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1. INTRODUCTION

A linear time-invariant system is represented by its
transfer function denoted as H(s) in the continuous-time (abbre-

viated to '

'c.t.") case and as H(z) in the discrete-time (abbre-
viated to "d.t.") case. The transfer function has two different
structures. One is concerned with the 'form' of H(s) and is
called the "algebraic structure". State space representations,
matrix fraction descriptions, the McMillan degree, the controlla-
bility and the observability, etc. are algebraic notions. The
other is the structure of H(s) as a complex function, which
characterizes the frequency response of the system, and is called
the "analytic structure". It is the algebraic structure that can
be accessed directly, and therefore we must investigate the
mutual relationship between the two structures in order to access
the analytic structure. The aim of the stability theory for
linear systems is to study the notion of stability, which belongs
to the analytic structure, in terms of algebraic notions. On the
other hand, in a reduced order approximation problem (or model
reduction problem) it is required to find a system ﬁ(s) 'near to'
a given system H{s) in a criterion, which is usually defined in
terms of analytic notions, under the algebraic restriction that
ﬁ(s) should have a prescribed order. Thus we can see that the
stability theory and a reduced order approximation problem treat
similar situations.

In the d.t. theory, it is widely recognized that the notion

of "orthogonal polynomial matrices (abbreviated to "orthogonal
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PM's") on the unit circle" provides us with a theoretical frame-
work unifying several different problems. The notion, which is
equivalent to the AR (auto-regressive) fitting of a stationary
stochastic process, has a long history in the linear filtering
theory ({16]), not only because the AR fitting problem is practi-
cally important, but also because the notion is deeply concerned
with the basis of the theory through the so-called innovation
approach. Furthermore, the notion is closely related to the d.t.
stability of PM's. 1Indeed, it is well known that the LWR
(Levinson-Whittle-Wiggins-Robinson) algorithm, which is a matrix
version of the Levinson-Durbin algorithm, for generating the
orthogonal PM's yields a stability criterion for PM's (see, for
instance, [5],[10] and [{20}). In particular the Levinson-Durbin
algorithm is equivalent to the Schur-Cohn stability test. The
notion is also related to reduced order approximation problems
because the AR fitting itself is an approximation. 1In addition,
the work of Mullis and Roberts [21] on some approximation
problems can be regarded as an extension of the AR fitting method
to the ARMA case, and can be situated in the field of orthogonal
PM's on the unit circle as a variation.

In the c.t. case, we can define the notion of "orthogonal
PM's on the imaginary axis" correspondingly. However, owing to
the fact that the roles occupied by the powers {zk;k=0,1,...} in
the d.t. theory are shared between {sk;k=0,1,...} and {ets;tio}
in the c.t. theory, the notion has been given very little oppor-

tunity for playing an active role so far. 1Indeed, we might say



that the notion is useless in the basic fields of the linear
filtering theory from which the notion of orthogonal PM's on the
unit circle was developed. But this does not deny the possibili-
ty that the notion is used effectively in some other fields. The
aim of this thesis is to establish the usefulness of the notion
in the c.t. theory of stability and reduced order approximations.
The thesis is organized in three major parts of some
chapters each. 1In Part I (Chap.2-Chap.5), the stability of PM's
is studied in the framework of orthogonal PM's chiefly for the
c.t. case. Our guiding principle is to seek the c.t. counter-
parts of the d.t. notions such as the orthogonal PM's on the unit
circle, the LWR algorithm, etc. However, the existing d.t.
theory can be applied only to strictly reqular PM's, i.e., PM's

k

of the form A(z) = Z§=Oz A, with Al nonsingular. This limita-

k
tion is a defect of the theory in view of generality, and hence
we attempt to construct the stability theory applicable to every
column reduced PM. (It should be noted that the column reduced-
ness can be assumed without loss of generality (see [17]).) For
this purbose it is necessary to develop a general theory for
column reduced PM's at first, which will be pursued in Chap.2.

In Sec.2.1, a new basis for representing column reduced PM's will
be introduced. 1In Sec.2.2, we will show that a transformation
group consisting of unimodular PM's acts on the totality of
column reduced PM's having prescribed column degrees, and will
investigate the structure of the action. These results will be

used for studying controllability indices and the problem of

canonical forms in Sec.2.3, where the so-called polynomial-
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echelon (or Popov) form ([26],see also [17]) will be derived in
our framework. It might be said that the contents of Chap.2 are
not essentially new, but the method developed there will prove to
be quite useful in treating column reduced PM's. 1In Chap.3,
associated with a given PM C(s), an inner product <P(s),Q(s)>C
for arbitrary PM's P(s) and Q(s) will be defined. The definition
will be presented first for a c.t. stable C(s) by an integral on
the imaginary axis (Sec.3.1), which is also represented in the
time domain (Sec.3.2), and next for a general C(s) via a Lyapunov
equation or via an equivalent PM equation (Sec.3.3). The inner
product allows us to introduce the notion of orthogonal PM's
associated with C(s). Succeeding the definition, a criterion for
the c.t. stability of C(s) in terms of the orthogonal PM's will
be presented in Sec.4.1. We will also derive a recursive algo-
rithm producing the orthogonal PM's, which combines the stsbility
criterion with the algebraic structure of C(s). In particular,
the algorithm is shown to be equivalent to the Routh-Hurwitz
stability test in the scalar case. These results will be applied
to construction of Schwarz matrices and of the Routh approxima-
tion for multivariable systems in Sec.4.2. Sec.4.3 treats the
duality of PM's, which was first introduced by Anderson and
Bitmead [1] for relating the stability of PM's to some circuit
theoretic notions. Our approach to the duality is as follows.
First, the definition by [1] of the dual PM D(s) of a given PM
C(s) is rewritten in terms of the inner product associated with

C(s). Next, D(s) is constructed by the use of orthogonal PM's.



Finally, a circuit theoretic interpretation of the recursive
algorithm in Sec.4.1 is presented via D(s). In Sec.4.4, we will
investigate the behavior of the orthogonal PM's under the action
of unimodular PM's introduced in Sec.2.2, where the meaning of
the gquantities appeared in the orthogonal PM's will be studied
further from a geometric point of view. Chap.5 is mainly devoted
to a survey of known results in the d.t. theory of orthogonal
PM's. However, from a comparative viewpoint on the d.t. case and
the c.t. case, some new results will be obtained there. The LWR
algorithm will be extended to the "generalized LWR algorithm"
which applies to every column reduced PM. We will also derive a
version of the LWR algorithm called the "polar-type LWR algo-
rithm". This algorithm achieves a simplification of the LWR
algorithm at the sacrifice of the symmetry between the forward
PM's and the backward PM's.

In Part II (Chap.6 and Chap.7) we will study the Mullis-
Roberts type approximations, which consist of the modified least
squares approximation (MLSA) and the interpolatory approximation
(IA). Tﬁe MLSA, which is also called the equation error method,
has a long history itself (see, for instance, [19] and [271).
However, it is Mullis and Roberts [21] who first elucidated the
properties of the MLSA theoretically in the d.t. scalar case.
Furthermore, they formulated the d.t. IA problem, in which it is
required to find reduced order systems preserving a part of the
impulse response sequence and the autocovariance sequence of a
given system, and noticed a similarity between the MLSA and the

IA. Actually they solved the IA problem in the d.t. scalar case
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with the aid of the results on the MLSA, and showed that there
exists precisely two solutions to the IA problem. These results
were extended to the d.t. multivariable case by Inouye [12].
Chap.6 in this thesis is mostly devoted to a survey and a refine-
ment of the results in [12] and [21]. On the other hand, almost
all the results on the MLSA and the IA in the c.t. case are newly
obtained in Chap.7. The c.t. MLSA can scarcely be found in the
past literature, except that the first order case, in which
approximants are restricted to the form ﬁ(s) = (sI—A)‘1B, was
treated by some authors ([71,{25]). Recently Anderson and
Skelton [4] studied a problem similar to the IA from somewhat
different viewpoint. Their result in the d.t. case is almost the
same as that of Mullis and Roberts. In the c.t. case, their
formulation of the problem differs from ours in that the condi-
tion imposed on a solution of their problem is weaker than the
condition imposed on a solution of the IA problem. It will be
shown in Sec.7.1 that the unique solution of the MLSA problem
turns out to be a special solution of the IA problem. This is a
remarkable difference from the d.t. case. In particular, the
solutions of the IA problem for a scalar system are unique and
coincide with the solution of the MLSA problem. 1In Sec.7.2, a
recursive structure of the MLSA will be elucidated, which will
lead to a block diagram representation of the approximation.
Sec.7.3 treats the "weighted MLSA problem" with a "weighting PM"
W(s). We will present there two apparently differnt methods to

solve the problem, both of which reduce the problem to the



{(weightless) MLSA problem by the use of some factors of W(s).

In part III (Chap.8), we will consider the situation where
a c.t. system H(s) is approximated by a d.t. system G(t)(z) with
the unit time length (or the sampling period) t, and will inves-
tigate on the contents of the previous chapters how the d4.t.

results applied to G(t)(z)

'converge to' the c.t. results applied
to H(s) as t tends to 0. In Sec.8.1, some preliminary considera-
tions on the convergence G(t)(z)-—aﬂ(s) (t +0), including the
definition of the convergence, will be made. Sec.8.2 studies the
'convergence' of the d.t. results on orthogonal PM's in Chap.5 to
the corresponding results in Chap.4. We will see there how the
LWR algorithm and the recursive algorithm in Sec.4.1, which have
apparently different structures, are linked to each other in a
limiting process. 1In Sec.8.3, we will investigate the limiting
behaviors of the d.t. MLSA and of the d.t. IA in connection with
the c.t. MLSA and the c.t. IA. It will be shown that if '®'(z)
—~»H{(s) (t +0) then the unique solution of the d.t. MLSA problem
for G(t)(z) converges to the unique solution of the MLSA problem
for H(s)'aé t +0. We will also derive the condition for a
solution of the d.t. IA problem to converge to a solution of the
c.t. IA problem. 1In particular, it will be seen that in the
scalar case one of the two solutions of the d.t. IA problem
converges to the unique solution of the c.t. IA (= MLSA) problem

while the other solution has no c.t. limit.
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THE STABILITY OF POLYNOMIAL MATRICES



2. COLUMN REDUCED POLYNOMIAL MATRICES

2.1. A basis for column reduced polynomial matrices

Throughout this thesis, the term 'PM' is used as an abbre-

viation for 'polynomial matrix'.

~
Let U be the totality of p xp unimodular PM's ; i.e.,

A
Y ={U(s) : pxp PM | det U(s) = const.x 0 } .
Since iZ is a group in the sense that
oy -1 ~
if U (s), U,(s)e¢ U then U,(s)U, (s)€U ,

an equivalence relation between two pxp PM's C(s) and C(s) can

be defined by
_ A 3 o~ _
C(s) ~ C(s) & “U(s)elYU s.t. C(s) = C(s)U(s). (1]

In the above, C(s) is said to be right similar to C(s), and the

mapping C(s)+>» C(s)U(s) is called the right similarity transfor-

mation by U(s). This equivalence relation corresponds to the
arbitrariness of right irreducible matrix fraction descriptions
(MFD's) of an arbitrary rational matrix H(s) : gqxp; i.e., if

C(s) is the denominator of a right irreducible MFD
H(s) = D(s) C '(s), (2]

then the condition that C(s)~ C(s) is necessary and sufficient
for C(s) to be the denominator of another right irreducible MFD

of H(s).



Suppose that C(s) : pxp is a nonsingular (i.e. det C(s)%(ﬂ
PM, and let n; (1 < i¢ p) be the i-th column degree (i.e. the
highest degree of the polynomials in the i-th column) of C(s).
Then it holds in general that

P
deg det C(s) ¢ } nj. (3)

i=1
When the equality holds in the above, C(s) is said to be column
reduced. It is known that every nonsingular PM is right similar

to a column reduced PM ([17]). The concepts of left similarity,

row reducedness, etc., are also defined in a similar way.

In the sequel, we work with fixed column degrees (n1,...,np)
and denote by { the totality of p xp column reduced PM's having
the prescribed column degrees (ni). The aim of the present

chapter is to investigate the structure of C. Let
n, (4)

T(s) 2 diag {sn1, .. ,snp} : pxp (5)

L’(s) 2 block diag { [s™7 ', ..., 5,11, ... ,(s"77,...,11}

: pxN, (6)

where diag { ... } (block diag {...}) denotes the (block) diagonal
matrix with (block) diagonal elements {...}, and the prime
denotes the transpose of a matrix. Then an arbitrary p xp PM

C(s) having the prescribed column degrees is written as

._11_



C(s) = T(s) + C wL(S), (7)

Chigh lo

where C and C are constant matrices whose sizes are pxp

high low
and p XN respectively. Furthermore it can be shown ([17]) that

C(s) is column reduced if and only if

det C L 0. (8)

high
Thus we have

C = {ChignT(8)+C o L(s) | Cpjop €GL(R), C) € rRPN Y,
(9)
where GL(p) denotes the totality of p xp regular constant
matrices. ('GL' stands for 'general linear group'.)
Although it might be a rule to represent a column reduced PM

as (7), the character of this representation that a PM C(s) is

decomposed into only two terms the higher degree term

is not suitable

ChighT(s) and the lower degree term ClowL(s)
for some applications. 1Indeed, when we treat a recursive
algorithm for PM's for instance, we usually do not use (7) but

represent. a PM as

n n-1
C(s) = s Cn + S Cn_1 + ... C0 . (10)

However, the representation (10) is not fit to be used as a
parametrization of £ . 1In the sequel we will derive a new repre-
sentation of PM's in & which can be regarded as a modification
of (10).

Since the columns of C(s) can be arbitrarily rearranged by a

right similarity transformation, we can assume without loss of



generality that

a

(n =) ng2n, > ... 2 np. (11)
Now, consider the following matrix for j = 0,1,...,n:

T(s)/s" ) = diag {s]_n+ni; i=1,2,...,p} -

This is not generally a PM. Indeed, defining the integer r(j)

for each j=0,1,...,n as

r(j) Smax {i | 1 ¢ i ¢ p and J-n+ny

L 201}, (12)

we see that the first r(j) elements among the p diagonal elements
of T(s)/sn-j are non-negative powers of s, while the other diago-
nal elements are negative powers when r(j)<p. Hence, picking up
the first r(j) rows of T(s)/sn_j, we can define a r(j) xp PM

Tj(s) as follows:

sj-n+n2

]
|
]
]
T4 (s) - _ ! O (13)
‘. )
]
|

Sj -n+nr(j )

The following properties are immediate from the definition.

1 ¢r(0) ¢r(1) ¢ «vcv ¢ x(n) =p (14)
n-1 P

! r(3) = ] n; =N (15)
j=0 i=1

(s) (0 <3 ¢n-1) (16)

where

~ 13 —



a
Ay = [pgy)

| 01 = r(j)xr(i+1) (17)
Let us investigate the properties of { To(s),...,Tn(s) } as
a basis for representing PM's. Suppose that a k xp PM P(s) is
written as /
d kxr (3)
P(s) = § P. T.(s), P.¢€R . (18)
3=0 J 3 J
Then the i-th column degree of P(s) is not greater than that of
Td(s), i.e. d—n+ni. Here a negative column degree means that the
corresponding column of P(s) is a zero vector, and therefore the
last p-r(d) columns of P(s) constitute a zéro matrix when r(d)<p.
Conversely, if the i-th column degree of an arbitrary k xp PM
P(s) is not greater than d-n+ni for vi=1,2,...,p, then P(s) is
uniquely expressed as (18). When Pd ¥ 0 in (18), d is called the
degree of P(s) and written as d = deg P(s). Especially when Pd =
Irdy’ P(s) is said to be monic.
Let C(s) be an arbitrary element of , . Since the column

degrees of C(s) is (n1,...,np), the degree of C(s) in the above

sense is'n, and C(s) is represented as
n xr{i)
C(s) = ] ¢y Ty(s) , Cyé€ rP*FHIT (19)

Evidently Cn in the above is equal to Chigh in (7), and therefore

we have

n
= pxr(3)
C =1 jzo Cy Tj(s) | €, €& GL(p), Cy€eR

(0 ¢ 3 ¢ n-1) } (20)

— 14 -



Example 2.1.1 (Stictly regular case) In the case where

n, = n for Vi, it turns out that r(j) = p and that Tj(s) = sl1

1 P

for vj. In this case, every element C(s) of C is written as
(10) with Ch being regular. Such a PM is said to be strictly

reqular.

Example 2.1.2 Let p 3 and let (n1,n (4,2,1).

2rM3) =

Then we have : r(4) = r(3) 3, r(2) = 2, r{(1) = r(0) = 1,

it

' =
s 0 o s> 0 o
T,(s) = |0 s 0 Ty(s) =0 s 0
Lo 0 Sd ’ 0 0 1 ’
- D
s2 0 0
T,(s) = T,.(s) = [g 0 0]
2 o 1 o], ! )
To(s) = b 0 0].

*x * K * % *
C(s) = |* * * T4(S) + }x *ox T3(s)

* % * * % %

Cy Cy
* k * *

+ |* * I T (s) + |*| T.(s) + |*]| T.(s) .
A T ols)
c, C Cqo

_15_



It is known that the representation (7) yields the

controller form realization of the MFD (2}.

We will show in the

following that the representation (19) yields a version of the

realization. From (16) and (19), we have

s Tn_1(s) = An—1 Tn(s)
-1
| n ~
= A _ C C(S) - z C. T
n-1 ™n 520 3j
~ -1 .
where Cj = An_1 Cn CJ : r(n-1) xXr(j). Let

-3
no
1
/
o}
|
N

”~ ~ ”n
o ¢ oo ~Cha
- e
B‘-—’[o[cr'!‘1 ALY : Nxp
T(s) 2 [TH(s),Tj(s), ... ,T: 1 (s)]’

Then it follows from (16) and (21) that

(sI - T') T(s) = B C(s) .

N xN

N xp

(21)

(22)

(23)

(24)

(25)

We call T the block-companion matrix defined from C(s) and denote

it by

I = comp {C(s) }.

—16 —



It is obvious that the pair (I',B) is controllable, and we call it

the companion pair defined from C(s).

Example 2.1.3 (Continued from Ex.2.1.2.)

-

y 0 0
0100000 000
0010000 000
0000100 000

r ={0000O010 B=1]000
* % k Kk * X * * K K

*x k * * *k Kk * * * K

L* * * Kk * Kk % * * %

J L ~

Suppose that we are given a gqxp rational matrix H(s) which
is strictly proper (lims_)°° H(s) = 0) and is represented by a
right irreducible MFD as (2) with a C(s)€ L and a gqxp PM D(s).
Since C(s) is column reduced, the strictly-properness of H(s)
implies that the i-th column degree of D(s) is less than n, for
Vi = 1,2,...,p ([17]). This means that deg D(s) ¢ n-1, and

therefore D(s) can be written as

n-1
.D(S) = .20 DJ Tj(s) 1 D] : qxr(j)
J_
(26)
= D T(s) ,
where D 2 [DO""’Dn-1] : gxN. It follows from (2), (25) and
(26) that
H(s) = D(sI - I)7'B , (27)

i.e., (I',B,D) is a realization of H(s). We call it the block-

companion type controller form realization of the MFD H(s) =




D(s)C-1(s). This realization and the usual controller form
realization only differ in arrangement of rows and columns, and

of course there is no essential difference between the two.

— 18 —



2.2. The action of unimodular polynomial matrices
For an arbitrary C(s) € C,, define
a ~s
U= {u(s)elU |cls)u(s)e C }.

As we will show in the sequel, the definition of U is

independent of a choice of C(s) € L and therefore we have

U= {Us)e U | cls)u(s)e & for Ye(s)e C }. (1)

n
It is obvious that Y is a subgroup of U . 1In this section we

will investigate the structure of ¥ and the action of U on CL.

First, let us derive a representation for an element of U.
Suppose that C(s)U(s) has column degrees (51,...,ﬁp), where C{s)
and U(s) is an arbitrary p x p nonsingular PM. Then it can be

shown that the condition
A, < n for Vi. (2)

is equivalent to

deg [U(s)]lj ;nj - ni for Vil VJI (3)

where [...]ij denotes the (i,j) element of a matrix ... .

Obviously these are necessary conditions for C(s)U(s) to belong

to L. On the other hand, it generally holds that (see (2.1.3))

~3 0

ﬁi > deg det C(s)U(s)

— 19 —



p
= ) n; + deg det U(s).

From the above inequality, we can see that (2) implies the

following equations:

n, = n; for vi

P
< deg det C(s)U(s) = | n

k deg det U(s) = O.

These equations mean that C(s)U(s) € C and U(s)éZj. Hence we

get

W = {U(s) : pxp PM | U(s) is nonsingular

and satisfies (3) }. (4)

From the above result, an arbitrary U(s) € 2[ is written as

ij j
[U(s) 1y X=0 (5)

o

otherwise,

The quantities {ui§)} constitute a coordinate system of Y and we

have

dim Y = ) (n, - n; + 1), (6)

(i,j) s.t. njini

— 920 —



or equivalently

aimU=p? + Np - J r(3+1r(i). (7)

Remark 2.2.1 (See Ex.2.1.1.) In the strictly regular

case where n = n, for Vi, it turns out that 7/ = GL(p) and the

arguments in the present section yield only trivial results.

Example 2.2.2 (Continued from Ex.2.1.3.) Every element

U(s) of U is written as

u11(s) 0 0
U(s) = u21(S) uZZ(S) 0

u31(s) u32(S) u33(S)

(0) (0) (0)

Upq(s) = gty uyyls) =gty ug3(s) = ugz.
u21(s) = uéf)sz + uél)s + ué?),
,.u31(s) = u;?)s3 + uéf)sz + ugl)s + ugg),

u3pls) = ugyls + ugy),

and hence dim { = 12.

Now, let us investigate how the coefficient matrices of C(s)
are transformed to those of C(s)U(s) by U(s)G?l. First, we
consider the case where C(s) = Tn(s). Since Tn(s) belongs to C '

T (s)U(s) also belongs to ( and is written as



Tn(s)U(S) =

Hes=1 3

F.Tj(s), (8)

j=o

where Fne‘GL(p) and Fje Rpxr(]) for j < n. The matrices {Fj} are

determined by U(s) and we write Fj = Fj(U(s)). It is obvious

that the mapping
U(s) /> (FO(U(S)),...,Fn(U(s)))

is injective. Using the expression (5), we obtain

(nj-n;-n+k) if n. .
ij 3 i

u

0 otherwise.

Example 2.2.3 (Continued from Ex.2.2.2.)

- 2
(0)
u11 0 0
_ (2) (0)
Fg =]uyy uy 0
(3) (1) (0)
[ %31 Y32 "33
o~ — r~ =
0 0 0 0 0
_ (1) _ (0)
F3 = |4y, 0 0 F2 = |uy, 0
(2) (0) (1)
u u 0 u 0
131 32 ) i ,
0 0
F, = 0 Fo = |0
(0)
31 0



For Ogvkgn and for n-kéVSSn, let ng) be the r(k) xr(j-n+k)

left-upper submatrix of Fj' Then it follows from (8) that

(k)

Fh-k+j

1
. 74(s) (10)

Mqu

Tk(s)U(s) =
3

Hence, if two PM's C(s) and C(s) in C are written as

C(s)

il
t~~
Q
3
(WS
1]

n
B C. Tj(s)

C(s)
j=o0

and if they satisfy

C(s) = C(s)U(s), (11)

then it holds that

n
&, = 3 c riK

. (0 < V35 < n). (12)
J k-——j k n—k+j = =

This is the transformation rule for coefficient matrices of PM's
in L under the right similarity transformation by u(s)eU .

We can see from (12) that, for each k = 0,1,...,n, {Cn,...,
Ck} are determined from {Cn,...,ck ; Fn,...,Fk} and are inde-

pendent of {Ck—1""’C0 3 Fk-1""'F0}’ Indeed, defining

Gk = Gk(U(s))



[ () _(n) . (n)
pin) gln) F, )
a {n-1) (n-1) .
= Fy P Ny XNy
\\ .
\\ ]
O
o (k)
L n o

zZ
%
[}
‘o~
H
(W

we have
[Cn,....,Ck] = [Cn,....,Ck] Gk'

It is shown from (15) that the mapping U(s)F—a'Gk(U(s)) is a

homomorphism from U into GL(Nk); i.e., for VU(s),VV(s)e'u,

G, (U(s)VT () = G, (U(s))G, (V(s)) ™.

(13)

(14)

(15)

Therefore, for each k=0,1,...,n, we can define a subgroup of 2[,

say Uy: as

Uy {u(s)e U | G (U(s)) = T}

I,

{u(s)e U | F (U(s))
V.

Fj(U(s)) =0 for'j = k,...,n-11}.

Furthermore Ilkvis a subgroup of 21k+1’ because Gk(U(s)) = I
implies Gk+1(U(s)) = I. Thus we have obtained a sequence of

subgroups:

U>Un>Uyrd »oo- D Uy = (T} .

(16)



The group ij represents the degree of freedom of [ék_1,...,60]

in (11) under the constraint [Cn,...,ék] = [C se+-sC 1. We can
show that
k-1
dim Qlk = ¥ r(i) {p - r(j+n-k) }, (17
j=0
Remark 2.2.4 We can see from (10) that

deg P(s)U(s) = deg P(s)

v

for "P(s) and vU(s)é?l. Furthermore, if P(s) is monic and if

U(s) € Iln, then P(s)U(s) is also monic.

