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1. #

il

JLFNRET T MROKIFEET T 2 M, BFx REESRSREIBHEICLVEA LT
WOHIEEM TH Y, WHENIIIIRBICN DR RAET 5. Frll= v I VRS GEEIIZ B
T, BETHEEICCEY, 6B RS (SCC : Stress Corrosion Cracking) 73%&
AT HERNENNOT T MZBOGEFEEL TN S.

B Z21E, Fig.l-1 129 & 9 72 ¥blg /KRR 47 (BWR:Boiling Water Reactor) O JiL -7 %5
#r EUBE (N 1 5% CRD v 22 7 ) DR HE TS B BEIIUC X IR FSR1 TR
HHENTNWS Y F72, IEKBE 47 (PWR: Pressurized Water Reactor)lZ 3\ T K
i 3 BHECHESN CIR P 35 BIREEE COIRMARE SN TR Y2019, Haikh &
ZDORERIZES WU R TR ERNEE L 2> TN D,

ISTIEAREE, B, BRET, SO 3 ODRFNES L& SITRET S, FRF
IZxF LT, B BREEH COUBITHEED SN TEY, IGhE T 5 FELERS
NTND M O EIEZ Db O ERE LT 2 2 L bEETHD. IBHERY
SN EREEE X MET D 2 & T, iR bR AER ISRl 2R R E A 7E T
D &R0, HEFRA% O X ZHERMNTORBE 2 L&, FaiHioEEEE &m0 5 2
EMAREL T2 D

FrIC, BEIREBEIO K 9 IR & BLE & OEMEREHEIIR & R OMEmIL, S NEL
THREIS I EHECEL L T D D EBZ BND T, BRSSO AT — &
TGO LEEREE > TV D.

FRRR IGO0 A OPEIEITRE 2 2 PIEMER I N TV D 00 Y7 [ERFESEH NGO
FREHIE D347 % W7 & DB 70 <, B 208, BRERFLIE & L CH 4472 Sachs 15 1Y
TIXE OFEREIE A ERIFR T L bR CTh D Z E NG LR TS,
BT Tl DHD (Deep-Hole Drilling) % ¥ 3% 5723, ZRILT A NZIR - T25R%EIS 155 4
DFHIDTET T 3 WOt ARITIIE TE 2R, 3 WITHNTHEMEIC A L T\ 5%
RIS 2 WEST 2 FHEE, BFES T, EELRE L BEA O HEY LSt
RS T 5720, B O Ak E O BERIGEHE i, R OZEEE/HRFS T fEFo
£ et et UCHEAE] Y Y 320, il g s A xk g & LB S A
BHSEFICRT 2 AT, £, BREBERERICRBON T, OF AT — V2 EH
U 7= 380 % OBIWTEIC X 0 BLE O NS OFRE IS IR 2% 2 A E 0 3 b B



D3, MRIEPNER OIS a2 1T > TW A FHIEL7ZR .
2T, RWFETIE, BUE RO IR T A VR TR AR E B HEEEET & x84,
B OT k2 e R & U7z BIRE 72l e Bigm & e FIEZ B9 5.

N

Al 22 G R HE/E T 13 LT, [ Tl B2k & B35 0 C, st #R7psk
WIS A 2 E L, EA O R EOflc PRl S Bim 2 8 72 2R T 5. 2 OMERIcHE
SN, AIRERIEMT 7 0 7T A ET 5. FERFIOVWREREZ ]UEL T, Sk
X DREOTHEFML, A7 07T M ANTDHZEICLD, BEERESSIERERT
ORI AT HEET 5.

TR RS B BmAEABIC R L CiE, MkFIE-HEMIT NS < (O3 A0 FHEK
DR S D), Lad, ISHGMPEMECEL L T D CRENER O A IR I
%< 70%) LHEREND 0, EAOTHRONME BEFRT S FiE Y 28T 5.
I, BIBGERRIEIC DWW TR AR AR E B BB SISk 2 7880571 O 1 & Hie
OHEEZHET 2. Bio, #HEHERICHT 2 EEEEHMIFELRELEHT 5.

£, RIS, LR OIS IIECE U7z B ORE A O A kO B & 2R
MINZEBT 2. BEAOTAOAMBEEE LT 1 OFEOREE #H 5. = OHHICH
SWCTHRERIEMNT 7 0 7T 2L T 5. RIS, ERFISEVERK (T 27
v 7)) ERUWELC, BB LT m 7T A& LT, 20 3RITIEBEERIG 15545 %
ETD.

1 O FlHH D /341 BI% A FI O CHRNT % 54T U, 034 BIER O ARfRAT ~ O Sk % R EAf 4
% . FHILEAR O3 A ESFEH IR D ZRIEIC STV D 2 LICER L TE
T5. BN RIETIERT — & OfNTE, BRI S UIDED—2TH D, 0
FERIE, AL, SEHETRWITAONREE LN EEZ LN TS Y. 1 B
L FRENOOZW THY, F2 BT THEHE RN 02N THY, HED
o3 B TEEFAGR D ORI ThD. 1 OFEO MBS L o e %, 2
DX D RBWHEC X 0 EHMET 5. &R OBEIGIEDOES 2 HE L, fil /e B E R E T
5. B, TORHEBEEAHEH LA ORRICOHEER R ERSR) oL Bk
ERAY

RIS, A%, [FIRRZ R EEETFAEY R 2 5RIS 1R &2 524~ 2 & 2 /8 E L,
RS R OERANE & SHROBEFHIEN WSS D FHSRM 2 ERTET 5. Bl D, RRIZBIT 5



OFHFHANE, MEEROGEEEEZB X5 &, FAOT HPFAET D MRS D
At TN ETREIBICIWT, HRDRY ZHGEHT 2 Z EREE L. LaL, &
HEEITEMETH Y BEME2ET L0, BREMEZEZD L, TXDRVDRVEF
S ECCRRBIS ) 2 3 il L7z V. 2 2T, FHIALE K OF RSSO B E R BE L2 R E T 5
BAMYIL, RRHSRFEIES BB LT, WERROEENE L FROBRFIEN WAL T 55
WSt Gl O et 2R 2.
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BMI: Bottom Mounted Instrumentation
CRDM: Control Rod Drive Mechanism

(b) PWR

Fig. 1-1 Shape of vessel penetration
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2. EEUVTAEICKDEZGDATEER

2.1 ERUVITHELIE

A TIEEAOTHELZBEHT 5. “BAEOT A" LIL, &OEEWH D VI
IZBWTSHNAETTWEEE, ZO0THZIMVERS (02T 5) &, ZOHEDH
DUNTEM NS TRBBIZ 2 D, £ DX I RIS DOFAER Lo TWVWDLOTHDZ
LThD.

