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Dual Model with Non-Linear Baryon Trajectories

and Pion-Nucleon Backward Scattering

Kikuji Hirose



Abstract

‘A dual model with the non-linear baryon trajectories is
constructed for &N scattering. It is assumed that both the I=3/2
and 1/2 families of &N resonances lie on the non-linear trajectories
in the form Q(Js)=za+bs+cls. However, a well-known quantum mechanical
level mixing (a cross-over phenomenon) occurs between the two mutually
crossing I=1/2 trajectories and shifts the branch point of QA(JsS) to
the region s€0. Many difficulties concerning RN backward scattering,
so far encountered in the model with linear baryon trajectories, are
overcome by virtue of the non-linearity of the baryon trajectories
and by the effect of the cross-over phenomenon. Our model gives a
reasonable agreement with the exwmerimental data for the backward
differential cross-section and polarization, in addition to the good

results for low-energy resonance parameters,



§1. Introduction

In the recent several years, the concevt of the duality has
become to occupy the major part of the theoretical particle physics.
The qualitative features of the dual amplitudes give us a better
understanding of many basic concevts of the particle physics, i.e., the
non-existence of exotic resonances, the exchange degeneracy, the origin
of Regge behavior ( hadrons may have much more complicated structure
than the simple bound states of two elementary particles) and the
structure of the hadronic matter, etc. On the other hand, for the
guantitative argument one is most interested in that the Veneziano-
type amplitudes nrovide the unified descrintion of both low- and high-
energy hadron scattering processes. In ZN scattering, where extensive
experimental informations are available, many authorsl)have investi-
gated how well a Veneziano-type revpresentation correlates the low-
energy resonance parameters with the high-energy data. However it has
been pointed out that when adjustable varameters are so determined
that the model can reproduce the empirical elastic widths of low-energy
ZN resonances, the Veneziano-type amplitude leads to the enormously
large backward differential cross-sections at high-energy, even if the
results for forwara region are satisfactory. In order to clarify
whether the dualify describes only the gross feature of the hadron
dynamics or it gives also quantitative completeness of the amplitude
of the hadronic process, except for the amplitude concerning the
Pomeron-exchange, it is extremely important to proceed detailed and
more careful investigations for this problem.

In all the previous investigations, it was assumed that all of
baryons as well as mesons lie on linear trajectories. Since the

results vredicted by Veneziano-type amplitudes depend entirely on how



we choose the trajectories of many hadrons, we must be very careful
in assigning hadron trajectories; especially, the choice of the baryon
trajectories is important. The baryon trajectories have features not
shared by the case of mesons, an example of which is the MacDowell
symmetry.z) This symmetry asserts that the baryon trajectories must
appear as pairs of those with opposite parity and the same signature,
and that two trajectory-~functions of each pairs define a single
analytic function O (W), for which we get O.C_P=+1(W)= A(W) and
d‘t-P:—l(w)':d("w)’ where W is c.m. energy of &N scattering, and T and
P stand for the signature and the varity, respectively. Therefore,
if we assume the linear trajectory, which is a even function of W,

then we obtain degenerate parity doublet, i.e., the doublet consisting

of two states with opposite parity, the same spin and equal masses.
For the I=1/2 &N resonances, we have seen good examples of this
degenerate parity doublets.3) But we have no examples for I=3/2 states
at present. This is the point that we should call attention to.

dSo far many investigations mentioned above wereﬂcarried out under
the degenerate narity doublets scheme (the linear trajectories) with

the elimination of unwanted low-mass parity partners., This is equiv-

alent to the guess‘that the non-existence of the degenerate parity
doublet in low-mass I=3/2 states will be accidental and for higher
mass -levels, we shall have such parity doublets. We emphasize another
nossible vieWpoint4) that the non-existence of the degenefate parity
doublets is a common feature of I=3/2 states, at least of the states
on the Lk'trajectory, i.e., all of the P33 (1236) and its higher mass-
level states, In this paper we take this point of view., Indeed, we
get the following nreferable prosnects with this scheme.

This viewpoint naturally leads us to conjecture that the I=3/2

states lie on non-linear trajectories which are not even functions of




W and these states form non-degenerate parity doublets. As a candidate

for the non-degenerate parity partner of thg P33(1236), we take the
well-established JP=3/2- resonance, the D33(1670). For such non-linear
trajectory of (Ag-Ay), we get the lower intercept than that of the
linear case. This might have effects of suppressing aN backward
cross-sections, for which one so far obtained too large predicted
values,

For I=1/2 N resonances, there are the examples of the degenerate
parity doublets; say, F15(1688) and D15(167O), etc. However,it is
well-known that the observed F/D ratios of these two states are quite
different, when we consider these states as members of SU(3) multiplets,
and it was difficult to interprete this fact by using linear I=1/2
trajectories.s) In order to solve this problem, we start from the
conjecture that the I=1/2 trajectories also take the non-linear forms,
as those in the I=3/2 case. The above mentioned difficulty is readily
removed, namely, the degenerate states are no more MacDowell-symmetric

vair and are described by two independent trajectory-functions.

These two non-linear I=1/2 trajectoties have the same quantum numbers
for the unitary spin, isospin and signature, and intersect at W=O.

