sinh(m — jg + ’ég — k‘g)eg
sinh m6, sinh m6s sinh m#;

Here k2:j1+i1—1:j1.

This can be repeated for arbitrary n. In the case n = 4, we use the partial
fraction for the two terms containing 7 A2 and - to create a link [1 — 4], which is
originally absent. This enables us to relate the Case n = 4 to the case n = 3. In

general, P, is related to P,_; by using the partial fraction for the terms containing
0z5 o0z

n—1

o ~ i to create a link [1 — n]. We obtain

== (38) (3 (i3 5)

=1 7¢=1 ip=1

”lif sinh(m — jo +ip — ko)0p o1 \ sinh(m — j,—1 — i1 + 1)64
sinh meg/_,_l sinh m91

, (4.36)

=1
where ky = jo1 + i1 — 1, for £ =2,3,---,(n—1). Eq. ({.30) expresses the
sinh(m — k)6;

sinh m#,
this property, one can perform the inverse Laplace transform immediately.

P,(01,05,---0,) as a sum of the n-products of the factor . Owing to

Let us now discuss the restrictions on the summations of 2n — 3 integers j1, iz, jo,
1, Jn1 in eq. (E36). We write these as a set:
Fulgrsio, o - in-1, jn-1)
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= {(j17i27.j27"'in—17jn—1> | 1 S 7;5 S kfa 1 S]Z S m — kf7 fOI‘g: 1727"'77'_ 1}
n—1

= Folis =151k = 1) [[ NFalie, jos ke) (4.37)
=2

where
fQ(’i[,jg; ]{Ig) = {(ig,jg) | 1 S ig S ]{Zg, 1 S jg S m — ]{Zg, with ]{Zg ﬁxed} . (438)

We will show that these restrictions on the sums are in fact in one-to-one correspon-
dence with the fusion rules of the unitary minimal models for the diagonal primaries.
Let us begin with the case n = 3. Define

=itk —t, p=jetke—ia, 3=jo+i2—1,

4.39
app=p1—1, a3 =py — 1, a3 =qz3 — 1, (4.39)

The inequalities on 79, j5 are found to be equivalent to the following four inequalities:

ay +ag —az = 2(ky—12) >0
a1p —agz +az; = 2(in—1)>0
—a1p + a3 +az = 2(ja—1)>
Q1o+ asg +as = 2(jo+ ke — 2) <2(m-—2) . (4.40)

From the third and the fourth equation of eq. (f.40), the inequality a;s < m — 2
follows, which is a condition for F5(i; = 1, j1; k1 = 1). Defining a set

3
Dg(al,ag,ag) = {(al,ag,a3)| Z a; — Qj ZO for t=1~3 s

i(#£7)
3
> a;=even <2(m—2)} , (4.41)
i=1
we state eq. ([£40) as
F3(j1, 12, J2) = Ds(ar2, ass, as1) - (4.42)
We also write
Fo(gr) = Folin =1, jis k1 = 1) = Da(ar2) - (4.43)

for the case n = 2.

Eq. (E.41) is nothing but the condition that a triangle be formed which is made
out of ai, as and az and whose circumference is less than or equal to 2(m — 2). It is
also the selection rule for the three point function of the diagonal primaries in m-th
minimal unitary conformal field theory [L7].
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For the case n = 4, introduce p3 = j3+k3—i3 ,a34 = p3s—1,q4 = Js+izs—1 a4 =
qs — 1. We find

Folis, ja; k3) = Ds(az, aza, aa1) (4.44)
The restrictions on the sum in the case n = 4 can be understood as gluing the two
triangles:
Fu(ji,i2, 2,13, 3) = Ds(aiz, ass, as1) N Ds(ass, a1, as)
= Dy(arz, as, azs, as;az) - (4.45)

The allowed integers on agz; are naturally interpreted as permissible quantum num-
bers flowing through an intermediate channel. As one can imagine, eq. (£.43) is not
the only way to represent the restriction: one can also represent it as

Fu(j1, 2, J2, 13, j3) = Ds(a12, a4, as1) N D3(a23, az4, a24)
= Day(ar2, ass, ass, aa1; a24) (4.46)
which embodies the crossing symmetric property of the amplitude.