EA O A L FRRISINEERIZ, IS, —BMNICxHE LT, Ledd-> T, FHll
OTAHLVEROTAERDD ZENTED L, Tiva: O TG B TG 1% A
HTEMTEL. Lo, FHOT AL EROTHORMER, EHOT A LIS OM
%, SWIAEER - EBEROT A0 (EEERRIS 540 REBICH LT,
KON FHER LV RD L Z LITARETH S, £2 T, ARERELZHNT, £
SORMBENERL SN, ZOBEGHMEAOTHRIETY TH D, EAEOT BTN
& L COITED—D>Th 5.

AREREEZHOEZEAOTHEE, FEACIE, E0X 5 I8 ERIREOEAE
OT B0 GERRIS15A0) I LChBATE 5. X, EREERTE ISR E T
LYHEEZD. TONMOEEICN ZWEST D721, FIHICNEIZOT AT —
RS Z E XM ARFRETH H. WEHICOT AT — VR D 7-0121%, *EW%E
OIr 2 LR H D0, ZRUCTEVISREIFEMLTLES. ZhickL, BERO
FTHETIEHEAFOTHEN L CERISNZMET 20T, PIchEERmZFicod
=R L, TOBOUINNIZ X DMBEOT ALY, WA GO MRk D%
B RDODHZENTED. X, b L, Kl L CTOFMTIIERENENGEIT, [H
AOTHDFETDHEZZONLHHROEL TOT AT —UBEND L o1Z, UKL
ThEW. BWCEYEAOTHANERICHBE SN TLEDRWIRY, ZO% oMK
RECEB T DMMOT ALV EEOTREHET D ENARERTH 5.

X, OFTHT =D X D3HIMEICIE, RaEORZENRE L. WE OREE T,
FNEERL, FHIESELVWEO L LT, BRISHOEEEORERD TS, [HE
OTAHETHE, HHUOTRIEEDNEENTWVTY, HEHFEHTEICE Y, BRSO
el & FEE R 22 ((BHEXH) Z2RODHZENTED. BIb, HEINDEREILOE
ML LE T2 2 L TE .



2.2 BHEUVTHEOEBREHR

BT CIR 72 £ 912, WIERICEA OTHBFET 5 &, ZAUTKHET 2 HPEOT %4
BRAELTND GREISE) . EAOTH L MO 4 & ORI I O B BIUR 23 77
BT 5. X, WHEOP 4R LIEE - EIRR GIEER SRR IChs0T, AU
F LI5S & DRI b TE O BIBIR LS 5.

MR B IRERICYE LI, MIEREOERICEET W04 (5] (B@H=n
= BRI OT RS = BB ) {0, O S ORED) &, MIERKOBERICE
NBZEEOTH e, *) Bi=q (q=n)) OMICIE, REOBBMEREETS. i
X (@2-1)TRT. KR-DIInfloOADZ7—X @ AHRR) 2120~ M) v 7 2T
ELDELDOTHS. EEOTLEERIEOBRLRKTH .

{gk}:[ij]{gj *} (k=1--n,j=1.--q) (2-1)
o) =IM, Jle, *} (k=1--n,j=1--q) (2-2)

n HOBIEOT 2 {6, ) DN, FHMENZBIEOTLE m A (m=n) & L{e) THT
L el EEAOTR e S OBIKE, REDE, BT S mEO 20 T —ROBA
G5 LIC LV RDBILD (nHOES TR OES S mHDE N EROEAI
G ENB). T OBRILINE RN BNHER) LEThD. ZnERE8)TET.

{mgi}:[HiJ ]{gj *} (i=1.--m j=1.-q) (2-3)

K(23)Tloa) & e, | BRI T 2 [H,|OmRAEKO & 5 ok 2 2 L RN T
x5, Wb, [H, 0% r5I0oKESE, {650 r BHOKRS % 1, Loy Z20 &L
DA OTHNE L ST L KA COMEOTRTH S, Bl2E, [H,]o 241
A OB, BAEAOT S (o, *|= 01000000 % 5.2, £FHIlATHRAT DHHED
PhE FEMENTT 2 2 LIk Wk 2D 2 LN TE D (RFIRFFHCEHET 2 2 L b
A8).

REITH 2 EEOTHOK L F UROMHOTHEEMT D2 LN TEDE (q=
m), XEIIZLY, EHOTAEZREME LTRODZENRTES. L, ThiEy
LVBHEOFLEHIT 5 L (g<m), m BHOAH T —AnGERLHEHERX (R
(2-3) 1ZHWT, MSTARBUEA q T, 250 O mop EIZMEEIGR L 725,



L, FEEOFHIOTAIZIE, 8%, BENEGENTWD. BiIH, BEEOT AT
o D EOFEOTHAFHU STV D LIRS 220, LA > T, 3RO A0 %% m
BEAOTHOE q LR UHAE, KE-3)F, sHIOTAREOMREOTHRTH D LK
ELEHAOEAGOTAOMEMRE 52 TOWDICBE RV, 22T, XEEEOREWD
A OTHERD D702, FHIOTAE m Z2EE0THEkq LV E<T25 (q<m).
ZLTC, FHIOTAIITEENEGEIN TWDI LD EEZD L, XEIAITEEND m
OFERUITIE, HITCHEBBERIIEE L kb, sHIOTAROMEL X35 L,
X(2-3)1%,

{mgi}_[Hij]{gj *}:{Xi} (i=1---m,j=1---q) (2-4)

ERIZEEND mEOHFRRXOTOEED q 2 W5 &, q EOEAE O EiEE
EE L TRDDHZENTES. HL, EOFERRX (EOFRMOTR) 28R+ 51T,
e SNABEAEOTHOMEITZRR>T2bDERD. TIT, WP FREALEALT,
mEDO TR TOHFEX (M EDOT X TOFHIOTH) 2 HNT, HERIICHERBELR
FTUME, HID, RMEETOREZRD DL Z LT 5.

