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Abstract

In a clinical trial, we sometimes evaluate the treatment effect based on the ratio measures which
requires pre- and post-data of treatment intervention. As a measure of ratio, percent change from
baseline (PC') which is defined as PC' = (X2—X1)/X] is often used in a trial. And, symmetrized
percent change (SPC) which is defined as SPC = (X3—X1)/(X1+ X2) is sometimes also used in
trials(Berry,1989). Though the statistical properties of PC' were investigated on condition that
pre- and post-data are assumed as bivariate normal distribution in past research, PC is said to
have some difficulties to apply the statistical analysis based on the parametric methods (Asakura
et al., 2011; Senn & Julious, 2009). On the other hand, SPC is said to have good performance
based on a limited simulation, but is said to have difficulties in interpretation (Berry, 1989;
Berry & Ayers, 2006).

As I mentioned in the above paragraph, PC' and SPC' as the ratio measures are investigated
in some aspects. However, past findings are based on limited research such as the investigations
of PC assumed as the bivariate normal distribution in pre- and post-data. In a clinical trial,
data follows not only normal distribution but also positive skew distribution such as log-normal
distribution or more positive skew distribution than log-normal(Maruo et al., 2008). Therefore,
we need to investigate the statistical properties of two ratio measures, PC and SPC in various
distributions of pre- and post-data. In this paper, we declare the probability distribution function
(pdf) of two ratio measures, percent change (PC) and symmetrized percent change (SPC), and
evaluate the relationship between the skewness of two ratio measures and the distribution of pre-
and post-data. Next, we evaluate the performance of two ratio measures to detect the treatment
difference within pre- and post-data or between two groups based on the simulation and propose
how to apply two measures in various situations. In addition, we declare the relationship between

ratio measure (SPC) and coefficient of variation (CV).
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Notations

notation definition/example explanation

general

E[] E[X] expectation

Var[] Var[X] variance

& &o5 percentile

distribution

X; random variable on pre- and post-data
T; observed value on pre- and post-data
Ai shape parameter (transformation parameter)
i location parameter

o scale parameter

BN BN(u1, p2, 01,02, p) bivariate normal distribution

BLN BLN(u1, p2, 01,02, p) bivariate log normal distribution

BPN BPN(Ay1, A2, g1, 12, 01,02, p)  bivariate power-normal distribution
f0) fepn(z1,22) probability density function (pdf)

F.() Fppn(x1,x2) cumulative distribution function (cdf)
o(+) o(x) pdf of standardized normal distribution
D(4) () cdf of standardized normal distribution
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Section 1

Introduction

1.1 Background

The designs with pre- and post-data fall under the broad category of paired data analysis.
Paired data arise when the same experimental unit, such as a person or laboratory animal, is
measured on some variable in two different timings or at the same time under different testing
conditions. A type of the design with pre- and post-data is when subjects receive a treatment
intervention prior to the measurement of the post-data, after collecting the pre-data. And the
question of interest is either that there are differences among groups or changes in an individual
over time. For example, an object of a clinical trial is to compare the treatment groups with
intervention, and it is said that pre-defined measures for evaluating the intervention is very
important (Tsubaki, 1999).

In the case of a treatment evaluation of disease, and especially in the evaluation of the
efficiency of a particular drug, we sometimes use an index based on the change seen in pre- and
post-treatment data of the drug, specifically used in a certain disease area. Generally, the index
(measure) is considered as a categorical scale, ordinal scale or interval scale. In particular, the
measure of the continuous data is based on a difference or a ratio of pre-(X1) and post(Xz) data.

The appropriate measure is selected according to the balance of both the clinical and statis-
tical points of view. The clinical point comes from ease of the interpretation and the statistical
point comes from the ease of data analyses based on the normal distribution. In a particular
experiment, a choice of difference or ratio as the primary measure of treatment effect may not be
obvious. Statistically, the principal reasons to adjust for baseline, usually presented in relation
to analysis of covariance, are to remove concomitant variation in the response and improve the
precision of treatment comparisons (Steel & Torrie, 1980). Furthermore, summary statistics of
an adjusted response should be independent response (Kaiser, 1989). Another relevant question

is about the kind of effect anticipated. For example, is it additive, multiplicative or neither?



Compared with difference, ratio measures are not always investigated from the statistical point of
view. Thus, this paper focuses on the statistical property of ratio measures. In later paragraphs
of this section, firstly, we show the statistical properties of general ratio measures. Secondly,
we review the past findings of two ratio measures. Lastly, we show some applicable examples
of these two ratio measures in clinical trials and some examples of the difference often seen in

clinical trials.

Statistical properties of general ratio measures. Relative change scores as ratio measure
require the pre- and post-data to be continuous random variables. Thus ensuring the change
score (difference) to be a continuous random variable, relative change scores also require the
pre- and post-data to be the same type of measurement made using the same device and have
equal units of measurement. Although pre- and post-data have the same units, relative change
scores are often unitless or expressed as percentages.

Relative change scores convert the pre- and post-data into a proportional change score, C,
expressed as either raw change (difference) or absolute change. The formula to convert pre- and
post-data can be written as

CXo - Xy

C X

in the case of raw change, or

o X2 - X
X1

in the case of absolute change, where C is the change score, X5 is the post-data and X is
the pre-data(Bonate, 2000). Note that the numerator is a difference whereas the denominator
scale is the pre-data. A variant of these equations is to multiply the proportional change scores
by 100 thereby converting them to percent change scores. If C' = 0, no change has occured.
A positive relative change score indicates that the post-data was greater than the pre-data,
whereas a negative relative change indicates that the post-data was less than the pre-data. One
criticism of relative change score is in the choice of the scaling term or denominator. Consider an
individual whose initial score is 3 and whose final score is 7. Using Eq. 1.1, this represents a 133
% increase from baseline. However, if a patient scores a 7 initially and deteriorates to a 3, a —57
% decrease has occured. Hence, different denominator terms result in different transformations
and estimates of change.

Proportional and percent change score fall under a family of transformations known as change
functions. Tornqvist, et al.,(1985) formally defined a change function as a real-value function

C (X1, X3) of positive arguments, C : Rf — R with the following properties:



C(X1,X2) =0, if X7 =X,
C(X1,X3) >0, if X7 >Xo
C(X1,X5) <0, if X1 < Xy
C' is a continuous increasing function of Xo when X is fixed.

Va:a>0 — C(aX1,aXs)=C(X1,X2)

A

The last property merely states that the function is independent of units of measurement. The
property C R; — R states that a two-demensional vector (R; ) is mapped into a one-
dimensional vector (R) by the function C. It can be shown that both proportional percent
change functions meet these requirements. It can also be shown that difference scores represent
another valid type of change function.

By setting a = 1/X; in property 5, Tornqvist, et al.,(1985) have shown that almost every
indicator of relative change can be expressed as a function of X5/X; alone. Hence, the change
function can be expressed as an alternate function dependent solely on X5/X;. Formally, there

exists a function H, such that

with properties:

X5 X5
1LH(22) = |
(Xl) ’ X
Xa . X2
2. H —= 0 f —= 1

<X1>> , i X1>
Xs . Xo
. H | — f —=<1
3 <X1)<0, i X1<

X
4. H is a continuous increasing function of its argument —
1
CLXQ X2 ..
H|{— | =H|— | triviall
<GX1> <X1> Y

Table 1.1 shows a variety of other relative change functions proposed by Toérnqvistnqvist, et
al.(1985) and their simplification into functions of ¥ = (X3/X7). Here, K(X1, X2) is any mean
of X1 and X2.



