
Title STATISTICAL PROPERTIES OF RATIO MEASURES BASED
ON THE PRE- AND POST-DATA

Author(s) Yamabe, Takaharu

Citation 大阪大学, 2012, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/1439

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



　

STATISTICAL PROPERTIES OF RATIO

MEASURES BASED ON THE PRE- AND

POST-DATA

TAKAHARU YAMABE

MARCH 2012



　



　

STATISTICAL PROPERTIES OF RATIO

MEASURES BASED ON THE PRE- AND

POST-DATA

A dissertation submitted to

THE GRADUATE SCHOOL OF ENGINEERING SCIENCE

OSAKA UNIVERSITY

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN ENGINEERING

BY

TAKAHARU YAMABE

MARCH 2012



　



謝辞

本論文の作成におきましては，多くの方にご指導・ご支援を賜りました．ここに深くお礼を申し

上げます．

指導教員の白旗慎吾先生には，本論文を通して，多大なご教示を頂きました．本稿を丁寧にご

査読いただき，多くの貴重なご指摘を頂戴いたしました．ダブリンで開催された国際学会（ISI，

2011）にご一緒させていただいた際には，奥様と共に気さくな雰囲気で声をかけていただくこと

で，リラックスした雰囲気で発表に望むことができました．心よりお礼を申し上げるとともに，今

後もますますのご高配のほど，よろしくお願い申し上げます．大阪大学教授（大学院基礎工学研

究科統計数理講座）の狩野 裕先生には，本論文の初稿を査読いただき，公聴会では貴重なご指摘

を賜りました．大阪大学教授（大学院基礎工学研究科数理計量ファイナンス講座）の内田雅之先

生には，本論文の初稿を査読いただき，公聴会では貴重なご指摘を賜りました．上記の先生方に

はお礼申し上げます．

NPO法人医学統計研究会（Biostatistical Research Association: BRA）の理事長である後藤

昌司先生には，本研究の主題をご提示いただくとともに，本論文およびそれに関わる公表論文作

成，学会発表などの全ての過程でご指導を賜りました．大阪大学教授時代に教授室ではじめてお

会いした際，「学問とは哲学がなければ駄目で，化学は学問とは認めない」という言葉は強烈に今

でも脳裏に焼きついています．「化学…」という箇所は今でも納得がいきませんが，「哲学が大事

であること」，「遊学一如の世界も大事であること」，「たくさんの仲間を大事にすること（金持ち

というより人持ちになること）」など，学問に加えて人生の教訓となるたくさんの教えを学ぶこと

ができ，現在の業務・生活の糧となっているのは，後藤先生の厳しくも愛情あふれるご指導のお

かげです．本当にありがとうございました．

本論文の作成にあたり，BRAの皆様には多大なご支援と心温まるご配慮を頂きました．長崎

大学の柴田義貞先生には，BRAのシンポジウム・フォーラム等でお話しする機会を通して，大変

に啓発されました．研究会での厳しい指導，鋭いご指摘に加えて暖かいご助言を賜る機会に恵ま

れたため，私の研究で重要なヒントを得ることができ，そして柴田先生の研究（特に東日本大震

災後の原発に関する研究）に対する姿勢には大変感銘を受けました．大分大学教授の越智義道先

生には，大分で筆者の研究発表後にご意見をいただきました．鹿児島高等専門学校教授の藤崎恒

晏先生には，私の父が同じ高等専門学校で教鞭をとっていることもあり，BRAの会合でお会いす

るたびに気さくに話しかけて頂きました．大阪大学准教授の坂本亘先生には本論文の初稿を確認



いただきました．ダブリンで開催された国際学会（ISI，2011）にご一緒させていただいた際には，

研究会等で見せる鋭い顔に加えて，白旗先生と共に気さくに声をかけていただき安心して発表が

出来ました．心よりお礼申し上げます．大阪大学准教授の濱﨑俊光先生には博士後期課程に進学

する際に色々なご助言を頂きました．弘前大学准教授の杉本知之先生には BRAの諸会合でお会

いすると温かく励ましていただきました．山梨大学准教授の下川敏雄先生には山梨大学での研究

会などでお世話になりました．先生の成果物の多さと行動力のには大変刺激を受けました．兵庫

医科大学講師の大門貴志先生には統計数理研究所でベイズの講義を拝聴する機会に恵まれました．

先生のわかりやすい講義により未知の世界であったベイズに興味がわきました．上記の先生方に

重ねて御礼申し上げます．

魚井技術士事務所の魚井 徹博士には，BRAの会合でお会いした際に，励ましのお言葉を頂戴

いたしました．臨床情報研究センター [財団法人先端医療振興財団]の松原義弘博士には BRA会

合でお会いした際にお声をかけていただきました．株式会社フィールドワークスの木田義之さん

には，BRA会合でお会いした際に幾度も激励のお言葉を声をかけていただきました．株式会社ソ

リューションズラボの志賀 功さんには大分に訪れた際，東京や大阪のシンポジウムでお声をかけ

ていただきました．株式会社富士通大分ソフトウェアラボラトリの衛藤俊寿博士には，大分統計

談話会の折に遊学をご一緒させていただきました．第一三共株式会社の佐藤俊之博士には，BRA

の会合でお会いするたびに貴重なご意見を頂きました．小野薬品工業の冨金原悟博士には，筆者

の発表について実用的な観点からご指摘を頂きました．また，学会終了後，課題検討会等のお酒の

席でご馳走になりました．ファイザー株式会社の栗林和彦博士には，筆者が大学院に入学し，学

位を取得しようとしていた時に色々とご助言頂きました．株式会社クリニカル スタディ サポート

の磯村達也さんには，BRAのシンポジウム等でご一緒させて頂き，製薬会社とは別の視点から医

療の現場でおきている事柄を教えて頂きました．ファイザー株式会社の河合統介博士には，BRA

の先輩として，会社の上司として，共同研究者として数多くのご助言と鋭いご指摘を賜りました．

また酒席でも周りに配慮し，皆を盛り上げ，何時も楽しい時間を過ごさせて頂きました，大変感

謝しています．あすか製薬の藤澤正樹博士には，定例シンポジウム等，BRAの行事にご一緒させ

て頂き，研究に対する姿勢等，人生の先輩として貴重なご意見を頂きました．エーザイ株式会社

の高瀬貴夫さんには，BRA定例研究会，大分統計談話会等で貴重なご意見を頂きました．また，

大分空港の海甲でご馳走になった関サバ，関アジの味は忘れられません．協和発酵キリンの古川

泰信さんには，ご自身の研究である生物学的同等性に関する学会発表資料を頂き，勤行の一助と

させて頂きました．アステラス製薬株式会社の伊藤雅憲博士には，筆者の研究に対して参考とな

る論文を頂きました．また，BRAシンポジウム，遊学の会合を企画する能力と気力には大変刺激

を受け，楽しい時を過ごさせて頂いています．ノバルティスファーマの池田公俊さんには，ご自

身の勤行，特にアメリカ滞在における貴重な体験談を教えて頂きました．株式会社ベルシステム

24の金水龍さんには，BRAの諸会合でご一緒させて頂きました．アスビオファーマ株式会社の

永久保太士博士には，てんかんの文献データを教えて頂きました．興和株式会社の丸尾和司博士

には，共同研究者として色々相談に乗って頂きました．特に数理的な観点から深く，そして正確



な御助言には大変助けられましたし，筆者が研究でくじけそうになった時には御自身の経験から

温かい励ましの言葉を頂きました．亀戸での研究相談，Skypeによる議論は大変思い出に残って

おります．これからも宜しくお願いします．株式会社GREEの元垣内広毅さんには，お会いする

たびに色々な仕事上の経験をお伺いして大変に刺激を受けました．大塚製薬工場の大江基貴さん

には，ご自身の研究である ROC曲線の推測について興味深い知見と深い考察を拝聴して大変勉

強になりました．大日本住友製薬の中村将俊さんには大阪でお会いした時に色々とお世話になり

ました．ファイザー株式会社の五十川直樹さんには，ご自身の研究の 1つである差の分布につい

て，詳しくご教授頂き，私の研究を前に進める大きなヒントを頂きました．加えて，同じ会社と

いうこともあり遊学におけるユーモアな立ち振る舞いを拝見させていただきました．大阪大学大

学院博士後期課程の山口裕介さんには，大学関係の資料の取り寄せにご協力いただき，お世話に

なりました．また，五十川直樹さんと共にダブリンで遊学をご一緒させていただきました．大阪

大学大学院博士前期課程の吉川隆範さん，大山秀輔さん，横山隼人さんには帰阪した際に色々と

お世話頂きました．日本臓器製薬の尾崎寿昭さんと株式会社ベルシステム 24の池田敏広さんには

BRAのフォーラム等，楽しい酒食を共にさせて頂きました．トーアエイヨー株式会社の川端ゆみ

こさんには，計算機統計学会でご発表された資料を頂き，私の研究のヒントを頂きました．株式

会社新日本科学の古賀正さんには，BRAのシンポジウムで BRAのフォーラム，シンポジウム等

でご一緒させて貴重なご自身の経験談を紹介していただきました．特に，「FDAと相談した体験

談」をお伺いした時には大変啓発されました．後藤昌司先生の奥様の後藤孚さんには，お会いす

るたびに声をかけて頂き，千里中央の事務所を訪問した際には時々，手作りの美味しい昼食をご

ちそうになりました．BRA書記の亀山日出子さんには千里中央の事務所を訪問した際に美味しい

コーヒーを入れて頂き，また筆者の英語のレビューをしていただきました．上記の方々に御礼申

し上げます． ファイザー株式会社臨床統計部第 2統計グループリーダーの丸山奈美博士には業務

と研究にご配慮いただき，温かい励ましを頂きました．勤行，学問に真摯に取り組む姿勢にはい

つも啓発されました．同グループの吉山保さんには，ガバペンチンのデータについて示唆に富ん

だご意見を頂戴いたしました．大倉征幸博士にはRのシミュレーションプログラムについて，多

大なご助言を頂きました．中水流嘉臣さんには，社会人の同期として勤行・遊学共にお付き合い

いただきました．豊泉滋之さんには，勤行，特にモデルの検討，についてご自身で検討されてい

る内容を教えて頂き，大変参考になりました．皆様に御礼申し上げます．

最後に絶えず，筆者の身を案じ，励ましてくれた妻と両親，妹弟に感謝いたします．



　



