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SKI(Z[G]) of finite solvable groups

which act linearly and freely on spheres.

Fumihiro USHITAKI

1. Introduction

Let G be a finite group, Z the ring of integers and @
the ring of rational numbers. For R =Z or @, RIG] denotes
the group ring of G over R. Put GL(RIG])) = 312 GLn(R[G])
and E(RIG]) = [GL(R[GI), GL(RI[G1)]1 the commutator subgroup of
GL(RI[G]). Then Kl(R[G]) denotes the quotient group
GL(RIG1)/E(RIG1). The natural inclusion map
i :GL(ZILG]l) —> GL(QIG]) gives rise to a group homomorphism
i, ¢ Kl(Z[G]) —> Kl(Q[G]). Then SKI(Z[G]) is defined by

*

setting

SKI(Z[G]) = ker i .

In [91, C. T. C. Wall showed that SKI(Z[G]) is isomorphic
to the torsion subgroup of the Whitehead group Wh(G) of G.

Since it can be shown that

SK. (ZIG1) = ker(Res : Wh(G) —> @ Wh(C)) ,
1 cec



SKl(Z[G]) gives information which cannot be obtained by

restricting Wh{(G) to ® Wh(C), where <¢ 1is the class of all .
Cece

cyclic subgroups of G.

Incidentally, Whitehead group plays a role not only in
studying simple homotopy equivalences of finite CW complexes,
but also in classifying manifolds. The s-cobordism theorem says
that if M and N are smooth closed n-dimensional manifolds,
where n 2 5, and if W is a compact (n¥1)—dimensional manifold
such that 8¥W = M_IN, and such that the inclusions M —> ¥
and N —> W are simple homotopy equivalences, then W is
diffeomorphic to M X [0,1] (see.[5]).

For a finite group G, SKl(Z[G]) has been calculated by

several authors. Let Zm be a cyclic group of order m.

At first, it was shown by Bass, Milnor, and Serre ([1]) that

n

SKl(Z[G]) =0 if G is cyclic or if G = (Z)) for some n.

2
Also, it was shown by T. Y. Lam (I[31) that SKI(Z[GJ) =0 if G

= 7 n X Zp for any prime p and any n. Later, it was shown
p

by R. Oliver ([8]) that for a finite abelian group G, SKI(Z[G])

= 0 if and only if either G g_(Zz)n, or each Sylow subgroup of G

has the form Z n or Z n X Zp . As far as non-abelian groups
p P ,
are concerned, it was shown in [21, [41, [61 and [7] that
SKl(Z[G]) vanishes if G 1is a dihedral group.
The purpose of this paper is to determine SKI(Z[G]) for
finite solvable groups G which act linearly and freely on
spheres. As in [10, Theorem 6.1.11], there are 4 types for such

Kinds of groups. For the convenience of the reader, the table of



these groups are cited in Appendix. In order to state our main
theorem, we prepare the following notations.

1’ G2’ G3 and G4 denote the groups of type

I, II, III and IV respectively mentioned in the table in

Let G

Appendix. Let (a ML al) denote the greatest common

1 @9
divisor of integers {al,az,"',al}, and let m, n, r, £, k, u, v

and d be the integers appeared in the definition of G1 . G2 y

G3 and G4. For positive integers o, 8, ¥ and &, put

MB = (I’ - 1, m),
D) = {(x € N| x is a divisor of o },

D(et,B) = {x € D(at)} X can be divided by 8},

D(a)i = (x € D] x¥ = 0 (8)).

If d is an even integer, we put d' = d/2, and put

_ v
t(2) = #{(x,B)|B € D(Vv)p_, » @ € D(Mzua) ,
c + aM )L - 1, 4y 20
278

for some integer a with 0 £ a < m/M u }
278

-# yU pmm" N
0<b<d (2-1,r
2=0,1

74 0*® 4 1y



t'(2) = #{(x,B)|8
(ot
(o

for

0<b<d
A=0,1

Y <;D(m)m

t(3) = 2
BED(n,3)

t(4) = 2
B€D(n,3)

We are now ready t

Theorem. (i) SK1
(ii) SKI(Z[Gzl) >

SKI(Z[Gzl)

fte

(iii) SKl(Z[G3]) =

(iv) ~SK1(Z[G4])

14

Example 1.1. VWhen

(i) SKI(Z[G3]) =

v

€ D(v)k_1 ,

+ aM Y - 1,
2Up

+ aM U )(Qrd -1,
278

rn/4

o € D(M a )

278
-1

rn/4

some integer a with 0

n/4_ X b

2-1,r 1,27r

U Dam™
4r” -1, r

#D(MB) -1,

#D(M,) - 2
8 n
BED(n,3),

+ 1)

4! n/4

-1,

#D (M

’

)

1

- 1

< a

Ql b

m
B)Q+1

0 state our main theorem.