Example 2.2.5 (Continued from Ex.2.2.3.)

dim '214 6, dim u3 = 3, dim 'u2 =1,

dim Y, = dim uo = 0.

Example 2.2.6 (See Rem.2.2.1.) In the strictly

regular case, QLj = {1} for vj =0,1,...,n.



2.3. On the controllability indices and canonical forms

Suppose that a matrix pair (X,Y) is controllable, where X :

NxN and Y : Nxp. Then W 2 [Y,XY,...,XN—1Y

] : NxNp has full
row rank N. Hence, searching the columns of X from left to right,
we can find a set of N linearly independent column vectors {iji i
1 < i <P and 0 < 3j < vi—1}, where Y; is the i-th column of Y and
{v;} are nonnegative integers such that Z§=1 v, = N. It can be
shown ([{17]) that the ordered set (v1,...,vp) is invariant under
the similarity transformation (X,Y)P—éD(TXT_1,TY) for an arbi-

trary nonsingular matrix T, and vy is called the i-th controlla-

bility index of (X,Y).

For an arbitrary nonsingular square PM C(s), there exist
matrices X and Y and a PM R(s), with (X,Y) controllable and with

(C(s),R(s)) right coprime, such that

(sI - ) 'y = rR(s) ¢ '(s). (1)

Let {vi} be the controllability indices of (X,Y). Then, owing to
the invarjance property of the indices, {vi} is independent of a
choice of (X,Y,R(s)) and is uniquely determined from C(s). So,
we call {vi} the controllability indices of C(s). Note that the
indices are invariant under the right similarity transformation
C(s)—— C(s)U(s) for anarbitrary unimodular PM U(s).

Let us consider the controllability indices {vi} of a PM
C(s) in C, ji.e., C(s) is column reduced with column degrees
(n1,...,np). In this case, we can adopt the companion pair (T,B)

defined from C(s) as a matrix pair (X,Y) in (1) (see (2.1.25)).



Owing to a special feature of the companion pair, {vi} are

obtained in the following way. For each j = 0,1,...,n, let

o)

b

-1 . .
[Tog) 1 01C, = w(3) >

(3)

(3)
ta;??, . ovvap? )

it

’

where Cn is the n-th degree coefficient matrix defined by
(2.1.19). Serching the columns of Q(J) from left to right, we
(3)

can find a set of r(j) linearly independet column vectors {qi

1
i€ cQ(J) } + where R3) is a subset of {1,2,...,p} and contains
r{j) elements. It is noted that 12(3) = cﬂ(j+1). In this

situation, vy is given by

vi =n-min{j]i e g3 }.

It is shown from the above equation that, as an unordered set,

{v;} coincides with the set of column degrees {n;}. On the other

hand, we can see that the order of {vi} is determined by certain
1

rank conditions on submatrices of C; . For instance, consider

the following two extreme cases:

2V 2 e 2V (2)
and

Vg & oeee SV (3)

A necessary and sufficient condition for (2) (which is equivalent

to (n1,...,np) = (v1,...,vp)) is that

the r(j)xr(j) left-upper submatrix of
(4)
C;1 is nonsingular for every j = 0,1,...,n,
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while a necessary and sufficient condition for (3) is that

the r(j)x(p-r(j)) left-upper submatrix of
(5)

C;1 is a zero matrix for every j = 0,1,...,n.

These conditions are alsa. expressed in terms of Cn instead of C;1

as
the r(j)xr(j) right-lower submatrix of Cn
(4)'
is nonsingular for every j = 0,1,...,n
and
the r(j)x(p-r(j)) right-lower submatrix of C
(5)'
is a zero matrix for every j = 0,1,...,n,
respectively.

Next, we study the problem of canonical PM's in our frame-
work. Let .9 be a subset of  , and let 8 be a subset of 8 .

Let us consider the following problem.

Problem A Given C(s) € ia, find E(s) € E, which is right

similar to C(s).

If the problem has the unique solution E(s) for VC(S)GSD, it is

said that Ef is a cancnical form on i). In the sequel we

restrict our selves to the case where 8 is written as

n

= V.
€ - {jzo E;Ty(s) | Eje €5 (0 ¢ 73 ¢},

where Ej is a subset of RP*F(J),
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For each ke {0,1,...,n}, consider the following problem.

, n . = _

Problem Bk Given C(s) = ijo CjTj(s)E i), find C(s) =
Z?:O éjTj(s) which is right similar to C(s) and satisfies
[Cn""'ck+1] = [Cn""'ck+1] (6)
C € Ek . (7)

If 8 is a canonical form on 9, and if 8 is closed under the
action of ?j in the sense that C(s)U(s) € f) for vC(s) 635 and for
VU(S)GZL, then the solution of Prob.A for given C(s) is obtained
by solving Prob.Bn, Prob.Bn_1, cee g Prob.BO, successively.

When C(s) is right similar to C(s) and written as C(s) =
C(s)U(s) for U(s)é€ zl, the condition (6) is equivalent to U(s) €
Ylk+1 (see (2.2.15,16)). In this case, it follows from (2.2.12)
that

Cn Fn(U(s)) if k=n

C, + Cn Fk(U(s)) otherwise.

k
Thus, defining for k=0,%1,...,n

4 - pxr(k)

&k_Fk(uk+1) -Fk(u)ClR ’

we see that Prob.B, is equivalent to Problem Ck in the following.

k

Problem C_ Given C_€GL(p), find F € JF,, such that
C, F,e € .



Problem C,  (0¢k¢n-1) Given C_€ GL(p) and c, € Rpxr(k)'

find F € F, such that
C, + C, F € ek .

Consequently, a necessary and sufficient condition for 8 to be a

canonical form on 9 is that, for vC(s) = 231:0 CjTj(s) € S,

1Ch-Fn a&nl =1 (8)
. - |4
[(c + C " FIAEl =1 (0 <"k ¢ n-1), (9)
where | | denotes the number of elements of a set.

In the strictly regular case, 3n = GL(p) and 3'}( = {0} (see
Rem.2.2.1 and Ex.2.2.6). Hence a canonical form on C is

obtained by choosing
€,=11,}, & =r"P (o1,
’ ==

In other cases, however, the subset C - 3‘k c gP*T(X) depends on
Cn’ and it is impossible to choose {ek} so as to satisfy (8) and
(9) for Vche GL(p) and kae [Rpxr(k). We can see that the domain
D of a canonical form should be defined by a certain condition
on Cn to restrict the range of Cn- 3'k adequetly. Actually, if we
define e@ by specifying the order of the controllability indices
{vi}, a canonical form on .9, which is called the polynomial

echelon (or Popov) form ([26]),{17]), can be obtained. For

instance, let

n
= {1 gris)e C | c, satisties (4)'},
=0 J n

3
— 130 -



which corresponds to the condition v1;...;vp. Then a canonical

form on &D is obtained by choosing

V.
En = {En : pXp llEn]ii_= 1 for i, and [En]ij = 0
for VU.') s.t. i¥j and n.>n. }
r] ol J j___ i
E, = {B : pxx(k) | (B lj4 = 0
(0¢k<n-1) for v(i,j) s.t. nj-ni;n-k }.

Note that the sparseness of EkG E‘k is complementary to that of
Fl € J'k (see (2.2.9)). It is also noted that E(s) € E is

written as

n-1

n (acd
E(s) = } E, Tk(s) = Té(s) + ) Té(s) Ek (10)
k=0 =0 ’

k
where Ek is a r(k) xp matrix defined by

{

Ek+ni-nj]ij if k S n+nj-ni

[Ek]ij

0 otherwise.

This means that E(s) € E,is at once column reduced and row
reduced, which is a distinctive feature of the polynomial echelon

form.

Example 2.3.1 (Continued from Ex.2.2.5) When (v1,v2,v3)
= (n1,n2,n3) = (4,2,1), the polynomial echelon form E(s) € éz is

written as



E(s)

* % *
* * O

T;(s) + Té(s)[

+T1'(s)(***]+T6(s)(***].
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3. INNER PRODUCTS AND THE CONTINUOUS-TIME STABILITY

OF POLYNOMIAL MATRICES

3.1. The inner product on the imaginary axis

In this section, we will work with a given pxp positive-
definite matrix J1 and a given pxp PM C(s) which is (continuous-
time) stable, i.e., all the zeros of det C(s) have negative real
parts. Suppose that P(s) : kxp and Q(s) : &xp are PM's such that
P(s)C-1(s) and Q(s)C_1(s) are both strictly proper; for conve-

nience we denote the condition by
P(s)=—C(s) and Q(s)=3C(s). (1)

Then, P(s)C_1(s) and Q(s)C'1(s) are both square integrable on the
imaginary axis, and hence we can define a matrix-valued inner

product as follows:

1

<P(s),Q(s)> = 5%-J P(iw)C™ (iw)Ilc;1(iw)Q*(iw)dw

: kx2, (2)

where C*(s)gc'(-s) and Q*(s)ﬁQ'(—s). It is evident from the
definition that the inner product satisfies the following

properties.
(1) <P,(s)+P,(s),Q(s)> = <P,(s),Q(s)> + <P,(s),Q(s)>.

(ii) <KP(s),Q(s)> = K<P(s),Q(s)>,

where K is a constant matrix.

(iii) <P(s),0Q(s)> = <Q(s),P(s)>’.



(iv) <P(s),P(s)> 0.

fl v

<P(s),P(s)> 0 iff P(s)=0.

<P(s),P(s)>

v

0 iff P(s) has full row rank.

(v) <sP(s),0Q(s)> + <P(s),sQ(s)> = 0 (3)
if

sP(s)—C(s) and sQ(s)=3C(s). (4)

We note that the property (v) is a distinctive feature of inner

products on the imaginary axis.

As the next step, we will extend the domain of the

definition of the inner product <P(s),Q(s)> from (1) to
P(s)~ C(s) and Q(s)=C(s), (5)

where P(s)~ C(s) means that P(s)C'1(s) is proper (i.e., tends to
a finite value as s » ), Suppose that P(s)~ C(s) and that P(s)\‘
C{s). Then P(s)C_1(s) is bounded on the imaginary axis, although
it is not square integrable. Hence, if Q(s)C-1(s) is absolutely
integrable, the integrand PC—1ﬂc;1Q* in (2) is also absolutely
integrable, and the inner product <P(s),Q(s)> can be defined. We
note that a necessary and sufficient condition for Q(s)C‘1(s) to
be absolutely integrable is that sQ{(s)=3C{(s). On the other hand,
the situation is more delicate if Q(s)—=C(s) and if sQ(s)Aﬁc(s).
In this case, PC-1nc;1Q* is not absolutely integrable. Neverthe-
less, we can define <P(s),Q(s)> by taking the Cauchy's principal

value of the integral (2), on the basis of the following lemma.



Lemma 3.1.1 If a rational function £(s) is

Re s > 0 and is strictly proper, then

r
lim I fliw)dw = 'n[f(s)}_1

analytic in

(6)

r+e ‘’-r
where
o .
[f(s)] 77 lim sf(s).
- g+
(Proof) Integrating f(s) along the semicircular closed

curve shown in Fig.! and applying Cauchy's integral theorem, we

have

n/2 . ,
rj f(relw)elwdw.
-ﬂ/2

Since

£(s) = [£(s)]_;s7" + 0(s™%),

it follows that

f(reiw)eiwdw = Tlf(s)]_,
-m/2

1

r o+ O(r—2

[ ).

The desired result (6) is obtained from (7) and (8).

imaginary

ir

0 _’//,I real

-ir

Fig.1 The path of integration
_35_

(7)

(8)

(QED)



The following is immediate from the above lemma.
(vi) if Q(s)=C(s), then
1 -1 ’
<C(s),Q(s)> = s [Q(s)C (s)]_,; (9)

It is concluded from (vi) that C(s) is orthognal to every Q(s)
such that sQ(s)—C(s).
Generally, an arbitrary PM P(s) such that P(s) C(s) is

written as
P(s) = K C(S) + R(s), (10)

where K is a constant matrix and R(s) is a PM such that R(s)=3

C(s). Hence we have
P(s),0(s)> = KT [Qs)CT (s)1 | + <R(s),0(s)> (11

Thus, <P(s),Q(s)> has been defined for arbitrary P(s) and Q(s)
satifying (5). It is obvious that the fundamental properties
(i)-(iv) are valid for the extended inner product also and that
the assumption (4) in the property (v) can be replaced with the

weakened assumption
P(s)=3C(s) and Q(s)=3C(s). (12)
Now, let us consider how to calculate <P(s),Q(s)> for given
P(s) and Q(s).

<Method I> We use the fact that there exist matrices F

and G and a PM S(s) such that
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f

(F,G) is controllable,

(13)
C(s) and S(s) are right coprime,

(14)
-1 -1
{ (sI-F) G = S(s)C (s).

(15)
Given such a triplet (F,G,S(s)),

then
X 4 <S(s),S(s)>»

is obtained as the unique solution of the Lyapunov equation

FX + XF/ + GIIG'" = 0. (16)
If P(s) and Q(s) satisfy (1), they are written as
P(s) = P S(s) and Q(s) = Q S(s), (17)
where P and Q are constant matrices, and we have
<P(s),Q(s)> = PXQ'. (18)
The case of (5) is reduced to the case of (1) by the use of (10)
and (11).
<Method 11> It is known ([1]) that under the condition
that C(s) is stable there exists a PM W(s) satisfying
C(s)W,.(s) + W(s)C,(s) = I. (19)
This equation is also written as

c sy ey (s) = ¢ Hisinis) + wo(s)cy (s). (20)
Since

the integrand PC-1llc;1Q* of the integral (2) is strictly



proper under the condition (5), it follows from (20) that
-1 -1
P(s)C (s) N C, (s)Q,(s)

= (B(s)C7 (s)W(s)Q, ()] + [B(s)W, (s)C}  (8)Q,(s) ]

(21)

where [ ]sp denotes the strictly proper part of a rational

function defined as follows.

Definition 3.1.2 An arbitrary rational matrix F(s) is

uniquely represented as

F(s) = P(s) + G(s),

where P(s) is a PM and G(s) is strictly proper. We write

P(s)

ft

(F(s)1 0,

G(s) [F(S)]sp .

Noting that the first term in the right-hand side of (21) is
analytic in Re s >0 while the second term is analytic in Re s <0,

we cobtain from Lemma 3.1.1

<P(s),0(s)> = S[B(s) { €7 (s)W(s)-W,(s)C; (5) } 0, (s)]_|
(22)
where we define
(F(s)] ., 2 lim s[F(s)] (23)
-1 - S sp

for a rational matrix F(s).



3.2. Time-domain representations of the inner product

In this section, the meaning of the inner product defined in
the frequency domain in the previous section will be investigated
in the time domain, both in a deterministic framework and in a

stochastic framework.

<The deterministic representation>

Let {h(t); te R} be the impulse response matrix of C_1(s);
i.e.,

c(d/dat)h(t) = §(t)1 (1)
h(t) = 0 if t«<0, (2)

where d/dt denotes the differentiation with respect to t and 6§(t)
is Dirac's delta function. It is noted that C-1(s) is the

Laplace transform of h(t); i.e.,
c sy = J h(t)e Stat. (3)
0
Since P(S)C—1(s) and Q(s)C—1(s) are the Laplace transforms of

P(d/dt)h(t) and Q(d/dt)h(t) respectively, application of

Parseval's theorem to eqg.(3.1.2) yields

<P(s),0(s)> =I {P(da/at)h(t)} 1 {Q(d/at)n(t)} dt.  (4)
0-

This is the deterministic representation of the inner product in

the time domain. 1In the case where P(s)—3C(s) and Q{(s)—3C(s), we
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can use fg instead of [3_ in (4). On the other hand, in the case
where P(s)¥3C(s), f;_ cannot be replaced with fg , because
P(d/dt)h(t) has a 6-function like singularity at t=0. It is
noted that the property (v) in the previous section (with the
weakened assumption (3.1.12)) is obtained from (4) by the use of
integration by parts.

Let us see how the property (vi) (eq.(3.1.9)) is derived

from (4). Recalling (1) and (2), and using the formula

2 {£(0+)+£(0-) } ,

J S(t)f(t)dt
0-

we have

T {Q(a/at)h(0+)} .

=

<C(s),Q(s)> =

Owing to a fundamental property of the Laplace transformation, it
follows that the right-hand side of the above equation is equal

to that of (3.1.9).

Remark 3.2.1 Replacing fz_ in (4) with jg+ , We can

define another inner product

aP(s),Q(s)> I {(P(a/dt)h(t)} 1 {Q(d/at)h(t)} dat.  (5)
0+

The frequency domain representation of this inner product is

4P(s),Q(s)»

§%J_mlp(im)c-1(iw)]spll[c;1(iw)Q*(im)]spdm. (6)

It is obvious that if P(s)=—3C(s) and Q(s)=-2C(s) then ¢P(s),Q(s)»

= <P(s),Q(s)>. However, the property (v) under the weakened



assumption (3.1.12) is not valid for the inner product (5).
Furthermore, the property (vi) is replaced with the following:
If Q(s)—3C(s), then

4C(s),Q(s)p» = 0. (7)

<The stochastic representation>

Let u(t) be the p-dimensional Gaussian white noise process

with variance parameter J; i.e.,
Elult)u’(t,)] = 8(t,-t,) 1, (8)

where E[...] denotes the expectation of a random variable. The
process u(t) can be regarded as the formal derivative dw(t)/dt of

Wiener's Brownian motion process w(t) such that
' o
E[w(t1)w (tz)] = m1n(t1,t2) m. (9)

Suppose that P(s)=3C(s) and Q(s)=3C(s), and let p(t) and g(t) be
the responses of P(s)C-1(s) and Q(s)C-1(s), respectively, to the

input u(t); i.e.,

p(a/dat)c N (a/at)u(t) (10)

np

p{t)

a(t) 2 o(asatyc™(asatyu(t). (11)

Since C(s) is assumed to be a stable PM, p(t) and g(t) can be
made staionary with a suitable choice of initial conditions.
Then p(t) and g(t) are of finite variance, and according to the

spectral theory of stochastic porocesses we have
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a
qu(t1-t2) = E[p(t1)q'(t2)]

- 5t J Pliw)c (iw) Tl (imo, (iwet® 817 8ay, (12
In particular, we have
<P(s),Q(s)> = E[p(t)g’(t)]. (13)

This is the stochastic representation of the inner product for
the case where P(s)—=3C(s) and Q(s)=3C(s). In this representa-
tion, the property (v) (eqg.(3.1.3)) of the inner product is

written as
E(=3p(t)-q’(t)] + Elp(t)-=3q’(£)] = 0
dt dt '
which is regarded as a consequence of the stationarity
d E[{p(t)gq’(t)] =0 (14)
and of the Leibniz's formula
d{p(t)g’(t) } = dp(t)+g’(t) + p(t)-dq’(t). (15)

When P(s)~n C(s) but P(s)AﬁC(s), however, p(t) is not a
stochastic process in the ordinary sense, and we need some new
notion in order to extend the representation (13) to this case.
One way to deal with such a situation is to use the concept of
random distributions ([14]), which is the stochastic version of
L. Schwartz's distributions. 1In this framework, p(t) and gq(t)
are regarded as random distributions, and the formula (12), where
R is a distribution in general, is always justified. Hence,

pa
the representation (13) is also justified when P(s)~ C(s) and



Q(s)—=3C(s). However, this framework is too formal, and it is
difficult to see the meaning of the property (vi) (eq.(3.1.9)) in
this framework. 1In the sequel, we take another approach which is
more elementary.

When P(s)~ C(s), p(t) is expressed formally as
p(t) = dp(t)/dt, (16)

where P(t) is a stochastic process in the ordinary sense. Using

this expression, eq.(13) is written as
<P(s),Q(s)> = E[dp(t)-q’(t)]/dt. (17)

The problem is to provide dp(t)-gq’(t) with a definite meaning.
To this problem, we can apply one of the two well-known methods
of stochastic calculus: the Ité calculus and the Stratonovich

calculus\([15}). Roughly speaking, the Itd calculus treats
ap(t)*q’(t) 2 { B(t+dt)-p(t) }a’(t) (4t > 0), (18)
while the Stratonovich calculus treats

ap(t)eq’(t) & { B(t+at)-p(t) } {gq’(t+dt)+q’(t) } /2

(dt > 0). (19)

Note that the restriction (dt > 0) cannot be deleted in the above

definitions, These two notions are related to each other by
aB(t)eq’ (t) = AB(t)*q’(t) + 3 AB(t)da’ (t). (20)

Now, we claim that if P(s)~C(s) and if Q(s)—<C(s) then



<P(s),Q(s)> = E[dP(t)eqg’(t)]/dt (21)

(Proof) It is sufficient to show the above equation for
P(s)=C(s). 1In this case, it follows from (10) that p(t)=u(t)
=dw(t)/dt and that p(t)=w(t). Hence, recalling the property

(vi) (eq.(3.1.9)), the equation (21) is written as

nK', (22)

Eldw(t)eq’ (t)1/dt = 3

where K 2 [Q(s)C‘1(s)]_ Let us prove this. First, we have

1°
E[dw(t)*q’(t)] = O, (23)

because dw(t) (= w(t+dt)-w(t)) and gq'(t) are independent when

dt>0 (see (18)). Therefore, from (20) we get

Eldw(t)eq’ (£)] = 3 E{dw(t)da’ (t)]. (24)
Next, we note that sQ(s) is uniquely represented as

sQ(s) = K C(s) + R(s)
with a PM R(s) such that R(s)—3C(s). This means that

dg(t) = K dw(t) + r(t)dt, (25)

where r(t) 2 R(d/dt)C—1(d/dt)u(t). It can be shown from (8) (or

(9)) that
Eldw(t)dw’(t)] = 11 dt,

and therefore from (25) we obtain
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E{dw(t)dq’(t)] = NK’'dt + o(dt).

This equation, combined with (24), leads to the desired equation

(22). Thus, the representation (21) has been proved. (QED)
It is known that the Stratonovich calculus preserves all the

formal rules of the usual differential calculus. For instance,

the following Leibniz's formula is valid:
d{p(t)g’(t)} = dp(t)oeqg’(t) + p(t)edqg’(t). (26)

This is a generalization of (15) and proves the property (v)
under the weakened assumption (3.1.12). It is noted that the Ité

calculus does not preserve the Leibniz's formula.

Remark 3.2.2 Comparing (23) with (7), we can see that

4P(s),Q(s)b> = E[dP(t)*qg’'(t)]/dt. (27)



3.3. Defining the inner product without the stability assumption

So far, we have investigated the inner product defined by
the integral on the imaginary axis (3.1.2) from given (C(s),I)
under the assumption that C(s)- is stable. In this section, we
will extend the definition of the inner product to the general
case without the stability assumption, for the purpose of
studying the stability of C(s) in terms of the defined inner
product. The definition by the integral (3.1.2) is not suitable
for our purpose, because the integral does not have information
about whether C(s) is stable or not. Alternatively, as the
definition we adopt the equations (3.1.19) and (3.1.22) which was
appeared in the second method of calculating the inner product;
i.e., given a p xp nonsingular PM C(s) and a pxp positive-
definite matrix I, the inner product between two arbitrary PM's

with p columns, say P(s) and Q(s), is defined by
a1 -1 -1
<P(s),Q(s)> = 5[P(s) {C (s)W(s)-W,(s)C, (s) }Q*(S)]_1'
(1)

where W(s) is a pxp PM satisfying
C(s)W,.(s) + W(s)C,(s) = I. (2)

About the equation (2), the following result is known ([1]):

Under the assumption that

det C(s) and det C,(s) have no common zeros, (3)

there exists a PM solution W(s) of (2), and if W(s) is

constrained to be such that C-1(s)w(s) is strictly proper, then



W(s) is unique. From now on, we assume (3). Owing to the
uniqueness result mentioned above, the definition (1) does not
depend on a choice of a solution W(s) of (2), because if both
W,(s) and Wz(s) are solutions then-C-1(s)w1(s)—C_1(s)W2(s) turns
out to be a PM.

Let us examine the validity of the fundamental properties
(i)-(vi) in Sec.3.1. The validity of (i) and (ii) is obvious.
It is also clear from (1) that (v) is valid under the weakened
assumption (3.1.12). The property (iii) is easily verified by

using the formula [R*(s)]_1=—[R(s)]:1. Modifying (2) as
-1 -1 -1 -1 -1
C (s)W(s)-W,(s)C, (s} = 2C "(s)W(s)-C "(s) I C, (s),

we can see that (vi) follows immediately from (1). Thus the
validity of all the fundamental properties but (iv) has been
verified. On the other hand, the positivity (iv) is not wvalid in
general. (The inner product is said to be indefinite in this

sense.) Actually, we have the following theorem.

Theorem 3.3.1 C(s) is stable if and only if the inner

product defined from (C(s),Il) is positive, where Il is an

arbitrary positive-definite matrix.

In proving the above theorem, we use the fact that if P(s)—3
C(s) and if Q(s)=3C(s) then the definition of <P(s),Q(s)> by (1)
and (2) is equivalent to the definition by the equations
(3.1.13)-(3.1.18) which was appeared in the first method of

calculating <P(s),Q(s)>; i.e., given (F,G,S(s)) such that



(F,G) is controllable (4)

C(s) and S(s) are right coprime (5)

(s1-F)"'G = s(s)c”'(s), (6)
then X <S(s),S(s)> satisfies the Lyapunov equation

FX + XF' + GIIG' = 0. (7)
This fact is shown by noting that

¢<sS(s),S(s)>

= FX + G<C(s),S(s)> (by (6))
=FX + % GII[S(s)C-1(s)]i1 (by the property (vi))
- FX + 2 Gne’ (by (6))

and by invoking the property (v). Now we can see from (4)-(7)
that the stability of C(s) is equivalent to the positive-
definiteness of X, which is also eguivalent to the positivity of

the inner product. Thus, Th.3.3.1 has been proved.