Abstract

In a clinical trial, we sometimes evaluate the treatment effect based on the ratio measures which

requires pre- and post-data of treatment intervention. As a measure of ratio, percent change from

baseline (PC) which is defined as PC = (X2−X1)/X1 is often used in a trial. And, symmetrized

percent change (SPC) which is defined as SPC = (X2−X1)/(X1+X2) is sometimes also used in

trials(Berry,1989). Though the statistical properties of PC were investigated on condition that

pre- and post-data are assumed as bivariate normal distribution in past research, PC is said to

have some difficulties to apply the statistical analysis based on the parametric methods (Asakura

et al., 2011; Senn & Julious, 2009). On the other hand, SPC is said to have good performance

based on a limited simulation, but is said to have difficulties in interpretation (Berry, 1989;

Berry & Ayers, 2006).

As I mentioned in the above paragraph, PC and SPC as the ratio measures are investigated

in some aspects. However, past findings are based on limited research such as the investigations

of PC assumed as the bivariate normal distribution in pre- and post-data. In a clinical trial,

data follows not only normal distribution but also positive skew distribution such as log-normal

distribution or more positive skew distribution than log-normal(Maruo et al., 2008). Therefore,

we need to investigate the statistical properties of two ratio measures, PC and SPC, in various

distributions of pre- and post-data. In this paper, we declare the probability distribution function

(pdf) of two ratio measures, percent change (PC) and symmetrized percent change (SPC), and

evaluate the relationship between the skewness of two ratio measures and the distribution of pre-

and post-data. Next, we evaluate the performance of two ratio measures to detect the treatment

difference within pre- and post-data or between two groups based on the simulation and propose

how to apply two measures in various situations. In addition, we declare the relationship between

ratio measure (SPC) and coefficient of variation (CV ).
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Notations

notation definition/example explanation

general

E[·] E[X] expectation

Var[·] Var[X] variance

ξ· ξ0.5 percentile

distribution

Xi random variable on pre- and post-data

xi observed value on pre- and post-data

λi shape parameter (transformation parameter)

µi location parameter

σi scale parameter

BN BN(µ1, µ2, σ1, σ2, ρ) bivariate normal distribution

BLN BLN(µ1, µ2, σ1, σ2, ρ) bivariate log normal distribution

BPN BPN(λ1, λ2, µ1, µ2, σ1, σ2, ρ) bivariate power-normal distribution

f·(·) fBPN(x1, x2) probability density function (pdf)

F·(·) FBPN(x1, x2) cumulative distribution function (cdf)

ϕ(·) ϕ(x) pdf of standardized normal distribution

Φ(·) Φ(x) cdf of standardized normal distribution
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Section 1

Introduction

1.1 Background

The designs with pre- and post-data fall under the broad category of paired data analysis.

Paired data arise when the same experimental unit, such as a person or laboratory animal, is

measured on some variable in two different timings or at the same time under different testing

conditions. A type of the design with pre- and post-data is when subjects receive a treatment

intervention prior to the measurement of the post-data, after collecting the pre-data. And the

question of interest is either that there are differences among groups or changes in an individual

over time. For example, an object of a clinical trial is to compare the treatment groups with

intervention, and it is said that pre-defined measures for evaluating the intervention is very

important (Tsubaki, 1999).

In the case of a treatment evaluation of disease, and especially in the evaluation of the

efficiency of a particular drug, we sometimes use an index based on the change seen in pre- and

post-treatment data of the drug, specifically used in a certain disease area. Generally, the index

(measure) is considered as a categorical scale, ordinal scale or interval scale. In particular, the

measure of the continuous data is based on a difference or a ratio of pre-(X1) and post(X2) data.

The appropriate measure is selected according to the balance of both the clinical and statis-

tical points of view. The clinical point comes from ease of the interpretation and the statistical

point comes from the ease of data analyses based on the normal distribution. In a particular

experiment, a choice of difference or ratio as the primary measure of treatment effect may not be

obvious. Statistically, the principal reasons to adjust for baseline, usually presented in relation

to analysis of covariance, are to remove concomitant variation in the response and improve the

precision of treatment comparisons (Steel & Torrie, 1980). Furthermore, summary statistics of

an adjusted response should be independent response (Kaiser, 1989). Another relevant question

is about the kind of effect anticipated. For example, is it additive, multiplicative or neither?

1



Compared with difference, ratio measures are not always investigated from the statistical point of

view. Thus, this paper focuses on the statistical property of ratio measures. In later paragraphs

of this section, firstly, we show the statistical properties of general ratio measures. Secondly,

we review the past findings of two ratio measures. Lastly, we show some applicable examples

of these two ratio measures in clinical trials and some examples of the difference often seen in

clinical trials.

Statistical properties of general ratio measures. Relative change scores as ratio measure

require the pre- and post-data to be continuous random variables. Thus ensuring the change

score (difference) to be a continuous random variable, relative change scores also require the

pre- and post-data to be the same type of measurement made using the same device and have

equal units of measurement. Although pre- and post-data have the same units, relative change

scores are often unitless or expressed as percentages.

Relative change scores convert the pre- and post-data into a proportional change score, C,

expressed as either raw change (difference) or absolute change. The formula to convert pre- and

post-data can be written as

C =
X2 − X1

X1

in the case of raw change, or

C =
|X2 − X1|

X1

in the case of absolute change, where C is the change score, X2 is the post-data and X1 is

the pre-data(Bonate, 2000). Note that the numerator is a difference whereas the denominator

scale is the pre-data. A variant of these equations is to multiply the proportional change scores

by 100 thereby converting them to percent change scores. If C = 0, no change has occured.

A positive relative change score indicates that the post-data was greater than the pre-data,

whereas a negative relative change indicates that the post-data was less than the pre-data. One

criticism of relative change score is in the choice of the scaling term or denominator. Consider an

individual whose initial score is 3 and whose final score is 7. Using Eq. 1.1, this represents a 133

% increase from baseline. However, if a patient scores a 7 initially and deteriorates to a 3, a −57

% decrease has occured. Hence, different denominator terms result in different transformations

and estimates of change.

Proportional and percent change score fall under a family of transformations known as change

functions. Törnqvist, et al.,(1985) formally defined a change function as a real-value function

C(X1, X2) of positive arguments, C : R+
2 → R with the following properties:
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1. C(X1, X2) = 0, if X1 = X2

2. C(X1, X2) > 0, if X1 > X2

3. C(X1, X2) < 0, if X1 < X2

4. C is a continuous increasing function of X2 when X1 is fixed.

5. ∀a : a > 0 → C(aX1, aX2) = C(X1, X2)

The last property merely states that the function is independent of units of measurement. The

property C : R+
2 → R states that a two-demensional vector

(
R+

2

)
is mapped into a one-

dimensional vector (R) by the function C. It can be shown that both proportional percent

change functions meet these requirements. It can also be shown that difference scores represent

another valid type of change function.

By setting a = 1/X1 in property 5, Törnqvist, et al.,(1985) have shown that almost every

indicator of relative change can be expressed as a function of X2/X1 alone. Hence, the change

function can be expressed as an alternate function dependent solely on X2/X1. Formally, there

exists a function H, such that

C (X1, X2) = H

(
X2

X1

)
= C

(
1,

X2

X1

)
with properties:

1. H

(
X2

X1

)
= 0, if

X2

X1
= 1

2. H

(
X2

X1

)
> 0, if

X2

X1
> 1

3. H

(
X2

X1

)
< 0, if

X2

X1
< 1

4. H is a continuous increasing function of its argument
X2

X1
.

5. H

(
aX2

aX1

)
= H

(
X2

X1

)
trivially

Table 1.1 shows a variety of other relative change functions proposed by Törnqvistnqvist, et

al.(1985) and their simplification into functions of Y = (X2/X1). Here, K(X1, X2) is any mean

of X1 and X2.
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Table 1.1: Relative change functions and their simplification into functions of Y (= X2/X1) as

presented by Törnqvist et al.(1985)

Mapping Function Mapping Function

X2 − X1

X1
Y − 1

X2 − X1

2(X−1
1 + X−1

2 )−1

1
2
(Y − 1)(1 + 1/Y )

X2 − X1

X2
1 − 1

Y

X2 − X1

min(X1, X2)
Y − 1

min(1, Y )

X2 − X1

(X1 + X2)/2
Y − 1

(1 + Y )/2
X2 − X1

max(X1, X2)
Y − 1

max(1, Y )

X2 − X1√
X1X2

Y − 1√
Y

X2 − X1

K(X1, X2)
Y − 1

K(1, Y )

Statistical properties of two ratio measures. In this paragraph, two ratio measures which

has been applied in the clinical trial are shown. As a measure of ratio, percent change from

baseline (PC), PC = (X2 − X1)/X1, is often used in a trial. In addition, symmetrized percent

change (SPC)，SPC = (X2 − X1)/(X1 + X2), are sometimes also used in trials(Berry,1989).

Bonate(2000) and Törnqvistnqvist, et al. (1985) shows the modified SPC which is defined as

the mean of two values for a numerator which is (X2 − X1)/
{

1
2 × (X1 + X2)

}
.

