
Title Parallelizing planning and action of a mobile
robot based on planning-action consistency

Author(s) 三浦, 純; 白井, 良明

Citation Proceedings - IEEE International Conference on
Robotics and Automation. 2001, 2, p. 1750-1756

Version Type VoR

URL https://hdl.handle.net/11094/14066

rights

c2001 IEEE. Personal use of this material is
permitted. However, permission to
reprint/republish this material for advertising
or promotional purposes or for creating new
collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted
component of this work in other works must be
obtained from the IEEE..

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Proceedings of the 2001 IEEE
International Conference on Robotics 8 Automation

Seoul, Korea . May 21-26, 2001

Paralle1in:ing Planning and Action of a Mobile Robot
Based on Planning-Action Consistency

Jun Miura and Yoshiaki Shirai
Dept. of Computer-Controlled Mechanical Systems,

Osaka University, Suita, Osaka 565-087 1, Japan
j un 0 mech.eng . Osaka-u. ac .j p

Abstract

This paper proposes a novel method to schedule paral-
lel execution of planning and action of a mobile robot. The
method considers the following two types of parallelism.
(I) acting while planning: i f a partial planning result can
be used to determine feasible actions, such actions can be
executed while the planning process is still going. (2) plan-
ning while acting: i f the result of fhe current action is (at
least partially) predictable, the planning for the next ac-
tion can start in advance of the completion of the current
action. The proposed method uses the notion of planning-
action consistency to guide the scheduling. The method
has been successfully applied to a mobile robot navigation
problem under sensor uncertainty.

1 Introduction
Resource limitation and uncertainty are two important is-
sues in planning for an agent in the real world. These two
issues are closely related to each other; since planning un-
der uncertainty is usually costly, the limitation of compu-
tational resources tends to be critical. Controlling the plan-
ning process by explicitly considering the planning cost
is one approach to improvement of the overall efficiency
[l]. Another approach is to schl2dule parallel execution
of an agent’s several activities such as reasoning, sensing,
and action. This paper studies the parallel scheduling in
a mobile robot navigation problem in which planning and
vision-motion operations can run in parallel.

Fig. 1 shows an example problem treated in this paper.
A mobile robot, which has a rough map of the environment,
is going to the destination while selecting routes. There is
a route which passes the narrow :pace (called gate); how-
ever the passability of the gate is initially unknown due to
the uncertainty of visual data oblained at the initial posi-
tion. The detour passing through the hallway is known to
be passable, although it is longer. The robot estimates the
gate width with stereo vision to determine the passability.
The objective of planning is to generate a sequence of ob-
servation points which leads the robot to the destination
efficiently. Such a situation is quite usual; for example, in
a typical office environment, the position of desks, chairs,
and other furniture are roughly known, while their exact
locations are uncertain; some chairs may block the robot
from taking a certain path to the destination.

U desks

&-- ., ------- gate
iriitial 1
position \

\, desk

table

destination

,--7
table I

I

Fig. 1: An example problem

This navigation problem can be hierarchically decom-

o The high-level planner generates a subgoal (i.e., an
observation point).

o The low-level action controller determines an action
(i.e., movement and observation) to achieve the sub-
goal and executes it.

This paper investigates the parallel scheduling of planning
and action in this hierarchical structure.

posed into the following two subproblems:

2 Two Types of Planning-Action Parallelism
This section considers the following two types of planning-
action parallelism: acting while planning and planning
while acting. First, suppose the case where planning and
action are sequentially performed. In this case, the follow-
ing two steps are repeated: an action is determined by its
preceding planning; a planning is performed based on the
result of its preceding action. For parallelizing planning
and action, therefore, one activity (planning or action) has
to predict the result of the other activity in order to start be-
fore the completion of the other. The above-mentioned two
types of parallelization are possible depending on which
activity’s result is predicted.

2.1 Acting while Planning
The acting while planning parallelism is to predict the

result of the current planning and to start an action before
the current planning finishes (see Fig. 2(a)). This type of
parallelism has little been considered so far, but is impor-
tant to improve the overall performance in the case where
planning requires much computation due to uncertainty of
information.