The restrictions in the general case n are understood as attaching a triangle to
the case (n — 1). To see this, define

Pe=J¢e+ke—t, q=jgi-1+t1—1,

for (=1,2,---n . 4.47
agy =q— 1, aper1 =pe— 1, (447)

Using 1 <, 1 <kp_1, 1< 7j1<m—k,_q, we derive

Un—t1p + Apg — Gp11 = 2(n—1—1) >0,
Ap—1pn —ng+ap_11 = 2(kp—1 —ip—1) >0,
—Qp—1n+ a1+ an_11 = 2(ip_1—1)>0,
Un—1p + n1+ no11 = 2(Jn-1 +kpo1 —2) < 2(m —2) . (4.48)

The restriction on 4,_; and j,_; are, therefore, Ds(a,—11, Gn 1, Gn—1,1), Which is what
we wanted to see. All in all, we find

fn(jla 'é2aj2> Tt 7;n—lajn—l)

3(Un—1,ns A1y An11) NV Fu1(J1, G2, J2s -+ In—2s Jn2)

(I
DD

(
3(an—1,na Qn,1, an—l,l) N Dn—l(&l,z, 2.3, p—2n—1,An-1,15031,Q4.1, " * 'an—z,l)
(

D, a1,2,023, " Gp-1,n,An,1;031,A4.1, " " 'an—l,l) (4-49)

From now on, a shortened notation D,,(a1 2, a23, - Gn—1n, y,1) is understood to
represent D, (a1,2, 023, * Gn—1n, Gn,15 03,1, 04,1, " * Gp_1,1)-
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Putting eq (£34) and eq. (f49) together, we obtain a formula

P,(01,605,---6,)

_ (g@( 1>n2(1j sinh(m — k; — 1)6; ) sinh(m — ki — 1)y

sinh mb; sinh m6,

(4.50)

where D,, means D, (k; — 1,---,k, — 1). Once again, the fact that the different
divisions of D,, into n—2 triangles are embodied by this single expression is precisely
the statement of the old duality.

The object P,(61,0s,- - -6,) is equipped with 6; and k; for j =1,2,---,n and any
Ds(k1—1,ko—1, k3—1) obeys the rule of the triangle specified above. It is, therefore,
natural to visualize this as a vertex which connects n external legs corresponding to
n loops. The vertex can be regarded as a dual graph of an n-gon that corresponds

Dp(ky — 1, k, — 1).
Due to the formula (B.3(), we can obtain the inverse-Laplace image of eq. ([L.50)
with respect to (; (1 = 1, ~ n) immediately:
-1 _ > .
L (Po(by,--,60,)] = (8/\)( ) (%) %[];[Kl_%(m,)]

m(m1+ 1)(@2\4)_%(2—@%(%)" ;[Hk’l_%(m,.)} . (4.51)

—(-1y"

4.3 Four-loop correlators

In this subsection and in the next one, we show how to perform the inverse Laplace
transformation of the resolvent correlators to get loop correlators in terms of loop
lengths in the case of n =4, 5. It is necessary to put

R™(0y,---.60,) = R™ (2, 25)|a=a (4.52)

in a manageable form to the inverse Laplace transform. Let usrecall that P, (61, --,6,)
can be inverse Laplace transformed immediately. If R™(6;,---,6,) is expressed as
a polynomial of P;(fy,---,0,) and their derivatives with respect to A, the inverse
Laplace transform can be carried out immediately. In fact, this turns out be true
for n = 4 and 5, which we will show explicitly in the following.