The PC means ”the proportion of increase (or decrease) for pre-value”, and is acceptable

from the clinical point of view because of the easy interpretation. On the other hand, some

statistical difficulties are pointed out to PC. Senn & Julious(2009) said that the statistical

analysis based on the parametric are not recommended for PC, because PC(or ratio of two

values) is not normal even if pre- and post-data are normal. Asakura et al.,(2011) investigated

the statistical properties of ratio on condition that two values are normal, summarized the

statistical issues of ratio and gave a warning for using the ratio to the estimation of effect.

Pharm-Gia et al.(2006) gave the exact closed form expression of the density of X2/X1 , where

X1 and X2 are normal random variables, in terms of Hermite and confluent hypergeometric

functions, and show the skewness distribution in some situation. On the other hand, Berry

(1989) introduced the SPC as the modified percent change with good statistical properties in

the medical field. Brouwers & Mohr(1989) argued that the advantage of using SPC over the PC

is that the transformed variable dose not depend on the denominator used in the transformation

and the resultant distribution is symmetrical about its mean. Berry & Ayers(2006) showed the

simulation results under independent, additive and multiplicative correlation structures of pre-

and post-data for parametric and nonparametric analyses. And Berry & Ayers(2006) concluded
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that simple ANOVA on SPC had power equal or greater than alternative analysis methods

except for independence structure. However, the interpretation of SPC may not be intuitive for

those accustomed to thinking in terms of PC. For example, if SPC is −0.1 or −0.2, then the

post-data shows to reduce form pre-data, but it is difficult to interpret the value of −0.1 or −0.2.

Concerning this point, Koti(2001) suggested that SPC is obscurant in nature. However, the

same can be said for many statistical methods that are valuable in making inferences, such as

taking the logarithm and most nonparametric tests(Berry & Ayers, 2006). For interpretability

of analysis results, Berry (1989) suggested transforming SPC to the PC scale using the inverse

transformation: robust percent change RPC = 2 × SPC/(1 − SPC). For example, if SPC is

equal to −0.25 for a particular treatment arm, then RPC = −0.4.

Application example of difference or ratio measures in clinical trial. As some example

of measures, the difference which is defined as D = X2−X1 is used for the treatment evaluation

for patients with high-blood pressure based on the diastolic blood pressure or systolic blood

pressure (Adachi et al., 2009), for patients with pain, such as neuropathic pain or pain of

osteoarthritis of the knee, based on the 11-point rating scale or 100mm visual analog scale

(Satoh et al.，2010: Lane et al., 2010) and for patients with glaucoma based on the ocular

pressure (Kitazawa et al., 2009)

As the ratio measures, the percent change (PC) which is defined as PC = (X2 −X1)/X1 =

(X2/X1) + 1 are often used for treatment evaluation. On the other hand, symmetrized percent

change which is defined as SPC = (X2 −X1)/(X1 + X2) = {(X2/X1) − 1} / {1 + (X2/X1)} are

sometimes used. As examples of clinical evaluation, PC are applied to the treatment evaluation

of patients with high-density lipoprotein cholesterol (Adachi et al., 2009), of patients with urge

to urinate or urge incontinence based on the number of acraturesis (Homma et al.，2003), of

patients with climacteric disorder based on the number of hot flush (Endrikat et al., 2007). SPC

is applied to the treatment evaluation of patients with partial epilepsy based on the seizure

frequency(Yamauchi et al., 2006) and evaluation of male patients with osteoporotic fracture

based on the physical activity (anney et al., 2010).

1.2 Motivation

As I mentioned in the previous section, PC and SPC as the ratio measures are investigated in

some aspects. However, past findings are based on limited researches such as the investigations

of PC assumed as the bivariate normal distribution in pre- and post-data. In a clinical trial,

data follows not only normal distribution but also positive skew distribution such as log-normal

distribution or more positive skew distribution than log-normal(Maruo et al., 2008). Therefore,
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we need to investigate the statistical properties of two ratio measures, PC and SPC, in various

distributions of pre- and post-data. In this paper, we show more deeply investigation of two

ratio measures as follows,

• We derive the probability distribution function (pdf) of two ratio measures, percent change

(PC) and symmetrized percent change (SPC)

• We evaluate the relationship between the skewness of two ratio measures and the distri-

bution of pre- and post-data

• We evaluate the performance of two ratio measures to detect the treatment difference

within pre- and post-data or between two groups based on the simulation

• We propose how to apply the two measures in various situations

• We show the relationship between ratio measure (SPC) and coefficient of variation (CV )

1.3 Components of this paper

In section 2, we define the three kinds of distributions of the pre- and post-data, which are

bivariate normal, bivariate log-normal and bivariate power normal distribution, and review some

statistical properties of the distributions. In section 3, we derive the probability density function

(pdf) of ratio measures and evaluate the skewness of distribution in each condition. In addition,

we declare the relationship between ratio measures and coefficient of variation between pre- and

post data with correlation. In section 4, we conduct simulations to evaluate the performance to

detect the treatment difference within pre- and post-data or between two groups based on the

simulations. In addition, we show a case example to apply SPC. In section 5, we describe the

summary results, findings of this research and future investigation plan.
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Section 2

Definition of the distributions for

pre- and post-data

In this chapter, firstly, we introduce bivariate normal distribution and bivariate log-normal

distribution assumed as pre- and post-data distribution generally used. However, distributions

of pre- and post-data in real situations such as in clinical trials are sometimes not based on these

two distributions. Therefore, we also introduce the bivariate power normal distribution and will

evaluate properties of ratio measures comprehensively in a later chapter.

2.1 Commonly used distributions for pre- and post-data

Bivariate normal distribution (BN). Let the random variables Xi(i = 1, 2) denote the

response of pre- and post-data following bivariate normal distribution, and the variables satisfy

(X1, X2) ∼ BN(µ1, µ2, σ1, σ2, ρ), where µi is the location parameters, σi is the scale parameters

and ρ is the correlation parameter between two random variables of pre- and post-data. Then,

the probability density function (pdf) of random variable Xi(i = 1, 2) which follows a bivariate

normal distribution is,

fBN (x1, x2) =
1

2πσ1σ2

√
1 − ρ2

× exp

[
− 1

2(1 − ρ2)

{(
x1 − µ1

σ1

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+
(

x2 − µ2

σ2

)2
}]

.

Bivariate log-normal distribution (BLN). Let the positive random variables Xi(i = 1, 2)

denote the response of pre- and post-data following bivariate log-normal distribution, and the

7



variables satisfy (X1, X2) ∼ BLN(µ1, µ2, σ1, σ2, ρ). Then, the pdf of random variable Xi(i = 1, 2)

which follows a bivariate log-normal distribution is,

fBLN (x1, x2) =
1

2πσ1σ2

√
1 − ρ2x1x2

× exp

[
− 1

2(1 − ρ2)

{(
logx1 − µ1

σ1

)2

− 2ρ

(
logx1 − µ1

σ1

)(
logx2 − µ2

σ2

)
+
(

logx2 − µ2

σ2

)2
}]

2.2 Comprehensive distribution for pre- and post-data

Bivariate power normal distribution(BPN). Bivariate power normal distribution is a

parametric class of probability distributions which includes the bivariate truncated normal and

the bivariate log-normal as a special case. The bivariate power normal distribution is on the

basis of the Box and Cox power-transformation which is defined by positive random variables

Xi(i = 1, 2)

X
(λj)
j =


X

λj

j − 1
λj

λj ̸= 0

log Xj λj = 0

(2.1)

where the range of X
(λj)
j is −1/λj < X

(λj)
j < +∞ when λj > 0 and is −∞ < X

(λj)
j < −1/λj

when λj < 0.

Let a power transformed variables X
(λi)
i of Xi denote the truncated bivariate normal distri-

bution with mean vector µ = (µ1, µ2)T and variance covariance matrix

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 . (2.2)

Then, (X1, X2) is to have the bivariate power-normal distribution if the marginal pdf is

fBPN (x1, x2) =
xλ1−1

1 xλ2−1
2

A(K)
gBPN

(
xλ1−1

1 , xλ2−1
2

)
, x1, x2 > 0 (2.3)

where

gBPN

(
xλ1−1

1 , xλ2−1
2

)
=

1

2πσ1σ2

√
1 − ρ2

exp

{
−Q(x(λ1)

1 , x
(λ2)
2 )

2

}
(2.4)

and

Q(x(λ1)
1 , x

(λ2)
2 ) =

1
1 − ρ2

×
(

x
(λ1)
1 − µ1

σ1

)2

− 2ρ

(
x

(λ1)
1 − µ1

σ1

)(
x

(λ2)
2 − µ2

σ2

)
+

(
x

(λ2)
2 − µ2

σ2

)2


8



where λj , µj and σj are shape, location and scale parameters and ρ is a correlation parameter

between X
(λ1)
1 and X

(λ2)
2 (Goto & Hamasaki, 2002 : Hamasaki & Goto, 2002). A(K) is the

probability proportional constant term and is given by,

A(K) =
∫ b2

a2

∫ b1

a1

ϕ (x1, x2 : ρ) dx1dx2, (2.5)

in terms of the joint pdf of the bivariate standard normal distribution

ϕ (x1, x2 : ρ) =
1

2π
√

1 − ρ2
exp

{
−x2

1 − 2ρx1x2 + x2
2

2(1 − ρ)2

}
, (2.6)

with the values of aj and bj given by in the following,

• aj = −kj , bj = +∞ when λj > 0

• aj = −∞, bj = +∞ when λj = 0

• aj = −∞, bj = −kj when λj < 0

and the standardized truncation point kj is given by

kj =
λjµj + 1

λjσj
, j = 1, 2. (2.7)

The power normal distribution fits a large variety of distributions, because it has the shape

parameter. Goto et al. (1983) mentioned four considering points about the inclusive model.

