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Abstract 
Under the assumption of known motion of a robot, 

environmental maps of a real scene can be successfully 
generated by monitoring azimuth changes in an image. 
Several researchers have used this property for robot 
navigation. However, it is  dificult to observe the ex- 
act motion parameters of the robot because of encoder 
measurement error. Therefore, observational errors in 
the generated environmental map accumulate in long 
movements of the robot. To generate a large environ- 
mental map, it is  desirable not to  assume known robot 
motion. I n  this paper, under the assumption of un- 
known motions of the robot, we propose a method to 
generate an environmental map and estimate the ego- 
motion of a robot, by using an omnidirectional image 
sensor. 

1 Introduction 
Generation of stationary environmental maps is one 

of the important tasks for vision based robot naviga- 
tion. For this purpose, a detailed analysis is not nec- 
essary but high speed and rough understanding of the 
environment around the robot is required. If consid- 
ered from the standpoint of machine perception, au- 
tonomous navigation needs the field of view as wide as 
possible. Thus, a real-time omnidirectional camera, 
which can acquire an omnidirectional (360 degrees) 
field of view at video rate, is suitable for autonomous 
navigation. There have been several attempts to ac- 
quire omnidirectional images using a rotating camera, 
a fish-eye lens, a conic mirror and a spherical mirror. 
Over the past 15 years, researchers in computer vision, 
applied optics and robotics have investigated a number 
of papers related to omnidirectional cameras and their 
applications [l] [a] [3]. 

Under the assumption of known motion of the robot, 
environmental maps of real scenes are successfully gen- 
erated by monitoring azimuth changes in the image. 
Yagi used this property for robot navigation with an 

Figure 1: Robot System with HyperOmni Vision 

omnidirectional image sensor [4]. Delahoche et  a1 have 
proposed the incremental map building method based 
on the exploitation of the azimuth data given by om- 
nidirectional vision and by an odometer [5]. The robot 
position estimation and map updating are based on 
the use of an Extended Kalman Filter. However, it 
is difficult to  observe the exact motion parameters of 
the robot because of encoder measurement error. Ob- 
servational errors in the generated environmental map 
accumulate in long movements of the robot. To gen- 
erate a large environmental map, it is desirable not to  
assume known robot motion. 

In this paper, under the assumption of unknown mo- 
tions of the robot, we propose a method t o  generate a 
stationary environmental map and estimate the ego- 
motion of a robot, by using an omnidirectional image 
sensor. A relative relation between the environment 
map and robot location and orientation can be defined 
by a nonlinear observational equation. Our method 
can estimate all parameters in real-time by defining 
the nonlinear observational equation as a combination 
of two linear observational equations. 
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Figure 2: Hyperboloidal Projection 

Figure 3: Coordinate System 
2 Robot System with HyperOmniVi- 

sion 

Figure 1 shows the robot system with an omnidirec- 
tional image sensor, HyperOmni Vision, using a TV 
camera with its optical axis aligned with the hyper- 
boloidal mirror's axis [6]. Mounting a HyperOmniVi- 
sion on a robot so that optical axis is vertical, we can 
acquire a 360-degree view around the robot. A hyper- 
boloidal mirror yields the image of a point in space 
on a vertical plane through the point P and its axis. 
Thus, the point P at (XI Y, 2) is projected onto the 
image point p a t  (x,y) such that 

t an8  = Y / X  (1) 

This means that the angle in the image, which can be 
easily calculated as y/x shows the azimuth angle 8 of 
the point P in space. Also, it can be easily understood 
that all points with the same azimuth in space appear 
on a radial line through the image center as shown in 
Figure 2. Therefore, with a hyperboloidal projection, 
the vertical edges in the environment appear radially in 
the image and azimuth angles are invariant to changes 
in distance and height. In this paper, we use the locus 
of azimuth angle of vertical edges while the robot is 
moving. 

3 Assumption 

The following properties of the environment and the 
mobile robot are assumed for image analysis. 

The floor is almost flat and horizontal while walls 
and stationary objects such as desks or shelves have 
vertical planes. The robot moves in a man-made envi- 
ronment such as a corridor in a building or a road in 
down town. Motion parameters are two translational 
components (U,V) and one rotational component a. 
All parameters are unknown. 

4 

4.1 Fundamental Principle 
Let us denote the robot location and orientation a t  

time t by (Out,' K)  and a(t) ,  respectively. As shown in 
Figure 3, defining the position of the object i at time 
t = 0 by ('X,,' x), the relation between the observed 
azimuth angle &(t)  of object i at time t and the object 
location relative to the robot is obtained as follows, 

Map Generation and Egomotion Es- 
timation 

' y ,  -0 v, 
ox, -0 U, 

tan(O,(t) - a(t))  = 

Here, unknown parameters are robot locations ('Ut,' I$), 
orientation a(t)  and object locations ('Xilo y Z ) .  The 
azimuth angle of the object i at time t can be ob- 
tained by the omnidirectional image sensor. Therefore, 
the total number of unknown parameters and the total 
number of observational equations are ( 2 i + 3 ( t -  1) - 1) 
and i x t ,  respectively. If the following relation is satis- 
fied, the robot egomotion and object locations can be 
estimated at the same time. 

i x t >= (2i + 3(t  - 1) - 1) ( 3 )  
Equivalently, location estimation can be done by ob- 

serving three object points from five different robot PO- 
sitions or four object points from four different robot 
positions. 

