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ON THE COHOMOLOGY OF COXETER GROUPS
AND THEIR FINITE PARABOLIC SUBGROUPS

TOSHIYUKI AKITA

1. INTRODUCTION

The purpose of this paper is to study the cohomology of Coxeter groups in terms of
their parabolic subgroups of finite order. Given finite sets S and {m;;}, (¢,7) € Sx S,
where m;; are integers or oo such that my; =1, 2 < my; = my; < oo (2 # j), the
group W defined by the generators {r;};es and the fundamental relation (r;r;)™7 = 1,
m;; # oo, is called a Cozeter group. We will identify the set of generators {r;}ies
with the set S. Also, if we wish to emphasis the set S we shall write (W, S) in place
of W. (Some authors call (W, S) a Cozeter system.)

A subgroup of (W, S) generated by a subset T C S is called a parabolic subgroup of
W and is denoted by Wr. In particular, Wg = W and Wj is the trivial subgroup. A
parabolic subgroup inherits a structure of a Coxeter group in an obvious way. Note
that Coxeter groups of finite order are completely classified. The reader will refer [1]
or [6] for a general theory of Coxeter groups.

Given a Coxeter group (W, S), let F be the poset of (possibly empty) subsets F'
of S such that Wr is a finite parabolic subgroup of W. Given a W-module A of
coeflicients, set

H* (W, A) = lin}éig_v. H*(Wp, A),

where the inverse limit is taken with respect to the restriction maps H*(Wg, A) —
H*(Wg+, A) (where F D F'), and define

(1) p: H'(W,A) - W' (W, 4)

to be the canonical homomorphism induced by the restriction maps H*(W,A) —
H*(Wp, A). If A = kis a commutative ring with unity (regarded as a W-module with
the trivial W-action), then H*(W, k) is a graded ring and p is a ring homomorphism.

Rusin [9] and Davis and Januszkiewicz [4] studied, among other things, the mod 2
cohomology ring of certain Coxeter groups. In particular, they proved that p yields an
isomorphism H*(W,Z/2) = H*(W,Z/2) if (W, S) is a right-angled Coxeter group (i.e.
m;; = 2 or oo for all distinct 7,j € S) [4, Theorem 4.11] or a Coxeter group satisfying
the hypothesis of [9, Corollary 30] (which is too complicated to repeat here). Inspired
by their results, we studied the homomorphism p in far general context, and obtained
the following results.




2 TOSHIYUKI AKITA

Theorem 1. Let k be a commutative ring with unity. A ring homomorphism p :
H*(W, k) — H*(W, k) satisfies the following two properties:

(i) If u € ker p, then u is nilpotent.

(1) Suppose k is a field of characteristic p > 0. For every v € H*(W, k), there is
an integer n > 0 such that v*" € imp.

(A homomorphism satisfying the properties (i) and (ii) in Theorem 1 is called an
F-isomorphism in [8].) Theorem 1 provides us some understanding of the role of the
cohomology of finite parabolic subgroups. Notice that the homomorphism p may have
a non-trivial kernel (Remark 3), hence our result is best possible in one direction.

We do not know whether p may have a non-trivial cokernel at present. We give a
sufficient condition for p to be surjective. A Coxeter group (W, S) is called aspherical
in [7] if every three distinct elements of S generate a parabolic subgroup of infinite
order.

Theorem 2. IfW is an aspherical Cozeter group, then p is surjective for any abelian
group A of coefficients (with trivial W -action).

In case k = Z/2, we have more to say. By Theorem 1, p induces a homomorphism
H*(W, k)/\/(_) — H*(W, k)/\/ﬁ, where /0 denotes the nilradical. Rusin proved that
the mod 2 cohomology ring of any finite Coxeter group has no nilpotent elements [9,
Theorem 9]. Hence the nilradical of H*(W,Z/2) is trivial. From this together with
Theorem 1 and 2 we obtain

Corollary. For any Cozeter group W, p induces a monomorphism
H*(W,Z/2)/V0 - H*(W,Z/[2),
which is an isomprhism if W is aspherical.