1. The consistency of logic about statistical analyses process.

2. The flexibility of the model.

3. The ease of the model fitting evaluation.

4. The ease of computation.

Parameter Setting of BPN. In the previous paragraph, a bivariate power normal distribu-

tion, BPN (λ1, λ2, µ1, µ2, σ1, σ2, ρ) is introduced as a distribution of pre- and post-data. In this

paragraph, we consider the reduction of location parameter from pre- to post-data (µ1 > µ2)

with same shape and scale parameters between pre- and post-data (λ1 = λ2 = λ, σ1 = σ2 = σ).

This means (X1, X2) ∼ BPN(λ, λ, µ1, µ2, σ, σ, ρ).

However, it is difficult to set these location (µi) and scale (σi) parameters for simulations, since
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it is difficult to interpret the values of these parameters which vary greatly depending on the

value of λi. Therefore, we use the median of original scale (ξ0.5) as location-related parameter

and the τ = (ξ0.75 − ξ0.25)/ξ0.5 as scale-related parameter for easiness of parameter setting and

interpretation (Maruo & Goto, 2012; Maruo, et al., 2011). ξp is the 100p percentile of power

normal distribution and is given by

ξp =

 {λ(µ + σzp∗) + 1}
1
λ , λ ̸= 0,

exp(µ + σzp), λ = 0,

where zp and z∗p are the p and p∗ percentile of standard normal distribution, and p∗ is given by

p∗ =

1 − A(K)(1 − p), λ > 0,

A(K)p, λ < 0.

Moreover, the change of location parameter between pre- and post-data defines from percent

change from pre-data of original scale (R), and the relationship is defined as {the median of

post-data original scale}= ξ0.5×(100−R)/100 (0 < R < 100). In summary, the distributions are

identified based on reparametrization method {λ, ξ0.5, τ, R, ρ} instead of {λ, µ1, µ2, σ, ρ}. The

detail of reparametrization method is shown in appendix (Maruo, et al., 2011; Maruo & Goto,

2012).

Figure 2.1 shows the pdf of BPN with the parameters of reparametrization method. In the

figure, shape parameters are from -1 to +1 by 1 (λ = −1, 0, +1), scale-like parameters are from

0.2 to 0.8 by 0.2 (τ = 0.2, 0.4, 0.6, 0.8), median of pre-data is 100 (ξ0.5 = 100), percent change

from pre-data is 0 (R = 0) and correlation parameter is ρ = 0.8. The distribution is positive

skewed when λ is less than 1, and the scale becomes large when the value of τ increases.

Applications of BPN to clinical data. It is expected that BPN is applicable to distributions

of various clinical data, because BPN includes the shape parameters (λ) and can set the various

distributions including more skewed distributions. For example, Goto & Uesaka (1980) presented

the λ̂ of blood serum component of laboratory test. Maruo et al.(2008) applied the univariate

power normal distribution to various laboratory test data and estimated the shape parameter λ̂

with the range between −1 and 0.25 as shown in figure 2.1 and evaluated the loss of information

when we assume the normal or log-normal distribution to laboratory data. Hamasaki & Goto

(2002) applied the BPN to the clinical data in both diastolic blood pressure (DBP) and systolic

blood pressure (SBP) of the clinical trial to evaluate the treatment effect of calcium blocker,

and said that SBP would be more positive skewed distribution than log-normal distribution

because of λ̂ < 0 and DBP would be normal distribution because of λ̂ ≈ 1 in the data. Goto et

al.(2007) applied the power normal distribution to partial epilepsy data and estimated λ̂ ≈ 0,
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Figure 2.1: PDF of BPN with λ = −1, 0, +1 and τ = 0.2(upper)，τ = 0.4, τ = 0.6, τ =

0.8(bottom)）
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which means that it is appropriate to analyze the data based on the log-normal distribution.

Table 2.1: λ̂ of laboratory test: the modification of table 2 in Maruo et al.(2008)

Laboratory test λ̂ Laboratory test λ̂

ALP 0.25 TC 0.25

GOT -1 TG -0.25

GPT -0.5 HDL-C 0

γ-GTP -0.5
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Section 3

Statistical properties of ratio

measures

3.1 Evaluation based on the bivariate normal distribution

Probability density function of PC and SPC. Pham-Gia et al. (2006) gave the exact

closed form expression of the density of X1/X2 , where X1 and X2 are normal random vari-

ables, in terms of Hermite and confluent hypergeometric functions. In this section, we give the

probability density function of PC and SPC based on Pham-Gia et al. (2006) .

Let X1 and X2 be the two random variables of bivariate normal distribution with parame-

ters BN(µ1, µ2, σ, σ, ρ). Strictly speaking, suppose that truncated bivariate normal distribution,

TBN(µ1, µ2, σ, σ, ρ), for X1 and X2, because we consider the data which is X1 ≥ 0, X2 ≥ 0.

Then the distribution of PC is

hBN(PC)(v) =
K1

2(1 − ρ)(1 + v) + v2
H−2(ξ1(v)), (3.1)

where H−2(·) is the Hermite function,

H−2(z) =
∫ ∞

0
te−t2−2tzdt

and
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ξ1(v) = − (1 − ρ)(µ1 + µ2) + (µ2 − ρµ1)v
σ
√

2(1 − ρ2){2(1 − ρ)(1 + v) + v2}
,

K1 =

√
1 − ρ2

πΦ2(0, 0;−µ1,−µ2, σ, σ, ρ)

× exp
{
−µ2

1 − 2ρµ1µ2 + µ2
2

2(1 − ρ2)σ2

}
.

And the pdf of SPC is

hBN(SPC)(w) =
K2

1 − ρ + (1 + ρ)w2
H−2(ξ2(w)) (3.2)

where H−2(·) is also the Hermite function as well as the case of hBN(PC)(v) and

ξ2(w) = − 1
2σ
√

(1 − ρ2){1 − ρ + (1 + ρ)w2}

×{(1 − ρ)(µ1 + µ2) + (1 + ρ)(µ2 − µ1)w} ,

K2 =

√
1 − ρ2

πΦ2(0, 0;−µ1,−µ2, σ, σ, ρ)
× exp

{
−µ2

1 − 2ρµ1µ2 + µ2
2

2(1 − ρ2)σ2

}
,

where Φ2(·) is the cumulative distribution function of standard normal distribution.

Consider the situation with small coefficients of variation which are (σ/µ1 or σ/µ2) to ignore the

affect of truncation. Then, Φ2(0, 0;−µ1,−µ2, σ, σ, ρ) is approximated by 1, and we can assume

the situation that X1, X2 ≥ 0. Figure 3.1 shows the pdf of PC and SPC with the parameters

that µ2 − µ1 = 0,−0.3,−1,σ = 5, 10 and ρ = 0, 0.4, 0.8 to figure out the shapes of the pdf. The

pdf of SPC is symmetrical comared to the pdf of PC based on this figure.
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Figure 3.1: The pdf of PC and SPC based on bivariate normal distribution
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Skewness of PC and SPC. Figure 3.2 shows the skewness of PC or SPC calculated based

on each pdf. We assume that two random variables, X1, X2, are based on the bivariate normal

distribution with the parameters BN(µ1, µ2, σ
2, σ2, ρ) which are set within the range of µ1 = 10,

µ2 = 9, σ = 1 and ρ = 0 ∼ 0.9. The PC do not skew so much and so the difference of skewness

between PC and SPC became small.
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Figure 3.2: The relationship between ρ and skewness of PC and SPC based on bivariate normal

distribution

3.2 Evaluation based on the bivariate log-normal distribution

Probability density function of PC and SPC. Let X1 and X2 be two random variables

of bivariate log-normal distribution with parameters BLN(µ1, µ2, σ, σ, ρ). Then, we define the

pdfs of PC is hBLN(PC)(v) and the pdfs of SPC is hBLN(SPC)(w), and these pdfs are
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hBLN(PC)(v) =
1

2σ (1 + v)
√

π (1 − ρ)

× exp
[
− 1

4σ2 (1 − ρ)
{log (1 + v) − (µ2 − µ1)}2

]
, (3.3)

hBLN(SPC)(w) =
1

σ(1 − w2)
√

π(1 − ρ)

× exp

[
− 1

4σ2(1 − ρ)

{
log
(

1 − w

1 + w

)
+ µ2 − µ1

}2
]

, (3.4)

where µ1 and µ2 are the mean of log-transformed two variables (X1 and X2), σ2 is the variance

and ρ is the correlation.

Figure 3.3 shows the pdf of SPC and PC with the parameters that R = 0, 0.4, σ = 0.5, 1,

ρ = 0, 0.4, 0.8 to figure out the shapes of the pdf. The R is the median of percent change about

post-data which is calculated by the exp(µ2) = (1 − R) exp(µ1). R = 0 means that the median

of pre-data is same as the median of post-data, and R = 0.4 means the median of post-data had

the 40 % reduction from pre-data. In these figures, all PC shows the positive skew distribution.

On the other hand, SPC shows the symmetrized distributions.
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Figure 3.3: The pdf of PC and SPC based on bivariate log-normal distribution
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Skewness of PC and SPC. In this paragraph, we evaluated the skewness of PC and SPC

calculated by numerical integration method based on the pdfs, quantitatively. Figure 3.4 shows

the relationship between correlation and skewness of PC and SPC. The parameter combinations

used for the skewness calculation in this figure are that µ1 = 1, µ2 = 0.9, σ = 1 and ρ = 0 ∼ 0.9.

