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Abstract— This paper describes an ego-motion estimation
method by integrating multiple scan matching results. The
method considers both the uncertainty of scan matching
results and that of estimated ego-motions, and not only
estimates the latest ego-motion but also updates previous ego-
motions. The estimation process is formulated as an iterative
one using Kalman filter. We implement the method by
using an omnidirectional stereo-based scan matching method,
Experimental results show the effectiveness of the proposed
method.

L. INTRODUCTION

Reliable ego-motion estimation is indispensable for in-
tegrating sensing data which are obtained by a moving
observer. Since dead reckoning suffers from accumulated
errors, an ego-motion estimation method is needed which
is based on external sensors such as vision. Scan matching-
based methods (e.g., [%]), which do not need explicit
feature comespondence, have an advantage over feature-
based methods (e.g., [2], [3]), which may require much
compulation in extracting stable features and in finding
correct matches.

Lu et al. [9] estimated the ego-motion by comparing 2D
contours obtained by a laser range finder at the current
and the previous position. Pfister et al. [11] extended their
method to consider the uncertainty of the estimated ego~
motion in order to integrate the scan matching-based ego-
motion with odometry information. Since these methods
use only a pair of laser scans, sensor noises may cause
wrong maiches thereby degrading estimation results. Ki-
dono et al. [6] proposed a scan matching-based localization
method, which compares the current range scan with the
range scan predicted from the generated map; their method,
however, did not consider the uncertainty in localization,
Hihnel et. al. [4] considered the uncertainty in a similar
scan matching method; once a robot position is estimated,
however, it is not changed by subsequent observations.

Scans may sometimes include large uncertainties, es-
pecially when using low-precision range sensors such as
stereo, and an ego-motion or a robot position obtained
using these scans may thus be unreliable. We, therefore,
must be able to update previously-estimated ego-motions
or robot positions, if necessary. In simultancously local-
ization and mapping (SLAM) problems, some research re-
estimates ego-motion to close loops (e.g., [1], [5]); but the
re-estimation is limited to the timing of closing the loop.

This paper deals with ego-motion estimation from mul-
tiple scan matching results, Fig. 1 shows an example
sitvation where a robot obtains three range scans at times
t—2,t—1, and t. Let X" be the ego-motion during
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Fig. 1. Intcgraie tree scan matching results.

[t — 1, ¢]; it can be calculated by comparing two scans
at time £ — 1 and {. Similarly, we obtain X,(_"f). This is
basically what the previous methods are doing which use
only a pair of range scans for ego-motion estimation, We
can, however, use the other scan matching result, Xé"z‘\, to
improve the ego-motion estimation. This is the basic idea
of our method.

QOur previous work [8] has already dealt with ego-motion
estimation using multiple scan matching results. Although
the method outperformed previous methods which use only
a pair of scans for estimating an ego-motion, it still had the
following two drawbacks. One is that at each time, only the
latest ego-motion is estimated with believing the previous
ego-motion estimates; so if some of previous estimates
are unreliable, the curremt estimate becomes inherently
unreliable too. The other drawback is that all scan matching
results are treated evenly; the estimation result may be
degraded by matching results with large uncertainties,

This paper improves cur previous method so that we
can simultaneously estimate the current and the previous
ego-motions with considering the uncertainty of each scan
matching result. Estimating &k ego-motions from scratch
needs to examine ;4C, pairs of range scans, and this
may be costly. We therefore develop a Kalman filter-based
iterative scheme which estimates the current ego-motion
and updates the previous £— 1 ego-motions simultaneously
by using only & + 1 newly obtained scan matching results.

The rest of this paper is organized as follows. Section
1I describes the ego-motion estimation algorithm by using
multiple scan matching results. Section III describes an
implementation of the method using an omnidirectional
stereo. Section IV shows experimental results using g real
robot. Section V summarizes the paper.

IT. PROPOSED ALGORITHM

This section describes a Kalman filter-based algorithm
of integrating multiple scan matching results for ego-
motion estimation. Basically we use the latest k 41 range
scans for estimating k ego-motions. Actually, our method
estimates the relative position of latest & observation points
(including the current one) with respect to the cbservation
point k steps before.