The quantum mechanics tell us that whenever we get two states with
nearly equal masses and with the same quantum numbers, a certain level
mixing may happen.6’7)fﬂereafter we call it the cross-over phenomenanJ
In our case, this happens.in the unthsical region (w:o)vand the level
mixing will be treated by the Gribov Reggeon perturbation theory.8)
The above mentioned non-linear I=1/2 trajectories correspond to the
unperturbed trajectories. On the other hand, we shall see in the text
that the perturbed trajectories give the result that the degenerate

states become again the MacDowell-symmetric pairs, but these have the

different F/D ratios.



In this paper, we deal with the construction of the Veneziano-
type amplitude for XN scattering which incorvorates the non-linear
baryon trajectories with the cross-over phenbmenon. This must be
carried out carefully, because, in general, the introduction of the
non-linear trajectories leads to the occurence of the ancestor poles.
We shall show that the amplitude without ancestor poles is indeed
obtained and that the many problems pointed out are resolved by the
use of the non-linear trajectories. Thus, we get better understanding
of the duality in the quantitative argument of the hadronic process,

In §2 we develop the general formulation of the cross-—over
phenomenon for Regge trajectories by employing the Gribov Reggeon
calculus.8) The assignment of the non-linear baryon trajectories
will be also given in this section. In 83 we construct the dual
representation with a single unperturbed baryon trajectory in the form
a+bw2+cW. This is done in the line of thought of Volkov and Raddﬁmko?)
who gave the first attempt in this direction. In §4 we give the
general amplitude which contains many baryon trajectories on the basis
of the unperturbed dual representation obtained in §3. In §5 we show
that the unverturbed amplitude is easily extended to the perturbed
one according to the some simple rule. Thus we get the final form
_of our dual amplitude for 2N scattering. In 86 we deal with the

numerical evaluation of the model and the prediction as to high-

energy scattering. The final remarks will be given in §7.



§2. Non-linear Regge trajectories of %N resonances and the

cross-over phenomenon in I=1/2 trajectories

Before discussing the cross-over phenomenon, we shall determine
the unverturbed non-linear baryon trajectories in the very simple
form, i.e., a+bW2+cW.

(I=3/2 baryon trajectories)

As already discussed in the introduction, we choose the D33(167O)
state as the MacDowell parity partner of the P33(1236). Then we
obtain ‘

O W)=+ W rcy W,

a,=-0.30, by=0.85 GeV™ 2, c, =-0.36 GeV 1, (2.1)

Here and hereafter we adopt the convention that positive values of
Wi define the trajectory with positive natural parity, TP=+1l. That is,

in this case

Aa( W) =o\A$( W),
(w20 )
oﬂA(—W)=dAs(‘v‘i), (2.2)

where the function dAx(dA;) denotes the Az(Ag) trajectory. In Fig. 1

and 2, we show the AJ-AS trajectory,
Fig. 1 rig. 2

The coefficient ca in (2.1) is not determined unambiguously,
and has been so determined that the smallest intercept is obtained
for the AIS'AS trajectory under the condition that the empirical reso-
nance masses are reproduced within two percent errors. Its intercent
-0.3 Fd&(ﬂ) is considerably lower than +0.1 of the conventional

linear A“trajectory.



(I=1/2 baryon trajectories)

The observed almost degenerate pairs are the D15(167O)—F15(1688)
and Py(1470)-S,7(1535). The former pair has very different F/D
ratios, i.e., (F/D)Dlgz-O.Z and (F/D)Flgzo.B. 5) According to the
scheme discussed in the introduction, we assume the following
unperturbed non-linear I=% trajectories: The conventional Ng and Ng
trajectories are [lacDowell-symmetric and are expressed by the single

function

le(W) = a,N+bNW2+cNW R (2.3)

while the N§ -Ngtrajectory is given by
. 2
QNZ(W)_aN+bNW —c W (2.4)

with the same coefficients as those of (2.3). This is due to the
approximate degeneracies of F15(1688) on Ng and D15(167O) on Ng
and also of Py1(1470) on Ij and Sq;(1535) on N; . [See Pig.3]

Empirically we have

=0.40 Gev™l,  (2.5) .

2,=-0.67, b =0.83 GeV™° and c,

When we consider the trajectories as the functions of S(EW2), the MacDowell
symmetry is exhibited between the unper and lower branches of the curve
in rfig.4. The degéneracy of the F15 and D15 states is not due to the
MacDowell symmetry, These lie on the different trajectories, Thus
we can understand without difficulty the large difference between
the F/D ratios of the Fisg and Dy states.
fige. 3 Pig., 4

There exists the well-established JR=3/2' state, the D13(1520).
This state lies on the Ny trajectory whose intercevnt is ~-1.13; this
value is consideradbly lower than -~0.67 of the above-mentioned N trajec-
tories. Throughout this naver, we shall ignore the Ny trajectory,since

1)

. 1
this gives only a small effect on xN backward scattering.



It 1s immortant to notice that the Ng-Ng and Ny -Ng trajectories
have the same quantum numbers ( unitary spin, isosvpin and signature)
and they cross each other at W=0, as seen in Pig. 3. In such a case
generally occurs the cross-over phenomenon which is analogous to the
well-known quantum level mixing;@ee Pig. 5]° Indeed an example of
this phenomenon for Regge trajectories has been seen in the model cal-

7)

culation of Regge trajectories employing the Bethe-3Salpeter eguation.

