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Abstract 
Generation of a stationary environmental map i s  

one of the important tasks for vision based robot nav- 
igation. Under the assumption of known motion of a 
robot, environmental maps of a real scene can be suc- 
cessfilly generated by monitoring azimuth changes in 
a n  image. Several researchers have used this property 
for robot navagation However, it i s  difficult to observe 
the exact motion parameters of  the robot because of en- 
coder measurement error of the robot. Therefore, ob- 
servational errors in the generated environmental map 
accumulate in long movements of the robot. To gen- 
erate a large environmental map, i t  i s  desirable not  t o  
assume known robot motion. In this paper, under the 
assumption of unknown translational motions of the 
robot, we propose a method to generate a stationary 
environmental map and estimate the egomotion of a 
robot in a dynamic environment, by using a n  omnidi- 
rectional image sensor. Since both robot and objects 
move in the environment, the stationary map gener- 
ation and the robot egomotion estimation by using a 
single camera are dificult because of correspondence 
ambiguity caused by occlusion. The proposed method 
can detect a moving object and find occlusion and mis- 
matching by evaluating the estimation error of each 
object location. 

1 Introduction 
Generation of a stationary environmental map is 

one of the important tasks for vision based robot nav- 
igation [1][2]. For this purpose, a detailed analysis is 
not necessary but high speed and rough understand- 
ing of the environment around the robot is required. If 
considered from the standpoint of machine perception, 
autonomous navigation needs the field of view as wide 
as possible. Thus, a real-time omnidirectional camera, 
which can acquire an omnidirectional (360 degrees) 
field of view at video rate, is suitable for autonomous 
navigation. There have been several attempts to ac- 
quire omnidirectional images using a rotating camera, 
a fish-eye lens, a conic mirror and a spherical mirror. 
Over the past 15 years, researchers in computer vi- 
sion, applied optics and robotics have investigated a 
number of papers related to omnidirectional cameras 
and their applications [3] [4] [5] [6] [7] [8]. 

Under the assumption of the known motion of the 

robot, environmental maps of the real scene are suc- 
cessfully generated by monitoring azimuth changes in 
the image. Yagi used this property for robot naviga- 
tion with an omnidirectional image sensor [9]. Dela- 
hoche et a1 have proposed the incremental map build- 
ing method based on the exploitation of the azimuths 
data given by omnidirectional vision and by an odome- 
ter [lo]. The robot position estimation and map up- 
dating are based on the use of an Extended Kalman 
Filter. However, it is difficult to observe the exact mo- 
tion parameters of the robot because of encoder mea- 
surement error of the robot. Observational errors in 
the generated environmental map accumulate in long 
movements of the robot. To generate a large environ- 
mental map, it is desirable not to assume known robot 
motion. Furthermore, since both robot and objects 
move in the environment, the stationary map gener- 
ation and the robot egomotion estimation by using a 
single camera are difficult because of correspondence 
ambiguity caused by occlusion. 

In this paper, under the assumption of unknown 
translational motions of the robot, we propose a 
method to generate a stationary environmental map 
and estimate the translational egomotion of a robot in 
a dynamic environment, by using an omnidirectional 
image sensor. The method can detect a moving ob- 
ject and find occlusion and mismatching by evaluating 
estimation error of each object location. 

2 Robot System with Omnidirectional 

Figure 1 shows the robot system with an omnidi- 
rectional image sensor HyperOmni Vision using a TV 
camera with its optical axis aligned with the hyper- 
boloidal mirror’s one [ 111. Mounting a HyperOmniVi- 
sion on a robot so that optical axis is vertical, we can 
acquire a 360-degree view around the robot. A hyper- 
boloidal mirror yields the image of a point in space 
on a vertical plane through the point P and its axis. 
Thus, the point P at (XI Y, Z )  is projected onto the 
image point p at (2, y )  such that 
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Figure 1: Robot System with Omnidirectional Image 
Sensor 
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Figure 2: Hyperboloidal Projection 

Figure 3: Coordinate System 

This means that the angle in the image, which can be 
easily calculated as y/x shows the azimuth angle 8 of 
the point P in space. Also, it can be easily understood 
that all points with the same azimuth in space appear 
on a radial line through the image center as shown in 
Figure 2. Therefore, with a hyperboloidal projection, 
the vertical edges in the environment appear radially 
in the image and the azimuth angles are invariant to 
changes in distance and height. In this paper, we use 
the locus of azimuth angle of vertical edges while the 
robot is moving. 

