
Title Multiprocessor scheduling algorithm for low
overhead fault-tolerance

Author(s) Hashimoto, Koji; Tsuchiya, Tatsuhiro; Kikuno,
Tohru

Citation Proceedings of the IEEE Symposium on Reliable
Distributed Systems. 1998, p. 186-194

Version Type VoR

URL https://hdl.handle.net/11094/14102

rights

c1998 IEEE. Personal use of this material is
permitted. However, permission to
reprint/republish this material for advertising
or promotional purposes or for creating new
collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted
component of this work in other works must be
obtained from the IEEE..

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

A Multiprocessor Scheduling Algorithm for

Low Overhead Fault-Tolerance

Koji Hashimoto Tatsuhiro Tsuchiya Tohru Kikuno

Department of Informatics and Mathematical Science

Graduate School of Engineering Science, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

E-mail:fk-hashi, t-tutiya, kikunog@ics.es.osaka-u.ac.jp

Abstract

In this paper, we propose a new scheduling algorithm
for achieving fault-tolerance in multiprocessor sys-
tems. The new algorithm partitions a parallel program
into subsets of tasks based on some characteristics of
a task graph. Then for each subset, the algorithm du-
plicates and schedules its tasks successively. Apply-
ing the proposed algorithm to three kinds of practi-
cal task graphs (Gaussian elimination, Laplace equa-
tion solver and LU-decomposition), we conduct simu-
lations. Experimental results show that fault-tolerance
can be achieved at the cost of small degree of time re-
dundancy, and that performance in the case of a pro-
cessor failure is improved compared to a previous al-
gorithm.

1 Introduction
Viewing multiple components as redundancy, it can

be said that parallel and distributed systems have the
potential for fault-tolerance inherently. Making use of
this property, many researchers have developed mul-
tiprocessor scheduling algorithms for achieving high
reliability on various system models [3, 8, 14]. For
example, Gu et al. [6] have investigated formal char-
acterization of fault-secure multiprocessor schedules.
A schedule is said to be fault-secure if either the sys-
tem produces correct outputs for the program or it
detects the presence of faults in the system. In their
model, a parallel program is composed of a set of tasks
and represented by a directed acyclic graph. All tasks
have one time unit execution time and communication
delays between processors are not taken into account.
In [6], some scheduling algorithms are proposed under
this model. However, these algorithms can be applied
only to a class of tree-structured task graphs. Chabri-
don et al. [2] have developed a scheduling algorithm
which ensures that the program can run correctly if
at least one of the processors is operational. Since
the fault-tolerance is achieved by rescheduling and re-
execution of tasks upon fault detection, considerable
decrease in the performance is inevitable even when a
single fault occurs. Gong et al. [5] have studied dupli-

cation of operations for fault detection. They consider
loop iterations called regular loops, which are perfectly
nested and contain no branches, and thus their pro-
posed method cannot be applied to any other kinds of
programs than regular loops.

In this paper, we propose a new scheduling algo-
rithm for tolerating a single processor failure in mul-
tiprocessor systems with a distributed memory archi-
tecture, in which processors communicate with each
other solely by message-passing. We consider paral-
lel programs represented by a directed acyclic graph
with arbitrary computation and communication costs.
Duplicating every task of a given program, the new al-
gorithm ensures that the system can complete the pro-
gram without rescheduling even if a single processor
failure occurs. With this scheduling, fault-tolerance
can be achieved at the cost of small degree of time re-
dundancy without requiring any additional hardware.

In previous work [7], we proposed a fault-tolerant
scheduling algorithm. In the previous algorithm, a
parallel program is partitioned into several subsets
of tasks at the �rst phase, and then tasks in each
subset are duplicated and scheduled successively. As
analyzed in [7], this two-phase scheduling policy can
produce good fault-tolerant schedules because it dis-
tributes replicated copies of each task among proces-
sors appropriately. The previous algorithm divides all
tasks equally into l(= 2; 3; � � �) subsets.

In this paper, we further focus on the structure of
given task graphs, then utilize the structural infor-
mation for partitioning more directly than the pre-
vious algorithm. Speci�cally, we introduce a notion
of heights of tasks and propose a new fault-tolerant
scheduling algorithm incorporating height-based par-
titioning. Through simulation studies, we show that
the proposed algorithm can achieve better perfor-
mance than the previous algorithm particularly in the
case of a processor failure. Moreover, the running time
of the new algorithm becomes much smaller because
its structure can be simple using a special property
every partitioned subset has.