Pig. 5

Now let us develop the general but simnle formulation of the
cuantum transitions between the two trajectories as a perturbation in
the Gribov Réggeon calculusg) : Sum up the contribution from all the
diagrams in which these two trajectories are successively mixed

through the transition vertex g, as shown in Pig. 6.
Pig. 6

Then crossed-channel Froissart-Gribov amplitude fJ can be written as

2 2
f:[ 8l + 82 [ g g ] .....
7Tt Traw) V(705 67 dnz J- sz 7ol ‘
(2.6)
where gi's are the particle-peggeon coupling verteces, Introducing

the svinor,

g,
Y= (32), | o (2.7)

and the 2X2 matrices,

| 0 g
= 0
= T—o, | = (2.8)
T-dw, ’

we rewrite (2.6) as

f,= WP Y = DI+ YTDEDY +F DGDGDY +-----
= 4" [D+DgD] ¥, (2.9)



Hence,

p=D+DGD. (2.10)

From (2.10) we obtain

p'=0"-6= (5 7)-(% o

B 0 J § dn,/, (2.11)
(du. 4 )

Diagonalizing the matrix S dﬂz’ one finds that the perturbed

J-plane singularities of the f. amnlitude are

J
_ O, + o, | e A 2
J = 2 + \K 2 > t 8 . (2.12)

Applying this results to our I=5 case, we obtain the two perturbed

trajectories

P
d%(\’?“):aN+bNW2+ \’(CNW)2+{32 R (2.13a)
Al (w?) =a +b wi- ,f(ch)2+g2 . (2.13b)

The functions di and.diI correspond‘to the two branches of the r.h.s,
of (2.12). An important fact is that the r.h.s. of (2.13a) and (2.13Db)
are the even function of W. [Here we have assumed that g is a constant
at least approximatelyJ Thus, for the perturbed trajectories, the
MfacDowell symmetry is exhibited between the Ny and Ng or the Nd and Ng
[see Fig.S] , Which is the same as the conventional scheme, However,
in our case, the N& and Np trajectories have guite different residue
structures, since the perturbation does not affect so much on these
structures. This will be shown in §5.

We take the cuts parallel to the imaginary axis, as shown in ®ig7.
In Fig.8 we show schematically the Chew-Prautschi plot of the four
verturbed trajectories, Not »Ng » N and Ng , all of which are connected

analytically with each other.

Fig. 7 Fig, 8



FPinally we fix the value of the unknown constant g. A famous
dip structure is observed at ux-0.15 (GeV/c)2 in high-energy # p
backward scatterin§¥»and this is usually attributed to the zero of
the Regge amplitude at the wrong-signature nonsense point of the

1
nucleon trajectory., )We assume that the same situation holds in our

model, Then we put

i (-0.15) =-1/2, (2.14)

and get

g =0.34, (2.15)
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§3. Construction of the dual amplitude with a single unperturbed

baryon trajectory

In this section, we shall construct the basic representation
of the dual amplitude only in terms of a single unperturbed baryon
trajectory function,

2

A(W)=a+bW +cW, (3.1)

In 55, the representation obtained in fhis section will be extended
to the more complicated perturbed cdse.

We start from the review of the dual amplitude with the conven-
tional linear baryon trajectory (c:O).l) The invariant matrix amplitude

T for XN scatteringf)

T(p21q2;plvql) = A(s,t,u)+#B(s,t,u), (3.2)
is given by the linear combination of the contributions from the many

kind of the baryon trajectories, each of which is expressed in terms

of the beta-functions as

{XB(%-d(s), 1-0y, (%)) + X@B(5-A(s), 1-OlM(t))}
+H{yB(1-04,(£), 3-0(w)) + FaB(1-04,(%), 3-(u))}
+{zB(3-d(s), #-0(u)) + Z@B(3-d(s), -a(u))} , (3.3)
where A(x) and dM(x) denote the baryon and meson trajectqries,
respectively, and have the form a+bx[}=s,t and u]; x,%,7,7,z and ¥
are multiplicative constants.**) The other notations for the kinematic

variables are the following:

*) Por the sake of simplicity we ignore the isospin here,
*%) The crossing properties of the T amplitude can be easily satisfied

by the choice of these constants.
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pl(pz): initial (final) nucleon momentum,
a;(a,5): initial (final) pion momentum,

2 -
s=(py+a9)", u=(p1—q2)2. t-(pl-pg)z,

0=(a;+a,)/2, A=%d=R. (3.4)

The terms in the first, second and third lines in (3.3) will be
referred to as the (s-t), (t-u) and (s-u) terms, respectively.

Let us vnay attention to the (s—t) term and examine the spin-
narity structure of baryon poles in thé s-channel., PFor this purpose

we introduce the s-channel parity—définite amplitude, 12)

FE(J5,u) = 5A(s,t,u) + (J5£M)B(s,t,u), (3.5)

where M is the mass of the nucleon. Inserting the (s-t) term of (3.3)

into the r.h.s. of (3.5), we have

+ _ 2 [(-atdut)) -x+X(5+M)
F(E'u)-:gy,w-yz)!r(d"(t)) J-a(s) )

o [(J-1a+du@) X +XW{5-M)

F (5,u)= a_;yz (T-LY () T -As) . (3.6)

Here we have used the formula of the beta-function,

_ v T+-4)
B(P,i)-g LIT0-1) £-P (3.7)

Only the states having the TP=+1(-1) contribute to the F(FT)
amplitude.lz) In (3.6) we have the same denominator (J-sz))"l for

both the #" and P~. This means that we have the degenerate MacDowell

parity doublets as expected.
The natural extension of (3.6) to the c#0 (non-linear) case is

obtained as
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\ _ = [@-thtdutt)) -x+X(J5+M)
B )= L G @)~ T-0G) >