The skewness of SPC is smaller than PC without regard to correlation.
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Figure 3.4: The relationship between ρ and skewness of PC and SPC based on bivariate log-

normal distribution

3.3 Evaluation based on the bivariate power-normal distribu-

tion

Probability density function of PC and SPC. Let X1 and X2 be the two positive random

variables of bivariate power normal distribution with parameters BPN(λ, λ, µ1, µ2, σ, σ, ρ). The

pdfs of PC or SPC are calculated by using the variable transformation method. The two random

variables, X1 and X2, of BPND in section 2 are transformed to X1 = U and X2 = U(1 + V ) for

PC, which is equal to U = X1 and V = (X2 − X1)/X1. On the other hand, the two variables

are also transformed to X1 = U and X2 = U × (1 + W )/(1 − W ) for SPC, which is equal to
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U = X1 and W = (X2 − X1)/(X1 + X2). Then, the pdfs of PC as hBPN(PC)(v) is given by,

hBPN(PC)(v) =
∫

u × u2λ−2(1 + v)λ−1

2πσ2
√

1 − ρ2A(K)

× exp
[
−1

2

(
M(λ) − µ

)T
Σ−1

(
M(λ) − µ

)]
du (3.5)

where A(K) is the probability proportional constant term shown in section 2 and

M(λ) =
(
u(λ), {u (1 + v)}(λ)

)
,

µ = (µ1, µ2) ,

Σ =

 σ2 ρσ2

ρσ2 σ2

 .

And the components of M(λ) are

u(λ) =


uλ − 1

λ
λ ̸= 0

log u λ = 0

and

{u (1 + v)}(λ) =


uλ (1 + v)λ − 1

λ
λ ̸= 0

log {u(1 + v)} λ = 0.

Next, the pdf of SPC as hBPN(SPC)(w) is given by

hBPN(SPC)(w) =
∫

u

(1 − w)2
×

uλ−1

{
1 + w

1 − w
× u

}λ−1

πσ2
√

1 − ρ2A(K)

× exp
[
−1

2

(
N(λ) − µ

)T
Σ−1

(
N(λ) − µ

)]
du (3.6)

where

N(λ) =

(
u(λ),

(
1 + v

1 − v
× u

)(λ)
)
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and A(K) is also the probability proportional constant term shown in section 2, µ and Σ is the

same as ones of PC. The components of N(λ) are

u(λ) =


uλ − 1

λ
λ ̸= 0

log u λ = 0

and

(
1 + v

1 − v
× u

)(λ)

=



(
1 + v

1 − v
× u

)λ

− 1

λ
λ ̸= 0

log
(

1 + v

1 − v
× u

)
λ = 0.

3.3.1 Definition of the distribution of skewness

When the shape parameter of power normal distribution is equal to or larger than 0 generally,

it is possible to calculate any moment and skewness. However, skewness cannot be calculated

in −3 ≤ λ < 0, because three order moment does not exist(Goto et al.，1983). In this section,

we define the alternative criterion about skewness, which is

η =
ξ0.975 − ξ0.5

ξ0.5 − ξ0.025
.

When the distributions become more symmetrical, η will become nearer one. And, when η

is larger than one, the distributions become more positively skewed. On the other hand, the

distributions become negative skew, when η is less than 0.

3.3.2 Detection of factors to affect the skewness of distributions

Factors to affect the distribution of skewness of PC or SPC were investigated based on ANOVA.

In this analysis, η of PC or SPC is set as response value, shape(λ), scale-like(τ), percent change

from pre-data (R) and correlation (ρ) were included as factor. In addition, the interactions

between two factors of four parameters were also included in the model. In the clinical data,

such as epilepsy (Goto et al., 2007) and laboratory data (Uesaka & Goto:1980, Maruo et al.:

2007) are based on the positive skew distribution in many cases, therefore shape parameters are

set from -1 to 1 by 0.5 (λ = −1,−0.5, 0, 0.5, +1). Percent change from pre-data are set from

10 to 40 by 10(R = 10, 20, 30, 40). Scale-like parameter are set from 0.2 to 1.0 by 0.2 (τ =

0.2, 0.4, 0.6, 0.8, 1.0). Correlation parameter are set from 0.2 to 0.8 by 0.2 (ρ = 0.2, 0.4, 0.6, 0.8).

The η of PC or SPC were calculated based on the numerical integral for all combinations of
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Table 3.1: Sum of square, F value and contribution rate of PC or SPC based on the ANOVA

The η of PC is response. The η of SPC is response.

Factor Sum of square F value Cont. Rate (%) Sum of square F value Cont. Rate (%)

λ 52.573 273.359 9.94 0.316 258.289 38.97

τ 315.690 1641.466 59.70 0.091 74.131 11.18

ρ 106.838 555.514 20.20 0.238 193.977 29.27

R 9.605 49.941 1.82 0.013 10.693 1.61

λ × τ 17.868 92.904 3.38 0.021 16.852 2.54

λ × ρ 3.266 16.979 0.62 0.009 7.729 1.17

λ × R 1.993 10.365 0.38 0.059 48.415 7.30

τ × ρ 19.814 103.026 3.75 0.007 5.660 0.85

τ × R 1.126 5.854 0.21 0.015 12.637 1.91

ρ × R 0.006 0.031 near 0 0.042 34.439 5.20

these four parameter, which were 400 combination cases (= 5 levels of λ × 4 levels of R × 5

levels of τ × 4 levels of ρ) as total.

Table 3.1 shows the sum of squares, F value and contribution rate which is defined as the

sum of squares in each factor is divided by the sum of squares in total factors × 100. For PC,

the τ was the largest contribution to distribution of skewness (59.70 %). The second largest

contribution was ρ (20.20 %), and the third was λ (9.94 %). However, the R did not have a

high contribution to the distribution of skewness (1.82 %). For interactions between two factors

of PC, λ × τ (3.38 %) and τ × ρ (3.75 %) had more contribution than others. On the other

hand, the contribution rate of τ , ρ and λ for SPC which had high contribution for PC were

11.18 %, 29.27 % and 38.97 % respectively. These three factors of SPC were also contributed

highly as well as PC. The contribution of R for SPC was also low (1.61 %). For interactions,

SPC had a different trend to PC, and the contribution of λ × R (7.30 %) and ρ × R (5.20 %)

was high. However, the sum of squares of SPC in each factor was much smaller than PC, and

it was shown that each factor of SPC was contribution less to skewness of distributions.

3.3.3 Graphical evaluation of skewness of distribution

In this section, we evaluated the effect of three parameters which had a high contribution to

skewness of PC, graphically. The three parameters were λ, τ and ρ, and the R which had less

contribution to the skewness of PC were fixed as 10 %. Figure 3.5 to 3.8 shows the relationship
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between the skewness of the distribution (η) of PC or SPC and the three parameters of BPN

(λ, τ and ρ). The λ set 5 levels which are -1, -0.5, 0, +0.5 and +1. The τ set 4 levels which

were 0.2, 0.4, 0.6 and 0.8. The ρ set 4 levels which were 0.2, 0.4, 0.6 and 0.8.

For PC, the η increased with the absolute value of λ (λ = 1 or −1) and this trend became

remarkable especially when τ was equal to or more than 0.6. And the η increased with τ

increasing or decreases with ρ increasing. When λ < 0, the distribution of pre- and post-data

became more positively skewed than log-normal distribution, and might have the case that post-

value (X1) was much larger than post-value (X2). Then, the η of PC was larger than one and

the η increased with increasing τ . When λ > 0, the distribution of pre- and post-data became

more negative skew and occured the value near 0. Especially, when τ was large, the truncation

in the left side occured (A(K) < 1) and a lot of values near X1 = 0 generated. Then, the η of

PC increased. For ρ, the η of PC increased with decreasing ρ, because the difference between

X1 and X2 became large.

For SPC, the skewness of the distribution (η) was almost one in all conditions, and this

means that all distributions of SPC show almost all symmetry in all combinations of the BPN

parameters.
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Figure 3.5: Relationship between η of PC and λ of BPN (ρ = 0.2, 0.4 and R = 10 %)
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Figure 3.6: Relationship between η of PC and λ of BPN (ρ = 0.6, 0.8 and R = 10 %)
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Figure 3.7: Relationship between η of SPC and λ of BPN (ρ = 0.2, 0.4 and R = 10 %)
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Figure 3.8: Relationship between η of SPC and λ of BPN (ρ = 0.6, 0.8 and R = 10 %)
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3.4 Relationship between symmetrized percent change and co-

efficient of variation

On the other hand, we considered an another measure which is defined as (X2−X1)/1
2(X2+X1).

The numerator of the measure is a difference of two data and the denominator is a mean.

When we regard the difference of denominator as an index of variation, the measure may be

considered as a variation srandarized by mean, such as a coefficient of variation. In fact, this

measure is called Variability (%) in the bioanalytical field and is used for evaluating the level

of reproducibility of assay results using incurred samples (Mario et al., 2007 and Douglas et al.,

2009). The variability is used in a fixed error limit method and a model similar to the familiar

4-6-X QC criteria can be applied. For small molecules (non-ligand binding) two thirds of the

repeat samples (X2) should agree within 20 % and for ligand-binding assay, two thirds of the

repeat samples should agree within 30 %. The variability (% difference) should be calculated

using the mean of the original and repeat results as described by the following formula:

Variability(%) =
Repeat(X2) − Original(X1)

1
2
(X1 + X2)

× 100

Graphical comparison of pdf. In this paragraph, we investigate the relationship between

SPC (Variability) and CV of two samples. Figure 3.9 shows the relationship between SPC and

CV . The CV of two samples is given by |X2−X1|/(X1 +X2) and the numerator of this formula

is replaced by the difference of two samples with absolute value.