Table 1.1: Relative change functions and their simplification into functions of Y (= X5/X;) as

presented by Toérnqvist et al.(1985)

Mapping Function Mapping Function
Xo— X4 Xo— X4 1
R Y -1 —(Y-1)(1+1/Y
Xl 2(X1—1 +X2_1)_1 2( )( / )
Xo— X3 . 1 Xo— X Y -1
Xs Y min(X;, Xo) min(1,Y)
Xo— X4 Y -1 Xo— Xy Y -1
(Xi+X9)/2 | 1+Y)/2 max(Xi, Xo) max(1,Y)
Xo — X1 Y -1 Xo— Xy Y -1
\/XlXQ \/)7 K(XlaXQ) K(17Y)

Statistical properties of two ratio measures. In this paragraph, two ratio measures which
has been applied in the clinical trial are shown. As a measure of ratio, percent change from
baseline (PC), PC = (X3 — X1)/X1, is often used in a trial. In addition, symmetrized percent
change (SPC)0 SPC = (X2 — X1)/(X1 + X2), are sometimes also used in trials(Berry,1989).
Bonate(2000) and Tornqgvistnqvist, et al. (1985) shows the modified SPC which is defined as
the mean of two values for a numerator which is (Xo — X1)/ {3 x (X1 + X2)}.

The PC means ”the proportion of increase (or decrease) for pre-value”, and is acceptable
from the clinical point of view because of the easy interpretation. On the other hand, some
statistical difficulties are pointed out to PC. Senn & Julious(2009) said that the statistical
analysis based on the parametric are not recommended for PC, because PC/(or ratio of two
values) is not normal even if pre- and post-data are normal. Asakura et al.,(2011) investigated
the statistical properties of ratio on condition that two values are normal, summarized the
statistical issues of ratio and gave a warning for using the ratio to the estimation of effect.
Pharm-Gia et al.(2006) gave the exact closed form expression of the density of X5/X; , where
X1 and X5 are normal random variables, in terms of Hermite and confluent hypergeometric
functions, and show the skewness distribution in some situation. On the other hand, Berry
(1989) introduced the SPC as the modified percent change with good statistical properties in
the medical field. Brouwers & Mohr(1989) argued that the advantage of using SPC' over the PC
is that the transformed variable dose not depend on the denominator used in the transformation
and the resultant distribution is symmetrical about its mean. Berry & Ayers(2006) showed the
simulation results under independent, additive and multiplicative correlation structures of pre-

and post-data for parametric and nonparametric analyses. And Berry & Ayers(2006) concluded



that simple ANOVA on SPC had power equal or greater than alternative analysis methods
except for independence structure. However, the interpretation of S PC may not be intuitive for
those accustomed to thinking in terms of PC. For example, if SPC is —0.1 or —0.2, then the
post-data shows to reduce form pre-data, but it is difficult to interpret the value of —0.1 or —0.2.
Concerning this point, Koti(2001) suggested that SPC' is obscurant in nature. However, the
same can be said for many statistical methods that are valuable in making inferences, such as
taking the logarithm and most nonparametric tests(Berry & Ayers, 2006). For interpretability
of analysis results, Berry (1989) suggested transforming SPC' to the PC scale using the inverse
transformation: robust percent change RPC = 2 x SPC/(1 — SPC). For example, if SPC' is
equal to —0.25 for a particular treatment arm, then RPC = —0.4.

Application example of difference or ratio measures in clinical trial. As some example
of measures, the difference which is defined as D = X9 — X is used for the treatment evaluation
for patients with high-blood pressure based on the diastolic blood pressure or systolic blood
pressure (Adachi et al., 2009), for patients with pain, such as neuropathic pain or pain of
osteoarthritis of the knee, based on the 11-point rating scale or 100mm visual analog scale
(Satoh et al.00 2010: Lane et al., 2010) and for patients with glaucoma based on the ocular
pressure (Kitazawa et al., 2009)

As the ratio measures, the percent change (PC') which is defined as PC = (X3 — X;)/X; =
(X2/X1) 4+ 1 are often used for treatment evaluation. On the other hand, symmetrized percent
change which is defined as SPC = (X2 — X1)/(X1 + X2) = {(X2/X1) — 1} /{1 + (X2/X1)} are
sometimes used. As examples of clinical evaluation, PC are applied to the treatment evaluation
of patients with high-density lipoprotein cholesterol (Adachi et al., 2009), of patients with urge
to urinate or urge incontinence based on the number of acraturesis (Homma et al.0 2003), of
patients with climacteric disorder based on the number of hot flush (Endrikat et al., 2007). SPC
is applied to the treatment evaluation of patients with partial epilepsy based on the seizure
frequency(Yamauchi et al., 2006) and evaluation of male patients with osteoporotic fracture

based on the physical activity (anney et al., 2010).

1.2 Motivation

As T mentioned in the previous section, PC' and SPC as the ratio measures are investigated in
some aspects. However, past findings are based on limited researches such as the investigations
of PC assumed as the bivariate normal distribution in pre- and post-data. In a clinical trial,
data follows not only normal distribution but also positive skew distribution such as log-normal

distribution or more positive skew distribution than log-normal(Maruo et al., 2008). Therefore,



we need to investigate the statistical properties of two ratio measures, PC and SPC', in various
distributions of pre- and post-data. In this paper, we show more deeply investigation of two

ratio measures as follows,

e We derive the probability distribution function (pdf) of two ratio measures, percent change

(PC) and symmetrized percent change (SPC)

We evaluate the relationship between the skewness of two ratio measures and the distri-

bution of pre- and post-data

We evaluate the performance of two ratio measures to detect the treatment difference

within pre- and post-data or between two groups based on the simulation

e We propose how to apply the two measures in various situations

We show the relationship between ratio measure (SPC') and coefficient of variation (C'V)

1.3 Components of this paper

In section 2, we define the three kinds of distributions of the pre- and post-data, which are
bivariate normal, bivariate log-normal and bivariate power normal distribution, and review some
statistical properties of the distributions. In section 3, we derive the probability density function
(pdf) of ratio measures and evaluate the skewness of distribution in each condition. In addition,
we declare the relationship between ratio measures and coefficient of variation between pre- and
post data with correlation. In section 4, we conduct simulations to evaluate the performance to
detect the treatment difference within pre- and post-data or between two groups based on the
simulations. In addition, we show a case example to apply SPC'. In section 5, we describe the

summary results, findings of this research and future investigation plan.



Section 2

Definition of the distributions for

pre- and post-data

In this chapter, firstly, we introduce bivariate normal distribution and bivariate log-normal
distribution assumed as pre- and post-data distribution generally used. However, distributions
of pre- and post-data in real situations such as in clinical trials are sometimes not based on these
two distributions. Therefore, we also introduce the bivariate power normal distribution and will

evaluate properties of ratio measures comprehensively in a later chapter.

2.1 Commonly used distributions for pre- and post-data

Bivariate normal distribution (BN). Let the random variables X;(i = 1,2) denote the
response of pre- and post-data following bivariate normal distribution, and the variables satisfy
(X1, X2) ~ BN(u1, p2, 01,092, p), where p; is the location parameters, o; is the scale parameters
and p is the correlation parameter between two random variables of pre- and post-data. Then,
the probability density function (pdf) of random variable X;(i = 1,2) which follows a bivariate

normal distribution is,

1

fBn(z1,22) =
2wo1094/1 — p?

X exp [_2(1ip2) {(-Tlal:ul>2_2p <1’101u1> <x202“2> + (mg;ﬂf}] .

