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Wawvelet-based Compression of Power Disturbances
using The Minimum Description Length Criterion

Effrina Yanti Hamid, Redy Mardiana, and Zen-Ichiro Kawasaki, Member, IEEE

Abstract—This paper introduces a compression technique
for power disturbance data via discrete wavelet transform
(DWT) and wavelet packet transform (WPT). The data
compression leads to a potential application for remote
power protection and power quality monitoring. The com-
pression technique is performed through signal decompo-
sition up to a certain level, thresholding of wavelet coef-
ficients, and signal reconstruction. The choice of which
wavelet to use for the compression is of critical importance,
because the wavelet affects reconstructed signal quality and
the design of the system as a whole. The Minimum De-
scription Length (MDL) criterion is proposed for the selec-
tion of an appropriate wavelet filter. This criterion permits
to select not only the suitable wavelet filter but also the
best number of wavelet retained coefficients for signal re-
construction. The experimental study has been carried out
for a single-phase to ground fault event, and the data com-
pression results of using the suitable wavelet filter show that
the compression ratios are less than 11% and are reduced
to more than a half of that value by implementing an addi-
tional lossless coding.

Inder Terms—Data compression,
wavelets, wavelet packets.

power disturbances,

I. INTRODUCTION

HE transients due to ground faults, load switchings,

and other disturbances may cover a broad frequency
spectrum in the order of KHz to MHz. A single captured
event recorded for several seconds using monitoring instru-
ments can produce megabytes of data. As a result, the
volume of the generated and maintained data increase sig-
nificantly, which lead to a high cost in storing and trans-
mitting such data. Therefore, it is necessary to develop an
effective compression technique which has capability to re-
duce the volume of data necessary for storing and to speed
up the transmitted data for remote monitoring [1], [2], [3].
Wavelet and wavelet packet transforms have recently
emerged as powerful tools for a broad range of applica-
tions, signal compression in particular [2], [3], [4], [5]. The
wavelet transform has good localization in both frequency
and time domains, having fine frequency resolution and
coarse time resolutions at lower frequency, and coarse fre-
quency resolution and fine time resolution at higher fre-
quency. It makes the wavelet transform suitable for time-
frequency analysis. In data compression, the wavelet trans-
form is used to exploit the redundancy in the signal. The
performance of a wavelet transform for data compression
lies in its ability in concentrating a large percentage of to-
tal signal energy in a few coefficients [6]. After the original
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signal is transformed into the wavelet coefficients, many co-
efficients are so small so that these coefficients can be omit-
ted without losing significant information after the signal
is reconstructed.

During the last three years, power disturbance data com-
pression using wavelet and wavelet packet transforms have
been proposed [2], [3]. The choice of which wavelet to use
in compression system plays an important role, because
the wavelet affects reconstructed signal quality and the de-
sign of the system as a whole. Compared with the actual
compression performance of several different wavelets, the
previous authors [2], [3] choose only a specific wavelet fil-
ter. Improper choice of filter can produce distortions in
the reconstructed signal and can cause not optimum com-
pression ratio. An algorithm to optimize the efficiency of
compression in the wavelet domain called the Minimum
Description Length (MDL) has been proposed by Saito [7].
The MDL criterion aims to gain the compromise between
the number of retained wavelet coeflicients and the error of
signal reconstruction. The algorithm permits one to select
the suitable wavelet filter and the best number of wavelet
retained coefficients of a signal.

In this paper, we propose a data compression method
based on wavelet and wavelet packet for power system dis-
turbances. The method includes the selection of wavelet
filter using the MDL criterion to optimize the compression
technique. We evaluate several wavelet filters and com-
pare their performances. Although there are many types
of wavelet filters, we restrict ourselves to the Daubechies,
Coiflets and Symlets families with a certain level of decom-
position. In addition the results from this wavelet-based
compression method are then combined with a lossless cod-
ing e.g. Huffman, Lempel-Ziv-Welch (LZW), or Lempel-
Ziv-Haruyasu (LZH) to get more effective compression [3].

II. WAVELET TRANFORMS
A. Discrete Wavelet Transform

The wavelet transform of a discrete input data sequence

f=A{fn}={fo, f1,-s [N-1}, where N is the length, can
be presented in a vector matrix form as

a=Wf 1)
where o contains N wavelet coefficients, and W (IV x N)
is an orthogonal matrix consisting of row basis vectors.
The basis vector are specified by a set of numbers, called
wavelet and scaling filter coefficients.