(Z[Gll)

H
o

£(2)
Z2

Zt'(2)

Hi

<

0 (m) or

0(m)

r +1>> '

if d 1is an odd integer,

9 if d 1is an even integer.

t(3)
22 .

t(4)
Z, .

d = 3, we-have

Z#D(n,3)°#D(m)'l
2 9’



n m
#D(n,3) -#D(m) #D(n,3)k+l #D(m)Q+1

(ii) SKI(Z[G4]) = 22

Example 1.2. For Gz, when m = 35, n = 72, r = 4, k 55,

4 = 29, we have d = 6 and then,

SK, (Z1G,1) = Z

This paper is organized as follows: In Section 2 after
proving (i) of Theorem, we state some lemmas and propositions
that are necessary for the proof of (ii), (iii), (iv) of Theorem.
From Section 3 to Section 5 we prove (ii), (iii), (iv) of
Theorem. Section 6 presents the proofs of the lemmas in Section
2. Appendix is devoted to quoting the table of the finite
solvable groups from [10] which act linearly and freely on odd
dimensional spheres.

I would like to thank Professors K. Kawakubo and M. Morimoto

for their many helpful suggestions.

2. Preliminaries

For every odd prime number ©p, since the p-Sylow subgroups
of Gi (1 £ i < 4) are cyclic, it follows from [8, Theorem
14.21 that SKl(Z[Gi]) |

0 . Moreover, Syl,(G,) the 2-Sylow

(P~ ° 7 271
subgroup of G1 is cyclic. Hence, by [8, Theorem 14.21, we
conclude that SKI(Z[GIJ) = 0.

For the calculation of SK1(Z[Gi]) (2 £ i £ 4), we will

use the following lemmas:



u+1

R

Lemma 2.1 ({10, Theorem 6.1.111). SylZ(GZ) > <R,BV> x Q2

S¥1,(Gg) = <P,@> = Q8, and Syl,(G,) = <P,Q,R> = <PR, P> = QI6,
where QZN denotes the generalized quaternionic group of
N

order 2

When H 1is a subgroup of G, CG(H) denotes the
centralizer of H in G and NG(H) denotes the normalizer of

Hin G.

Lemma 2.2 ([8, Example 14.431). Let G be a finite group
whose 2-Sylow subgroups are dihedral, quaternionic, or

semidihedral. Then

~ Zt

SKl(Z[G]) 9

(2)
where t is ithe number of conjugacy classes of cyclic subgroups
o0 ¢ G such that <(a) lo| is odd, (b) C;(?) has a non-abelian
2-Sylow subgroup, and (c) there is no g € NG(O) with

gxg_l = X—l for all x € o.

By Lemma 2.1, G G and G satisfy the assertion in

2’ 73 4

Lemma 2.2. VWe now prepare the next lemmas for the calculation
of SKl(Z[Gi]) (i = 2, 3, 4), whose proof will be given in the
last section. For integers o and 8, we put

D(at) = {x € N | x is a divisor of «), MB = (rB - 1, m). Then



Lemma 2.3. For any B8 € D(n), we have

«r® - et -, Mg) = 1.

Lemma 2.4. For any integer o, we have

Yy = (o, M,).

r -1

Lemma 2.5. Let <Aqu> be the cyclic group which is
generated by the element of the form AnBv. We put B8 = (n, V).

Then, there exists an integer o such that <A“Bv> = <AaBB>.

