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Abstract

     A dual model with the non-]inear baryon trajectories i$

eonstructed for xN scattering. !t is assumed that both the !=3/2

and 1/2 families of XN resonanees lie on the non-linear trajectories

in the forua ct(lg)=a+bs+clg. However, a weXl-known quantum mechanieal

level mixing (a cross-over phenomenon) occurs between the two mvttually

erossing r=1/2 trajectories and shifts the branch point of a(Jg) to

the region s<O. )fiany difficulties coneerning 7tN baekward scattering,

so far encountered in the model with linear baryon trajectories, are

overeome by virtue of the non-linearity of the baryon trajectories

and by the effect of the eross-over phenomenon. Our model gives a

reasonable agreement with the exp.erimental data for the backward

differential cross-section and pLolariration, in addition to the good

results for ]-ow•-energy resonanee paratneters.
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                 'g 1. rntroduction
  /

     rn the reeent severai years, the coneept of the duality has

beeome to occvtpy the major part of the theoretical particle physics.

The qualitative features of the duaZ amplitndes give us a better

understanding of many basic concepts of the particle physics, i.e., the

non-existence of exotic resonanees, the exchange degeneracy, the origin

of Regge behavior ( hadrons may have much more complicated structure

than the simple bound states of two elementary partieles) and the

structure of the hadronic matter, et.c. On the other hand, for the

quantitative argument one is most interested in that the Veneziano-•

typ, e arnplitudes provide the unified description of both low- and high-

energy hadron scattering processes. rn XN $eattering, where extensive
experimental informations are avauable, many authorsl)have investi-

gated how well a Veneziano-type representation correlates the low-

energy resonanee p, arameters with the high-energy data. However it has

been pointed out that when adjustable parameters are so determined

that the rnodel ean reproduee the ernpirieal elastic wid.ths of low-energy

ZN resonances, the Veneziano--typ.e amplitude leads to the enormously
                                                             'large baekward differential eross-sections at high-energye even if the
                  ,results for forward region are satisfactory. In order to clarify
                  'whether the duality describes only the g.ross feature of the hadron

dynamics or it gives also quantitative completeness of the arnplitude

of the hadronic process, except for the amp.litude concerning the

Pomeron-exehange, it is extremely important to p.roceed detailed and•

more careÅíui investigations for this problem.

     In all the p.revious investigations, it was assumed that aU of

baryon$ as well as mesons lie on linear trajectories. Since the

results predicted by Veneziano-type amplitudes depend entirely on how
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                 '
we choose the trajectories of many hadrons, we must be very careful

in assig-ning hadron trajeetories; especiaily, the choiee of the baryon

trajectories is imn.ortant. The baryon trajectories have features not

shared by the ca$e of mesons, an example of which is the MaeDoweil
symmetry.2) This symmetry asserts that the baryon trajectories must

app.ear as pairs of those with opposite parity and the same signature,

and that two trajeetory--functions of eaeh pairs define a single

analytic funetion oK(W), for which we get CNt.p..x(W)=d(W) and

dt.p.-1(W)=eC(-W), where W is c.m. energy of zN scattering, and 2 and

P stand for the signature and the parity, respectively. "Dherefore,

if we assume the linear trajectory, whieh is a even function eÅí W,

then we obtain degenerate parity doublet, i.e., the doublet consisting

of two states with opposite parity, the same spin and equal masses.

For the I=1/2 zN resonances, vve have seen good examples of this
degenerate parity doublets.3) But we have no examples for !=3/2 states

at present. 'l'his is the point that we should call a .ttention to.

    'So far many investigati'ons mentioned above were earried out under

the degenerate parity doublets seheme (the linear trajeetories) with

the elimination of unwanted low•-mass parity partners. This is equiv-

alent to the guess ,that the non--existenee of the degenerate parity

doublet in low--mass I=3/2 states will be aecidental and for higher

mass-levels, we sha!l have sueh parity doublets. We emphasize another
nossible viewpoint4') that the non-existence of the degenerate parity

doublets is a common feature of I=3/2 states, at least of the states

on the 4s trajector,y, i.e., all of the P33 (1236) and its higher mass-

level $tates. In this naper we take this point of view. Indeed, we

get the following, nreferable prosnects with this scheme.

     `lhis viewpoint naturaUy leads us to conjeeture that the Ia3/2

states lie on non-linear trajectories which are not even funetions of
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NV and these states form ngop gsggng!:gl.gd r te parity doublets. As a eandidate

for the non-degenerate parity partner of the P33(1236), we take the
well-established JP=3/2- resonanee, the D33(1670). For sueh non-iinear

trajeetory of (As-Au), we get the lower intereept than that of the

linear case. This ntght have effects of suppressing zN backward

cross-sections, for which one so far obtained too large predieted

values.

     Por r=1/2 xN resonances, there are the exarnples of the degenerate

parity doublets; say, Fls(1688) and Dls(1670), ete. However,it is

weli-known that the observed F/D ratios of these tvvo states are quite

different, when we consider these states as members of SU(3) multiplets,

and it was difficult to interprete this fact by using linear 1=1/2
trajeetories.5) In order to solve this problem, we start from the

conjeeture that the T=1/2 trajeetories also take the non-•linear forms,

                            'as those in the Z=3/2 case. The above mentioned difficulty is readily

removed, namely, the degenerate states are no more MacDowell-symmetric

pair and are described by two independent trajectory-functions.

These two non-linear 1pt1/2 trajectoties have the saJne quantum numbers

for the unitary spin, isospin and signature, and intersect at W'-'O.

The quantum meehanics tell us that whenever we get two states with

nearly equai masses and with the same quantum numbers, a certain level
mixing may happen.6'7)[HereaÅíter we can it the cross--over phenomenon.]

                  •In our case, this happens in the unphysical regien (W=O) and the level
                                                                   8)mixing will be treated by the Gribov Reggeon perturbation theor'y.