Remark 3.3.2 Owing to (4) and (7), X=<S{(s),S(s)> is a

nonsingular matrix in general. This property will be referred to

as the nonsingularity of the inner product in later sections.




4, THE CONTINUOUS-TIME THEORY OF THE STABILITY

AND ORTHOGONAL POLYNOMIAL MATRICES

4.1, The stability and orthogonal polynomial matrices

Suppose that we are given a px p positive-definite matrix 1[I

and a p xp nonsingular PM C(s) satisfying (3.3.3), i.e.,
det C(s) and det C,(s) have no common zeros.

Then, in the same way as in Sec.3.3 we can define from (C(s),Il)
the inner product <P(s),Q(s)> for PM's P(s) and Q(s) satisfying
(3.1.5). 1In this section we further assume that C(s) is column

reduced with descending column degrees n;>...2n which allows us

pl
to use the notation and the results in Chap.2. 1In this situa-
tion, the condition (3.1.5) is equivalent to

deg P(s) <n and deg Q(s) < n-1. (1)

This means that if P(s) and Q(s) are written as

n
P = P. T.
(s) jzo 3 J(S)
(2)
n-1
0(s) = § Q. T.(s)
j=0 J J
then the following inner product is defined:
n n-1
<P(s),Q(s)> = § | P, X.. Q! (3)
i=0 j=0 1 lj JI

where



X5 5 2 <Ti(s),Ty(s)> @ r(i)xr(]). (4)

In particular, if both deg P(s) and deg Q(s) are less than n,

then eq.(3) is written as

<P(s),Q(s)> = [PO""'Pn-1] X [QO""’Qn—1]" (5)
where

A
(T(S)IT(S)>

>
[

0,n-1

|
)
1

Xn-1,07""" *n-1,n-1

Recalling that the companion pair (I',B) defined from C(s)
satisfies (2.1.25), and applying the argument about (F,G,S(s)) in
(3.3.4)-(3.3.7) to (I',B,T(s)), we can see that X is the unique

solution of the Lyapunov equation
'Y + X' + BB’ = 0. (6)

When a monic PM of degree j (0 ¢ j ¢ n), say

Rj(s) = Tj(s) + Rj,j—1Tj-1(s) + e.. + Rj,OTO(s)
: r(j) xp, (7)
satisfies the orthogonal condition
_ V. _ .
<Rj(s),Ti(s)> =0 for i =0,1,...,3-1, (8)

we say that Rj(s) is an orthogonal PM of degree j defined from

(C(s),M). Let X3 (0 ¢£3 ¢ n-1) be a submatrix of X defined as
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0,0 0,3
A . .
X. = (9)
3 , X
X ---- X .
3.0 3.3
Then (8) is written as
R. eeesRL . X. X. cee XL = 0. 10
Ry 0resoRy, 501 Xy + [Xy greeenXy 5 4] (10)
Therefore fhe condition that
X. is nonsingular for VB =0,1,...,n-1 (11)

J

ensures the existence and the uniqueness of Rj(s) for every
j=0,1,...,n-1. From now on, we assume (11). Note that if C(s)
is stable then X is positive-definite and the assumption is
satisfied.

The orthogonal PM's {Rj(s) 70 <¢3 g n} constitute an

orthogonal system; i.e.,
<Ri(s),Rj(s)> =0 if i # j.

Hence, defining a r(j) xr(j) symmetric matrix

™
[t}

<Rj(s),Rj(s)> (12)

—~
[}

<Rj(s),Tj(S)> by (8) )
and letting

R(s)

[RG(s), ... ,R! ,(s)]" : Nxp, (13)

we have



<R(s),R(s)> = (E 2

) block diag {eo,e1,...,en_1}. (14)

Using the expression

R(s) = R T(s)

where

— =~

Ir(o)

R I

R & 1o r(1) : NxN (15)

: : ..
[] ] \\

Ricvo Bporg =777 Ir(n—1)

o - i

eqg.(14) is written as
R X R’ = E. (16)

We can see from (16) that the assumption (11) implies the
nonsingularity of Ej for vj=0,1,...,n-1. Moreover, since the
stability of C(s) is equivalent to the positive-definiteness of X

(see (6)), we obtain the following theorem.

Theorem 4.1.1 C(s) is stable if and only if Ej is

positive-definite for Vj=0,1,...,n-1.

The above theorem itself might be a trivial result. Never-
theless, it will be shown later that combination of the theorem
and a recursive formula for {Rj(s)} yields several important

results.

Remark 4.1.2 According to the fact that in (6) the

inertia of X completely determines the location of the eigen-



values of ' relative to the imaginary axis (see Theorem 3.3 in
[9]), we can generalize Th.4.1.1 as follows. Let kj be the
number of positive eigenvalues of Ej' Then the number of zeros
of det C(s) in the open left half-plane is 22;8 kj.
The orthogonal PM's {Rj(s)} can be used as a basis for
representing PM's as well as {Tj(s)}. The representation of C(s)

w.r.t. the basis {Rj(s)} is as follows.

Theorem 4.1.3 C(s) is written as
C(s) = C_[R (s) + ~T A’ eZ' R _.(s)} (17)
n n 2 n-1"n-1"n-1 !
where
= 5 -1 =1
n= Cn IICn . (18)
(Proof) We note that the property (vi) in Sec.3.1

(eq.(3.1.9)) is equivalent to

-
Hh
o

A

e

A

=]
i
N

<C(s),T.(s)> = (19)

.-
IICn n-1

Nvj= ©
i
o]
1
——t

and that C(s) is characterized as a PM of degree n having the
highest degree coefficient Cn and obeying (19). Hence the
equation (17) is readily proved by verifying that its right-hand

side satisfies (19). (QED)

As the next step, we will investigate the mutual relation

among {Rj(s)}. For this purpose we introduce new quantities:



6 4 ¢sR;(s),Ry(s)> & r(3) xr(3) (20)

for j=0,1,...,n-1. It then turns out from the property (v) in

Sec.3.1 (eg.(3.1.3)) that ej is skew-symmetric; i.e., 95 = —Gj.

First, we consider the strictly regular case where n=n, for
v

i (see Ex.2.1.1). Then we have the following three term

recurrence for j=1,2,...,n-1:

1

-1 -
Rj+1(s) = (sI-Gjej ) Rj(s) + Ejej—1 Rj_1(s). (21)
Starting from the initial condition

-1
Ro(s) =TI R1(s) = sI - eoeo ' (22)

{Rj(s)} can be produced recursively by (21).

(Proof of (21)) It is sufficient to verify that the
14

right-hand side of (21) is orthogonal to Ri(s) for Yi=0,1,...,3.
Owing to the property (v) in Sec.3.1 (eq.(3.1.3)), the inner

product between the right-hand side and Ri(s) is written as

1

- <Rj(s),sRi(s)> - ejej <Rj(s),Ri(s)>

+ , R._,(s),R (s)>.

€E.E. .¢

3 73-1 73
For i=0,1,...,j-2, it is obvious from the orthogonality of {Rj(s)}
that the above expression is equal to 0. It is also clear from

the definitions of {Ej} and of {Gj} that the above expression

vanishes for i=j-1 and for i=j. (QED)



Example 4.1.4 (The scalar case : the Routh-Hurwitz test)

Suppose that C(s) is a monic scalar polynomial of degree n

written as

s + ... + C (23)

C(s) = s+ C 0.

Then, since the skew-symmetric matrices {ej} vanish, the

equations (21) and (22) are reduced to

Ro(s) =1 R1(s) = s (24)
Rj+1(s) = s Rj(s) + ejRj_1(s), (25)
where ej 4 Ej/Ej-1 (1 < J ¢ n-1). It follows from the above

equations that Rj(s) is of the form

J j-2 j-4

R. = R. . R. . ere o 26
J(S) 57 + Ry 5 o8 + Ry y_4S + (26)
On the other hand, Th.4.1.3 shows that

C(s) = Rn(s) + ean_1(s), (27)

where e, 2 H/2€n_1. Invoking (26) and comparing (27) with (23),

we can see that Rn(s), Rn_1(s) and e, are obtained directly from

C(s) as
_ .n n-2 n-4
Rn(s) = s + Cn-Zs + Cn_4s + eee
n-1 n-3 n-5
Rn_1(s) = s + (Cn—3/Cn 1)s + (Cn—S/Cn—1)S + oea.
e =20C (28)

Furthermore, eq.(25) can be interpreted as the Euclidean algo-
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rithm producing {ej,Rj_1(s)} from {Rj+1(s),Rj(s)}. Thus it is
seen that the equations (24)-(27) are equivalent to the procedure

of the Routh-Hurwitz stability test (see, for instance, [(8])

except for the order of computation. It is obvious that the

stability criterion of the Routh-Hurwitz test

14

e. >0 for j =1,2,¢04,n

is equivalent to the criterion of Th.4.1.1.

Remark 4.1.5 The above example shows that, in the scalar

case, Rn(s) and Rn_1(s) are obtained directly by decomposing C(s)
into the even power part and the odd power part as in (28) and
that we can produce Rn_z(s), Rn_3(s), ceey Ro(s) in that order
from Rn(s) and Rn_1(s) by the Euclidean algorithm (25). This is
a special feature of the scalar case. In the matrix case, we
cannot compute Rn(s) and Rn_1(s) directly from C(s), and instead
we must compute {Rj(s)} in reverse order by (12), (20) and (21),
for which we need to solve the PM equation (3.3.2) or the
Lyapunov equation (6). It is noted that a similar situation
arises in the discrete-time case concerning the Schur-Cohn test
and the Levinson algorithm. See [5], [10] and [20] for this

problem.

Example 4.1.6 (The first order case : the Lyapunov test)

Suppose that C(s) is written as

C(s) = sI - F. (29)



It then follows from (17) and (22) that

1 -1
Heo

C(s) = R1(s) + 3

RO(S)

-1 1
sI -6080 + 5H50~,

which leads to

-1

1
F = (90 - 211) €y - (30)
It is immediate from the above equation (or from (6)) that EO
satisfies the Lyapunov equation
’ -
Fey, + egF" + I=0. (31)

The skew-symmetric matrix 60 is given by

The stability criterion €9 > 0 of Th.4.1.1 is nothing but the

criterion of the Lyapunov test.

Example 4.1.7 (The scond order case) Let us consider the

second order case:

C(s) = 32 I+ s C1 + C0 (32)

From (17), (21) and (22), we have

_ -1
R1(s) =s I - 906

0 (33)
2 -1 -1 -1 -1 -1
R2(s) =5~ I - s (9151 + 9050 ) + 9181 BOEO + 5130
C(s) = R,(s) + +Tel 'R, (s) (34)
2 205 tqish
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which yields

1 -1 -1
(511—61)51 - 6050

Q
|

(35)

1

11 -1, -
(2 ﬂ—61)e1 6050 .

= €1€0

o
|

This means that, for an arbitrary positive-definite matrix [, a
PM C(s) of the form (32) is always expressed as (35) with sym-
metric matrices {50,51} and skew-symmetric matrices {90,61}. In
this expression, the stability of C(s) is equivalent to the
positive-definiteness of €9 and of €1 Considering the special
case where eo = 0, we obtain the following result: if there

exists a symmetric matrix €, such that

- [ =
€y Co = Cheq (= g4)
(36)
’ =

Cieq + g4C1 (=) > 0,
then the stability of C(s) is equivalent to the condition

€. >0 and e.'C. > 0

1 1 70 °

Application of the result to the case where €4 = I and to the

case where gy = C0 leads to the following two well-known

sufficient conditions for the stability of C(s):

s _ ’ ’
(i) C0 = C0 > 0 and C1 + C1 > 0

.. Y R
(ii) C0 = C0 > 0 and C1C0 + C.C! > 0.
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We now return to the general case where C(s) is column

reduced with the column degrees n, > ... > n_. Recalling

1 = p
(2.1.16), we can generalize (21) and (22) as follows.

Theorem 4.1.8 The orthogonal PM's {Rj(s)} satisfy the

following recurrence relationship:

Ry(s) = Ty(s), NgRy(s) = (ST - 8,e5 IRy (s),
(37)
) - , -1
AjRj+1(s) = (sI ejej )Rj(s) + EjAj—1€j-1 Rj_1(s).

In the above recursion, however, the r(j+1)-r(j) lowest rows
of Rj+1(s) are not determined from {Rj(s),Rj_1(s)}, and therefore
we cannot use (37) for producing {Rj(s)} in general. 1In order to

derive a recursive algorithm for computing {Rj(s)}, we define

auxiliary PM's {Yj(s);j=0,1,...,n} by the following conditions.

(1) Yj(s) is a {p-r(j)}xp PM written as

3-1

Yi(s) = a5 + ] Yy T;(s), (38)
i=0

where
QJ = [ (0] | Ip‘r(j)] : {p'r(J)}xp'
(ii) Yj(s) satisfies the orthogonal condition
<Yj(s),Ti(s)> = 0 for Vi=0,1,...,j-1. (39)
(In the case where r(j) = p, Yj(s) is regarded as a 0 xp matrix
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formally.) Note that the assumption (11) ensures the existence

and the uniqueness of Yj(s). We further define

£.

3 <Yj(s),Rj(S)> : {p-r(j) }xr(3) (40

—
i}

<Yj(s),Tj(s)> by (39) )

—_
[}

<9j,Rj(S)> by (8) )

for j=0,1,...,n-1. Now, we have the following theorem.

Theorem 4.1.9 {Rj(s)} and {Yj(s)} are computed by the

recurrence formula:

Ry ,q(s) }r(j+1)
Yj+1 (s) } p-r{j+1)

1 -1
- 8.eI MR, YO : j
(sT - 85e] IRj(s) + e5hf_yell) Ry (s) }r(j)

) -1 .

(1 ¢3 ¢ n=1) (41

with the initial condition:

'Ro(s) "} r(0)

———ee =Ip
Y, (s) p-r(0)

. -

(42
R, (s) 1}rm (ST - Byeg') Tols) }r(O)

Y1(s) }vp-r(1) Qo - €0e51 To(s) }p—r(o) .

- -



(Proof) It is sufficient to show that the right-hand side

. r 1 14
of (41), say Zj+1(s), is expressed as the sum of [Tj+1(s),Qj+1]

and a PM of degree less than j+1, and that 2. (s) is orthogonal

J+1

to every PM of degree less than j+1. The first statement on

Zj+1(s) is readily verified by noting that
s Tj(s) Tj+1(s)
9y 949 .

and the second statement is clear from (8), (37), (39) and (40).

(QED)

Remark 4.1.10 In the argument of the present section,

the quantities {Rj(s)}, {Yj(s)}, {ej}, {Gj} and {gj} have been
defined from (C(s),Il) via the inner product, and have been shown
to satisfy (17), (41) and (42). Conversely, we can prove that if
quantities {Rj(s)},{Yj(s)}, etc. satisfy (17), (41) and (42) then
they coincide with those defined via the inner product.
Therefore, the equations (17), (41) and (42) can also be adopted

as the definition of {Rj(s)}, {Yj(s)}, etc.



4.2. Schwarz matrices and the Routh approximation

In the previous section, the quantities T, {ej} and {ej}

were defined from given (C(s),ll). Using these quantities, let

-1 , .
. Al . el : xr(j-1 183 ¢
e Mo s r(j) xr(j-1) (123 ¢n-1)
e, =
J _1_‘1-“\; 8'1 : r{n) xr(n-1) (j = n)
2 n-1 "n-1 )
fj‘-_‘ej eg‘ : r(3) xr(3) (0 ¢ 3 ¢ n-1)
- -
fo AO
e, £, n,
o g S - \\\ ~ - : NXN
©n-2 fh2 My
_ “en-1 “eptfn g 3

We call O the block-Schwarz matrix defined from (C((s),ll). Note

that © is composed of a positive-definite matrix ﬁ, nonsingular
symmetric matrices {ej} and skew-symmetric matrices {ej}.

In the case where C(s) is a scalar polynomial, it turns out
that A, =1 and that fj = 0. Moreover, the guantities {ej} are
obtained by the procedure of the Routh-Hurwitz stability test for
C(s) as shown in Ex.4.1.4. Thus we can see that O is the Schwarz
matrix defined from C(s) in the usual definition (see, for
instance, [(2]).

Owing to Th.4.1.3 and Th.4.1.8, we have
(sI - 0) R(s) = B C(s}, (1)

where R(s) and B are defined by (4.1.13) and (2.1.23)



respectively. It is noted that eq.(1) characterizes 0. This
characterization leads to the following properties of ©. First,
O is similar to the block-companion matrix I' defined from C(s).

Indeed, comparison of (1) with (2.1.25) yields

(9=RI"R'1

(2)
B = R B,

where R is a matrix defined by (4.1.15). Next, it follows from
(2) and from (4.1.16) that the Lyapunov equation (4.1.6) is

transformed into
OE + EO' + BIIB' = 0. (3)

This means that the similarity transformation (2) from the com-
panion pair (I',B) into the Schwarz pair (©,B) block-diagonalizes
the solution of the Lyapunov equation (4.1.6). Note that eq.(3)
can also be verified by a direct calculation.

Suppose that H(s) is a gxp strictly proper rational matrix

such that
H(s) = D(s) C ' (s), (4)

where D(s) is a g xp PM. Then the companion pair (I',B), together
with the coefficient matrix D of D(s) defined by (2.1.26),
provides the block-companion type controller form realization
(r,B,D) of the MFD (4) as shown in (2.1.27). Owing to the
similarity relation (2), a realization (6,B,V) of H(s) is

obtained by defining additionally



\Y DR : gxN. (5)
Note that
n-1
D(s) = VR(s) = § v. R.(s),
2o 3 3
J_
where
V = {vo,v1,...,vn_1], vj :gxr(j).

We call (0,B,V) the controllable Schwarz form realization of H(s)

defined from the right MFD (4) and [I. We note that the observ-

able Schawarz form realization of a left MFD can also be defined

in a similar way.

As an application of the above results, we will construct
the Routh approximation for MIMO (multiple-input, multiple-
output) systems in the sequel. The Routh approximation method
for reducing order of SISO (single-input, single-output) systems
was introduced by Hutton and Friedland in [11] and was shown to
have some.nice properties there. This method consists of two
steps: first, derive the Schwarz form realization of a given
higher order system, and next, construct the approximant by
truncating a part of the state variables of the realization.

The extension of the method to the MIMO systems is a quite easy
poroblem now.

Suppose that a g xp strictly proper rational matrix H(s) is
written in a right irreducible MFD (4), and let (6,B,V) be the

controllable Schwarz form realization defined from the MFD and Il.
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We further assume that H(s) is stable, which means that

€. >0 for Y4=0,1,...,n-1. (6)

J

For each m=1,2,...,n, let

a .
N, = ) r(i),
j=n-m
4
Om =
r —
fn—m L~
“Cn-m+1 fn-m+1 M —met
T - I T~ - PN XNy
(::::::> en2  fho2 A2
L “€n-1 —en*fn-1d
a =1 ' .
B, = Lo |cl Al 4] : N xp
v 4 [ ] . x N
m = Vn-m' Vn-1 *a m.

It should be noted that @m is the block-Schwarz matrix composed
of {ej ; n-m¢j<n-1}, {ej ; n-m<j¢n-1} and . This fact proves

the following:

r r
emEm + Emem + BmHBm = 0, (7)

where

a .
E, = block diag {e_ _ secerey 4} = N XN

Now, we define the m-th order Routh approximant of H(s) by

H (s) & v_ (sI - om)'1 B, (8)



In the SISO case, this definition is shown to coincide with that

of [11].

Remark 4.2.1 Since the controllable Schwarz form

realization (0,B,V) of H(s) is defined from the right irreducible
MFD (4) and II, the definition of the Routh approximants seems to
depend on a choice of a right irreducible MFD of H(s). However,
it will be shown in Sec.4.4 that the approximants are uniquely
determined by (H(s),I). On the other hand, the definition
depends actually on a choice of II. Furthermore, the use of a
left irreducible MFD and of the observable Schwarz form
realization provides another definition. In the SISO case, all

the ambiguity of definition vanishes.

The fundamental properties of the SISO approximation (([11])
are generalized to the MIMO case as follows. First, since the
stability condition (6) implies the positive-definiteness of Em’

it follows from (7) that Om is a stable matrix. Thus we have:

(i) The approximation preserves stability; i.e., Hm(s) is

stable for Vm.

The second property of the approximation is concerned with Markov

parameters. Expand H{s) and Hm(s) as

-1 + h s"2 + e

H(s) = h0 s 1

~ -1
H (s) = hm,0 s + hm’1



The matrices {hj} and {h_ j} are called the Markov parameters of
’

the systems, and are represented as

A Oj B

=2
1}

(j=0,1,...)

=2
|

3
m,j Vin G)m Bm.

Recalling that Om’ Bm and Vm are right lower submatrices of Q, B
and V respectively, and noting the sparseness of the matrices, we

can prove the following:

(ii) The m-th order approximation preserves the first m

Markov parameters; i.e.,
h . = nh, for V3=0,1,...,m—1.

The last property shown below is quite peculiar to the Routh
approximation. Let hm(t) (t > 0) be the impulse response of

Hm(s), which is represented as

hm(t) =V exp(tGm) B.. (9)

We define the impulse response energy of Hm(s) w.r.t. I as
£ ' .
Am = IO hm(t)IIhm(t) dt : gxg.

Noting that the solution Em of the Lyapunov equation (7) is

represented as
= ’ ’
E = Io exp(tom)BmlIBmexp(tOm) dt,

m

we obtain from (9)



This leads to the following:

(iii) The impulse response energy of the m-th order
approximant decreases monotonically as m is lowered;

i.e.,

Remark 4.2.2 In the definition of the m-th order

approximant (8), modify the Schwarz matrix Om, which is composed

of {ej, ej : n—m;j;n-1} and of T, into 6m by replacing 6 _  with
an arbitrary r(n-m) Xr(n-m) skew-symmetric matrix 3

can see that ﬁm(s) 2 Vm(sI - @m)—1Bm satisfies the properties

. Then we
n-m

(i)-(iii). This means that ﬁm(s) can alstfegarded as a MIMO
be
version of the Routh approximation.



4.3. The duality of polynomial matrices

The concept of dual PM's was first introduced by Anderson
and Bitmead [1] for studying the stability of PM's. The concept
was also applied by Anderson and Kéilath [3] to the problem of
deriving the backward Markovian model of a stochastic process
from a given forward Markovian model. 1In this section, we will
discuss the duality in the framework of inner product and of
orthogonal PM's.

Suppose that C(s) and D(s) are p X p nonsingular PM's and
that ] is a pxp positive-definite matrix. When the following
two conditions are satisfied, it is said that D(s) is a dual PM

of C(s) w.r.t. I.

1 1

(1)  Cu(s)” C(s) = D, (s)l D(s). (1)

(ii) det C(s) = * det D(-s). (2)

The above definition is a slight generalization of the
definition in [1] where [l was restricted to I. The fundamental
result on'the existence and the uniqueness of dual PM's was shown
in [1] and [3] for [I=I, and is immediately extended to our case
as follows. Every nonsingular PM C(s) has a dual PM D(s) w.r.t.
M. Furthermore, if C(s) satisfies the condition (3.3.3), then a
dual PM is unique up to a constant [[-orthogonal left factor;
i.e., if D(s) is a dual PM, then D(s) is also a dual PM if and

only if there exists a matrix K such that

KIK’' =1 (3)



D(s) = K D(s). (4)

From now on, we assume (3.3.3).

When C(s) and D(s) are mutually dual w.r.t. 0, D(s)C'1(s) is
NM-unitary on the imaginary axis s = iw. Since the JI-unitary
group is compact, each element of D(s)C'1(s) is bounded on the
imaginary axis, which implies that D(s)C-1(s) is proper and that
limS*m D(s)C-1(s) is NI-orthogonal. Hence there exists a unique
dual PM D(s) such that

(iii)  lim D(s)C '(s) = I. (5)

S+

A PM D(s) satisfying (i)-(iii) is simply called the dual PM of

C(s) w.r.t. 1.

Example 4.3.1 When C(s) is a scalar monic polynomial of

degree n, the dual polynomial of C(s) is given by

D(s) = (-1)"c(-s), (6)

being independent of 1.

Example 4.3.2 (Anderson and Bitmead [1]) When C(s) is

written as C(s) = sI - F, the dual PM w.r.t. @I is given by

~1
_ r
D(s) = sI + eoF €g ¢ (7)

where €9 is the solution of (4.1.31) in Ex.4.1.6.