Proposition 2.6. Let o be an integer, and B8 an element

in D(n). Put n' = n/B. Then we have

M,-n'
o, B _ B
|<A”B”>| = (MB’O‘)

Proof. It is clear that ]<AaBB>I is divisible by n'.

n B

We have (AaBB)n = Aa(r - D/ - 1). Put r" -1 = m-s',
B _ , _ L ' o ,.n 8 _
r -1 = Mg-s, and m = M8~t, then we have (r - 1)/(r - 1) =
e e f b

et M o= g 1.y & _ g l...g'M -
t-s'/s . Set MB = oy ag , t = B1 BR , and s

&) &, | |
Yl ---yl , Where ai s Bi and Yi are prime numbers, and e

f,, gi are positive integers. By the fact (t,s) = 1 and
f f gl. gl h hK

1-~'B nyl cry ., 8,08 for some

Lemma 2.3, we have s' = Bl n . 2 K



prime numbers 61,-~-,6K , non-negative integers fi""’fﬁ and
positive integers gl,---,gl, hl’ '~,hK, with gi > gi
(i = 1,-*-1). Since
N + + t - t - t
"1 mest | Bfl £ . Bfn+fnygl gl“_ygz g16h1 5 K
rB—l - Mﬂ's -1 n 1 t 1 Kk

the smallest positive integer x satisfying that

n M M,-n'
e {m) is —t Hence we have |<AaB8>} S R
rB—l (a,MB) (Mg, )

Proposition 2.7. Let o and o' be integers, and B8 and

B' elements in D(n). <AaBB> is conjugate to A% BB > in

B *

G,, G, and G, if and only if |<a®Bf>] = |<a%'B

20 Gg 4 >

Proof. Suppose that I<AaB6>l = | <a% BB >]. By using

Proposition 2.6, we obtain that B8 B'. Since

]

rn—l
n a(l+c )

_.B 2 *1 _
B)A a _ A0(+a(1 1 )BB and (AaBB)B - A r -1 BB

@]

IO
‘fdr any integers a and ¢, by Lemma 2.4, two cyclic subgroups

whose orders are same are conjugate. The converse is clear. 8]

As an immediate consequence of Lemma 2.5 and Proposition

2.7, we have:

Proposition 2.8. Let u and v be integers. Put

B = (v,n), then there exists an element o € D(MB) such that



<A“Bv> is conjugate to <AaBB>. ul

3. Proof of (ii) of Theorem
tvery element in G2 is represented by the form A“BVRe
for some integers g and V, where e is either 0 or 1.

We see that |<A“BvR>l is even, and that a generator of a

cyclic subgroup of odd order is represented by the element of

u 1
the form AaB2 Y for an integer v'. Put B8 = (v,v'). By
Proposition 2.8, there existis an integer o € D(M u ) such that
278
u, , u -
<A“B2 v > 1is conjugate to <AaB2 6). Thus, from now on, we will

consider the cyclic subgroups generated by the element of the
o 28
form A B for any 8 € D(v) and any o € D(M u ).
g 2°8

At first, we state some observations on Gz.

Observation 3.1. 2v is divisible by d.

Proof. Since rn = rk_1

1 (m), d is a common divisior
of n and k - 1. Since k+ 1 =0 2%, (k+ 1, k- 1) = 2,
and u > 2, k - 1 ‘is-divisible by 2, but not divisible

by 4. Since n = 2 v, d 1is a divisor of 2v. O

When d .is an even integer, we put d' = d4d/2. Then we have:



Observation 3.2. For any integer a,

n

4 1
Aa(l—r ) L4 Aa(l-ﬁ)

< B, R> =~ Q8.

If 4 1is an even integer, then for any integer a,

n
= n
4 = 4’ ,

<Aa(l r )Bi , Aa(l ir )Bd R> =~ Q8.
'Lemma_3.3. In the case that d 1is an odd integer, for any
o 28
g € D(v) and any o € D(M u Y, CG(<A B >) has a subgroup H
2°B

which is isomorphic to Q8 if and only if B8k - 1) = 0 (v)

u ,
and (o + a(r2 B _ 1)) - 1, rn/4 - 1) = 0 (m) for some

integer a.

In the case that d is an even integer, for any f € D(v)

u s .
and any o € D(M u ), CG(<AaB2 B)) has a subgroup H which is
-jqomorphic to Q8 if and only if 8(k - 1) = 0(v) and
29 - n/4
(a + a(r - 1y -1, r - 1) =0 (m) or B(k - 1) = 0 (v)
: 2Yp a: n/4
and (o + a(r - 1))YWr -1, r - 1) = 0 (m) for some

integer a.