To figure out the distribution of SPC and CV graphically, we show the histogram of SPC

and CV in figure 3.10 on condition that two samples follows the bivariate normal distribution

(BN) and bivariate log-normal distribution (BLN) . The upper graph is based on the BN with pa-

rameters of BN(10, 9, 1, 1, ρ) and the bottom is on the BLN with parameters of BLN(10, 9, 1, 1, ρ).

The ρ is from 0.2 to 0.8 by 0.2 in all graphs. We generate the 10,000 random samples with each

parameters and create histograms. From these figures, the distribution of CV is the distribu-

tions folded back negative value of SPC to positive, because of the formula of absolute value of

numerator.
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Section 4

Simulations and case studies

In this section, we evaluate the effect of the statistical test results based on the simulation in

case the distributions of PC or SPC do not follow the assumed distribution in each test, such

as normal. In addition, we also show the case example to apply the power normal distribution

to SPC.

4.1 Simulation 1: One sample comparison

4.1.1 Design of simulation 1

We consider the situation where treatment effect is to reduce the post-data from pre-data, which

is R > 0, and then we investigate the power of one-sample test for PC or SPC. The objective

of this simulation is to evaluate the relationship between the distribution of pre- and post data

based on the BPN and the power of the one-sample test about PC or SPC.

Hypothesis of the statistical test. In this simulation, the following hypotheses with 0.05 of

significance level are set for three measures PC, SPC, DTS. The DTS is called ”Difference on

Transformed Scale” and is defined as X
(λ)
2 −X

(λ)
1 . One-sample t-test is used for PC, SPC and

DTS and Wilcoxon Signed Rank Test (WSRT) are also used for PC and SPC. The hypotheses

of interest are based on one-side and are as follows,

H0 : θ = 0,

vs H1 : θ < 0,

where θ is the expected value or median of PC, SPC and DTS(expected value only) in one

sample test. In addition, we evaluate the hypotheses based on the two sides,

H0 : θ = 0,

vs H1 : θ ̸= 0.
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Parameter setting. Table 4.1, 4.2 and 4.3 shows the parameters combination of BPN as-

sumed as pre- and post-data distribution. We set the 5 levels λ (= −1,−0.5, 0, 0.5, 1), 4 levels

τ (= 0.2, 0.4, 0.6, 0.8), 4 levels ρ (= 0.2, 0.4, 0.6, 0.8) and R(=0, 10 %), and then calculate the

µ1, µ2, σ1 and σ2 based on the reparametrization method (Maruo, et al., 2011; Maruo & Goto,

2012). Sample size is calculated based on the DTS(t-test), because DTS is normal in many

cases and has highest power. Minimum sample size to exceed the power of 0.8 for DTS(t-test)

sets in both hypotheses.

We calculate the proportion of significance per total numbers of simulations about DTS,

PC and SPC, when one-sample t-test or Wilcoxon Signed Rank Test (PC and SPC only)

are applied. Total numbers of simulation is 100,000 times. The (tentative) type I error rate is

defined as the proportion of significance when R = 0, and the (tentative) power is defined as

the proportion of significance when R = 10. We can evaluate the loss of information based on

the difference from the power of PC or SPC to 0.8, because sample size sets near the value of

0.8 for power of DTS.
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Table 4.1: The combination of parameters for simulation and sample size (λ = −1 and −0.5)

λ med1 R τ ρ µ1 µ2 σ1 σ2 n(one side) n(two sides)

-1 100 10 0.2 0.2 0.990 0.989 0.00147 0.00147 18 44

-1 100 10 0.2 0.4 0.990 0.989 0.00147 0.00147 13 34

-1 100 10 0.2 0.6 0.990 0.989 0.00147 0.00147 9 24

-1 100 10 0.2 0.8 0.990 0.989 0.00147 0.00147 5 12

-1 100 10 0.4 0.2 0.990 0.989 0.00286 0.00286 66 166

-1 100 10 0.4 0.4 0.990 0.989 0.00286 0.00286 49 126

-1 100 10 0.4 0.6 0.990 0.989 0.00286 0.00286 33 84

-1 100 10 0.4 0.8 0.990 0.989 0.00286 0.00286 17 42

-1 100 10 0.6 0.2 0.990 0.989 0.00415 0.00415 143 368

-1 100 10 0.6 0.4 0.990 0.989 0.00415 0.00415 106 270

-1 100 10 0.6 0.6 0.990 0.989 0.00415 0.00415 71 180

-1 100 10 0.6 0.8 0.990 0.989 0.00415 0.00415 36 90

-1 100 10 0.8 0.2 0.990 0.989 0.00549 0.00549 288 726

-1 100 10 0.8 0.4 0.990 0.989 0.00549 0.00549 208 534

-1 100 10 0.8 0.6 0.990 0.989 0.00549 0.00549 134 340

-1 100 10 0.8 0.8 0.990 0.989 0.00549 0.00549 65 166

-0.5 100 10 0.2 0.2 1.80 1.79 0.0148 0.0148 19 48

-0.5 100 10 0.2 0.4 1.80 1.79 0.0148 0.0148 14 36

-0.5 100 10 0.2 0.6 1.80 1.79 0.0148 0.0148 10 24

-0.5 100 10 0.2 0.8 1.80 1.79 0.0148 0.0148 5 12

-0.5 100 10 0.4 0.2 1.80 1.79 0.0291 0.0291 72 182

-0.5 100 10 0.4 0.4 1.80 1.79 0.0291 0.0291 53 136

-0.5 100 10 0.4 0.6 1.80 1.79 0.0291 0.0291 36 92

-0.5 100 10 0.4 0.8 1.80 1.79 0.0291 0.0291 18 46

-0.5 100 10 0.6 0.2 1.80 1.79 0.0427 0.0427 157 396

-0.5 100 10 0.6 0.4 1.80 1.79 0.0427 0.0427 115 290

-0.5 100 10 0.6 0.6 1.80 1.79 0.0427 0.0427 77 194

-0.5 100 10 0.6 0.8 1.80 1.79 0.0427 0.0427 39 100

-0.5 100 10 0.8 0.2 1.80 1.79 0.0553 0.0553 260 658

-0.5 100 10 0.8 0.4 1.80 1.79 0.0553 0.0553 192 492

-0.5 100 10 0.8 0.6 1.80 1.79 0.0553 0.0553 130 328

-0.5 100 10 0.8 0.8 1.80 1.79 0.0553 0.0553 66 166
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Table 4.2: The combination of parameters for simulation and sample size (λ = 0 and +0.5)

λ med1 R τ ρ µ1 µ2 σ1 σ2 n(one side) n(two sides)

0 100 10 0.2 0.2 4.61 4.50 0.148 0.148 20 50

0 100 10 0.2 0.4 4.61 4.50 0.148 0.148 15 38

0 100 10 0.2 0.6 4.61 4.50 0.148 0.148 10 26

0 100 10 0.2 0.8 4.61 4.50 0.148 0.148 5 14

0 100 10 0.4 0.2 4.61 4.50 0.295 0.295 78 198

0 100 10 0.4 0.4 4.61 4.50 0.295 0.295 59 148

0 100 10 0.4 0.6 4.61 4.50 0.295 0.295 39 100

0 100 10 0.4 0.8 4.61 4.50 0.295 0.295 20 50

0 100 10 0.6 0.2 4.61 4.50 0.438 0.438 172 436

0 100 10 0.6 0.4 4.61 4.50 0.438 0.438 129 328

0 100 10 0.6 0.6 4.61 4.50 0.438 0.438 86 218

0 100 10 0.6 0.8 4.61 4.50 0.438 0.438 43 110

0 100 10 0.8 0.2 4.61 4.50 0.578 0.578 299 758

0 100 10 0.8 0.4 4.61 4.50 0.578 0.578 224 570

0 100 10 0.8 0.6 4.61 4.50 0.578 0.578 150 380

0 100 10 0.8 0.8 4.61 4.50 0.578 0.578 75 190

0.5 100 10 0.2 0.2 18.0 17.0 1.48 1.48 21 54

0.5 100 10 0.2 0.4 18.0 17.0 1.48 1.48 16 40

0.5 100 10 0.2 0.6 18.0 17.0 1.48 1.48 11 28

0.5 100 10 0.2 0.8 18.0 17.0 1.48 1.48 6 14

0.5 100 10 0.4 0.2 18.0 17.0 2.97 2.97 84 208

0.5 100 10 0.4 0.4 18.0 17.0 2.97 2.97 63 160

0.5 100 10 0.4 0.6 18.0 17.0 2.97 2.97 42 106

0.5 100 10 0.4 0.8 18.0 17.0 2.97 2.97 21 54

0.5 100 10 0.6 0.2 18.0 17.0 4.45 4.45 185 478

0.5 100 10 0.6 0.4 18.0 17.0 4.45 4.45 141 352

0.5 100 10 0.6 0.6 18.0 17.0 4.45 4.45 94 240

0.5 100 10 0.6 0.8 18.0 17.0 4.45 4.45 47 118

0.5 100 10 0.8 0.2 18.0 17.0 5.93 5.93 337 860

0.5 100 10 0.8 0.4 18.0 17.0 5.93 5.93 253 628

0.5 100 10 0.8 0.6 18.0 17.0 5.93 5.93 167 424

0.5 100 10 0.8 0.8 18.0 17.0 5.93 5.93 83 210
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Table 4.3: The combination of parameters for simulation and sample size (λ = +1)

λ med1 R τ ρ µ1 µ2 σ1 σ2 n(one side) n(two sides)

1 100 10 0.2 0.2 99.0 89.0 14.8 14.8 22 56

1 100 10 0.2 0.4 99.0 89.0 14.8 14.8 17 42

1 100 10 0.2 0.6 99.0 89.0 14.8 14.8 11 28

1 100 10 0.2 0.8 99.0 89.0 14.8 14.8 6 14

1 100 10 0.4 0.2 99.0 89.0 29.7 29.7 89 226

1 100 10 0.4 0.4 99.0 89.0 29.7 29.7 66 166

1 100 10 0.4 0.6 99.0 89.0 29.7 29.7 45 112

1 100 10 0.4 0.8 99.0 89.0 29.7 29.7 22 56

1 100 10 0.6 0.2 98.2 88.2 45.2 45.2 232 590

1 100 10 0.6 0.4 98.2 88.2 45.2 45.2 169 436

1 100 10 0.6 0.6 98.2 88.2 45.2 45.2 112 280

1 100 10 0.6 0.8 98.2 88.2 45.2 45.2 54 138

1 100 10 0.8 0.2 93.3 83.3 64.2 64.2 628 1560

1 100 10 0.8 0.4 93.3 83.3 64.2 64.2 440 1100

1 100 10 0.8 0.6 93.3 83.3 64.2 64.2 271 696

1 100 10 0.8 0.8 93.3 83.3 64.2 64.2 128 322

4.1.2 Results of simulation 1

Figure 4.1 shows the (tentative) type I error rate with one side in each parameter combination.