The above mentioned non--linear I=!/2 trajectories correspond to the

unperturbed trajectories. On the other hand, we shall see in the text

that the perturbed trajectories give the result that the degenerate

states become again the MacDoweU-symmetric pairs, but these have the

different F/D ratios.
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     !n this paper, we deal with the construction of the Veneziano-

type aJnplitude for XN scattering which ineorporates the non-linear

baryon trajeetories with the eross-over p, henomenon. Mhis must be

carried out earefully, because, in generai, the introduction of the

non-linear trajectories leads to the occurence of the ancestor poles.

Vle shall show that the ainplitude without aneestor peles is indeed

obtained and that the many problems pointed out are resolved by the

use oÅí the non--linear trajectories. Thus, we get better understanding

of the duaZity in the quantitative argument of the hadronic process.

     In g2 we develop the general formvLlation of the cross--over

phenomenon for Regge trajectories by employing the Gribov Reggeon
calculus.8) The assignment of the non-linear baryon trajectories

                                               'will be also given in this section. Xn g3 we eonstruct the duai

rep, resentation with a single unperturbed baryon trajectory in the form
a+bW2+cW. This is done in the line of thought of Volkov and Radchenko?)

who gave the first attempt in this direction. !n g4 we give the
                                                                      '
general amplitude whieh contains many baryon trajectories on the basis

of the unperturbed dual representation obtained in g3. !n g5 we show

that the unperturbed amplitude is easi!y extended to the perturbed

one aecording to t,he some simple rule. Thus vve get th.e flnal form

of our dual amplitude for xN scattering. In g6 we deal with the

nurnerieal evaluation of the model and the prediction as to high-

energy scattering. The final remarks wtll be given in g7.
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fi2. Non-linear Regge trajeetories of XN resonances and the

     eross--over phenomenon in !=1/2 trajectories

                                            '                                '     Before di$cussing the eross--over phenornenon, we shall deterrnine

the unp, erturbed non-linear baryon trajectories in tne very simple
form, i.e., a+bw2+cvv.

(I=3/2 baryon trajectories)

     As already discussed in the introdvtction, we choose the D33(1670)

state as the MacDowell parity partner of the P33(1236). Then we

obtain
        dA( Sfl )= aA+bAW2+cA W,

                                                         '        aA=-O.30, bA=O.85 GeV"-2, cA=-o.36 Gev-1. (2.1)

Here and hereafter we adopt the convention that positive values of

i,il define the trajectory with positive natural parity, t.P=+1. That is,

                                           'in this case ,                            '
        oK,A( i,v ) =oKzss( W) ,

                          (wzo)
        O(ni( '-W) =CltLs( 'vV ) ,                                                         (2.2)

where the function 04ysif(dAs) denotes the Av(As) trajeetory. In Mg. 1

and 2, we show the AJ-Astrajectory.
                  t
                                      -           Pig. 1' 1"ig.2
                      '                               '
     The coeÅíflcierit cA in (2.1) is not determined unambigutously,

and has been so determined that the smaliest intereept is obtained

for the Aas--Astrajectory under the condition that the empirical reso-

nanee masses are reprodueed within two percent errors. rts intercept
                          '-O.3 (=dA(O)) is considerably lower than +O.1 of the eonventionai

linear Astrajectory.
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(I=l/2 baryon trajeetories)

     '1/he observed almost degenerate pairs are the Dls(l670)-tt"ls(1688)

atnd- Pn(l470)-l ll(l535). tlihe former pair has very different I"/D
ratios, i.e., (t"/-D)Dls'-v-O.2 and (l?/D)FlsstO•{. 5) Aeeording to the

scheme discussed in the introduetion, we assume the following

unp.erturbed non-linear I=-5- trajectories: rDhe conventional Nct and Ne'

trajectories are I•,L'acDowell-symmetric and are expressed by the single

function

           CtNl(VV)= aN, +bNW2+eNW , (2.3)

while the Na -Netrajectory is given by

           d,N2(}iV)= aN+bNW2-eNW , (2.4)
                                        '
with the same coefficients as those.of (2.3). This is due to the

approximate degeneraeies of Fls(1688) on Nd and Dls(1670) on Np
and also of Pn(1470) on Na' and Su(1535) on Ni . [See Fig.3.)

Ttmpirically we have

                                                 --l                               -2                                                   • (2e5) -        9g=-O.67, bN=O.83 GeV and cfO.40 GeV

when we eonsider the trajectories as the functions of s(=-w2), the IMlacDowelL

symmetry is exhibited between the upper and lower b]ranehes of the cUrVe
                   'in Mg.4. FPhe degeneracy of the Pls and Dls states is not due to the

MacDowell symmetry. pthese lie en the different trajectories. rhus

we can under$tand without diffieulty the large difference between

the F/D ratios of the Fls and Dls StateS.

             :if -.3 1?ig.4
     [ffhere exists the well.--established tTP=3/2- state, the DL3<1520).

fehis ,gtate lies on the Nv trajeetory yv'hose intereent is -1.13; this

value is eonsidera"oly lower than --O.67 of the above-rnentioneof !" trajec-

tories. Throughout this naper, we sha.1]. j..rm., ore the Nv trajectory,since
                                                           ll)this givef oniy a small effeet on zN backvvard seattering.
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     lt i$ imnortant to notiee th,at the Nd-Ne' and Nd --Np trajectories

have the g.a.rne quantum mmtbers ( unita]ry spin, isosptn axid signature)

and they cross each other at W=O, as seen in Mg. 3. Mn sueh a case

generaUy oecurs the cross-over phenomenon which is analogous to the
well-known quantum level mixing [see -Pig. 5]. !ndeed an examn.!e of

this phenomenon for Regge trajectories has been seen in the model cal.
                                                                    7)culation of Regge trajectories emp.loying the Bethe-Salpeter eqvtation.

                         iti-ig. 5
                         pt
     Now let us develop the general but simple formulation of the

quantum transitions between the two trajectories as a perturbation in
the Gribov Reg.geon ealculus8) : Sum up the eontribution frorn all the

d.iagrams in which these two trajectories are successively mixed

through the transition vertex g, as shovvn in b'ig. 6.