EA OTHOED (e} & Il {§*ICE &z D &, #8283V EIRIEN S
Lo Ly, K(2-4)F,

Leld-[H e, <=t} G=1-mj=1q) (2-5)

DK fa s L L (R(2-6), SHEAOT HORMMEIIK L Th/hemd kD
i 2 iEAEA TS ((2-7). RE-IXEA O T O EAEE 2 KD 287 52
Lo TRy, EHRFBRKEMINDS. FEIPXEE)TEINDZ E LY, K27k
K2-8) &L Z LN TE D, KR-B)ITFHIOT & [l A T A DI OBAR 2 7~ L T
W5,

S={v,[{v} (i=1---m) (2-6)
05/t *={0}  (j=1--q) 2-7)
[Hij]T{mgi}:[Hij]T[Hij]{éj *} (i:1--~m,j:1---q) (2‘8)



Hi Ml axq DES~ FY w7 2THY, 2o~ b)) v s 2ERDH L, HE
OF B ORHEE A FHIOT AR T BB L LTRT Z LN TE 5.

6, )le}  (i=1-mj=1-q) (2-9)

{éj *}: ([Hij ]T[Hij D_l[Hij ]T{mgi}

[ A O o D et & R (2-1) K O (2-2) & 1, BEPE O 20 K OFERE s ) D Bl fit % 3k
HHEINTED.

=g, *) (kK=1--n,j=1-q) (2-10)
6=t <=M, e, e =[N Jlwe ) (k=1-ni=1--mj=1-q)  (2-11)

X, BHEEOEEITRO L I)ICHETH LN TES. MEDEARZF L (BALEA)
ET5 L, MEEDEED MO NMRHEE &I,

& ={v v }/(m-a)=5/(m-q) (i=1--m) (2-12)
B OF 7 & RIS ORHEEO AR #IE, heh,

[%;)2 =@(gji)2j.§2 (j=1--0) (2-13)

ZIT, g, REOTO (6,0

(§Gk )2: [i(nki )2) §° (k=1--n) (2-14)

i=1

ZIT, ng o R(@21D)F O [N ] DSy

FERAOHEEME LT, @HEY, NMROBOIEDFEIIREZ LD L,

S = [i(g ,-i)zjﬁz (j=1--1) (2-15)

i=1

10



(k=1--n)

11

(2-16)



2% Ik

2-1) Y. Ueda, K. Fukuda, K. Nakacho and S. Endo : A New Measuring Method of Residual
Stresses with the Aid of Finite Element Method and Reliability of Estimated Values,
Journal of the Society of Naval Architects of Japan, 138 (1975), 499-507, (in Japanese) and
Theoretical and Applied Mechanics, University of Tokyo Press, 25 (1977), 539-548, etc.
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3. BBV AEICKLDEFIFEERGEBTERFORBELHAE

31 FiRMFICHT HBIERR (FRT-Lix) >
3.1.1 R T-L ik

INETIE, FROEREGEEEMFRBRIEZ XI5 L LT, ZOBREENHIEWD
BAIlCk LT, FREAZE LEFEHRIELEE LT T-LIENRESI TV D, K%
IZBWTY, EAMICIE TLEZEHAT S, 22T, ko T-LIEIC oW TR EIZHHA
T5.

(@) WHMP R, hIEMENERFRE, G, EEOTHRERS 1 E I H N
IC—EIZR > TS ET 5. ZO8GE, PRI T, BHEHRTmOMEOT HILF
FHIEDEA OFTHDORICE > TERENTWS, ZOERELZFM LT, BEHEOTHEY
2O CHIET 5.

(b) FRARATIZIVNT, BHERICREREVREA (T F) 1#e, BRI
HWORER R (L) 208Kk, B0 3. LA, RBARo B FEmEICE TR E, B
HE, ETFREICEEREHEZALTCND. FIZ, TNHOTHFEOL F &2/l 5.
IO OEIWHZ X A REOT AE T, L A OIXEER OB 0THRE, TH
PO IR R E RN OB OT HE2RD 5.

13



3.1.2 R T-L i % silie FRifk 1208 - 2 56 O
(1) T A EWNEA O B OEHR 7 0 BRI O o~ D 528

EROXIIT, HRWVEEREZAT 2T TIE, o RE T TIE, R
FHOEEOT ILFEF R OFEAOTHORIZ L > TERSNTND. 202 LT
FNZFE SN TV D, RO T-L i1, Z ORI HSN T, JETE M O E F 3R 73
FENTWD. UL, #isdFkTci, £oBEGmITR I, T HmANEGOTAE
BRI O P RERESED. LEN- T, TOREZRY ANZEAOTHRE
BRI ONT B O FT 72 72 BfR 2 SR 6D D B3 8 %

(2) g 7 T [E A O3 B ORI 5 TRl # I 22 AL R oy DA 2

ARG TFRRBR (R TIE, BUE T B E A O A OBIE T ORI T, KRR 132
i, FEEES D BRICER TE 5700, BRI EZER L TE LT, BEA 0T
HLlipoTND. DFY, ZOEAOT AL, RBIEOHHOREIZBNT, $T
I SN TEY, WIETLHZLIETET, X, TOLELRW., £ZT, ZNAETO
T-LETIE, RIS MEGOT ORI %Z, TARZEDEEHR>TNDH T HE2EY
MU, THEZHETSZ SickvRpTns.

UL, il Bk ci, filism CEAROBIES AN AEY) A O A ORIE S5 M O
SACBNT, —HRGHTEROBEA LRI HBICER TE 508, MEEAEIEHE
HICEET 5 Z &L C& T, BEISNEERT S, 2%, APEFEOTHERD. Z
DOEEAOTAIE, TORBRENS T HE2G0 LR, kS TLEd. ThH
MHROLND DL, IR TET THD. L -> T, fFmEE T ROWRES
MRy % 3R D 2 7o DIZIE, ST ORBRIED S T 2810 3 RO RO T 7 % 5
ML, EhéoEBREZERML TELERDH L.

W, LARE, s [E A O A ORIE 7 M ORI AL oy & B “Eih7 [ [E A O3 A
RSy & RECR, Bl7 A E AT OV A OAUE 7 [ ORI ZEA LR 53 & B “Hilh 7 [ E A O
THIERIER " LS.

14



3.2 EEREEBEBFOERBILHAE
3.2.1 BRI 2 MEE R OBHFE (kPR T-L 15)

A OTH RIS MNEFRCR LTV EAE LEEHRAoE R (EE
OT R EFHIOT AORMR) 2835, Bb, F2mcX(23)E L TURLEHE T2
KA PRIRRE ISR L CTEARRIITRD 2.

il FRIRBEIC 35T 2 B O B pl sy (Xl 5y, Ba07m, JE AW, KOV, #m e
M2MEAINTORE AW (LLFTIE, HIZ “CAW” LMES), O4pk0Thd. R
ENE T REOL F280 R, 2, Z2hb 2/l 2RIk ins 09 & G
WOFH) kv, ZNbDEFOTHEHET L. TodOflE R4, 3.1.2 f
TR L7 Sl R OB A2 B8 L CEHT 5.

