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Abstract 
This paper describes a method of planning of observa- 

tion and motion for a mobile robot to interpret a road inter- 
section scene and to reach the intersection as soon as pos- 
sible Considering the uncertainty of interpretation. From 
a monocular color image, candidate regions are extracted 
for objects which are related to the intersection type. The 
probabilities of the regions comingfrom the objects are cal- 
culated from probabilistic models of the objects. From the 
probabilities of the regions and the relation between the in- 
tersection type and the objects, the current probability of 
intersection types is calculated. If the intersection type 
i s  ambiguous, the robot plans the observation and motion 
which minimize the ezpectataon of the cost(time) to cam- 
plete the task. The robot tabes these actions and tries to 
determine the intersection type again. This process is it- 
erated until the task is completed. The experimental result 
is shown for an actual intersection scene. 

1 Introduction 
It is an important issue for a mobile robot to make 

a road map. The robot moves around a town and in- 
terprets the types of encountered intersections to use 
them as landmarks. In order to make the map effi- 
ciently, the robot has to interpret each intersection and 
pass the intersection as soon as possible. It is not easy 
to interpret the intersection unambiguously because 
of the following three reasons: (1) objects which are 
related to intersection types var in their attributes 
such as color, shape and size; (2J intersection scenes 
include various objects whose attributes are similar to 
one another; (3) enough sensor information is not al- 
ways available. If the interpretation is ambiguous, the 
robot repeats the observation while approaching the 
intersection. 

Fig. 1 shows a typical situation, where the robot ob- 
serves the intersection scene at the first viewpoint(u) 
and tries to determine the intersection type. Since 
the left branching road and the straight road cannot 
be observed in the image, the intersection type is am- 
biguous. Then, the robot determines which parts it 
observes attentively after approaching to the intersec- 
tion. Since the left branching road is wide and the 
straight road is narrow, the robot observes the left 
branching road at b and the straight road at c because 

the observation of the straight road at b probably re- 
sults in failure. 

Attentive Observ 

Figure 1: A robot determining type of intersection. 

Cameron et al.[l] proposed a method of selecting 
the observation and motion to determine the position 
and direction of objects considering the uncertainty 
of recognition neglectin the cost of observation and 
motion. Rimey et al.[27 proposed a method of con- 
trolling a camera for determination of class and po- 
sition of objects to minimize the expectation of the 
cost for determination considering the uncertainty of 
recognition. This method does not consider the posi- 
tion which the camera reaches finally. 

In this paper, we propose a method of planning of 
observation and motion which minimize the expecta- 
tion of the cost to interpret a intersection scene and 
to reach the intersection considering the uncertainty 
of interpretation. First, regions considered to come 
from objects are extracted from an observed color im- 
age. Then, probabilities of the regions coming from 
the objects are calculated from probabilistic models 
of the objects. From these probabilities and the rela- 
tion between the intersection type and the objects, the 
probability of intersection types is calculated. If the 
intersection type is ambiguous, the robot determines 
the optimal observation and motion to complete the 
task. The robot takes these actions and tries to de- 
termine the intersection type again. This process is 
iterated until the task is completed. 
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2 Intersection Model 
The types of intersections are characterized by 

the number and direction of the branching roads(see 
Fig. 2). The intersections have particular objects such 
as curve mirror whose classes and positions are deter- 
mined by the intersection types. In this pa er, we di- 
vide an intersection scene into eight areas6ee Fig.3). 
We suppose that each area has only one object and 
that the object classes depend only on the intersection 
types. The objects are described by several attributes 
such as color, shape and size. We suppose that each 
attribute is independent of other attributes and that 
each attribute depends only on the corresponding ob- 
ject. The relation between the intersection types, the 
objects and their attributes are represented as shown 
in Fig. 2. The relation is determined experimentally. 

- consistent 
Intersection type inconsistent 

... m...m . .  

Figure 2: Model of intersection scene. The consistent 
lines indicate that the classes and areas of the objects 
are consistent with the intersection types; the incon- 
sistent lines indicate that they are inconsistent with 
the intersection types. 

possible range ' 

Figure 4: Probability dis- 
tribution that a object o Figure 3: Eight areas 

into which an intersec- has an attribute a. 
tion scene is divided 

2.1 Object Model 
In real intersection scenes, objects vary in their at- 

tributes within certain ranges. We represent the varia- 
tion by describing each attribute as a probability den- 
sity function. Fig. 4 shows example probability dis- 
tribution that an object o has an attribute value a. 
The distribution used here is determined experimen- 
tally. The positions of objects in each intersection type 

also vary within certain ranges. We describe their po- 
sitions by normal distributions. The models of two 
objects are shown in Fig. 5. 