The important point we will use in the following is the fact that when one of the
loops shrinks and the loop length goes to zero, the n-loop amplitude must become
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proportional to the derivative of the (n — 1)-loop amplitude with respect to the
cosmological constant. We represent this fact by

0
+ + + +
(W) wh (b)) = o @@J () wh(lya)) (4.53)
when n-th loop shrinks. Then in the limit, R™ (6, - - -, 6,) must satisfy the following
relation: 5
£t [R(")(Hl, e en)} — x L7} la—ARW(el, e en_l)] (4.54)

This relation restricts the possible form of R™(6y,---,6,) . We should note here
that the inverse Laplace image of P, (6, - -,0,) satisfy the following relation

E_l [Pn(ﬁl,,ﬁn)] — OC,C [ n— 1(‘917"'7‘9n—1)] . (455)

This fact follows from substituting

~ 1M\
K, w(Ml,) ~ —— , M, <1 4.56
1—kn (M) F(%)< 5 ) < (4.56)
in eq. (.51) and picking up only the k, = 1 parts.
Because we want R™ (6, ---,0,) to be expressed as a polynomial of P; and their

derivatives with respect to A, we need here to introduce a notation

[SPl - jotia—1 " Pn iH—L"',”] (‘91, 92, s Qn) = (457)
_ Z Pll o(1)s HU( ))RQ(GJ(]2)7 T HU(jg-i-iz—l)) o Pi((ea(n—ig+l)7 Y HU(TL)) )
' O'EPn
where P, represents the permutations of (1,2,---,n). To be more specific, for
example
(S Pi93 Poga] (01,02, 03,04) = I Z Ps(0 25 Uo(3)) P3(05(2), O(3)s Uo(a))
0€Py
(S P934 P34] (61, 04,05, 604) = ] ; Py(051), 0502, 00(3)00(2)) P2 (0035 Oo(ay) - (4.58)
o€Py
It is convenient to represent P, (6q,---,0,) by an n-vertex which connects n

external legs. For example for n = 2, 3 and 4

1 1

P2(917‘92) = ) P3(917927‘93) =
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P4<017 027 937 04) = (459>

The n-vertex can be regarded as a dual graph of the n-gon (polygon) which corre-
sponds to D,,. In terms of these vertices, let us express eq. (.5§) as follows.

(S Pr23 Pozy] (61,02, 05,04) =

[SPr234 Psy] (01, 02,05,04) = (4.60)
The relation eq. (£.55) can be represented, for example, as
1 5 1 4
2 S (4.61)
3 4 2 3

in the case of n=5.

Now we are concerned with the case of n=4 first. Let us recall that for n=3
R(s) (91, 92, 93) X P3(¢91, 92, 93) . (462)

R(4)(91, 05, 03,0,) must include a term which becomes proportional to Ps(6;, 02, 05)
in the limit M ¢y — 0, which is Py(6, 0y, 03,04). R™(0y,0,05,0,) may also include
terms which vanish in this limit. Such terms must consist of the product of two
multi-vertices which have 6 external legs in total.

By explicit computation, we find

1 0
—R(4)(91792793794) |: a—AP4(91792793794) - [SP123P234] (91792793794)

2!
+ [SPi934 Ps4) (01, 02,05, 64)

95



+ - F@: 4 :@i , (4.63)
where the prime represents the differentiation with respect to A.