Any Coxeter group has a finite virtual cohomological dimension [10] and hence its
Farrell cohomology is defined. Theorem 1 and Theorem 2 hold also for the Farrell
cohomology. In particular, the latter holds for all W-module A. We refer to [2] for
the definition and properties of the Farrell cohomology.

The left of the paper is organized as follows. Given a Coxeter group W, Davis
constructed in [3] a contractible W-complex &, named the universal complex, such
that the isotropy subgroup of each cell is a parabolic group of finite order. In §2 we
will recall his construction and make a further observation on ¥. Associated with
the complex U, there is a spectral sequence converging to the cohomology of W. In
§3 we will investigate this spectral sequence and its differentials. In §4 we will prove
Theorem 1 and 2 and their analogues for the Farrell cohomology by using the spectral
sequence described in §3.

Finally, we remark that other studies concerning (co)homology of Coxeter groups
can be found in [5], [7].




2. DAviS’ CONSTRUCTION OF W-COMPLEXES

Given a Coxeter group (W,S), Davis constructed a certain finite dimensional,
contractible W-complex U on which W acts properly. We recall how this goes.

Let F be a poset defined in §1. Let |F| be the (abstract) simplicial complex defined
as follows: Namely, the vertices of |F| are the elements of F, and the simplices of |F|
are the linearly ordered finite subsets Fo C - -- C Fy, of F. |F| is called the nerve of
F. |F| is a cone with @ € F as a cone point. We denote the simplex Fo C -+ C Fy,
by the ordered (n + 1)-tuple (Fp,--- ,F,), and we identify |F| with its geometric
realization.

For s € S, let P(s) be the union of simplices (Fo,- - , F,) of | F| with s € Fp. P(s)
is also a cone with a cone point {s} € F. Foreach z € |F|,set T(z) ={s€ S:z €
P(s)}. Define an equivalence relation ~ in W x |F|, W being considered discrete, by

(wy, 1) ~ (wy, T7) & T, = T and wyw; ! € Wrz,).

Let Y = W x |F|/ ~ be the quotient space. U is a simplicial complex, whose simplex
is the image of {w} x (Fo,-++ ,F,) CW x |FlinU (we W, (Fy,:-- ,F,) € F). One
of the main result in [3] is that I is contractible.

For (w,z) € W x |F|, denote its image in U by [w,z]. By the correspondence
x « [1,z], a complex |F| can be regarded as a subcomplex of #. W acts on U
by w - [w',z] = [ww',z], and the action is simplicial and properly discontinuous.
Moreover, a subcomplex |F| is a fundamental domain, in the sense that every W-
orbit intersects |F| in exactly one point. Notice that the isotropy subgroup of a
simplex (Fy,--- ,F,) of |F| C U is a finite parabolic subgroup Wg,. See [3] for the
detail of the construction. (I is called the universal complez in [3].)

We give a further property of &/ which will be used in the next section. Recall
that an ordered (simplicial) complex is a simplicial complex together with a partial
ordering on its vertices, such that the vertices of any simplex are linearly ordered.
We have:

Lemma 1. U is an ordered simplicial complez. An action of W on U preserves the
ordering on vertices.

Proof. Since a complex |F| is the nerve of a poset F, |F| is an ordered complex. Any
vertex of U is of the form [w, F] € U for some w € W and F € F. Define a partial
ordering on vertices of U by [w, F}] < [w, F3] & Fy C F,. If [w, Fi] < [w, F3] then
[w'w, F}] < [w'w, F3] for any w' € W. Hence the action of W preserves the ordering
on vertices. Using the fact that |F| is a fundamental domain of the W-action, we
see that any simplex o of U is expressed as ¢ = wr for some w € W and some
simplex 7 of |F|. If 7 = (Fp,--- , Fy,) is such a simplex of ||, then vertices of o are
[w, Fo, - -+, [w, F,], which are linearly ordered. O
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3. SOME SPECTRAL SEQUENCE

Arguments of this section can be applied with no change to the case of the ordinary
as well as the Farrell cohomology (cf. Remark 1). We deal with the both two cases
at once.