Proof. In the case that B8k - 1)

I1H

0 (v) and

u
@+ ar? b 1y -1, ™Mo

1

0 (m) for some integer a,

_lo...



u n/4
8>) 5 <Aa(1—r )Bn/4’ Aa(l—Q)R>

we see that cG(<A°‘B2 In the

2Yp n/4

case that B(k - 1) = 0 (v> and (o + acr® P-1yycerd' -1, 2400,

u
= 0 (m) for some integer a, we see that CG(<AaB2 8)) D
n/4

. d' ,
a(l-r )Bn/4’ Aa(1~£r )Bd

<A R>. Conversely, assume that

u
CG(<AdB2 B)) has a subgroup H which is isomorphic to Q8.

Since K = <Bv, R> 1is one of the 2-Sylow subgroups of G and

H is a 2-group of G, we have g_ng c K for some g € G. Now

we consider the quotient group of K/(BV> and the projection

p : K—> K/<B”>. Since ker p = <B'> and g ‘Hz = @8, we

n/4>. n/4

have ker(plgﬁng) = <B Hence, g—ng = <B , B'R> for

some integer <t which is divisible by v. Now put g = AaBbRC

where a and b are some integers, and ¢ is either 0 or 1.

Then,
n
H = gB? , B'R>g !
n
= A®B"R%p*, BTRO>R™CBPAT?
n
- A%B%B%, BY'R>B™®A™® (for some integer T')
n
= A3<B4, BT"R>A—a (for some integer <t")
Ao o
_p2mTHps ad-ert gt
Since Aa(l"rn/4)B“/4 € cG(<A“Bzu8>>, we have

-11-



n
o u
vt - aa? P oy v w20

" u
- " 2
On the other hand, since Aa(lvﬁr )B‘c R € CG(<AQB‘ B)), we
have
{ T u

@r® - D a1y =0 m

B(k - 1) = 0 (V)
Now, since <" = Ttk + b(l1 - k) if ¢ = 1, and T" =
T + b(l - k) if ¢ = 0, we have rt = rt. Moreover, rr =1 or
rd because T is divisible by v and 4 is a divisior of 2v.

Thus the lemma was proved. o
As an immediate consequence of Lemma 3.3, we have:

Corollary 3.4. In the case that  d 1is an odd integer,

. . u

for any 8 € D(v) and any « € D(M _ ), cG(<A“BQ Byy has a
278

subgroup H which is isomorphic to Q8 if and only if 8¢k - 1)

=0 (v) and (o + aM L@ -1, /4 1) = 0 (m) for some

28
integer a with 0 < a < m/M
u
, 2°8
In the case that d is an even integer, for any B8 € D(v)
Ug

and any o € D(M u ), CG(<AaB2 >) has a subgroup H which is

278

-12~



isomorphic to Q8 if and only if 8(k - 1) = Q(v) and

(¢ + aM  >(2 - 1, 41y 2 0 m or Bk - 1) = 0 (v) and
278
(ot + aM )(Qrd -1, rn/4 - 1) = 0 (m) for some integer a
278
with 0 < a < m/M . - , 0
278

u
It is clear that CG(<AO(B2 B)) has a nonabelian 2-Sylow

u

subgroup if and only if CG(<AC(B2 B>) has a subgroup H which
o298

is isomorphic to Q8. Let <A™B > be a cyclic subgroup of G2

satisfying the conditions (a) and (b). Assume that it does not

satisfy the condition (c¢). In the case that
u u
2282y (a%B% 8y %8Py = (A%B2 )71 for some integers a and
b, we have
«(r® + 1) = 0 ()
B = 0(v)

On the other hand, in the case that

u

u
(a®BPRy (a%B? %) (a%BPR)7! = (a%B? )71 for some integers a and

b, we have

u u
a + aQrb - arz Bk + or 276 = 0 (m)

B(k + 1 ) =0 (v)

._13_.



Since it follows from Corollary 3.4 that B(k -1) = 0 (v),

in this case we have

a(lr” + 1)

0 (m)

B 0 (v)

1

Hence for o € D(m) satisfying that a(erb + 1) = 0 (m)

(A = 0, 1), <A%> does not satisfy the condition (c). This

completes the proof of (ii)> of Theorem.