                        Fig. 6
                                   '
f'Ohen crossed-ehannel Froissart-Gribov amplitude fJ can be written as

   f,-[71.IiifiS ,+ ,et22,j + [, .8i ,, g-ij S. 2i[i]2, ,+ J g2d,, g"ii :-{IG id` ,] + 'l'il,,•

where gi's ar'e the particle-Reggeon coupling ve]rteces. introducing

the spinor,
               rtls"=($$i), • , (2.7)

and the 2X2 matrices,

               D= 7id"' -ifl.ii(i:i , and G= gO !l , (2.s)

we rewrite (2.6) as

   fJ =- V'D " = ab'D"+ op'DGDth+op'DGDqDop+•--••

                =2IsT [D+DGd(l)] 2i.S. (2•9)
       '
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                'Hencev

          ,li)= D+ DG ID. (2•io)
                                            'From (2.10) we obtain
          dcE)'-i=D-i-G=(Jo JO)"-(dgNi dgN.), (2.u)

Diagonalizing the matrix (otgN' o$(Ni), one finds that the perturbed

J-plane singularities of the fJ amplitude are

          J. dN,2+dN.Å} ("zdxss)E!gN ciNi>2+ g2. (2.i2)

     Applying this results to our I=k ease, we obtain the two perturbed

trajectories

                                                     '       dig(vg2)=aN+bNw2+ (cNw)2+g2, , (2.i3a)

      GKIi:(w2)=aN+bNw2- (cNw)2+g2. (2.13b)

r!ihe functions d!N and dkl eorrespond to the two branches of the r.h.s.

of (2.12). An important fact is that the r.h.s. of (2.l3a) and (2.13b)
are the even funetion of W. CHere we have assumed that g is a constant

at least an.proximately.] rDhus, for the perturbed trajectories, the

MacDowell symmet]fby is exhibited between the ATd and Np or the Na and Nb

[see Fiig.5) , which is the same as the conventlonal scheme. However,

in our case, the Nrk and Np trajectories have quite different residue

struetures, since Qhe perturbation does not affect so much on these

struetu-res. V"his will be shown in g5. •
     We take the euts parallel to tl e imaginary axis, as shown in lmpig7.

!n Fig.8 we shovv sehematicaUy the Chew-birauLtschi plot of the Åíour

p, erturbed trajeetorÅ}es, Nct,Ne,Nd' and Net , aU of whieh are connected

anaiytically with each other.

          Pig.7 b"i g.8
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     Finally we fix the value of the unknown constant g. A famous
dip structure is observed at u x-•O.15 (Gev/c)2 in high-energy 7e'p

backward seatteringl ,O)and this is usuany attributed to the zero of

the Regge amplitude at the wrong-signature nonsense point of the
nucieon trajectoryiFL) we assume that the same situation hoids in our

model. Then we p, ut

             dtii(-o.is) =-1/2, (2.14)

and get

                g=O. 34. (2.15)
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E3. Construction of the

    baryon trajectory

dual amnlitude with       L
q single unperturbed

     In this section, we shall construct the basic representation

of the dual amn.litude only in terms of a single unperturbed baryon

trajeetory function,

           dt(w)=a+bw2+ew. (3.1)
                  .
rn S5, the representation obtained in ehis section will be extended

to the more complieated perturbed case.

     We start from the review of the dual amplitude with the conven-
                                      1)tional linear baryon trajeetory (e=O).                                        The invar'iant matrix amplitude
T for XN scatteringf)

      T(p2,q2;pl,ql) E A(s,t ,u)+2.fiB(s,t ,u), (3. 2)
                                  '
is given by the linear combination of the contributions from the many

kind of the baryon trajectories, each of which is expressed in terms

of the beta•-funetions as

      {xB(i}-oc(s), l-aM(t)) + 'jv(zB(e-a($), l--osvr(t))}

    +{ yB ( l-ctM (t ) ,, }• -- d( u) ) + 3fZB (1--OgM (t ) , Å}-- ot( u) )}

    +{zB(-2}•-d(s),'-2}•--oC(u)) + 'lim3(g-oC(s), -li--o((u))} , (3•3)

                              'where (X(x) and otM(.x) denote the baryon and meson trajectgries,

respectively, and have the form a+bx [x=s,t and u); x,Xy,Sr,z and E

are multiplicative constants.Xee) The other notations for the kinematic

variables are the following:

ee )

acx)

by

For

 The

the

the sake

 cross1ng

choice of

of simplicity we ignore the isospin

 properties of the T amplitude can

 these constants.

 here.

be easily satisfied
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     pl(p2): initial (final) nueleon momentum,

     ql(q2): initial (final) p. ion momentum,

     s =( pi+qi)2, u=( pi-q2)2, t =( pi- p. 2)2,

     Q=(ql+q+2)/2, 2S=))"Q"=lt. (3.4)

The terms in the first, second and third lines in (3.3) wiLl be

referred to as the (s•-t), (t-u) and (s-u) terms, respectively.

     Let us na,y attention to the (s•-t) term and examine the spin-

parity structure of baryon poles in the s-channel. For this purpose
we introduce the s-channel parity--d6finite amp.iitude, l2)

       FÅ}(J!;,u)=;A(s,t,u) + (tsÅ}!1)B(s,t,u), (3.5)

where M is the mass ot" the nucleon. Insertin.rr the (s-t) term of (3.3)

into the r.h.s. of (3.5), we have

   F'(rs,u>=n..(r,(.JM',)Xi'(ddMit,ll)-XJ+-Yct(,ts,s)+M),

    F'(rs.q)-S..5-;i,i$2Åë',,d,"k',3)X,'-7,`,ts,,'"'. ,,.,,

                    '
Here we have used the formula of the beta--functien,
    B(p,i)=;;.i,'El(iIIIrliiS',2'(ii.-.aSl'2'--""-'lp. (3•7)

                 '                'Only the states having the t.P=+l(-l) contribute to the "y+(F-)

amp, litude.12) In (' 3.6) we have the saJne denominator (J-cA(s))-1 for

both the P,+ and F- . This means that we have the degenerate MacDowell
                                                   'parity doublets as expeeted.