Probability density functions 
fofattcibutes 

PO 

he 

I 1  . .. . . .  

(a) Mirror at right side 

Probability density functions - 

diff : difference in brightness 
between qions 

(b) Gap of left road boundary 

Figure 5: Models of objects 

3 Observation Model 
Objects are found in the observed color image as 

regions with several attributes such as color, shape 
and size. For example, a curve mirror is observed as 
a thin rectangle region whose color is orange. 

If the objects are near to the robot, the regions are 
large in the image and it is reliable that the attributes 
of the regions are equivalent to those of the objects. 
On the other hand, if the objects are far from the 
robot or the direction of the view of the camera is not 
relevant, the regions are small and unreliable. 

Fig. 6 shows an example case that the reliabilities 
of the regions depend on the distance from the robot 
to an object. In Fig. 6(a), a curve mirror which is 
far from the robot is observed in the white square. 
Fig. 6(b) shows the pixels whose colors are orange in 
the square area of Fig. 6(a)(the white superimposed 
pixels show such orange pixels). In this figure, there 
are few orange pixels and no reliable re 'ons can be 
found. On the other hand, in Fig. 6(cy the curve 
mirror is near and there are many orange pixels(see 
Fig. 6(d)). In this figure, a large and reliable region is 
found. 

The large and reliable regions are extracted from 
the image by using the knowledge of the object(see 
[3]). They are used as evidence for interpretation of 
the intersection types. On the other hand, the small 
regions axe ignored. In this case, the facts that no 
regions are extracted are used as evidence. 

We suppose that there is an ideal image plane which 
has an infinite resolution and no noize, and that ob- 
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(a) The mirror is far from the 
robot(distance = 25[m]). 

(c) The mirror is near(distance = 
514). 

(b) The or- 
ange pixels. 

(d) The or- 
ange pixels. 

Figure 6: RRlation between the orange regions ex- 
tracted from the image and the distance from the 
robot to the mirror. 

jects are observed as regions on the ideal image(true 
regzons denote such regions). If the robot is near 
enough to the objects, the true regions are large and 
reliable. If the robot is far, they are small and unre- 
liable. The large true regions are extracted from the 
image and used as evidence for interpretation(& de- 
notes such evidence). The small regions are ignored 
and the facts that no regions are extracted are used 
as evidence(E2). In this section, we describe such ob- 
servation model by using the probabilistic theory con- 
sidering the region size which depends on the object 
size, the distance from the robot to the objects, and 
so on. 

Let P(elo,w) denote the likelihood that the robot 
obtains the evidence e(€ &or&) by observing the 
object o with observation parameters w(the osition, 
view direction and focal length of the camer$. 

By using the true region T’, P(elo,w) is represented 
as follows: 

where R’ is the possible set of the true regions. 
~(~’10, U) represents the probability that the true 

region T’ comes from the object o with the observation 
parameters w. The true region is represented by a set 
of the attributes ai, a i ,  ... Since these attributes are 
supposed to be independent, 

P(+ ,  = P ( 4  lo, w>P(.;lo,W)... (2) 

Each p a’lo,w) is calculated by using the attribute 

two probability distributions for attributes a’ and d ( s ’  
represents the size of the true region especially) are 
shown. The probability distribution p(r’lo, U) made 
up from these attribute probability distributions is 
also shown in this figure. 

probabi I ity distribution shown in Fig. 4. In Fig. 7, 

I 

roo s m d  lorge errorig r 

Figure 7: Relation between true region and evidence 

The set of the true regions consists of two sets. One 
is a set of the regions which are large enough in the 
ideal image(R: denotes such set), and the other is a 
set of the regions which are small(R;). In Fig. 7, the 
set of the regions whose s’ is large enough is Ri, the 
set of the regions whose s‘ is too smal l  is 72;. 

P(elr’, 0, U )  represents the probability that the evi- 
dence e comes from the true region r’. This probability 
de ends on whether the true region belongs to Ri or 

0 If r‘ belongs to R:, the robot can obtain a region 
whose attributes are equivalent to those of the 
true region. 

0 If T’ belongs to Ri, no region is extracted. In this 
case, the robot obtains the evidence belonging to 
E2. 

In Fig. 7, the relation between the true regions and 

By using 72: and 72;, Eq. (1) is represented as fol- 

P R2. 

the obtained evidence is shown. 

lows: 

(3) 
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In the first term, 

(4) 
1 
0 (otherwise) 

(e E &I and e = d ( ~ ' ) )  P(elT', 0,  w )  = 

where d ( ~ ' )  represents the evidence whose attribute 
values are equivalent to the discrete values of the cor- 
responding attributes of the true region T I .  Thus, 

In -the second term, 

0 (e E El) 
1 (e E Ez). P(elT', 0 ,  w )  = 

( 5 )  

Thus, 

~ ( ~ ' 1 0 ,  w ) d d  (e E E2). 
second term = 

(7) 
We calculate the likelihood(P(elo, U)) by using 

From Fig. 6(a), no regions are extracted and the 
likelihood that no regions axe obtained is 1. From 

Eq. (1) - pl. (7). 