Let X,(_:-'k) = (x,(_"fk),yr(_'i'k),fi,(ff'k))i" denote the relative
position at time { — ¢ with respect to the position at time
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Fig. 2. State transition model.

t — k. The state S, is represented by the vector:

T T T
se= (XN XERT X)L @
An observation is a set of & scan matching resuolts between
the current and the previons k range data. Let py—;
denote the scan matching result {i.e., the observed relative
displacement) obtained by range scans at time £ and £ — 4.
Then the observation is represented by the vector;

T
P = (Pu-kT: 'Pr,:-h}T: - TPfJ‘]T) - @

Fig. 2 illustrates the iteration process. Fig. 2(a) shows the
situation where the relative position at times t—kto ¢ —1
with respect to the position at time ¢t — k — 1 are estimated
using the observations until time ¢ — 1. Fig. 2(b) shows
the state transition from S, ; to 5,; the relative position at
time ¢ with respeet to a new basis (position at time ¢ —k) is
calculated from the difference between a relative position,
X1 in 8, and the scan matching result between range
data at time ¢ and £—k—1. Fig. 2(c) indicates the estimation
of §; by integrating new k scan matching results.

The state transition equation (see Fig. 2(b)) is given by:

S+ 0
Prewt
=X

+v: (3)

v = . »

Sprrier — XY

where dp; 4.5 and 6 X ,( ',;"'” are the errors of the observation
Pyk1 and the relative position vector X;¥Y respectively.
In this equation, the initial value of Xf"k) is estimated
from py,4.; and X r(_’.;"'“ ; this means that our Kalman filter
integrates only observations. It is a simple extension to
integrate odometry information into this formulation.

The observation equation (see Fig. 2(c)) is given by:

0 ... 0|r
-Ir ... o |Fr

P = St + wy, “
o ... -I|I

where w; is a noise vector, 0 is 3 x 3 dimensional zero
matrix, and J is 3-dimensional unit matrix.

A scan is composed of a set of observed points. So
the error of a scan matching result p; ;; is caused by two
factors: the observation error of the points and false corre-
spondence between the points. Since every scan matching
result in eq. (2) uses the same observation at time £, the
etrors of these scan matching results are not independent.
However, since the number of points in a scan is usually
large, the influence of an observation error to the scan
matching error is considered sufficiently smaller than that
of false correspondence, which depends on the shape of
the surrounding environment. Thus we assume that the
errors of scan matching results in eq. (2) are mutually
independent. Under this assumption, the covariance matrix
of w; is calculated by:

Tpe O ... O
0 Epl,l-h'} st 0

Ep' = . b : ! )
0 ... 0 %,

where ¥, is calculated as the uncertainty of the corre-
sponding scan matching resuli (see Sec. I1-D).

By applying Kalman filter to egs. (3) and (4), we
iteratively update the state S; and estimate its uncertainty.
At the initial position, the robot position and orientation
are considered to have no uncertainty. We use 5 as k&, and
if the number of observations is less than &+ 1, we set the
dimension of the state vector accordingly.

IH. OMNIDIRECTIONAL STEREQ-BASED SCAN
MATCRING

This section describes an implementation of the ego-
motion estimation method using an omnidirectional stereo.
To apply the ego-moticn estimation method, we need a
scan matching method which not only calculate the relative
position between observation points but also its uncertainty.

The outline of the scan matching method is as follows.
We first compute the uncertainty of the current robot
position (with respect to some basis position) calculated
by dead reckoning to determine a set of possible robot
positions and orientations, Next, we calculate the differ-
ence between the views of the current and the previous
range data for each candidate pair of the position and the
orientation, and estimate the reliability of each candidate.
Finally, we determine the current position and crientation
with their uncertainties by a weighted least squares-based
estimation,
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Omnidirectional
Sterco Cameras

Fig. 7. Our mobile robot.