3 Assumption 
The following properties of the environment and 

the mobile robot are assumed for image analysis. 
The floor is almost flat and horizontal while walls 

and stationary objects such as desks or shelves have 
vertical planes. The robot moves in a man-made en- 
vironment such as a corridor in a building or a road 
in down town. Motion parameters are two transla- 
tional components (U,V) and one rotational compo- 
nent a. Translational components are unknown. The 
rotational component is given by an internal sensor 
such as a gyroscope or compass. 

4 Principle of Map Generation and 

Let us denote the robot location and orientation at 
time t by ('Ut,' &) and a(t) ,  respectively. As shown 
in Figure 3, defining the position of object i at time 
t = 0 by (OXz: x), relation between observed azimuth 
angle 8,(t) of object i at time t and object location 
relative to the robot is obtained as follows, 

Egomotion Estimation 

Here, unknown parameters are robot location 
&) and object locations (OX,: x). We assume 

that the robot orientation a(t)  is given by an inter- 
nal sensor, and azimuth angle &(t) of object i at time 
t can be obtained by the omnidirectional image sen- 
sor. Therefore, the total number of unknown param- 
eters and total number of observational equations are 
(2i  + 2(t  - 1) - 1) and i x t ,  respectively. If the follow- 
ing relation is satisfied, the robot and object locations 
can be estimated at the same time. 

i x t >= (22 + 2( t  - 1) - 1) (3) 
Equivalently, location estimation can be done by 

observing three object points from three different 
robot positions. 

5 Algorithm for Map Generation 
5.1 Estimation of loci of azimuths of ver- 

tical edges 
. As shown in Figure 5, an input omnidirectional im- 

age (See Figure 4 ) is transformed into 2D polar coori- 
nates. Next, as shown in Figure 6 ,  we apply 3x3 Sob1 
operator to 2D polar image and project onto the hori- 
zontal axis to get 1-D projection (7). To estimate the 
loci of azimuths of vertical edges, the correspondence 
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of edge length between edges in the l-D projection of 
consecutive images is established by using a correla- 
tion method in the restricted search field. As consecu- 
tive images are sampled densely, one can consider that 
the azimuth angle of the vertical edge in next frame is 
in the neighborhood of the azimuth angle in the cur- 
rent frame. Therefore, a certain margin of search field 
in the next frame is set around the current azimuth 
angle of the obtained vertical edge. After matching 
a few frames, the search region can be limited to a 
narrowed one by calculating the locus of each edge 
from equation 2. We then evaluate the conformation 
of neighboring relations. 
5.2 Local map generation 

The environmental map and robot location have 
estimated error due to observation error of azimuth 
angle of vertical edges. Therefore, we estimate the 
more precise location using consecutive measurements 
by the least squares method. hilathematically, if we de- 
fine the squared error f, as shown in 5.2, of the least 

Figure 4: Input Image 

squares method using 2 ,  values of location (OXa,O K )  
can be found by solving the following partial differen- 
tial equations. 

f = C { ( O X a  - O  Ut)sin(oa(t) - ~ ( t ) )  
a t  

-(OK -0 tgcos(e, ( t )  - 4 t ) ) ) 2 ( 4 )  

( k = l , . . . i , j = l , . . * t )  

5.3 Global map building by combining lo- 
cal maps 

A global map is generated by combining local maps 
at each position of the robot. Generally, the error of 
the measurement by triangulation is in inverse pro- 
portion to the trigonometric parallax and the distance 
between view positions. A large estimated error of lo- 
cal map occurs when the azimuth angle of the vertical 
edges does not change significantly. Therefore, com- 
bination of local maps is done by selecting the object 
location estimated from locus of azimuth with large 
azimuth change and wide standard deviation of az- 
imuth. Because a least square method give the pre- 
cise measurement whenobservational azimuth angles 
of vertical edges distribute randomly. Actually, we 
use the following evaluation function V,. 

Figure 6: Edge Image 

Figure 7: l-D Projection Data 
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(6) 
The first term means the magnitude of azimuth 

change between time t l  and time t2 ,  and the second 
term means distribution of azimuth within interval be- 
tween time tl and time t ~ .  