Let ||, (resp. U,) denote the set of p-simplices of |F| (resp. U). Since |F|
is a fundamental domain of the action of W, a set |F|, can be regarded as a set of
representatives of elements of i, mod W. Since U is a finite dimensional, contractible,
ordered simplicial complex with an order preserving W-action, there is a spectral
sequence of the form

(2) EP = I HY(W,,A)= H"I(W, A),
c€|Flp
where W, is the isotropy subgroup at o [2, p.282). Since W, = Wg, for ¢ =

(Fo,--- , F.), the E;-term consists of the cohomology of finite parabolic subgroups of
w.

Next, we investigate the differential d}* : EP? — EP*19 explicitly. For simplic-
ity, write H*(W,) = H*(W,,A). For a simplex o of & and w € W, let c(w™!)* :
H*(W,) — H*(W,,) be the isomorphism induced by a conjugation. Write c(w™!)*(u) =
wu. Then EP can be identified with the subgroup of [1,ey, H(W,) consisting of
oeu, uo satisfying wu, = Uue for all w € W, o € U,. The differential d}? is the
restriction to this subgroup of the map

d: [] H'(W,) - J[ H(W.).

o€y T€Up41

defined as follows. For all 7 = (Fo, -+ , Fpy1) € Upyy let 7 = (Fo,--+ £y o+, Fopn),
0<i<p+1,andlet p; : H(W,) — HY(W,) be the restriction maps. (If i # 0,
then W,, = W, and p; is the identity map.) Then d is given by

(3) d ( II uo) = II (lf(—l)‘mun)

UEup reu,,+1 1=0

[2, Lemma X.4.2]. Moreover the edge homomorphism H*(W) — EY* C Mocu, H(W,)
is identified with the map induced by restriction maps (cf. proof of [2, Proposition
X.4.6]). Now we have the description of the differentials of the spectral sequence (3).

Ler'nma 2. The differential of the spectral sequence (2) is given by the formula (3)
with U, replaced by |F|,.

Proof. Let W, be a set of representatives of left cosets of W, in W. Then

oWy =T II H (W)

Teup Uelf'p weW,



We assume 1 € W,. Regarding E}’ as a subgroup of [1,¢y, H(W;), define o :
n0€|.7"|p H‘(Wa) -_ E{’q by

H U, — H H wu, .

o€|F|p o€|F|p wEWs

Then a is a map which gives the prescribed identification of E}? with a subgroup of
[reu, H/(W;) (cf. proof of [2, Lemma X.4.2]). A map B: E}? — [l 5, H*(W,)

defined by
H H Uy HF H Uy

0€E|F|p wEW, o€|Flp
is the inverse of a. Both maps are well-defined since any element [],¢y, us of ED?
satisfies wu, = Uyo.
Regard [1,¢x), H?(W,) as a subgroup of [1,¢y, H?(W, ) consisting of those [1,¢u, o
with u, = 0 whenever o ¢ |F|,. Since |F| is a subcomplex of U, we see that ; € |F|,
for each 7 € |F|y41. Hence

d( II H"(Wa)) c II H'W,),

o€lF|p TEFlp+1
where d is the map given by the formula (3). Define D : [l ¢ 5, H/(W,) —
M1-¢7),,, H'(W:) by the restriction of the map d to the subgroup [],¢ix), H*(Ws).
Then D?? is the map satisfying the formula (3) with U, replaced by |F|,.
Now the lemma follows from the commutative diagram

dPq
E{’vq 1 ) Ei""lvq

T
1 H W, =25 [ HW,).
o€|Flp TE€IFlp41
a
Remark 1. The description of the spectral sequences in this section quoted from [2]

is written for the Farrell cohomology. However, the same argument holds for the
ordinary cohomology.
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4. PROOF OF THEOREMS

Thanks to Lemma 2, we can compute Ej?-terms of the spectral sequence (2) as
follows. Recall that |F|g is identified with F, while |F]; is identified with Fy C F] in
F. By Lemma 2, E9? = kerd}? can be identified with the subgroup of [1rex HY(Wr)
consisting of those families [[re s ur satisfying the following condition: if Fo C Fy in
F, then up, restricts to ug, via the restriction map H*(Wg,) — H*(Wg,). That is,

EY* = HY(W) = lim.inv. H*(Wr).