The remainder of this paper is organized as fol-
lows: The system model assumed in this paper is de-

(b) Laplace equation solver

v1

v2 v3 v4 v5

v6

v7 v8 v9

v10

v12v11

8

88
8

8

12
12

12

12
12

12 12

12 12

1

2

3

4

6

1

2 2 2

3 3 3

(a) Gaussian elimination

v1

v2 v3

v4 v5 v6

v7 v8

v9

4
4

4

4

4

4

4
4

4

4

4

4

8

9

8

9

9

8

9

810

Figure 1: Task graphs.

scribed in Section 2. In the section, the concept of
fault-tolerant schedule is also described. The previous
scheduling algorithm is explained in Section 3. In Sec-
tion 4, the proposed scheduling algorithm is described.
The results of the simulation studies are shown in Sec-
tion 5. The paper concludes with Section 6.

2 Preliminaries
2.1 System and Task Model

We consider a multiprocessor system consisting of
n identical processing elements (PEs), which runs one
application program at a time. All PEs are fully con-
nected with each other via a reliable network. A PE
can execute tasks and communicate with another PE
at the same time. This is typical with I/O processors
and direct memory access. In addition, all PEs are
assumed to be fail-stop [12].

A parallel program can be represented by a
weighted directed acyclic graph (DAG) G =
(V;E;w; c), where V is the set of nodes and E is the
set of edges. Each node represents a task v, and is as-
signed a computation cost w(v), which indicates the
task execution time. Each edge < v; v0 >2 E from
v to v0 corresponds to the precedence constraint that
task v0 cannot start its execution before receiving all
necessary data from task v. Given an edge < v; v0 >,
v is called an immediate predecessor of v0, and v0 is
called an immediate successor of v. Each edge is as-
signed a communication cost c(v; v0), which indicates
the time required for transferring the data between
di�erent PEs. If the data transfer is done within the
same PE, the communication cost becomes zero. In
the following, we call such a weighted DAG a task
graph. Various applications are known to be repre-
sented by weighted DAGs. A multitarget tracking al-
gorithm is such an example [13]. Figure 1 shows ex-
amples of task graphs. In a task graph, the number
adjacent to a node represents the execution time of its
corresponding task, and the number on each edge is a
communication cost.

We introduce some de�nitions and terminology as
in [7]. For a path in a task graph, its length is de�ned
as the summation of task execution times along the
path excluding communication delays. The level of a
task is de�ned as the length of the longest path from
the node corresponding to the task to a node which

v1
0

v1

v2 v3 v4

v7

v8 v9v10

v11 v12

v13

v14

v1

v5 v5

v6v6

v10v10

v11

v14

p1 p2 p3 p4Time

5

v1

v2

v4 v3

v7

v8

v10v9

v12

v13

10

v1
0

v1

v2 v3

v7

v8v10

v11

v12v13

v5

v6v6

v10

v14

p1 p2 p3 p4Time

5

v1

v2

v4

v7

v8

v10v9

v12

10

v1

v2 v3 v4 v5

v6

v7 v8 v9

v10

v12v11

1

1

1

1

1

11

1 1 1

v13

v14

1 1 1 1

1
1

1

1

1

1

1

1

1

1

111
1

1

1
1 1 1

0
v1

v3 v4

v8 v9

v12

v14

v1

v5 v5

v6

v10v10

v11

p1 p2 p3 p4Time

5

v1

v2

v4 v3

v7

v8

v10

v12

v13

10

(a) task graph (b) no failure (c) failure of p1 (d) failure of p3

Figure 2: An example of a fault-tolerant schedule.

has no succeeding nodes. In Figure 1(b), for example,
the levels of v4 and v7 are 25 and 17, respectively.

2.2 Fault-Tolerant Schedule

Fault-tolerant scheduling we discuss here is to pro-
duce a schedule with which the system can complete
the program even if any single PE failure occurs.
We call such a schedule a fault-tolerant schedule [7].
The goal of fault-tolerant scheduling is to minimize
the schedule length while achieving fault-tolerance.
The following example illustrates the basic concept of
fault-tolerant schedule.

Example 1 Figure 2(b) shows a schedule for a task
graph in Figure 2(a). In this schedule, every task is as-
signed to at least two di�erent PEs. To distinguish be-
tween a task v 2 V and its actually scheduled copies,
we call the latter the instances of v. Now suppose that
p1 failed at time 0 as shown in Figure 2(c). Even in
this situation, all remaining instances which are not
assigned to p1 are executed in the same way as the
case where no failed PE exists. On the other hand, if
p3 fails at time 0 as shown in Figure 2(d), the instances
of v12 assigned to p2 and p4 cannot be executed at the
time when they are originally scheduled. This is be-
cause the earliest scheduled instance of its immediate
predecessor v9 cannot be completed. However, if the
instances of v12 on p2 and p4 wait to receive the nec-
essary data from another instance of v9 on p1, then all
instances scheduled onto healthy PEs can be executed
as shown in Figure 2(d).