4.2 Alternative Real-time Map Generation 
and Egomotion Estimation 

Map generation and robot egomotion estimation can 
be done by solving the aforementioned nonlinear equa- 
tion 2. In general, we can solve a nonlinear observa- 
tional equation by using iterative nonlinear estimation 
methods such as Levenberg-Marquardt [7]. However, 
one can consider that it takes a long computational 
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Figure 4: Process Sequence 
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Figure 5: Geometrical Relation between Azimuth 
Change and Robot Movement 

time for converging an evaluation function of the iter- 
ative nonlinear estimation method. Therefore, in this 
paper, we solve the observational equation in real-time 
by redefining as combination of two linear observa- 
tional equations. Actually, orientation and location 
parameters are alternatively estimated while the robot 
is moving. Figure 4 shows a sequence of the proposed 
method. First, we assume that object distance is far 
enough or roughly constant from the robot. An az- 
imuth change of an object is represented by a sine func- 
tion. Therefore, under this assumption, the robot ori- 
entation is estimated by fitting a sine function. If the 
robot orientation is given, the equation 2 is modified 
to a linear function, and the location estimation can 
be done by observing three object points from three 
different robot positions. When once the location es- 
timation is done, estimated location data is used for 
azimuth change sine fitting in the next frame. The 
computational cost of each process is absolutely low. 
All estimation can be done in real-time while the robot 
is moving. Details are described in next two sections. 

Figure 6: Input Image 

4.2.1 Robot Orientation Estimation 
In case of a point on the horizontal plane which 

passes through the focal point Om, the circumferential 
component of optical flow at a point on the horizontal 
plane (call circumferential flow) is independent of the 
rolling motion, and is caused by the sway motion and 
the translational motion of the robot. We have used 
this characteristic for estimating swaying motion of the 
robot. This characteristic also appears on azimuth 
changes of objects. Actually, the azimuth changes can 
be represented by 

As shown in Figure 5, M ( t ) ,  D, ( t ) ,  (Y ( t )  and A q  
are the robot movement, distance between the object 
i and the robot, the robot orientation a t  time t and 
the azimuth change between time t and t + 1, respec- 
tively. From the equation 4, under a swaying motion, 
the magnitude of azimuth changes is constant regard- 
less of observed azimuths. Under a translational mo- 
tion, the magnitude of azimuth changes depends on 
M ( t ) / D Z  ( t ) .  Thus, it is difficult to fit observed data 
with the equation because object distances Di ( t )  are 
different from each other. In our previous work, we 
focused on the sign of this equation that corresponds 
with that of the numerator because of the positive de- 
nominator [8]. The azimuth changes have the oppo- 
site sign with respect to  the direction of robot’s trans- 
lational motion. Therefore, the swaying motion was 
estimated by evaluating the sign of azimuth changes. 
However, the sign of the azimuth changes was sensitive 
to observational noise. 

In this paper, we do not evaluate the sign but fit ob- 
served azimuth changes to the equation 4 directly. As 
mentioned before, the magnitude of obtained azimuth 
changes depends on D, ( t ) .  If the distance D, ( t )  is 
known, unknown parameters are M ( t ) ,  a ( t )  and Aat, 
and we can fit the sine function to  equation 4. Equiv- 
alently, robot orientation estimation can be done by 
observing three object points from two different robot 
positions. Therefore, we normalize the obtained az- 
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Figure 9: l-D Projection Data 
Figure 7: Polar Coordinate Transformation 

Figure 8: Edge Image (OXi - ' U t )  sin (ei ( t )  - a(t))  
- ( O x  - O K )  COS (ei ( t )  - a@)) A(i , t )  = 

( I C =  1 ,... i , j  1 . . .  imuth changes by distance Di (t) .  Actually, distance 1 t )  
Di ( t )  is calculated from the generated map in the prior 
frame. In general, obtained azimuth angles have ob- 
servational error. Thus, by using linear least squares 5.1 Estimation of loci of azimuths 

*korithm for Map Generation 

method, we estimate the swayingmotion (robot orien- 
tation) from all obtained azimuth change data whose 
objects distances have been already estimated in the 
prior frame. 
4.2.2 Map Generation and Robot Loca- 

If robot orientation a(t)  is given, unknown param- 
eters are robot locations (OUt,O&) and object loca- 
tions (OXz,' y Z ) .  The total number of unknown param- 
eters and total number of observational equations are 
(22+2(t-1)-1) and i x t ,  respectively. The locationes- 
timation can be done by observing three object points 
from three different robot positions [9]. The fast and 
robust estimation can be done because the equation 2 
becomes linear. In the proposed method, robot orien- 
tation is calculated by the normalized azimuth change 
fitting method described in the prior section. 