Bivariate log-normal distribution (BLN). Let the positive random variables X;(i = 1, 2)

denote the response of pre- and post-data following bivariate log-normal distribution, and the



variables satisfy (X7, X2) ~ BLN(u1, 2,01, 02, p). Then, the pdf of random variable X;(i = 1, 2)

which follows a bivariate log-normal distribution is,

1
fBIn(x1,22) =
2wo109y/1 — p2x129

1 logzy — 1\ ” logzy — p1\ [logze — 2 logzg — 2\
<o | | () @ () () ()
2(1—p?) o1 o1 02 o2

2.2 Comprehensive distribution for pre- and post-data

Bivariate power normal distribution(BPN). Bivariate power normal distribution is a
parametric class of probability distributions which includes the bivariate truncated normal and
the bivariate log-normal as a special case. The bivariate power normal distribution is on the
basis of the Box and Cox power-transformation which is defined by positive random variables

Xi(i=1,2)

. —— N, #£0
X;AJ) — )\j J ?é (2.1)
long )\j =0

where the range of X](/\j) is —1/\; < X](-)\j) < 400 when A\; > 0 and is —o0 < XJ(-)‘j) < —1/)

when \; < 0.
i)

Let a power transformed variables Xio‘ of X; denote the truncated bivariate normal distri-

bution with mean vector p = (u1, u2)* and variance covariance matrix

2
oy po102

Y= . (2.2)
pPO102 05

Then, (X7, X2) is to have the bivariate power-normal distribution if the marginal pdf is

A1—1_A2—1

fepN (71,72) = %QBPN <$i\171,$§‘271) , 1,12 >0 (2.3)
where
A (A
9BPN (:@1_1,9@2_1) = 277010_21 T {_Q(x& 1;’ s 2))} (2.4)
and
Q™ o) = gy x
—p




where A;, p; and o; are shape, location and scale parameters and p is a correlation parameter
between Xf)‘l) and Xé’\2) (Goto & Hamasaki, 2002 : Hamasaki & Goto, 2002). A(K) is the

probability proportional constant term and is given by,

by bt
AK) = / ¢ (1,22 : p) dr1des, (2.5)
a2 al

in terms of the joint pdf of the bivariate standard normal distribution

st =g e { &
with the values of a; and b; given by in the following,
e a; = —kj, bj =400 when \; >0
® a; = —00, bj = +00 when \; =0
® a; = —00, bj = —kj when \; <0
and the standardized truncation point k; is given by
Ky = Aﬂ;jajl =12 (2.7)

The power normal distribution fits a large variety of distributions, because it has the shape

parameter. Goto et al. (1983) mentioned four considering points about the inclusive model.

1. The consistency of logic about statistical analyses process.

2. The flexibility of the model.

3. The ease of the model fitting evaluation.

4. The ease of computation.
Parameter Setting of BPN. In the previous paragraph, a bivariate power normal distribu-
tion, BPN (A1, A2, pi1, pi2, 01,02, p) is introduced as a distribution of pre- and post-data. In this
paragraph, we consider the reduction of location parameter from pre- to post-data (1 > o)
with same shape and scale parameters between pre- and post-data (A} = \o = A, 01 = 02 = 0).

This means (X1, Xo) ~ BPN (A A, 1, pio, 0,0, p).

However, it is difficult to set these location (u;) and scale (o;) parameters for simulations, since



it is difficult to interpret the values of these parameters which vary greatly depending on the
value of \;. Therefore, we use the median of original scale (§y5) as location-related parameter
and the 7 = (.75 — £0.25)/&0.5 as scale-related parameter for easiness of parameter setting and
interpretation (Maruo & Goto, 2012; Maruo, et al., 2011). &, is the 100p percentile of power

normal distribution and is given by

Mu+ozp)+1}35, A£0,

gp =
exp(p + 0zp), A =0,

where 2, and 2, are the p and p* percentile of standard normal distribution, and p* is given by

1-AK)1-p), A>0,
A(K)p, A <O0.

Moreover, the change of location parameter between pre- and post-data defines from percent
change from pre-data of original scale (R), and the relationship is defined as {the median of
post-data original scale}= £y 5 x (100—R)/100 (0 < R < 100). In summary, the distributions are
identified based on reparametrization method {\, &5, 7, R, p} instead of {\, 1, p2,0,p}. The
detail of reparametrization method is shown in appendix (Maruo, et al., 2011; Maruo & Goto,
2012).

Figure 2.1 shows the pdf of BPN with the parameters of reparametrization method. In the
figure, shape parameters are from -1 to +1 by 1 (A = —1,0, +1), scale-like parameters are from
0.2 to 0.8 by 0.2 (7 = 0.2,0.4,0.6,0.8), median of pre-data is 100 (§y5 = 100), percent change
from pre-data is 0 (R = 0) and correlation parameter is p = 0.8. The distribution is positive

skewed when A is less than 1, and the scale becomes large when the value of 7 increases.

Applications of BPN to clinical data. It is expected that BPN is applicable to distributions
of various clinical data, because BPN includes the shape parameters (\) and can set the various
distributions including more skewed distributions. For example, Goto & Uesaka (1980) presented
the A of blood serum component of laboratory test. Maruo et al.(2008) applied the univariate
power normal distribution to various laboratory test data and estimated the shape parameter A
with the range between —1 and 0.25 as shown in figure 2.1 and evaluated the loss of information
when we assume the normal or log-normal distribution to laboratory data. Hamasaki & Goto
(2002) applied the BPN to the clinical data in both diastolic blood pressure (DBP) and systolic
blood pressure (SBP) of the clinical trial to evaluate the treatment effect of calcium blocker,
and said that SBP would be more positive skewed distribution than log-normal distribution
because of A < 0 and DBP would be normal distribution because of A ~ 1 in the data. Goto et

al.(2007) applied the power normal distribution to partial epilepsy data and estimated A~ 0,
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which means that it is appropriate to analyze the data based on the log-normal distribution.

Table 2.1: A of laboratory test: the modification of table 2 in Maruo et al.(2008)

Laboratory test A Laboratory test A
ALP 0.25 TC 0.25
GOT -1 TG -0.25
GPT -0.5 HDL-C 0

~-GTP -0.5
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Section 3

Statistical properties of ratio

measures

3.1 Evaluation based on the bivariate normal distribution

Probability density function of PC and SPC. Pham-Gia et al. (2006) gave the exact
closed form expression of the density of X;/Xs , where X; and X» are normal random vari-
ables, in terms of Hermite and confluent hypergeometric functions. In this section, we give the
probability density function of PC' and SPC based on Pham-Gia et al. (2006) .

Let X7 and X5 be the two random variables of bivariate normal distribution with parame-
ters BN (i1, u2, 0,0, p). Strictly speaking, suppose that truncated bivariate normal distribution,
TBN(u1, p2, 0,0, p), for X1 and Xg, because we consider the data which is X; > 0, Xy > 0.
Then the distribution of PC is

hexpe(v) = 57—
BN(PO)LY) = 2(1—p)(1 +v) + v?

H—2(§1(”))7 (31>

where H_5(+) is the Hermite function,
o0 2
H_5(2) :/ te 22t
0

and
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(1 = p)(p1 + p2) + (p2 — pma)v

&i(v) = 020 = ) {201 = p)(1 +v) + 02}
K = -7

T®5(0,0; —p1, —p2, 0, 0, p)

2 2
-2
X exp O PMl/;LQ "2‘,“2 '
2(1 = p?)o

And the pdf of SPC is

S 1-p+(1+pw?

H_5(&(w)) (3.2)

hex(speo) (w)

where H_(+) is also the Hermite function as well as the case of hgyn(pc)(v) and

£2(w) !
o(w) = —
20/(1 = p?){1 = p+ (1 + p)w?}
x {(1 = p)(p1 + p2) + (1 + p)(p2 — p1)w},
V1—=p? pi — 2ppapn + 113
Ky = _
? W@Q(O, 0; —p1, —p2, 0, 0, p) e { 2(1 - p2)02 ’

where ®5(-) is the cumulative distribution function of standard normal distribution.

Consider the situation with small coefficients of variation which are (o/u; or o/us) to ignore the
affect of truncation. Then, ®2(0,0; —pu1, —p2, 0,0, p) is approximated by 1, and we can assume
the situation that X1, Xy > 0. Figure 3.1 shows the pdf of PC and SPC with the parameters
that puo — pu1 =0,-0.3,—1,0 = 5,10 and p = 0,0.4,0.8 to figure out the shapes of the pdf. The
pdf of SPC is symmetrical comared to the pdf of PC based on this figure.
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Figure 3.1: The pdf of PC' and SPC based on bivariate normal distribution
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Skewness of PC and SPC. Figure 3.2 shows the skewness of PC' or SPC calculated based
on each pdf. We assume that two random variables, X7, Xs, are based on the bivariate normal
distribution with the parameters BN(u1, p2, 02, 02, p) which are set within the range of p; = 10,
o =9,0=1and p=0~0.9. The PC do not skew so much and so the difference of skewness
between PC and SPC became small.