Fig. 6(c), an orange rGgion is extracted and the likeli- 
hood that the region is obtained is 3.47 x lo-''. 

4 Interpretation of Intersection Scene 
Let el2 = (et,eg, ...) denote the pieces of 

current evidence, wk the current observation pa- 
rameters(assumed to be known) and Ek-' = 
(ek-',wk-', ..., e', w ' }  the pieces of the past evidence 
with the past observation parameters. By using ek, wk 
and Ek-', the robot calculates the conditional prob- 
ability of the hypothesis that the current intersection 
type is Ii E Z as follows: 

P(I,lek, w k ,  

where /? = [P(e*1wk,Ek-')]-l.  

observation parameters, 

= PP(Iilw',,E"-l)P(eklI~, wk E"' 
' (8) 

Since the intersection type is independent of the 

P(I&"E"-l) = P(IaJE"-1). (9) 

P(&lE0) is set to a prior probability distribution of 
the intersection type. 

Let oa(c.) denotes an object whose area is repre- 
sented by the suffix a and class is represented by the 
suffix j. From the objects which are in the field of view 
of the camera with the observation parameters w k ,  we 
make various combinations o = (elk 1) , 0 2  (cj 2), 
where jl E 1 N J1;jl = 0 N J 2 ;  .... rom the possibk 
combinations, we make an exclusive and exhaustive 
set U(wk)(see [3]). 

By using O(wk), P(eklIi, wk,  is represented 
as follows: 

P(eklIi, w k ,  E"') 

= C P(elo, ~ i ,  w k ,  P ' ) ~ ( o l ~ i ,  w k , P - ' ) .  (IO) 
O € O ( W k )  

Since each evidence depends only on the corre- 

P(ek1o,Ii,wk,Ek--l) = P(eklo,wk).  (11) 

Since each evidence is independent of other evi- 

sponding object and the observation parameters, 

dence, 

P(eklo,wk) = ~ P ( e ~ l o o ( c j ) , w k ) .  (12) 

P(e,lo,(cj),w) is calculated as described in Sec. 3. 
Since the object at an area is independent of the 

objects at the other area and each object depends only 
on the intersection type, 

0 

P(OlIi, L2,Ek-l)  

= ~ P ( o O ( c j ) ~ I ~ , w t , E L - ' )  = n P ( o 0 ( c j ) l I , ) .  (13) 

The probability P(oo(cj)lIi) is defined as described 

in !Le probability distribution of the intersection 
types is calculated by using Eq. (8) - Eq. (13). If 
the intersection type is determined from the probabil- 
ity distribution unambiguously, the robot adopts the 
best hypothesis of the intersection type. 

5 Observation and Motion to Resolve 
Ambiguity of Interpretation 

a 0 

In real intersection scenes, there are several cases 
that the robot cannot find the objects even if the ob- 
jects exist. These reasons are as follows: (1) the sizes 
of the objects are small; (2) the view oint is too far 
from the objects to observe them; (3p the robot ob- 
serves the object in the bad direction; (4) the objects 
are occluded by other objects such as persons, bicycles 
and cars. In such cases, the interpretation of intersec- 
tion types becomes ambiguous. 

To overcome such situations, first, the robot deter- 
mine the next viewpoint and the next observed area so 
that it can determine the intersection type and reach 
the intersection as soon as possible. Then, the robot 
moves to the next viewpoint and observes the mea at- 
tentively. These processes are iterated until the robot 
completes the task. In order to complete the task as 
soon as possible, the robot has to determine the opti- 
mal area and viewpoint. In this section, we describe 
a method of searching for the observation and motion 
which minimize the expectation of the cost to com- 
plete the task. 

Now suppose that the robot has the pieces of ev- 
idence with the observation parameters E k .  If the 
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robot repeats the optimal observation and motion 
from the current state, the robot can complete the 
task in a minimum cost. Let C(Ek) denote such cost. 
The cost is zero if the task is completed. 