EZAT, LD AImE LTI, ZHE T2 HRBEEINTWDA, dlkhr L
LCOUIBOERG &G, Mt FroficRE RN E LTOlY T Z&icdd. 20
ZEEED, UTOXEHICALET, 323HETRLTWDHERTIE, Fig. 3.2-2, Fig.
323 &R E NIz,

W, Z ZISA I B S OVEBR FIAIC B U CAFFHIBEZ 1TV, BEDORER, Ak 2
24E6 H 1 8 HICHFFEER ST (FFF i 4533621 75, FRBIGMIE 7 iER L OUER) .

--------------- <FEEROURT> —

e, %}« EAOTH

{ne) : BHEOTHRICE AT TODRHUNE TORMEOT 7

<ESUIMNC XV SN2 03 GHNOT ) 13X, J6, Z& ZITHFEE L TVt D
THEWFETHHOT, FHNOTHEZWFZIILT, {afOANT—2 T 5.

[75]
L=1-N,
N, : &L To, AFMOEAEOT R, &L, FHAMEOT 25

N, THTEING, BHOTZI, 50, RO 25

Ny, B IO AT A OB H BRI AR &R <, T FENOEAD
PR GEE, FRIGERS BT 5 DT, Npy=Ny)

15



T2=1-4N,,

N, © B 1 00 A O A O HE J7 I 2 Lk 4y 3
Tz=1-,N,,

N, : 87 [ O FHHEAE O A

16



(1) EEAOT R LT O OB
(a) JCORIFAIZIS T 2 A S5 AEAOF 7 &8T5 FFE O 2 O BELR

{m geiL-e*W_)L_)S }: [H1]{591L *} (3-1)

ZZ7T,
ko o EBEBEEAOTH

(oea o™} FEOBRBAICINT, FHFAEAOFRICE D 4 T2 EHFIH
BHEOT 2 (B ASL Ao OB £ 0 ik S h5)

[H,] : TEOBAFRKIZINT, s, 5 & fpey o™ JOBIRERTHY b U v 7 2

(b) JTOHIRIFMARIZ IS T DHh T, 2805 & O AWTEA O3 7 & JE 5 M O A
D BEIfR

Bl 5 ME A OT L, g ORI E DG D=0, BRI [ DI Ah 2 S EAb R oy
EIERRIE A B L Tl <.

{m geiL-zr*WQL }: [H 2 ]{gzro *} = [H 21 ]{SzNer *}+ [H 22 ]{gzLjT2 *} (3-2)
ZZT,
o EHREA O R, BHEEEOT S, EAREA 0TS

b, BOTREAOFHIIGNSY, BHAEAOT, & AMEAOTH

w1 R O IR

(oo ot} TEOBIRFRAICIN T, BT, B O ABIEA OF A £
AU TS JE 5 A OV A (Bl FRIA= L i o BIEnC K 0 fgics %)

[H,] : EOBTFRAIZI T, |, 5 & oy o | OBIRERTH Y v 2 2

17



[H,.] : SEOBRAAIZ BT,
{SZNLrol *} & {mgeiL-zr*W_)L}@Bg'f%\%%‘a_Hv }\ U D4 y A
[H,,] : SEOBKIFREIZ BT,

oL OB EERTH R v 2 2

(¢) JCOEFRMAIC IS 2 &MEA O A & & J7 O3 2 O BFR

A(B-1)EABEB-2)kD,

{m geiL-er*WQL_)S }: {m geiL-G*WQL_)S }+ {m 89iL'Zr*W_>L }: [Hl]{59]L *}+ [H 21 ]{SZNLrol *}+ [H 22 ]{5ZLJ'T2 *}

(3-3)

ZZT,

(oo w7} TEOBRBEICBNT, SEAOFRICEY &L T2 RAH M
PEOT 2 (ISR L =40 OIS X 0 figh S %)

QT HIZB T 2EAEOT A & HEOT A0 BfR
T HICEBT 245 mEA O HIERRIERSy, BT KO AKIER O 2 & dili 5 1m,
PR 1) e O AV O3 2 D BRI,

{m gZ"iT‘ZNLr*T‘)S }: [H3]{€ZNLro1 *} (3-4)

ZZT,
e 1 T HICBVT, BTRMEROTHIEBITRS, BIEROEANE
BOFHIZ LD ECTODBAI, 71RO B0 2

[H] s THICHOT, o M E bty e | OBIRE T H~ 1Y v 27 2

18



() EEAOT AL T F UM ARRL S 5 7 18 5L 09 A OB R
(a) JCOBPEFMARIZIS T L 8518 [E A OF IRy, BI7 10 M O AW E A O
L uhTTm, 71 KO AW EYE O Z D BIAR

{m ngiT'ZNLf*WﬁT%s }: [H 4 ]{gZNLrJTl *} (3-5)

ZZT,

(o TS} SEOBIRFAIC BN T, WFAEA OFAIIBR LY, B
U AMFEA O B 1 0 4 LTS BT, 51 S OV A B
PEOF 7

[H,] : ORI BN,

{gZNLrol *} & {m gzriT'ZNLr*W‘)T‘)S }O)Egﬁ% %%?H‘? ]\ U % 7 A

(b) JCOKIFMRIZIT D857 A O BON, T A ~OUIWRE i S i 25 sk
DT DGR

P Nl T Ry 8 (PR (3-6)
ZZ T,
(oo ™} SEOMEFAICIN T, REHOTIIC LY £ LTS HFHE
OFHOW, T H~OYIMTHHIC IR S5 BrEOT 2
(o80T} TEOBFRKIC I T, AF A OF I £ Y 4 LT
PO (T HICBWTHERICMES TN D)

{r o T TEOERFRKIC T, W REA ORI, AR O
T AMTEA OF A L 0 L CCO BT AHEOTZOMN, T F~0
NWTIRFLC AR A S B B O 2

{oen T TEOBRRIC I T, T WEA OF BB £ 0 A LTV

ZE T REEOT A (T FICB W TSRS I T D)