A. Owidirectional Stereo

Our scan matching method uses the omnidirectional
stereo. The omnidirectional stereo vision system uses two
HyperOmni Vision [13] aligned vertically. Fig. 3 shows
an input image of the lower camera of our stereo system.
Each image can be converted to a panoramic image shown
in Fig. 4 by projecting on a cylindrical image plane whose
axis is aligned to an optical axis of the camera. By this
conversion, we can obtain a stereo image pair where all
epipolar lines become vertical. Therefore, we can apply
a conventional stereo matching algorithm for an ordinary
perspective stereo. We use an SAD-based stereo matching
algorithm, For the detail of this omnidirectional stered,
refer to [71.

To adopt a visual ego-motion estimation method, we
first extract the nearest obstacle in each direction. Since
the horizontal axis of the panoramic image indicates the
horizontal direction, we extract the nearest obstacles in
every column, then we obtain a set of disparities of about
360 degrees. From this data set, a 2D contour {called range
profile (RP)) of the current free space centered at the robot
position is obtained. Fig. 6 shows the RP obtained from the
disparity image shown in Fig. 5. In Fig. 6, the horizontal
axis represents the viewing direction from the robot and
the vertical axis represents disparity of obstacles.

Fig. 5. Panoramic disparity image obtained from the images in Fig. 4. Brighter pixels are nearer.

Fig. 9. Problem cauwscd by fixed angular resolmion.

B. Select Candidate Positions and Orientations

Fig. 7 shows our mobile robot. The robot moves by
driving the two rear wheels. We define a state of the robot
as X = (x,y,8), where (z,y) is a 2-dimensional robot
position centered at the omnidirectional stereo cameras, §
is a orientation of the robot. The positional uncertainty
increases as the robot moves due to slippage of wheels or a
quantization error of odometry. We model the uncertainty
by a three-dimensional normal distribution; the so-called
37 ellipsoid obtained from the covariance matrix X, rep-
resents the uncertainty region. The positional uncertainty
on {z,y) is calculated by projecting the ellipsoid on the
z-y plane and the orientational uncertainty is calculated as
its marginal distribution on .

We select candidates of robot position and orientation
in the region. Candidates of the position are set at lattice
points which are made by lines parallel with two principal
axes of the ellipse. The origin of the lattice is set at the
center of the ellipse. The number of lattice points along
each axis is selected as the minimum odd number greater
than 3, by which the length of the principal axis divided is
smaller than 50{rmrm|. For example, when the length of the
longer principal axis is 200[mm] and that of the shorter is
140{mm], the number of the candidate positions becomes
5x 3."Candidates for the robot orientation are generated by
discretizing the range of the orientational uncertainty with
the angular resolution of the RP.
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C. Comparing Two Range Prafiles

To compare the current and a previons RP, we predict
the view of the previous RP for each candidate position and
orientation. Fig. 8 indicates the situation where the robot
at candidate position (z,y) is observing an object which
was observed at position X,; = (x,;, #ri, 6,;). We would
like to predict the direction and the disparity of the object
in order to predict the view of a previous RP. The obstacle
position o, (4}, Which is observed at time {4 in direction
¢ with disparity D, ;(¢)}, is represented by using the robot
position X, ;:

b
—%, cos(B; + @) + 244
Op.(g) = ( oy (0 )+a ), (6)

D—z@sin(ﬂ'ﬁ; + )+ Y

where b represents the baseline of the omnidirectional
stereo, and f represents the focus length of panoramic
. images. Eop, .. which is the error covariance matrix
of op (s i5 calculated from X x,, which is the error
covariance matrix of the position X, and O'?DH (4 Which is
the error variance of disparity D, ;(¢b), by error propagation.
We set 03, (,, = 0h. = 1 as the quantization error of
panoramic images.