Note that in Example 1, the execution order of in-
stances on each PE does not change even when a PE
fails. Thus, though the �nish time of the program
is delayed, all instances on healthy PEs can complete
their execution without rescheduling. This mechanism
can be easily realized by simply checking message ar-
rival at the beginning of each task. In addition, be-
cause all tasks are redundantly scheduled to at least
two PEs, for any task at least one of its instances is
executed. As a result, with such a schedule, the pro-
gram terminates and all of its tasks are successfully
executed even when a PE has failed.

v1

v2 v3 v4 v5

v6

v7 v8 v9

v10

v12v11

1

1

1

1

1

11

1 1 1

v13

v14

1 1 1 1

1
1

1

1

1

1

1

1

1

1

111
1

1

1
1 1 1

(a) task graph

v1
0

v1

v2 v3 v4

v7

v8 v9v10

v11 v12

v13

v14

v1

v5 v5

v6v6

v10v10

v11

v14

p1 p2 p3 p4Time

5

v1

v2

v4 v3

v7

v8

v10v9

v12

v13

10

v1
0

v1

v2 v3 v4

v1

v6

p1 p2 p3 p4Time

5

10

v1
0

v1

v2 v3 v4

v1

v6v6

p1 p2 p3 p4Time

5

v1

v2

v4 v3

10

(b) Step 1 (c) Step 2 (d) obtained schedule

Figure 3: Illustrative example of PHS3.

3 Our Previous Algorithm
Under the model described in Section 2, we have

proposed fault-tolerant scheduling algorithms in our
preliminary work [7]. In this section, we explain the
previous algorithm.

In [7], we �rst proposed a set of scheduling algo-
rithms, RSR1, RSR2, RSR3, � � �. Each RSRk is an
extension of Algorithm DSH , which is a non-fault-
tolerant scheduling algorithm proposed by Kruatra-
chue in [9]. Algorithm RSRk generates a non-fault-
tolerant schedule for n � k PEs by applying DSH
(Step 1), and then modi�es it to be fault-tolerant using
n PEs (Step 2). The schedule obtained at Step 1 in-
cludes some duplicated tasks because DSH duplicates
tasks in order to eliminate communication delays and
improve performance. At Step 2, tasks that were not
duplicated at Step 1 are duplicated and scheduled.

For achieving better performance, we then pro-
posed Algorithm GRD which integrates RSRk's in a
straightforward manner. Algorithm GRD calls RSR1,
RSR2, � � �, RSRb

n

2
c and outputs the shortest schedule

among the schedules generated by RSRk's.
In the case of a PE failure, however, schedules gen-

erated by GRD often become much longer than no
failure case. The reason is explained briey as follows:
At Step 2 of RSRk, instances can be scheduled only to
locations that are not occupied by the instances sched-
uled at Step 1. As a result, the instances scheduled at
Step 2 tend to be located on later time slots compared
to instances scheduled at Step 1. Thus the instances
scheduled at Step 2 can incur delay of the �nish time
of the program.

In order to overcome this problem, we introduced
the following idea: the set of all tasks is partitioned
into some disjoint small subsets, and then Step 1 and
Step 2 are repeatedly executed for each subset. Then,
for each task, its instances scheduled at Step 1 and
those duplicated at Step 2 become closer to each other
in the resultant schedule than GRD, and the degree of
degradation in performance in the case of a PE failure
can be decreased. Based on this idea, we have devel-
oped Algorithm PHSl. In PHSl, all tasks are ordered
according to their levels, and partitioned equally into
l disjoint subsets. Then Algorithm GRD is applied to

each subset.

Example 2 Figure 3 illustrates how Algorithm
PHS3 generates a fault-tolerant schedule. Suppose
that the number of PEs is four. Given a task graph
in Figure 3(a), the set of tasks is partitioned equally
into three subsets as follows:

G1 = fv1; v2; v3; v4; v6g; G2 = fv5; v7; v8; v9; v10g;

G3 = fv11; v12; v13; v14g

(The number of tasks in G3 is four because that of all
tasks in the task graph is 14, which is indivisible by
three.)

First, Algorithm GRD is applied to G1. GRD calls
RSR1 and RSR2. Using n�1 PEs, i.e., p1, p2 and p3,
RSR1 generates a subset of schedule (called a partial
schedule) shown in Figure 3(b) at Step 1. Then at
Step 2, tasks that are not duplicated at Step 1 (i.e.,
v2, v3, v4 and v6) are scheduled using n PEs as shown
in Figure 3(c). (v1 on p4 is an instance duplicated for
improving the start time of the instance of v2 on p4.)
Similarly, RSR2 is applied to G1. In this case, the
partial schedule generated by RSR1 is chosen. GRD
is iteratively applied to the remaining subsets G2 and
G3. As a result, a fault-tolerant schedule is obtained
as shown in Figure 3(d).

In general, the length of the obtained schedule criti-
cally depends on the structure of the given task graph.
However, Algorithm PHS l partitions a set of tasks
without enough consideration of the structure. Addi-
tionally, determining an appropriate value of l is also
a problem since the best value that minimizes a re-
sultant schedule length is di�erent for di�erent task
graphs. Another drawback is that the running time is
relatively large. This is because in PHSl, all of Algo-
rithms RSR1; RSR2; � � � ; RSRb

n

2
c are applied to each

partitioned subset.