25
|

— SPC
- PC

15

SKEWNESS

10

Figure 3.2: The relationship between p and skewness of PC' and SPC based on bivariate normal
distribution
3.2 Evaluation based on the bivariate log-normal distribution

Probability density function of PC and SPC. Let X; and X3 be two random variables
of bivariate log-normal distribution with parameters BLN(p1, p2, 0,0, p). Then, we define the

pdfs of PC is hgpnpc)(v) and the pdfs of SPC is hgpnspe)(w), and these pdfs are
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1
20 (1 +v) /7 (1—p)

402(1—;)) {log (1 +v) = (u2 = m)}?| , (3.3)

heLnpo)(v) =

X exp | —

heLnspo)(w) =

where 1 and po are the mean of log-transformed two variables (X1 and X53), o2 is the variance
and p is the correlation.

Figure 3.3 shows the pdf of SPC and PC' with the parameters that R = 0,0.4, 0 = 0.5, 1,
p=0,0.4,0.8 to figure out the shapes of the pdf. The R is the median of percent change about
post-data which is calculated by the exp(u2) = (1 — R)exp(p1). R = 0 means that the median
of pre-data is same as the median of post-data, and R = 0.4 means the median of post-data had
the 40 % reduction from pre-data. In these figures, all PC' shows the positive skew distribution.
On the other hand, SPC shows the symmetrized distributions.
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Figure 3.3: The pdf of PC' and SPC based on bivariate log-normal distribution
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Skewness of PC and SPC. In this paragraph, we evaluated the skewness of PC' and SPC
calculated by numerical integration method based on the pdfs, quantitatively. Figure 3.4 shows
the relationship between correlation and skewness of PC' and SPC'. The parameter combinations
used for the skewness calculation in this figure are that g1 =1, uo =0.9,0 =1 and p=0~0.9.

The skewness of SPC' is smaller than PC' without regard to correlation.

& — sPC
' - PC

20
|

15

SKEWNESS

10

pt=1 p2=09 o=1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.4: The relationship between p and skewness of PC and SPC based on bivariate log-

normal distribution

3.3 Evaluation based on the bivariate power-normal distribu-
tion

Probability density function of PC and SPC. Let X; and X3 be the two positive random
variables of bivariate power normal distribution with parameters BPN(A, A, 1, pa2, 0, 0, p). The
pdfs of PC or SPC are calculated by using the variable transformation method. The two random
variables, X7 and Xy, of BPND in section 2 are transformed to X; = U and X =U(1+ V) for
PC, which is equal to U = X; and V = (X2 — X1)/X1. On the other hand, the two variables
are also transformed to X; = U and Xo = U x (1 4+ W)/(1 — W) for SPC, which is equal to
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U= Xy and W = (X2 — X1)/(X1 + X2). Then, the pdfs of PC as hgpy(pc)(v) is given by,

/u y u2>\—2(1 4 U)A—l
21024/1 — p?A(K)

hepn(pc) (V)
1 T
BNV 1 (M _
xexp[ 2<M ﬂ) > (M u)]du (3.5)

where A(K) is the probability proportional constant term shown in section 2 and

MO = (u®, a1+ op®),

H = (Mla/"’?) )

And the components of M) are

u —1
A#0
uM = A 7
log u A=0

and

w (1+0) =1
{fu(@+o)}™ = A
log{u(l1+v)} A=0.

Next, the pdf of SPC as hppn(spc)(w) is given by

A—1
1
A {+w " u}
U 1—w

hpn(spo)(w) = /(1—w)2>< m0*\/1 - p?A(K)

X exp [—; (NW - H)T > (NW - u)] du (3.6)

where



and A(K) is also the probability proportional constant term shown in section 2, g and X is the

same as ones of PC. The components of N are

u —1

log u A=0

and

( 1+wv A
1_v><u -1

<1+v >(>‘) A A#0

X U =

1—w
1

log< +U><u> A=0.
1—v

3.3.1 Definition of the distribution of skewness

When the shape parameter of power normal distribution is equal to or larger than 0 generally,
it is possible to calculate any moment and skewness. However, skewness cannot be calculated
in —3 < X < 0, because three order moment does not exist(Goto et al.0 1983). In this section,
we define the alternative criterion about skewness, which is
_ 0975 — 805
€0.5 — £0.025
When the distributions become more symmetrical, n will become nearer one. And, when 7
is larger than one, the distributions become more positively skewed. On the other hand, the

distributions become negative skew, when 7 is less than 0.

3.3.2 Detection of factors to affect the skewness of distributions

Factors to affect the distribution of skewness of PC' or S PC' were investigated based on ANOVA.
In this analysis, n of PC or SPC! is set as response value, shape(\), scale-like(7), percent change
from pre-data (R) and correlation (p) were included as factor. In addition, the interactions
between two factors of four parameters were also included in the model. In the clinical data,
such as epilepsy (Goto et al., 2007) and laboratory data (Uesaka & Goto:1980, Maruo et al.:
2007) are based on the positive skew distribution in many cases, therefore shape parameters are
set from -1 to 1 by 0.5 (A = —1,-0.5,0,0.5,+1). Percent change from pre-data are set from
10 to 40 by 10(R = 10,20, 30,40). Scale-like parameter are set from 0.2 to 1.0 by 0.2 (7 =
0.2,0.4,0.6,0.8,1.0). Correlation parameter are set from 0.2 to 0.8 by 0.2 (p = 0.2,0.4,0.6,0.8).

The n of PC or SPC were calculated based on the numerical integral for all combinations of
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Table 3.1: Sum of square, F value and contribution rate of PC' or SPC based on the ANOVA

The n of PC' is response. The n of SPC is response.
Factor | Sum of square | F value | Cont. Rate (%) | Sum of square | F value | Cont. Rate (%)
A 52.573 273.359 9.94 0.316 258.289 38.97
T 315.690 1641.466 59.70 0.091 74.131 11.18
p 106.838 555.514 20.20 0.238 193.977 29.27
R 9.605 49.941 1.82 0.013 10.693 1.61
A X T 17.868 92.904 3.38 0.021 16.852 2.54
A X p 3.266 16.979 0.62 0.009 7.729 1.17
AX R 1.993 10.365 0.38 0.059 48.415 7.30
T X p 19.814 103.026 3.75 0.007 5.660 0.85
TX R 1.126 5.854 0.21 0.015 12.637 1.91
px R 0.006 0.031 near 0 0.042 34.439 5.20

these four parameter, which were 400 combination cases (= 5 levels of A x 4 levels of R x 5
levels of 7 x 4 levels of p) as total.

Table 3.1 shows the sum of squares, F value and contribution rate which is defined as the
sum of squares in each factor is divided by the sum of squares in total factors x 100. For PC,
the 7 was the largest contribution to distribution of skewness (59.70 %). The second largest
contribution was p (20.20 %), and the third was A (9.94 %). However, the R did not have a
high contribution to the distribution of skewness (1.82 %). For interactions between two factors
of PC, A x 1 (3.38 %) and 7 x p (3.75 %) had more contribution than others. On the other
hand, the contribution rate of 7, p and A\ for SPC which had high contribution for PC were
11.18 %, 29.27 % and 38.97 % respectively. These three factors of SPC were also contributed
highly as well as PC. The contribution of R for SPC was also low (1.61 %). For interactions,
SPC had a different trend to PC, and the contribution of A x R (7.30 %) and p x R (5.20 %)
was high. However, the sum of squares of SPC in each factor was much smaller than PC, and

it was shown that each factor of SPC was contribution less to skewness of distributions.

3.3.3 Graphical evaluation of skewness of distribution

In this section, we evaluated the effect of three parameters which had a high contribution to
skewness of PC, graphically. The three parameters were A\, 7 and p, and the R which had less
contribution to the skewness of PC were fixed as 10 %. Figure 3.5 to 3.8 shows the relationship
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between the skewness of the distribution (1) of PC or SPC and the three parameters of BPN
(A, 7 and p). The X set 5 levels which are -1, -0.5, 0, +0.5 and +1. The 7 set 4 levels which
were 0.2, 0.4, 0.6 and 0.8. The p set 4 levels which were 0.2, 0.4, 0.6 and 0.8.