- _v2 [Q-htdu) x4 XE5-M)
R s.u) r;yz [-1o) (@) T -dE3) (3.8)

Here we have modified the pole denominators of (3.6) by the non-
degenerate MacDowell-symmetric trajectories, AA(JS)=a+bs+cfs and

A(-Js)=a+bs-cJ5. Going back to the beta-functions, we get
P IS, W= JEan ] 3(3-a({8), 1-a, (1)),
P, W)= [ R (J5-0) ] B(3-d(-T5), 1-dy,(%)). (3.9)

It is well-known that the non-linear trajectory generally gives rise
to the ancestor vpoles in the crossed-channel, unless the invariant
amplitudes are free from the singularity of S (orfu). Now the

contribution to the invariant amplitude T(EA+0)B) becomes

[x g, ¥ -S+M§348.’§+M>@—]B(%-o\(f§>, 1-04,(t))

2Js
[T x LA (3 (- f5), 2oy (8)) - (3.20)

This expression is invariant under the transformation Js —»-Js, and
thus has no brancﬂ point at s=0. Accordingly, our amplifude has no
ancestor poles.,

The expression (3.10) has the following simpnle integral represen-

tation which will be derived in Anpendix:
xB(3-@, 1-0h,(t)) + ¥B(E-gK, 1-64(¢)) , (3.11)

and
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1 Xq=1 X,=-1 X =1 Xq =1 *
B(xl,x2)= %jdw{w 1 (1-w) 2 v w? (1-w) 1 }, (3.,12a)
. 0

-1

1
~ 1
B(xl,X2)=%LdW{w 17 yfl(l-w) + wx2 ;{2(1-w) }, (3.12b)

where ;(i=z-qi [i=1, 2] y A= §( D1+, ) and

js= a+bs-cg. (3.13)

Thé z% is the matrix in the spinor space, whose eigenvalues represent
the non-linear trajectories A(XJy3S). The (3.12a) was first derived by
Volkov and Radchenko.g) The expression (3.11) is the generalization
of the Volkov;Radchenko amplitude.

The (t-u) and (s-u) terms can be obtained in a similar way,

and our final form is
(B, 1-dy(+)) + T(R-gK,, 1-o, ()}
+{yB(L-0y (), 3-2,) + FH(L-op (1), 3-#,)}

w{em(3-at, 32 + W, 3] (3.14)
where
&, =a+bu-cy,, 2 =¥(0i-0,). (3.15)

The (3.14) possesses correct Regge behavior [cf. (6.2)]. The

following crossing proverties are also proved:

B3, 1-0,(4)) g3 B(-0y(), 3-4k),

Ba-al, 1-0(+)) gomoe -B1-0 (%), 3-40),
g 2
B0, -9 > B, 3-4)),

Land

B(3-2,, 3-o) —T'B(%”K 3-0). (3.16)

*) The function B(xl,xz) is nothing but the beta-function, however,
the order of the variables X1,2 is now important, since these variables

are generally the matrices in the spinor space.
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§4. The dual amplitude with the three unperturbed baryon trajectories

In this section we shall still deal with the unperturbed baryon
trajectories., The basic representation (3.14) obtained in 83 is
applied to the three kinds of baryon trajectories, i.e., the AZ'AS’
Na-Ng and Ng-Ng trajectories [see (2.1), (2.3) and (2.4)]. Por this

purpose, we introduce the matrix trajectory-functions,
a _
AV2=2a +b_x+c (4.1)
x = ANTENT Ok .
Now the isospin indeces are explicitly written for every quantities,

Combining the basic representation (3.14), one obtain the most general

expression for the T, [I=1/2,3/2] amplitudes,

TI(pZ'QZ;pl'ql)— {X B(%’ﬂ;‘,l"(xm(t)) + ;(?%'(%—ﬁsﬂ,l—dﬂ,[(t))}‘

K=4,N N,
+ ¥ e a-e) « TE¥Qo 0,300
F=A,NI.N2

(At -a) + BBl 2D}, 42)
#.V=0,NiNg

where xf, §¥, y{,'§¥, ng and z”y are multiplicative constants.
There are 60 constants., However, the crossing symmetry and the
elimination of the unwanted baryon states reduce the number of the
independent constants to 12,

The crossing relation is

3/2

T1(05,055P1,07) = J__.:1/2 X1y T5(Psy=-ay3Dr-05) (4.3)
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whgre {XIJ} is the crossing matrix of the isospin12);
1/2 3/2
/2| -1/3  4/3
3/2 2/3  1/3 (4.4)

Together with the crossing relation (3.16) of the B and B functions,

(4.3) leads to the constraints [30 independent relations],

32 [
f=y_ P LE i 1y ¥4
X+ = X N ] Xy == X ¥y ’
T J'-:yz IJ 7J T J‘;‘}éz IJ v d
| - Vi A ®
V= Xev 2 7= X.. 2 (4.5)

Our amplitude (4.2) contains many unwanted baryon states.
Unwanted states will be eliminated only on the parent trajectories,
For the daughter trajectories, the present experimental knowledge is
yet ambiguous so that nothing will be required on the daughters.