6 Discrimination of Moving Objects 
and Detection of Mismatching 

The principle of map generation and location es- 
timation of the robot above, assumes that the robot 
moves in a stationary environment. Since both the 
robot and other objects move in the environment, the 
stationary map generation and the robot egomotion 
estimation by using a single camera are difficult be- 
cause of correspondence ambiguity caused by occlu- 
sion. 

To use the method in a dynamic environment, we 
propose the method for discriminating moving objects 
and finding mismatching. The method consists of two 
steps. In the first step, the method detects occur- 
rence of mismatching or appearance of moving ob- 
ject. Second, loci of azimuths of vertical edges where 
mismatching occurs or which correspond to a moving 
object, are identified by evaluating estimation error. 
Now, we define the evaluation value as follows 

- Out) sin (ei ( t )  - cr(t)) 
O y ,  - OK) COS (ei ( t )  - 

(7) 

Di is the average square error of each object (ver- 
tical edge) i observed between time tl and t ~ .  f1 is 
the total amount of average square error of every ob- 
ject used for map generation. If the evaluation value 
f1 is bigger than a certain threshold 61, the method 
decides that mismatching occurs or a moving object 
is included in observational data. Then, every verti- 
cal edges whose evaluation value exceed a threshold 62 
are registered as candidates of mismatching edges or 
moving objects. 

Finally, from (9), if the total amount of average 
square error of every object with the exception of these 
candidates is lower than the threshold 61, the candi- 
dates are determined as mismatching edges or moving 
objects. 

Figure 8: Experimental Scene 

- Framc 

Figure 9: Locus Map of Vertical Edges 
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Figure 10: Evaluation Value 
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(a) Layout and Trajectory (b) Results 

Figure 11: Experimental Results of Map Generation 
and Location Estimation of the Robot 

Figure 12: Experimental Scene 

7 Experimental Results 
Two experiments were conducted for evaluating ac- 

curacy of measurements and effectiveness in our com- 
puter room (about 6m x 4m). 

As shown in Figure 8, the robot moves in an arc 
toward the left side and avoids colliding with another 
robot that approaches from the front side of the robot. 
Figure 9 shows the locus map of azimuth angle of verti- 
cal edges. The vertical edges drawn by thick lines were 
used for map generation and location estimation of the 
robot. Small black circles are the positions where the 
robot detects occurrence of mismatching or appear- 
ance of moving objects. Figure 10 shows the tempo- 
ral changes of evaluation value f1 and f2, during the 
robot movement. Figure 11 are results of map gener- 
ation and location estimation of the robot. Figure 11 
(a) shows the correct layout of the stationary environ- 
ment and the trajectory of the robot calculated by the 
internal sensor. As shown in Figure 11 (b), a black 
cluttered line shows the estimated trajectory of the 
robot and the black squares show the estimated map 
( location of the vertical edges). Vertical edges within 
three circles G1, G2 and G3 in Figure 11, are drawn 
by three elliptical regions (Gl, G2 and G3) roughly in 
Figure 9. An average error of the location measure- 
ment of the robot and stationary environmental map 
were approximately 4 cm and 18cm, respectively. 

A second experiment was done in a more real sit- 
uation. As shown in 12, a person passed by the side 
of the robot. As shown in Figure 13, the robot could 
detect occlusion by evaluating estimation error fl and 
edges from walking person. Small black circles are the 
positions where the robot detect occlusion. As shown 
in Figure 14, the robot generated the stationary envi- 
ronmental map. In this case, the height of the object 
(desk) is higher than that of the robot. Therefore, the 
robot observed the lower part the desk. 

8 Conclusions 
In this paper, under the assumption of unknown 

translational motions of the robot, we proposed a 
method to generate a stationary environmental map 
and estimate the egomotion of a robot in a dynamic 
environment, by using an omnidirectional image sen- 
sor. Since both robot and objects move in the envi- 
ronment, the method can detect a moving object and 
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Frame I . -. 

Figure 13: Locus Map of Vertical Edges 

find occlusion and mismatching by evaluating estinia- 
tion error of each object location. Map generation and 
egomotion estimation under completely free motions 
of the robot is on-going study. 
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