0-7803-6475-9/01/$10.00~~ 2001 IEEE 1750

plcmning

action

(a) acting while planning parallelism

planning

action

(b) planning while acting parallelism

p/anning

action

(c) combination of the above two

Fig. 2: Two types of parallelism and their combination.

2.2 Planning while Acting
The planning while acting parallelism is to predict the

result of the current action and to start the planning for
the next action before the current action finishes. Realtime
search (e.g., [2]) or interleaving (e.g., [3]) is a suitable plat-
form for this type of parallelism; that is, during execution
of a selected action, the planner can search for the next ac-
tion at the new state to be achieved by the current action.
This parallelism is illustrated in Fig. 2(b). The planner
sends a selected action (or action sequence) to the action
controller for execution. Once the action is completed, the
action controller waits for the next selected action.

Horvitz [4] proposed the models of continual compu-
tation which consider the effective use of the idle time
between occurrences of problem instances. He showed
several criteria and methods to determine which problem
instances should be examined proactively based on the
knowledge of forthcoming problem instances, such as a
probabilistic distribution of their occurrences.

3 Parallel Scheduling Based on Planning-
Action Consistency

This section describes our strategy for realizing both act-
ing while plcinnirig and planning while acting parallelisms
(see Fig. 2(c)). For scheduling, we need to decide a pair
of parallelizable planning and action. For this purpose, we
propose to introduce the notion of planning-action consis-
tency, which states what actions are consistent with the
current action and vice versa. A concrete planning and
scheduling algorithm is described later.

3.1 Strategy for Acting while Planning
In the hierarchical decomposition of problems de-

scribed in Sec. l , the high-level planning process of sub-

Fig. 3: Illustrative example of acting while planning.

goal determination can be viewed as a process of gradually
reducing the subgoal candidates towards the final commit-
ment to one subgoal [5]. If there are some ground-level
actions which are consistent with (or, do not largely con-
flict with) the remaining subgoal candidates, such actions
can be executed while the high-level planning process is
still going.

Fig. 3 illustrates the above idea. First, the initial set
of feasible subgoal candidates is derived, which are col-
lectively called an FSS (feasible subgoal space) (see Fig.
3(a)). Then, a set of actions which are consistent with the
FSS, called CAS (consistent action space), is selected (e.g.,
the shaded area in Fig. 3(a)). Among the candidate actions,
the best one is selected and executed (see Fig. 3(b)). As the
planning process continues, the FSS is reduced and actions
are selected and executed repeatedly (see Fig. 3(c)). Fi-
nally one subgoal is selected and, a few moments later, the
robot reaches the subgoal (observation point) and makes
an observation (see Fig. 3(d)). If planning and action are
sequentially performed, the robot is still at the initial posi-
tion when the commitment to the subgoal is made. Thus,
the distance which the robot travels until the commitment
is made is the merit gained by the acting while planning
parallelism.

Since the planning and the action processes can be ex-
ecuted asynchronously and in parallel, the space of possi-
ble schedules could be too huge to search. Therefore, we
limit the timing of changing actions only to the end of each
candidate-reducing cycle of planning.

To implement the above acting while planning schedul-
ing, we need the following:

0 A planning process which iteratively reduces the can-

A criterion to evaluate the consistency between an ac-

0 A criterion to stop the iteration and to commit to one

didates (iterative rejinement planning),

tion and an FSS (consistency criterion), and

subgoal (commitment criterion).

The above two criteria are problem-specific; the concrete
criteria for our planning problem is described in Sec. 5.1.

1751

passable unknown impassable

action

passable unknown impassable d
L ' 1

(a) before expansion (b) after expansion

Fig. 4: Expansion of an open node of a plan candidate and its corresponding situation. Ellipses drawn with bold lines indicate open
nodes. In the leftmost and the rightmost figures, solid arrows, dashed arrows, and dotted arrows correspond to movement when the gate's
state is passable, impassable, and unknown, respectively.