The residue structure of the parent poles of the amplitudes F% is»

found as

PR T {-(xF v T 2B (JEen) (xF “”m[;-.m;?)}

H=AN,) V=4 NN
X 2‘—:--((-1)‘c +1) (o)
L aT TR-Ou({T®)
+ —(xf - M)+ (J5) (5K - :ZP"’)
H%,{ ! WAZ,N.:,N:.I ) ALY )
((=-1Y -1) (bu)
Xg 22! z%-o\;(fs"f, (4.6a)
FL(JE,w) =-Fy(-5,0) (4.6b)

where we have neglected the small difference bA"'bN and put bsbA=bN.
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The varent trajectories in (4.6a) are the exchange degenerate type,
since the first and the second terms have the same pole denominators
but opposite signatures. The observed baryon parent trajectories have
the definite signatures [see Fig. 2 and 4], so that we have to elimi-~ .
nate the unwanted states having the wrong signature. The elimination

conditions are the following:

(signature condition for the Ay-Ag trajectory)
r Av

Ay A
: 23/2 =0, X3/ + Z 23 /o =0, (4.7)
N|, V=4 NIN2

(signature condition for the Ng-Ng and NJ—N trajectories)

Ky _ K
X1"/2 - ¥ zp=0, xf, - E 1/2 =0. [""Nl'Nel (4.8)
V=4 N Na V=4,Ni, Ny

Furthermore, the multiplicative constants in the r.h.s. of (4.6a)
should vanish, whenever the constants relaté to the trajectories with.

the isospin which is not equal to I in the l.h.,s. This gives the

conditions,
A _ AV _7X -
X{/p = ) _21/25%)p = Z71/2 =0 (4.9)
V=4,N Ny v=AN Nn
B wo_TH =0.[u= -
X3/2= ) _23/p5%3/p = 223/2 =o. [u=n, N] (4.10)
V=, N Na V=4 NN

Eqs.(4.7)~(4.10) are 18 independent relations; eventually we get
totally 12 arbitrary multiplicative constants.

The residue structures of the varent trajectories are now simple:

Using (4.7)~(4.10), we get

f B : —x%/? +(J§+M)@2 2(bu)¢
F U)o~ : S
3/2 o £=135~ 2! 2+%—-d4(.[§) ’ (4.11a)
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Ny M
Pt (Js,u)x E 2 B u
1/2 =034 2! £+3-0 (43)

~
2 (Fand? 2(ow)

+ )

£2=024 - 2! £ +%"dN 2( Is) . (4.11b)

The six multiplicative constants in the r.h.s. of (4.11) are further

restricted, by the crossing relations(4.5), to satisfy the relations

A Ny _.No — X N M _
x3/2+xl}2+x1/2 0 and -2x3/2+x1/2+xl/2 O. (4.12)

For the derivation of these relations, we consider the quantities

v | ~ ) _
ZI=2_—_ZIF and ZI-: Zf . [1—1/2,3/2] (4.13)
BV=4 NN, BV=4,N N2

The crossing relations (4.5) become

3/2 3/2

~ _ ~
Zr= EXIJ z; and  Z= —EXIJ Z3 (4.14)
T=1/2 T=f2
and give the solutions
~ ~ .
Zl/2=Z3/2' and Zl/2"‘-223/2 . , (4.15)

On the other hand, we get from (4.7)~4.10),

N1 N — a
Z1/20= X172 7 xl?e v Z3/p =Xy/0 0

. ~~
;I/Z = ;3&2 + xlf;z and 23/2 :.-;%:,2 , (4.16)

and inserting these to the both sides of (4.15), we obtain (4.12),

Q.E.D.
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The general expression for the elastic widths of the parent

resonances can be readily obtained from (4.11);

praw—

p— A
(for the Ay, Ag resonances) ela—KR{'X3/2 +("PmR+M) ;:BA;Z} ’ (4.17)

(for the Na » Ng resonances) :la=KR{’X§I}2 +(PmR+M) ;?;2} , (4.18)
(for the N ) Ng resonances) —;lazzKR -x§;2 +(PmR+M) ;§§2} ’ (4.19)

where mR is the mass of the resonance and

a5 (4002)77% [(343/2)

2xbm [(25+2) . (4.20)

Kp= (tPER-M)

The nucleon center-of-mass energy and momentum at J's'=mR are denoted

by ER and ap respectively. J is the spin of the resonance.,

The expression (4.17) for the A resonances is our final result. But
the (4,18) and (4.19) for the N resonances will be modified further
due to the cross-over phenomenon |[see the next section]. The elastic
widths of all the parent resonances are described by the four adjust-
able constants. The residual eight adjustable constants are concerned
with the widths of the daughter resonances. Since the daughter

trajectories give the negligibly small contributions to the high-energy

behavior, we will ignore these contributions completely.
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§5. The dual amplitude incorporating the cross-over phenomenon

Now the dual amplitude obtained in §4 are easily extended to the
perturbed N-trajectories for which the cross-over phenomenon is taken
into account. Let us first consider the N-parts of the first term in

(4.2); the detailed expression is given by (3.10), i.e.,

S [{x“ (g | U sl I, (5 i) [5), 10y ()
F-":NI,NI

+{xcft L SR 2 M2*—LS‘ML}B<% dy-75) :ww))] (5.1)

As already emvhasized, this expression has no branch point at s=0,
although the unperturbed trajectories contain the S terms. The non-
existence of the ancestor poles is due to this situation.