Once a specific wavelet has been chosen, we can use its
coefficients to define two filters, the low-pass filter and the
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Fig. 1. Decomposition of a® up to level m using DWT.

high-pass filter. Both types of filters use the same set of
wavelet filter coeficients, but with alternating signs and in
reversed order, meaning this pair of filters is the quadrature
mirror filters (QMF'). The low-pass and high-pass filters are
also called the scaling and the wavelet filters, respectively.
These filters are used to construct the filter matrices, de-
noted as G and H.

To decompose (or analyze) the signal, Mallat [8)] intro-
duced a recursive algorithm which is known as pyramid
algorithm. This algorithm offers the hierarchical, multires-
olution of the signal. In this algorithm the set of NV input
data is passed through the low-pass and high-pass filters.
Each output of the filter consists of N/2 wavelet coeffi-
cients. The output from low-pass filter is the approxima-
tion coefficients (a! = {a§, ai, ..., ajy/5_, }) at the first level
of resolution. The output from high-pass filter is the de-
tail coefficients (d' = {d}, d!, wydiyja_1}) at the first level

of resolution. The approximation coefficient @', can now
be used as the data input for another pair of wavelet fil-
ters (identical with the first pair), generating sets of length
N/4 of approximation (a® = {aj,af, ...,a};/,_,}) and de-
tails coefficients (d® = {dg,d';’,...,d?v/‘l_l}) at the second
level of resolution. The process is continued until a desired
level of resolution. Since the original input data vector, f,
is the approximation at the lowest resolution (level 0), i.e.:
a® = f = {fo, f1,..., fn_1}, then the DWT algorithm can
be presented by the following recursive formula

a™=Ga™ ! and d™ =Ha""? (2)
where m denotes the resolution level and m = 1, 2,...,
logy N. Figure 1 shows this decomposition process.

The different resolution for each level is related to the
sampling interval. For level m the sampling interval equals
2™.  As the sampling interval increases, resolution de-
creases and each approximation contains gradually less in-
formation. The difference in information between the ap-
proximations at level m and level m —1 is contained in the
detail at level m.

It is possible to use the approximation and detail coef-
ficients to reconstruct (or synthesize) the original signal.
The reconstruction process uses the recursion algorithm in
reverse with conjugates of G and H. For the orthonormal
basis the conjugates of G and H equal to the transposed

0-7803-7173-9/01/$10.00 © 2001 IEEE

matrices GT and H7, respectively. Thus, the reconstruc-
tion formula is as follows

am—l — GTam +HTdm. (3)
In general noise suppression is implemented before the sig-
nal is reconstructed. This means that the wavelet coeffi-
cients d™ and/or a™ whose absolute value is less than a

predefined threshold is set, for example, to zero, and then
Eq.(3) is applied.

B. Wavelet Packet Transform
B.1 Theory

Wavelet packet transform is a direct expansion of the
structure of the DWT tree algorithm to a full binary tree.
In the pyramid algorithm the detail branches are not used
for further calculations, only the approximations at each
level of resolution are treated to yield approximation and
detail obtained at higher level. For the wavelet packet,
both the detail and approximation coefficients at level m
are further decomposed into level m + 1. The main ad-
vantage of the WPT is better signal representation. The
search for the best representation of the signal by any sub-
tree of the WPT is called the best-basis selection. Wavelet
packet decomposition is shown in Fig. 2, in a tree struc-
ture to indicate the decomposition processes. The detail
and approximation coefficients in each level for each tree
(or subspace) are derived in similar manner to those of
DWT using Eq.(2).

level O |
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Fig. 2. Wavelet packet decomposition of a® viewed as a binary tree.

B.2 Best-Basis Selection

The overcomplete representation of signal by the WPT
allows us to choose the appropriate representation of the
signal. To find the best-basis or the wavelet coefficients of
the best-tree, one first computes its complete detail and
approximation (wavelet) coefficients up to a desired level.
Then, it is very natural to use the entropy as a measure
of efficiency of the basis. Here the entropy of a signal
& ={z,}= {z0, 21, ..., Tn—1} is defined as

N-1

H(z) = =} |2/ log|zal”, (4)
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which is known as the non-normalized Shannon entropy [9].
The best-basis is the basis giving the minimum entropy or
maximum information for its distribution of coefficients (6],
[9].