For PC, the n increased with the absolute value of A (A =1 or —1) and this trend became
remarkable especially when 7 was equal to or more than 0.6. And the 7 increased with 7
increasing or decreases with p increasing. When A\ < 0, the distribution of pre- and post-data
became more positively skewed than log-normal distribution, and might have the case that post-
value (X7) was much larger than post-value (X32). Then, the n of PC was larger than one and
the 7 increased with increasing 7. When A > 0, the distribution of pre- and post-data became
more negative skew and occured the value near 0. Especially, when 7 was large, the truncation
in the left side occured (A(K) < 1) and a lot of values near X; = 0 generated. Then, the n of
PC increased. For p, the n of PC' increased with decreasing p, because the difference between
X1 and X5 became large.

For SPC, the skewness of the distribution (1) was almost one in all conditions, and this
means that all distributions of SPC' show almost all symmetry in all combinations of the BPN

parameters.
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3.4 Relationship between symmetrized percent change and co-

efficient of variation

On the other hand, we considered an another measure which is defined as (X>—X1)/3 (X2 +X1).
The numerator of the measure is a difference of two data and the denominator is a mean.
When we regard the difference of denominator as an index of variation, the measure may be
considered as a variation srandarized by mean, such as a coefficient of variation. In fact, this
measure is called Variability (%) in the bioanalytical field and is used for evaluating the level
of reproducibility of assay results using incurred samples (Mario et al., 2007 and Douglas et al.,
2009). The variability is used in a fixed error limit method and a model similar to the familiar
4-6-X QC criteria can be applied. For small molecules (non-ligand binding) two thirds of the
repeat samples (X3) should agree within 20 % and for ligand-binding assay, two thirds of the
repeat samples should agree within 30 %. The variability (% difference) should be calculated

using the mean of the original and repeat results as described by the following formula:

X5) — Original(X
Variability (%) = Repeat(l 2) = Original(Xy) 0
§(X1 + Xo)

Graphical comparison of pdf. In this paragraph, we investigate the relationship between
SPC (Variability) and C'V of two samples. Figure 3.9 shows the relationship between SPC and
CV. The CV of two samples is given by | X2 — X1|/(X1 + X2) and the numerator of this formula
is replaced by the difference of two samples with absolute value.

To figure out the distribution of SPC and CV graphically, we show the histogram of SPC
and C'V in figure 3.10 on condition that two samples follows the bivariate normal distribution
(BN) and bivariate log-normal distribution (BLN) . The upper graph is based on the BN with pa-
rameters of BN (10,9, 1,1, p) and the bottom is on the BLN with parameters of BLN(10,9, 1,1, p).
The p is from 0.2 to 0.8 by 0.2 in all graphs. We generate the 10,000 random samples with each
parameters and create histograms. From these figures, the distribution of C'V is the distribu-
tions folded back negative value of SPC to positive, because of the formula of absolute value of

numerator.
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Figure 3.9: The relationship between SPC and CV of two samples
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Section 4

Simulations and case studies

In this section, we evaluate the effect of the statistical test results based on the simulation in
case the distributions of PC or SPC do not follow the assumed distribution in each test, such

as normal. In addition, we also show the case example to apply the power normal distribution

to SPC.

4.1 Simulation 1: One sample comparison

4.1.1 Design of simulation 1

We consider the situation where treatment effect is to reduce the post-data from pre-data, which
is R > 0, and then we investigate the power of one-sample test for PC' or SPC. The objective
of this simulation is to evaluate the relationship between the distribution of pre- and post data

based on the BPN and the power of the one-sample test about PC or SPC.

Hypothesis of the statistical test. In this simulation, the following hypotheses with 0.05 of
significance level are set for three measures PC, SPC, DT'S. The DTS is called " Difference on
Transformed Scale” and is defined as Xé)‘) - X 9). One-sample t-test is used for PC, SPC and
DTS and Wilcoxon Signed Rank Test (WSRT) are also used for PC' and SPC. The hypotheses
of interest are based on one-side and are as follows,
HO 10 = 0,
VS H;:0 <0,
where 6 is the expected value or median of PC, SPC and DTS(expected value only) in one
sample test. In addition, we evaluate the hypotheses based on the two sides,
Ho 10 = 0,
vs  Hp:0#0.
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Parameter setting. Table 4.1, 4.2 and 4.3 shows the parameters combination of BPN as-
sumed as pre- and post-data distribution. We set the 5 levels A\ (= —1,—-0.5,0,0.5,1), 4 levels
7 (=0.2,0.4,0.6,0.8), 4 levels p (= 0.2,0.4,0.6,0.8) and R(=0, 10 %), and then calculate the
11, p2, o1 and o9 based on the reparametrization method (Maruo, et al., 2011; Maruo & Goto,
2012). Sample size is calculated based on the DTS(t-test), because DTS is normal in many
cases and has highest power. Minimum sample size to exceed the power of 0.8 for DT'S(t-test)

sets in both hypotheses.

We calculate the proportion of significance per total numbers of simulations about DTS,
PC and SPC, when one-sample t-test or Wilcoxon Signed Rank Test (PC and SPC only)
are applied. Total numbers of simulation is 100,000 times. The (tentative) type I error rate is
defined as the proportion of significance when R = 0, and the (tentative) power is defined as
the proportion of significance when R = 10. We can evaluate the loss of information based on
the difference from the power of PC' or SPC to 0.8, because sample size sets near the value of

0.8 for power of DT'S.
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Table 4.1: The combination of parameters for simulation and sample size (A = —1 and —0.5)

A |medl | R| 7 P 1 142 o1 o9 n(one side) | n(two sides)
-1 100 | 10 | 0.2 | 0.2 | 0.990 | 0.989 | 0.00147 | 0.00147 18 44
-1 100 | 10 | 0.2 | 0.4 | 0.990 | 0.989 | 0.00147 | 0.00147 13 34
-1 100 | 10 | 0.2 | 0.6 | 0.990 | 0.989 | 0.00147 | 0.00147 9 24
-1 100 | 10 | 0.2 | 0.8 | 0.990 | 0.989 | 0.00147 | 0.00147 5 12
-1 100 | 10 | 0.4 | 0.2 | 0.990 | 0.989 | 0.00286 | 0.00286 66 166
-1 100 | 10 | 0.4 | 0.4 | 0.990 | 0.989 | 0.00286 | 0.00286 49 126
-1 100 | 10 | 0.4 | 0.6 | 0.990 | 0.989 | 0.00286 | 0.00286 33 84
-1 100 | 10 | 0.4 | 0.8 | 0.990 | 0.989 | 0.00286 | 0.00286 17 42
-1 100 | 10 | 0.6 | 0.2 | 0.990 | 0.989 | 0.00415 | 0.00415 143 368
-1 100 | 10 | 0.6 | 0.4 | 0.990 | 0.989 | 0.00415 | 0.00415 106 270
-1 100 | 10 | 0.6 | 0.6 | 0.990 | 0.989 | 0.00415 | 0.00415 71 180
-1 100 | 10 | 0.6 | 0.8 | 0.990 | 0.989 | 0.00415 | 0.00415 36 90
-1 100 | 10 | 0.8 | 0.2 | 0.990 | 0.989 | 0.00549 | 0.00549 288 726
-1 100 | 10 | 0.8 | 0.4 | 0.990 | 0.989 | 0.00549 | 0.00549 208 534
-1 100 | 10 | 0.8 | 0.6 | 0.990 | 0.989 | 0.00549 | 0.00549 134 340
-1 100 | 10 | 0.8 | 0.8 | 0.990 | 0.989 | 0.00549 | 0.00549 65 166
-0.5 100 101 0.2 0.2 | 1.80 1.79 0.0148 0.0148 19 48
-0.5| 100 |10 0.2 04| 1.80 1.79 | 0.0148 | 0.0148 14 36
-0.5 100 101 0.2 1 0.6 | 1.80 1.79 0.0148 0.0148 10 24
-0.5| 100 |10 0.2 08| 1.80 1.79 | 0.0148 | 0.0148 5 12
-0.5| 100 |10 |04 |0.2] 1.80 1.79 | 0.0291 0.0291 72 182
-0.5| 100 |10 |04 |04 ]| 1.80 1.79 | 0.0291 0.0291 53 136
-0.5| 100 |10 |04 | 0.6 | 1.80 | 1.79 | 0.0291 | 0.0291 36 92
-0.5| 100 |10 |04 | 0.8 | 1.80 | 1.79 | 0.0291 | 0.0291 18 46
-0.5 | 100 | 10 | 0.6 | 0.2 | 1.80 | 1.79 | 0.0427 | 0.0427 157 396
-0.5| 100 |10 | 0.6 | 0.4 | 1.80 | 1.79 | 0.0427 | 0.0427 115 290
-0.5| 100 | 10|06 |0.6 | 1.80 | 1.79 | 0.0427 | 0.0427 77 194
-0.5| 100 | 10|06 |0.8| 1.80 | 1.79 | 0.0427 | 0.0427 39 100
-0.5| 100 |10 0.8 (0.2| 1.80 | 1.79 | 0.0553 | 0.0553 260 658
-0.5| 100 | 10| 0.8 | 0.4 | 1.80 1.79 | 0.0553 | 0.0553 192 492
-0.5 | 100 10|08 06| 1.80 1.79 | 0.0553 | 0.0553 130 328
-0.5 | 100 10|08 08| 1.80 1.79 | 0.0553 | 0.0553 66 166
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Table 4.2: The combination of parameters for simulation and sample size (A = 0 and +0.5)