     The natural extension of (3.6) to the cSO (non-linear) case is

obtained as
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     F'(rs,u>=,i.,.(r,(.J,i,t9,'rd(d"i',',),)-:2'!i\XiS?Y!l!"-Xd(JrS'M),

     F'(rs,u)=,E:l.7i'SIP,d,:(,l,'j--7;--------'.N,`,V.3'X,"'. ,,.,,

Here we have modified the poie denominators of (3.6) by the non-

degenerate MacDoweU-symmeti?ic trajeetories, oK(rs):a+bs+cl'5 and

d(-Jg)=a+bs--cJ?;. Going baek to the beta-functions, we get

   IF" ( rs, u) = [-x+f3.(( Jbgl+M )] B ( -i.Ir•- d( 1'1; ) , •l-oth ( t ) ) ,

   F-(l5,u)= [x+gt( ts-M)] B(ts-d(-rs), 1-q,ff(t)). (3.9)

It is well-knovama that the non--linear trajectory generally gives rise

to the ancestor poles in the crossed-channel, unless the invariant

aJnplitudes are free from the sin.cu.. Iarity of J:; (orJti). Now the

contribution to the invar'iant amp.litude rD(EA+QB) beeomes

       2ts + S\ -S"M;'.ts"M ]B(Åír•-oK(ts), i--osv{(t))   [.r"LbLgt

                     .                                                         '. +[.riE] !lrxe .'E S,-M22"tsrs-M ]B(k-ct(-ms), i-qry[(t)) . (3•iO)

flhif expression is invariant under the transformation l5--rs, and
thus has no branch'  p, oint at s=O. Aecordingly, our amplitude has no

ancestor poles.

     The expression (3.10) has the following simpie integral ren.resen-

tation which will be derived in Appendix:

        xB(k•-ct., 1-eCM(t)) + }f;(S-pt., l-Oha(t)) , (3.ii)

and
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  Bgxi,x2)=gSoidw(wXiei(i-.w)X2-i+ wX2-l(i"w)Å~i'i}, ') (3.i2a)

  '?l(.1,x2).-is}Sd.{.Xl-1,iaf1(1-.)X2-1. .X2-1,fit2(1...)Xl'1}, (3.12b)

where di=li•qi• [i=1,2), Ps=5'(pl+ql) and

        d.=a+bs-cP,. (3.i3)
`Vhe nts is the matrix in the spinor space, whose eigenvalues represent

the non-linear trajectoriesd(Å}lg). 'i]he' (3.12a) was first derived by
Volkov and Radchenko.9) The expressipn (3.ll) is the generalization

             'of the Volkov--Radchenko amn, litude.

     The (t-u) and (s--u) terms can be obtained in a similar way,

and. our final forrn is

     {xB ( ". -pe. , 1-•otM ( t ) ) ,: N2i'"< S-saCT. , 1-o(Iy[ ( t ) )}

                                  '                                           t    + {yB (1-oCM (t ) , k•-sar. ) + 'yV 'B"( l--oCllc ( 't ) , { -,kvC. )}

                                                                '                               '    +{zB(is-pt., -lli---•s)(.,) + !!ifi'(g-ict., $-SiX.)} , (3.i4)

where

        2ru=a+bu--c2Vu, -u=5'(pl-•q2). (3.15)
The (3.14) possesse's correet Regge behavior [cf. (6.2)]. The

following crossing properties are also proved:

       B(k'pJa<,, i-q,ff(t))f, ;:lt.-1, B(i'qM(t), S-ILL),

       NB(g--s2{k, 1-okif(t))g,7 :i?s, -Cf(l-qM(t), e-sa(.),

       B(t-sXls, Sb-pt[x)sC.-s, B(S'-ofs, '2}""'9<i),

       g(S'-pKs, g--s?t[,)s;;.;:li;•el, -g(S-2r., g--g<,)• (3•l6)

x)

the

are

The function B(xl,Å~2) iS

 order of the variables

 generally the rnatriees

 nothing but the beta-function, however,
xl,2 is now i.mportant, since these variables

in the spinor space. '
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g4. The dual amplitude with the three unn.erturbed baryon trajec•tories

     Tn this section we shall still deal with the unperturbed baryon

trajectories. The basie representation (3.14) obtained in g3 is

applied to the three kinds of baryon trajectories, i.e., the A)-As,
Nci-Ne and NCK-Ie trajeetories [see (2.1), (2.3) and (2.4)]. For this

purpose, we introduce the matrix trajectory-•funetions,

       ae --- aA+bAx-eA-Å~ ,

       s(:1= aN+bNx-cNlx , [X=S,U]

       Åít ll2= aN+bNx+cNp.. (4.1)

Now the isospin indeces are explicitly written for every quantities.

Combining the bastc representation (3.Z4), one obtain the most general
expression for the TI [!=1/2,3/2] amplitudes,

   Tr ( P2 , q 2 ; Pi , qi )="Eitiiith, N,{x !P B ( -pt.P, i-o(rd ( t ) ) + g.llllic g( s--s?{"g , 1-q,, ( t ) )}

                + pt;i,liii,,,N,{YII` B(i'OSq(`),{)"satC'"i) + g,;i[i`Ya-o{p,i(t),g--ctf)}

                + = {zfvB(g.szte.,ÅÄ.-pMy)+E,1giver(E-pt.pt,e-s7MV)}, (4.2)

                 1-t,V=A,th,op

where xf, ltflE, yf, YS, zfV and Elt3V are muitipiieative constants.

There are 60 constants. However, the crossing symmetry and the

elimination of the unwanted baryon states reduce the number of the

independent consvants to 12.

     The crossing relation is
                          3/2
       Tl(IP2,q2;Pl,ql)= J=...1/2 XIJ T•J(P2,-ql;Pl,•--q2), (4.3)



15

where {XIJ} is the crossing matrix of the isospin12);

                                                            (4.4)

M.ogether with the crossing relation (3.16) of the B and 5Y functions,

(4.3) leads to the eonstraints C30 independent relations],

       x,".= EIEi x,,, y,pa, `;.EIIi=- >IE2x,,'gYj ,

                                 1=1/2           J= Y2
       zfV=Jee.vaxiJzJYP, `EltFiV=-top.iu2,xw'E.11i!lp. (4.s)

       '
     Our amplitude (4.2) contains rnany unwanted baryon states.

Unwanted states will be eliminated only on the parent trajectories.