4., Proof of (iii) of Theorem

Lemma 4.1. Let o C G3 be a c¢yclic subgroup of odd

order. Then, there exist B8 € D{(n) and « € D(MB) such

that o 1is conjugate to <AaBB>.

Proof. Every element in G3 can be represented by the form

XA“Bv for some X € <P,Q> and some integers p and Vv. VWe see
that <A“Bv> has odd order. In the case that v = 0 (3), we see
‘that <xaMBY> has even order. In the other cases, we see that

<XA“Bv> has even order or is conjugate {o <A“Bv>. The

conclusion now follows from Proposition 2.8. )

Hence from now on we will consider the cyclic subgroups

generated by the element of the form AaBB for B € D(v) and «

€ D(MB). Since <P,Q> is a normal subgroup of G3, CG (<AaBB>)
3

-14-



has a non-abelian 2-Sylow subgroup if and only if C (<AaB8>)

Gg
includes <P,Q>.  And it is easy to show that C, (<a%pf5)
3
includes <P,Q> if and only if B is an element of D(n,3). Let
<AQBS> be a cyclic subgroup of G3 satisfying the
conditions (a) and (b). Assume that (;fxaBb)(AclB"B)(AaBb)_1 =
(AC(BB)“1 for some integers a and b. Since n is an odd
integer, we have
a1l + r® =0 (m
B =0
Since (1 + rb, m) = 1 for any b € Z when n is odd,
we have <A%BP> = 1. This completes the proof of (iii) of
Theorem.
5. Proof of (iv) of Theorem
Lemma 5.1. Let o C G4 be a cyclic subgroup of odd order.
.Then, there exist B8 € D(n) and o € D(MB) such that o

is conjugate to <AaBB>.

Proof. Every element in G can be represented by the form

4
XA“BV for some X € <P,Q,R> and some integers pu and V. VWe

see that <A“Bv> has odd order. And it is shown that
C1<xa*BY>] is even or <XAMBY> is conjugate to <AMBY>. The

conclusion now follows from Proposition 2.8. o

-15-



Hence from now on we will consider the cyclic subgroups

generated by the element of the form AaB6 for # € D(v) and
o € D(Mﬂ).

Lemma 5.2. If CG4(<AaBﬁ>) has a non-abelian 2-Sylow
subgroup, then CG (<Ast>)' includes <P>, <KQ> or <P@>.

4

Progf. We put K = <P,Q,R> = <PR, P>. C, «2%8%5) has a
4
non-abelian 2-Sylow subgroup, if and only if CC {<AaBB>) has a
I
4

subgroup H which is isomorphic to Q8. Since H is a 2-group
0of G, we have g 'Hg ¢ K for some g € G. We note that <PR>
igs a cyclic subgroup of K whose order is 8. Now we consider
the quotient group K/<PR>, and the projection

p : K —=> K/<PR>. Since ker p = <PR> and g_ng = Q8, we have
that ker (plgnlﬂg) is a cyclic subgroup of <PR> whose order is

. -1 oy 2 , -
4. Hence we have ker (plg Hg) = <{PR)"> = <@Q»>. Thus, we have
A

g_ng = <Q, (PR)"P> for some X € Z. We note that if X is an
odd integer, then g_ng = <Q,R>, and that if X is an even
integer, then g_ng = <P,Q>. Thus, we obtain:

a(l~1)éb(k—1)’

H = <P,Q> or <RA Q> 1if b = 0 (3),

H = <P,qQ>, <RABEDIghK-1) poy  pgaali-1ightk-1) by
or <qrA®TDIBPCE-L) by ey o= 1 (3,
M2 poa>, Ra®ETDIEP D) o a1 b e po.

a(l—l)Bb(k-l)

or <RPA , PQ> if b = 2 (3),

-16-



wvhere a and b are integers. Hence H includes <P>, <> or

<PQ>. !