“The wavelet packet may be efficiently searched for the
best-basis. Fach tree in the binary tree as shown in Fig. 2
represents a subspace, consisting of the detail or approx-
imation coefficients, of the original signal. Each parent
subspace is the orthogonal sum of its two children’s sub-
spaces. The search for the best-basis involves computing
entropy using Eq.(4) for each subspace, then performing
a comparison between the entropy of parent subspace and
that of its two children’s subspaces. If the parent has a
smaller entropy, its two children are omitted from the tree.
On the other hand, if the parent has a larger entropy, its
two children are kept from the tree. This process is re-
peated until the original signal at the top level is reached.

ITI. MINIMUM DESCRIPTION LENGTH CRITERION

The Minimum Description Length (MDL) criterion is
an interesting approach to simultaneous noise suppression
and signal compression. It is free from any parameter set-
ting such as threshold selection, which can be particularly
useful for real data where the noise level is difficult to es-
timate. The MDL selects the ”best” wavelet filter and the
”best” number of wavelet coefficients to be retained for the
signal reconstruction [7].

The MDL criterion has the following algorithm. Let us
consider a discrete model

f=z+n

where the vector f represent the noisy observed data, vec-
tor x is the unknown true signal to be estimated, and vec-
tor n is noise. First, pick the index (k,n) from the MDL
function defined as

MDL(k,n) = min {—gklogN + %log &, — an(’“)llz} (5)

0<k<N;1<n<M

where &, = W, f denotes the vector of the decomposi-
tion coefficients of f via the wavelet filter n, and alf) =
- OW &, = ®@F) (W, f) denotes the vector that contains k
nonzero elements, and ©¥) is a hard-thresholding opera-
tion which keeps the k largest elements of &, in absolute
value intact and set all other elements to zero. The N and
M denote respectively the length of the signal and the to-
tal number of wavelet filters used. The &, and a%k) have
to be normalized by [|&, ||, so that the magnitude of each
coefficient in &, and alP is strictly less than one. Note
that ||z is defined as (35 ~' |z,|2)}/2. The MDL func-
tion is expressed as the sum of two conflicting terms. The
first term represents the penalty function, linearly increas-
ing with the number of the retained wavelet coefficients
k, whereas the second term describes the logarithmic of
residual energy between &, and a%k). We see that the
log(residual energy) always decreases as k increases (see

0-7803-7173-9/01/$10.00 © 2001 IEEE

also Fig. 4 later). Number of coefficients &, for which the
MDL function reaches its minimum, is considered as the
optimal one. With this criterion one can optimize the
choice of wavelet filter as well. It should be noted that
each wavelet filter has different characteristics. A wavelet
filter, which is optimal for a given signal, is not necessarily
the best for another type of signal.

Second, reconstruct the estimated true signal 2 through

the following equation
T _(k
xz=W, an( ),

(6)

which is exactly the same process as in Eq.(3).
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Fig. 3. Fault record from a single-phase to ground of three-phase

power system. Data no. 1, 2 and 3 are the voltage of phase a, phase b
and phase c, respectively, and the data 4, 5 and 6 are for the current
of phase a, phase b and phase ¢, respectively. The fault occurred at
116 ms on phase a.

IV. EXPERIMENTAL STUDY
A. Power Disturbance Data

The experimental study has been carried out for a single-
phase to ground fault event, and six power disturbance
data have been recorded. The data were obtained from a
power system hardware simulator owned by Kansai Elec-
tric Power Company (KEPCO), Japan. The performances
of DWT and WPT compression are evaluated using these
power disturbance data. Figure 3 shows these original sig-
nals. The length of each signal is N = 8000 samples for
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800 ms. Each sample requires 12 bytes (magnitude only),
so that each signal has a size of 96,000 bytes.

B. Library of Wavelet Filters

Ten wavelets from the Daubechies family (with 2, 4, 6, 8,
10, 12, 14, 16, 18, and 20 filter coefficients), five wavelets
from Coiflets (with 2, 4, 6, 8, and 10 filter coefficients),
and seven wavelets from Symlets (with 4, 6, 8, 10, 12, 14
filter coefficients) are used for the data compression. This
corresponds to M = 22. The coefficients of each wavelet
filter can be found in [9].

C. Performance Fuvaluation

To evaluate the compression performance, two perfor-
mance indexes are employed. The first one is the compres-
sion ratio (CR), i.e., the ratio of the size of the compressed
file over the size of the original file, defined as

bytes of the compressed signal

CR =
(%) bytes of the original signal

x 100(7)

The second one is the percentage of mean square error,
defined as

N—
VI 2
where f and « = {z,} = {0, 1,..., N1} are noisy ob-

served (or original) signal and reconstructed signal, respec-
tively.