19



(c) JCOHFAIZIS T 2 A 5 A E A OS2 & i 75 v O 2 O B LR

{mgziTZAe*W%T }: [Hs]{gejl_ *} (3'7)

ZIT,
[Hs] : SCOMEFAAIZ BT,

{59jL *}9: {mEZiTZ_o*WaT}U)Eé{;Tﬁ%i%—g‘H.? U w27 %

(d) JCOEKIFHAIZIS T 287 mE A OT HIEBIERSy, FI7 M O A WE A O
H &, W REEOTHON, T A ~OGIWRHI#ER S 15 #0320 R6%

A(3-4) £ A(35) L,

{mgliTZ-ZNLI’*W*)T }: [Hz]{mgzrn .ZNLr*W»Tas }_ [H Z]{mgzr” .ZNLr*T»s }
[HIH e, T (3-8)
[HI(H)-[HD %)

ZZ T,
[H,] : 510, B O AMTREO 25, BRI O 272 2 il
FHw Y v A GEOBGERE L T Fricdtim)

() JEDHEBIFRANT I 1T 2 87 [ [E A O ABIE RSy & dili 77 P O 2 D B LR

I T (3-9)
Z 2T,

[H,] : SEOBRFRRICENT, oy & {rey o T | OBIRERTH R Y v 7 %

20



() JTTOHEHARIZE T 5 2EAOT A &, #WTRHEOTHON, T F~DOYllriks
(IR IR S AL 2 FEPE OS2 0 B AR

R(3-6)l2, H(BN—KEB9YEMAT S L,

bbb ) -
= [H,Te,, *+[H.I(H,-T D, } Ml *)

4) EEAOT A EEEOT HOBEM%

Lk vk o, &X(3-3), AX(3-4), X(B-10)%=HitdT D &,
{m gaiL.&r*w—»qu }: [H1]{gejL *}"' [H 2-1]{5zNer *}"' [Hz-z ]{ssz *} (3-3) bis
for e = [Halen, ) (3-4) bis
foeamar™T FH S, *+ HTH - [H Db =+ Ho i, ) (3-10) bis

3ODOBRRKE 1 oD~ ) w7 2RKicE L5 &,

e T I T R R R
6 o) { o] [H,] o] | ™| (3-11)
{mgz. .&,*W%T} [Hs] [Hz]([H4]_[H3]) [He] {SZL'TZ *}

Z 2T,

ko, ¥ EFREA O 5

21



b, BOTREAOFHIIGNSY, BHAEAOT R, & AMEAOTH

ko) s OIS OF BRI

(oo a0} TEOBSRFRAICB N T, REAVTAICE DAL LTV B 15
PEOP 2 BlRIFRASL A= OuIlic & 0 gt s ns)

(] Sl FA=L O OZE, FERCOFHIME L NEHHRT 5. L

DESHPRED 2 EFREL EHE, Z oIl ) BmEIE0nEnE% th b

(Saint-Venant ®JEFE L V)

(ot ) T BT, WAREA OF RIS, B L O A
HOFRIC L0 4 U TV BHETE, B R O A BT O 2

(oeu T} 2 TEOMRFAICBNT, REAOTIIC LD A LT D B SE
OFHON, T H~OGIBIHH R S 1% B OS2

(5] FEETOMEDOLTEL, PEBIAHERT 26320 (7 EA O

PHEHSE, HEORIILE L CIEEL T T, WEFAHFIT 1P

FTTHHDOT, AT, WEBAHECT LI

A(3-11)723, H 2B TORRB)ITHY T 5. LirodamEpaix, H(2-4)LUELFE LT

2. LRROMMEOT B2 T2 Z L2k 0, FAOT L OEEIE ) O il & O
RAEZRDD ZLNTED.

22



3.2.2 fitrxt 4

ZAVE TR LBl R E B i & O C, IR TR HAIM B 2 E LT AT v LA
HHAE OVRBEE T OFRRIG J1 2 JE LTz,

FEBFHANC AW IZRBBRIAOIIR & Fig. 3.2-1 (21, 4% 216.3mm, HE 22mm &
8Bschl60 B T 5. WHEMILV B TH Y, ZOWHESM% Table 3.2-1 1T~ ¥.
X TIGEREICEY, 14321 1ETiTbiviz. SRBRIKOMEHE SUS304 T, EHERIX
Y308L Th 5.

\
m. M
ol ©
’\ A
A N
SRS
v
(mm)
Z=0

Fig. 3.2-1 Test pipe

23



Table 3.2-1 Conditions of welding

Welding Welding Layer Pass | Current | Voltage V\;Zleilzg iﬂzztt
process material No. No. (A) (V) i
(mm/min) | (KJ/mm)
1 1 140 9.5 80 1.0
2 2 150 9.5 80 1.1
3 150 9.5 80 1.1
3 4 190 10 80 1.4
5 190 10 80 1.4
4 6 250 11 60 2.8
T1G TGS308L 5 7 275 11 60 3.0
(¢1.2) 6 8 275 11 60 3.0
7 9 275 11 60 3.0
8 10 275 11 60 3.0
9 11 275 11 60 3.0
10 12 275 11 60 3.0
1 13 275 11 60 3.0
14 275 11 60 3.0
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3) ThELiokmcy—Y 2325, ZogHEZFHNT 5.
4) THELRZHMKTS. 27— V0o %3 5.
FROTHRIZBIT 20T T — Y OFEEORAILE % Fig. 3.2-3 1277, HMHDOH]

DEHUNETH Y, 7=V E 1 mm O 28T A7 — T 20t L7z,

LA OWrmEIZ b,

Fig. 3.2-2 IZR T X Y ITHEFMNZ 18, T hH &R CALEICOT AT — T & i L7z,
W, TH & L R IR saidm X 0 BN L@ 580 th Lz, X, SRRk o N =i
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Fig. 3.2-12 Comparison of circumferential stresses at the middle cross sections
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(a) Schematic of model

y

160
ENiCrFe-1 _ 3

(mm)

(b) 0°-180° section

Fig. 4.1-1 Mock-up of welded joint of reactor vessel
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Fig. 4.1-2 Procedure of experiment
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O : On the surface (3D)

* : On the section (T, Pipe)

4 : On the section (T, Plate)

(@) T specimens (0°, 180°)

Fig.4.1-3 Measurement locations
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Plate

O : On the surface (3D)

* : On the section (L, Pipe)

4 1 On the section (L, Plate)

(b) L specimens (0°—-180°)

Fig. 4.1-3 Measurement locations
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B P |
va R VR TN