Our perturbed trajectory-functions d&lﬂ(s) [(2.132] contain the
term Js+(g/cN)2 . However the invariant amvlitudes must have no branch
voint at s=-(g/cN)2 for avoiding the ancestor poles. The simplesf
modification of (5.1) is clearly to rewnlace all the Jg.terms in (5.1)
by the Js+(g/cN)2 . This guarantees the non-existence of the ancestor

voles., The result is

{ N 's+(g/c yo-M-g T -s+M2+(Js+(g/cN)2+M) }
X
I 2’s+(g/c )E 2 s+(g/cN)

N JS+(g/cT) -M-2 .? —S+N2+(JS+(g/cm) + )2
X2 X
I 2JS+(g/cN)2 2is+(g/cN)§

+ (o S-M2+ ,’ 2.
+{xl§1 Frle/e)?ma  ~; s (sr(e/ey) Mm} (301 () , 10k ()

O () ,1-04,(%))

A l(s),1-0,(t))

215+(g/cN)2 M 2 S+(g/cN)

{N J;:?57;;7?;NH%I ~ —M2+(JS+(€/CN) M)@
<2 — + XI2
I 2IS+(8/°N)2 2 s+(g/c

Oif (), 10k () -

(5.2)
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No simple integral representation for (5.2) has been yet found.

The similar procedure is carried out on the other N-terms in
(4.2); for the u-channel terms,\ﬁ;-—a,ﬁ;?EJE;TE. This gives the final
form of our dual ZN amplitude. Here we show only the final expression

of the elastic widths of the parent N-resonances:

(for the Na»Ng resonances)

o 0 B (om0 b i (o 2om )
N

(5.3)
(for the Nd » Np resonances)

r =K (1- ){-xlf_l«-(Pm +M):c?1(l}+%(l i ) {=X3 +(BHR+M)X} R
1a7%R m PR " [n2refe)?

(5.4)

(for the nucleon pole residue)

2 N1 '7( ]
ax= —X1 AX17)+zll= X3
S/ 1szM[ "Jir2 +(g/c Pl R Rl T g/cN) e (3 ?)

(5.5)

The effect of the cross-over phenomenon is evaluated from the factors

Ili-_EL— . +
3( ‘§+beN)2); for the unperturbed case, these take the values (1l

The typical values of these quantities are found for mR=1500 MeV;

F(1+ -—%;7)20.94, F(1- '—;-HB———z') 0,06, (5.6)
Jm§+(g/cN) JmR+(g/cN)

which are almost egual to their values in the unperturbed case.
Accordingly, one sees that in the region s)a?2 (Gev/c)2 the N-resonances
possess the same residue-structure as that of the g=0 case, that is to
say, the cross—over phenomenon hardly affects every resonance excepnt
two or three states with the small masses. On the other hand, the
cross-over phenomenon is extremely imnortant in the prediction of the
high-energy backward differential cross-section, because the g=0 case

fails to give the dip-structure in fp scattering. [See the next section:]
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§6. Determination of parameters and prediction as to high-energy

backward scattering

In the previous sections, we have seen that the expressions
concerning the parent trajectories contain the four adjustable
parameters., In this section, we determine the values of these
varameters by using the exverimental data of the elastic widths of
some low-mass states.3) Then we get the predictions as to the elastic
widths of many other resonances and as to forward and backward
scattering at high-energy. It is well-known that the dual model
generally gives good fits to the near forward cross-section and the fit
is stable for such a modification of the baryon trajectories as
discussed in this paper. Therefore, we concentrate our attention to
the near backward scattering only.

The backward scattering cross-section and polarization are most
conveniently exnressed in terms of the u-channel parity-definite

amplltudes,lz)

7,

F%(J'E.S)= FA7(u,t,8)+(JUIM)B (u,t,8), (6.1)

for which we get in our model

1-iexp(-iZ0a({T)) dA(J' u)-% ~4
¥ yS) -t (bs + (JTH%
F3/20 S G ()eh) sin(Ga()-2) (e ZE
(6.2)
~ : s I(u)"%
FI/Q(JE,S)'_\: x 1+1exp(-ﬁd§(u)) (bs)dN

(OF (w)+%) sinf(oly(u)-%)

iy ~ I
1 -xi1 Nt 19 4
%( +,lu+(g/cN)2){ x% +(JE+M)X_§ }+§(l ’u+(g/cN)2"){-' g2+(m+M);%K2}
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1+iexp(—il:d1:\5I(u)) dII(U-)-%
A s 1 (bs)
[Of (u)+2) sin(@EI(u)-3)
I . ¥ Jfu Y.
ey [ M), 4 N N
X[%(l J;:?;7;;;§){ X3 +(Jﬁ+M)x% }+§(lﬁju+(g/cN)2){ x%2+ﬁfa4M)x%2}
(6.3)
and
FI(JT,8) = -FH(- 5, s). (6.4)

~4
Here the subscript of the Fi represents. the u-channel isospin.

The u-channel parity-definite amplitudes for given s-channel processes

[the l.h.s. of (6.5)] are written as

~
v [0 — 727) =§§/2 '

7% [0 — 0] =Z 15?1'!/2 + 3 %/2 ’
.
%‘\f ['N.p > 7(,1’1]—-3( F1/2 - F3/2) ’ (6.5)

and the cross-section and vpolarization in the near backward region can

be obtained from these amnlitudeslz):
~, 2 ~ 2
© L 1 (F1I5, eelELARL - (6.6)
=]+

(I) Elastic widths of A- resonances and near backward Xp elastic
scattering at high-energy
The two adjustable parameters, x§72 and QE&Q in (6.2), are now
determined so that the model revnroduces the exverimental data for the

elastic widths of the two I=3/2 states, rexn(P33;1236)=100~120 MeV and
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exo .
ela 33

=100 MeV and r;la(D33;1670)=70 MeV into the expression (4.17), we get

(D33;167O)=3O~70 MeV.lB) Inserting the values r;la(P 1236)

A ] -1 ’T - -2
X3/2 101 GeV and X3/o 103 GeV™“. (6.7)

The predicted near backward % p differential cross-section is

10)

shown in Fig. 9. A good agreement with the data is obtained.