MSE(%) = x 100

(8)

V. RESULTS

We compare the performance of 22 wavelet filters for
the compression. All signals are decomposed via the DWT
and WPT with those filters up to fourth level of resolution
(m = 4). For the case of the WPT, the decomposition
is performed following the best-basis selection with mini-
mum entropy criterion. The wavelet coefficients from the
decomposition is sorted according to their absolute ampli-
tude. The optimal number of retained coefficients & can
be calculated based on the MDL criterion.

To simplify the explanation we will give attention on
the signal of data no. 2, and we apply the WPT with the
Daubechies 5 (Db5) filter. First the data is decomposed up
to a predefined level using Eq.(2). The entropy of each sub-
space is then calculated using Eq.(4) to find the best-basis.
Once the best-basis is found the MDL function is applied to
compute the number of wavelet retained coefficients k. The
result of the MDL function and its components is shown
in Fig. 4. The function reaches the minimum at k& = 595.
This means the minimum number of coefficients required
for the signal reconstruction with the smallest distortion is
595. The process above is repeated until the last wavelet
filter in the library (n = 22), and then, the appropriate
filter can be chosen.

We have applied the MDL criterion to all data to se-
lect the suitable filter, and the results are tabulated in
Table I and Table II for the DWT and WPT, respectively.

0-7803-7173-9/01/$10.00 © 2001 IEEE
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Fig. 4. The MDL function and its components for the WPT coeffi-
cients of data no. 2 with Db5 filter.

Both tables show the number of retained coeflicients %,
the MSE and the minimum value of the MDL function for
all wavelet filters. From this point, we can chose the ap-
propriate filter for each corresponding data based on the
minimum MDL value, and the results for the first two fil-
ters having smallest MDL are tabulated in Table III. We
can see that the appropriate filter for a given signal may
different for another type of signal. However, in practice
it is highly preferable to use only one "best” filter for all
signals. From the table the Symlets 7 and Symlets 8 filters
seem to be the candidates for the best filter. We simply
select the Symlets 7 filter for the compression of all power
disturbance data analyzed here.

Using the MDL we can compute the number of wavelet
coefficients to be stored as the compressed data. Here the
compressed data contains both magnitude and position of
the coefficients. We allocate 12 bytes for the magnitude
and 5 bytes for its position. The signal reconstruction of
this compressed data is done using Eq.(6). Figure 5 shows
an example of the reconstructed signal and its residual er-
ror for data no. 2 using the selected filter. In addition, more
effective compression can be performed by implementing
an additional lossless coding (e.g. Huffman, LZW, or LZH)
to the results of the DWT and WPT compression. Since
the coding has lossless properties, the compression always
reproduce the same data when a file is decompressed. Ta-
ble IV and Table V show the comparison of CR and MSE
of the analyzed signals using the Symlets 7 filter. The
compressed file size (in percentage of original file size) is
calculated for the DWT, WPT, and DWT+lossless cod-
ing as well as WPT+lossless coding. Both the DWT and
WPT compression significantly reduce the original file size
of each signal to less than 11%. Further, the tables show
that by implementing the lossless coding the CR’s are re-
duced to more than a half of those CR’s without the lossless
coding.
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TABLE 1