(b) Strain gauges and leads attached (c) Strain gauges and leads attached

at the section of T-specimen at the section of L-specimen

(d) Small pieces cut out from specimens

Fig. 4.1-4 Photos of measurements
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(@) 3-D view of model

Fig. 4.1-5 Mesh division of mock-up
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1
i
ni

Pipe

Weld metal

Buttering

(c) Enlarged 0°-180° cross section

Fig. 4.1-5 Mesh division of mock-up

Plate

Table 4.1-1 Material properties
Young's . \ Initial yield 2% vyield
Material modulus Porlstsi%n S stress stress
(MPa) (MPa) (MPa)
Weld . 5
metal ENiCrFe-1 2.14X10 0.3 394 425
Pipe SUS316 1.95x 10° 0.3 240 288
Plate SM490A 2.03x10° 0.3 330 382
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Table 4.1-2  Number of coefficients (unknowns)

Num. of members Multi-order function Trigonometric function
1 15 30
2 60 75
3 135 150
4 240 255
5 375 390

Fig. 4.1-6 Parameters of inherent strain region
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AMEEZEM L, FBE ARERIEMITIC LG5 RIS 040 & LU TR IR
. ORTE TR K5I 2 OB CTHRIT 21T o702, RETIE, £OREHIE LT,
SIAiBEERE L CIE SRS EBESE SIRETHET L, BAOTAHEE T 2 —2—1%5
DODOFTRTOTHIZEBWT a=b=c=d=70mm LHEL, BEHOT AT E L TUIEED
T 3T DIHEZE LT H O R E2 =T

0° -180° Wiz 5T 2 FRE IS ) D Bcfifeli & R 22 D 53 4% % Fig. 4.1-7—Fig. 4.1-9 (7~
Fig. 4.1-7 1385 I J) o, %, Fig. 4.1-8 1 X F WG ) o, %, Fig. 4.1-9 1 3JEAF MG ) o,
AR LTS, [AERIC, 907 Wil 351 D FRBEIG ) D kel & R 75D 5345 % Fig. 4.1-10
—Fig. 4.1-12 1278, FE 72, AR I 1T D FREEIG T O Skl & R 7220 4345 % Fig. 4.1-13
—Fig. 4.1-15 |Z5R 7.

FREEIS N A ORI E LI, ARG 03 b RERGIRIE Iy L 7> TE Y,
Friz 00 ) (D) 2B W TIREER D DERIZNT TRERGIRISAN AN D, #h5
FISF1E 07 Al (BMAD 2R W TREEE D BE RIS TR E RBIEIS I BRAE L
TW5, BHFBISE/IL90° WEIiCHE N TRoRRE RSEIS IR RO 5.

e SNBSS OGN Z 5T 5 720, REE O ERZEZ R~z KIS
Ry CO UR 7/ ehefl] e FREE LLFIORd. URzEFheid] ez Anizoig,
BRI, RMEMEAREWGRITREDRELS 2281 H 5 (X(4-12) L VA (4-17)
EHH) OT, REORE ORI ZRAEZDOLOTIERL, KEMEIZHT S iRZEDE
A R R) Tl _RETHDLLEEXNLTHD. £F, T XITOEHRIIHL
TORMED T KM % O R R L b5 &, Z Ol masy Tk 021, #%
FFIAERSY TR 0.26, ALY TIEF 027 725 TWA. X, S 1D el D faxt
fli73 100MPa LA | & 72 o TV D @IS DFEIIC BV T, TR TOEROILNO URE/
el ez ke 2 &, 2 ONFEIEITET Mk sy Tk 0.17, MRy TIdk 0.15, JE
FHIARSY T 013 /o TWa. ZRHOKMEEL Y, HEHREOEEEIXEMN L+
TEWEEZLND.

59



-200

. -300

— -100

I -400

(a) Most probable value

(b) Standard deviation

Fig. 4.1-7 Residual stress o, at 0°-180° section
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Fig. 4.1-8 Residual stress o, at 0°-180° section

61



(2) Most probable value
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Fig. 4.1-9 Residual stresses o, at 0°-180° section
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Fig. 4.1-10 Residual stress o, at 90° section
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Fig. 4.1-11 Residual stress o, at 90° section
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Fig. 4.1-12 Residual stresses o, at 90° section
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Fig. 4.1-13 Residual stresses o, at the surface
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Fig. 4.1-14 Residual stresses o, at the surface
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Fig. 4.1-15 Residual stresses o, at the surface
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Fig. 4.2-1 Frequency distribution of residuals
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Fig. 4.2-2 Unbiased estimate of variance of errors
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(e) Multi-order function with 5 members

Fig. 4.2-3 Most probable value of residual stress o, at 0°-180° section
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Fig. 4.2-4 Most probable value of residual stress o, at 0°-180° section
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(d) Trigonometric functioh' with 4 memberé

(e) Trigonometric function with 5 members

Fig. 4.2-4 Most probable value of residual stress o, at 0°—180° section
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Fig. 4.2-5 Most probable value of residual stress o, at 0°—-180° section
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Fig. 4.2-6 Most probable value of residual stress o, at 0°—-180° section
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Table 4.2-2 Comparison between equivalent stress and yield stress

84

Mem. Residual Pipe Weld Plate
stress metal
Max stress * 315.6 267.7 179.0
1 |Over initial ** 83 0 0
Over 2% ***x 8 0 0
c Max stress 2775 288.1 187.4
2 2 |Over initial 84 0 0
I Over 2% 0 0 0
= Max stress 293.8 273.1 253.1
g 3 |[Over initial 128 0 0
s Over 2% 2 0 0
é Max stress 544.5 599.9 316.9
§ 4 |Over initial 167 14 0
Over 2% 37 12 0
Max stress 768.7 848.5 517.9
5 |Over initial 268 33 19
Over 2% 102 24 7
Max stress 345.3 288.2 167.7
1 |Over initial 91 0 0
Over 2% 17 0 0
5 Max stress 2841 269.5 241.2
3 2 |Over initial 142 0 0
é Over 2% 0 0 0
© Max stress 301.2 266.7 2175
..3 3 |Over initial 113 0 0
S Over 2% 2 0 0
g Max stress 305.6 327.0 607.1
8] 4 |Over initial 101 0 30
= Over 2% 2 0 17
Max stress 319.4 880.1 993.6
5 |Over initial 156 25 95
Over 2% 17 25 59
* Max stress : Max of equiv. stress (MPa)
*k Over initial :  Num. of elem. over initial yield stress
*kk  Over 2% : Num. of elem. over 2% yield stress
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By FThdILaBEL, 10m ECEHHSEREZ RO TWD. 77— CIlE, BHm
(NZ Y o T7EETe) D 20mm FREEBENCEIP £ TAREHIISEKE LTV, BAOT
HDEGY T HYEOT ORI A 312 E R, Ho, T XV IREE 72V iEE T
boHLEZOND. r—AERRNHIGERE LT, BESEHE, EORIFMTE