A |medl | R| 7 p 11 142 o1 o9 n(one side) | n(two sides)
0 100 10 ] 0.2 | 0.2 | 4.61 | 4.50 | 0.148 | 0.148 20 50
0 100 101 0.2 | 0.4 | 4.61 | 4.50 | 0.148 | 0.148 15 38
0 100 10 |1 0.2 | 0.6 | 4.61 | 4.50 | 0.148 | 0.148 10 26
0 100 10| 0.2 | 0.8 | 4.61 | 4.50 | 0.148 | 0.148 5) 14
0 100 | 10 | 0.4 | 0.2 | 4.61 | 4.50 | 0.295 | 0.295 78 198
0 100 | 10 | 0.4 | 0.4 | 4.61 | 4.50 | 0.295 | 0.295 59 148
0 100 | 10 | 0.4 | 0.6 | 4.61 | 4.50 | 0.295 | 0.295 39 100
0 100 | 10 | 0.4 | 0.8 | 4.61 | 4.50 | 0.295 | 0.295 20 50
0 100 | 10 | 0.6 | 0.2 | 4.61 | 4.50 | 0.438 | 0.438 172 436
0 100 | 10 | 0.6 | 0.4 | 4.61 | 4.50 | 0.438 | 0.438 129 328
0 100 | 10 | 0.6 | 0.6 | 4.61 | 4.50 | 0.438 | 0.438 86 218
0 100 | 10 | 0.6 | 0.8 | 4.61 | 4.50 | 0.438 | 0.438 43 110
0 100 | 10 | 0.8 | 0.2 | 4.61 | 4.50 | 0.578 | 0.578 299 758
0 100 | 10 [ 0.8 | 0.4 | 4.61 | 4.50 | 0.578 | 0.578 224 570
0 100 | 10 | 0.8 | 0.6 | 4.61 | 4.50 | 0.578 | 0.578 150 380
0 100 | 10 | 0.8 | 0.8 | 4.61 | 4.50 | 0.578 | 0.578 75 190
0.5 100 10 102|102 |18.0 | 17.0 | 1.48 1.48 21 54
0.5 100 10 02|04 |18.0 | 17.0 | 1.48 1.48 16 40
0.5 100 10 1 0.2 | 0.6 | 180 | 17.0 | 1.48 1.48 11 28
0.5 100 10 (0.2 | 0.8 | 18.0 | 17.0 | 1.48 1.48 6 14
0.5| 100 |10 |04 |0.2|18.0 | 17.0| 297 | 2.97 84 208
0.5| 100 |10 |04 |04 |18.0 | 17.0| 297 | 2.97 63 160
05| 100 |10 |04 ] 0.6 | 18.0| 17.0 | 2.97 | 2.97 42 106
05| 100 |10 |04 | 08| 18.0 | 17.0 | 2.97 | 2.97 21 54
05| 100 |10 |06 | 0.2 | 18.0 | 17.0 | 4.45 | 4.45 185 478
05| 100 |10 |06 | 04 | 18.0 | 17.0 | 4.45 | 4.45 141 352
05| 100 |10 |06 | 0.6 | 18.0 | 17.0 | 4.45 | 4.45 94 240
0.5 100 |10 |06 | 0.8 | 18.0 | 17.0 | 4.45 | 4.45 47 118
0.5 100 |10 0.8 |0.2|18.0 | 17.0| 593 | 5.93 337 860
0.5 100 |10 | 08|04 | 18.0| 17.0 | 593 | 5.93 253 628
0.5 100 |10 | 08| 0.6 | 18.0| 17.0 | 5.93 | 5.93 167 424
0.5 100 |10 | 08| 0.8 | 18.0| 17.0 | 5.93 | 5.93 83 210
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Table 4.3: The combination of parameters for simulation and sample size (A = +1)

Almedl | R | 7 p 1 [42 o1 o2 | n(one side) | n(two sides)
1 100 101 0.2 1 0.2 ]99.0 | 89.0 | 14.8 | 14.8 22 56
1 100 101 0.2 104 1]99.0 | 89.0 | 14.8 | 14.8 17 42
1 100 101 0.2 | 0.6 | 99.0 | 89.0 | 14.8 | 14.8 11 28
1 100 101 0.2 | 0.8 199.0 | 89.0 | 14.8 | 14.8 6 14
1 100 | 10 | 0.4 | 0.2 | 99.0 | 89.0 | 29.7 | 29.7 89 226
1 100 | 10 | 0.4 | 0.4 | 99.0 | 89.0 | 29.7 | 29.7 66 166
1 100 | 10 | 0.4 | 0.6 | 99.0 | 89.0 | 29.7 | 29.7 45 112
1 100 | 10 | 0.4 | 0.8 | 99.0 | 89.0 | 29.7 | 29.7 22 56
1 100 10 | 0.6 | 0.2 | 98.2 | 88.2 | 45.2 | 45.2 232 590
1 100 10 | 0.6 | 0.4 | 98.2 | 88.2 | 45.2 | 45.2 169 436
1 100 | 10 | 0.6 | 0.6 | 98.2 | 88.2 | 45.2 | 45.2 112 280
1 100 | 10 | 0.6 | 0.8 | 98.2 | 88.2 | 45.2 | 45.2 54 138
1] 100 |10 | 0.8 0.2 | 93.3 | 83.3 | 64.2 | 64.2 628 1560
1 100 | 10 | 0.8 | 0.4 | 93.3 | 83.3 | 64.2 | 64.2 440 1100
1 100 | 10 [ 0.8 | 0.6 | 93.3 | 83.3 | 64.2 | 64.2 271 696
1 100 | 10 | 0.8 | 0.8 | 93.3 | 83.3 | 64.2 | 64.2 128 322

4.1.2 Results of simulation 1

Figure 4.1 shows the (tentative) type I error rate with one side in each parameter combination.
Tentative type I error rate of three measures were nearly equal to or less than significance level
(0.05) in all parameter combinations. Especially, the (tentative) type I error rate of PC(t-test)
and PC(WSRT) were much less than 0.05. This was because the absolute value order of positive
value was larger than negative value order because of positive skew distribution and expectation
of PC was more than 0, even if p; > pua (R > 0).

On the other hand, figure 4.3 shows the (tentative) type I error rate with both sides hy-
pothesis (H;y : 8 # 0) in each parameter combination. From these figures, the (tentative) type
I error rate of PC' was much larger than 0.05 when p was small and 7 was large, because PC
had significance in the positive expectation value (6 > 0).