Fig. 9

It should be noted that all the previously proposed XN dual
1)

models predict too large cross-~section for the backward scattering.
Our model is distinct from these models at two noints: (i) We assume
the non-linear trajectories, so that our intercept of the Atrajectory
is -0.3 but the conventional linear trajectory gives +0.1l. (ii) The
residue-function of our AU‘AS trajectory gives at ux0 a quite small
absolute value than that of the conventional model. Clearly, our lower
A- intercept leads to small backward cross-section at high-energy.
The second point mentioned above is due to the fact that in our model
the P33(1236) state has the parity partner D33(167O). In the conven-
tional model with the linear A-trajectory, the parity partnef of the
P33(1236) correspoﬁds to the unobserved state for which we assume

the vanishing residue. In Fig. 10 we show this situation; our residue

function is given by

Van-d
(0 = —x /o (JUAM)XS /= ~44103)T (6.8)

but the conventional one by

XA(m)z -66+53J'£ , (6.9)

which vanishes at JU=1.236 GeV/c. Our residue-function gives the
smaller absolute value at u=0, which is nreferable for obtaining the

small hackward cross-section.
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Pig, 10

In the model with the linear A-trajectory, the wrong signature
nonsense zero occurs at um-1,7 (GeV/c)z, i.e., Og(u)=-3/2. However,
the expected dip-structure is not seen exnerimentally [see Fig., 9].
In our case, the trajectory-function dn(fﬁ) becomes complex for u<0;
no dip annears there and good fits are obtained for the exnerimental

values.

(II) Elastic widths of N-resonances and near backward qu elastic

and 2t » charge-exchange scattering at high-energy

As seen in (5.3) and (5.4), the elastic widths of N-resonances
denend on the four parameters, xgl :?i xé and ;?/, but owing to the
restrictions (4.12) we have only two adjustable ones. In order to
determine the values of these narameters, we now use the experimental
nucleon counling constants, giNN/$R!14, and the requirement of the

elimination of the 811(939), i,e., the parity partner of the nucleon

predicted by the perturbed trajectory. Thus, it is obtained that

L [—1—(1+——‘————)( ~x§ +2M>?§rl)+2(1- et (- xg_2+2M;§2)]/=l4,

Toxoii |2 {'M?Jr(g/CN)Q J1v12+(g/c ):

—%(l--%)}(:tl + %(1+T_—T‘M%)XI_§'2= ’
Jh +(g/c ) 2 I +(g/cN) =
x4+ xy2 =-x4 /,=-101 gev™t,
X%l + X%_ =2x / = 206 GeV"z, (6'10)

which lead to

X

wjm =2

1=-116 gev'?t, ,Nl =195 GeV™?, x§2=15 cev ! and 32 =11 Gev~2.

(6.11)
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By using the values of (6.11) we can vredict the elastic widths
of the other well-established N-resonances. The results are shown
in Table 1, |

We next give the results of our calculation oni’p elastic and

X v charge-exchange backward cross—sections}o)[Fig.ll}
Pige 11

As seen in Fig.ll, we get the fairly good results for the mfp elastic

differential cross-section in the backward region (u<-0.05 (GeV/c)2)
except for very near #=180°, The fit to charge-exchange scattering
is less successful. At ux0 (GeV/c)z, the predicted cross-sections
for both the cases are larger than the exnerimental values, by a factor
of two or three. However the improvement of the backward cross-
sections are very remarkable; the previous models predict about 100
times of the exwerimental values,

Qur model gives the well-known dip-structure due to the wrong
signature nonsense zero at d%(-0.15)=-1/2. The cross-over phenomenon
plays an essential role for this fact, because the wrong signature

nonsense point of the unperturbed trajectory appears at ux0,08 (GeV/c)2

[see Fig. 41.

14)

The result of our calculation on z?p polarization is shown in

Fig. 12. m

As seen in Fig.l2, we get the good result in the region u<-0.2 (GeV/c)?

At uxO and -0,15 (GeV/c)z, the predicted values are larger than the
experimental ones, by a factor of two or three. The dip and bump
structure in the region u)-0.3 (GeV/c)2 is mainly due to the inter-.
ference between the contributions from the N- and A- trajectories.

On the other hand, in the region u<—0.3 (GeV/c)2 the dominant contribu-
tion comes from the N-trajectories whose contribution is large and

negative,
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§7. Concluding remarks

In the previous sections, we have seen that many difficulties
so far encountered in the Veneziano model with linear baryon
trajectories are overcome by assuming the non-linear baryon trajec-
tories for which the cross-over nhenomenon is taken into account.

The three (s,t and u) channels in &N scattering are all non-exotic.,

The duality, therefore, imposes stronger restrictions on the amplitude
than the case of the KN scattering whefe one of the channels is exotic.
So far many difficulties mentioned before have prevented to see whether
the duality is actually valid or not in this most interesting case.
However, our result clearly shows that the duality is a good working
hyoothesis even for the case of the strongest restrictions (i.e., ZN
scattering). This is very encouraging situation.