Compare [2, Lemma X.4.3]. An edge homomorphism H*(W) — E3* can be identified
with p. This follows from the commutative diagram

HI(W) — Ep*

N

o€|Flo

where arrows starting at H9(W) indicate maps induced by the restrictions, and «, 8
are maps defined in the proof of Lemma 2.

Now we can prove Theorem 1, for both the ordinary and the Farrell cohomology
at once. Let H™*(W,k) be the filtration of H*(W, k) associated with the spectral
sequence (2). Since E}? is concentrated at 0 < p < dim|F|, H™*(W,k) = 0 for
n > dim |F|. Since ker p = H'*(W, k) and the spectral sequence has a multiplicative
structure compatible with the cup product of H*(W, k) (2, pp.284-285], for any u €
ker p, u® € H™*(W, k) = 0 whenever n > dim |F|. So u is nilpotent. Next, suppose k
is a field of characteristic p, p prime, and let v € Ey™ = H*(W, k). Then dg(v”) =0,

since
dg(Up) = pv”"ldg(v) =0.

Hence v € E3*. Iterating the argument we obtain v*" € EJ* whenever n + 2 >
dim |F|. Thus Theorem 1 is proved.

Now we turn to the proof of Theorem 2. It suffices to show that E3” = E3*. If a
Coxeter group (W, S) is aspherical, then |F| is at most two dimensional and hence the
EP*-terms of the spectral sequence (2) are concentrated at 0 < p < 2. Any 2-simplex
of || is of the form (@, Fo, F}), and the isotropy subgroup of such simplex is trivial.
The Farrell cohomology group of the trivial group vanishes for any coefficients, and

hence EX* = 0 in this case, which proves Theorem 2 for the Farrell cohomology.
The case of the ordinary cohomology needs more work, since E;*° # 0. We claim
that E2° = 0, which proves the spectral sequence collapses at E,-page. Observe

that for every 1-simplex (Fy, Fy) of |F| with Fy # 0, a 2-simplex (0, Fo, F}) is the
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only one having (Fp, Fy) as its face. For a 2-simplex (0, F, F;) and a € A, define
u = [lerp, to € E12'0 and v = [l-¢7, vr € Ell’o by

u _ { a o= (0, Fo, Fl),
c T 0 otherwise,
{ a 7= (F, F),

v, )
0 otherwise.

This is possible since Hp({1}, A) = Ho(Wg, A) = A. The isomorphims follow from
that W-action on A is assumed to be trivial for the case of ordinary cohomology.
Applying the defining formula (3) of differentials, we have d;°(v) = u. Since any
element of EX? is a sum of such u’s, it follows that d;* is surjective. Thus E3° = 0
and this completes the proof.

Remark 2. The hypothesis of Theorem 2 for the ordinary cohomology that the ac-
tion of W on A is trivial cannot be removed. For if the action is non-trivial, then
the restriction map H®(Wp, A) — H°({1}, A) is not an isomorphism but only an
injection.

Remark 3. There is an aspherical Coxeter group for which p is not an isomorphism.
Let W be an aspherical Coxeter group defined by

W =< sy,80,83:5°=1,(8;8;)° =1if i #£j >.

Then the mod 2 ordinary cohomology of W is given by H*(W,Z/2) = Z/2[u,v}/(u?),
where degu = 2, degv = 1, and (u?) is the ideal generated by u®. The calculation
is due to Rusin [9, p.52]. As we have mentioned in §1, H*(W,Z/2) has no nilpotent
elements. Hence p(u) = 0.
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