NUMBER OF RETAINED COEFFICIENTS, MSE, AND MDL VALUE FOR 22 WAVELET FILTERS USING DWT

Filter k MSE MDL k MSE MDL k MSE MDL k MSE MDL k MSE MDL k MSE MDL
n (1) (1) (1) (2) (2) (2) (3) (3) (3) (4) 4) (4) (5) (5) (5) (6) () (6)
Dbl 160 14.68 12904 336 10.38 13891 327 10.31 13740 214 0.86 12041 247 11.00 12922 217 13.84 13435
Db2 133 10.95 11367 341 3.40 0491 388 2.76 5290 205 3.63 7916 168 6.56 9789 147 9.97 11182
Db3 135 10.13 11080* 598 0.89 7607 629 0.73 7246 163 3.26 6927 591 1.14 8478 556 1.72 9671
Dbd 138 10.11 11114 577 0.75 6644 600 0.62 6205 539 0.85 6638 547 1.15 7931 527 1.71 9246
Db5 138 10.17 11137 588 0.72 6611 609 0.59 6084 528 0.84 6434* 547 1.13 7845 529 1.64 9106
Db6 140 10.02 11105 577 0.73 6539 601 0.59 6016 537 0.83 6477 541 1.11 7693 533 1.61 9098
Db7 132 10.50 11184 593 0.72 6696 603 0.59 6041 537 0.82 6445 538 1.10 7629* 533 1.61 9091
Dbh8 144 10.12 11200 577 0.73 6537 604 0.60 6128 541 0.82 6490 547 1.08 7699 531 1.61 9065*
Dbg 143 10.16 11200 583 0.74 6667 601 0.59 6004* 539 0.82 6482 548 1.08 7683 539 1.59 9118
Dbl0 144 10.20 11229 578 0.73 6550 608 0.59 6112 542 0.82 6516 540 1.09 7631% 534 1.61 9115
Coifl 136 10.70 11313 331 3.49 9457 377 2.75 9125 201 3.67 7908 165 6.47 9695 633 1.92 11139
Coif2 147 9.92 11159 582 0.76 6758 597 0.63 6221 544 0.85 6704 551 1.13 7911 533 1.67 9232
Coif3 146 10.18 11248 577 0.75 6611 603 0.60 6068 941 0.83 69534 541 1.10 7683 935 1.63 9162
Coifd 151 10.11 11290 582 0.73 6589 610 0.59 6115 545 0.82 6576 552 1.09 7782 540 1.60 9162
Coif5 161 9.92 11351 588 Q.74 6713 602 0.61 6111 556 0.82 6690 558 1.07 7780 544 1.60 9205
Sym?2 133 10.95 11367 341 3.40 9491 388 2.76 9290 205 3.63 7916 168 6.56 9789 147 9.97 11182
Sym3 135 10.13 11080 598 0.89 7607 629 0.73 7246 163 3.26 6927 501 1.14 8478 556 1.72 9671
Sym4 138 9.99 11065* 578 0.77 6766 590 0.65 6219 534 0.88 6692 545 1.15 7910 529 1.68 9217
Sym$5 138 10.10 11111 584 0.72 6584 609 0.58 6054 537 0.84 6518 546 1.12 7828 532 1.63 9120
Symé 141 10.02 11120 587 0.71 6561 601 0.59 6024 536 0.83 6468 536 1.12 7664 528 1.62 9056*
SymT 138 10.26 11175 569 0.75 6502% 603 0.59 6022 536 0.82 6443% 532 1.12 7637 537 1.60 9114
Sym8 142 10.20 11202 577 0.72 6486* 592 0.61 5971% 543 0.83 6554 543 1.09 7671 535 1.61 9114

Note: The number inside the parenthesis is the data number, and the asterisk (*) indicates the first two minimum MDL.
TABLE II
NUMBER OF RETAINED COEFFICIENTS, MSE, AND MDL VALUE FOR 22 WAVELET FILTERS USING WPT
Filter k MSE MDL k MSE MDL k MSE MDL k MSE MDL k MSE MDL k MSE MDL
n (1) (1) (1) (2) (2) (2) (3) (3) (3) (4) (4) (4) (5) (5) (5) (6) (6) (6)
Dbl 187 13.40 12890 341 9.98 13787 336 9.74 13622 352 5.46 11521 279 9.82 12886 217 13.88 13433
Db2 135 10.90 11362 354 3.26 9481 387 2.76 9261 206 3.63 7916 169 6.56 9789 148 9.97 11182
Db3 139 10.05 11090 608 0.88 7670 628 0.75 7287 165 3.25 6926 592 1.14 8478 557 1.72 9671
Db4 142 10.06 11136 583 0.75 6705 603 0.65 6382 539 0.85 6621 550 1.15 7967 528 1.71 9239
Dbs 135 10.44 11189 595 0.72 8705 620 0.58 6166 530 0.84 6453% 547 1.12 7816 529 1.64 9091
Db6 146 10.02 11173 593 0.71 6626 503 0.82 6060 538 0.83 6480 540 1.12 7704 532 1.62 9082
Db7 138 10.50 11251 589 0.75 8766 5904 0.63 68125 538 0.83 6480 537 1.10 7625% 534 1.61 9079
Dbg8 150 10.18 11291 595 0.71 6631 614 0.59 8149 541 0.82 6487 549 1.08 7707 531 1.61 0055%
Db9 129 10.27 11044* 587 0.74 6712 596 0.60 6007 540 0.82 6482 549 1.08 7683 540 1.59 9117
Dbl0 137 10.29 11158 587 0.73 6664 603 0.60 6072 543 0.82 6516 541 1.09 7631 535 1.61 9115
Coifl 136 10.73 11313 331 3.50 0463 381 2.73 9137 202 3.67 7908 166 6.47 0695 834 1.92 11147
Coif2 148 9.92 11159 586 0.74 6708 597 0.63 6193 541 0.86 6658 549 1.14 7910 534 1.66 9209
Coif3 150 10.01 11221 585 0.71 6492 800 0.59 5984 540 0.83 6510 539 1.10 7652 534 1.63 9138
Coifd 154 10.03 11286 586 0.70 6487 611 0.58 6028 546 0.82 6576 553 1.09 7782 541 1.60 9162
Coif5 162 9.94 11357 597 0.71 6657 601 0.59 5974 557 0.82 6690 559 1.07 7780 545 1.60 9205
Sym2 135 10.90 11362 354 3.26 9481 387 2.76 9261 206 3.63 7916 169 6.56 9789 148 9.97 11182
Sym3 139 10.05 11090 608 0.88 7670 628 0.75 7287 165 3.25 6926 592 1.14 8478 557 1.72 9671
Sym4d 140 9.93 11058* 589 0.75 6752 591 0.65 6220 532 0.89 6681 544 1.15 7887 531 1.67 9199
Symb 140 10.05 11103 586 0.72 6590 593 0.61 6033 539 0.83 6524 545 1.13 7807 530 1.64 9101
Sym6 144 9.96 11121 585 0.70 6459 599 0.59 5946 536 0.83 6474 537 1.12 7664 529 1.62 9056*
Sym7 146 16.01 11167 569 0.73 6420™ 598 0.58 5885* 538 0.82 6464* 532 1.12 7610* 536 1.60 9093
Sym8 143 10.20 11203 580 0.71 6435* 583 0.60 5818* 543 0.83 6539 540 1.10 7647 535 1.60 9088