4 The Proposed Scheduling Algorithm
In this section, we present the proposed schedul-

ing algorithm. To cope with the shortcomings of the
previous algorithm, the proposed algorithm employs
a new partitioning method and a simple scheduling
scheme. The outline of this algorithm is as follows:

Proposed Algorithm
Input: TG, a task graph;

P , a set of PEs fp1; p2; � � � ; png (n � 2)
Output: S, a fault-tolerant schedule
Begin
S := empty
Partitioning:
Partition a set of tasks in TG into task groups
G1, G2, � � �, Gm according to height.
fTask groups are arranged in descending order
of height.g

Applying Basic algorithm to each task group:
For i = 1 to m do
S := BA(Gi; S)

End For
End

4.1 Partitioning
Introducing a new notion of height of a task, we

propose to partition a set of tasks according to their
heights. The height of a task v is de�ned as

height(v)

=

8<
:

0; if v has no immediate
successors,

1 + max
u2U

fheight(u)g; otherwise,

where U is a set of immediate successors of v.
Partitioning is performed as follows: Given a task

graph, the height of each task is calculated �rst. Then,
a set of tasks is partitioned into subsets according to
their heights in such a way that all tasks with the
same height will belong to one subset. We call each
subset a task group. By de�nition, for any two tasks
v; v0 2 V , if v is a preceding task of v0, then v has
larger value of height than v0. Since all tasks in each
task group have the same value of height, they have
no data dependencies (precedence constraints) among
them. As will be analyzed in Section 5, tasks can be
scheduled e�ectively due to this property. In addition,
since the height of a task is uniquely determined, task
groups are determined uniquely too.

Example 3 Consider a task graph in Figure 1(b).
For example, the heights of v4 and v7 are 2 and 1,
respectively. The set of all the tasks is partitioned
into �ve task groups as follows:

G1 = fv1g; G2 = fv2; v3g; G3 = fv4; v5; v6g;

G4 = fv7; v8g; G5 = fv9g

4.2 Basic Algorithm
Once the program has been partitioned into task

groups, Basic algorithm described in this section is
applied to each task group. This algorithm consists of
two steps.

At Step 1, each task is scheduled to one of n � 1
PEs, i.e., p1, p2, � � �, pn�1. The tasks are scheduled
one by one according to their priorities (the task at

the highest priority is scheduled �rst). Priorities are
assigned in descending order of level. Tasks at the
same level are prioritized according to the number of
their immediate successors (the task with the greatest
number of immediate successors is prioritized highest).

Now let v 2 Gi be the task to be scheduled. Note
that all tasks in G1, G2, � � �, Gi�1 are already sched-
uled, i.e., a partial schedule S 0 already exists. Then,
v is scheduled to one of the n � 1 PEs by adding its
instance to S0. The location of v is determined as fol-
lows: For each PE, the earliest start time of v on the
PE is computed, provided that on the PE, v is not
executed earlier than any instance in S0. This can be
done by calling Procedure TDP [7, 9] for each of the
n� 1 PEs. Then v is scheduled to the PE which can
execute it the earliest of all the PEs.

At Step 2, all tasks in the task group are dupli-
cated. The newly duplicated tasks are scheduled in
the same order as Step 1. The location of each of
them is determined in a similar way to Step 1, except
that each instance is never scheduled to the PE where
its corresponding task is already scheduled at Step 1.
Consequently, every task is allocated to at least two
di�erent PEs. The following is the pseudo-code of Ba-
sic algorithm.

Basic algorithm BA(Gi; S
0)

Input: Gi, a task group;
S0, a partial schedule

Output: S, a partial schedule
Begin
Arrange tasks in Gi according to their priorities
Step 1:
For each task v in Gi do
For each PE p in P � fpng do
DTlst[p] := NULL fDTlst is a list
containing duplicated predecessors.g
ST [p] := TDP (v; p;DT lst[p])
fST [p] is the earliest start time of v on p.g

End For
pt := the PE whose ST [pt] is the smallest
Schedule v with DTlst[pt] to pt at time ST [pt]

End For
Step 2:
For each task v in Gi do
pa := the PE to which v has been scheduled
at Step 1
For each PE p in P � fpag do
DTlst[p] := NULL
ST [p] := TDP (v; p;DT lst[p])

End For
pt := the PE whose ST [pt] is the smallest
Schedule v with DTlst[pt] to pt at time ST [pt]

End For
End

Due to the space limitation, we omit the proof of
the correctness of the proposed algorithm.