3.2
We consider the effective use of the time between the

commitment to one subgoal and its completion (see Fig.
3(d)). Suppose we can predict and enumerate a set ofpossi-
ble states at the completion of the: current action, probably
using a probabilistic action model. To proactively plan the
next action for one predicted stale, which we call a plan-
ning option, can be considered to be consistent with the
current action. A set of such planning options is performed
in parallel with the current action.

If the robot has enough time for this proactive planning,
all planning options are performed. If not, a set of planning
options is selected for execution based on the expected util-
ity of planning. Since the allocated time for proactive plan-
ning is predictable, we apply optimization techniques such
as linear programming to this selsection problem. Contract
anytime algorithms [6] may also be suitable for such opti-
mization.

Strategy for Planning while Acting

4 Iterative Refinement Planning
4.1 Plan Representation

A state is represented by the estimate of the gate width
and the robot position. Due to vision uncertainty, the robot
cannot measure the exact gate width but obtains its prob-
abilistic distribution. After an observation, the robot clas-
sifies the state of the gate into one of the three categories
(passable, impassable, and unknown) according to the re-
lationship between the probabilistic distribution and the
robot width [7].

Since the actual state after an observation depends on
the observation result and cannot be determined before-
hand, a subplan is generated for each possible state. Such

a contingent plan is represented by an AND/OR tree as
shown in Fig. 4. A node for an unknown state is called
open. The quality of a plan is measured in terms of its exe-
cution cost, which is the expectution of the total execution
time for movement and observalion.

4.2 Iterative Refinement Formulation [SI
We formulate the planning process as an anytime iter-

ative refinement process [9]; namely, the planner searches
the space of feasible plans (executable plans) for the final
plan. This formulation entails an easily-obtainable feasible
plan for any open node. We use the following one:

The robot moves from the current position to the
position just before the gate' . If the gate ispass-
able, the robot passes it; if not, the robot takes
the detour from that position.

We make every plan candidate feasible by temporarily as-
signing this feasible plan to all of its open nodes and cal-
culate its temporary cost.

A plan candidate is refined as follows. Before expan-
sion, an unknown state is treated as one open node and has
a feasible plan with it (see Fig. 4(a)). The expansion of the
open node consists of discretizing it with some granularity,
searching for the best action for each discretized state, and
assigning the feasible plan to newly generated open nodes
(see Fig. 4(b)). Note that the plan shown in Fig. 4(a) is
one of the initial feasible plans. Also note that, at present,
the granularity for discretization is predetermined to be a
constant value.

One iteration consists of the following steps:

At this position, the robot is assumed to be able to measure the gate
width without uncertainty.

1752

1. Refine all currently feasible candidates and calculate
their temporary costs. Let Crmp be the temporary
cost of plan candidate p .

2. Calculate the cost C f p - of the incumbent f p * (the best
feasible plan among those which have been obtained
so far) as the minimum of C ~ n p p ’ ~ .

3 . Predict the new cost CpneW of each candidate p after
thc next refinement step. Suppose we can predict the
plan improvement (i.e., cost reduction) AC,, which
will be obtained by expanding all of its open nodes’ .
Thcn, is given by CFmp - AC,. Remove can-
didatcs whose new cost is larger than Cfp* and goto
1 with the reduced candidate set.

When there is no candidate whose new cost is less than
Cfp* in step 3, thc planner terminates the iteration and
commits to fp*. The other termination condition, which
is the commitment criterion, is described in Sec. 5.1.2.

Note that although the planning process iteratively re-
fines plan candidatcs, the refinement at deeper levels than
the first level i s required only for comparing competing
candidates.

5 Scheduling Algorithm
The proposcd method performs acting while planning and
planning while acting altemately. Both types of schedul-
ing are perlhrmcd so that the expected time to reach the
destination is minimized. Fig. 5 shows a typical time chart
of parallel schcduling. Note that the initial FSS is not.ca1-
culated if it has been completed by the preceding planning
while acting.

5.1

5.1.1

Feasible plan candidates are the ones whose predicted new
costs are less than the cost of the incumbent (see Sec.
4.2). The current feasible subgoal space (FSS) is thus con-
structed as the set of the first subgoals (i.e., observation
points) of thc ieasible plan candidates.