The duality is related to the stability as follows ([11]).
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Factorize H-1 as
L N3 (8)

where L is a square nonsingular matrix, and define
sts) 4 1 D(s)c‘1(s) Lt (9)
Then (1) leads to

S(s) S,(s) = I. ' (10)

Generally a rational matrix S(s) obeying (10) is said to be

lossless bounded real (LBR) when it is stable. 1In our case,

since C(s) and D(s) are right coprime under the assumption

(3.3.3), it follows that
C(s) is stable iff S(s) is LBR. (11)

It is well known (see, for instance, [6]) that the LBR property
completely characterizes the scattering matrices of lossless
networks, which are composed of lossless circuit elements
including capacitors, inductors, transformers and gyrators. When
S(s) is the scattering matrix of a lossless network, the
immittance (i.e. impedance or admittance) matrix of the network

is given by

2(s) {I - s(s)}{1 + s(s)}”1

]

L{c(s)-D(s) }{c(s)+D(s)} L' (12)

1]

or its inverse. We can see that the LBR property of S(s) is
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transformed into the lossless positive real (LPR) property of

Z(s); i.e.,

(13)

"
o

Z(s) + Z,(s)

Z(s) + 2'(s) > 0 in Re[s] > O, (14)
where s denotes the complex cojugate of s. It is obvious that

C(s) is stable iff Z(s) is LPR. (15)

The above argument shows that, once a dual PM of C(s) is
obtained, the stability test for C(s) is reduced to the LBR (LPR)
test for S(s) (for Z(s)). It should be noted that the LBR (LPR)
test, for which various efficient metﬁods are known ([1]), is

much easier than the stability test in general.

Now, let us investigate the mutual relationship between the
duality and the notion of inner product. Owing to the assumption

(3.3.3), there exists a PM W(s) satisfying (3.3.2); i.e.,
C(s)W,.(s) + W(s)C,(s) = I. (16)

Similarly, since the dual PM D(s) also satisfies the same condi-

tion as (3.3.3) (see (2)), there exists a PM Y(s) such that
D(s)Y,(s) + Y(s)D,(s) = I. (17)
We can see from (1) that
c (s)W(s) - Y, (s)D;'(s) = D ' (s)¥(s) - W, (s)C; (s).
Coimparison of the poles of both sides of the above equation



shows that C—1(s)W(s)—Y*(s)D;1(s) must be a PM. Thus we have
-1 -1 - -1 -1
C™ (s)W(s)-W,(s)C, (s) = -{D™ ' (s)¥(s)-Y, (s)D, (s)}
modulo PM. (18)

Hence, recalling the expression (3.3.1), we see that, for
arbitrary PM's P(s) and Q(s), the inner product <P(s),Q(s)>C
defined from (C(s),ll) and the inner product <P(s),Q(s)>D defined

from (D(s),ll) are related to each other as
<P(S),Q(S)>C = - <P(S),Q(S)>D . (19)

The above equation allows us to characterize D(s) in terms of

< )C as follows.

Theorem 4.3.3 A PM D(s) obeying (5) is the dual of C(s)

w.r.t. T if and only if the following holds for VQ(s)—%C(s):

<D(s),Q(s)>, = -<C(s),Q(s)>, . (20)
(Proof) As in (3.1.9), D(s) satisfies
<D(s),Q(s)>, = T (Q(s)D” (s)17, (21)
for vQ(s)—%D(s), or equivalently for vQ(s)-%C(s). Under the

constraint (5), the right-hand side of (21) coincides with that
of (3.1.9), and therefore (19) leads to (20). Since D(s) satis-
fying (5) and (20) is unique because of the nonsingularity of

<Ooa {see Remark 3.3.2), the dual PM D(s) is characterized by
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these equations. (QED)

If D(s) is the dual of C(s) w.r.t. II, and if U(s) is a
unimodular PM, then the dual of C(s)U(s) w.r.t. NI is D(s)U(s),
obviously. Therefore, we can assume with no loss of generality
that C(s) is column reduced with descending column degrees.

Using the notation of Sec.4.1, we have the following.

Theorem 4.3.4 The dual PM of C(s) w.r.t. Il is given by

1=,, _-1
D(s) = C {R (s) - 5MA] ;e 4R _,(s)} (22)

(Proof) Immediate from Th.4.3.3. (See the proof of

Th.4.1.3) , (QED)

Example 4.3.5 (The scalar case) Application of the above

theorem to Ex.4.1.4 shows that
n
D(s) = R, (s) - e R, _,(s) = (-1)" C(-s),

which coincides with the result of Ex.4.3.1.

Example 4.3.6 (The first order case) Application of the

above theorem to Ex.4.1.6 shows that

D(s) = Ry(s) - 3Teg'Ro(s)

1 -
sT - (eo+5n)so’. (23)

Since eq.(4.1.30) leads to

_74-



]
gy F' = ~(8y+31),

the result of Ex.4.3.2 (eq.(7)) follows from (23).

Example 4.3.7 (The second order case) In the situation

of Ex.4.1.7, assume that there exists a symmetric matrix €

satisfying (4.1.36), and let née C1e1 + £1C{. This assumption

means that BO = 0 in (4.1.33), and we have

sI

1]

R1(S)

szl - 5615;1 + E -1

RZ(S)

Thus, it follows from Th.4.1.3 and from Th.4.3.4 that

2 1 -1 -1
C(s) = s°1 + S(EH-91)51 + £18,

1

2

D(s) = s°T - s(%n+e1)a;1 . € e51.

1

We can see from the above equations that the dual of C(s) w.r.t.

Il is written as

-1

D(s) = €, C,(s) g, .

1

In particular, we have:

(i) If C, = C! and if C,+C! > 0, then the dual of C(s)

0 0 1

w.r.t. C,+C; is C,(s).

» o - ¥4 : I
(ii) If C0 = CO and if C1C0+C0C1 > 0, then the dual of

C(s) w.r.t. € Cu+CoCi is CiCy(s)Cy'.



According to Th.4.1.3 and Th.4.3.4, 2(s) in (12) is written
as

1

2(s) = + Lc A/ - 1(S)R;1(S)C;1L_ (24)

2 n-1€n-1Rn—

In the sequel, we will investigate the internal structure of

Z(s) in the light of the recursive formula (4.1.37) in Th.4.1.8,

in order to show that the stability criterion of Th.4.1.1 is

actually interpreted as a criterion of the LPR-ness of Z(s).
First, we make some preliminary definitions. Since Rj(s) is

a r{(j) xp PM of degree j, the last p-r(j) columns of Rj(s)

constitute a zero matrix, and we denote the remaining nonzero

r(j) xr(j) PM by ’ﬁj(s); i.e.,
"N
R.(s) = [R.(s) |O ]. (25)
J J
Moreover, since Rj(s) is monic and is written as
Rj(S) = Tj(s) + Q(s)

where Q(s) is a PM of degree less than j, it follows from

(2.1.16) that

Aj_1Rj(s) = S Tj_1(s) + Aj_1Q(S)I

which implies that the last p-r(j-1) columns of [\j_1

R.(s)
J
constitute a zero matrix. Hence, denoting the remaining nonzero

A
r{j-1) xr(j-1) PM by Rj_1(s), we have

N
Aj_qRy(s) = [Ry(s) | O 1. (26)
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The following is obvious:

~ _
A: .R.(s) = Rj(s)/\j_1 (27)

Taking the r(j) xr(j) nonzero parts of the both sides of the

recursive formula (4.1.37), we obtain

~ A -1
Ro(s) = I R1(s) = sI - 6090
(28)
A _ -1~ , -1~
Ry,q(s) = (sI - B5ey5 IRy(s) + €5h5 185 qRy_q(SIAy 4,
For j=1,2,...,n, let
z.(s) 2R, (s)R7 (s) (3-1) x r(3-1) (29)
.{s) = R,(s)R. sS)e. : r(j-1) x -1).
3 s RS IR I ’ )
Then it follows from (27) and (28) that
Z1(s) = sgqy - 90
(30)
-1
- _ ’ 5 -
Zj+1(s) = sej ej + szj (s)Kj (1 ¢ 3 ¢ n-1)
where
a
. = AL €.
KJ j-173.
On the other hand, recalling (4.1.18) and (8), we obtain from
(24)
2(s) = + x'2-V(s)k (31)
2 nn n
where
A -1, -1
Kn n—1cn L .

Now, referring to the following fundamental results on the
LPR property, we can see from (30) and (31) that {Zj(s)} and z(s)

are LPR if and only if Ej > 0 for vj=0,1,...,n—1.
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(i) For an arbitrary positive-definite matrix e, se is
LPR. (st is interpreted as the impedance matrix of a
multiport inductor or the admittance matrix of a multi-
port capacitor.)

(ii) Every skew-symmetric matrix 6 is LPR. (0 is
interpreted as the immittance matrix of a multiport
gyrator.)

(iii) If Z(s) is LPR and if K is a constant matrix with
the number of columns same as Z(s), then K'Z(s)K is LPR.
(K’Z(s)K is interpreted as the immittance matrix of the
network obtained from a network whose immittance matrix
is Z(s), with a cascade-loaded multiport transformer.)

(iv) If Y(s) and Z(s) are LPR and of the same size, then
Y(s)+Z(s) is LPR. (Y(s)+2(s) is interpreted as the
impedance (admittance) matrix of the network obtained by
the series (parallel) connection of two networks whose
impedance (admittance) matrix are Y(s) and Z(s).)

(v) If Z(s) is LPR and is nonsingular, then Z_1(s) is LPR.
(This fact corresponds to the impedance-admittance
transformation of a network.)

(vi) A square rational matrix 2(s) is LPR if and only if

its being so is deducible from the above (i)-(v).

Remark 4.3.8 The equations (30) and (31) can be regarded

as the procedure of the Cauer synthesis ([6]) applied to Z(s).
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Remark 4.3.9 We can see from (30) and (31) that

2'(s) = Z(s) if and only if ej = 0 for Vj=0,1,...,n-1. This fact
is an example of the general principle that a passive network is

reciprocal if and only if it cantains no gyrators ([6]).

Remark 4.3.10 Using (30), we can readily prove the

following by induction on j:

Zj(s) + Zj*(s) = 0. (32)
This equation is equivalent to the following:

ay -1~ A S

Rj*(s)sj_1Rj_1(s) + Rj_1*(s)ej_1Rj(s) = 0, (33)

which is a new property of the orthogonal PM's.
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4.4, Further study of orthogonal polynomial matrices

Throughout this section, we work with a fixed 1T > 0 and
fixed descending column degrees n1;...;np. We denote by { the
totality of column reduced PM's with the prescribed column
degrees as in Chap.2 (see (2.1.20)), and by Ei the totality of
c(s)e C satisfying (3.3.3) and (4.1.11).

In Sec.2.2, it has been shown that the group U (see
(2.2.1)) is acting on C , and the behavior of the action has been
investigated in terms of the coefficient matrices {Cj ;7 J3=0,
1,...,n}, which constitute a coordinate system of C'. We can see
that the subset E of  is also parametrized by {Cj}, with some
restricting condition, and is closed under the action of 2[. On
the other hand, the arguments in Sec.4.1 (see Th.4.1.9 and Remark
4.1.10) show that 8 is parametrized by another coordinate
jr By i j=0,1,...,n-1}), where C_ is a pxp
nonsingular matrix, ej is a r(j) xr(j) nonsingular symmetric

system ¢ % (Cp» {Sj: 6

matrix, ej is a r(j) xr(j) skew-symmetric matrix, and gj is a
(p-r(j)).xr(j) matrix. 1Indeed, we can verify that the dimension
of ¢, which is the sum of dim C, = p2, dim €y = r(j)(r(i)+1)/2,
dim ej = r{j)(r(j)-1)/2 and dim gj = (p-r(j))r(3) for
3=0,1,...,n-1, is equal to dim 8 = p(p+N). In the present
section, we will investigate the behavior of the guantities in ¢
under the action of Y, and will elucidate the respective roles

of the quantities thereby.

Suppose that

C(s) = C(s)U(s), (1)
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A
where C(s),C(s)€ C, and U(s)¢€ 1[. (In the sequel, we use for
C(s) the notation of Sec.4.1 as it is, and for C(s) the notation
with ~.) Let <« > and < >a be the inner products defined from
(C(s),I) and (C(s),N), respectively. Then, recalling the defini-

tion of the inner products (see (3.3.1) and (3.3.2)), we have
<P(S),Q(S)>C = <P(s)U(s),Q(S)U(S)>é. (2)

Owing to the fact that deg P(s)U(s) = deg P(s) for VP(S) (see

Remark 2.2.4), it follows from (2) and from the definition of the

orthogonal PM Rj(s) of degree j that Rj(s)U(s) is also of degree

j and is orthogonal to every PM of degree less than j, with

respect to the inner product < & Furthermore, we can see from

(2.1.10) that the highest dgree coefficient matrix of Rj(s)U(s)
(3

is Fn . Thus, it is concluded that the orthogonal PM of degree

j defined from (C(s),l) is given by

5 _ (3),-1

Rj(s) = (Frl ) Rj(s)U(s). (3)
It follows immediately from (2) and (3) that

- (3),-1 (3),,-1
€. = (Fn ) Ej(Fn )
(4)

DI
i

(3),-1 (3),,-1
(F 7 ") Gj(Fn ) .

Let (0,B) and (0,B) be the Schwarz pairs (see Sec.4.2)
defined from (C(s),l) and from (C(s),Nl), respectively. Then (4)

yields

o]}
]
o

o
b

(5)

o]
1]
o]
1
r



where

F 2 block diag (%), ... ,r{® 1)} nwxw.

(We can also prove (5) from (1) and (3) by invoking (4.2.1).) It
should be noted that eq.(5), together with V = VF, represents the
arbitrariness of the Schwarz form realizations defined from
irreducible right MFD's of a given system. Using this fact, and
noting the block-diagonal structure of F, we can show that the
definition of the Routh approximation (4.2.8) does not depend on
a choice of an irreducible fight MFD of a given system (see

Remark 4.2.1).

Now, suppose that U(s) ¢ T[n, or equivalently that Fn = I, in

(1). Then, from (4) and (2.2.12) we have

¢ =c €5 = €50 By = 0y (0 < Y5 ¢ n-1). (6)

This means that the quantities (Cn,{ej},{ej}) constitute an
invariant with respect to the action of ?jn. Moreover, the
invariant is complete in the sense that, for arbitrary C(s),C(s)
€ ii, the condition (6) is equivalent to the existence of U(s)¢
an satisfying (1). Let us prove this. Assume that C(s) and
C(s) satisfy (6). Then they have a same Schwarz pair, and

therefore we obtain from (4.2.1)
S -1
R(s)C '(s) = R(s)C '(s).

The above equation proves the existence of a unimodular PM U(s)

satisfying (1), because the both sides are irreducible MFD's.



Furthermore, since én = Cn by assumption, it turns out that U(s)

€U,

Next, we investigate the behavior of the quantities {gj}
under the action of Q[n. Suppose that C(s)¢€ EE has the coordi-
nate (Cn,{ej},{ej},{gj}). Then, for arbitrary {Ej}, there exists
a unimodular PM U(s)é€ ?ln such that C(s)U(s) has the coordinate
(Cn,{gj},{ej},{ij}). Indeed, using the recursion in Th.4.1.9, we
can construct C(s) having the coordinate (Cn,{gj},{ej},{éj}), for
which there exists U(s)¢ Y such that C(s) = C(s)U(s) as

mentioned above.

The above arguments are summarized in the following theorem.

Theorem 4.4.1 Among the quantities in the coordinate

o)
system (Cn,{ej},{ej},{gj}) of C, (Cn,{ej},{ej}) constitute a
complete invariant with respect to the action of 1ln' On the
other hand, the values of {gj} can arbitrarily varied by the

action of 1[n.

We have seen that the quantities {sj} determine whether C(s)
is stable or not (Th.4.1.1), and that {gj} correspond to the
degree of freedom of C(s)U(s) for U(s) € lln (Th.4.4.1). Now, we

elucidate the role of {ej} by the following two theorems.

V ”~

Theorem 4.4.2 For C(s)é€ c:, the following conditions
are mutually equivalent.
(i) C*(s)n_1c(s)Tn(-1) is symmetric.



(ii) The dual of C(s) w.r.t. 1 is written as
D(s) = C(-s)Tn(—1).

(iii) The orthogonal PM's {Rj(s)} satisfy

-~ v.
Rj(s) = Rj(—s)Tj(—1) for "3=0,1,...,n,
7N\
where Rj(s) is defined by (4.3.25).
(iv) The inner product defined from (C(s),]]) satisfies

<P(5),Q(s)> = <P(-8)T_(-1),0(-S)T_(-1)>
for "p(s), Y0(s).

"N
Theorem 4.4.3 For VC(s)e C, the following conditions

are mutually equivalent.

V.

(i) 8. = 0 for "j=0,1,...,n-1.

(ii) There exists a unimodular PM U(s)€ U (or Q[n) such

that C(s)U(s) satisfies the conditions (i)-{(iv) in Th.4.4.2.
(iii) S(s) defined by (4.3.9) is symmetric.
(iv) Z2(s) defined by (4.3.12) is symmetric.

(v) Zj(s) defined by (4.3.29) is symmetric for

Y5.0,1,...,n-1.

Remark 4.4.4 If C(s) satisfies the conditions in

Th.4.4.2, then Rn(s) and Rn_1(s) can be obtained from (C(s),I)
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directly as in the scalar case (see Remark 4.1.5). Therefore, we
can use the straightforward extension of the Routh-Hurwitz method
for testing the stability of C(s). It should be noted that we
can readily examine whether the condition (i) in the theorem is

satisfied or not.

Remark 4.4.5 In the strictly regular case (see

Ex.2.1.1), the conditions in Th.4.4.2 are written as follows.
(1) C*(s)n_1C(s) is symmetric.

(ii)  D(s) = (-1 "c(-s).

v

(i)  Ry(s) = (—1)jRj(—s) for Y§=0,1,...,n.

A/

(iv) <P(s),Q(s)> = <P(-s),Q(-s)> for VP(S), Q(s).

Furthermore, since an = {I} in this case (Ex.2.2.6), all the
conditions in Th.4.4.2 and in Th.4.4.3 are mutually equivalent.
In particular, the conditions are always satisfied in the scalar
case. On the other hand, in the general column reduced case, the
conditions in Th.4.4.2 are stronger than those in Th.4.4.3. We
note that the conditions in Th.4.4.3 are invariant under the

action of U, while those in Th.4.4.2 are not so.

(Proof of Th.4.4.2) (i)&(ii) : Obvious from the
definition of D(s) ((4.3.1),(4.3.2),(4.3.5)). (ii) =5 (iv) :
Assume (ii). Then a solution Y(s) of (4.3.17) is obtained from a

solution W(s) of (4.3.16) by



Y(s) = W(—s)Tn(—1).
Hence, it follows from (4.3.18) that

Tsyw(s)-w,(s)c; ' (s)

Q

~T_(-1){c” (-s)W(-5) W, (-s)C;  (-s) }T_(-1) modulo PM,

which proves (iv) by using (3.3.1). (iv) —»(iii) : Assume

(iv). Then noting that
, “1) = (-1 IR (- -
Rj( s)Tj( 1) (-1) RJ( s)Tn( 1),

we can see that Rj(—s)Tj(—1) is orthogonal to every PM of degree
less than j. Moreover, since Rj(-s)Tj(—1) is of degree j and is
monic, the condition (iii) is concluded. (iii)=p(ii) :

Obvious from Th.4.1.3 and Th.4.3.4. (QED)

(Proof of Th.4.4.3) (1) D (iv)&SD(v) @ Obvious from
(4.3.30-31) (see Remark 4.3.9). (iii)&(iv) : Obvious from
(4.3.12). (i) =>(ii) : Assume (i). Then, according to
Th.4.4.1, there exists a unimodular PM U(s) € 1ln such that C(s) -
C(s)U(s) satisfies B,=0 and ;=0 for V5. Using (4.1.41-42), we
can prove by induction on j that &(s) satisfies (iii) in
Th.4.4.2. (ii) =(i) : Assume (ii). Then C(s) = C(s)U(s)
satisfies (iii) in Th.4.4.2, which implies that §j=0 for Vj (see

(4.1.37)). . Thus, recalling (4), the condition (i) is derived.

(QED)



5. A SURVEY OF THE DISCRETE-TIME STABILITY THEORY

FOR POLYNOMIAL MATRICES

In this chapter, we will present the discrete-time (d.t.)
results which correspond to the continuous-time (c.t.) results in
Chap.3 and Chap.4. 1In addition to a survey of known results such
as the LWR algorithm, some new results will be derived from a

comparative viewpoint on the d.t. case and the c.t. case.

Suppose that we are given a p xp nonsingular PM A(z) and a
p xp positive-definite matrix 3. Let us define from (A(z),I) the
inner product <P(z),Q(z)>, where P(z) and Q(z) are arbitrary PM's

with p columns such that
P(z)~A(z) and Q(z)~A(z),

which means that P(z)A_1(z) and Q(z)A'1(z) are proper. To begin
with, we consider the case where A(z) is d.t. stable, in the
sense that all the zeros of det A(z) lie in the open unit disk.

In this case, we define the inner product as

ki . . N .
(2),0(2)> 2 51 J p(el®)a 1 (ei®) 5 ar~1 (e719)gr (&7 1¥) 4y,

-7
It is obvious that the inner product satisfies the same funda-
mental properties as (i)-(iv) in Sec.3.1 for the c.t. case.

Furthermore, it holds that

<zP(z),2Q(2z)> = <P(z),Q(z)> (1)
A(z),0(2)> = 1{lim 0(z)a" " (2)} , (2)
Z -+



which can be regarded as the counterparts of (v) and (vi) in
Sec.3.1. Note that A(z) is orthogonal to every Q(z) such that
Q(z)=3A(z) (i.e., Q(z)A—1(z) is strictly proper), while in the
c.t. case C(s) is not orthogonal to Q(s) if sQ(s)*?C(s). Note
also that

<A(z),A(z)> = %,

while in the c.t. case <C(s),C(s)> is not defined.
As in the c.t. case, there are two methods to compute the
inner product. The first method is as follows. Suppose that

matrices {F,G} and a PM S(z) satisfy the following.
(F,G) is controllable.

A(z) and S(z) are right coprime.

(zI - F)~'G = s(z)a" ' (z).

If P(z)=3A(z) and if Q(z)—3A(z), then there exist constant

matrices P and Q such that

P(z) P S(z)

Q(z) Q s(z),

and we have

<P(z),0(z)> = P X Q'

where X is the unique solution of the Lyapunov equation

X = FXF' + GZG'.

(3)

(4)

(5)

(6)

(7)

(8)



If P(z)~A(z) and if Q(z)~ A(z), then we have

P(z) K A(z) + P(z)

(9)

Q(z) L A(z) + Q(z),

where K and L are constant matrices, and B(z) and Q(z) are PM's
satisfying P(z)—3A(z) and Q(z)—3A(z). Hence we can compute

<P(z),Q(z)> by
<P(z),Q(z)> = K1 L' + <P(z),0(z)>. (10)

The second method to compute the inner product is based on

the equation
A(Z)W (z71) + W(z)a’(2™") = 1, (11)

where W(z) is a p xp unknown PM. The above equation has a
solution W(z) under the assumption that A(z) is d.t. stable (see
[51), and we can show that if P(z)~/A(z) and if Q(z)~~v A(z) then

<P(z),0(z)> is given by

B(2),0(z)> = [B(z)A” (2)W(2)Q" (27 )],

(12)
v ez WA T (200 (2) ]

where [ ]0 denotes the constant term of a rational matrix defined
by

[R(z) ], 2 [R(2)] (See Def.3.1.2.) (13)

pol | z=0.

It is noted that although the solutions of (11) are not unique

the right-hand side of (12) is uniquely determined, being



independent of a choice of a solution W(z).
In the general case where A{(z) is not necessarily stable, we
define the inner product <P(z),Q(z)> by (3)-(10), or equivalently

by (11)-(12). It is shown that the definition is valid if

det A(z) and det A(z'1) have no common zeros. (14)

As the next step, we introduce the notion of orthogonal
PM's. We assume that A(z) is column reduced with descending
column degrees (n=)n1;...;np, and use the notation of Sec.2.1.

Then A(z) is written as

A(z) = AnTn(z) + A (z) + .. + AOTO(Z), (15)

n-1Tn-1

where Ané GL(p) and AjE Rpxr(]) for j=0,1,+...,n-1. If a PM, say
Aj(z), is of degree j and monic, and if Aj(z) satisfies the

orthogonal condition

v

<Aj(z),Ti(z)> =0 for i=0,1,¢..,3-1, (16)

we say that Aj(z) is a j-th degree forward orthogonal PM defined
from (A(z),3). If a PM Bj(z) is of degree at most j and

satisfies

Bj(O) = [Ir(j) O 1 :r(3)xp (17)

and

14

(Bj(z),zTi(z)> =0 for i=0,1,c0e,3-1, (18)

we say that Bj(z) is a j-th degree backward orthogonal PM defined

from (A(z),I). Bj(z) is also defined as a PM such that



Bj(z-1)%j(z) is of degree j and monic, and that

v

<Bj(z),Ti(z‘1)'“r'j(z)>=o for Vi=0,1,...,3-1, (19)

where ¥j(z) is a pxp diagonal PM defined as

a

%j(z) = diag {s?,sd7P*R2

s3I P*0r(3) ,0,...,0}.

feeoe ey

Under a condition similar to (4.1.11), the existence and the
uniqueness of forward and backward orthogonal PM's are ensured.

We note that (2) leads to
A(z) = An-An(z), (20,

which corresponds to Th.4.1.3 in the c.t. case.

Let
6? = <Aj(z),Aj(z)>
(21!
B
aj 2 <By(z),B4(z)>

for j=0,1,...,n. Then, corresponding to Th.4.1.1, the following

is obtained.