The complexity of task level and height calculation
is O(jEj), where jEj denotes the number of edges in
the task graph. Each task is scheduled by applying

v1
0

v1

v2 v3

v1

v6v6

p1 p2 p3 p4Time

5

v1

v2 v3

10

v1
0

v1

v2

v1

v6

p1 p2 p3 p4Time

5

v3v2

10

v1

v2 v3 v4 v5

v6

v7 v8 v9

v10

v12v11

1

1

1

1

1

11

1 1 1

v13

v14

1 1 1 1

1
1

1

1

1

1

1

1

1

1

111
1

1

1
1 1 1

(a) task graph

v1
0

v1

v2 v3

v4

v7

v8 v9v10

v11 v12

v13

v14

v1

v5v5

v6v6

v9v10

v11

v14

p1 p2 p3 p4Time

5

v1

v2

v4

v3

v7

v8

v10v9

v12

v13

10

(c) assignment
 of v3 (Step 1)

(d) Step 2 (e) obtained
 schedule

v1
0

v1

v2

v6

p1 p2 p3 p4Time

5

v2

10

(b) assignment
 of v6 (Step 1)

Figure 4: Illustrative example of the proposed algorithm.

Procedure TDP to n�1 PEs both at Step 1 and Step
2 of Basic algorithm. The computational complexity
of Procedure TDP is known to be O(jV j3) [9], where
jV j denotes the number of tasks in the task graph.
Therefore, the complexity of scheduling of one task is
O(njV j3). Since jEj < jV j2 and the number of task
is jV j, the complexity of the proposed algorithm is
O(jV j4), given that n is �xed.

4.3 Illustrative Example
Figure 4 illustrates how the proposed algorithm

works. In this example, the number of PEs n is as-
sumed to be four, and a task graph shown in Figure
4(a) is given. A set of tasks is partitioned into eight
task groups G1, G2, � � �, G8. Tasks in each task group
are ordered according to their priorities as follows:

G1: v1 G5: v10, v5, v8
G2: v2 G6: v9, v11
G3: v6, v3 G7: v12, v13
G4: v4, v7 G8: v14

These task groups are ordered according to their
heights. Then Basic algorithm is applied for each task
group in the order. The task group whose height is
the largest is selected �rst. Note that Step 1 and 2
are applied only once to each task group, unlike in the
previous algorithm.

Now suppose that task groups G1 and G2 have been
scheduled. Then Basic algorithm is applied to G3. At
Step 1, each task in G3 is scheduled to one of n � 1
PEs, i.e., p1, p2 and p3. This is done by applying Pro-
cedure TDP to each of the three PEs. For example,
instance of v3 is scheduled as follows: The instance of
v6 has been already assigned to p2 as shown in Figure
4(b). Taking account of the immediate predecessor of
v3 (i.e., v1), it is seen that the start times of v3 on
p1 and p2 are 3 and 2 respectively. The start time of
v3 is also 2 on p3 without duplication of task. (Note
that v3 must receive necessary data from v1.) In order
to improve the start time of v3, TDP duplicates the
instance of v1 and schedules it to p3 at time 0. By this
duplication, the communication delay between v1 and
v3 is eliminated and the start time of v3 on p3 becomes
1. As a result, it is found that p3 can start execution

of v3 earlier than p1 and p2. Therefore, the instance
of v3 is scheduled to p3 as shown in Figure 4(c).

At Step 2, each task in G3 is duplicated and sched-
uled to one of all n PEs except the PE to which its
instance is already scheduled. The instance of v3 is
already scheduled to p3 at Step 1, then TDP is ap-
plied to p1, p2 and p4. As a result, an instance of v3
is scheduled to p4. Similarly, each remaining task is
scheduled so as to be executed on two di�erent PEs
as shown in Figure 4(d).

Basic algorithm is applied to the remaining task
groups G4, G5, � � �, G8. Consequently, a fault-tolerant
schedule is obtained as shown in Figure 4(e).

5 Experimental Evaluation
We performed simulation studies using a large num-

ber of task graphs as workload. In this section, we
present a performance comparison between the pro-
posed algorithm and the previous algorithm. We also
compare the running times of these algorithms on a
Sun UltraSPARC UA1 workstation.

5.1 Simulation Environment
In the previous study, it is found that by partition-

ing a set of tasks into a few subsets, good performance
can be obtained [7]. In this evaluation, we selected
PHS2, PHS3 and PHS5 as the previous algorithms
for a fair comparison with the proposed algorithm.

In addition, as in [7], we introduce a straightfor-
ward fault-tolerant scheduling algorithm STR. Algo-
rithm STR duplicates a schedule of n=2 PEs entirely.
Note that the �nish time of any schedule generated by
STR does not change when one PE has failed. Then
we compute the �nish time of schedules generated by
STR.

As a baseline, we used the �nish time of a (non-
fault-tolerant) schedule generated by DSH . All re-
sults presented in this section are normalized to this
length. In the studies, the number of PEs n is assumed
to be 10.

5.2 Workload
In the simulation studies, we used task graphs for

three practical parallel computations: Gaussian elim-
ination [10], Laplace equation solver [15], and LU-

Table 1: Running times (sec) of the proposed algorithm and the previous algorithms.

