
Title Iconic memory-based omnidirectional route
panorama navigation

Author(s) Yagi, Yasushi; Imai, Kousuke; Yachida, Masahiko

Citation Proceedings - IEEE International Conference on
Robotics and Automation. 2003, 1, p. 564-570

Version Type VoR

URL https://hdl.handle.net/11094/14087

rights

c2003 IEEE. Personal use of this material is
permitted. However, permission to
reprint/republish this material for advertising
or promotional purposes or for creating new
collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted
component of this work in other works must be
obtained from the IEEE..

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Proceedings of the 2003 IEEE 
Interostiooal Conference on Roboficr &Automation 

Taipei, Taiwan, September 14-19, 1003 

Iconic Memory-based Omnidirectional Route Panorama Navigation 

Yasushi Yagi Kousuke Imai Masahiko Yachida 
Department of Systems and Human Science 

Graduate School of Engineering Science, Osaka University 
1-3 Machikaneyama, Toyonaka, 560-8531 Japan 

email: y- yagi@sys .es .osaka-u . ac . j p 
TEL: +81-6-6850-6361 FAX: +81-6-6850-6341 

Abstract 

A route navigation method for a mobile robot with 
an om,ni-directiond lmage sensor ZS described. The 
route is memorized from a series of consecutive omni- 
directional images at the horizon when the robot moves 
to the goal. While the robot is navigating to the goal 
point, the input is matched against the memorized 
spatio-temporal mute pattern by using dual active con- 
tour models and the exact robot position and orienta- 
tion is estimated from the converged shape of active 
contour models. 

1 Introduction 

A real-time omnidirectional camera that can acquire 
an omnidirectional (360 degrees) field of view at a video 
rate could be applied in a variety of fields such as au- 
tonomons navigation. Several researchers have investi- 
gated geometrical-based and iconic memory-based nav- 
igation methods using omnidirectional image sensors 

Iconic memory-based navigation is a common a p  
proach for visual navigation. The basic operation is a 
comparison between the present sensory input and pre- 
vious memorized images. It is easy to relate the robot's 
action and sensory data without the geometrical model. 
Zheng's robot memorized the side of scene of a route 
from a panoramic view while it moved along the route 
[Z]. Matsumoto et al.'s robot memorized the whole 
front view image at reference points along the route for 
visual navigation [3] .  The correspondence between a 
present input image and previously memorized images 
was established by using dynamic programing (DP) 
matching and correlation methods, respectively. How- 
ever, these methods need a large amount of memory for 
memorizing the route. Therefore, to reduce the data to 

PI. 

be memorized, Ishiguro has proposed a compact repre- 
sentation by expanding it into a Fourier series [Sl. Each 
input image is memorized by the coefficients of the low 
frequency components. KL transformation is another 
approach to compress a memorized data j5, 61. U1- 
rich and Nourhakhsh memorized by a simple color his- 
togram and navigated the mobile robot in both indoor 
and outdoor environments [7]. We have represented the 
relation between environment and robot behavior by 
performing 2-D Fourier transformations on an omnidi- 
rectional route panorama (ORP) that can be acquired 
by arranging points on the horizontal plane, and which 
passes through the virtual center of the lens, taken by 
the robot moving along the route [SI. The ORP in 
a certain number of past frames, which is a standard 
unit of spatia-temporal representation, is transformed 
to a 2D Fourier power spectrum. The route is memo- 
rized by a series of 2D Fourier power spectra. While 
the robot is navigating towards the goal point, it is 
controlled by comparisons with the pattern of mema- 
rized Fourier power spectrum and its principal axis of 
inertia. The method can directly represent the temp- 
ral and spatial relations between environment and the 
robot. 

However, most of these previous iconic memory- 
based approaches basically select t,he image that cor- 
responds to an input image from discretely memorized 
images. This means the precision of position and ori- 
entation of the mobile robot depends on the spatial 
sanipling density of a moving space. Especially, it is 
impossible to estimate the position and orientation of 
the robot when the robot deviates widely from a meme 
rized path or the interval bet.ween memorized positions 
are too wide. 