A(z) is stable &= dg‘ > 0 for %4=0,1,...,n-1
(22
= 6’3.3 > 0 for Y4=0,1,...,n-1
Note that
$ = a &har (23!

nnn,

which follows from (20).

J

In the strictly regular case where Tj(z) = 2z°1 for every j,



the orthogonal PM's are generated by the well-known LWR algorithm

in the following.

(The LWR algorithm)

Set
Ao(z) = Bo(z) =1
63 = Gg = <I,I>,

and calculate for j=0,1,...,n-1

A
“j = <zAj(z),Bj(z)>
( _A B, -1
. = -m, (63
B A s A =1
. = —m! (&)
YJ+1 J( J)

{ A

Aj+1(z) = zAj(z) + Yj+1Bj(z)

B
Bj+1(z) = Bj(z) + Yj+1zAj(z)
A A B A
851 = (T = ¥5,175,1095
B B _A B
65p1 = (T = Y5 075,108,

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

In Sec.4.1 we derived a recursive algorithm producing the

orthogonal PM's for an arbitrary column reduced PM for the c.t.

case (Th.4.1.9). Similarly, we can generalize the LWR algorithm

to the general column reduced case. The generalized LWR algo-

rithm produces recursively {Aj(z)} and {Bj(z)} together with

auxiliary PM's {Vj(z)} and {Wj(z)} as follows.
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(The generalized LWR algorithm)

[ a,(z) }r(m Bo(z) |} x(0)

= = I
p
_VO(Z) }p—r(o) Wo(z) }.p-r(o)
T A, (z) | r(ien) Cza (z) + Y2 . B.(2) |} r(3)
j+1'2 }r3 ) 312 Y3417 } J
ij”(Z) _} p-r(j+1) i Vj(z) - Kj+1Aj(Z) _‘} p-r(3)
B 7 . r B 9 .
Bj+1(z) }.r(j+1) ) Bj(z) + yj+1zAj(z) }-r(j)
h_wjﬂ(z)m‘} p-r{j+1) Wj(z) - Lj+1zAj(z) p-r(3)

— -

(i=0,1,...,n-1)

where y?+1 and YB are defined by (26)-(28), and

J+1
1

A, -
<Vj(z),Aj(Z)>(5j)

A, -1
<wj(z),zAj(z)>(6j) .

The equations (31) and (32) should be modified into

A, A _B A

Ay85pqhy = (T - Y5,4Y5,q) 8
B, _ B A B

Ay854a85 = (T - Y5975,q) S5,

(A, 20T_,., 101 & r(3)xr(3+1))
] r(j)

Note that in the above equation some elements of 6?+1 and 6?+1

are not determined from 6? and 6? if r(j)<xr(j+1).

Let us compare the d.t. results mentioned above with the

corresponding c.t. results in Chap.4. For simplicity we restrict



ourselves to the monic strictly regular case; i.e., we assume

that

A(z) 21 o+ 0] A * ... + A (33)

C(s) s I+ sn.1 C * eee + Co o (34)

We have seen in Sec.4.1 and in Sec.4.4 that the symmetric
matrices {Ej} and the skew-symmetric matrices {ej} constitute
jointly a 'coordinate system' for expressing C(s), and that these
matrices provide us with important information about C(s) (see
Th.4.1.1, Th.4.4.2, Th.4.4.3, Remark 4.4.4 and Remark 4.4.5). On
the other hand, the situation seems much more complicated in the
d.t. case. The LWR algorithm has a dualistic structure which is
not observed in the corresponding c.t. algorithm (4.1.21).
Furthermore, the correspondence between the quantities appeared
in these two algorithms is not clear. Indeed, we cannot see what
quantities are the d.t. counterparts of {ej}, while it might be
evident that the counterparts of {ej} are {6?}. The matrices
{y?} ({wj}) cannot be regarded as the counterparts of {Gj},
because {6?} and {y?} ({6?} and {nj}) are not independent each
other. 1In the sequel, we will derive a new version of the LWR
algorithm including two sets of matrices {Gj} and {uj} which can
be regarded as the counterparts of {ej} and {ej}, respectively.

To begin with, we make some definitions. Suppose that A is
a p xp nonsingular symmetric matix. A pXxp matrix H is said to

be A-symmetric if

H A = A H', (35)



and a pxp matrix U is said to be A-orthogonal if

U AU’ = A (36)

(The above definition is more convenient for the later use than
the popular definition where H’ and U’ are said to be A-symmetric
and A-orthogonal in (35) and (36).)

We consider the problem of representing a given p xp matrix

=
[

o]
c

(37)

by a A-symmetric matrix H and a A-orthogonal matrix U. Such a

pair (H,U) is said to be a quasi A-polar decomposition of A. 1In

the case where A is positive-definite, it is known that every
p Xp matrix A has such a decomposition. Moreover, if A is non-
singular then there exists a unique decomposition such that H is

A-positive, i.e.,
HA=AH > 0. (38)

The pair (H,U) satisfying (36)-(38) is called the A-polar

decomposition of A.

On the other hand, if A is not positive-definite, there may
possibly be a matrix A having no quasi A-polar decompositions.

(For example, if

! ’

and if

la-d| < |b-c| and |a+d| < |b+c]| ,



then there is no (H,U) satisfying (35)-(37)). Furthermore, even
if A has quasi A-polar decompositions, we need some other condi-
tion than the A-positivity of H in order to specify one of the
decompositions. Nevertheless, we can generalize the notion of
A-polar decomposition to an arbitrary nonsingular symmetric
matrix A as follows. Let A be the totality of px p matrices,

and let
Ja ]
X 2{HeA |HA = AH' }
4 '
U={ue A |vau’ =a}.
We define a mapping ¢ as

6 : HxU —> A
(H,U) ———> (H,U) = HU.

Then the differential of ¢ at (I,I) is given by

(H,L) FH———> H+L,
where

L S{Le€A |La+ L’ =0},

A matrix L belonging to JL is said to be A-skew-symmetric.

Evidently [d¢](I,I) is a linear isomorphism, and hence there
exists a neighborhood }$O><?[0 of (I,I) in }¥><2[ such that the
restriction of ¢ to )¥0X 710, say ¢0, is a diffeomorphism onto
/&0 2 ¢()¥0x U,)- This means that for an arbitrary A € 4, there

exists a unique (H,U) € )¥Ox 2[0 satisfying A = HU. We call the



pair (H,U) the A-polar decomposition of A. It is noted that’A 0

is a neighborhood of I in ,A.and therefore the A-polar decomposi-
tion of A is defined when A is sufficiently near to I. It is
clear from the definition that if a one parameter family of p Xxp

matrices {A(t) ; t>0} satisfies
A(t) —> I as t+0 (39)
then the A-polar decomposition (H(t),U(t)) of A(t) also satisfies
H(t) —>1T
as t+0. (40)
U(t) —>1I
Moreover, if {A(t)} has the one-sided differential at t = 0
A(0) € 1im (A(t) - I)/t, (41)

t+o

then {H(t)} and {U(t)} also have

H(0) € lim (H(t) - I)/t
t+0 (42)
U(0) & 1im (U(t) - I)/t,
t+0
and it holds that
e XN, tmed,
(43)

A(0) = H(0) + U(0).

Now, let us return to the task of deriving a version of the
LWR algorithm possessing the desired structure. We consider the

following recursive algorithm, called the (guasi-)polar-type LWR
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algorithm, which produces PM's {Aj(z)} and {Ej(z)} together with

matrices {éj}, {aj}, {hj} and {uj}.

(The polar-type LWR algorithm)

Set

Ao(z) = Eo(z) = I (44)

6 <I,I>, (45)

O=

and calculate for 3j=0,1,...,n-1

o -1
aj = <zAj(z),Bj(z)>6j (46)
(hj,uj) = a quasi éj—polar decomposition of aj (47)
Aj+1(z) = zAj(z) - aij(z) (48)
Bj+1(z) = hjzAj(z) - uij(z) (49)
2
.o, = 6. - a.6.a! (= - h7)6.).
63+1 GJ ajéjaj (= (I J) J) (50)

If (47) is replaced with

(hj,uj) = the Gj-polar decomposition of @ (47)’

j'

the algorithm is called the canonical polar-type LWR algorithm.

In the (quasi-)polar-type algorithm, we can easily verify

the following by induction on j:

v

for

i
o

<Aj(z),zl> i=0,1,...,3-1 (51)

v

[}
o

~<Ej(z),zi> for Vi=1,2,...,3 (52)



éj = <Aj(z),Aj(z)> = <Bj(z),Bj(z)>. (53)

It is also shwon that Aj(z) is a monic PM of degree j. Conse-
quently, {Aj(z)} are the forward orthogonal PM's defined from
5A

(A(2z),Z), and 6j = 9. Similarly, we can show that

- _ :] ..
By(z) = (1), ugBy (2),

where Bj(z) is the j-th degree backward orthogonal PM defined
fron (A(z),I).

We should examine the definability of quasi polar decomposi-
tions in the algorithm. In the case where A(z) is d.t. stable,
it turns out that {Gj} are all positive-definite, and hence the
algorithm is always valid. In the general case without the
stability assumption on A(z), it may possibly occur that the
algorithm does not work. 1In particular, the validity of the
canonical algorithm requires the condition that every aj is
sufficiently near to I, or equivalently that A(z) is sufficiently
near to (z—1)nI. As we shall see in Sec.8.2, this condition
means that A(z) can be regarded as an approximation of a c.t. PM
C(s) of the form (34).

Let us investigate the mutual relation among the quantities
appeared in the canonical algorithm. 1In the situation where I (=
5n) is given, it is obvious that A(z) (= An(z)) is determined by
{Gj i 0<j¢n-1} and {aj i 0<j<n-1}. However, {éj} and {aj} are
not independent each other, but constrained by (50). The con-
straint completely determines the factor hj of aj from (éj,6j+1),

while the factor uj is free of the constraint. Consequently,



A(z) is determined by {6j} and {uj}, which are independent each
other. This means that {dj ; uj} constitute a coordinate system
for expressing A(z). We can regard these quantities as the
counterparts of {ej : Bj}. (More precisely, Gj corresponds to
ej, and uj corresponds to 6j551. See Prop.8.2.8.)

In the quasi-polar type algorithm, the matrices {Gj ; uj}
cannot be regarded as a coordinate system because of the arbi-
trariness of quasi polar decompositions in (47). However, we can

show the following important theorem corresponding to the c.t.

results in Th.4.4.2, Th.4.4.3 and Remark 4.4.5.

Theorem 5.1 For an arbitrary pxp PM A(z) of the form

(33) and for an arbitrary pxp positive-definite matrix I, the

following conditions are mutually equivalent.

-1

(i) a(z s 'a(z) is symmetric.

V.

(ii) For Yj=0,1,...,n,

S | -1
Bj(z) = 2 Aj(z )

(iii) Quasi polar decompositions {(hj,uj)} in the polar-
type LWR algorithm can be chosen so that uj=I for

Viz0,1,...,n1.

We note that the above theorem can be extended to the

general column reduced case, as well as in Th.4.4.2 and Th.4.4.3.
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PART 11

THE MULLIS-ROBERTS TYPE APPROXIMATIONS
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6. THE MULLIS-ROBERTS TYPE APPROXIMATIONS

FOR DISCRETE-TIME SYSTEMS

Mullis and Roberts ([21])) proposed two methods for

approximating discrete-time SISO (single-input-single-output)

systems the modified least squares approximation and the
interpolatory approximation——, and elucidated the properties of
the approximations by investigating their mutual relationship.
The extension of the methods to the MIMO (multiple-input-
multiple-output) case was studied by Inouye ([12]). In this

chapter we will present the fundamental theory for the two

methods, most of which is based on {21] and [12].

6.17. The modified least squares approximation (MLSA)

Suppose that we are given a discrete-time stable and
strictly proper rational matrix G(z) : p xqg, and consider the

problem of approximating G(z) by a rational matrix 6(2) of the

form
8(z) = 37 (2) B(2) (1)
where
A(z) = 2" 1 + z7] gn—T + e # XO : pXp (2)
B(z) =218 ., + ... +B, :pxaq. (3)
n-1 0

The above equations mean that all the observability indices of
6(2) are less than or equal to n. From now on, we assume the

original system G(z) to be such that
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all the observability indices of G(z) are
(4)
greater than or equal to n,

which will simplify the later arguments.

Now, we formulate_Ehe n-th order modified least squares

approximation (MLSA) problem as follows: find a rational matrix

6(2) of the form (1) minimizing the criterion
D 2 |A(z)c(z) - B(2)]|?, (5)
where the norm is defined by
24 T T _iw
Ir(z)[[* = trace > J R(e')R' (e ") dw. (6)
-7

The reason for the adjective 'modified' is that the criterion D

can be regarded as a modification of the L2 criterion
' )
c 2 la(z) - G(Z)“2-

First, invoking that a polynomial matrix and a d.t. stable
strictly proper rational matrix are always orthogonal on the unit

circle, we have
A 2 A ~ 2
D = | (A(z)G(z) 1 |1« ”[A(Z)G(z)]pol - B4, (7)

where [ ]sp and [ ]pol denote the strictly proper part and the
polynomial part of a rational matrix as defined in Def.3.1.2. It
follows from (7) that %(z) minimizing D for a fixed 3(2) is given
by

B(z) = [A(Z)G(Z)]pol (8)
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Note that the right-hand side of the above is of degree at most

n-1 and is written as {(3). We can see that

(8) & A(z)G(z) - %(z) is strictly proper.

& A(2)6(z) - Blz) = o(z™ )

& G(z) - &(z) = oz 1y, (9]

where O(+:) denotes Landau's symbol expressing the order of a
function as z + »., Using the impulse response sequence {gj ;

j=0,1,... } of G(z) defined by

G(z) = goz'1 + g1z‘2 o, (10)

the condition (9) is written as

a(z) = goz"1 + oeee. + gn_1z_n + O(z_n-1). (11)

This means that the first n elements of the impulse response
sequence of e(z) are equal to those of G(z).
Under the mutually equivalent conditions (8),(9) and (11),

the criterion D depends on 3(2) alone, and is written as

A 2
D = || [Atz)6(2)1 ||
= 6™z + & _ 6" M)+ Ll v RO || 2
where
cKlz) & [sz(z)]sp ) (12

Hence, defining for m=1,2,...
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0,0 =~~~ Xo,m-1
kK 2 ! ' : mpxm (13)
m = 1 1 4 p p
) 1
Km-1,0 -T T Km—1,m—1
where
w . . v s
.. 41 {3 (elwygX) (o~iyg, . pxp, (14)
ik 27 .
we have

=t A ) K (A A L,,I1°
D = trace [ 0r *ot v n—1'I] n+1[ or *=+ A _qr .
(15)
Note that Km is positive-semidefinite for every m.
The minimization of D in (15) is a simple least squares
A
problem, and a necessary and sufficient condition for A(z) to

minimize D is that ﬁ(z) satisfies the normal equation:
N
(Rgr -ov AL I)K ., = [0, ... ,0,8], (16)

+1

where § is the indeterminate coefficient. Note that § is a pxp

positive-semidefinite matrix. The minimum of D is given by
min D = trace §.

We call & the approximation error matrix of the n-th order MLSA.

The solutions of the n-th order MLSA problem are completely

characterized by (11) and (16). In particular, if

K >0 (17

then the solutions are unique. It will be shown later that (17)

is equivalent to the assumption (4).
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Remark 6.1.1

Inouye ([12]) has shown that even if Kn is

singular the approximant 6(2) is uniquely determined, in spite of

the non-uniqueness of ﬁ(z).

In order to derive some properties of the MLSA, we investi-

gate the structure of {Kij}.

First, since (10) implies that

k k-1 -1 -2
z°G(z) = (9,2 +oeee v g ) gz o+ g g2 T+ Lll)
we have
(k) _ -1 -2
G (z) = 9, 2 + 9y .12 + eee o (18)
Hence, the definition (14) leads to
- min(i,j)
= ’ - - ’
<15 7 Ly iexTiek T Tiog) I 93x95x (19)
- k=1
where
a < 1 (" i, iw iw
= r ’ -
rj = kzo gj+kgk = o I—"e G(e )G (e )dw. (20)
We call {rj;j = 0,1,2,...} the auto-covariance sequence of G(z).

It follows from (19) that the matrix Km can be written in terms

of the 2n+?! matrices {go,...,gm_z;ro,...,rm_1} as

—_ - !
Km = Rm Gme
where
r 14 - - -
ry T3 o--- Tp g 0 0 0
\\ . ]
alT1 Tg T ! 99 0 \
Rm = N ~ ~ A N !
~ ~ ~ )
NN Cn =191 90 .
\ N ~ N N N
-—-- ~ ~N
L1 r, r, : . .. 0
~— p— AN N
Im-2-""91 9o
A p—
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Thus we can see from (11) and (16) that the solution of the n-th

order MLSA problem is determined by the quantities {go,...,gn_1;

ro,...,rn}.

Another representation of Kij than (19) can be obtained via
a state space description. Suppose that a state space

realization of G(z)

G(z) = W(sI - U) 1y (23)
is minimal. Then, using the equation

zk(zI—U)—1 = zk_1I + zk-ZU + oee. + Uk'_1 + Uk(zI-U)—1,

we have

¢'¥V(z) = wuk(z1 - uy . (24)
Since U is a discrete-time stable matrix, the Lyapunov equation
X = UXU’' + vv/ (25)

has a unique solution X, which is represented as

m . .
X = 5% I (el - u) v vi(e ¥ - u)r aw.
-7
Hence, we obtain from (14) and (24)
k.. = wotxutdw’. (26)

1]

Noting that X is positive-definite because of the controllability
of (U,V), we can see from (26) that the condition (17) for the
unique existence of solutions of the n-th order MLSA problem is

equivalent to
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rank [W',U'W',....,U'n_1W’]' = np,
which is nothing but the assumption (4).

As the next step, we examine the stability of the approxi-
mant a(z). Owing to the special structure (21) of the matrices
{Km}, the normal equation (16) can be modified into the following

Lyapunov equation (see [21] and [12]) :

n A
K = AK £’+gngr'l+gég’, (27)

where

k24
n
Q
[}
3
el
b
>
N
—~—

I

nup

b {0,.c..,0,I}" : npXxp.

Since Kn is positive-definite under the assumption (4), we can
see from the above equation that % is a discrete-~time stable

matrix if and only if
(,1g,_,BY]) is controllable, (28)

where y is a p xp matrix such that yy’ = 6. 1In Appendix 6.1.4 at
the end of the present section, we will show that (28) is

derived from the assumption (4). Thus, the stability of 5, or
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equivalently of a(z), is guaranteed by (4). We note that (28) is

easily verified in the following two special cases.

(i) All the obsevability indices of G(z) are greater than n.

(ii) All the obsevability indices of G(z) are equal to n.

Indeed, (i) implies that § is positive-definite, which leads to
the controllability of (é,gY), and (ii) implies that a(z) = G(z),

which leads to the controllability of (é,gn) (see Lemma 6.2.1).

Remark 6.1.2 Without the assumption (4), ﬁ(z) may

possibly have unstable zeros. Nevertheless, it can be shown
([121) that E(z) = 3“1(2)3(2) is always a stable system. This
means that the unstable zeros of ﬁ(z) are cancelled out by those

of ﬁ(z).

The results of the present section are summarized in the

following theorem.

Theorem 6.1.3 For a given stable system G(z) satisfying

(4), the solution e(z) = 3—1(2)3(2) of the n-th order MLSA

problem satisfies the following.

(i) (ﬁ(z),ﬁ(z)) is uniquely determined by the 2n+1 matrix

data {go,...,gn_1;ro,...,rn} taken from G(z).
L) /\
(ii) G(z) preserves {go,...,gn_1}.

(iii) A(z) is a stable PM.
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Appendix 6.1.4 ({Proof of (28)) We first note that the

controllability of (%,[gn,QY]) is equivalent to the left coprime-
ness of ﬁ(z) and [ﬁ(z),Y]. (The proof of this fact is quite
similar to that of Lemma 6.2.1 in the next section, and is
omitted.) Hence, it suffices to show that x'ﬁ(z) and
[x’%(z),x’Y] are left coprime for any nonzero p-vector x. If

x'y ¥ 0, the coprimeness is obvious. So, we assume that x'yY = 0

and that x ¥ 0. It then follows that
Ix' (A(z)G(z) - Bznll? = x* §x = (x'1)? = 0,
from which we have
x'A(z)G(z) = x'B(z). (29)

Now, suppose that x'ﬁ(z) and x’ﬁ(z) are not left coprime. Then a
greatest common left devisor of (x'ﬁ(z),x'ﬁ(z)), say d(z), is not

a constant, and therefore the polynomial row vector

[1]°d

p'(z) 2 a M (z)x'A(z) : 1xp

can be written as

n-1

p'(z) = z P + caee + 2 p; + pé.

’
n-1
On the other hand, we can see from (29) that p’(z)G(z) (=

d-1(z)x'§(z)) is also a polynomial row vector. This fact is re-
presented, in terns of a minimal realization (U,V,W) of G(z), as
PIW + pIWU + + pr wu 1 2o
0 1 et Y Ppyg .

This contradicts the assumption (4). (QED)
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6.2. The interpolatory approximation (IA)

To begin with, we consider the special case of the MLSA
problem where all the observability indices of G(z) are n. It
then turns out that e(z) = G(z) and that 8§ = 0 in the normal
equation (6.1.16). Hence the Lyapunov equation (6.1.27) is
reduced to

N A
— 14
K, = AK A" + g

n 95 (1)

~nasn°

Since Kn is composed of the 2n-1 matrix data {go,...,gn_z;

ro,...,rn_1} taken from a(z) = G(z), the equation (1) expresses a
condition which the 2n data {go,...,gn_1;ro,...,rn_1} should

obey, together with (6.1.11):

ay -1 -n

G(z) = 992 *eeee v g gz + O(z'n'1

). (2)
The equation (1) is also derived in the following way. Let
~ A ka
Gk(z) = [z G(z)]sp .
Then it follows from (2) that
N N
sz(z) = Gk+1(Z) + 9 - (3)
On the other hand, we have
/é Fad A AN
n(z) + An—1Gn—1(z) + eeee + AOGO(Z)

= [A2)&(2)1, = Bzl = 0. (4)

These equations yield
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[G4(2),--,6! ,(2)1" = (zI - B) . (5)

Recalling the definition of Kn (6.1.13-14), we can see that (5)
leads to (1).
As a by-product of (5), we obtain the following lemma, which

will be used in later arguments.

A A= A
Lemma 6.2.1 If G(z) = A {(z)B(z) of the form (6.1.1-3)

satisfies (2), the controllability of (g,gn) is equivalent to the

left coprimeness of ﬁ(z) and ﬁ(z).

(Proof) From (5) we have
G(z) = e'(21 - B g (6)
where
s’ 4 [1,0,...,01 =: pxnp. (7)

The triplet (g,gn,g') is called the observability realization of

Pa)

a(z) ([17]). Noting that (ﬁ,g') is always observable, and
considering the McMillan degree of a(z), we can see that (g,gn)
is controllable if and only if ﬁ(z) and g(z) are left coprime.

(QED)

Now, return to the general situation where a stable system
G(z) satisfying (6.1.4) is given, and consider the problem of
characterizing and constructing systems of the form (6.1.1-3)
which preserve (or match, or interpoclate) the 2n matrix data
{go,...,gn_1;ro,...,rn_1} taken from G(z). This problem is

called the n-th order interpolatory approximation (IA) problem.

Suppose that a system a(z) = 3-1(z)§(z) preserves the data.
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Then e(z) satisfies (1) and (2), evidently. Furthermore, recall-
ing that the positive-definiteness of Kn is equivalent to the
assumption (6.1.4), we can see that the observability indices of
e(z) are not less than n, also. This means that 3(2) and g(z)
are left coprime. Conversely, suppose that a(z) = 3-1(2)%(2)
satisfies (1) and (2), and that 3(2) and %(z) are left coprime.
Then, since (g,gn) is controllable (Lemma 6.2.1), and since Kn is
positive-definite, it follows from (1) that % is a stable matrix.
It is known that the stability of é guarantees the uniqueness of
solutions of the Lyapunov equation (1). Hence, it is concluded
from (1) and (2) that a(z) preserves the data. Thus, we obtain

the following theorem.

Theorem 6.2.2 Let {go,...,gn_1;ro,...,rn_1} be the data

taken from a stable system G(z) satisfying (6.1.4). Then, a
system a(z) = 3-1(2)3(2) of the form (6.1.1-3) is stable and
preserves the data, if and only if 3(2) and %(z) are left coprime

and G(z) satisfies (1) and (2).

Remark 6.2.3 If a(z) = 3“1(2)%(2) satisfies (1) and (2)

but does not satisfy the coprimeness, then a(z) does not preserve
{ro,...,rn_1}. Furthermore ﬁ(z) is not a stable PM in this case.
Nevertheless, it can be shwon from (1) that e(z) is stable (cf.

Remark 6.1.2).