By performing the inverse-Laplace transformation and renormalizing, we obtain
the complete answer for the macroscopic four loop correlator:

(wh (1) wt (L)) = AL (0, g) + ATy, ) (4.64)
where
A4usion(€1’ ’£4>
1 O |/ My20-1) A~
R 0, — || — " K« (M{; 4.65
m<m+1>}}1 7 On [(2) ;g (M) (16
and
1 2 M\20-1)
residual _ e m
A (G- ba) = [m(m—l—l)} jl;[lgj (2)
1 4
(_' Z) {_ H [3123 @B'Q?’ﬂ (MEJ(] )
4 o€Py Ds D} j=1
4
+ [T [B]** © Bf*| (My;) } . (4.66)
Dy D) j=1
Here
3}23 = (Kl kl/m7K1 kz/val k3/m75)7 (467>
B = (4, K, _ k’/maKl k’/muKl K, /m)s (4.68)
3}234 = (Kl kl/m>K1 kg/m>K1 k:‘;/WHKl k4/m) (469)
B = (5,6, K1 ty/m: Ki_gyym) - (4.70)

OThis was briefly reported in [P7.
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We have introduced D3 = Ds(ky — 1, ko — 1, ks — 1), Dy = D3(ky — 1, k) — 1, k5 — 1),
Dy =Dy(ky — 1, ke — 1, ks —1,ky — 1) and Dy = Dy(k} — 1, k, — 1) and have defined
the convolution [A ® B](MY{) with respect to ¢ by

[A® Bl (Ml = /0 CACAMEYBOM( - 1)) | (4.71)
in particular

(A6 8| (Mf) = /0 QLAY ) = A(MD) (4.72)

The important point to note is that A5 seems to represent the contribution
from loops with mixed momenta, that is, a single loop seems to have two distinct
parts each of which have different momentum. If two of the loops ¢; and /5 touch
each other on two point, the two-dimensional surface break into two surfaces and the
loops ¢; and /5 also split into two pieces respectively. We infer that this configuration
Aesidual = For m = 2 (pure
gravity), Ajesiual vanishes. This fact is consistent with the above consideration

of two-dimensional surface may have connection with

because in pure gravity there is no loop with mixed boundary condition.

4.4 Five-loop correlators

Let us now turn to the n=5 case. R®) (6, --,0s) include a term which is proportional

to
. y)
Wpf)(@l’...,es) — % (4.73)

corresponding to the first term in eq. (.63). Corresponding to the second term in
eq. ([E6J), R®) (6, - -, 05) must include a term which consists of the product of two
multi-vertices with 7 external legs in total. The possible form is

G[S%(Pm:&@)ﬂﬂ + 5{5P123458%(P45)}
—1—0[88%(131234)13345} + d{3P12348%(P345)}




y
+c %\/‘ % +d>@< % . (4.74)
In the limit M/{5 — 0, it becomes

(3@ + C) [S%(P1234)P34} + (3b + d) [8P12348£A(P34)}

0 0
+2€ {Sa_A(P123)P234} + 2d {8P1238—A(P234)} . (475)

We require this expression to be proportional to the A-derivative of the second term

in eq .(.63). We find
a=(1-¢)/3, b=(2+¢)/3, d=-1—-c . (4.76)

R®)(#,,---,05) may include terms which vanish in the limit under consideration as
well. They must consist of the products of three multi-vertices with 9 external legs
in total. As one of the such terms we have

[SP1234P34P45] - 2[SP1234P23P345] + [SP123P124P235]

(4.77)

( There are some other combinations which satisfy the conditions. ) R® (8, -, 05)
must be expressed as a linear combination of the above three types of terms eq. ({.73),
eq. (B.74) and eq. (JE.77) if the assumption under consideration is true. By explicit

calculation, we have found in fact that R®)(6y,---,05) can be expressed as a linear
combination of eq. (.73), eq. (E.74) and eq. ([E77) :
5 \?
R(5)<91792793794705> = (a_A> P5(91792793794795)
+ | SPriass QQ +3i Pys| (01,05, 03,04,05)
8A 8A ) ) Y Y
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a 0
SPigsa (8_/\ + 48_/\) Pyys

+  [(2P1234 P3aPas — 4P193 Pa3 Psas + 2P123 Pioa Pogs )| (01,02, 05,04, 05) . (4.78)

(01,062,053, 04,05)

Following the same procedure as obtaining eq. ([.64)), we find the complete an-
swer for the five loop amplitude:

<w+(£1) .. w+(£5)> — Agusion(£1 . 65) + Agesidual—1(£1 L 65)
T (RAA (4.79)
where

Agusion(gl’ . 65)

1 3.0 1 M~3(1-L)
=) 116 (5 Z) (3)
% {_QZZZ H {3;2345 o B;-34 o B;’ﬂ (Mea(j)>

Ds D, Dy j=1

5
S TL B © B © B (Mlyp)

Dy DY DYy j=1

—23 > 11 [B}* 0 B*' © B)*™] (Mfo(j))} . (4.82)

Ds D, DY j=1

59



Here ((%)L ® means the derivative acting only on the left(right) part of the con-
volutions. The rest of the notations here are similar to those of the n = 4 case and

will be self-explanatory.

We conjecture that R™ can be represented as a polynomial of P;, j < nand their
i derivatives: the final answer would then be obtained by convolutions of various
B;’s and their derivatives. If the conjecture is true in fact, the power counting
argument tells us that the j-th term of R™ turns out to be represented by a figure
which consists of the products of j multi-vertices with n + 2j external legs in total.
We hope that, for higher loops, R™(6;,---,60,) can be put in principle in a form
such as egs. ([.64), (£.79) in the same manner as we have determined the four and
five loops from the lower ones. From eqs. (£.64) ~ ([.65) and eqs. (£.79) ~ (E.80),
we guess that the multi-loop correlators, in general, would include the following
term corresponding P, (60q,---,6,) :

Aflusion(gl’ e En)

1 n O \n— M~ -(n-2)(1-% e
pieny LCLG A (5 D 99 | ECT)

4.5 Four-point functions from loop correlators

The four-loop correlators we found in eqgs. (64) ~ (F.66) do not diverge when the
loop lengths approach zero, so that we expect that the loop operator can be replaced
by the sum of the local operators in this case. Let us derive the four-point functions
of the scaling operators, applying the expansion of loop to the four loop correlators.

First, consider the part AJ““"(¢y, 0y, 05, 04) and expand this in terms of the
modified Bessel functions I, (¢;). From eq. ([.65) we have

AZUSZ’On (617 627 637 64)

1 M\ m A MO~
N AN £ s

m2(m+1) \ 2 5o o1 2 £
2 M\ w 1 9 LM —
—_—— = —— YKok (MY . (4.84
m(m+1)2<2) Mo {D“,:l 2 1—%( J>} (4.84)
Since we can prove the relations
. oo
R0 = Y (0 20) Do (2) (4.85)

60



and
(‘i{ Kip(2 )} = > (p+2n)(p+2n(p+n)) Iipton|(2) , (4.86)

n=—oo

for 0 < p < 1, we obtain the following expression for Af"*":

. 1 M\
fusion - o
AT b, 5, 6) = m(m + 1)2 ( 2 >

xZﬁ(i){ E—%ﬁjl +2njk+nj)”

D4 ] 1 n;=—00

m

]‘[{ + 2n;) L, J(Mﬁj)} . (4.87)

Comparing eq. (f.81) to the expansion of loop operators (B.69), we obtain the

following contribution of the four-point functions from AJ“*"(¢y, - ¢,):
4 Jusion 1 M A w2, 5 +n
<H Uki+2mni|> = Cklkzkslmm (7)
4
X ¢2(m+1) Z{k + 2n;(k;j + nym )}
7=1
4
11k + 2n;m) , (4.88)
j=1
where )
Chikaksks = Z Crrkok Cirkghey - (4.89)
k=1
Next, let us consider Ajesiual(¢, ... () part. We can prove that the convolution

of two modified Bessel functions EP(M ¢) and Ep/(Mf) is expanded in terms of
I,(MZ?) as

14 [Rp ©) /I?pr} (M) = (%) i: {n(2n+p—|—p’) Lopipip | (MY)
—n(2n+p—=p) lontpp (MO} . (4.90)

The above relation is easily derived in the space of Laplace transformed coordinate
using the relations

1 e 0
M sinhm8’

L[ L(M0)] = forp> —1, (4.91)
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and

L[ Ky (MO)] = L[T (M)~ I(MU)]

2 sinh pm#6
= MW’ fOI'p > —1 y (492)

because the convolution in ¢-space corresponds to the product in (-space.