Proposed algorithm PHS2 PHS3 PHS5 STR
Gaussian elimination 0.33 2.33 2.52 2.45 0.13
Laplace equation solver 0.50 4.84 6.19 5.32 0.20

LU-decomposition 0.46 2.93 3.48 3.48 0.14

decomposition [11]. These task graphs can be char-
acterized by the size of the input matrix because the
number of tasks and edges in the task graph depends
on its size. For example, the task graph for Gaussian
elimination shown in Figure 1(a) is for a matrix of size
3. The number of nodes in these task graphs is roughly
O(N2) where N is the size of matrix. In the simula-
tion, we varied the matrix sizes so that the graph size
ranged from about 50 to 300 nodes for each kinds of
parallel computation. For each size of the task graph,
we generated seven di�erent graphs for ccr equal to
0.1, 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 by varying commu-
nication delays. The communication-to-computation
ratio (ccr) is de�ned as follows [1, 10]:

ccr =
average communication delay between tasks

average execution time of tasks

5.3 Evaluation Results
Figures 5, 6, and 7 show the simulation results for

various matrix sizes with ccr = 2:0 for (a) no PE fail-
ure case and (b) the worst case. As for the schedule
lengths in the case of no PE failure, the proposed algo-
rithm has unfortunately worse performance than the
previous algorithms, although it outperforms STR for
all sizes of matrix.

Next, we discuss the worst �nish times of the sched-
ules in the case of one PE failure. For the Gaussian
elimination task graphs (Figure 5(b)), the proposed al-
gorithm has better performance than the previous al-
gorithms PHS2, PHS3 and PHS5. Especially when
the size of matrix is more than 13, the proposed al-
gorithm exhibits better performance than Algorithm
STR. For the Laplace equation solver task graphs
(Figure 6(b)), the proposed algorithm outperforms the
previous algorithms for almost all sizes of matrix, al-
though STR shows better performance than the pro-
posed algorithm in all sizes of matrix. For the LU-
decomposition task graphs (Figure 7(b)), the proposed
algorithm has better performance than STR for some
sizes of matrix.

As explained in Section 3, the instances scheduled
at Step 2 mainly cause the delay of the �nish time
of the program. By partitioning a set of tasks into
some subsets, the delay of the �nish time of schedule
can be decreased, because for each task, the instance
scheduled at Step 1 and that duplicated at Step 2 are
scheduled closer in time to each other [7]. Subsets par-
titioned by the previous algorithm have no particular
properties because they are partitioned equally. On
the other hand, the proposed algorithm partitions a
set of tasks according to height, which is one of the
structural characteristics of a given task graph. By
the de�nition of height, each task group has the prop-
erty that all of the tasks have no data dependencies

(precedence constraints) among them. From each task
group, therefore, Basic algorithm can extract the max-
imum parallelism at both Step 1 and Step 2 (of Basic
algorithm). As a result, the instance of each task du-
plicated at Step 2 is scheduled closer to its correspond-
ing instance scheduled at Step 1 than the previous al-
gorithm, and the degree of degradation of performance
in the case of a PE failure can be decreased. There-
fore, the proposed algorithm outperforms the previous
algorithm in the case of one PE failure. Also, for the
proposed algorithm, the degree of degradation of per-
formance in no PE failure case is much smaller than
that of improvement of the performance in the worst
case as shown before compared with the previous al-
gorithm. This is because the property described above
can also contribute to the performance in no PE failure
case. From these observations, we can conclude that
the proposed algorithm improves the schedule length
in the case of one PE failure at the cost of small degree
of the degradation in the performance of no PE failure
case.

Figures 8(a), 9(a), and 10(a) show the simulation
results for the worst case with ccr = 0:2. (For space
limitation, we omit the results for no PE failure case.)
We can also see that the proposed algorithm outper-
forms the previous algorithms.

Figures 8(b), 9(b), and 10(b) show the simulation
results for the worst case for the size of matrix equal
to 16. We varied the value of ccr from 0.1 to 10.0 in
this simulation. For all kinds of task graphs, as the
value of ccr increases, the proposed algorithm shows
better performance than STR. Also, it is seen that as
the value of ccr increases, the fault-tolerance can be
achieved with small decrease of performance compared
with the non-fault-tolerant scheduling algorithmDSH
(note that we used the schedule length of DSH as the
baseline).

5.4 Comparison of Running Times
Finally, we compare the running time of the algo-

rithms needed for scheduling a task graph. Table 1
shows the running times of the proposed algorithm,
the previous algorithms PHS2, PHS3, PHS5, and
Algorithm STR. As inputs, the Gaussian elimina-
tion task graph with 250 nodes (size of matrix = 20),
the Laplace equation solver task graph with 256 nodes
(size of matrix = 16), and the LU-decomposition task
graph with 252 nodes (size of matrix = 22) are used.
The ccr is set to 2.0.