Lemma 5.3. CG (<AaBB>) has & non-abelian 2-8ylow subgroup
4
if and only if 8 = 0 (3).
L . o B , .
Proof. If CG (¢CA"B">) has & non-abelian 2-Sylow
4

subgroup, by Lemma 5.2, we have P, Q@ or PQ are elements of

CG (<AaB6>). In the case that F or @ are elements of

4
CG4(<AQB6>), we Eave B = 0 (3) asg in proof of (iii) of Theorem.
On the other hand it is easy tu show that if PQ is an element
0t CG4(<AQBS>), then § = 0 (3). Conversely, if 8 2 0 ¢3), it
follows from proof of (iii) of Theorem that CG4(<AQB6>) includes

<P,Q>, that is a non-abelian 2-group. This completes

3

the proof.

Now for 6 € D(n, 3) and o € D(Mﬁ), we assume that <AQBB>

doesn't satisfy the condition (e). 1f (A%BY)a%B%)a®p?)"! -

o 6)~1 o6

(ATB , then we have A B = 1. 1f
A%y (A%%) (ra®BPy 7L = (a%BP)7!, then we have
i(arb + a(l - rﬁ)) + ar—ﬁ = 0 (m)

Bk + 1) = 0 (m

...17__



Since d is & common divisor of n and k - 1, we have

(k + 1, &) =1, and so £ must be divisible by d. Hence we
have o(1 + lrb) = 0 (m). Since Qz = 1 (m), we have
«(s + r® = 0 (m). By these equations, we have
ol + 1)(rb * 1) o= O.(m). Since (rb + 1, m) = 1, we have
o (d + 1) = 0 (m).

Conversely under the conditions Bk + 1) = 0 (m) and
o(l + 1) = 0 (m), we see that ]El(;‘xm}:_38)f{_1 = (AaBB)_l, then
<AaBB> doesn't satisfy the condition (¢). This completes the
proof (iv) of Theorem.

6. Proof of Lemmas in Section 2

Proof of Lemma 2.3. Put n' = n/f and r6 - 1= Mges
Then we have

rfo1 nl gy
O
n'-1 .
= 3 Mgrs o+ 1)
i=0 6
= n' (MB)

Now since (n', MB) = 1, we have ((r" - 1)/(jr6 - 1), Mg) = 1.

Lemma 2.4 is an immediate consequence of Lemma 2.3.

Proof of lemma 2.5. Since B# = (n,v), there exists an
integer. x such that vx = 8(n). Put n' = n/B, then we see

_18_



that (x, n') = 1. We note that the order of <A“BV> igs a

divisor of mn'. If (x,m) = 1, we have (AMBV)X = Aaﬁﬁ for

some integer o and <(A“BV)X> = <A“BV>. 1f (x,m) # 1, since

there exists an integer ¢ such that (x + c¢cn', n'm) = 1, we
+en!t : ’
have (A“BV)X en . AaBﬁ for some integer o and
1 L h .
<(A“B))X+Cn > = <A“BV>. This completes the proof. 0

7. Appendix ([10, Theorem 6.1.111)

Let G be a finite solvable group. Then G has a fixed point

free complex representation if and only if G is of type I, 11,
III or IV below, with the additional condition: if d is the
order of v in the multiplicative group of residues modulo nm,
of integers prime to m, then n/d is divisible by every prime
divisor of 4.

Type I. A group of order mn that is generated by the

elements of the form A and B, and that has relations:

where m, n and 1r satisfy the following conditions:

m=>=1, n=21, (n(r - 1), m) =1, rn = 1 (M).

Type II. A group of order 2mn that is generated by the

elements of .the form - A, B and R,  and that has relations:

...19_



in addition to the relations in I, where m, n, r, 4 and k

satisfy the following conditions:

in addition to the conditions in I.

Type II1. A group of order 8mn that isg generated by the

elements of the form A, B, P and Q, and that has relations:

= Q% = (PQ)Z, AP = PA, AQ = QA,

s}
g
w
!
D
us}
o
fue]
[
1

PQ

in addition to the relations in I, where m, n and r satisfy

‘the following conditions:

0 (3)

I
Ht

n I (2), n
in addition to the conditions in I.

Type IV. A group of order 16mn that is generated by the
elements of the form A, B, P, @ and R, and that has

relations:

-20~



rZ = p?, mer ! = qp, mar’! = 7%,
rar ! = A%, mer7! = BK

in addition to the relations in 111, where m, n, r, kK and ¢

satisfy the following conditions:

in

(11

[21]

£41]

£51

(61

K =1 (m), k= -1 (3), r— [

1
il

1 (m)

addition to the conditions in II1.
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