The environmental map and robot location have es- 
timated error due to observation error of azimuth angle 
of vertical edges. Therefore, we estimate the more pre- 
cise location using consecutive measurements by the 
least squares method. Mathematically, if we define the 
squared error f, as shown in equation 5 ,  of the least 
squares method using the equation 2, values of loca- 
tion (OXZ,OyZ) can be found by solving the following 
partial differential equations. 

tion Estimation 

As shown in Figure 7, an input omnidirectional im- 
age (See Figure 6 ) is transformed into 2D polar coori- 
nates. Next, as shown in Figure 8, we apply a 3x3 So- 
bel operator to the 2D polar image and project it onto 
the horizontal axis to get a l-D projection as shown 
in Figure 9. To estimate the loci of azimuths of verti- 
cal edges, the correspondence of edge length between 
edges in the l-D projection of consecutive images is 
established by using a correlation method in the re- 
stricted search field. As consecutive images are sam- 
pled densely, one can consider that the azimuth angle 
of the vertical edge in next frame is in the neighbor- 
hood of the azimuth angle in the current frame. There- 
fore, a certain margin of search field in the next frame 
is set around the current azimuth angle of the obtained 
vertical edge. After matching a few frames, the search 
region can be limited to  a narrow one by calculating 
the locus of each edge from the equation 2. We then 
evaluate the conformation of neighboring relations. 

5.2 Global map building by combining lo- 
cal maps 

A global map is generated by combining local maps 
at each position of the robot. Generally, the error of 
the measurement by triangulation is inversely propor- 
tional to  the trigonometric parallax and the distance 
between view positions. A large estimated error of lo- 
cal map occurs when the azimuth angle of the ver- 
tical edges does not change significantly. Therefore, 
combination of local maps is done by selecting the ob- 
ject location estimated from the azimuth locus with 
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Figure 10: Experimental Scene Figure 12: Experimental Results - The robot moved 
in a straight line - (a) Proposed method (b) In case 
of given robot orientation 

Figure 13: Experimental Scene 

Figure 11: Locus Map of Vertical Edges 

large azimuth change and wide standard deviation of 
azimuth. Because a least squares method give the pre- 
cise measurement when observational azimuth angles 
of vertical edges distribute randomly. Actually, we use 
the following evaluation function V,. 

The first term means the magnitude of azimuth change 
between time t l  and time t2, and the second term 
means the distribution of azimuth within interval be- 
tween time t l  and time ta. 

6 Experimental Results 
Two experiments were conducted for evaluating ac- 

curacy of measurements and effectiveness in our com- 

puter room. 
In the first experiment, the robot moves in a straight 

line. As shown in Figure 10, the robot moves toward 
the top. Figure 11 shows the locus map of azimuth an- 
gles of vertical edges. The vertical edges drawn with 
thick lines were used for map generation and loca- 
tion estimation of the robot. Figure 12 are results of 
map generation and location estimation of the robot. 
Figure 12 (a) shows a result of map genration and 
robot location estimation. A black cluttered line shows 
the estimated trajectory of the robot and the black 
squares show the estimated map (location of the ver- 
tical edges). Figure 12 (b) shows our previous result. 
In this case, robot orientation was given by the in- 
ternal sensor and the previous method only generated 
an environmental map and estimated robot location 
under assumption of known robot orientation [9]. As 
shown in Figure 12 (b), a black cluttered line shows 
the estimated trajectory of the robot and the black 
squares show the estimated map (location of the ver- 
tical edges). The proposed method measures with as 
high precision as the previous method. Actually, av- 
erage errors of the location measurement of the robot 
and stationary environmental map were approximately 
3.3 cm and 18cm, respectively. 
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Figure 14: Locus Map of Vertical Edges 
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A second experiment was done in a more real situ- 
ation. As shown in 13, the robot snaked through the 
computer room. Figure 14 shows the locus map of az- 
imuth angles of vertical edges. Figure 15 (a) shows 
the result of a generated environmental map and es- 
timated trajectory of robot movement. Figure 15 (c) 
shows our previous result. In this case, robot orien- 
tation was given by the internal sensor. In case of 
the proposed method, the average error of the loca- 
tion measurement of the robot was approximately 10 
cm. Figure 15 (b) shows the result when we skipped 
the process of azimuth change normalization by object 
distance. In this case, a large error occured. I t  means 
that the normalization is effective for map generation 
by the proposed method [9]. 

7 Conclusions 
In this paper, under the assumption of unknown 

motions of the robot, we proposed a method to gener- 
ate a stationary environmental map and estimate the 
egomotion of a robot, by using an omnidirectional im- 
age sensor. We are currently trying to navigate a long 
route in both an indoor and outdoor environment. 
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