From eqs. (f:89) and ([.90) we obtain the following expression for the residual
part of the four loop correlator:

. 1 My~
Areszdual /¢ e 0)) = (_) -
L ) m2(m +1)2 \ 2 A =
4 [e'¢)

X H {Z Z } Z Z(_Cklkzkgck’lkém + Ck1k2k3k4ck’1ké)
j=1 { k;j nj=-00) Kk, kK,

X Z(:I:)nl (2n1 + (1 — ﬁ) + (1 — k—i)) K/ (Mﬁo(l))
~ m m/ @m0

X (a2 + (1 - 2y £ (1 - 22)) g, (ML)
— m m’/ lent-t2)Ea-2) 7

k’g k4
X(2n3 + E) [|(2n3+%3)‘(M£0(3)) (2714 + E) I‘(2n4+%)|(M£U(4)) ) (4'93)

where Ckk’ = 5kk’-

From the above expression and the expansion of the loop operator (B.65)), we can
obtain the contribution of the four-point functions from A5¢**% part. The explicit
expression, however, would be complicated.

Let us comment on the role of the coefficients (—Ch,kyks Crtkyks + Chykakska Ciiry)
in eq. (.93). At first sight, it appears that we would have I,,(M¢;) with integer order
in eq. ([L93). For example, in the case of ky = k] or ki + k} = m, we have I, (M)
with integer order. Terms including I,(M¢;) with integer order as a factor cannot
be explained from the viewpoint of the local operators. These terms, however, are
cancelled due to the coefficients (—Ch, kyks Crikpks + Chykakska Ciirgy ), 50 that we do not
have I, (M{;) with integer order in eq. (L93) after all.
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5 Summary and discussion

In this paper we have investigated the correlators of macroscopic loops and those
of local operators in the unitary minimal models coupled to two-dimensional gravity
using the two-matrix model. We calculated the general multi-resolvent correlators,
and examined one- to five-loop correlators explicitly.

From these loop correlators we obtained the correlator of the scaling operators
by applying the idea [B{] that the macroscopic loop can be replaced by a sum of
local operators, to the case of the two-matrix model. We found that there exist the
fusion rules for the three-loop correlators, which are similar to those for the three-
point functions of the gravitational primaries. From the three-loop correlators, we
deduced the three-point functions of the scaling operators, and found the gravita-
tional descendants as well as the gravitational primaries satisfy the fusion rules of
the same kind. These fusion rules for the loops can be considered to express those
for all of the scaling operators in a compact form.

At the (m + 1,m) critical point in two-matrix models, the scaling operators
G, j =0 (mod m + 1) have no counterparts in the BRST cohomology of Liouville
theory coupled to the corresponding conformal matter. In [B3],these operators were
argued to be boundary operators which couple to loops in the case of the one-matrix
model. It was also shown explicitly that one of them, corresponding to 7,,.1 in the
case of the unitary matter, is a operator which measures the total length of the
loops.

We examined the role of the rest of these operators. We showed, in some exam-
ples, that the operator B, couples to the points to which n parts of several loops
are stuck each other. In other words, the operator B, connects n parts of loops
together. We think these operators play an important role concerning the touching
of the macroscopic loops. The emergence of these operators in matrix models can
easily be understood from the viewpoint of macroscopic loops and their expansion
in terms of local operators.

In sect. [l we examined the property of the multi-loop correlators. We pointed
out that the structure similar to those of the crossing symmetry in the underlying
conformal field theory can be seen in the loop correlators. This structure appears
in the selection rules for the summations in the expression of loop correlators.