For the daughter trajectories, the present experimental knowledge is

yet ambiguous so that nothing will be required on the daughters.
                                                          +The residue strueture of the parent po!es of the amplitudes Ri is

found as

                                         '     "l(ts'U)2'pt"X,N,,ii'(Xi"'}tsR='",'Åíibl;,Z.fLL.vt.En"')i(,tE,"M)i,Sllliliiilll!.i.le,,/',th,,'")e<'Z`'r)}

            +kAZ4:-{e(Xi"-k,="ttfl'Zlifi])(,J,gM)i:'l-I..i'i\'th"2Zlltb)} (,,.)

                '     Fi(J15',u) =-•pl(-•JE;,u) , (4.6b)

where we have neg.lected the small difference bA-bN and put bEbA=b+N.

1/2 3/2

l/2

3/2

-1/3

2/3

4/3

1/3
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                                       '
The parent trajectories in (4.6a) are the exchange degenerate type,

sinee the first and the second terms have the saJne pole denominators

but opposite signatures. The observed baryon parent trajectories have
the definite signatures [see Fig. 2 and 4], so that we have to eiimi--

nate the unwanted states having the wrong signature. The elimination

eonditions are the foUowing:

                            '
   (signature eondition for the As-As trajectory)
         x3A/2. =z3A/V2 =o, R3gA/2 +. =l;iilSfY2=o, (4.7)
                                      V=A,Ns.N2                Ve A,Ni.th

   (signature eondition for the Nd--Nd and )U-Np trajectories)

         xiP/2- =zipa/V2 ---o, gi)C"/2- =Eliill/2=o.[p=Ni,N2] (4.s)

                hA.Nl,ma )ltA,Ns,1,h '
                                            '
r,urthermore, the multiplicative eonstants in the r.h.s. of (4.6a)

should vanish, whenever the constants relate to the trajeetories with,

tn" e isospin which is not equal to ! in the l.h.s.                                                  This gives the

eonditions, '                                                                 '
         xlA/2.=.IA/v2.(.;"2(1/2.=,'17"S7A/2.o, (4.g)
                kA,N,N2 V:A,Nt.N2
         Å~3i`/2= =z3`PL/V2=g.1;lll/2.-- =12'Ztit13/V2=o.[ILL=Nl,N2] • (4.lo)

                                thA,Nt.N2               veZ),,M,N2

Eqs.(4.7),v(4.10) are 18 independent relations; eventually we get

totally 12 arbitrary multiplicative constants.
                                                                 '     The residue structures of the n, arent trajectories are now simple:

Using (4.7).v(4.10), we get

         F'3/2(ts,u)cx-t.i,;i3s..tmet 'iJig'M)XA 2.siXtXili2k) , (4.u.)

                        ee
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    F{/2(ts,u)2et/i,;,tf.ilEilL:lab9ill2.Xgi"(f.t'M)g!N'fiT.:giiiglLiig3g.ein,i(Ztg)

                                                           '                    -.N, 2.( Jg.Bc );12 2(b. )g
             +2.=,,,,+,11.1-"ii-"-"Z7. yO12E-;:gZi;:'("rs"5'ctA,2(. (4.nb)

The six multiplicative constants in the r.h.s. of (4.ll) ar'e further

restricted, by the crossing relations(4.5), to satisfy the relations

   x3A/2+xsi>2+xY2=o and -2xC15/2+Eliiri/i2+tvi{/22=o. (4.i2)

For the demvation of these reiations, we consider the quantities

        ZI==zlV and ';\r==z"I"ptV.                                          [r =1/2, 3/ 2) (4.13)

           P,V=A,NtN2 P,V=A,NtN2 .
FLihe crossing relations (4.5) becorne

            3t2 312        Zi==Xw zJ and 'E•tr=-=Xw'i}`Jf , (4.14)
           Js i/2 Jn V2
and give the fo!utions

                                                         '        zi/2=z3/2 and IEYy2=-2E•1;/2. . -(4.is)
                 t

On the other hcmd, we get Åírom (4.7),v(4.10),

        zl/2= xY/l2+ xY92 , z3/2 =-x34/2 ,

                                                 '       E,Yl/2=gEllY>2.gEiii:/22 ..d IE,1;/2=-1.211;/2, (4.16)

and inserting these to the both sides of (4.15), we obtain (4.l2).

                                   • Q.E.D.
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  . The genera! expression for the elastic widths of the parent

resonances ean be readily obtained from (4.11);

(for the Av,As resonances) Fia= KR{-x3A/2 +(-pmR+M) It2111/2}, (4.i7)

(for the igtit,Ne' resonances) Fla=KR{-xlii>2 +(PmR+}A) 21Irfi[>2}, (4.18)

(for the )u',N6 resonanees) rgia=KR{-xl!92 +(pmR+M) x'ii9h592}, ' (4.ig)

where mR is the mass of the resonanee and

                       q•R ( 4bqR2 ) J"'k r( J+ 3/2 )

          KR= ('t P• ER"M) 2xb.s r( 2J.2) . (4. 20)

"Å}he nueleon eenter-of-mass energy and momentum at l5=mR are denoted

by ER and qR, respectively. J is the sptn of the resonanee.
                                                                 'The expression (4.17) for the A resonances is our final Tesult. But

the (4.18) and (4.19) for the N resonances wiU be modiÅíied further
due to the eross-over phenomenon [see the next section]. The elastie

widths of all the parent resonanees are described by the four adjust-

able constants. The residual gt2gAliig.ht ad3'ustable eonstants are eoncerned

with the wid,ths of the ÅídLews!!ulsu:ht resonances. Since the daughter

trajectories gi've the negligÅ}bly smaU contributtions to the high-energy

behavior, we will ignore these eontributions completely.
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g5. The dual arnp.litude incorporating the cross-over phenomenon

     Novv the dual amplitude obtained in g4 are easily extended to the

perturbed N-trajectories for which the cross-over phenomenon is taken

into account. Let us first consider the N-parts oÅí the first term in

(4.2); the detaUed exl ression is given by (3.10), i.e.,

   i,l itliiil,.,[{x: :rC liliVJrg- •+ Srf 's+M;xfrs+ivi }B(Å}. osstg), i-osva(t))