In this paper, we propose a new iconic memory- 
based navigation method that synthesizes a corre- 
sponding image pattern from an ORP. As the com- 
putational cost for synthesizing the corresponded im- 
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age is high, our proposed method searches a corre- 
sponding image pattern in not only spatial hut also 
spatietemporal space by using active contour models 
(ACMs), and then estimates the position and orien- 
tation of the robot from the converged shape of the 
ACMs. 

Figure 1. Hyperboloidal projection has char- 
acteristics of a single center of projection 

Figure 2. Points on the horizontal plane, 
which pass through the virtual center of the 
lens, appear as a circle on an omnidirectional 
image 

2 Omnidirectional Route Panorama 

A robot moving along a route can observe objects in 
many directions. A sensor is needed to view the envi- 
ronment around the robot so that i t  can navigate safely. 
We have proposed several omnidirectional image sen- 
sors such as COPIS, MISS and HyperOmniVision for 
robot navigation 19, 11, lo]. The method proposed here 
uses the image sequence of a horizontal part of the om- 
nidirectional image, called the omnidirectional route 

panorama (ORP), while the robot continuously scans 
the view along the route. 

A Sequence of Omnidirectional Panorama Images 

+ 
(b) Frame 

Figure 3. Omnidirectional route panorama 

2.1 Optical relation of HyperOmni Vision 

The hyperboloidal surfaces can be obtained by re- 
volving hyperbola around the Z axis and having two 
focal points at (0,O + c) and (O,O,  -c) as shown in Fig- 
ure 1. Using a world coordinates system (X, Y, 2)  the 
hyperboloidal surface can be represented as: 

c =  &Ts 
where a and b define the shape of a hyperboloidal sur- 
face. 

We use one of the hyperboloidal surfaces at Z>O as 
a mirror. HyperOmni Vision consists of a CCD camera 
and a hyperboloidal mirror. The focal point of the hy- 
perboloidal mirror Ob, and the center of camera lens 
Oc are fixed at the focal points of hyperboloidal sur- 
faces (O,O,c)  and (O,O, -c), respectively, and the axis 
of the camera is aligned with that of the hyperboloidal 
mirror. The image plane is placed at a distance f (fo- 
cal length of camera) from the camera lens center Oc 
and is parallel to the XY plane. 

A brief description of how a point P in space is re- 
flected by the hyperboloidal mirror and projected on 
the image plane follows. A ray going from the point 
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P ( X ,  Y,  Z) in space toward the focal point of the mir- 
ror OM is reflect,ed by the mirror and passes through 
the other focal point O c  which intersects t,he image 
plane at, a point p(x, y). Any point in space in t,he field 
of view (360 degrees around the Z axis) of the. hyper- 
boloidal projection satisfies this relation. Therefore, an 
omnidirectional image of the scene on the image plane 
can be obtained with a single center of projection Ob*. 

A hyperboloidal mirror yields the image of a point 
in space on a vertical plane through the point and its 
axis. Thus, the point P at (X, Y, Z) is projected onto 
the image point p at (x, y) such that 

The angle in the image which can he easily calculated 
as y/x shows the azimuth angle 0 of the point P in 
space. Also, it can also be easily understood that all 
points with the same azimuth in space appear on a 
radial line through the image center. 

By simple geometrical analysis, equations relating 
the point in space P(X, Y,  2) and its image point on 
the image plane p ( z ,  y) can be derived as follows. 

Z = J F T 3 t a n a + c  

(3) 
(b2+cZ)siny-2bc 

(b2 - c2) cosy 
a =tan-' 

where LY denotes thetilt angle of the point P from the 
horizontal plane, f is the focal length of camera lens, 
and a,  b and care  parameters defining the shape of the 
hyperboloidal mirror. This method uses an image on a 
horizon and threfore, the above equations are rewritten 
as follows 

(b' f 2') siny = 2bZ ( 4 )  

From (4), y is independent to X and Y .  This means 
that the patterns on the height Z invariably appear on 
the same radius in the omnidirectional image as shown 
in Figure 2. The black circle is the horizontal position 
in the omnidirectional image. 