We have not discussed so much the near forward cross-sections.
These are controlled by the meson trajectories and thus our model gives
the similar results to the previous models, where we have already‘had
successful results.

We have not also discussed the prownerty of our amplitude at the
Adler point and the values of the scattering length. These depend
on the multinlicative constants which are connected with the daughter
trajectories and have been yet undetermined; eight constants still

remain., We have sufficient freedom of the low-energy amplitude.
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Appendix

We shall show that the expression (3.10) is derived from the

following integral representation (3.11):

XB(%—HS’ l-dM(t) )"'ﬁ(%—ods, 1"%(13) )
-0 (t)

%}fdw w s (x+xgi)(1—w)

) PES
+%.Idw w (x+xqé)(l-w)‘ . (A1)

This representation is multiplied by the identity,

{575 N
2Js * 2J§s =1, (A.2)

and using the eigenvalue equations,

(VB57,) (@)™ = ()" (J538,) = (JEag,) @A™, (4.3)

we get for (A,l)

—-— + J - - -
[:I_EJ_{'S + !—g—-ﬁs][éde W HS %(x+3‘c:q'l)(1—w) %(t)}

+{ fdw w-dM (V) o -'ds‘% E-r, 2 s]

(x+Xg,) (1=w) cE * Ol

(= | B ([, TR ()
= hz’!{ (x+xg1) + (x+xg2)]-!=5]{jdww .o&vl }

([5+2, Al -o(-r(-és-
+ s}- (x+xqi) + (x+xgé) NG {rdw w (={e) (l—w)—dM(t)}. (A.4)

The integral representations are factorized from the matrices and
they give the beta-functions in (3.10). One can see that the matrices

in (A.4) are equal to the matrices in (3.10), respectively, because
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we have the following identities when the matrices are inserted

between the Dirac spinors:

U(p,)@gulpy)=u(p,) M+@lu(p,),

u(p,)aqulpy)=ulp,)g,ulp;)=ulp,)du(p,)

T(p,) B, u(py ) =T(p, ) gopru(py ) =0(p,) [s-M°-Me]u(p;). (4.5)
Q. E. D.

The (t-u) term and the (s-u) term are obtained by the same

technique:

B(1-0h,(t),3-g&))

Ju-M+& Jus M-

s B(1-04(t),3-0(JW) + ~5 1z B(1-0h(t),3-=[T)), (A.6)

B1-0,(t), 3-&))

M+ (M) ~u+M+ (f3-M) ,
e b (1 (£), 30T )+ g B (104 (£, 30T,

(A.7)

B(é'“s ’ é‘“u)

= L [M(JEV) + JT+ (2= ) +2( J5- ) | B(3-0(J5),3-0JT))

4 Jsu

+ =2 [ M(J5-Ja)+ 50~ (MP-pP) & ( 5+ J0) ] B(3-0K 5),3-0(-JT))
4 {5u |

s 2 [ J5- )+ JSE-(M2-42) +@(J54+00) ) B(3-0(-J5),3-kJT))

4 Jsu

"8

[ M(J5+ )+ BT+ (M2-p2) -@(J5-45) ] B(2-(~J5),3-0(~JT)), (A.8)

+

4\su

B(a-g,, 3-2f)



= . ];f—[ M( s-u)-(sﬁ-uE)—MZ(E—Jﬁ)ﬂd’{-(s+u)+Js_u+M(J§+JE)-(M2-F2)}]

4 Jsu

XB(2-A(Js5),3-KJu))

+—1 [—M(s-u)-(sﬁ+ufs-)+M2(J§+ﬁ)+ﬁ’{ (s+u)+ su—M(J’s‘-JE)-r(MZ-HZ)}]

4 Jsu

XB(%-0({5),3-0(-Ju))

Su

" [—M(s-u)+(sJﬁ+uE)—M2(J§+E)+Z{ (s+u)+J§§+M(J§-ﬁ1')+(M2-F2)}]

XB(%-d(-J5),3-d(Ju))

+ 1J_[M(s-u>+<sﬁ-qu>+M2<ﬁ-m+z{-<s+u>+m-m<ﬁ+m-<mz-p2>}]

sSu

XB(1-0(~Js),2-0M-Ju) ), (A.9)

where U denotes the pion mass.,
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Figure Captions

Fig. 1. The AI'AS trajectory.

Fig. 2. The Chew-Frautschi plot of the Arﬂﬁs trajectory.

Fig. 3. The unperturbed N trajectories.

Fig. 4. The Chew-Frautschi plot of the unnerturbed N trajectories.

Fig. 5. The cross-over phenomenon between the Nd'Né and N& —Np
trajectories.

Fig. 6. The Reggeon diagrams which produce the cross-over phenomenon.

Fig., 7. Two branch points of the pertﬁrbed trajectory-function
and the cuts extending from them.

Fig. 8. The Chew-Frautschi plot of the verturbed N trajectories.

Fig. 9. The near backward differential cross-section in 9 p elastic
scattering.

#*ig,10. The residue function of the A trajectories.

Pig.11l. The near backward differential cross-sections in 9Ep elastic
and Jro charge-exchange scattering.

Fig.12. The near backward polarization in qu elastic scattering

at 6 GeV/c incident pion momentum,



Table 1. The prediction of the elastic widths.
theo (wevy | [TSIR (mev)
P11(147O) 81 90~ 140
S14(1535) 50 13'V.50
D,5(1670) 32 43~_68
F15(1688) 4.2 56 ~'99
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