Next, we show the results of (tentative) power with one side hypothesis in figure 4.2. The
(tentative) power of DT S(t-test) was nearly equal to 0.8. The (tentative) powers of PC which
was PC(WSRT) and PC(t-test) were less than 0.7 in all parameters combination. This trend

became larger when 7 was large or p was small. Especially, the (tentative) power of PC(t-test)
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was nearly equal 0 when 7 was equal to or larger than 0.6 and p was equal to or less than 0.4.
The condition to decrease the (tentative) power of PC depended on the skewness of distribution.
The lager the distribution of skewness was (The larger the 7 is), the less the (tentative) power
became. The (tentative) power of SPC which are SPC(WSRT) and SPC/(t-test) was nearly
equal to 0.8 when 7 = 0.4, and was a little less than 0.8 in A = —1,1 when 7 > 0.6. Regarding
the (tentative) power with both sides hypothesis (H; : # # 0) in figure 4.4, the (tentative)
power of PC(t-test) or PC(WSRT) was less than other measures (DTS or SPC), because of

the skewness of the distributions.
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Figure 4.1: The relationship b/w type I error and A (One sample & Set the 0.05 in one side)
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Figure 4.3: The relationship b/w type I error and A (One sample & Set the 0.05 in both sides)
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4.2 Simulation 2: Two samples comparison

4.2.1 Design of simulation 2

In this section, we evaluate the effect on statistical test of two samples which are treatment
and control groups, when the distribution of PC or SPC' has skewness. Pre- and post-data are
assumed as BPN and the PC and SPC are calculated from pre- and post-data. And we also
consider the situation that some effect is to reduce the post-data from pre-data as well as one

sample comparison in previous section.

Hypothesis of the statistical test. In this simulation, the following hypotheses with 0.05
of significance level are set for three measures PC, SPC, DTS. Two-samples t-test is applied
to PC, SPC and DTS and Wilcoxon Rank Sum Test (WRST) is also applied to PC. The PC
and SPC has the same order because these two measures are functions of pre- and post-data
and can show a relational expression(PC = 2 x SPC/(1 — SPC)). Therefore, the statistical
results of PC(WRST) are the same as SPC(WRST). The hypotheses of interest are based on

the one-side and are as follows,

H() . HTzec,

Vs Hy : 07 < 6c,

where 07 or O¢ are the expected value or median of treatment or control for PC, SPC(expected
value only) and DT'S(expected value only) in two samples test. In addition, we also evaluate

the hypotheses based on the two sides,

Ho . HT = 00,
VS H1 . HT 7& 00.

Parameter setting. We set the 5 levels A (= —1,—-0.5,0,0.5,1), 4 levels 7 (= 0.2,0.4,0.6,0.8),
4 levels p (=0.2,0.4,0.6,0.8) and R(=0, 10 %), and then calculate the u1, puo, o1 and o9 based
on the reparametrization method in each treatment group(Maruo, et al., 2011; Maruo & Goto,
2012). Sample size is calculated based on the DT'S(t-test), because DT'S is normal in many
cases and has highest power. Minimum sample size to exceed the power of 0.8 for DT'S(t-test)

sets in both hypotheses, and this size is double of one simulation 1.

We calculate the proportion of significance per total numbers of simulations about DT'S,
PC and SPC, when two-samples t-test or WRST (PC only) are applied. Total numbers of
simulation is 100,000 times. The (tentative) type I error rate is defined as the proportion of

significance when R = 0, and the (tentative) power is defined as the proportion of significance
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when R = 10. We can evaluate the loss of information based on the difference from the power

of PC or SPC to 0.8, because sample size sets near the value of 0.8 for power of DT'S.

4.2.2 Results of simulation 2

Figure 4.5 shows the (tentative) type I error rate for one side hypothesis. The (tentative)
type I error rate of DT'S(t-test), SPC(t-test), PC(WRST) were nearly equal to 0.05 in all
parameter combinations. PC(t-test) was also nearly equal to 0.05 when 7 = 0.2 and 7 = 0.4.
However, PC(t-test) was less than 0.05, when 7=0.6 and A = —1,+1 or when 7=0.8 and
A=—1,-0.5,+0.5,+1.

On the other hand, figure 4.7 shows the (tentative) type I error rate for both side hypothesis.
The trends of all measures were the same as the trends for one side hypothesis of figure 4.5.
This was different from one sample results with both sides hypothesis and it was not shown that
there was 07 > 0¢.

Next, we show the results of (tentative) power of two sample test with one side hypothesis in
figure 4.6. DT'S(t-test) had the highest (tentative) power and the (tentative) power was nearly
equal to 0.8. The (tentative) power of PC(WRST) and SPC|(t-test) was almost same and PC'(t-
test) had the lowest (tentative) power. The (tentative) power of PC(WRST), SPC(t-test) and
PC(t-test) decreased with increasing the absolute values of A (A=-1 or +1) when p and 7 were
constant. The reason why the (tentative) power of PC(t-test) became small was considered
based on increasing the standard error of difference with increasing the distribution of skewness
of PC. The (tentative) power of SPC(t-test) and PC(WRST) was nearly equal to 0.8 without
regard to p and A when 7=0.2 and 0.4. These two measures, SPC(t-test) and PC(WRST),
had less (tentative) power than 0.8 when A = —1 and +1. And the (tentative) power about two
sample test with both sides in figure 4.8 were same trend as the (tentative) power with one side

in figure 4.6.
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4.3 Case example

4.3.1 The application of symmetrized percent change to epilepsy data

In this section, we introduce the case example of SPC' application as an example of the data
analysis in phase III study of Gabapentin which is treated as an add-on therapy for refractory
epilepsy. In this trial, SPC was named ”Response Ratio (RR)”.

The main objective of epilepsy treatment is to reduce the seizure frequency of each patient.
Therefore, we evaluate the treatment effect to compare the seizure frequency of pre- and post-
data in the clinical development of an antiepileptic drug. The evaluation of efficacy is based
on the percent change from baseline in this field (French, 2001), because seizures are large
variability in both intra- and inter-subjects and are skewness distribution for pre- and post-
data. Additionally, when we evaluate seizure frequency (count data), the count data sometimes
increase dramatically, such as from 10 counts of pre-data to more than 100 of post-data, if there
are no treatment effects. For example, if a patient has 10 seizures of pre-data and 110 of post-
data, then PC is 1000 %, and this value is too large. On the other hand, then SPC is 0.909
and is not too large. From this example, we consider SPC does not have less skew distribution
than PC, because SPC does not give the too large value and shows robustness to outliers.

The 12-weeks, placebo controlled, double-blind study was conducted to evaluate the efficacy
and safety of Gabapentin (Yagi & Sase, 20070 Yamauchi et al., 2006). This study set three
treatment arms, 1200mg/day, 1800mg/day and placebo, and target population is the patients
who had more than eight seizures in baseline period (pre-data) of 12 weeks. The 209 patients (86
patients in 1200mg/day, 41 patients in 1800mg/day and 82 patients in placebo) were included in
the study, and per protocol set (PPS) was defined as the primary efficacy population. Table 4.4
shows the efficacy results of SPC about the comparison between 1200mg/day and placebo for
PPS. The p-value was 0.0032 and statistical significance was shown for the comparison between

1200mg/day and placebo about 0.05 significance level.
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Table 4.4: Efficacy Results of Gabapentin(From Goto et al., 2007).

Placebo Gabapentin
SPC(RR) (1,200mg/day)
n =715 n =80
Mean —0.037 —0.144
SD 0.214 0.230
95%CT [—0.086,0.012] [~0.195, —0.093]
Dif. b/w two groups —0.107
95%CI [—0.176, —0.038]
p value(t-test) 0.0032

Next, we evaluate the shape of the sample distribution about the seizure data in the above
study. Figure 4.9 shows the histogram of pre- and post-seizure data in 1200mg/day and placebo
and shows the data driven power normal distribution(Goto et al., , 2007; Goto et al., 1979;
Goto et al., 1983). The estimate value of shape parameter () is follows.

1,200mg/day Placebo
Pre-data —0.38 —-0.37
Post-data —-0.14 —0.23

These estimated values of A are negative near 0, and this result shows that the distribution of
the seizure data in this study can approximate the log-normal distribution.