       +{x," Si"l',,•i' +(2ff S-M;'J,.!:"'M")B<ts--o(i`(-lg),i-O\,(t))]. (s.i)

           '

As already emphasized, this expression has no braneh point at saOr

although the unperturbed trajeetories contain the lg'terms. rhe non-

existence of the ancestor poles is due to this situation.
     Our perturbed trajectory--functions OSiN,Z,n(s) ((2.13)] contain the

term s+(g/eN)2 . However the invariant arnplitudes must have no braneh

point at s=-(g/cN)2 for avoidinbcr the ancestor poles. The simplest

modification of (5.1) is clearly to renZace all the J"g' terrns in (5.1>

by the s+(g/cN)2 . This guarantees the non-existence of the ancestor

noies. `ehe result is
[

                 ,
{x/Ji S'igfi\kMiild '.':!,<i -S'M2i(.iii;fii'2"M'2)B(2,-o`irki(..),ieog,,(t))

+(x\2 S'igt\ii;:reiZ +'?i92 'S'M2'2(.iiiSfi//)2'M)k)B($-ocNu(s),i-osM(t))

+{xN,i-:S:-iiiti>f7tliti-+(gg;(i/leeil+trs,i=S::Eilliiiti;[stei::EM2+(,Iilfi)) M)Z]B(s.e(ki(.),z"og,(t))

   z . S"igiiili'i/ililli')i ':Iil2 S"-M2'2(,Iililifiiii') "M)RIB(i-ociik(s),i-o<i,i(t)) .+{xN2 -----"'- +x

                             '                                                              (5.2)
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 No simn.le integral representation for (5.2) has been yet found.'''

  ' Mhe similar procedure is earried out on the other N-terms in
 (4.2); for the u-channel terms, J:: --i, u+(g/cN)2. Mhis gives the final

 form of our dual ZN amplitude. Here we show only the final expression

 of the elastic widths of the parent N-resonances:

 (for the Nbl,Ne resonances)

r,l.=KR[l•Q+.RM.'(gl,N)){-xg,1+(pmR+M)llgLSI]+g(i-eeRM.(gllk)2){-xg,2.(R,be.M);.llgB],

                                                               (5.3)
(for the Na,Ne resonances)

Fria=KR//-(i'-:iRl:lii:irEigi(,}N)){-xtL.i+(PrnR+M)IIlt;i}+Å}(i+de.ig7(,N)){-xl,;2+(RnRTfasa)'I.lll12}],

                                                               (5.4)

 (for the nucleon pole residue)
 '
gÅíNN/4Jt=lrsit:l;iEibg[/b(i+rk,f2.'gT/t,))(-xl'l]-+,2Mlilltil)i)'e(i-,ilil5i(llg7:.N )(-xNs2'2i\iil/l(s2))]'

                                                             '
The effeet of the eross-over phenomenon is evaluated from the factors
'2KlÅ} Ciltiifiillli ::i+egtzicN)2); for the unpbrturbed case, these take the vaiues 2Ku+ ).

The typtcal values of these quantities are found for mR=1500 MeV;

I iii'(1'(l:Rli\ :l:rlg:(g/,N)2)`YO'94' `t/`(1"CiiAEIi\i:iE(g/,N)2)NO'06' (5'6)

                               '
whieh are almost equal to their values in the unperturbed• ease.
Aecordingly, one sees that in the region s>tv2 (Gev/c>2 the N-resonanees

possess the same residue-structure as that of the g=O ease, that is to

sayt the eross-over phenomenon hardly affects every resonance except

two or three states with the small masses. On the other hand, the

cross-over phenomenon is extremely imp, ortant in the prediction of the

high-energy baekward differential cross-section, because the g=O case
fails to give the dip-structure in z+p seattering. [See the next seCtion)
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71/2 (JE, s )" x

    xi

g6. Determination of pararneters and prediction as to high-energy

    baekward scattering

     In the previous seetions, we have seen that the expressions

coneerning the parent trajectories eontain the four adjustable

pararneters. Xn this section, we determine the values of these

parameters by using the exn,erimental data of the elastic widths of
seme low-mass states}3) Then we get the predictions as' to the eiastic

widths of many other resonanees and as to forward and backward

scattering at high-energy. It is weil-knovvn that the dual model

generaliy gives good fits to the near forward cross-section and the fit

is stable for sueh a modification of the baryon trajectories as

discussed in this paper. niherefore, we eoncentrate our attention to

the near backward scattering only.

     The baekward scattering cross-section and polarization are most

eonveniently expressed in terms of the u--ehannel parity-definite

           12) 'amplitudes,

      iY+       F'f(l{ii',s)= :Ax(u,t,s)+(J:uU:M)BT(u,t,s), (6.1)

for which we get in our model

7'3/2(JTT, s) '-" '7t r(dAlt"ll;/ ()-lil. .OLxS[iliUiaiJ),v[)-g) (bsg*"(Jif)'e{-x3A/2+(Jru+rE){t;li5/,} ,

                                                                (6.2)-

                  i+iexp, (- i(u)) (b.)dK(U)-e

        (ctk(u)+e)

       fiS(i+ 711ii.r E;7 :: s!f/. ) ){-x

sinz(ctN(u)-k)

sli.(Jll+M)gElt;l}+{t(1--j:::il(lii):xig/N)) {-xX2+ (J'"+M ) 1.ajf2}]
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+z ----:-L;=:-:-L:;:•JL-i-;-:-:-----•-
1+lexn( "rtaii(u)) (bs )dki (u)-g

r(okirtii(u)+g) sinx(diiGi(u)-g)

   x[sa-•ji:; il(lill::i iif::,/ ,) ){•--x\i+(fuu+M)gtllSi}+g(i+j:i:i(lll :fr,/ ,) ){--x:,2+(sJf{s+M)Riiir22}] ,

                                                             (6.3)

and
                            '      cri(1!I,s)=-F'"+!(-ru,s). (6.4)
                         4Here the subscript of the Fi represents•the u-channel isospin.