Tentative type I error rate of three measures were nearly equal to or less than significance level

(0.05) in all parameter combinations. Especially, the (tentative) type I error rate of PC(t-test)

and PC(WSRT) were much less than 0.05. This was because the absolute value order of positive

value was larger than negative value order because of positive skew distribution and expectation

of PC was more than 0, even if µ1 > µ2 (R > 0).

On the other hand, figure 4.3 shows the (tentative) type I error rate with both sides hy-

pothesis (H1 : θ ̸= 0) in each parameter combination. From these figures, the (tentative) type

I error rate of PC was much larger than 0.05 when ρ was small and τ was large, because PC

had significance in the positive expectation value (θ > 0).

Next, we show the results of (tentative) power with one side hypothesis in figure 4.2. The

(tentative) power of DTS(t-test) was nearly equal to 0.8. The (tentative) powers of PC which

was PC(WSRT) and PC(t-test) were less than 0.7 in all parameters combination. This trend

became larger when τ was large or ρ was small. Especially, the (tentative) power of PC(t-test)
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was nearly equal 0 when τ was equal to or larger than 0.6 and ρ was equal to or less than 0.4.

The condition to decrease the (tentative) power of PC depended on the skewness of distribution.

The lager the distribution of skewness was (The larger the η is), the less the (tentative) power

became. The (tentative) power of SPC which are SPC(WSRT) and SPC(t-test) was nearly

equal to 0.8 when τ = 0.4, and was a little less than 0.8 in λ = −1, 1 when τ ≥ 0.6. Regarding

the (tentative) power with both sides hypothesis (H1 : θ ̸= 0) in figure 4.4, the (tentative)

power of PC(t-test) or PC(WSRT) was less than other measures (DTS or SPC), because of

the skewness of the distributions.
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Figure 4.1: The relationship b/w type I error and λ (One sample & Set the 0.05 in one side)
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Figure 4.2: The relationship b/w power and λ (One sample & Set the 0.05 in one side)
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Figure 4.3: The relationship b/w type I error and λ (One sample & Set the 0.05 in both sides)
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Figure 4.4: The relationship b/w power and λ (One sample & Set the 0.05 in both sides)
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4.2 Simulation 2: Two samples comparison

4.2.1 Design of simulation 2

In this section, we evaluate the effect on statistical test of two samples which are treatment

and control groups, when the distribution of PC or SPC has skewness. Pre- and post-data are

assumed as BPN and the PC and SPC are calculated from pre- and post-data. And we also

consider the situation that some effect is to reduce the post-data from pre-data as well as one

sample comparison in previous section.

Hypothesis of the statistical test. In this simulation, the following hypotheses with 0.05

of significance level are set for three measures PC, SPC, DTS. Two-samples t-test is applied

to PC, SPC and DTS and Wilcoxon Rank Sum Test (WRST) is also applied to PC. The PC

and SPC has the same order because these two measures are functions of pre- and post-data

and can show a relational expression(PC = 2 × SPC/(1 − SPC)). Therefore, the statistical

results of PC(WRST) are the same as SPC(WRST). The hypotheses of interest are based on

the one-side and are as follows,

H0 : θT = θC ,

vs H1 : θT < θC ,

where θT or θC are the expected value or median of treatment or control for PC, SPC(expected

value only) and DTS(expected value only) in two samples test. In addition, we also evaluate

the hypotheses based on the two sides,

H0 : θT = θC ,

vs H1 : θT ̸= θC .

Parameter setting. We set the 5 levels λ (= −1,−0.5, 0, 0.5, 1), 4 levels τ (= 0.2, 0.4, 0.6, 0.8),

4 levels ρ (= 0.2, 0.4, 0.6, 0.8) and R(=0, 10 %), and then calculate the µ1, µ2, σ1 and σ2 based

on the reparametrization method in each treatment group(Maruo, et al., 2011; Maruo & Goto,

2012). Sample size is calculated based on the DTS(t-test), because DTS is normal in many

cases and has highest power. Minimum sample size to exceed the power of 0.8 for DTS(t-test)

sets in both hypotheses, and this size is double of one simulation 1.

We calculate the proportion of significance per total numbers of simulations about DTS,

PC and SPC, when two-samples t-test or WRST (PC only) are applied. Total numbers of

simulation is 100,000 times. The (tentative) type I error rate is defined as the proportion of

significance when R = 0, and the (tentative) power is defined as the proportion of significance
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when R = 10. We can evaluate the loss of information based on the difference from the power

of PC or SPC to 0.8, because sample size sets near the value of 0.8 for power of DTS.

4.2.2 Results of simulation 2

Figure 4.5 shows the (tentative) type I error rate for one side hypothesis. The (tentative)

type I error rate of DTS(t-test), SPC(t-test), PC(WRST) were nearly equal to 0.05 in all

parameter combinations. PC(t-test) was also nearly equal to 0.05 when τ = 0.2 and τ = 0.4.

However, PC(t-test) was less than 0.05, when τ=0.6 and λ = −1,+1 or when τ=0.8 and

λ = −1,−0.5, +0.5, +1.

On the other hand, figure 4.7 shows the (tentative) type I error rate for both side hypothesis.

The trends of all measures were the same as the trends for one side hypothesis of figure 4.5.

This was different from one sample results with both sides hypothesis and it was not shown that

there was θT > θC .

Next, we show the results of (tentative) power of two sample test with one side hypothesis in

figure 4.6. DTS(t-test) had the highest (tentative) power and the (tentative) power was nearly

equal to 0.8. The (tentative) power of PC(WRST) and SPC(t-test) was almost same and PC(t-

test) had the lowest (tentative) power. The (tentative) power of PC(WRST), SPC(t-test) and

PC(t-test) decreased with increasing the absolute values of λ (λ=-1 or +1) when ρ and τ were

constant. The reason why the (tentative) power of PC(t-test) became small was considered

based on increasing the standard error of difference with increasing the distribution of skewness

of PC. The (tentative) power of SPC(t-test) and PC(WRST) was nearly equal to 0.8 without

regard to ρ and λ when τ=0.2 and 0.4. These two measures, SPC(t-test) and PC(WRST),

had less (tentative) power than 0.8 when λ = −1 and +1. And the (tentative) power about two

sample test with both sides in figure 4.8 were same trend as the (tentative) power with one side

in figure 4.6.
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Figure 4.5: The relationship b/w type I error and λ (Two samples & Set the 0.05 in one sides)
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Figure 4.6: The relationship b/w Power and λ (Two samples & Set the 0.05 in one sides)
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Figure 4.7: The relationship b/w type I error and λ (Two samples & Set the 0.05 in both sides)
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Figure 4.8: The relationship b/w Power and λ (Two samples & Set the 0.05 in both sides)

46



4.3 Case example

4.3.1 The application of symmetrized percent change to epilepsy data

In this section, we introduce the case example of SPC application as an example of the data

analysis in phase III study of Gabapentin which is treated as an add-on therapy for refractory

epilepsy. In this trial, SPC was named ”Response Ratio (RR)”.

The main objective of epilepsy treatment is to reduce the seizure frequency of each patient.

Therefore, we evaluate the treatment effect to compare the seizure frequency of pre- and post-

data in the clinical development of an antiepileptic drug. The evaluation of efficacy is based

on the percent change from baseline in this field (French, 2001), because seizures are large

variability in both intra- and inter-subjects and are skewness distribution for pre- and post-

data. Additionally, when we evaluate seizure frequency (count data), the count data sometimes

increase dramatically, such as from 10 counts of pre-data to more than 100 of post-data, if there

are no treatment effects. For example, if a patient has 10 seizures of pre-data and 110 of post-

data, then PC is 1000 %, and this value is too large. On the other hand, then SPC is 0.909

and is not too large. From this example, we consider SPC does not have less skew distribution

than PC, because SPC does not give the too large value and shows robustness to outliers.

The 12-weeks, placebo controlled, double-blind study was conducted to evaluate the efficacy

and safety of Gabapentin (Yagi & Sase, 2007： Yamauchi et al., 2006). This study set three

treatment arms, 1200mg/day, 1800mg/day and placebo, and target population is the patients

who had more than eight seizures in baseline period (pre-data) of 12 weeks. The 209 patients (86

patients in 1200mg/day, 41 patients in 1800mg/day and 82 patients in placebo) were included in

the study, and per protocol set (PPS) was defined as the primary efficacy population. Table 4.4

shows the efficacy results of SPC about the comparison between 1200mg/day and placebo for

PPS. The p-value was 0.0032 and statistical significance was shown for the comparison between

1200mg/day and placebo about 0.05 significance level.
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Table 4.4: Efficacy Results of Gabapentin(From Goto et al., 2007).