Note: The number inside the parenthesis is the data number, and the asterisk (*) indicates the first two minimum MDL.

TABLE III
THE APPROPRIATE WAVELET FILTERS BASED ON MDL CRITERION
Data DWT WPT
1 Sym4 - Db3 Db9 - Sym4
2 Sym8 - Sym7 | Sym7 - Sym8
3 Sym8 - Db9 | Sym8 - Sym7
4 Db5 - Sym7 Db5 - Sym7
5 Db7 - Db10 Sym7 - Db7
6 Sym6 - Db8 Db8 - Sym6

V1. CONGLUSIONS

The application of DWT and WPT for compressing the
data of power system disturbances has been evaluated.
Both transforms offer attractive properties for the com-
pression. The experimental results show that better qual-
ity reconstruction can be achieved by employing an ap-
propriate wavelet filter to each signal. In practice, it is
preferable to use one suitable filter for all signals. Using

0-7803-7173-9/01/$10.00 © 2001 IEEE

the MDL criterion, the Symlets 7 filter generally appears
superior than other wavelet filters for most power distur-
bance signals analyzed here. The compression ratios that
can be obtained using this filter are varied but less than
11%. Combining wavelet and wavelet packet compression
with a lossless coding could results in better compression
ratios. Our results show that the compression ratios are re-
duced to mora than a half by implementing an additional
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TABLE IV
CR AND MSE usine¢ DWT WITH SYMLETS 7 FILTER AND LOSSLESS
CODINGS
Data DWT | DWT+Huff. | DWT+LZW | DWT+LZH MSE
(%) (%) (%) (%) (%)
1 2.49 1.10 1.20 1.09 10.26
2 10.10 4.38 4.45 4.19 0.75
3 10.72 465 167 4.40 0.50
] 9.54 3.74 3.20 2.80 0.82
5 .46 3.73 305 2.68 1.12
6 055 376 3.10 274 1.60
TABLE V
CR AND MSE usiNe WPT wITH SYMLETS 7 FILTER AND LOSSLESS
CODINGS
Data || WPT | WPTHHuff. | WPT+LZW | WPT+LZH | MSE
(%) (%) (%) (%) (%)
1 2.75 1.21 1.32 1.19 10.01
2 10.23 443 750 4722 0.73
3 10.75 4.66 4.67 4.39 0.58
3 §.72 3.80 335 285 0.82
5 9.55 3.76 3.07 2.70 1.12
6 0.64 3.80 3.13 2.78 1.60
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[Fig. 5. The original, reconstructed, and residual error signals of data
no. 2 using WPT with Sym7 filter.

lossless coding. Finally, the compression algorithm pre-
sented here can be used to compress not only ground fault
signals but also wide variety of one-dimensional power dis-
turbance signals.
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