Once op,,¢) is calculated, we can determine the refative
position of op,,4) from a candidate position (z,y), and
then we can calculate the distance r and the direction ¢
to 0p,,(¢) from the candidate position. By converting the
distance T to the disparity by using the relation D = %L,
we can calculate D,(f’y}(qb’) which is the disparity of the
obstacle 0p, .4 viewed from a candidate position (z,y).
Alsoo? ., (@’ which is the error variance of D\¥% (),
is calculated from I, b,y DY SITOT propagation,

The prediction of the view of a previous RP is performed
by converting each observed disparity in the previous RP
to the disparity to be observed from a candidate posi-
tion. There is, however, a possibility that such converted
disparities are not obtained for several directions in the
predicted RP, due to the fixed angular resolution. Fig. 9
shows the situation where the disparity corresponding to
the jth direction has not been obtained in the previous
observation. In such cases, if the nearest disparities on the
both sides (e.g., 0;.; and o;,, in the figure) are close enough
to be regarded to belong to the same obstacle, the disparity
in the jth direction is calculated by linearly interpolating
the object surface from the disparities of o;; and o7,.

We obtain the predicted view from candidate position
{z,y) of an RP cbtained at £ — ¢ by applying the above

(b) difference values
Fig. 10. Estimation of the positional disiribution.

(c) estimated probability distribution

calculation to all disparities in the RP. In a candidate
position and orientation (z,y,0), the difference of the
disparities in direction ¢ of the current RP and the RP
observed at time ¢ — 7 is calculated by:

(Du(@) = DY (g - 6))°

» ()
b + Thngeg)

d(w,y, 61?705) =

where D, (¢) represents the disparity in direction ¢ at time
i d(z,y,0,1,¢} represents the Mahalanobis distance; if the
two disparity values in eq. (7) are from the same obstacle,
d is assumed to follow a x? distribution. Therefore, when
d is larger than a certain threshold determined from 3¢
value of the y? distribution, d is set as the threshold value.
Also, when Dy(¢) or Dgi’f ) (¢ — 6} is not obtained, we do
not calculate the difference in that direction. By limiting
the maximuem difference by considering the x* distribution,
the effect of false matches in stereo and that of the moving
obstacles can be reduced.
The difference of RPs is then evaluated by:

. . 1 Kl .
Diff(@,4,0:1) = gr—gs ) dl@v,0,1,9), ®)
PEEIY b= min

where [@min, Gmac] represents the range of possible view-
ing directions (corresponding to the right and the left end
of panoremic image); N(x,y,8,1) indicates the number of
data for which the difference of disparity is obtained.

D. Estimating Ego-Motion

Fig. 10(b) shows an example distribution of difference
values Diff around the predicted position in a corridor
shown in Fig. 10(a). From this figure, we can consider
that the correct robot position lies in the valley of the
distribution, and that the shape of this valley is related
to the probability distribution of the robot position. So we
would like to obtain the probability distribution of the robot
position and orientation from the difference distribution.

Nickels and Hutchinson [10] solved a similar problem
of estimating the uncerainty of the target localization in
a template-based tracking. They calculate the distribution
of the SSD values between a template image and an
image region around the predicted position. They consider
that the shape of the valley of this distribution represents
the uncertainty of the target localization, just like wus.
Then, they convert the distribution of the 88D to response
distribution, which is defined by Singh and Allen [12].
The response distribution calculates the cenfidence of each
estimated position.
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In our method, the response distribution is represented

by the following:

(. y,0,1) = exp(—xDiff (z,,6,)), ©
where « is used as a normalization factor. We set K = 1
experimentally. Fig. 10{c) shows the response distribution
converted from Fig. 10(b).

Since the response distribution can be interpreted as a
probability distribution of the position and orientation, we
approximate the distribution by a 3D Gaussian. The mean
of the Gaussian is calculated by a weighted least squares
as:

ﬁ71‘= z:,y,ﬂ T(-’Ef Y, 9? 2)9: @izzx,y,e T(mr Y, 3’ 'i)y
z:,y,e r(z,y,0,1) Ez,y,e r(z,y,0,i}
é‘*Zm,y,E’ r{z,y. 0,00
¢ Yot (@y.0.0)
The covariance matrix can be calculated accordingly.
The ego-motion estimation method described in Sec. II
requires scan matching results p, ;_; and their uncertainties
Lp,._i- We use (:ﬁi,@i,éi) as p;;—; and its covariance
matrix as X, ,_..