We can easily see that the running time of the pro-
posed algorithm is much smaller than that of the pre-
vious algorithm although the time complexity of the
previous algorithm is also O(jV j4) [7]. This is because
the proposed algorithm has simpler structure than the
previous algorithm. The reason why we can simplify

N
or

m
al

iz
ed

 S
ch

ed
ul

e
L

en
gt

h
(%

)

Dimension of Matrix

(a) no failure case

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Proposed Algorithm

PHS3
PHS2

PHS5

STR

100

120

140

160

180

200

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Proposed Algorithm

PHS3
PHS2

PHS5

STR

100

120

140

160

180

200

Dimension of Matrix

N
or

m
al

iz
ed

 S
ch

ed
ul

e
L

en
gt

h
(%

)

(b) the worst case
Figure 5: Results for Gaussian elimination task graphs with ccr = 2:0.

Dimension of Matrix

(a) no failure case

N
or

m
al

iz
ed

 S
ch

ed
ul

e
L

en
gt

h
(%

)

Proposed Algorithm

PHS3
PHS2

PHS5

STR

100

120

140

160

180

200

7 8 9 10 11 12 13 14 15 16 17 7 8 9 10 11 12 13 14 15 16 17

Proposed Algorithm

PHS3
PHS2

PHS5

STR

100

120

140

160

180

200

N
or

m
al

iz
ed

 S
ch

ed
ul

e
L

en
gt

h
(%

)

Dimension of Matrix

(b) the worst case
Figure 6: Results for Laplace equation solver task graphs with ccr = 2:0.

Dimension of Matrix

N
or

m
al

iz
ed

 S
ch

ed
ul

e
L

en
gt

h
(%

)

10 11 12 13 14 15 16 17 18 19 20 21 22 23

Proposed Algorithm

PHS3
PHS2

PHS5

STR

100

120

140

160

180

200

10 11 12 13 14 15 16 17 18 19 20 21 22 23

Proposed Algorithm

PHS3
PHS2

PHS5

STR

100

120

140

160

180

200

N
or

m
al

iz
ed

 S
ch

ed
ul

e
L

en
gt

h
(%

)

Dimension of Matrix

(a) no failure case (b) the worst case
Figure 7: Results for LU-decomposition task graphs with ccr = 2:0.

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

100

120

140

160

180

200
Proposed A

lgorithm

P
H

S 3
P

H
S 2

P
H

S 5

ST
R

Normalized Schedule Length (%)

D
im

ension of M
atrix

(a) ccr =
 0.2

Proposed A
lgorithm

P
H

S 3
P

H
S 2

P
H

S 5

ST
R

0
.1

0
.2

0
.5

1
2

5
1

0
100

120

140

160

180

200

ccr

Normalized Schedule Length (%)

(b) m
atrix =

 16
F
ig
u
re

8
:
R
esu

lts
fo
r
G
a
u
ssia

n
elim

in
a
tio

n
ta
sk

g
ra
p
h
s
in

th
e
w
o
rst

ca
se.

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7

Proposed A
lgorithm

P
H

S 3
P

H
S 2

P
H

S 5

ST
R

100

120 140

160

180

200

Normalized Schedule Length (%)

D
im

ension of M
atrix

(a) ccr =
 0.2

ccr

(b) m
atrix =

 16

Normalized Schedule Length (%)

0
.1

0
.2

0
.5

1
2

5
1

0

Proposed A
lgorithm

P
H

S 3
P

H
S 2

P
H

S 5

ST
R

100

120

140

160

180

200

F
ig
u
re

9
:
R
esu

lts
fo
r
L
a
p
la
ce

eq
u
a
tio

n
so
lv
er

ta
sk

g
ra
p
h
s
in

th
e
w
o
rst

ca
se.

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

Proposed A
lgorithm

P
H

S 3
P

H
S 2

P
H

S 5

ST
R

100

120

140

160

180

200

Normalized Schedule Length (%)

D
im

ension of M
atrix

(a) ccr =
 0.2

ccr

Normalized Schedule Length (%)

Proposed A
lgorithm

P
H

S 3
P

H
S 2

P
H

S 5

ST
R

0
.1

0
.2

0
.5

1
2

5
1

0
100

120

140

160

180

200

(b) m
atrix =

 16
F
ig
u
re

1
0
:
R
esu

lts
fo
r
L
U
-d
eco

m
p
o
sitio

n
ta
sk

g
ra
p
h
s
in

th
e
w
o
rst

ca
se.

the proposed algorithm is as follows: As shown in
Section 3, the previous algorithm applies all of Algo-
rithms RSR1, RSR2, � � �, RSRb

n

2
c to each partitioned

subset for achieving good performance, since the best
value of k that minimizes the length of a resultant
partial schedule is di�erent for di�erent subsets. This
is because tasks in a partitioned subset have usually
have precedence constraints mutually. On the other
hand, the proposed algorithm applies Basic algorithm
to each task group only once. As described before, all
the tasks in each task group has no data dependencies
among them. Therefore, using n� 1 PEs at Step 1 is
the best for obtaining short schedules.