As the next step, we proceed to the problem of how to

n~ A A . . . Ay
construct G(z) = A "(z)B(z) satisfying (1) and (2). Since B(z)
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is determined from ﬁ(z) by (2), we have only to construct ﬁ(z)
satisfying (1). Our approach is based on the following result :
Modify the matrix Kn+1’ which is composed of the 2n+1 matrix data
{go,...,gn_1;r0,...,rn}, into K(rn) by replacing r with a free

matrix parameter T (Kn+1 = Kn+1(rn)’ in particular.) Then it

is shown (see Inouye [12]) that the equation

K. = 3K A’ +gg'+bib’ (8)

Zn

is equivalent to the existence of a matrix fn such that
Pad - -
(Rgre--sA 1,11 K ((F ) = [0,...,0,8], (9)

where § is an arbitrary symmetric matrix. Therefore, the

Lyapunov equation (1) is equivalent to the following condition:

3.
r

t N ~ -
o S-te [Ag...,A ,,IIK

n+1(fn) = [ol---IOIO] (10)

Let us construct ﬁ(z) satisfying (10). First, for arbitrary

pxp PM's such that

zn P + ..o + 2 P, + P

P(z) n 1

0

n
z Qn + eees + Z Q1 + QO

Q(z)

we define the inner product <P(z),Q(z)> as

a ’
<P(z),Q(z)> = [Pol"'IPn]Kn+1[Qol"'lQn]
(11)

(e *¥)dw,

1 T 1@y
27 J_WGP(e )GQ

where
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A A
GP(Z) = [P(Z)G(Z)]sp ' GQ(Z) = [Q(Z)G(Z)]sp .

Then, we can see that the existence of (fn,S) satisfying (9) is

equivalent to the condition
A(z),231> = 0 for Y5=1,2,...,n-1. (12)
The solutions of the above equation are parametrized as follows:
%(z) =z E(z) + ﬁOF(Z), (13)

where 30 (= 3(0)) is a free matrix parameter, and E(z) and F(z)

are PM's such that

E(z) = 2z I+ z E + .0 + E

0
(14)
<zE(z),2z91> = 0 for ¥4=1,2,...,n-1
F(z) = Zn_1 F + F I
= n_1 + eeeoe VA 1 +
(15)

<F(z),231> = 0  for Y4=1,2,...,n-1.

It should be noted that E(z) and F(z) are determined from the
data {go,:..,gn_1;ro,...,rn_1} and are independent of r,- We can

show that if ﬁ(z) is written as (13) then § in (9) is given by

§ = a - AO BAé (16)
where

a = <zE(z),zE(z)> : pxp (17)

B = <F(z),F(z)> : PXPe. (18)

Note that o and B are determined from the data {90""’gn—17
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ro,...,rn_1}. Consequently, we see that X(z) satisfies (10) if

and only if it is written as (13) with A satisfying

0

~ ~
AgBAy = a. (19)

The solutions of (79) are constructed as follows. Since a20
and B>0, they have positive-semidefinite square root matrices

a1/2 and 81/2. Let

2 1/ ¢1/2(18—1/2)1/26—1/2' (20)

T2 g2

Then it is easy to see that ﬁo =+ T are solutions of (19). We

note that T is B-positive-semidefinite, i.e.,
T8 = BT' 2 O. (21)

In general, a matrix ﬁo is a solution of (19) if and only if

there exists a B-orthogonal matrix U :
UBU' =8 (22)
such that

(-1)" 30 = T U. (23)

(The significance of the factor (-1)™ in (23) 1lies only in its
convenience for the arguments in Se.8.3.) It should be noted

that if 30 is nonsingular then T and U are uniquely determined

from A by (21)-(23). Indeed, (T,U) is the B-polar decomposition

0
of ﬁo defined in Chap.5.

From the above arguments, we obtain the following theorem.
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Theorem 6.2.4 A PM A(z) satisfies (1), if and only if it

is written as (13) and there exists a B-orthogonal matrix U

satisfying (23).

We denote by ﬁ(z;U) the solution of (1) satisfying (23), and
by a(z;U) = ﬁ_1(z;U)§(z;U) the corresponding solution of (1) and
(2). It is noted that the mapping : Uk—a'a(z;U) is one-to-one if

o is nonsingular.

Remark 6.2.5 Consider the case where p = 1, which

includes the SISO case. It then turns out that the B-orthogonal
group is {1,-1}. Hence, the equation (1) has (at most) two
solutions, i.e., ﬁ(z;1) satisfying (—1)"?\0 2 0 and ﬁ(z;-1)

satisfying (-1)“30 < 0.
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7. THE MULLIS-ROBERTS TYPE APPROXIMATIONS

FOR CONTINUOUS-TIME SYSTEMS

7.1. MLSA and IA for continuous-time systems

The purpose of this section is to develop the theory of the
MLSA and the IA for continuous-time (c.t.) systems, corresponding
to the discrete-time (d.t.) theory in the previous chapter.

Suppose that we are given a pxq c.t. stable and strictly
proper rational matrix H(s), and consider the problem of

N
approximating H(s) by a rational matrix H(s) of the form

~ A1 A
H(s) = C (s)D(s) (1)
where
a(s) =s"1 4+ sn_-l ¢ + + C : px (2)
= n-1 cees 0 T pXxXp
~ n_‘] ﬁ A . x 3
D(s) = s Nt toeree Do : pXxXdg. (3)

As in the previous chapter, we assume that

all the observability indices of H(s) are
(4)
greater than or equal to n.

To begin with, we formulate the c.t. analogue of the 4d.t.
MLSA problem in Sec.6.1. It seems evident that the criterion D

in (6.1.5) corresponds to
N Pal
E 2| C(s)nes) - Des)|I?, (5)

where the norm is defined by
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e

"R(s)“2 trace 5% J R(iw)R’ (-iw)dw. (6)

However, there is a remarkable difference between D and E that E
is not finite in general, while D is always finite. So, we
investigate the condition. for the finiteness of E. Since H(s) is
assumed to be c.t. stable, e(s)H(s)-B(s) has no poles on the
imaginary axis. Therefore, a necessary and sufficient condition
for E to be finite is that e(s)H(s)—ﬁ(s) is strictly proper.
Using Landau's symbol O(+), the finiteness condition is repre-

sented as

1

C(s)H(s) - D(s) = o(s™ ), (7)

which is equivalent to

1

H(s) - H(s) = o(s™ ™ ). (8)

Define the Markov parameters {hj} of H(s) by
H(s) = hos_ + hys + eeee o (9)

Then the condition (8) is written as

A -1 -n -n-1
H(s) = hos + eeee + hn_1s + O(s ). (10)

That is, E is finite if and only if ﬁ(s) preserves the first n
Markov parameters {ho""’hn—1} of the original system H{(s). 1In
the sequel, we consider the problem of finding a system ﬁ(s) of
the form (1)-(3) which satisfies (10) and minimizes E. This is

called the n-th order continuous-time modified least squares

approximation (c.t. MLSA) problem.
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The finiteness condition (7) yields

D(s) = [C(S)H(S)]pol
and

Cls)H(s) - B(s) = [Cls)Hs) )

= H(n)(s) + an_1H(n—1)(s) + .. + EOH(O)(S)r

where | ]pol and | denote the polynomial part and the

]sp

(11)

(12)

strictly proper part of a rational matrix as in Def.3.1.2, and

al¥)(s) 2 [skH(s)]sp ]

Hence, defining for k=1,2,...

“0,0 ----- Uo’k_1
a ' ' :
Mk = : : : kpxkp
Hk-1,0 =~ Mk-1,k-1
where
a 1 (% i), . k)! .
ujk = i; J mH(J)(l(,l..l)H( )(‘1w)dm H pxpl
we have

A ~ A A ’
E = trace [CO""'Cn—1'I]Mn+1[CO"°"Cn—1’I] .

Note that M, is positive-semidefinite for every k.

k

(13)

(14)

(15)

(16)

It is clear from (16) that a PM e(s) minimizes E if and only

if it satisfies the normal equation:

~ A
(Core-esCpqsI) M 4 = (0,...,0,€],

+1

(17)

where € : pXp is the indeterminate coefficient which turns out
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positive-semidefinite. The minimum of E is given by

min E = trace €.

We call € the approximation error matrix of the n-th order MLSA.

Corresponding to the fact that (6.1.4) is equivalent to (6.1.17)

it can be shown that the assumption (4) is equivalent to

M >0,

which guarantees the existence and the uniqueness of 8(5)

(18

satisfying (17). Thus, the two conditions (10) and (17), which

correspond to (6.1.11) and (6.1.16), determine the unique

~
solution H(s) of the n-th order MLSA problem.

Let us investigate the structure of the matrices {ujk}.

Noting that (cf.(6.1.18))

BV (s) = n st en 572 Ll
and that (cf.(6.2.3))

s H(k)(s) - H(k+1)(s) +hy

and recalling Lemma 3.1.1, we obtain

)i ) du

5% J m(iw)H(j)(iw)H

+ J-h.h'

Hy41,k ¥ 29

= - - =] 14
My, k+1 29k

which yields the following important equation:

r _
Hye1,k * My, ke * Dyhyg = 0.
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For j=0,1,..., let

uj‘;u. . : pXxp (23)

up

(24)

]
N
=
So—
I 8
8
[
€
e}
.
[N
€
=21
.
|
-
€
[o])
€

It should be noted that uj is symmetric and that Aj is skew-
symmetric. We can see from (22) that the matrix Mk (k=1,2,...)

is composed of {ho,...,hk_z;uo,...,uk_1;AO,...,Ak_Z}.

Remark 7.1.1 A time domain represeptation of ujk is
derived as follows. Let {h(t) ; t;o} be the impulse response of
H(s), and let h'¥)(t) = @®n(t)/atX for x=0,1,... . Then, we can
show that

al®)(s) - f h{%) gy 78t at. (25)
0+

(Since h(k)(t) has a singularity at t=0, fg+ cannot be replaced

with f: in the above equation.) It follows from (25) that
= . ’
oy = J n3 ey n® ey ae. (26)
ik O+

We note that eq.(22) can be obtained by application of

integration by parts to (26) together with use of the formula

h = h'%(0+) = 1im %) (1),

(27)
k £ 40
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ra)
It has been shown above that the n-th order approximant H(s)
is determined from {ho,...,hn_1} and M__, by (11) and (17).

However, partitioning (17) into

A ~

[CO,...,Cn_1,IJ Ma = [0,...,0] (28)

”~ "~

[Co,...,Cn_1,I] M, =€ (29)
where

Mn+1 = [Ma,Mb], Ma : (n+1)p x np, Mb : (n+1)p xp,

we can see that (28) completely determines e(s) and that (29) is
not necessary if € is not required. Since Ma consists of the

/\ . .
data {ho,...,hn_1;uo,...,un_1;Ao,...,xn_1}, H(s) is determined
from the same data. Note that the number of independent elements
of the data is np(p+q) and is equal to the number of free

N
parameters of H(s).

Remark 7.1.2 It is interesting to compare the above

situation with the corresponding situation in the discrete-time
case, We have seen in Sec.6.1 that, in order to determine the
solution a(z) of the n-th order d.t. MLSA problem, the data
{go,...,gn_1;r0,...,rn} taken from the original system G(z) is
necessary. The number of independent elements of the data is
np(p+gq)+p(p+1)/2, which is greater than the number of free para-
meters of 6(2). This is an essential difference between the c.t.
MLSA and the d.t. MLSA, and is closely related to the results

shown below.
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It is shown that (28) is equivalent to the equation

H1,0 7777 Hq,n-

cwM = | '
= |

~ n ) :

un,O - un,n—1

where

”

C 2 comp { C(s) }

—

]
) .

= ' Q o : npxnp
! I

Hence, we can see from (22) that

CM_ + MC’ + hh' = 0, (30)

where

no

[h’,...,h6_1]' : npxdg.

The above Lyapunov equation seems to correspond to the equation
(6.2.1) for IA rather than (6.1.27) for MLSA. Indeed, we have

the following theorem corresponding to Th.6.2.2.

Theorem 7.1.3 Let {ho,...,hn_1;u0,...,un_1;AO,...,AH_Z}
be the data taken from a stable system H(s) satisfying (4).
Then, a system ﬁ(s) = 6"1(5)6(5) of the form (1)-(3) is stable
and preserves the data, if and only if 6(5) and B(s) are left

coprime and ﬁ(s) satisfies (10) and (30).

The problem of finding systems of the form (1)-(3)
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preserving the data {ho,...,hn_1;uo,...,un_1;AO,...,Xn_z} is

called the n-th order continuous-time interpolatory approximation

(c.t. IA) problem. The above argument shows that the solution

ﬁ(s) = 6’1(5)6(5) of the MLSA problem turns out a solution of the
IA problem if E(S) and B(s) are left coprime. Furthermore,
noting that eq.(28) is valid even if Ma defined from H(s) is
replaced with ﬁa defined from ﬁ(s), and invoking that Ma contains

the data A we can see that ﬁ(s) also preserves An-1‘ It

n-1"'
should be noted that the left coprimeness is a 'generic' property
in the sense that 6(5) and B(s) almost always turn out to be left
coprime.

Next, consider the case where 6(5) and B(s) are not left
coprime. 1In this case, ﬁ(s) does not preserve the data.
Moreover det e(s) has zeros on the imaginary axis. Nevertheless,

we can see from (30) that ﬁ(s) = 6_1(5)6(5) turns out stable by

pole-zero cancellation.
The above results are summarized in the following theorem.

Theorem 7.1.4 For a given stable system H(s) satisfying

(4), the solution f(s) = & '(s)D(s) of the n-th order MLSA

problem satisfies the following.

(i) (C(s),D(s)) is uniquely determined by the data {ho,...

hn—1;HO""’un—1;A0""’An—1} taken from H(s).
(ii) H(s) preserves {ho,...,h

n~1}'

(iii) H(s) is stable.
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(iv) If 8(5) and B(S) are left coprime, then 6(5) is a

stable PM and ﬁ(s) preserves {uo,...,un_1;AO,...,An_1}.

Remark 7.1.5 It is obvious from the above theorem that

the c.t. MLSA is generically transitive in the following sense:

Let £, m, n be integers such that n > m > £, and let Hn(s) be an
n-th order stable system. We denote by ﬁm(s) and ﬁl(s) the m-th
order approximant and the f2-th order approximant for Hn(s),
respectively, and by ﬁl(s) the 2-th order approximant for ﬁm(s).
Then it almost always holds that‘ﬁi(s) = ﬁl(s) (Fig.1). It
should be noted that the d.t. MLSA does not satisfy the

transitivity.

Hals) > Hy(s)

1 !

fi,(s) A (s)

Fig.1 The transitivity of the c.t. MLSA

Remark 7.1.6 There is another difference between the

c.t. MLSA and the d.t. MLSA. Let € and Gn be the approximation
error matrices of the n-th order c.t. MLSA problem and the n-th
order d.t. MLSA problem, respectively. Noting that the

transformation : (ﬁ(z),g(z))F——>(zﬁ(z),z%(z)) preserves the
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criterion D in (6.1.5), we can see that the matrices {Gn} satisfy

the monotonicity 6n 26 ({123,[21]). In the c.t. case, the

n+1

matrices {en} do not satisfy the monotonicity.

We have seen that in the c.t. case the solution of the MLSA
problem is also a solution of the IA problem if the solution
satisfies the coprimeness. As the next step, we proceed to
parametrize all the solutions of the IA problem. Since the
numerator B(s) is determined from the denominator 6(5) by (10),
we have only to parametrize 6(5) satisfying (30).

Modify the matrix Ma in (28), which is composed of the data
{hO""’hn—1;“0""’“n—1;A0’°"’An-1}’ into ﬁa(in_1) by replacing

A with a free matrix parameter 2 Then it can be proved

n-1 n-1°

that the equation (30) is equivalent to the existence of a matrix

Ap_1 Such that

4

X = -2

n-1 (31)

n-1

A~ ~ — -
[Cqre--Cp_1,T1 M (X _;) = [0,...,0]. (32)

Eg.(32) can be partitioned into

n N
[CO""’Cn-1’I] Mc = [0,¢ee.,0] (33)
~ Fal — -
[Col"‘lcn_1lI] Md(xn_»‘) = [OI“'IO]I (34)
where
Ho,0 """ Ho,n-2
a
Mc = ' ' : (n+1)p x (n-1)p
"n,0 -~ ¥n,n-2
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1) 2 i : (n+1)p Xp.

1 ,
A-172Mn-11n

S

( Ma(in—1) = [Mc'Md(xn

D)

Note that Mc is determined by the given data and is independent
of the parameter Xn-1' Now, we define the inner product

<P(s),Q(s)> for arbitrary pxp PM's P{s) and Q(s) of the form

n
P(s) = s Pn + eeee + S P1 + P0
Q()—an+ + s 0Q, +0Q
S} = n es o 1 0
by
a ’
<P(s),Q(s)> = [P0'°"'Pn]Mn+1[QO""'Qn]
(35
- 5% J_m Hp (1w)H (-iw)dw,
where

A

a
= [P(S)H(S)]Sp HQ(S) =

Hp(s) [Q(s)H(s) T .

We note that the inner product satisfies the following special

property (cf.(22)):

<sP(s),Q(s)> + <P(s),sQ(s)> + P{h}o’{h} = o, (36!

where

no

P{h}

Pnhn + ecaes + Poh0

np

o{h} thn * aeee + Qphg.



(See Remark 3.2.1.) Using the inner product, eq.(33) is

represented as

v

<C(s),s?1> = 0 for "j=0,1,...,n-2. (37)

The solutions of (37) are parametrized as follows:

N n N
C(s) = s°I + K(s) + C _4L(s), (38)
where Gn_1 is a free matrix parameter, and K(s) and L(s) are PM's
such that
n-2
K(s) = s Kn—2 + ceae * K0
(39)
<snI+K(s),sJI> =0 for V'j=0,1,...,n—2
n-1 n-2
L(s) = s I +s Lig * +e-- + Ly
(40)
<L(s),s?1> = 0 for Y3=0,1,...,n-2.
We can see that e(s) in (38) satisfies (34) if and only if
£ + C +3 . -In nr -0 (41)
n-1" n-1 - 2%n-1'n-1 = Vr
where
£ =2 <K(s),sn_1I> : pXp (42)
n = <L(s),L(s)> T PXPpP. (43)
Obviously, the existence of a skew-symmetric matrix Xn—1
satisfying (41) is equivalent to the equation
e AI ’ !
n-qn * nCn_1 + £ + &' - hn—1hn—1 = 0. (44)

Therefore it is concluded that E(S) satisfies (30) if and only if



C(s) is written as (38) with C__, obeying (44).

The equation (44) is easily solved as

N
- Cn_1 =R + W, (45)

where R is a matrix defined as

R=2(6+& -h mT, (46)

N =

14
n-1"n-1
and W is a matrix parameter which is free within the n-skew-

symmetry

Wn + nW’ = 0. (47)
Note that R is n-symmetric in the sense that

Rn = nR’. (48)

The above results are summarized in the following theorem.

Theorem 7.1.7 A PM C(s) is a solution of (30), if and

only if it is written as (38) and there exists a n-skew-symmetric

matrix W satisfying (45).

We denote by E(S;W) the solution of (30) satisfying (45),
and by ﬁ(s;W) = 6-1(s;W)B(s;W) the corresponding solution of (10)

and (30). Obviously, the mapping : Wr—%bﬁ(s;W) is one-to-one.

Remark 7.1.8 Consider the case where p = 1, which

includes the SISO case. Then, the solutions of (10) and (30) are
unique. Note that the unique solution coincides with the

solution of the MLSA problem.
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7.2. The recursive structure of MLSA

In the previous section, the properties of approximants have
been investigated for a fixed order_n. We will study in the
present section the mutual relation among approximants of several
orders. We restrict ourselves to the SISO case where p=gq=1 for
simplicity.

Assume that the original system H(s) is of order N, and for
n=1,2,...,N, denote by Hn(s) = C;1(s)Dn(s) the solution of the
n-th order MLSA (= IA) problem for H(s). .Note that HN(s) = H(s)
in particular. Using the inner product defined by (7.1.35), the
normal equation (7.1.17) is represented as

0 if 3=0,1,...,n-1

<Cn(s),sj> - (1)

€n if Jj=n.

Owing to the special property (7.1.36) of the inner product, the

normal equation (1) can be solved recursively as follows:

( Cols) = 1, Ci(s) = s + vg/ZeO (2)

{ VO(S)

vO/eo (3)

r

Caq(8) = (s+v2/2¢,)C, (5)

+ (g /ey _4)C_q(8) + vV, . (s) (4)
Vils) = vy _1(s) + (v /g )C (s) (5)

where
v & ¢ {n}. (6)
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The polynomial Vk(s) is written as

[Raer By

Vk(S) =

; (vj/ej)Cj(S)

0
and is characterized by the property
<Vk(s),P(s)> = P{h} if deg P(s) ¢ k.

The proof of (2)-(5) is similar to that of (4.1.21), and is

omitted.

The above recursion yields a state space realization of
Hn(s) as follows. Fix an integer n (1¢n¢<N), and let for

k—o,l,...,n

Then the following is obvious.

xo(s) Hn(s) (7]

0. (8]

xn(S)
Noting that (6) leads to

sxk(s) = [ka(s)Hn(s)]sp Vs
we obtain from (2)-(5)

sxg(s) = x,(s) - (vé/Zeo)xo(s) + vy (9)
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2
s (s) = x, 4(s) - (v /2e )x (s) - (e /ey )%y _4(s)
k-1
- v _zo(vj/ej)xj(s) + v - (10)
J_
(1 ;Vk < n-1)
Now, define
a .
ay x = "j"k/Ek
-3
by = - ex/exq
~ -
s o O
a, +b, a../2 1
. a 10" 11 ~.. . nxn
: : 1
1 '
’n-10 %n-1 1 77T -1 n-1/2

A r .,
¥n % [vo,...,vn_1] :nx1,

Then, from (8)-(10) we have
(s - Q) [xp(s),euuyx  4(s)1" =y .

Hence it follows from (7) that

-1
- ’ -
Hn(s) = sn(sI gn) ¥n

where

/91{1 = [(1,0,...,0].
That is, (gn,gn,gé) is a realization of Hn(s). This realization

is similar to the observability realization (see (6.2.6))

-1
= ’ _
H (s) = g/(sI - C ) b,

—133~



where

np

comp {Cn(s)} : nxn

ub

’ .
h, 4 thy,.eeph 41 2 onxi.

Indeed, defining a nxn matrix Tn by

, -1
(Coyls)seeesC _,(s)]

1",

n
Tn[1,s,...,s

we can show that

( _ -1
gn - Tn ~n Tn
{ ¥ = Tn Bn an

Furthermore, eq.(1) yields

r o 4 ;
T M. T\ = (E =) diag {eyseq,--er€ ¢}

and therefore it follows from (11) that eq.(7.1.30) is

transformed into

’ r _
Qn En + En gn + Vq Vp = 0. (12)

This means that the similarity transformation (11) diagonalizes

the solution of the Lyapunov equation (7.1.30).

Remark 7.2.1 Consider the special case where hg=...=hg ,

=0 (é#»v0=...=vN_2=0) in the above arguments. It then turns out

that the recursion (2)-(5) coincides with (4.1.24-27), which is

nothing but the reversed procedure of the Routh-Hurwitz test, and



that {Co(s),...,CN_1(s)} become the orthogonal polynomials
defined from CN(s). In addition, QN becomes the Schwarz matrix
defined from CN(s). In this respect, the results in the present
section can be regarded as a generalization of some results in

Chap.4.

We can see that,@n_1, Yh-1 and 56_1 are (left-upper) sub-
matrices Of'@n’ ¥n and gé, respectively. This means that Hn_1(s)
is obtained from Hn(s) by cutting off the effect of X1 in the n
state variables {xo,x1,...,xn_1} of the realization (Qn,gn,gé).
Indeed, the equations (8)-(10), which represent Hn(s), turn out
to represent Hn_1(s) by putting 0 in the place of xn_1(s). Let
us illustrate the situation using a block diagram. For k=
1,2,...,n-1, let

k-1

r-3
wk(s) =1 - jZo(vj/ej)xj(s).

Then the equations (9) and (10) are written as

\Y

(x,(s) o * (s + vii2eg)x,(s)

wils) =1 - (vo/eo)XO(S)
xk+1(S) - (Ek/ek_1)xk_1(s)
2
= - vkwk(s) + (s + vk/2ek)xk(s)
Wi (s) = w(s) - (vk/ek)xk(S).
(v < Vk < n-1)
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It can be seen from the above equations that Hn(s) can be real-
ized by connecting some block elements of the form in Fig.1.
Consider the case where N = 4 for instance. Then the original
system H(s) = H4(s) is realized as in Fig.2, and the n-th order
approximant Hn(s) (n=1,2,3) is obtained by cutting the connec-

tions on the corresponding dotted line.

V) -V/E

- srvirze)y ptpe—fo—

Fig.1 The block element specified by (v,g)

N N
Hq(s) Hals) Hy(s) *\ He(s) Y,
input \ \ \
— X 1 Y ——»
output |(Vo,€0)| ' |V, ED| v |(Vy &)L v (V3 el
) L ' ' R ¢
>— —>—
/ -€,/€ [ )
-€,/€ ! 2 1 ! ~€./E
(e [ o e
I' -

Fig.2 A block diagram representation of the c.t. MLSA
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7.3. The weighted MLSA problem

In this section, we will study the following problem:

Given a pxqg strictly proper and c.t. stable rational matrix H(s)

satisfying (7.1.4) as in Sec.7.1, and given a nonsingular g xqg PM

W(s) such that

(i) Wy(s) (2 W' (-5)) = W(s)
. : v 2
(ii) W(lw)'; 0 for Y : real (i® = -1) (2)
(iii) deg W(s) < 2n (3)
(i.e., deg [W(s)]ij < 2n for V&, vj),
find a rational matrix H(s) = 6'1(s)6(s) of the form (7.1.1-3)
minimizing the criterion
”n A
By 1C)uts) - Desflf (4)
where the norm is defined by
@
IR(s) |2 2 trace -+ f 3 R(i0)W™ | (iw)R’ (-iw)dw. (5)

More precisely, denoting by Z: the totality of p xp monic PM's of

degree n (i.e. of the form (7.1.2)), and letting for each 6(5)5(:.