(10)

IV. EXPERIMENTS
A, Effect of Estimating Uncertainty

The experiment was done in the corridor envircnment
shown in Fig. 10(a). In the experiment, the robot moved
straight, and we gave an error for odometry data inten-
tionally by making the robot go over the cord. Due to the
effect of the error, the final position of the robot was at
(140, 1600)}mm.

We compared the proposed method with one of our
previous methods [7]), which selects the position and the
orientation minimizing the sum of the differences between
the current and the 5 previous RPs, dead reckoning by
odometry, and the correct trajectory obtained by measuring
the actual robot positions.

Fig. 11 shows the correct and the estimated robot trajec-
tories. In estimating the position numbered 2 in the figure,
our previous method (denoted as “without uncertainty™)
selected position (66,571), where the minimum difference
is 1.02596, while at the lattice point (20,568) which is
nearest to the correct position, the difference value is
1.14596. Since the difference distribution has a wide valley
around the correct position, this result was caused by a
small noise in range data. Since the previous method does

Experimental environment of section [V-B.

Fig. 12.
TABLE |
ERROR OF THE EGO-MOTION ESTIMATION.
x [mm] | ¢ [mm] | @ [rad]
proposed method 147.03 107.07 0.17
method in [§] 173.44 139.88 0.23
method in [7] 274.42 156.5 Q.18

not have a mechanism to correct such errors in subsequent
estimations, the error grows relatively rapidly.

On the other hand, our proposed method estimated
almost correct position for the z axis. While for the y
axis, since there were not enough features 1o determine the
robot y position, the error is relatively large, but the correct
position was inside the estimated uncertainty region.

B. Experiment in a Complex Environment

We conducted another experiment in a complex environ-
ment where many obstacles exist. For comparison, we show
results which are estimated by two other method. COne is
the method which does not consider the uncertainty of the
estimation described in the previous section. The other is
the method proposed in [8], which estimates the position
and orientation and its uncertainty from the distribution
of the summation of differences between scan data, not
evaluating the uncertainty of each scan matching result.

Fig. 12 shows the environment of this experiment. Figs.
13-15 show the error of the estimated ego-motion along
the o, the y, and the ¢ axes on the robot local coordinates,
respectively. In these figures, the estimated uncertainties
are also shown by error bars. Fig. 16 shows the correct
trajectory (indicated as “correct position™) of the robot, and
the trajectories which are calculated by accumulating the
estimated ego-motions for the proposed method (“proposed
method”), the method by [8] (“without Kalman filter”), and
the method by [7] (“witheut uncertainty”™). Tabie I shows
the standard deviation of the error of z, y, and ¢ on the
robot local coordinates shown in Figs. 13-15.

In these figures and the table, the estimations of the
robot orientation are almost correct for all methods. The
reasen is probably that all metheds use range data in
various directions obtained from the omnidirecticnal stereo.
About the estimation of the robot position, Fig. 16 and
Table I shows that the proposed method performs best.
Conceming the uncertainty estimates, Figs. 13-15 show
that the comrect ego-motions are almost always within
the estimated uncertainties; this indicates the effectiveness
of the proposed uncertainty estimation method. Only the
last estimation of the orentation was not correct. This is
because the robot motion was out of the uncertainty model
of dead reckoning; this problem is expected 1o be solved
by refining the uncertainty model.
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V. CONCLUSION

This paper has proposed an ego-motion estimation
method by integrating multiple scan matching results.
The method simultaneously estimates the current and the
pievious ego-motions with considering the uncertainty of
each scan matching result. Since the estimation process is
formulated as an iterative one using Kalman filter, we can
estimate the current ego-motion and update the previous
k — 1 ego-motions simultaneously by using only & + 1
newly obtained scan matching results. We implement the
method by using omnidirectional stereo-based scan match-
ing method. Experimental result show the effectiveness of
the proposed method.

Since the proposed method identifies false matches be-
tween range measurements using the Mahalanobis distance,
it can be applied to dymamic environments where only
a few moving objects exist. If there are many moving
objects, however, the measurement from a moving object
may match with that from another, and thus the ego-motion
estimation may be degraded. A future work is, therefore,
to develop a method of finding correct matches between
the range measurements in a highly dynamic environment.

Tig,
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