(ZHET HEECA FHIIEI & L7z, 2o K ) ICEHIISER AR E L, EEROFHIIT —2 %
AL, &7 — AT, ZOFHMGEEICE EN D 3T — % O % AW THRHT 2 ZT L.
HipAZ, F—AETHER LT —% 0% 41 fHTH 5.

fEBTAE R OFHmIL, 4.2 81 & FERIS, BEAOTHEDNREHFRNCITR/N ZRIEITESNT
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431 1B KEND DD

T — ADIRHTHER LV, FBEOKREZ S LT — X BOBRE £ & DD Table 4.3-1
& Fig. 432 Th 5.

Table 4.3-1 & Fig. 432 #R5 L, E0r—2Y, EREORKE S LI, HEEHITRN
DLTWVE, ITHHR, RIEONREEZRLTWD. 46 OHRE DTV ZARIIT
KRERFEELEZRTT —Z XRS50, 2, T, OISR iz~
RET—=HEROBRNTWIIRIZEL DD EEZLND. LIzRnoT, lTo & AW
I TE DT — FIIMFME L2V, Table 43-1 TREMEENOO—2RETH D £
1000p £ W RERFEAEZRTT —XI1E, EERFET—F L L TRVERS ZEIZT5. L
T, BODOT—=2EMHEMLT, b5, TEETT5. 20 2EH ORISR
LT, %2, £3, HAOBMEITD.
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Table 4.3-1 Frequency distribution of residuals

Casel| A B C D E
-2000 0 0 0 0 0
-1900 0 0 0 0 0
-1800 0 0 0 0 0
-1700 0 0 0 0 0
-1600 0 0 0 0 0
-1500 0 0 0 0 0
-1400 0 0 0 0 0
-1300 1 1 1 0 0
-1200 1 2 1 0 0
-1100 1 0 1 1 0
-1000 2 2 2 2 0
-900 1 1 2 2 0
-800 8 7 2 1 0
-700 13 4 8 7 1
-600 141 11| 12 9 5
-500 25 27| 211 18 8
-400 67| 48] 36| 26| 13
-300] 136/ 86| 70] 55| 33
3 -200 | 244 166| 119] 78] 41
w| -100] 521| 286| 211| 124] 70
g 0 |1106| 400| 246] 143] 91
% 100 | 361| 224| 167| 124] 70
& 200 | 147| 118| 107] 76] 55
300 82| 56| 57| 37] 28
400 51| 41| 26| 23] 15
500 33| 16| 15| 20 3
600 23| 14| 15 8 2
700 17 7 4 4 0
800 5 3 1 0 0
900 1 1 0 0 0
1000 2 1 1 1 0
1100 0 1 2 0 0
1200 1 0 0 2 0
1300 0 0 0 0 0
1400 0 0 0 0 0
1500 0 0 0 0 0
1600 0 0 0 0 0
1700 0 0 0 0 0
1800 0 0 0 0 0
1900 0 0 0 0 0
2000 0 0 0 0 0
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Fig. 4.3-2 Frequency distribution of residuals
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4.3.2 55 2 BePE WG HER R & OB

HERAED S BORMEHEE B (LI, BLZ, “TAE05 B LIES) 23K 5 & Fig. 4.3-3
DX 27D, Fig. 433 121%, K7 —RAT, &F—Z&2HEHALESHEEGLE, £1000u X
D REREAEZTT T —HEZWMY BRWIEHEOMRZ R LTV D, HBEITEE LV ER
INSL o TBVBERM ELEZZ EZ2R LTS, X, OF AatllfEkz 5o T <
L, “FAEONE BIREL A>TV, ZhIE, OFHRFHIEKEZRD SE5 2 Lk
D, BEOTHSMEEICE D “HTED” PDEHTITELS 2o TV 2 &2 EkT
L. 12lZL, F—ADMPLETEALTWDADIX, 77— EDRESHEETHY, £
DB NTIE, BEAOTHOMEIC LD “HTid” KN EEMIC 1385 T
SNz L HEEIND.

9.5E-08 —e— All data
—=— Residual=+1000y

8.5E-08
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Fig. 4.3-3 Unbiased estimate of variance of errors
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433 53 B HMEE (WEET) o Ozl
(1) EEMZH

OB EHEIE 2 B 72 5 5 O DTS RAT KT LT, K EHE ORI OIS % 5K
¥, BROMBIORBERIES) L L2, X, X TOEFZO P TOFYIES) O KHE
Kiz. o OFER%E Table 4.3-2 (2777,

Table 4.3-2 #iL.% &, FIHIRRRIE N 282 2 ERITT R CTOMRICBWCTIFEET 5.
—77, 2 W LRIG ) & % 5 BEHERE, ¥ —A A T2, #¥—AZB, CiZB\TO,
r—2Z D TIL11{H, #—A E TI% 1000 fHLL ETH 5.

WIZ, HF7r—RTBWT, WIS URZE/ Bl lOMHEDOFEEEZE, K
IR L TRD T2, ZORE R % Fig4.3-4 \nT . [RE/ Il Ha2RD512H
720, BREIS IOV COREFMNAEE TH D LB X, SO Rl OfaxHE )
100MPa P D @IS IMEZ R T EE DL E G L L, R TOFHT —% 2 Hwicr—
A A TIIME? 0.15 Th 5. FHUBERZ D T &, (R I fE] I k& <72 5.
r—AC T3 0.2, 7—AD TiIi 03 TH5H. yr—AALr—AB, CLD
IZhE W, =2 B, COHEEREILZr—AAXVIFEAEKTFLTN 2NWESZ 5.