The running time of STR is small since practically
it has to consider only half of the PEs.

6 Conclusions
In this paper, we have proposed a new fault-tolerant

scheduling algorithm for tolerating a single PE failure
in multiprocessor systems. The time complexity of the
proposed algorithm isO(jV j4) where jV j is the number
of tasks in the task graph.

In the proposed algorithm, a set of all tasks is par-
titioned into task groups according to their heights for
achieving good performance. Since all tasks have no
data dependencies in any task group generated by this
partitioning, we were able to simplify the structure of
the proposed algorithm.

We performed simulation studies using three
kinds of practical parallel computation, i.e., Gaus-
sian elimination, Laplace equation solver and LU-
decomposition. The simulation results show that the
proposed algorithm outperforms the previous algo-
rithm particularly in the case of one PE failure. More-
over, the results show that the running time of the
proposed algorithm is much smaller than that of the
previous algorithm.

Currently we are implementing the proposed
scheduling algorithm for a PVM-based network of
workstations [4].

References
[1] I.Ahmad and Y.-K.Kwok, \A new approach to

scheduling parallel programs using task duplica-
tion," Proc. of International Conference on Par-
allel Processing, pp.II-47-51, 1994.

[2] S.Chabridon and E.Gelenbe, \Failure detection
algorithms for a reliable execution of parallel
programs," Proc. of 14th International Sympo-
sium on Reliable Distributed Systems, pp.229-
238, 1995.

[3] V.Cherkassky and C.-I.H.Chen, \Redundant
task-allocation in multicomputer systems," IEEE
Trans. Reliability, vol.41, no.3, pp.336-342, Sep.
1992.

[4] A.Geist, A.Beguelin, J.Dongarra, W. Jiang, R.
Mancheck, and V. Sunderam, \PVM: Parallel
Virtual Machine | A User's Guide and Tutorial

for Networked Parallel Computing," Cambridge,
Mass.: MIT Press, 1994.

[5] C.Gong, R.Melhem, and R.Gupta, \Loop trans-
formations for fault detection in regular loops on
massively parallel systems," IEEE Trans. Paral-
lel and Distributed Systems, vol.7, no.12, pp.1238-
1249, Dec. 1996.

[6] D.Gu, D.J.Rosenkrantz, and S.S.Ravi, \Con-
struction and analysis of fault-secure multiproces-
sor schedules," Proc. of 21th International Sym-
posium on Fault-Tolerant Computing, pp.120-
127, 1991.

[7] K.Hashimoto, T.Tsuchiya, and T.Kikuno, \A
new approach to realizing fault-tolerant multi-
processor scheduling by exploiting implicit redun-
dancy," Proc. of 27th International Symposium
on Fault-Tolerant Computing, pp.174-183, 1997.

[8] S.Kartik and C.Siva Ram Murthy, \Task alloca-
tion algorithms for maximizing reliability of dis-
tributed computing systems," IEEE Trans. Com-
puters, vol.46, no.6, pp.719-724, June 1997.

[9] B.Kruatrachue, \Static task scheduling and grain
packing in parallel processing systems," PhD dis-
sertation, Electrical and Computer Eng. Dept.,
Oregon State Univ., Corvallis, 1987.

[10] Y.-K.Kwok and I.Ahmad, \Dynamic critical-path
scheduling: an e�ective technique for allocating
task graphs to multiprocessors," IEEE Trans.
Parallel and Distributed Systems, vol.7, no.5,
pp.506-521, May 1996.

[11] R.E.Lord, J.S.Kowalik, and S.P.Kumar, \Solv-
ing linear algebraic equations on an MIMD com-
puter," J. ACM, vol.30, no.1, pp.103-117, Jan.
1983.

[12] R.D.Schlichting and F.B.Schneider, \Fail-stop
processors: An approach to designing fault-
tolerant computing systems," ACM Trans. Com-
puter Systems, no.1, vol.3, pp.222-238, March
1983.

[13] K.R.Pattipati, T.Kurien, R.-T.Lee, and P.B.Luh,
\On mapping a tracking algorithm onto paral-
lel processors," IEEE Trans. Aerospace and Elec-
tronic Systems, vol.26, no.5, pp.774-791, Sep.
1990.

[14] S.Tridandapani, A.K.Somani, and U.R.Sandadi,
\Low overhead multiprocessor allocation strate-
gies exploiting system spare capacity for fault-
detection and location," IEEE Trans. Computers,
vol.44, no.7, pp.865-877, July 1995.

[15] M.Y.Wu and D.D.Gajski, \Hypertool: a pro-
gramming aid for message passing systems,"
IEEE Trans. Parallel and Distributed Systems,
vol.1, no.3, pp.330-343, July 1990.