Let w:+l denote the observation parameters 
achieved &om the wk by an action(motion and ob- 
servation) a, and f i ( w y l )  denote a set of possible 
evidence predicted to be obtained with w y l .  If the 
robot takes the action a, the expectation of the cost 
is represented as follows: 

CQI (E'") 
= C(kk+l,Wkfl,Ek)P(kk+llWk++1, Ek) 
i?+l € & ( W i + l )  

+ T ( a ) ,  (14) 

where T(a)  is the time for taking the action. 

as follows: 
By using O(w:+'), P(kk+' Iwt+', Ek) is represented 

p(gk++l l  k+l Ek 
WQI 7 ) 

= P(k"' lo ,~k+~,  Ek))P(olwt+l,Ek)).  (15) 
OEO(Wk+l) 

Since the evidence depends only on both the objects 
and the observation parameters, 

P ( k ! + l l ~ ,  wt+', Ek) = P(i5"'llo, w:+'") (16) 

P(kk+llo,wk+l) is calculated as described in Sec. 3. 

P(olw:+l, Ek) is represented as follows: 
By using the set of the intersection types I;. E 2, 

P(OlWt++l ,  E'") = P(olI,, Ek)P(qW:+l, E k ) .  

(17) 
i 

Since the objects depend only on the intersection 
types, P(olIi, w:+', Ek) = P(oI&). And since the in- 
tersection type 1s independent of the observation pa- 
rameters, P(Iiluk+',Ek) = P(IilEk).  

The best action is represented as follows: 

If a* is selected, C(E'") is updated as follows: 

C(P) = c,* (E". (19) 

The robot moves to the next viewpoint and ob- 
serves the next area by taking the action a*. Then 
it obtains a new evidence and tries to interpret the 
intersection types from the evidence. This process is 
repeated until it  determines the intersection type and 
reaches the intersection. 

6 Experimental Result 
The experiment is made on the following assump- 

tion. 

1. The advance speed is constant(20[km/h]). 

2. The time needed for scene interpretation and ac- 
tion determination is constant(l.5[sec]). 

of the time. 
3. The robot repeats the observation at the interval 

4. If the robot is close to the intersection, it can 
determine whether or not there is a branching 
road. 

Fig. 8 shows an image of a sam le intersection 
scene. In the position indicated by (ay, a region con- 
sidered to be a gap whose area is Areas is extracted. 
From the region, the distance between the robot and 
the intersection is calculated to be 28[m]. The likeli- 
hood of the region is 5.00 x Fig. 9 shows the 
probability distribution of the intersection types cal- 
culated from the region. From the distribution, the 
robot cannot determine the intersection type. 

Figure 8: Sample road intersection scene 

P(Zi le', a', E o )  
1 .o 

0 I 

Figure 9: Probability of intersection types for Fig. 8. 

The optimal action is to advance eight meters and 
observe Area4 attentively. The expectation of the cost 
is 9.02[sec]. Fig. 10 shows a newly obtained image. In 
the position indicated by (a), a region considered to be 
a gap whose area is A ~ e a 4  is extracted(the likelihood is 

524 



2 . 0 7 ~  lo-’). Fig. 11 shows the probability distribution 
of the intersection types calculated from the region. 
From the distribution, the robot cannot determine the 
intersection type yet. 

Figure 12: New image obtained by attentive observa- 
tion 

Figure 10: New image obtained by attentive observa- 
tion 

P(Z;  le’, a’, E ’ )  

i 0. 

Figure 11: Probability of intersection types for Fig. 10. 

The optimal action is to  advance eight meters more 
and observe ATeaa attentively(the expectation of the 
cost is 5.83[sec]). Fig. 12 shows a newly obtained im- 
fge. In the position indicated by (a), a region con- 
sidered to be a straight road whose area is Area2 is 
extracted the likelihood is 2.33 x lo-’). Fig. 13 shows 

calculated from the region. n o m  the distribution, the 
robot can determine that the intersection type is a 
cross type. And the robot reaches the intersection 
while it calculates the probability distribution. 

7 Conclusion 
This paper describes a method of planning of ob- 

servation and motion for a mobile robot to interpret 
a road intersection scene and to reach the intersec- 
tion as soon as possible considering the uncertainty of 
interpretation. 

From a monocular color image, candidate regions 
are extracted for objects such as curve mirror. The 
likelihoods of the regions are calculated from the prob- 
abilistic models. From the probabilities of the regions 

the proba b ility distribution of the intersection types 

P ( Z ,  le3, a3, E ’ )  
1 

I I I I 

0.0 

Figure 13: Probability of intersection types for Fig. 12. 

and the relation between the objects and the inter- 
section types, the current probability of intersection 
types is calculated. If the intersection type is deter- 
mined unambiguously, the robot adopts the intersec- 
tion type and goes to the intersection. 

Otherwise, the robot determines the observation 
and motion which minimize the expectation of the cost 
to complete the task. The robot takes these actions 
and tries to  determine the intersection type again. 
This process is repeated until the task is completed. 

The experimental result is shown for an actual in- 
tersection scene. 
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