We calculated explicitly four- and five-loop correlators. From the expression of
these correlators, we inferred that these include the contribution from the loops with
boundary condition specified by more than one momentum. We guess this property
can be understood as follows. When two loops touch each other on two points, each
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loop breaks into two pieces. Since a single loop breaks into two pieces, the broken
pieces can have distinct momenta. The configuration probably have non-vanishing
contribution to the amplitude in the case of the four- and five-loop amplitudes. Note
that matter degrees of freedom are fixed only inside the loops when we calculate the
loop correlators. Each loop therefore represents a superposition of loops with various
momenta. Distinct lattice elements on a single loop can have distinct momenta.

64



6 Acknowledgements

I wish to express my gratitude to Prof. H. Itoyama and Dr. A. Ishikawa for
enjoyable collaboration in [23, B4, PF| and helpful discussions. I am grateful to Prof.
K. Kikkawa for his encouragement and useful discussions. I would like to thank
Prof. N. Sakai, Prof. K. Hamada and Dr. H. Shirokura for valuable comments on
the subject and also thank Prof. A. Sato, Prof. H. Kunitomo and other members
of the theoretical physics laboratories of Osaka University for their encouragement.

This work is supported in part by Grant-in-Aid for Scientific Research (07640403)
and by the Grand-in-Aid for Scientific Research Fund (2690) from the Ministry of
Education, Science and Culture, Japan.

65



Appendix A

Here we collect some formulae concerning the modified Bessel functions. I,(z)
and K, (z) are linearly independent solutions of the Bessel equation

[(z%f — 22— V2] Z,(2)=0. (A1)
I,(#) can be expanded as
Z\V = 1 2\ 2n
1(z) = (5) nZ;; KT'(n+v+1) (5) ’ (4.2)
and K,(z) is defined as
/2
Ky(z) = ———I-0(2) = L(2)] . (A.3)

We collect another useful formulae in the following.
2v

— TE(2) = Ky () - Ko (2) (A.4)
(%)H[ZVKV(Z)] = (—1)"2"""K,_,(2) (A.5)
1 peodt . 2C t 2+
K20 =5 [T TR (3 en(-5 - )
[Re 2> 0, Re (>0, |arg(z+ ()| < m/4] (A.6)

Introducing the Laplace transformation of a function f(¢) of loop length ¢ by
L] = [Tare @), (AT
0

we have the following relations on the Laplace transformations of the Bessel func-

tions:
1 6—pm9

~ 2 sinh |p|m@
LIEMO] = e (4.9)
L[~ p|K,(M)] = 2 cosh pmd), (A.10)
where ( is parametrized as
¢ = M coshmf | (A.11)
and we introduced a notation
K,(M{) = Smgp‘Kp(Mﬁ) . (A.12)
T
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Appendix B

In this appendix, we prove the recursion relations for

11, 19, 13,

<”71’ T s, :::) with > my <n—2 (B.1)
n ¢

introduced in the text. The proof goes by mathematical inductions.

We will first prove the simplest case

1
(R0 ) ens e
1 2 ) n n H[Zl—]]
J(Fi)
and
<m, Q’ o 0) =0 , for m<n-3 . (B.3)
11, 12 -+, 1n n

Assume that eq. (B.2) and eq. (B-J) are true at n. Without loss of generality,
i1 can be taken to be 1. Let us consider the left hand side of eq. (B.2) or eq. (B3)
in which n is replaced by n 4+ 1. To compute them we observe that the elements
of §,11 are generated by associating n different ways of inserting [n + 1] with each
element o € S,,. In the case where [n + 1] is inserted in between [1] and [o(1)], this
contribution is equal to

) 1 1= ()" o
2 T o Tt o+ Do L 70

O'ESn

(B.4)