Next we define the consistency criterion. Basically we
consider that a consistent action is the action which reduces
the distance to ever), subgoal candidate. By additionally

Scheduling for Acting while Planning

Feasible Subgoal Space and Consistent Actions

Planning

Action

movement observation

Fig. 5: A time chart of parallel scheduling.

An example method to predict plan improvement is proposed in [8] .

consirtent action spate (CAS)

\
bksi cbnsistent action

Fig. 6: Consistent action space and best consistent action.

using a problem specific knowledge that a winding move-
ment of the robot is not preferable, we define the consis-
tency criterion as follows (see Fig. 6).

We first set the search area for consistent actions sur-
rounded by the two tangent lines connecting the current
position and the two outmost position of the FSS. In this
area, we collect points from which the robot can reach any
candidate by a single circular trajectory satisfying the fol-
lowing two conditions:

0 The radius of the trajectory is no less than the robot’s

0 The robot does not turn more than 90 degrees on the

The collected points constitute the consistent action space
(CAS); that is, the movement to such a point is consistent
with the current FSS. The above criterion is also applied to
the cases where an FSS is composed of multiple clusters of
subgoal candidates in the 2-D space.

If there is no consistent action due to a large expanse
of the FSS, the robot performs the next refinement without
motion. A typical example of such a situation is the case
where the FSS is composed of two clusters, one at the north
and the other at the south of the robot.

minimum turning radius rmzn.

trajectory.

5.1.2 Determining Best Action

We choose an action which directs to the currently best fea-
sible plan fp*. In acting while planning, the robot maxi-
mizes the moving distance to minimize the execution cost,
as long as it remains inside the CAS. Therefore, one can-
didate action is to move to the CAS boundary on the line
directing to f p * (see Fig. 6).

To determine the action during planning, we consider
the following two distances. D,. is the moving distance of
the above action; Dall is the distance covered by the robot
moving at its maximum speed umaz for the duration of the
next refinement step.

We estimate the time to perform the next refinement step
as follows. For each candidate p , we calculate the cost (i.e.,
time) of expansion, which is the sum of expansion costs for
p’s open nodes3 . The time for the next refinement is then
calculated as the sum of all such costs.

The expansion cost of an open node is basically determined from the
number of candidate actions to be examined.

1753

The relationship between Dall and D,. has an impor-
tant role in action selection. Possible cases are enumerated
as follows.
(Case 1): If Dall 5 D,* (see Fig. 7(a)), since the robot
can finish the next refinement step before exiting from the
CAS, the robot can move at 'U,,,, while performing the
refinement. After finishing the relinement, a new action is
selected based on the updated FSS.
(Case 2): If Dall > D,. (see Fig. 7(b)), performing the
next refinement step instead of executing the current in-
cumbent (fp*) has a loss; namely, to perform the next re-
finement step, the robot has to move at a slower speed than
umaz so that the robot stays inside the CAS; on the other
hand, the robot can move at v,,, in executing fp*. The
loss of the former behavior is calculated as the time needed
to move the distance Dall - Da* at vma,. Thus, we com-
pare (i) Cf,. and (ii) the minimum of the new cost (i.e.,
min, C:"") plus the loss, in order to select the behavior as
follows.
(Case 2-a): If C;Zw + loss 5 c;f,*, the robot moves by
the distance Da* while performing the refinement. After
finishing the refinement, a new action is selected based on
the updated FSS.
(Case 2-b): If Cp"'"" + loss > iCsp*, the robot stops the
iterative refinement process and (executes fp*. This is the
commitment criterion. While executing this fp*, the robot
performs a proactive planning based on the planning while
acting scheduling.

5.2. Scheduling for Planning while Acting
5.2.1 Consistent Planning Options

We consider that a planning option is consistent with the
current action if it has a possibility of being executed af-
ter the completion of the action. Since further planning is
necessary in the cases where the gate's passability is un-
known after observation, a planning option for a predicted
unknown state is consistent. Note that unknown states can
be enumerated because we use a predetermined granularity
for discretization.