Figure 4.10 shows the histogram of SPC data in 1200mg/day and placebo and shows the
distribution given by expression (3.4). In addition, we show the estimated value of A as follows.
From these results, it was shown that the distribution of SPC was nearly equal to a normal

distribution.
1,200mg/day Placebo

SPC 1.45 0.94
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Section 5

Conclusion

5.1 Results and productive findings of this study

Both PC and SPC are used as ratio measures in a clinical trial in which a treatment effect is
evaluated. However, PC was shown to have some difficulty to apply the statistical methodology
based on the parametric methodology(Asakura et al.,, 2011; Pharm-Gia et al., 2006; Senn &
Julious, 2009), and S PC was not clear in the statistical properties. In this paper, we investigated
statistical properties of PC and SPC in which declaration of pdf, evaluation of skewness and
evaluation to statistical power are included. And we propose how to apply the two measures in
various situations in later paragraphs. In addition, we declared the relationship between SPC

and coefficient of variation (C'V).

Statistical properties of PC. The distribution of PC' was positively skewed when post-data

was much larger than pre-data. This condition arises in the combinations of the following points.
1. The scale like parameter (7) of pre- and post-data became large.
2. The correlation parameter (p) between pre- and post-data became small.

3. The distribution of pre- and post-data became far from bivariate log-normal distribution,
which means that the distribution becomes more positively skewed than log-normal dis-
tribution (A becomes close to —1) or that the distribution is close to normal and becomes

negative skew (A becomes close to +1).

The 7 gave the largest contribution to a skewness of distribution for PC. The second largest
contribution was p and third was \. It is difficult to identify the condition to symmetrize the
distribution, because the cause of distribution skewness exists more than one component and is

from the combination of the components. Therefore, we recommend to confirm each distribu-
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tion skewness in each situation taking the above results into consideration before applying the
statistical methodology.

From results of comparison between pre- and post-data based on one sample statistical test,
the (tentative) type I error of PC(t-test) and PC(WSRT) became extremely low from the pre-
defined significance level and the (tentative) power decreased more 0.1 (10 %) than DTS, which
means that the (tentative) power was less than 0.7 in all conditions. From results of two group
comparisons based on the two samples statistical test, the (tentative) type I error of PC(t-test)
became nearly equal to or slightly less than the pre-defined significance level and the (tentative)
power decreased extremely when the scale like parameter (7) became large or the distribution
became far from log-normal (absolute value of A is +1). On the other hand, the (tentative) type
I error of PC(WSRT) became nearly equal to pre-defined significance level and the (tentative)
power was only slightly smaller than DT'S.

Statistical properties of SPC. The distribution of SPC kept symmetry without regard to
shape, scale like and correlation parameters of the distribution for pre- and post-data. There-
fore, we can consider the application of statistical analysis based on the parametric methodology.
From results of comparison between pre- and post-data based on one-sample test, the (tentative)
type I error of SPC(t-test) became nearly equal to pre-defined significance level and the (ten-
tative) power of SPC/(t-test) slightly decreased when scale like parameter was large (especially
7 > 0.6) and the distribution of pre- and post-data was far from log-normal. However, the
(tentative) power of SPC(t-test) was larger than PC(t-test) or PC(WSRT). From results of
two groups comparison based on the two samples statistical test, the (tentative) type I error of
SPC(t-test) became nearly equal to pre-defined significance level and the (tentative) power was
also nearly equal to or slightly less than DT'S. In addition, the (tentative) power of SPC(t-test)
was also same as PC(WRST) in all conditions.

Proposal how to apply two measures. We can use the PC(WRST) when the objective
is to evaluate the two groups comparison based on the ratio measures. Because PC is easy
to interpret and PC(WRST) can keep high power. However, it is necessary to investigate the
possibility of application carefully, if we know the factors to affect the treatment effect, if we
estimate the effect based on the statistical methodology such as analysis of covariance(ANCOVA)
and if we apply the PC(t-test) for groups comparison. We need to make sure preliminarily
whether or not the assumption to apply the PC/(t-test) are satisfied. If assumptions are not
satisfied or if assumptions cannot be confirmed, then we can analyze the data to apply the SPC
and can interpret the results after transforming the robust percent change (RPC') proposed by
Berry(1989).
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In addition, we consider the statistical analysis should be done based on the SPC', when the
objective is to compare the one-group comparison. Because the type I error keeps significance
level and the power became large. The SPC' is necessary to re-transformation for interpretation
of the results. However, we consider that SPC is one of the favorable options for ratio measures,
because we can use SPC' in various shape of distributions. For example, when we analyze the
change between pre- and post data of laboratory items, difference or percent change are only
applied based on the past experience. We think laboratory items such as triglyceride (T'G), which
has positive skew distribution and becomes primary or secondary efficacy endpoint, should be
applied SPC.

When we select a measure of effect in a clinical trial, a difference or a percent change are only
applied based on the past experience without investigating the statistical properties so much.
The important thing when selecting the measures of effect is to define the goal of statistical
analysis definitely, and is to evaluate statistical properties, such as a skewness of distribution or

a power in addition to evaluation from the clinical points of view.

Relationship between SPC and CV. There is the relationship between SPC and CV
which is that the numerator of C'V is replaced by the numerator of SPC with absolute value.
Therefore, the distribution of C'V is the distribution folded back negative value of SPC to

positive.

5.2 Subjects for future investigation

As we mentioned in the previous section, SPC needs to be transformed into appropriate mea-
sures such as RPC proposed by Berry (1989) for interpretation. And Berry & Ayers (2006) also
mentioned that the investigator would report an estimated RPC with an appropriately calcu-
lated standard error or confidence interval. However, there is no research about the standard
error or the confidence interval. Therefore, it would be desirable to propose these in future

research.
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Appendix A

Reparametrization.

We show the reparametrization method to apply in section 2 of this paper(Maruo & Goto, 2008;
Maruo, et al. 2010; Maruo & Goto, 2012). The 7 is defined as the scale parameter. When A # 0,
1 and o cannot be obtained from A, &y 5, and 7 explicitly. Thus, they have to be calculated based

on the grid search method. The calculation process for y and o is given as follows:

S1. Give \, &y, and 7, and set KW = {-100,-99.9,...,99.9,100}. KZ-(T) is the ith factor of
K™ (i=1,...,2000).

S2. Calculate M(T) and o™ for all Ki(T) based on (A.1). Then evaluate 5 = 5(().77)&—56251-—50.57

(

and replace (52-7) that can not be evaluated for some reason (e.g., obtained as NaN or

infinity because of calculation precision of computers) and seven values on both sides of it

by sufficiently large values, where fz(;) is the percentile of the power-normal distribution
()

with parameters: A, p, 7, and O'Z-(T) .
205\ [ &5 — 1 1+ A
(1 * K > 20.5* ’ K ?é 0, K K 7& 07
w= A= o= (A.1)
1 AK 50.5 K=0
_Xa K = 07 )\20.5* ’ ’

S3. Set ipin = arg min abs(éfT)). If 5£T) < 0, divide {KZ(;)W, K

imin+l
(2

}, else divide { K Z.(;)m_l K }

’ Imin
into required accuracy of intervals (e.g., 0.0001) and replace K (7) by this set. Repeat S1
and S2.

()

i

). Calculate y and o from K™

Imin

S4. Set imin = arg min abs (0

7
This calculation process can be performed by any programming language capable of parallel
computation. The range [—-100 < K < 100] covers almost any realistic situations, but cannot

be calculated because K tends to become too large in the neighborhood of A = 0. When A = 0,
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p and o can be calculated explicitly:
_log{(m + V72 +4)/2}

p = log(os), 0 =
20.75

Fig.A.1 illustrates the relations between A(K) and A for &5 = 100 and 7 = 0.1,0.3, and

0.5. Simulations where the truncation is ignored should be run for 7 < 0.5. In addition, this

relationship is invariant for &5 though we set &5 = 100 in this figure.
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Figure A.1: The relationship b/w A(K) and \ for &35 = 100, and 7 = 0.1,0.3 and 0.5.
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