The u-channel p.arity-definite amplitudes for given s-chaunel processes
[the 1.h.s. of (6.5)] are written as

     ff'- [in,. --) ip] "73/2 ,

     7- [in -. ap) =g tL'III-/2 +} ff's/2 ,

     7' [z--p --> Åínl •=-{i( 7',/,-F4"3/',), (6•s)

and the eross--seetion and polarization in the near backward region can
be obtained from these amnlitudes12):

      ggctTs{}ii:g-d`ii'-i2+iF'"'i2), po"'l:tlilil-'ii:I"lilll-i'-Ii.l,i:,.l2• (6'6)

(!) Elastic widths ofA- resonances and near

    seattering at high-energy
    The two adjustable parameters, x3A/2 and

determined so that the model renroduees the
elastie widths of the two !=3/2 states, reeXlg

backward xp elastie

 gt:}i72 in (6.2), are now

exnerimental data for the

(P33;1236)"IOO'V120 MeV and
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rgig(D33;167o)=3o,v70 MeV.13) !nserting the values r.la(P33;1236)

=100 MeV and rela(D33;1670)=70 MeV into the exp. ression (4.17), we get

            x3A/2=lol GeV'-1 and x"'3A/2"lo3 Gevm'2. (6.7)

                                             '
                                              '
      Mhe predicted near baekward 7C-p differential cross-seetion is
 shown in Fig. 9. A good agreement with the datalO) is obtained.

                        Fig. 9

      It should be noted that all the .previously proposed ZN dual
 modelsl) predict toe large cross-seetion for the backward scattering.

 Our model is distinct from these models at two points: (i) We assume

 the non-linear trajeetories, so that our intercept of theAritrajectory

 is -O.3 but the eonventional linear trajectory gives +O.1. (ii) The

 residue--function of our ZSv-ZSs trajeetory gives at uotO a quite smaU

 absolute value than that of the eonventional model. Clearly, our lower

                                                                     ' A- intercept leads to small backward cross-section at high-energy.

 The second noint mentioned above is due to the fact that in our model
            g
 the P33(1236) state has the n,arity n,artner D33(1670). In the conven-

 tiona! model with the linear ZS.trajectory, the parity partner of the
                    , P33(l236) corresponds to the unob$erved state for whieh we assume

 the vanishing residue. !n Fig. IO we show this situation; our residue

 function is given by •                                                                    '
             5A(fu)=-Å~3A/2+(ru+M)xrv3A/2=••-4+io3for, (6.8)

 but the conventional one by

              5A(ru)= -•66+s3JE:, (6.g)
 which vanishes at JTT=l.236 GeV/c. Our residue-function gives the

 smaller absolute value at u=O, whieh is preferable for obtaining the
 sman backbvard cross-section.
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                           -                            geig. IO
                           -

     In the rnodei with the linear A-trajectory, the wrong signature
nonsense ?,ero ocÅëurs at ufy--1.7 (Gev/c)2, i.e., o4ts(u)=-3/2. Howevert

the expeeted dip-structure is not seen experirnentally [see Fig. 9).

In our case, the trajeetory-function ctA(l{r) becomes eomplex for u<O;

no dip appears there and good fits are obtained for the experimental

values.

(rl) Elastic widths of N-resonances and near backward z+p elastic

     and xp charge-exchange scattering at high-energy

     As seen in (5.3) and (5.4), the elastic widths of N•-resonances
denend on the yovtr parameters, xlJL'i, fl/lf[`i, x.N,..2 and 2,ir{2, but owing to the

                                ,) ,) F'J ,-                                "- "J I.. -Jrestrictions (4.12) we have only two adjustable ones. rn order to

determine the values of these parameters, we now use the experimental
nucleon cou'nling constants, gir,g,N/ancr14, and the requirement of the

elimination of the Sn(939), i.e., the p, arity partner of the nucleon

n, redicted by the n, erturbed trajectory. 1ihu$, it is obtained that

12-k'bi'i'i[S(i'jlllT'?(Ili7lslig/N))('xgLi"2MtL,i)+S(i'nt,[.(g/.N))(--x:,2+2MxC?N'1i2)]-=i4,

                               '
      l.rQ- TVifL ' )xl,)Il+ts(l+ r5 )xN-,2 :o,
           rfl +(g/eN) 2 M. +(g/cN) 2

      Å~5t.i + xlj/,2 =-xg/2=-ioi qevdi,

      ttti+II[ll,Y2=21tilllll/2=2o6 Gev-'2, (6.io)

                                                             'which lead to

  xl,\i=-•n6 c;ev'-L, lt2Xii=igs Gev'-2, x/A{2=is Gev-'i and It:lgli.2 =n Gev-2.
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     By using the values of (6.ll) we can p.rediet the elastie widths
  '
of the other well-established N-resonances. The results are shown
                                             'in Mable 1.

     We next give the results of our caiculation onx+p elastic and

Z'" p. charge-exchange backward cross--sections}O) [Iraig.11]

                     'T5'T3;rrE[i.u

                     .
As seen in Fig.il, we get the fairly good results for' the x+p elastic

differential cross-section.in the backward region (u<-o.os (Gev/c)2)

except for very near e=1800. The fit to charge-exehange scattering

is less successful. At uAto (Gev/c)2, the predicted eross-sections

for both the cases are larger than the exp, erimenta) value$, by a factor

of two or three. However the imo, rovement of the backward eross-

sections are very remarkable; the p, revious models p, redict about 100

                                                   'times of the exnerimental values.
                                    '                t
     Our model gives the well-known dip-structure due to the wrong
signature nonsense zero at dk(-O.15)=-1/2. The cross-•over p.henomenon

plays an essential role for this fact, because the wrong signature
nonsense point oÅí the t"It!2gsu-:ELggerturbed trajectory appears at utxO.o8 (Gev/c)2

[see Fig. 4]. •
     The result oi our caleulation on x+p polarizationZ4) is shown in

Fig. 12.                     Pig. 12
                    "                                                           '
                                                                        2As seen in ffig.l2, we get the good result in the region u<-O.2 (GeV/c).