Table 4.3-2 Comparison between equivalent stress and yield stress

Case Num. of Residual Pipe Weld Plate
measurements stress metal
Max stress * 293.8 273.1 253.1
A 2871 Over initial ** 128 0 0
Over 2% *** 2 0 0
Max stress 282.5 276.8 276.5
B 1529 Over initial 160 0 0
Over 2% 0 0 0
Max stress 282.8 316.4 307.1
C 1133 Over initial 148 0 0
Over 2% 0 0 0
Max stress 315.5 373.8 4134
D 767 Over initial 109 0 19
Over 2% 8 0 3
Max stress 422.2 535.2 1055.9
E 441 Over initial 469 23 1221
Over 2% 78 14 999

* Max stress : Max of equiv. stress (MPa)
*x  QOver initial : Num. of elem. over initial yield stress
*xk  Over 2% : Num. of elem. over 2% yield stress
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Fig. 4.3-4 Effect of measurement number on accuracy
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(2) EVERR

FRIS10 A & LC, 0° -180° Wi 2\ D M5 i) o, & A MG T o, O R hEfi
Do3Ai%E, r—AA, C, DIZ®I L C/RT & Fig. 435 & Fig. 43-6 DX /5. 3
Dy —A 2T DIE, FPFETOEEMZERRELY, 57— B & C LOEN/HII W
DT, BN —2 CEEORFE L, £, F—R EIX URzZ/ SffefE]
EEAMBL D i — A L L _RCIEFIC K & 2T, KSR CAE Y &Il LERSN L7272 Th
5. ZHHDORIZEBWT, BRI SAAEN &2 TR 5.

o, lIZBW\WTlE, Y¥—A A, C, D OOMMICAERETIRLNZWV. o, IZB VT,
r—ZD T, 7—AA, CLET, IRONFBIZKRE REMCANTLONALTEY, =~
IR AR & 7o T D, T 72 h, FHKO 0° Il (B EFRmAHL T, wEE
S O R PR IR AR e 7o SRS, IR R E RIEME O A IS T o) BRI T
TV, F—A C TIEEDO LI BRAARIITREAT-620. LR -T, FHUGERE
r—Z C £FTNESL LTHEHETEDIMENGEONDLD, TN RS 5 L HEERE
ROGEMENMETTDLEAOND.
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(a) Case A

(b) Case C

(c) Case D

—180° section

at 0°

z
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Fig. 4.3-5 Most probable value of residual stress o
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4.3.4 B A B VBN LR BB LI AT

r—A A~E IS LT, EERER &R (BEBRoFM EE M) ik L. Fig. 4.3-7
CEHE A (TR LEHROBMREZ R B (TR R TIE AR 8N
T5H. ZAUS, BRGSO R fheiE] & FHIEoBR A ERT

L, FHIEE ORISR T DEEOIR TR RE WL, FHIEZHIRSES Z L3 T
7ev. L, SRIOERTIE, siTRTRLEL I, OTAHERE 77— A C &
TEHEMIT/NS LTS, BERTIVNEL, BRSO URZE/ Skl thThis b
JED 015725 0.2 (ICHINT AFLETH 5.

r—A C TIE, OTHFHIERZGERD 2871 @25 1133 fEH~E, JTEDOK 40% 12 KiF
IZHI T 5 2 &M TE D, ZOr—A C X, RICBR_ZL 9L, wEEmE ("2 v
7RG te) /2D 20mm FREEEEAL /- E CAFHIFEEKE L TR Y, BEAEOTAHORS

b P OT HOFAEFEIRE B A, B, TRXIVEREZ2WiERCTH D &5 %
bd. LehoT, KD, HLWE, BHEUOMF R THNE, Zo X5 RiuMa
OFTHFHUBEEICRET 5 2 LIk Y, FEHTEIHENHZONDL D LR TE S,
DLEORFHRER LD, OFTHFHMERE LT, 7¥—A C 2 “MELREMNE OFK
Y0 AW REHIER CH D & LTHEREND. £, FEREAOT MM
B OTHFHEEOBREN CTE 722 LIk, @IS0 & O 7= Bk B TR
(72 S EHATRE L 72 D
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Fig. 4.3-7 Measurement cost and accuracy
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2 BePEIE THEEH AR MO DM, etk D5 3 BfSIE THMERED 6 D2l Th
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T BEAOT AEEEZETE

1. [FC®HIC

AT, BEAOT A E LT, SRSEBEBAEFEH LGN RLEETE
LHEERER A2 52 T 5 Rt 7=, F72, OF AEFHGE O IEZ M 217\, 1582
SR> 5K 20mm BEdL 7 Gk A F ediH A2 O T A a R & FROE LTz & X, HEEAEE
ERRFHENRMN.CTEHZ LA LT,

A OFFMT CRE L2 [EA OF ARERITA S O Fig. 4.1-6 IZ7T L 912, a, b,
c, d DAODODEMIBEEZRT NI A—F—%2HNT, 520FTXTOTHIZBWNT
a=b=c=d=70mm &R E L7-.

T, T2 T, RN CEROE S D [EA ONT AR RIS SR 5 2 D R R
T 570, [EAOT HaEERI k2 AR 2 5206 L 7-.

2. FREH

BAOT Ao E Ui 3RS A L, OF A FHIREE I HE &R & %
FYEZWNLTE D, ALH D Fig. 4.3-1 TRT7—ACIZERE LTz, EAOT Ak
FHORENL, 52D T _XTOTHIZBWTHaE L L, a=b=c=d=40, 50, 60, 70, 80, 90mm
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EA O Ak (a=b=c=d=40, 70mm) & ONT HFHAIGEE S — A C DOBf%R % Fig. A-1
WZRT. [EHAOT A EE asb=c=d=40mm (IR EL B MR E®HmBETH Y,
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Table A-1  Comparison between equivalent stress and yield stress

Case Residual Pipe Weld Plate
stress metal
Max stress * 564.6 687.3 253.8
C40 |Over initial ** 61 15 0
Over 2% *** 24 13 0
Max stress 363.9 4204 338.0
C50 |[Over initial 53 5 1
Over 2% 21 0 0
Max stress 383.7 4453 276.3
C60 |[Over initial 104 7 0
Over 2% 13 3 0
Max stress 282.8 316.4 307.1
C70 |[Over initial 148 0 0
Over 2% 0 0 0
Max stress 286.3 314.3 401.6
C80 |Over initial 173 0 5
Over 2% 0 0 2
Max stress 304.2 311.1 526.7
C90 |Over initial 209 0 16
Over 2% 5 0 8
* Max stress :  Max of equiv. stress (MPa)
%ok Over initial :  Num. of elem. over initial yield stress
*kk  Over 2% : Num. of elem. over 2% yield stress
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Fig. A-1 Inherent strain existence region and strain measurement region
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