A A A
@-C 2 {D(s) : a pxq PM | deg D(s) < n-1

and ||&(s)H(s) - ﬁ(s)né < w}, (6)

the problem is formulated as



min  min__ [|&(s)ms) - DisHlIZ . (7)
el be &)6

This is called the n-th order weighted MLSA problem with the

weighting PM W(s). We will present below two apparently

different results providing the solution of the problem, both of
which reduce the problem to a weightless MLSA problem studied in
Sec.7.1.

In order to describe the results, we need to make some
definitions. First, owing to the assumptions (1) and (2), the

weight W(s) can be factorized as

W(s) = X,(s) X(s) (8)

where X(s) is a g xgq nonsingular PM. We can assume without loss

of generality that X(s) is semi-stable in the sense that

det X(s) § 0 in Re s > 0. (9)

Such a PM X(s) is said to be a semi-stable factor of W(s).

Similarly, there always exists a PM ¥Y(s) such that

W(s) = Y,(s) Y(s) (10)

det Y(s) § 0 in Re s < 0. (11)

Such a PM Y(s) is said to be an anti-stable factor of W(s). It

is noted that X{(s) and ¥Y(s) are mutually dual w.r.t. I in the

sense of Sec.4.3. We also note that the assumption (3) yields

deg X(s) ¢ n (12)



deg Y(s) ¢ n. (13)

Next, we define the 'stable parts' of rational matrices. An

arbitrary rational matrix R(s) is represented uniquely as
R(s) = P(s) + R_(s) + R_(s)

where P(s) is a PM, R+(s) is a strictly proper and c.t. stable
rational matrix, and R_(s) is a strictly proper rational matrix
having no poles in the open left half-plane. In this representa-

tion, we call R+(s) the stable part of R(s) and write it as
R+(S) = [R(S)]+ .

The following lemma will play a fundamental role in later

arguments.

Lemma 7.3.1 Let H(s) be a pxqg strictly proper and c.t.

stable rational matrix, let P(s) be a pxp PM, and let Q(s) be a

g xqg PM. Then there exists uniquely a pxg PM R(s) such that
{P(s)H(s) - R(s) } Q"' (s) = [P(s)H(s)Q™'(s)], .
(Proof) If such an R(s) exists then it is written as
R(s) = P(s)H(s) - [P(s)H(s)Q™'(s)] O(s),

and therefore the uniqueness of R(s) is obvious. Conversely,
suppose that a rational matrix R{s) is written as above. Then it
is clear that R(s) has no poles in Re s > 0. On the other hand,
noting that [R(s)Q_j(s)]+ = 0 by definition, we can see that R(s)

has no poles in Re s < 0, also. This means that R(s) is a PM,
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which completes the proof. (QED)

Now we present the main theorems, the proofs of which will
be shown at the end of this section. The first theorem gives the
solution of the weighted MLSA problem with the weighting PM W(s)

by the use of an anti-stable factor Y(s) of W(s).

”~
Theorem 7.3.2 Let H(s) be the solution of the n-th order

weightless MLSA problem for
fHis) 2 )y (s, (14)

Then the solution ﬁ(s) of the n-th order weighted MLSA problem

for H(s) is given by

H(s) = [H(s)¥(s)],. (15)

The above result is illustrated as follows. Let us denote
by )# the totality of pxqg strictly proper stable rational
matrix, by )4;n the totality of elements of M satisfying
(7.1.4), and ;y )4<n the totality of elements of )4 of the form
{(7.1.1-3). Then t;e n-th order weighted MLSA problem with the

weighting PM W(s) defines the mapping

(n)
§'W ‘ )¥ln > <n
() (7
H(s) H——> H(s).

We also define the mappings
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WY:N——)N
v v
H(s) I--———>[H(s)Y(s)]+

TTY—1 : )4 3 )QL
] W
H(s) b—> [H(s)Y™ ' (s)1, .

Using these mappings, the result in Th.7.3.1 is represented as
(n) _ (n)
¥y = My @peTy-1.

Since and Tl -1 turn out to be each other's inverse mapping
Y Y

by the following lemma, we have the commutative diagram in Fig.1

(n) A
H(s) —¥%— H(s)

TIY-| IT‘Y-I
(n) A
H(s) ——> H(s)
Fig.1 The reduction of the weighted MLSA

to the weightless MLSA

Lemma 7.3.3 If H(s)é.}4 and if Y(s) is an anti-stable
PM, then
[[H(s)Y(s)1, Y™ (s)], = [[H(s)Y ' (s)] ¥(s)], = H(s).
(Proof) Putting (H’(s),Y¥'(s),I) in the place of
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(H(s),P(s),0Q(s)) in Lemma 7.3.1, it is shown that there exists a

PM R{s) such that
[H(s)¥(s)] Y '(s) = H(s) - R(s)Y™'(s).

Now, operate with [ ]+ on the both sides of the above. Then,
owing to the anti-stability of ¥Y(s), the second term of the

right-hand side vanishes, and we obtain
-1
[[H(s)Y(s)] Y (s)], = H(s).

Similarly, putting (H(s),I,Y¥(s)) in the place of (H(s),P(s),Q(s))

in Lemma 7.3.1, it is shown that there exists a PM R(s) such that
[H(s)¥™'(s)],¥(s) = H(s) - R(s),

which yields
[(H(s)Y ' (s)1,¥(s)1, = H(s).

{QED)

The second theorem described below uses a semi-stable factor
X(s) of W(s) for the same purpose as of the first theorem.

Factorize X(s) as

X(s) = X (s) Z(s) (16)
where X (s) and Z(s) are PM's such that

det X+(s) ¥ 0 in Re s >0 (17)

det Z(s) £ 0 in Re s % O, . (18)
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and consider a triplet (S(s),F,G), where S(s) is a PM and F and G

are constant matrices, such that

S(s)X:1(s) = (sI—F)-1G, (19)
(F,G) is controllable, (20)
X+(s) and S(s) are right coprime. (21)

In this situation, the second theorem gives the solution of the

weighted MLSA problem as follows.

Theorem 7.3.4 Let
-1
S(s)X, "(s)
A +
Z(s) = (22)
[T(s)H(s)X™ " ()],
where
T(s) 4 [I,sI,...,sn_1I]’ : npxp, (23)
and let g(s) be the solution of the 1st order weightless MLSA
problem for =Z(s). Then g(s) is written as
s(s)x 1 (s)
+
E(s) = (24)

[T(s)H(s)Xx ™ (s)1,

7~
where H(s) is the solution of the n-th order weighted MLSA

problem for H(s).

The properties of the weighted MLSA are drived by the above
theorems from those of the weightless MLSA. 1In the situations of

the theorems, let
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~ a ~
{h.} = the Markov parameters of H(s)

J
. o~ ~ -1 ~ =2
i.e., H(s) = hos + h1s + e (25)
H (s) = [s H(S)]sp (26)
a1 [T m3) ., k)
ujk = > J_m H (iw) H (-iw) dw (27)
I~ a ~
. = Ul 28
Hy = M43 (28)
~OA N~ 1 &~ o~
A. = . . "h.hf
37 Mye1,3 72 00
(29)
© ~ » ~ . 1
- 2—;-1 (iw) B (iwy) §99)(ciw) aw.
£ % lim s 3(s) (30)
s+
a (7 Ciie =rooi
A = T J_m S(iw) Z7(-iw) dw (31)
a ._1_ “ : =3 T _3 l. ’
r = T J_m [(1w)_(1w)]sp Sl(-iw) dw + > £ &
(32)
1 (T o oo ey s
= > J_m (iw) Z(iw) E'(-iw) dw.
We regard these quantities as 'data' about H(s). Then the
following is immediate from the above theorems and Th.7.1.4.
"
Corollary 7.3.5 For a given H(s)é)¥ . the solution H(s)

= 6-1(5)3(5) of the n-th order weighted MLSA problem satisfies

the following.
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(i) (e(s),a(s)) is uniquely determined by the data {go,...
~ ~ ~ ~ ~
hn_1;uo,...,un_1;xo,...,kn_1} taken from H(s), as well as

by the data {&;A,l'} taken from H(s).
N o ~ .N
(ii) H(s) preserves {ho,...,hn_1} and £.
N
(iii) H(s) is stable.

(iv) If 6(5) and 8(5) are left coprime, then 8(5) is a

~

stable PM, and ﬁ(s) preserves {KO"";Hn-1;XO""’An—1}

and {A,T}.

Let us investigate the meaning of the above quantities for
some special cases. First, we consider the case where W(s)

satisfies the following conditions.

(a) det W(iw) ¥ 0 for Yw : real. (33)
(b) lim s_2n W(s) is a nonsingular matrix. (34)
S

These are equivalent to the condition that a semi-stable factor

X(s) of W(s) is strictly stable and written as

X{(s) = s X_ + s X

n n-1 + eaas + X

0

with Xn nonsingular. In this case, it turns out that X+(s) =
X(s) in (16)-(18), and we can choose T(s) as S(s) in (19)-(21).

Then Z(s) in (22) is written as

T(s)
2(s) = x (s).
T{s)H(s)
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Now & in (30) is .reduced to
1‘1 ’
£ = [0,...,Xn ,0,...,0]

N
and has no information about H(s). Thus the solution H(s) =
@‘3)(H(s)) is determined by A and T in (31)}-(32), and preserves
them generically. We can see that A and T are composed of the

following submatrices:

ub
-

Pi 2 3y I i (iw)d w 'l iw) (-im)¥ dw

@

Qx = 2n J_w

ud
|—)

(iw)d Hiw) W (iw) (-ie)* dw

R, &L [ (i0)? H(iw) W' (iw) B’ (-iw) (-iw)® du
ik ~ 2w} w
(i,x = 0,1,...,n, except for (j,k) = (n,n)).

It is noted that {ij} has no information about H(s). Hence, the

solution ﬁ(s) is determined by {Qj

matrices will be clarified by considering the following stochas-

k;Rjk}. The meaning of these

tic situation. Let u(+) be a stationary process with the power
spectrum W—1(s), which is obtained as the output of the system

X—1(s) to a normalized white noise input, and let y(-) be the

white noise

— u(-)
22 six k)

H(s) vy

Fig.2 The definition of u and y
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output of the system H(s) to the input u(+) (Fig.2). Then we

have
Py = E[u‘j’(t)-u‘k’It)y
_ (3) (k)
Qij = Ely (t)-u (t)]
Ry = efy3(e)-y® ey
where
w3ty 2 aduie)satl
vty & dyry/zadd.

We summarize the above results as follows.

Corollary 7.3.6 If W(s) satisfies (33) and (34), then

H(s) & Q(S)(H(s)) is determined by the data {ij;Rjk} taken from

H(s), and preserves the data generically.
Next, we consider the case where

Wis) = s¥(-s)F 1 (r=0,1,...,n).

In this case, a semi-stable factor and an aﬁti-stable factor of

W(s) can be chosen as
X({(s) = Y(s) = s7 1.

~
We will investigate the structure of the gquantities {hj;u.-k.}

defined in (25)-(29). For an arbitrary integer k, let

1% (s) 2 (skuesn, (35)
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Then ﬁ(s) in (14) is written as
His) = ul"Tl(s). (36!

We see that (35) is a generalization of the previous definition
of H(k)(s) (7.1.13) where k was restricted to nonnegative
integers. It should be noted that the following is valid for

arbitrary integers j and k:

(sIu®) ()1, = n3*R) sy, (37)
Denoting the impulse response of H(k)(s) by h(k)(t), we have

R () = - J: n' ey at, (£50).

We define further for arbitrary integers j and k

h. 4 1im sa'®)(s) = h k) (04)

x
S
a _1 (% (3, (x)! .
“j,k = 57 j_w H (iw) H (-iw) dw
- I h3 ey n¥){t) at
0+
a
Mk = Hk,k
a 1 /
Ak = Hks1,k 2 PPy -

It is clear that these definitions include the previous
definitions of the quantities in Sec 7.1 as a special case.

Noting that

(k+1)(s

s 8K (s) = h, + H y,
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we can see the interesting fact that H(k)(s) is expanded in two

ways as
(k) _ -1 -2
H (s) hks + hk+1s . + cees
- -h h h, s’ -
=-h 4 -h s -h 3s ceee -
In particular, we have
H(s) = -h . -h s - h .s° -
= -1 -2 -3 ceee

which means that the quantities {h_1,h‘2,...} are equivalent to
the so-called 'time moments' of H(s).

It is seen from (36) and (37) that

M = Hg-r
Mo = Ae_p -

Thus we have the following.

N
Corollary 7.3.7 If W(s) = s"(-s)"1 (0<r<n), then H(s)

nb

8'5) (u(s)) is determined by the data {h__,...,h____ju__, ...,

Peees A } taken from H(s), and preserves the data

un-r-1;>‘—r n-r-1

generically.

Let us proceed to prove the theorems. We begin with

investigation of the structure of the set 456 in (6) for an
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arbitrarily fixed 6(s)e(: . Let X(s) and Y(s) be a semi-stable
factor and an anti-stable factor of W(s), respectively. Then we

have

i&s)ncs) - Bes)||2

M
]

i

I{ E(s)u(s) - Dis) }x7 (s
(38)
Il { C(s)H(s) - D(s) }Y‘1(s)|l2.

Hence the finiteness of E, is equivalent to the condition that

W
{C(s)H(s)-D(s)}x ' (s) (or {C(s)H(s) - D(s)}¥ '(s)) is strictly

proper and has no poles on the imaginary axis. We can write the

condition as
{CsHn(s) - Dis)} x Nsre N (39)

Owing to (12), the above condition implies that deg D(s) < n-1.

Therefore we obtain
N
Oz = (Bis) :pxamm| (39)} . (40)
Now we define a PM 61(5) by
{E(s)u(s) - D(s) }x7(s) = (Cts)H(s)X ™ (8) ], (41)

whose existence and uniqueness are guaranteed by Lemma 7.3.1.

Then it is clear that
B,(s) ey . (42)

Noting that }4 is a linear space, we see from (40) and (42) that

a PM B(s) belongs t°<ED§ if and only if
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(Brs) - D(s)} x sre X . (43)

Using the factorization in (16)-(18), the above condition is

represented as

Fp(s)e P s.t. Dis) - Dy(s) = B(s)z(s) (44)

where
‘j5ﬁ {P(s) : pxqg PM | P(s)xl1(s) is strictly proper } .
(45)

Thus we have
ol
e = D,(s) + Przis). (46)
Similarly, defining a PM %z(s) by
~ A -1 ~ -1
{c(s)H(s) - D,(s)} ¥ (s) = [C(s)H(s)Y '(s)]_, (47)
we have
N
136 = B0s) + Pzis). (48)
These representations show that 356 is an affine space such that
dim@e = dim:P = pN+

where N+ 4 deg det X+(s), i.e., N+ is the number of stable zeros

of X(s). We note that Y(s) can also be factorized as
Y(s) = Y (s) Z(s) (49)

where Y (s) is a PM such that
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det Y (s) 4 0 in Re s < O, (50)
and we have

Js:z {P(s) : p xq PM | P(s)Y:1(s) is strictly proper} .

(51)

Now we present the proof of Th.7.3.2. We first claim that

for VD(s)e¢ g
I&srncs) - BesH||2
= Jesrimes) - Byl + [ Desy - Byes|I2 . (52)

(Proof) Define for arbitrary rational matrices F(s) and

G(s) the inner products <F(s),G(s)> and <F(s),G(s)>w by

>

<F(s),G(s)> J F(iw) G’ (-iw) dw

<F(s),G(s)>, 4 J Fliw) W 1 (iw) G'(-iw) dw,

and let

np

< G(s)n(s)-ﬁz(s) , ’B(s)-’ﬁz(s) >

< {6(s)H(s)-62(s)}y‘1(s) , {s(s)—Bz(s)}Y-1(s) .

Using (47)-(49), we have

A -1 -1
J = < [C(s)H(s)Y "(s)] , P(s)Y_"(s) >,

where P(s) is an element of J>. This means that J is obtained by
integrating [a(s)H(s)Y_1(s)]+Y:l(s)P*(s) on the imaginary axis.

Therefore, noting that both [a(s)H(s)Y_T(s)]+ and Y:l(s)P*(s) are
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strictly proper and stable, we obtain J=0 (see Lemma 3.1.1),

which leads to (52). (QED)
It is immediate from (52) that

lICts)t(s) - D (s)|2 = min [E(s)cs) - D)2 ;
2 w Dis)e £)6 W

i.e., given a denominator ﬁ(s), the numerator minimizing the
criterion Ew is Bz(s) in (47), and the minimum of Ew is
“ -1 2
E, = [ (Cts)u(s)Y ™ (s)1 J|°. (53)
Therefore, determining first the denominator 6(5) by minimization

of Ew in (53) and next the numerator %2(5) by (47), we obtain the

solution of the weighted MLSA problem for H{s) as
fi(s) = €'(s) D,(s). (54)
~ VA~
Define H(s) by (14). Then it can be shown that for C(s)e(
~ -1 A ~/
[C(s)H(s)Y ™ ()1, = [Cs)Wis) Iy, - (55)

Hence, recalling the arguments in Sec.7.1, we see that the
”~
solution H(s) of the n-th order weightless MLSA problem for'ﬁ(s)

P
has the same denominator as H(s) and is written as

O

(s) = & () Bis) (56)
where %(s) is defined by (see (7.1.12))

&(s)lis) - BDis) = [’c‘<s)'x‘1’(s)]sp . (57)
It follows from (47), (55) and (57) that
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2
D

A ~ A ~ -1
C(s)H(s) - D(s) = {C(s)H(s) - D,(s)} Y '(s),

which leads to

N ~ r’\)
H(s) - H(s) = {H(s) - H(s)} Y(s).

Operating with [ ]+ on the both sides of the above and apealing
to Lemma 7.3.3, we obtain the desired equation (15). Thus
Th.7.3.2 has been proved.

Next, let us prove Th.7.3.4. Suppose that e(s)él: and that
6(5)5 &56. Then, according to (46), B(s) is uniquely represented
as

D(s) = 81(5) + P(s)2(s), (58)

where 31(5) is a PM defined by (41), and P(s) is a PM such that
p(s)x;1(s) is strictly proper. Owing to (19)-(21), P(s) is

uniquely represented as
P(s) = K S{(s) (59)
where K is a pr+ constant matrix (N+ = deg det X+(s)). Let

F (0]
Q : (N++np) X(N++np) (60)
BK T

e

ol
where (T',B) is the companion pair defined from C(s) (see (2.1.22-

23)). Using (2.1.25), (16), (19), (41), (58) and (59), it can be

(s) - & = C:::>

{C(s)nu(s)-Bis)}x 1 (s)

shown that

(sI - Q)
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where £ is a constant matrix defined by (30). From this result,
we can see the following fact: defining K and T from the solution
ﬁ(s) = 6‘1(5)8(5) of the n-th order weighted MLSA problem for
H(s), and constructing Q from these matrices as (60), the
solution g(s) of the 1st order weightless MLSA problem for Z(s)

is given by

(s) = (sT - ) 'e. (61)

md>

It is easy to verify that (61) leads to (24). Thus Th.7.3.4 has

been proved.
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Part 11

THE CONTINUOUS-TIME LIMITS

oF
THE DISCRETE-TIME RESULTS
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8. THE CONTINUOUS-TIME LIMITS OF THE DISCRETE-TIME RESULTS

8.1. The continuous-time limits of discrete-time systems

In this section, we will present the fundamental framework
for treating the continuous-time (c.t.) limits of discrete-time
(d.t.) systems as preliminaries for the succeeding two sections.

Suppose that we are given a one-parameter family of PM's in
z, say {P(t)(z) ; O<t;to}, and a PM in s, say P(s), such that the
degrees of the elements of P(t)(z) and P(s) are at most n. Then

they are written as

z-1 P(t) (t)

p(t)(z) - (Eil)“ p;t) v (2h Rl L Bl (1)
P(s) = s® P+ «eeo +8 P+ P, (2)

where {P;t)} and {Pj} are constant matrices. Now, we interpret

t as the 'unit time length' or the 'sampling period', and (z-1)/t
as the difference operator approximating the differential
operator s. In this interpretation, P(t)(z) can be regarded as a

(t)

d.t. approximation of P(s) if Pj is near to Pj for every j.

When Pgt) converges to Pj as £t Y0 for every j, we say that

P(t)(z) converges to P(s) as t + 0, and write the convergence as

p{t)(z2) — s p(s) (t+0). (3)

In (3) P(s) is called the c.t. limit of {P'%)(s)]}.

Since (1) is equivalent to

P(t)(1+ts) = sn Pét) + «e. + S Pit) + Pét)
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the convergence (3) can be represented as
p{t) (14ts) —> B(s) (t+0)

which is a usual convergence of PM's in s. This is the

representation of (3) using the s-z transformation

a) z = 1+ts (s = (z-1)/t ).

C(t)

In general, if an s-z transformation z = (s) satisfies

) (s) 1}t —s s (t+0) (4)
for vs, then (3) is equivalent to the pointwise convergence

PB) (V) (s)) ——> p(s) (t+0).

We present below some examples of such s-z transformations other

than a).
b) z = 1/(1-ts) (s = (1—z'1)/t )
_ 2+ts _ 2(z-1)
c) Z = 3ts €s =%z !
a) 7 = ets

Next, suppose that we are given a one-parameter family of
rational matrices in z, say {R(t)(z);0<této}, and a rational
matrix in s, say R{(s). If there exist scalar polynomials
{p(t)(z)} and p(s) together with PM's {Q(t)(z)} and Q(s) such
that

v

= deg p(s) for "t : (5)
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R (2) = o' (z)/p P (2) (6)

R(s) = Q(s)/p(s) (7)
p(t)(z) —— pls) (t+ 0) (8)
o't (z) —= a(s) (ty0), (9)

we say that R(t)(z) converges to R(s) as t+ 0, and write the

Convergence as
rRP)(z) — R(s) (t+0). (10)

In (10) R(s) is called the c.t. limit of {R{t)(z)}.
It is clear from the definition that (10) implies the

pointwise convergence
RIB (V) (5)) — Rr(s) (t+0), (11)

where ;(t)(s) is an arbitrary s-z transformation satisfying (4).
On the other hand, the converse is not necessarily true. For

instance, the rational functions

R(t)(z) = 1/z (being independent of t)
(12)
R(s) =1

satisfy (11), but they conflict with the condition (5) and hence
do not satisfy (10).
Obviously, the convergence (10) is equivalent to the

existence of PM's {P(t)(z)}, {Q(t)(z)}, P(s) and Q(s) such that

deg det P(t)(z) = deg det P(s) for Vt
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(z) Q
R(s) = P '(s) Q(s)

or

R (z) = 0B (Z) B2

R(s) = Q(s) P~

(s)
Pt (z) ——= p(s) (t+0)

o't (z) — o(s) (t40).

In particular, if R(t)(z) and R(s) are written as

rRP) (z) = al®)-1(z) B{E)(4) (13)

R(s) = €' (s) D(s) (14)
where )

al®lzy = 2?14 (0 alY) (15)

B8 (z) = 2”1 Bt L 4 (Y (16)

cls) =s" 1+ s” e L+l s (17)

D(s) =s"" b, 4+ ....+D, , (18)
and if

™™ A (z) —» crs) (t+0) (19)

£t 8t (z) — Dp(s) (t+0), (20)

(

then R t)(z) converges to R(s) as t +0. It is noted that the PM
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np

ctls) 2 £ alB) (1,¢s) (21)

can be written as

C(t)(s) =s" I+ sn_1 C(t) $ oeeee + Cét) (22)
and that (19) is represented as
cjft)—> c (t+0) for %520,1,...,n-1. (23)

Rewriting (21) and (22) as

= (z-1)" 1 + t:(z—1)n-1 C;E: + ... + 0 Cét),
(24)
we can see that (19) implies the convergence
A (z) — 5 (z-1)" 1 (t+0). (25)

When R(t)(z) and R(s) are both strictly proper, the
convergence (10) is also equivalent to the existence of

(alt) 5(Y) (8 ang (r,G,H) such that
( R(t)(z) = c(t’ (zI - A‘t))‘1 B(t)

| R(s) = H (sI - F' e

[ AP 1yt —s F

sty — 5 ¢ (t 40)
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We present below two elementary lemmas which will be used in

the succeeding sections.

Lemma 8.1.1 If rational matrices {R(t)(z);0<t§to} and

R{(s) satisfy (10), then their polynbmial parts and strictly

proper parts (see Def.3.1.2) also satisfy

(t)
[R (Z)]pol———> [R(s)]pol
(t+ 0) (26)

(t)
{R (z)]sp ———1>[R(S)]Sp .

Lemma 8.1.2 Suppose that rational matrices R%t)(z) and

Rét)(z) are both strictly proper and d.t. stable for O<V%;t0, and
that rational matrices R1(s) and R2(s) are both strictly proper
and c.t. stable. If

R(E)

j (z) ——> Rj(s) (t+0) for j3=1,2 (27)

then
m . r .
£~ J R.ft)(elw) Rét)(e—lw) dw
m

o0
—— [ Rjtio) Ry-ie) du (£v0). (28)
-—00

The first lemma is immediate from the definition of the
convergence. It is worth noting that the lemma is due to the
condition (5). Indeed, (26) does not hold with the example in
(12), which does not satisfy (5).