Placebo Gabapentin

SPC(RR) (1,200mg/day)

n = 75 n = 80

Mean −0.037 −0.144

SD 0.214 0.230

95%CI [−0.086, 0.012] [−0.195,−0.093]

Dif. b/w two groups −0.107

95%CI [−0.176,−0.038]

p value(t-test) 0.0032

Next, we evaluate the shape of the sample distribution about the seizure data in the above

study. Figure 4.9 shows the histogram of pre- and post-seizure data in 1200mg/day and placebo

and shows the data driven power normal distribution(Goto et al., , 2007; Goto et al., 1979;

Goto et al., 1983). The estimate value of shape parameter (λ) is follows.

1,200mg/day Placebo

Pre-data −0.38 −0.37

Post-data −0.14 −0.23

These estimated values of λ are negative near 0, and this result shows that the distribution of

the seizure data in this study can approximate the log-normal distribution.

Figure 4.10 shows the histogram of SPC data in 1200mg/day and placebo and shows the

distribution given by expression (3.4). In addition, we show the estimated value of λ as follows.

From these results, it was shown that the distribution of SPC was nearly equal to a normal

distribution.

1,200mg/day Placebo

SPC 1.45 0.94
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Figure 4.9: The histogram and applied power-normal distribution to seizure frequency (log-

normal distribution): From Goto et al., (2007)
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Section 5

Conclusion

5.1 Results and productive findings of this study

Both PC and SPC are used as ratio measures in a clinical trial in which a treatment effect is

evaluated. However, PC was shown to have some difficulty to apply the statistical methodology

based on the parametric methodology(Asakura et al.,, 2011; Pharm-Gia et al., 2006; Senn &

Julious, 2009), and SPC was not clear in the statistical properties. In this paper, we investigated

statistical properties of PC and SPC in which declaration of pdf, evaluation of skewness and

evaluation to statistical power are included. And we propose how to apply the two measures in

various situations in later paragraphs. In addition, we declared the relationship between SPC

and coefficient of variation (CV ).

Statistical properties of PC. The distribution of PC was positively skewed when post-data

was much larger than pre-data. This condition arises in the combinations of the following points.

1. The scale like parameter (τ) of pre- and post-data became large.

2. The correlation parameter (ρ) between pre- and post-data became small.

3. The distribution of pre- and post-data became far from bivariate log-normal distribution,

which means that the distribution becomes more positively skewed than log-normal dis-

tribution (λ becomes close to −1) or that the distribution is close to normal and becomes

negative skew (λ becomes close to +1).

The τ gave the largest contribution to a skewness of distribution for PC. The second largest

contribution was ρ and third was λ. It is difficult to identify the condition to symmetrize the

distribution, because the cause of distribution skewness exists more than one component and is

from the combination of the components. Therefore, we recommend to confirm each distribu-
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tion skewness in each situation taking the above results into consideration before applying the

statistical methodology.

From results of comparison between pre- and post-data based on one sample statistical test,

the (tentative) type I error of PC(t-test) and PC(WSRT) became extremely low from the pre-

defined significance level and the (tentative) power decreased more 0.1 (10 %) than DTS, which

means that the (tentative) power was less than 0.7 in all conditions. From results of two group

comparisons based on the two samples statistical test, the (tentative) type I error of PC(t-test)

became nearly equal to or slightly less than the pre-defined significance level and the (tentative)

power decreased extremely when the scale like parameter (τ) became large or the distribution

became far from log-normal (absolute value of λ is +1). On the other hand, the (tentative) type

I error of PC(WSRT) became nearly equal to pre-defined significance level and the (tentative)

power was only slightly smaller than DTS.

Statistical properties of SPC. The distribution of SPC kept symmetry without regard to

shape, scale like and correlation parameters of the distribution for pre- and post-data. There-

fore, we can consider the application of statistical analysis based on the parametric methodology.

From results of comparison between pre- and post-data based on one-sample test, the (tentative)

type I error of SPC(t-test) became nearly equal to pre-defined significance level and the (ten-

tative) power of SPC(t-test) slightly decreased when scale like parameter was large (especially

τ ≥ 0.6) and the distribution of pre- and post-data was far from log-normal. However, the

(tentative) power of SPC(t-test) was larger than PC(t-test) or PC(WSRT). From results of

two groups comparison based on the two samples statistical test, the (tentative) type I error of

SPC(t-test) became nearly equal to pre-defined significance level and the (tentative) power was

also nearly equal to or slightly less than DTS. In addition, the (tentative) power of SPC(t-test)

was also same as PC(WRST) in all conditions.

Proposal how to apply two measures. We can use the PC(WRST) when the objective

is to evaluate the two groups comparison based on the ratio measures. Because PC is easy

to interpret and PC(WRST) can keep high power. However, it is necessary to investigate the

possibility of application carefully, if we know the factors to affect the treatment effect, if we

estimate the effect based on the statistical methodology such as analysis of covariance(ANCOVA)

and if we apply the PC(t-test) for groups comparison. We need to make sure preliminarily

whether or not the assumption to apply the PC(t-test) are satisfied. If assumptions are not

satisfied or if assumptions cannot be confirmed, then we can analyze the data to apply the SPC

and can interpret the results after transforming the robust percent change (RPC) proposed by

Berry(1989).
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In addition, we consider the statistical analysis should be done based on the SPC, when the

objective is to compare the one-group comparison. Because the type I error keeps significance

level and the power became large. The SPC is necessary to re-transformation for interpretation

of the results. However, we consider that SPC is one of the favorable options for ratio measures,

because we can use SPC in various shape of distributions. For example, when we analyze the

change between pre- and post data of laboratory items, difference or percent change are only

applied based on the past experience. We think laboratory items such as triglyceride (TG), which

has positive skew distribution and becomes primary or secondary efficacy endpoint, should be

applied SPC.

When we select a measure of effect in a clinical trial, a difference or a percent change are only

applied based on the past experience without investigating the statistical properties so much.

The important thing when selecting the measures of effect is to define the goal of statistical

analysis definitely, and is to evaluate statistical properties, such as a skewness of distribution or

a power in addition to evaluation from the clinical points of view.

Relationship between SPC and CV . There is the relationship between SPC and CV

which is that the numerator of CV is replaced by the numerator of SPC with absolute value.

Therefore, the distribution of CV is the distribution folded back negative value of SPC to

positive.

5.2 Subjects for future investigation

As we mentioned in the previous section, SPC needs to be transformed into appropriate mea-

sures such as RPC proposed by Berry (1989) for interpretation. And Berry & Ayers (2006) also

mentioned that the investigator would report an estimated RPC with an appropriately calcu-

lated standard error or confidence interval. However, there is no research about the standard

error or the confidence interval. Therefore, it would be desirable to propose these in future

research.
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Appendix A

Reparametrization.

We show the reparametrization method to apply in section 2 of this paper(Maruo & Goto, 2008;

Maruo, et al. 2010; Maruo & Goto, 2012). The τ is defined as the scale parameter. When λ ̸= 0,

µ and σ cannot be obtained from λ, ξ0.5, and τ explicitly. Thus, they have to be calculated based

on the grid search method. The calculation process for µ and σ is given as follows:

S1. Give λ, ξ0.5, and τ , and set K(τ) = {−100,−99.9, . . . , 99.9, 100}. K
(τ)
i is the ith factor of

K(τ) (i = 1, . . . , 2000).

S2. Calculate µ
(τ)
i and σ

(τ)
i for all K

(τ)
i based on (A.1). Then evaluate δ

(τ)
i = ξ

(τ)
0.75i−ξ

(τ)
0.25i−ξ0.5τ

and replace δ
(τ)
i that can not be evaluated for some reason (e.g., obtained as NaN or

infinity because of calculation precision of computers) and seven values on both sides of it

by sufficiently large values, where ξ
(τ)
pi is the percentile of the power-normal distribution

with parameters: λ, µ
(τ)
i , and σ

(τ)
i .

µ =


(
1 +

z0.5∗

K

)−1

 ξλ
0.5 − 1

λ − z0.5∗

λK

 , K ̸= 0,

− 1
λ

, K = 0,

σ =


1 + λµ

λK
, K ̸= 0,

ξλ
0.5

λz0.5∗
, K = 0,

(A.1)

S3. Set imin = arg min
i

abs(δ(τ)
i ). If δ

(τ)
i < 0, divide {K(τ)

imin
,K

(τ)
imin+1

}, else divide {K(τ)
imin−1, K

(τ)
imin

}

into required accuracy of intervals (e.g., 0.0001) and replace K(τ) by this set. Repeat S1

and S2.

S4. Set imin = arg min
i

abs(δ(τ)
i ). Calculate µ and σ from K

(τ)
imin

.

This calculation process can be performed by any programming language capable of parallel

computation. The range [−100 ≤ K ≤ 100] covers almost any realistic situations, but cannot

be calculated because K tends to become too large in the neighborhood of λ = 0. When λ = 0,
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µ and σ can be calculated explicitly:

µ = log(ξ0.5), σ =
log{(τ +

√
τ2 + 4)/2}

z0.75
.

Fig.A.1 illustrates the relations between A(K) and λ for ξ0.5 = 100 and τ = 0.1, 0.3, and

0.5. Simulations where the truncation is ignored should be run for τ < 0.5. In addition, this

relationship is invariant for ξ0.5 though we set ξ0.5 = 100 in this figure.

Figure A.1: The relationship b/w A(K) and λ for ξ0.5 = 100, and τ = 0.1, 0.3 and 0.5.
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