2.2 Definition of ORP 

The robot begins to move and takes an image se- 
quence. Each oinnidirectional image is transformed 
into 2-D polar coordinates (1,s) ( T = R(z2 + yz)), 

called an omnidirectional panorama image. Points on 
the horizont,al plane, which pass through the virtual 
cent.er of the lens, appear as a strilight line on the omni- 
directional panorama image (drawn by the white line) 
as  shown in Figure 3 (a). This straight line is taken as a 
horizontal line. An ORP can be organized by arrang- 
ing horizontal lines taken by the robot moving along 
the route as shown in Figure 3 (b). The representation 
of ORP can save memory for scene description. For 
instance, let's consider the case that the memory size 
of each horizontal line is 360 byte (Ibyteldeg). Since 
the scene is recorded every 10 cm and the robot moves 
1 km, we need just 3.6 Mbyte for scene description. 

Figure 4. Relation between memorized path 
and virtual viewpoint 

Figure 5. Relation between iconic memory 
(memorized ORP) and virtual viewpoint 
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3 Robot Localization by Synthesis 

Under a precisely known robot motion, an arbitrary 
viewpoint image can he synthesized by stitching parts 
of consecutive images [12, 131. Let us consider cam- 
era coordinates R ~ ,  camera position Rt(z(t) ,  y ( t ) )  
where iconic-memory is organized, virtual view posi- 
tion P(Pz, Py) and Orientation 8, relative to the camera 
coordinates as shown in Figure 4. Since the direction of 
a vertical line at P(Pz,  Pv) is O ( t )  and the robot orienta- 
tion 8,, we can expand the vertical line toward a meme 
rized path and calculate the intersection Rt(z ( t ) , y ( t ) ) .  
Among P(Pz, Py), O(t), 0, and Rt ( z ( t ) , y ( t ) ) ,  we have 
a following relation. 

P Y  - y @ )  (q 0 ( t )  - 0, = arctan 
Pz - z ( t )  

Then, we consider that the vertical imagc pattern along 
azimuth angle 8 ( t )  at Rt(z(t), y ( t ) )  is the same as that 
at P(P,, Pv). Then the panoramic image at the vis- 
tual viewpoint P(Pz, 4) is generated by stitching each 
vertical image pattern. In this case the image pattern 
at the virtual viewpoint is estimated under given geo- 
metrical positions such as the memorized path and the 
virtual viewpoint and the given iconic memory. From 
the principle of duality, if the image at the certain 
viewpoint and iconic memory and memorized path are 
given, the position and orientation of the robot can be 
estimated. Our method is based on this concept. Fig- 
ure 5 shows an example of ORP when the memorized 
path is straight and constantly sampled. In this case, 
the viewpoint is at the left side of the memorized path 
and the orientation of the robot is parallel to the path, 
then the same image pattern lies on the tangent curve 
defined by (5). From these relations, we can estimate 
the robot position and orientation by searching tangent 
curves that image pattern is same as the input. Actu- 
ally, a position in ORP where the image pattern is the 
same as the input is found by using ACM. 

[14] have proposed a cam- 
era position estimation method that matches the EPI 
obtained from the camera motion to the epipolar-plane 
image (EPI) generated from a CAD model by using DP 
matching. It is possible t o  find correspondence if the 
difference between the two EPIs is small, hut in gen- 
eral, it is difficult to precisely model a complex scene. 
Furthermore, the environment is not always stationary 
because of the appearance of unknown obstacles and 
moving objects. As well, the robot moves freely in the 
environment. 

The method proposed here does not need a 3D en- 
vironmental model. By global shape constraints of an 
active contour model, the proposed method can be a p  

Here, Kawasaki et al. 

plied to  a dynamic environment where objects move 
around. 