The contributions from the sum of the remaining n — 1 insertions are found to be
equal to
B Z 1 1 ﬁ 1
—o()]" [o(1) = (n+ DL = (n+ D] ;5 1 — ()]

O'ESn

(B.5)

Here we have used

1 1 1 1
—m+D][n+1)—m] [j—m] <[j—(n+1)] N [m—(n—i—l)]) . (B.6)

n—1
Note also that [J1/[o7(1) —o7*(1 Hl/ j — a(j)]. Putting eqs. (BA) and
j=1
(B:3) together, we find
( m, O’ e 0 ) _
1’ 2’ e n+1 -



o)) g
ags:[ o)™ [o(1) = (n+ 1)][1 — (n + 1)] 1;[]_0(])] - (B.7)

Factorizing the expression inside the bracket { -}, we have

m, 0, -~-, 0 m—l 0, ---, 0 1
<1, 2, -, n—|—1>+ z:1< 2, -, n)ﬂ[l—(n—i—l)]“rl
(B.8)
Then from the assumption, eq. (BJ) and eq. (B-J) are also satisfied when n is
replaced by n 4 1. On the other hand for n = 3 eq. (B:2) and eq. (BJ) are clearly
true, so we have proven the relations.

Now we turn to the more general case the proof of which is a straightforward
generalization of the one given above. To derive the relations

k
Ma. . m 0. . 0
b v TR o =0 , for Ymy<n-3 , (BJ9)
11, 1, Y1, 5, ln n _
and
my, , My, 07 9 0
7’17 ikv Zk-i—lu ) in n
:Z my, ---, mj_]-> sy M, Oa ) 0 1
= ila S ij, cee ik, ik+17 S in—l n—l[j_n]2 )
k
for > my=n-2 . (B.10)

Let us assume eq. (B9) at n .

We take iy = ¢, ¢ =1 ~ k without loss of generality. The way in which the
elements of S, ;1 are generated is the same as the one given above. In the case where
[n + 1] is inserted in between [¢] and [0 (¢)] ¢ = 1 ~ k, the contribution is

B Z 1 . 1 [0 —a(l)]™
ves, (L—o@)mtt [0 —a(f)]me [€ = (n+ 1)t (n+ 1) — ()]
1 1 nt 1
Ty —ewr e e AL =gy - B
The contributions from the sum of the remaining insertions are
1 1
- Zs: WEM (1=t [k — (k)]
y "1:[1 1 < 1 B 1 )
gy 101 =D\ [0/(1) = (n+ )] [0'(1) = (n+1)])
(B.12)

68



Here p, ¢ = 1 ~ k are such that o”*(1) = ¢. Using eq. (B:f) again, we find that
this equals

i 1 1 1
_Zzl_ 1m1+1.'.£_ £)]me ) — D¢ — 1
ves, = L —o(1)] [£ = o(O)]m [o(l) = (n+ D]l = (n+1)]
1 N G
T+ ot Te—otopet A T=ol -~
Putting egs. (B:I1]]) and (B:I3) together, we find
<m17 cey s My, 07 Tty 0 )
1, - Kk k+1, -+, n+1 _—
_ ( Lt=a@] \™
_ _zk: 3 1 oo - EE) Y
T oes, L—o)mrt [l —o(O)]™ [o(f) = n][ —n]
1 1 nt 1
. ——— (B.14)
@D —or iy e G
Factorizing the expression inside the bracket, we have
<m17 cey My, 07 Ty 0 )
1, - Kk k+1 -, n+1 _—
k my
o my, vy mj_la ey My, Oa T 0 1
_;;< 1, - 7O S IS n)ﬂ[j—n]l“
(B.15)

Then from the assumption eq. (B.9) at n, eq. (B.9) in which n is replaced by n + 1
is also satisfied. On the other hand for n = 3 eq. (B.9) is clearly satisfied, so we

have proven eq. (B-9) and eq. (B-10) .
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