At ua`O and -O.15 (GeV/c)2, the preMcted values are larger than the

experimental ones, by a faetor of two or three. Mhe din. and bumn.
strueture in the region u>-o.3 (Gev/c)2 is mainly due to the inter.•

ference between the contributions from the N- and A- trajectories.
On the other hand, in the region u<-•O.3 (GeV/c)2 the dominant contribu-

tien comes from the N-trajectories whose contribution is large and

negative.
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g7. Coneluding remarks

                                             '
     In the previous sections, we have seen that many difficulVies

so far encountered in the Veneziano model wtth linear baryon

trajeetories are overcome by assuming the non-linear baryon trajec-•

torÅ}es for which the Åëross--over phenorflenon is taken into account.

`Phe three (s,t and u) ehannels in XN scattering are all non-•exotie.

The duality, therefore, imposes stronger restrictions on the amplitude

than the case of the KN seattering where one of the channels is exotic.

So far many difficulties mentioned before have prevented to see whether

the duality is actually valid or not in this most interesting case.

gowever, our result clearly shows that Lthe duality is a good working

hyp.othesis even for the ease of the strong+est restrictions (i.e.,XN

scattering). 1ihis is very encoura,g.ing situation.

     We have not discussed so much the near forward cross-sections.

Elhese are controUed by the meson trajectories and thus our model gives

the similar results to the previous models, vvhere we have already had

successful results.

     Nife have not also discussed the p. roperty of oUr amplitude at the

Adler point and tlpe values of the scattering length. flhese depend

on the multiplicative constants which are connected with the daughter

trajectories and have been yet undetermined; eight constants still
                  ,
remain. We have sufficient freedom of the low--energy amn,litude.
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Appendix

     We shall show that the expression (5.10) is derived from the

following integral representatien (5.11):

   xB(g-sut.,1--o(M( t)) +3ti;( s-pr,,i- oM(t))

            = eS,'dw w-'2(S-ts(x+stsiri)(i-.)Oiv!(t)

             +s Jjd. .-O("4(t)(..stgf2)a-.)rSrs-S i , (A.1)

This representation is multiplied by the identity,

      !'iFi7:jP:i+tis'is.i, (,.2)
and using the eigenvalue equations,

     (,rg pr,)(sac,f)n = (kv(f,)n(,rg p,.1)= (v7s p.T)(o((Å}ts))n, (A.s)

                                                                 'we get for (A.1)

   tt,J-z;-+Ftxip:';isi}](s11J,..-prs-s(..strr,)(,-.)-esM(t))

 +Ilsj7d. .-ek(t)(..ly,)(,-.)"'2ts"'5]{{?iii . r!!g{:l,Ti] .

  = [i!!2vegii J': (x+sf-,i + (x+stg,):J!gi}ifki-tspi ]{Jil . ."oC(rs):sa-.)-o$c(t) I]

  +[C/lllglS (..strr1) . (..stg2)t/2Ffsl ]{Jr;d. id(-/E;)-k-(i-.)-qM(t)}. (A.4)

The integral representations are factorized frorn the matrices and

they give the beta-functions in (5.10). One can see that the matrices

in (A.4) are equal to the matrices in (5.10), respectively, because



wq have the following identit.l es when the matrices are inserted

between the Dirac spinors:

 U(p2),pr,u(pi) =i6(p2) [M+Jor)u(pi) ,

 5(p2)11U(P1)=U(p2)12U(P1)="(P2)Jitu(P1)

  E(p2)•P,sriu(pP=3(p2),gr2pf.u(pi)=5(p2) [s•-•M2-ua]u(pi). (A.

                                                     Q. Ee

    The (t--u) term and the (s-u) term are obtained by the same

technique:

  B( 1-aM ( t) , S--S7r. )

                                         '        J"-M+1 ru+M-z      = 2J{T B(1-O$c(t),lt-Ok(J'iT)) + 2J"• B(1-e$c(t),ts-ot(-J'U)),

  .ve  B(i-(IM(t),S-2Ka) '
                                  -u+M2+ (sf[r-M ),gr      u-M2+ (IE+M ),Q'

   = 4 21[r B(1-o(rvI(t),e-ct(J"{ ))+ 21iT B(1-o(M(t),i5-o((

  B(e-S )C,,e'ptu) '

   " 4ilgTI [-M( rs+ ru ) + JigruT+ (M2- if ) +Jar( ts-- ,fi :)] B( s-ct( ts ) , e-. oc( r. ) )

  ' 4iJg" [ M( Jl;' J{ )+ Su-(M2-F2 ) ea( ts+ Jff)] B( Å}-oL( J";; ) , S-• o( •-• Ju) )

  ' 41Jg{.r [-M( Jii7'"' Jff) + JYu'" ( M2--1"`2 ) +z( Jlll+ Jfi ) ] B ( s- ct( - Jlg) , ts.- ou[ ru ) )

                                               '
  + 4i"glT [ M( Jg+ JII )+ Jgff+ (M2-•F2 ) -jz( ,rs-- JU ) ] B(s-- o< -- Ig) , e- oc( -JTI) ) ,

  X( ts-pt, , S-p<i )

28

5)

De

 (A.6)

•-
"rtr)),

 (A.7)

(A.8)
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  4iJg{1 [ M( s-u )-( s J"r-uts) -•M2 ( ts- J5) +l{- ( s+u) + JgE+M( ,lg+J{ T) e(M2ep2 )}]

        ><B ( s--at Jg) , s- et N) )

+ 4iJg{I [-M( s-u)-( sJif+uJg')+M2( J'g+JE) +Jzr{ (s+u)+Jg;t •-M( ts. J{D.(M2"F2 )}]

        xB(s-d( tg),s- ct( -Jrr) )

+ ÅÄJg{i [-M( s-u) +( s Jif+u rs) -M2( Jl;r+ l{T) +i { ( s+u) + JlgU+M( J"ig-- ,t{T) +(M2..F2 )}]

       xB( Sect( e' J'i;) , S-ct( l{1) )

+ 4iJg{ [ M( s-u ) + ( s Jif-u ts ) +M2 ( J'3;- Jif) +kt {- ( s+u ) + rsu-M ( ,rg;r+ J r) .- (M2.. pt2 )}]

       >a3(E-ct(-ts),S-ct(-Jrl)),                                                     (A.9)

where iZ denotes the pion mass.
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Table l. The prediction of the elastic widths.
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