5.2.2 Determining Optimal Set of Planning Options

planning while acting, Tpwa. T,,,, is calculated as the time
between commitment to one subgoal and its completion.
The utility is measured by the time saved by proactively ex-
ecuting planning options; thus the time for executing each
option itself is the utility.

We first generate the initial FSS for each possible un-
known state to estimate the expected execution cost of each
option. For the ith state, let Pi be its probability and ti
be its execution cost of the next refinement. The expected
utility of executing the ith planning option is given by Piti.

be the remaining time, given by subtracting the
Ee%?the initial candidate generation from T,,,. If the
total execution cost (i.e., Cy=l ti) is less than Ti,,, then
all options are executed. If not, we solve the following op-
timization problem:

0 objective: cy=l Pitiwi

0 constraints: Cy=l tiwi 5 T&,,

-4 maximum,

wi = 0 or 1,
where wi is the variable which indicates whether the ith
planning option is executed. Thik is a 0-1 knapsack prob-
lem [lo].

If there still remains some amount of time after execut-
ing all planning options, we proceed to the deeper levels of
refinement until the time is exhausted.

6 Simulation Results
Figs. 8 and 9 show the planning problem used for simula-
tion and the two results with different initial probabilities
of the gate being passable. The robot moves directly to the
gate if it is passable; otherwise, lhe robot moves directly to
the entrance to the detour. Since the possible position of the
next observation point (subgoal) is limited to the inside of
the triangle shown in the center of the figure, we set grids
for subgoals (observation point) and actions (goal points
of actions) in this area. The other lines indicate possible
paths of the robot from the observation area to the desti-
nation. The minimum path length from the initial position
to the destination is about 680 [cm]; the maximum speed
(vmaz) is 5 [cmls] ; the time needed for one observation is
4 [s]. The granularity of discretization (see Sec. 4.2) is 5.

Fig. 8 is the result for the initial probability of 0.4. The
time the robot spent until the passability was determined
was 119.7 [SI. The time savings over the sequential method
made by acting while planning and planning while acting
were 17.23 [s] (12.6%) and 3.55 [s] (2.9%), respectively.
Fig. 9 is the result of the initial probability of 0.7. The
time until the passability was determined was 93.0 [SI; the
time savings were 12.9% and 1.3%, respectively. Since the
criterion for planning is to minimize the expected time to
the destination, we expect that the next observation point
will be near the left-upper edge of the triangle for a high
initial probability and will be near the lower edge for a low
initial probability. The FSSs in these two results appear as
expected.

A planning option is one refinement step for an unknown
state. We select a set of planning options so that the ex-
pected utility is maximized within the allocated time for

1754

COnsfslelIt ucflo

~

(a) From the initial FSS (the right cluster of points) and the CAS (the left one), the movement at U,,, was selected and executed.
During this movement, the FSS was updated. (b) From the updated FSS and the corresponding CAS, the movement at uma5 was
selected again. After the movement, the subgoal denoted as fp' was selected. During executing f p " , the proactive planning was
performed for 7 out of 17 predicted unknown states. (c) The robot reached the subgoal and observed the gate. The actual state after
the observation was the one for which the proactive planning had been performed. However, the reduced FSS generated by the
proactive planning was still to large to obtain consistent actions; so the robot continued the refinement without motion and finally
selected fp* as the next subgoal.

Fig. 8: Simulation result 1.

(4 (b) (C)
(a) From the initial FSS (the right cluster of points) and the corresponding CAS (the left one), the planner selected an action of
moving at U,,,,. (b) After two cycles of refinement, f p * was selected. During executing f p ' , all planning options were performed.
(c) Since a ncxt suhgoal for every predicted state had been obtained, the robot immediately moved to the next subgoal.

Fig. 9: Simulation result 2.