The second lemma is proved as follows. Let for j=1,2
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R;t)(etiw) if -w/t ¢w < 7w/t

np

{8 ()
J 0 otherwise.

Then we have

i . ’ .
£=1 J Rgt)(el‘”) Rét)(e‘“") dw
m

= J _ rgt)(w) rét)Z—w) dw.

As an example of (11), the following pointwise convergence is

obtained for j3=1,2:
r;t)(m) —— R, (i0) (t+0). (29

Furthermore, it follows from the assumption of the lemma that
R1(s)Ré(-s) is absolutely integrable on the imaginary axis, and

that there exists an absolutely integrable function f such that
| 2{8 ) {0 | ¢ fw) for Ye, Y.,

Therefore, Lebesqgue's convergence theorem guarantees that (29)

implies (28).

Remark 8.1.3 The strictly proper condition in Lemma
(t)
1

8.1.2 is indispensable. For instance, suppose that R (z) and
R(s) are strictly proper and stable as in the lemma, and that
Rgt)(z) = Rz(s) = I. Then we have

Toat) Jiwy o (E) -iw

J N R1 {e™ ) R2 (e ) dw= 0

I R1(iw) Ré(_iw) dw= 7T lim sR1(s).

- S3>o
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Thus (28) does not hold in general. 1In this case, R1(s)Ré(—s) is
not absolutely integrable on the imaginary axis, and hence we

cannot apply Lebesgue's theorem.
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8.2. The continuous-time limits of the discrete-time orthogonal

polynomial matrices

In Chap.4 we constructed the c.t. theory of orthogonal PM's,
and in Chap.5 surveyed the corresponding d.t. theory. In this
section, we will investigate how the d.t. theory 'converges' to
the c.t. theory as the 'unit time length' t tends to 0, where

only the strictly regular case will be treated for simplicily.

Suppose that we are given a one-parameter family of p xp

PM's {A(t)(z);0<t;to} and a pxp PM C(s) of the form

(t) (1)

A(t)(z) =20 1 + 2 0

n-1 A(t) + «eo + A
n-1

c(s) = s 1 + "7 Coq * =+o+ *+ Co s (2)

and also given a one-parameter family of p Xp positive-definite

)

matrices {Z(t ;0<tét0} and a pXxp positive-definite matrix . We

asuume that (see (8.1.19))

£ alt) (2) — 5 c(s) (t +0) (3)
and that:

72+l S(B) o (t +0). (4)

Furthermore, we make the additional assumption that C(s)
satisfies (3.3.3), which allows us to define from (C(s),ll) the
inner product <P(s),Q(s)> as in Sec.3.3, where P(s) and Q(s) are
arbitrary pXp PM's in s. This assumption, together with the
convergence (3), implies that A(t)(z) satisfies (5.14) for suffi-

ciently small t>0, and thus we can define from (A(t)(z),Z(t)) the
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inner product <P(z),Q(z)>t as in Chap.5, where P(z) and Q(z) are
arbitrary pxp PM's in z.

Under these assumptions we have the following proposition.

Proposition 8.2.1 Let {P{*)(2z)} and {0'%)(z)}ve one-

parameter families of pxp PM's in 2z of degree at most n-1, and

let P(s) and Q(s) be pxp PM's in s of degree at most n-1. 1If

p{t)(z) ——= p(s)

(t+0) (5)
o't (z) —— a(s)
then
@' (2),0' (z)>, — <@(s),00s)>  (tvo).
(6)
(Proof) since Pt (1+ts), o' (14ts), P(s) and Q(s) are

of degree at most n-1 as.PM's in s, they are written as

p(t)(1:es) = p(E) (s
(7)
o!® (1+es) = @ F)im(s)
P(s) = P-T(s)
(8)
Q(S) = Q'T(S)r
where P(t), Q(t), P and Q are p xnp constant matrices, and

n-1

T(s) 2 [I,sI,...,s I}’ : npxp.

Using these expressions, the convergences in (5) are written as
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P(t) —> P

(9

(t)

Q —> Q.

Let (I',B) and (F(t),B) be the companion pairs defined from C(s)
and C(t)(s) 4 £ " A(t)(1+ts), respectively, which are

characterized by the eguations

1 1

(sI - T) 'B = T(s) ¢ '(s) (10]

(t)_1(s). (11)

(st - 1t s - 1(s)
(See (2.1.22-25).) Then the convergence (3) is written as

5 ¢ (t+0). (12)

According to the definition of the inner product < > (Sec.3.3),

it follows from (7) and (10) that

<P(s),Q(s)> = P X Q' (13]
where X is the unique solution of the c.t. Lyapunov equation

' X+ XT’" + BIB' = 0. (14)
Similarly, rewriting (7) and (11) as

p{®z) = ) ez((z-1)/0)

()

o't (z) = P ((z-1)/t)

(zT - F'E "1 e ™) - r(z-1)/t) alP) V()

where
plB) & 1 4 ¢r(®)
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we see that

() (2),0(8) (215, = p(E) x(B) (B}

where X(t) is the unique solution of the d.t. Lyapunov equation

x(8) p(t)" | -2n+2 5 o () 5o (15)

which is also written as

PUE) L (E) | () p(E)" | o (&) L(E) p(£)"

(16]

+ B2 (8) 5 _ g,

Comparison of (16) with (14) shows that the convergences (4) and

(12) yield

(t)

X —_ X (t+0). (17)

Thus, (6) is proved from (9), (13), (15) and (17). (QED)

It should be noted that the above proposition is not

straightforwardly extended to the case where deg P(t)(z)
deg P(s) = n. For instance, the PM's
p(th(z) 2 ¢ 0 plt) (4

P(s) & c(s)

olt)(z) & (2zyn-1

4 gn-t I

Q(s)
satisfy (5), but it follows from (3.1.9) and (5.2) that
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@ z),0' 21> =0
1
<P(s),Q(s)> = '2_ m,
and hence (6) does not hold (cf. Remark 8.1.3). Instead, we have

the following proposition.

Proposition 8.2.2 Suppose that the degrees of P(t)(z)

(t)

and P(s) are at most n, and that the degrees of Q (z) and Q(s)
are at most n-1. If they satisfy the. convergences in (5), then

as t+0

P Q. _,

(18)

SIS

(1) @B z),0% (21>, —= <@(s),a05)> -
(B(s) = [ sIp; , ats) = IsTo )
]

(ii) <P(t)(z),zQ(t)(z)>t — > <P(s),0(s)> + % P 10

n-1
(19)
(111) @), BV (z) —= <@(s),Q(s5)>. (20)
(Proof) (i) : We can write p{¥)(z) and P(s) as
p(V(z) = et 2t (z) + 38 (o) (21)
P(s) = P C(s) + P(s) (22)
where P;t) is a constant matrices, and §(t)(z) and P(s) are PM's

of degree at most n-1. Using these expressions, we obtain from

(3) and (5)
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(t)
P — P (t+0) (23)
5(t)(z) —s B(s) (t+0). (24)

Since A(t)(z) is orthogonal to Q(t)(z), we have from (21)

@™ (2),0M 21 = B 2,0 ),

and hence Prop.8.2.1 shows that

<P(t)(z),Q(t)(z)>t — > <B(s),Q(s)>.

Recalling (22) and (3.1.9), we see that the limit in the above

convergence is written as

1 '

<B(s),Q(s)> = <P(s),Q(s)> - 3 P NQ! , . (25)
Thus (18) has been proved. (ii) : We can write zQ(t)(z) as

)
1

most n-1. It is obvious that Q

is a constant matrix, and Q(t)(z) is a PM of degree at

(t)

n-1

(t
where Qn-
is the (n-1)-th coefficient

matrix of the PM Q(t)(1+ts), from which we have

ol — s o .. (27)
Noting that (5) leads to

z o' z) ——= s,
we can see from (26) and (27) that

0" (z) —— ars). (28)
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Now, it follows from (21) and (26) that

(t) -2n+1 P(t)

@'t (z),20 n

(t) ()’
L Qn-1

(z)>t = t
+ 3 2),0 2> . (29)

The first term of the right-hand side in (29) converges to

Panr'l_1 because of (4), (23) and (27), while the second term

converges to <P(s),Q(s)> because of (24) and (28). Thus, we

obtain (19) by recalling (25). (iii) : Immediate from (i)
and (ii). (QED)
Remark 8.2.3 Using the stochastic interpretation of the

inner product < > in Sec.3.2, the results in Prop.8.2.2 are

represented as
@ % (2),0'(2)>, —— ElaB(t)*q’ (£)1/at
( = <P(s),0(s)>, see Rem.3.2.2)

@ z), (2110 (z)> . —— ElaB(tIdg’ (t)1/at

@ z), Eh oM (z)> — ElaB(£)eq’ (t)1/at.

Thus we see that the equation

z+1 (t)

(—3*)Q (t)(Z)

(z) = o' (2) + F(z-1)0

corresponds to (3.2.20), which represents the relation between

the Itd calculus and the Stratonovich calculus.
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Now let us investigate the limiting behavior of the quanti-

ties

(t) (6? (t)' (Y?)(t) (t)

(t) (t) A
Aj (z), Bj (z), (8.) '

B
3 ' (Yj)

(j=olll"'ln)

generated from (A(t)(z),z(t)) by the LWR algorithm (5.24-32),

relating them with the quantities

i’ ej (j=0,1,...,n)

R. (s €
J( ),
generated from (C(s),N) by the algorithm (4.1.21).

To begin with, we present the result on the forward

orthogonal PM's {A;t)(z)}.

Proposition 8.2.4 As t ¢ 0,
£3 A;t)(z) ——= R, (s) (30
(O;jén—1)
t‘zJ(ag‘)‘t’ — (31
g0 A;t)(z) — > c(s) (32
LTI R —— (33
(Proof) Note that (32) and (33) are nothing but the

assumptions (3) and (4) (see (5.20) and (5.23), and note that
An=I here), and that (31) is immediately derived from (30) (see
Prop.8.2.1, (4.1.12) and (5.21)). Hence we have only to prove

(30). PFor 3=0,1,...,n-1 let
R;t)(s) 4 -3 Aét)(1+ts),
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which can be written as

j-1 Rlt)

(t)
3.3 ]

R;t)(s) = sJ I + s + «o.. + R

Then we have

+ eee + R!t)

-1 (t)
R
3,0

jrj'1

-3 ,(t) _ ¢2=1,7 z-1,j
£ a7z = ) T (B

Since t_JA;t)(z) is characterized as a PM of the above form such

that (see (5.16))

¢ t‘jAJ?t)(z) , (%)"1 >, = 0 for Ye=0,1,...,3-1,

we can see from Prop.8.2.1 that t_JA;t)(z) converges to Rj(s),
which is characterized as a monic PM of degree j being orthogonal

to skI for vk=0,1,...,j—1. Thus (30) has been proved. (QED)

Next, we investigate the limiting behavior of the backward

PM's {B;t)(z)}.

Proposition 8.2.5 As t + 0,
£~3 B;t)(z) — (-1)] R, (s) (34)
(0¢j<n-1)
t'zJ(cg)‘t’ —> ¢y (35)
£ B{Y (z2) —— (-1)" D(s) (36)
t'2“+1(52)(t’——> n, (37)

where D(s) is the dual PM of C(s) w.r.t. Il defined by (4.3.1-2)

and (4.3.5).
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(Proof) For 3j=0,1,...,n, let

R;t)(s) & (_t)I (1-ts)? B;t)nlu-ts)).

(t)

Then, since z]Bj (z-1) is a monic PM of degree j in z, Rgt)(s)

turns out to be a monic PM of degree j in s, and can be written as

Rgt)(s) =3 14 377 () + ... + R ,
J 3.3 j.0

which yields

(-t 3 Bt (2)

J
= 0;?;(2) I+ 0;?;_1(2) R;f;_1 + .. + O;fé(z) R;fé
(38)

where

ofhz) 22 (a2 ke
It is noted that ogfﬁ(z) is a polynomial of degree j in z, and
that

ofhz) — ¥ (t¥0). (39)

We can see that the orthogonal condition (5.18) for Bgt)(z) is

equivalent to

¢ (-t)'jBth)(z) , ojff]’((z)l g = 0

for vi<=0,1,...,j—1. (40)

For j=0,1,...,n-1, it follows from (39) and Prop.8.2.1 that

(t) t
< Oj'k(z)I , c;'}L(z)I y —> <skI,s'Q’I>, (41)
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and therefore (34) is obtained by comparing (38) and (40) with
(4.1.7) and (4.1.8) (where T,(s) = s'I in our case). The
convergence (35) is immediate from (34). For j=n, however, (41)

does not hold. Instead, noting that

5(t)

(t) a
on,l(z) =z n-1,2

() (0<2¢n-1),

it is shown from (ii) of Prop.8.2.2 that

(t) (t)
< on,k(z)I ’ On,R(Z)I >t
s",s" "D o+ 11 i (k0 = (n,n-1)
—_— (42)
<skI,s£I> otherwise.

Invoking that D(s) is characterized as a monic PM of degree n
satisfying

if O0¢kin-2

<D(s),s51> = (43)

0

A0 if k=n-1
2 r
(see (4.3.20) and (4.1.19))

we obtain the convergence (36) from (38)-(40) and (42). Applying

(iii) of Prop.8.2.2 to the equation

-n,(t) z+1,,2-1.,n-1 _ 1 . -2n+1 (B, (t)
< (-t) Bn (z) , (—5—)(_E—) = > t (5n) '
we can see that (37) is derived from (36) and (43). (QED)

A

(t)
30

The result on the reflection coefficient matrices {(Y
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and {(Y )(t)} is as follows.

Proposition 8.2.6 As £+ 0,

H s (11

(1¢3¢n)
H ) —— (-Is
£2 {1 - oD (DI} —s el
(1¢3¢n-1)
2, (t) , A (t) R
t {1 (Y ) (Yj) } —— €485 1

jt_1 (1 - By 5 g

-1
|t {1 - (Y n-1

-1 A, (t) A () j+1 -1
t {(Yj) + (Yg,4) }—— (-1) 8¢5

(t)

L e GE T —— 1 eyl

373
(0¢j<n-2)
e (A ) By s e Fmer]

n-1

O R S R Y O Rt B S D R TIN

(Proof) We will give here only the proofs of (44),

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(46),

(48), (50) and (52). First, (44) is obtained from the fact that

(V5 Ay(t) _ Agt)(O)

A;t)(z) — > (z-1)7 1 (see (8.1.25)).
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Next, (46) and (48) are verified by recalling (31), (33) and
(5.31). Finally, (50) and (52) are proved by comparing (4.1.20)

with the equation

A)(t)

(t) (t) ) ()1, B, ()
<(z-1)A57 (2),B5 7 (2)> = ~{(¥] D e

( A
Yj+
and by appealing to the previous propositions in the present

section. (QED)

Remark 8.2.7 It can be shown that the LWR algorithm is

equivalent to the following recursion:
A A
A +1(Z) - (2-1) Aj(Z) + (YJ + Yj+1) Bj(z)

(1 - y? )z Ay ()

(2) = -(z-1) By(z) + (5 + ) z A(z)

j+1 j+1

+ (I - y? ) z By_y(2)

We can see from Prop.8.2.4-6 that the above recursion 'converges'
to the recursion (4.1.21) together with (4.1.17). Conversely,
comparisén of these recursions provides us with alternative
proofs of Prop.8.2.4-6. In addition, we note that the three term

recurrence version of the LWR algorithm ([18])

(z) = (z-1) A (z) +{I + Y (y }A (z)

Aj+1 j+1

-1

A B A
LEP {Yj - (v3) }z Aj—1(2)

also 'converges' to (4.1.21) and (4.1.17).
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Finally, we investigate the limiting behavior of the
quantities

p{E), ul®)
J ]

’

58, o(8)
J J

generated from (A(t)(z),Z(t)) by the canonical polar-type LWR

algorithm (5.44-50) in which (5.47) is replaced with (5.47)’.

Proposition 8.2.8 As t YO0,
t_2j th) —_— ej (54)
£ (o) D1} ——> 5, €]’ (55)
J 3 3]
¢ {h;t) -1} —> 0 (56)
¢! {uft) - I} —> o, el (57)
] 3 2
for V9=0,1,...,n-1.
(Proof) Note that (54) is nothing but (31) (see (5.53)).

It can be shown from (5.47-48) and (5.51) that

(t) (t) (t) . (t) (t)
< (z-1)Aj (z) , Aj (z) > {al hj-1 - I}dj .

t T 1%y
(n't) 2 1)
Comparing this equation with (4.1.20), we obtain

1

e {efP) ) D) o, €]

3 J-1
Using this convergence, and noting that (55) implies (56)-(57)

(see (5.41-43)), we can prove (55)-(57) by induction on j. (QED)
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8.3. The continuous-time limits of the discrete-time Mullis-

Roberts type approximations

Suppose that we are given a one-parameter family of p xg
strictly proper and d.t. stable rational matrices {G(t)(z);0<t5t0}
which converges to a strictly proper and c.t. stable rational

matrix H(s); i.e.,

't (z) — H(s) (t +0). (1)
In addition, we assume that G(t)(z) and H(s) satisfy (6.1.4) and
(7.1.4), respectively. Let us denote by

= alt)-1

(%) (z) (z) B8 (2)

fi(s) = ¢ '(s) Dis)
the solutions of
the n-th order d.t. MLSA problem for ¢{%)(z)

the n-th order c.t. MLSA problem for H{(s)

5 (1)

respectively, and by and € the associated approximation

error matrices (see (6.1.16) and (7.1.17)). We also denote by

o Aale)-

¢t (z;u (z;u) 808 (z;u)

”~

H(s;W) = C ' (s;W) D(s;W)

the solutions of
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the n-th order d.t. IA problem for G(t)(z)

| the n-th order c.t. IA problem for H(s)

specified by the conditions (6.2.23) and (7.1.45), respectively,

where
U is an arbitrary B(t)—orthogonal matrix (see (6.2.22))
W is an arbitrary n-skew-symmetric matrix (see (7.1.47))
and B(t) and n are matrices defined from G(t)(z) and H(s) by

(6.2.18) and (7.1.43).
The aim of the present section is to show the following

theorem.

Theorem 8.3.1

(i) As t V0,

8 (2) — H(s) (2)
g72n-1 () o e, (3)

(ii) a(t)(Z’U(t)) conver i i
; ges to a continuous-time system as

t+0 if and only if there exists a matrix W such that as t+ 0
(ol® 116 —s w. (4)

The convergence (4) implies that W is n-skew-symmetric and that

as £t¥ 0

S8 (z;u't)y s f(siw). (5)
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Corollary 8.3.2 In the case where p=1 (including the

~(t) A
scalar case), both G (z) and G

aft)

t) ~ .
{(z;1) converge to H(s), while

(z;-1) has no continuous-time limit.
The above corollary is immediately derived from Th.8.3.1 by
recalling Rem.6.2.5 and Rem.7.1.8.

Let us proceed to prove the theorem. First, we note that

(2) and (5) are equivalent to

£ A 2y 5 C(s) (6)
(t ¢ 0)
£ 3t (z) ——= D(s) (7)
and
£ A8 (z;0t)y — 5 C(s;w) (8)
(t +0)
£ 38 (z;u(t)y)y — 5 Bs;w) (9)

respectively (see (8.1.19-20)). Since the numerators
%(t)(z)’ %(t)(z;u(t))
A A
D(s), D(s;W)
are the polynomial parts of
A (26 P z), A (06 M (2
A A
C(s)H(s), C(s;W)H(s)

respectively (see (6.1.8) and (7.1.11)), we see from Lemma 8.1.1

that (6) and (8) imply (7) and (9) respectively. Hence it
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suffices to verify (6) and (8).

For arbitrary pxp PM's P(z) and Q(z) we define

P(z),Q(z)>, %

1 (" (t), iw, (t)! -iw
T J_“ Gp ™ (e” ) GQ (e ) dw
where

(t)
(p(z)6'(2)1

(t) 4 (t)
GQ (z) = [Q(2)G (Z)]sp
as in (6.2.11).

We also define as in

(7.1.35)
<®(s),Q(s)> % 5% Iww Hp(iw) Hy(-iw) dw
where
Hp(s) 2 [P(s)H(s)1  ,  Hy(s) &

[Q(S)H(S)]sp .
According to Lemma 8.1.1 and Lemma 8.1.2, we have the following.

Lemma 8.3.3

If
P(t)(z) —> P{(s)

: (t +0)
o't (z) ——= as)
then

£ @ (z), 0 (2)5, —— <p(s),0(s)>.

Now, noting that the normal equations (6.1.16) and (7.1.17),
which determine 3(t)(z), G(t),

A
C(s), and €, are written as

A(t) . 0 for v'j=0,1,...,n~1
<A (z),z31>t =1 (t) (10)
8 for j=n
A . 0 for %=0,1,...,n-1
«8(s),s1> = (1)
€ for j=n,
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we can verify (6) and (3) by an argument similar to the proof of
Prop.8.2.4. The item (i) in the theorem is thus proved.

In order to prove (ii), it is necessary to investigate the
relation between {E(t)(z),F(t)(z),a(t),B(t),T(t)} defined by
(6.2.14-20) and {K(s),L(s),&,n,R} defined by (7.1.39-46). We

claim that as t +0

£ () (2) — > L(s) (12)
£ P8 ) — = (-1)?T s (13)
t P {268 (2) + (-)HPF'P(2) } —> s"1 + K(s) (14)
gm2nel (8) o (15
gm2nel glE) o (16)
T R L L L T T (17)
{T(t) - 1} /t —> R. (18)

The first two convergences (12) and (13) are readily proved by
arguments similar to the proofs of Prop.8.2.4 and Prop.8.2.5, and
(15) and (16) are immediate from (10) and (11). The convergence

(14), which is equivalent to
KB (s) 2 £ [ (1+ts)EP) (14ts) + (-1)"F (V) (14ts) }
— sn I + K(s),
is also proved similarly by noting that g(t)(s) is of the form

ﬁ(t)(s) =s I + s K 1 + ... + K



and that

n-1 ~(t)

K 0
no1 no2 *t oeee ¥ (-t) Ko = 0.

(The last equation is derived from calculation of K(t)( t 1).)

We will prove (17) with the aid of the convergence (6). First,

invoking that

Sl gy 4 ¢ Al 4k
= st 1+ s ; } 4 eee + Gét’
A n n-1 4 A
——3>» (C(s) =8 I + s no1 * e + CO
and that
A 2 A ) - e e e
_ n Alt) 2 A(t)
= (- (r -t ettt - ),
we have

alt) i A
{-1) A - I}t —> -C ;- (19)

Next, we note that (cf.(6.2.16))

() _ () _ 4alt) () 4(t)’
(S = Q *Ao B AO 14

(20)

which is a consequence of the fact that the solution ﬁ(t)(z) of
the equation (10) is also a soclution of (6.2.12) and hence is

written as (6.2.13). Rewriting (20) as

t—2n+16(t) - t—2n+1a(t) nA(t)'

(- 1)nr\(t) t—2n+18(t) (-1)

and calculating the right differential coefficients of the both

sides at t=0 by the use of (3), (15), (16) and (19), we obtain
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0 = 1im (£ o8 _ e o onim (272000 U8 gyt
€40 £40

¢ &
RS U LU N “na

or equivalently

-2n {a(t)

On the other hand, noting that the solution E(S) of the equation
(11) is also a solution of (7.1.37) and hence is written as

(7.1.38), we have

A _
«C(s),s" 11>

o
[}

-1

1)

N
s"1,s" " '1> v £+ C

n-1"-

Therefore, recalling the property (7.1.36) of the inner product,

we can see that (21) leads to (17). Finally, the remaining

convergence (18) is derived from (15)-(17) by noting that T(t) is

(t)

the unique 8 -positive-semidefinite matrix satisfying

(t)

T (£) (€)' _ ()

B (22)

and that R is the unique n-symmetric matrix satisfying

"o ' '
Rn + nR! = £ + & hn-1hn—1 .

{(Calculate the right differential coefficients of the both sides
of t727*1 ,(22) at t=0.)
Now let us prove the item (ii) of the theorem. Rewriting

(6.2.13) as
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ng (t)

A (20 2 22 P (2) « (-1 (z)}

(™R W) - rpen e (a)

where
A(t) o (E)
A, (U )

up

g(t)(o;u(t))'

and invoking (13) and (14), we see that the existence of the c.t.
limit of t—nﬁ(t)(z°U(t)) is equivalent to the existence of the
limit of {(-1) A(t)(U(t)) 1}/t as t +0, which is also equivalent

to the existence of W in (4) because of the equation

(- ALt o 8 it (see (6.2.23))
in which T(t) always satisfies (18). If W in (4) exists, then
as t+0
{(-1) A(t)(U(t)) - I}/t —> R + W (23)
£ PR (L.u(B)y 5 51 4 R(s) - (R+W)L(s). (24)

(t) and

Furthermore, owing to the 8'%)_orthogonality (6.2.22) of U
to the convergences (15) and (16), it turns out that W is n-skew-
symmetric. This means that -(R+W) is the (n-1)-th degree coeffi-
cient matrix ﬁn_1<W) of the PM 6(5;W) (see (7.1.45)). Hence, it
follows from (7.1.38) that the limit in (24) is e(s;W), which

yields (5). The item (ii) has thus been proved.
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