4 ACM for Searching A Corresponding 
Image Pattern 

An image pattern on an ORP that corresponds to 
an input is searched by an ACM. The advantage of an 
ACM is that several different types of contour char- 
acteristics, such as image features, shape models and 
smoothness of contours, can he defined using simple 
functions. Our proposed ACM actually consists of two 
ACMs. Corresponding control points placed on each of 
the ACMs are coupled and have a gravitational force. 
Then the ACMs converge from both sides of a desired 
position in the ORP where the image pattern is the 
same as the input. 

4.1 Outline 

We assume that the rough initial position of the 
robot during navigation, t.he memorized path and the 
iconic memory of the ORP are given, and that the 
robot has an internal sensor for measuring its move- 
ment. If the rough initial position of the robot and 
the iconic memory of the ORP are given, the robot 
can roughly predict the position of the image pattern 
on the iconic memory of the ORP from (5). The pre- 
dicted position usually has observational and predic- 
tion errors. Therefore, we define a certain size for 
the search region around the predicted position of the 
ACM. Actually each ACM is shifted along a temporal 
axis from predicted positions of the ACMs at a cer- 
tain margin A a c ~ .  The desired positions are then 
estimated by converging both ACMs, and we can es- 
timate the robot's position and orientation hy fitting 
converged control points with the tangent function de- 
fined by (5) . The tangent fitting is done by using a 
least square method. Once we can estimate the robot 
position, the next initial position of the robot can be 
predicted by adding the robot movement measured by 
the internal encodes to the estimated robot position. 
The certain margin A n c ~  for shifting the ACMs was 
set as 7 frames from preliminary experiments. From 
our robot system the sampling interval is 2 m l f r a m e ,  
and corresponded to a 14 cm error for the robot's po- 
sition. 
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4.2 Definition of ACM 

Our ACM is defined by a following equation. 

E = ( G m  ( ~ ( 8 ) )  + Eimg ( 4 s ) )  + E,,, (U(.))) ds 

( 6 )  

where E,  E,,t, E,,, and E,,, represent the total en- 
ergy, the internal energy representing smoothness and 
continuity, the energy due to  image features, and the 
external energy for contour deformation, respectively. 
The internal energy is composed of a 1st-order term 
weighted by w. and a 2nd-order term weighted by w ~ ;  

Eh, (u(s)) = (w. I& ,I* + ' f J f l  Iusa (N) /2 (7) 

The image energy E,,,, which attracts ACMs to edges 
with large inteusity gradients, is defined by a first order 
differential filter as follows 

Eimg (U ( 8 ) )  = W i / f  IVI (s) - Vltarget (0 (SI)/ (8) 

where VI,,,,,, (0 ( s ) )  is a differential value along the 
horizontal line of the omnidirectional panorama image. 
0 1  ( s )  is a differential value on the memorized ORP. 
wdiff is a weighted coefficient. This energy tries to 
keep ACMs onto edges. 

The external energy, which pushes or pulls control 
points perpendicular to the curvature of the active con- 
tours, controls the direction of movement of the ACMs. 
We define this energy by 

E,,, (U (SI) = Epu (U (SI) + & m t  (11 ( 3 ) )  (9) 

Epuu which is an energy for drawing coupled control 
points to each other is defined by 

& E P U l l ( 7 J  = 7"PVll (@CP& (SI - @,",, (s)) 

&EP'dl ! v ! s ) )  = WPUdI (tcP&- (SI - tCPmoY ( 8 ) )  

(10) 

where w,,o is a weighted coefficient. cp,,, and cpother 
are coupled control points. In the case of a straight 
memorized path, the interval of the azimuth angle 0 
between neighboring control points is constant. There- 
fore, we defined the energy ( a  (s)) for a constant 
interval by spring models as show in Figure 6. 