Table 1 shows the effect of the initial probability on the
averaged savings (of 100 trials) made by parallel schedul-
ing. The savings by planning while acting are very low (maximum)

13.46 (1.07)
14.81 (3.00)

because only one of many examined states actually occurs;
so we also show the maximum savings. Basically the sav-
ing made by para1 lcl scheduling depends on the number of
plan candidates examined; thus, the more uncertain the sit- 16.01 0.16 (3.29)
uation is (i.e., thc initial probability is medium), the more 16.48 0.20 (3.04)
effective thc parallel scheduling is. Table 1 roughly shows 0.9 10.87 0.15 (2.58)
such a tendency.

Table 1: Average savings made by parallel scheduling.
(awp:acting while planning, pwa:planning while acting)

initial prob. 1 by awp (%) I by pwa (%)

1755

selected actioii (nince ar v < v ,,(,,J

(a) Since the condition (Case 2-21) in Sec. 5.1.2 was satisfied, an action of moving at the speed of 92% of wmaz was selected. (b)
Since no CAS was obtained, the robot performed refinement while stopping and selected fp*. (c) Based on the updated FSS, the
robot moved at U,,, with refinement and selected fp*.

Pig. 10: Simulation result 3.

Fig. 10 is the result of simulation whose parameter set-
ting is the same as Fig. 8 except the doubled robot maxi-
mum speed (i.e., wmaz = 10 [crr~/s]). Since the robot had
to slow down from vmax to stay inside the CAS, the robot
compared the following two actions (see Sec. 5.1.2): one
is move at v,,, with commitmeat to the current best feasi-
ble solution; the other is move at a slower speed than vmaz
while continuing the refinement. The robot finally selected
the latter action.

7 Conclusion

We have proposed a novel parallel scheduling method
which realizes not only plannini: while acting but also act-
ing while planning parallelism. The notion of planning-
action consistency is used for determining a candidate set
of one activity which can be executed in parallel with the
other activity. We detailed the scheduling algorithm for
a mobile robot navigation problem under vision uncer-
tainty. Simulation results show that the proposed method
is promising. We are now planning to test the method on
our real mobile robot.

The proposed scheduling m1:thod can basically be ap-
plied to other problems by considering the following. Con-
cerning acting while planning, we need to devise an itera-
tive refinement planner and to determine two criteria (con-
sistency criterion and commitment criterion). It seems es-
pecially important to use a proper commitment criterion,
because it could have a large effect on the degree of paral-
lelism. Concerning planning while acting, we need to be
able to predict the result of actions, at least probabilisti-
cally.

References
[l] S. Russell and E. Wefald. Do The Right Thing. The

MIT Press, 1991.

[2] R.E. Korf. Real-Time Heuristic Search. Artificial In-
telligence, Vol. 42, pp. 189-211, 1990.

[3] I. Nourbakhsh. Interleaving Planning and Execution
for Autonomous Robots. Kluwer Academic Publish-
ers, 1997.

[4] E. Horvitz. Models of Continual Computation. In
Proceedings of M I - 9 7 , 1997.

[5] S. Kambhampati, C.A. Knoblock, and Q. Yang. Plan-
ning as Refinement Search: A Unified Framework for
Evaluating Design Tradeoffs in Partial-Order Plan-
ning. Artijicial Intelligence, Vol. 76, pp. 167-238,
1995.

[6] S. Zilberstein. Operational Rationality through Com-
pilation of Anytime Algorithm. PhD thesis, University
of California at Berkeley, 1993.

Vision and Motion Plan-
ning for a Mobile Robot under Uncertainty. Int. J .
of Robotics Research, Vol. 16, No. 6, pp. 806-825,
1997.

[8] J. Miura and Y. Shirai. Vision-Motion Planning for
a Mobile Robot considering Vision Uncertainty and
Planning Cost. In Proceedings of IJCAI-97, pp.
1194-1200, 1997.

[9] M. Boddy and T. Dean. Solving Time-Dependent
Planning Problems. In Proceedings of IJCAI-89, pp.

[101 T. Ibaraki. Enumerative Approaches to Combinato-
rial Optimization. Annals of Operations Res., Vol. 10
and l l , , 1987.

[7] J. Miura and Y. Shirai.

979-984,1989.

1756