Figure 6. Interval energy for keeping intervals 
between control points on ACMs 

(a) (b) 

Figure 7. Experimental environment and mo- 
bile robot with HyperOmni Vision 

Figure 0. Experimental layout for evaluating 
effectivity (a) The robot moved toward a 3 0  
degree direction (b) Object in the room moved 
closer 

(11) 

where wConaf and d are a weighted coefficient and the 
interval of azimuth angle between neighboring control 
points, respectively. The subscript on the right shoul- 
der is the number of the control point. 
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(h) Object in the room moved closer 

Figure 9. Results of the estimation of the 
robot's position 

5 Experiments 

Several experiments were done in our laboratory. 
In Section 5.1, we evaluated our iconic memory-based 
navigation method by using an off-line experimental 
system. We show two results in this paper. In Section 
5.2, we show the experimental result of autonomous 
navigation. We used the commercial mobile robot B12 
(Real World Interface, Inc) in both experiments. Fig- 
ure 7 (a) and (b) show the experimental environment 
and the mobile robot with the omnidirectional image 
sensor HyperOmni Vision. 

5.1 Results of Evaluation of Effectiveness 

The robot moved straight approximately 5 m and 
the interval for the sampling images was 2 m. Here 
we define the orthogonal coordinates uxy  along the 
memorized path, in which the z axis is parallel to the 
moving direction of the robot. In this experiment, 
we recorded a horizontal line in the omnidirectional 
panorama image and the robot encoder data while the 
robot moved. The robot movement was given by the 
operator. Recorded test images were matched with 
memorized ORP hy our proposed method. Then, we 
evaluated the precision of the localization of the robot 
under several different moving conditions. Figure 8 (a) 
is the case where the robot moves toward a direction 30 
degrees from the z-axis. Figure 9(b) shows the result 
of the estimated position of the robot. The estimated 
moving trajectory of the robot is drawn by a black line. 
The dotted line is the correct trajectory of the robot. 
The average error and standard deviation of the posi- 
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tion estimation were 1.98 crn and 1.00 m, respectively. 
In the real world, objects are sometimes moved by 

someone. That means that the navigation system 
should adapt to changes in parts of the scene. Fig- 
ure 9 (h) is the result of the estimated robot position 
when an object in the environment was moved to a dif- 
ferent position as shown in Figure 8(b). In this case 
the ratio of the scene change was approximately 10 %. 
The average error and standard deviation of the esti- 
mated position were 3.46 cm and 0.56 em, respectively. 
The estimation error in the second experiment was big- 
ger than the other. However, we could consider that 
the correlation at the region, where the scene changed, 
was continuously low, therefore the robot can precisely 
estimate its positions by masking such a region. 

5.2 A Result of Autonomous Navigation 

The autonomous navigation was achieved. The 
robot was controlled by a standard proportional control 
method. Figure IO shows the results of autonomous 
navigation. In this case, the operator gave the initial 
position (100 cm, 0 cm), the sub goal position (200 cm, 
-50 cm) and the goal position (300 cm, 0 cm), respec- 
tively. Then the robot automatically navigated to the 
goal position. The black line was the estimated robot 
position and the red line was the trajectory of the robot 
movement. Until the sub goal position, the robot can 
estimate precisely, so the trajectory of the robot is al- 
most the same as the estimated position. After the 
robot reached the sub goal position, estimation errors 
increased a little, but the robot almost followed the 
correct path. In this case, the location error at the 
goal position is approximately 4 cm. 

yicrnl 
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Figure 10. Results of autonomous navigation 

6 Conclusions 

In this paper, we proposed the iconic memory-based 
navigation. A robot's position was navigated by com- 



paring the input with memorized omnidirectional route 
panorama. The omnidirectional route panorama can 
save iconic-memory, and thus the method does not have 
great memory requirement even if the robot memorizes 
a long distance and over a long time period. The pro- 
cessing time of the current system was 200 msl f rome .  
While this is fast enough for indoor navigation, how- 
ever, we are presently trying to optimize the navigation 
algorithm to make a fa te r  system. In this paper, we 
did not niask the region where the scene changed. As 
we consider that masking such a region makes for a the 
robust system, we will also focus on this problem in the 
future. 
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