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Abstract

The aim of this thesis is to present classes of test statistics for testing exponentiality against
some alternatives with an aging property under a random censorship model. The exponential dis-
tribution is widely used in the fields of reliability, survival analysis and life testing because of its
simple nature. The feature of the exponential distribution can be described as constant failure rate
function or constant mean residual life function. This property presents a good description of the
life length of a unit which does not age with time. But there are some situations that the occur-
rences of the initial failures and the wearout failures cause the changes of the failure rate function
and the mean residual life function. Such aging properties give rise to the correspondings for the
life distribution. By using the concepts of six nonparametric models for life distributions with
the aging property, we consider six testing problems under the random censorship model.

Censored data arise naturally in many fields. The underlying test may be a destructive one
so that units on test can not be re-used or, because of time and or cost constraint, we can not
afford to wait indefinitely for all the units to fail. And as in a clinical trial, patients may enter the
study at difterent times and leave, or die from a caudéedent from the one under investigation.
Depending on the nature of the underlying tests, some types of censored data may be found, and
we deal with the censored data observed under the random censorship model.

In Chapter 2 we give these notions on life distributions and types of censoring and we review
in Chapter 3 some basic results from the theory of counting processes, martingale limit theorem
and von Mises statistical functionals. Based on these mathematical foundations, we give an
asymptotic theory of all proposed statistics presented in Chapters 4-6 with unified approach.

Each of the sections of these chapters discussBelit testing problems under the random
censorship model and proposes some classes of test statistics based on the Kaplan-Meier estima-
tor. The asymptotic distribution of all proposals is derived under the null hypothesis and fixed
distributions. And a consistent estimator of the asymptotic variance of each statistic under the
null hypothesis is constructed from the theory of counting processes. The comparison of the
tests on the basis of the Pitman asymptofiicacy is also given for some alternatives under
the proportional censoring model and we recommend one test from this result for each testing
problem.
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Chapter 1

Introduction

The exponential distribution is as widely used in reliability and life testing as the normal dis-
tribution is in other areas of statistics. One of the reasons is that the mathematics associated with
the exponential distribution is relatively simple. In this respect the “lack-of-memory” property
that the remaining life of a used unit whose life time is represented by exponential variable is
independent of its initial age plays a central role.

This property can be expressed by a simple functional equation of the life distribution function
(df) and presents a good description of the life length of a unit which does not age with time. But
there are some situations that the occurrences of the initial failures and the wearout failures cause
the changes of the failure rate function and the mean residual function, and such aging properties
give rise to correspondings for the lif.

In Section 2.1 of Chapter 2 we define a variety of life distributions according to aging prop-
erties represented in nonparametric forms. These arant¢heasing failure ratgIFR), thein-
creasing failure rate averag@FRA), thenew better than use@NBU), thenew better than used
in expectation(NBUE), thedecreasing mean residual li{®MRL) and theharmonic new better
than used in expectatioiifNBUE) classes. Each of the notions of aging has a simple statistical
interpretation and has a dual property by reversing the inequality or the direction of monotonic-
ity. These are named DFR, DFRA, NWU, NWUE, IMRL and HNWUE, respectively. The IFR
distribution has an increasing failure rate function and the IFRA distribution has an increasing
failure rate average. The NBU property states that the conditional survival probability of a used
but unfailed unit at any age is less than or equal to the corresponding probability of a new unit
and the IFRA class is contained in the NBU class. The NBUE property is a weaker version than
the NBU property, and says that the expected life length of a new unit is greater than or equal to
the expected remaining life of a used but unfailed unit at any age. The DMRL distribution has
a decreasing mean residual life function and the corresponding class contains the IFRA class,
but is contained in the NBUE class. The notion of the HNBUE property may be interpreted as
stating that the integral harmonic mean value of the mean residual life function at any age is less
than or equal to the integral harmonic mean value of a new unit. The class of the HNBUE life
distributions contains the above five classes and may be considered as a more natural class of the
life df's. In this thesis we consider these life distribution classes as the alternatives for testing
exponentiality.

Section 2.2 of Chapter 2 defines three types of censoring: Type I, Type Il and random censor-
ing. Censoring is often occurred in survival analysis and life testing, and the censored sample
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contains only partial information about a population of interest. In Chapters 4-6 the problem of
testing exponentiality is considered under the random censorship model.

In Section 3.1 of Chapter 3 we present the theory of counting process and martingale limit
theorem in connection with the treatment of the censored data observed under the random cen-
sorship model. In the censored case we make statistical inferences about the population distri-
bution F(t) or about some functionals @(t) by the use of the Kaplan-Meier estimatey(t).

This Kaplan-Meier estimator may be considered as a generalization of the usual enabirical

the uncensored case. This fact together with the theory of counting processes and martingale
limit theorem helps us to discuss the behavior of statistics based on the Kaplan-Meier estimator
in the uncensored case, as well as in the censored case, with a unified approach. The normalized
process of this estimator is known to be expressed as the stochastic integral with respect to the
martingale generated from the censored data and this fact plays an important role in deriving the
asymptotics of all the test statistics proposed in this thesis.

In order to study the asymptotic behavior of statistics that are functionals of the empirical
df, von Mises [55] proposed a technique based on a form of Taylor expansion involving the
derivatives of the functionals. In Section 3.2 of Chapter 3 we review the approach presented in
Fernholz [16] based on the Hadamaréetientiability of the functionals. Kumazawa [36], [38],

[41], [42] used her method to derive the asymptotic behavior of the statistics represented as a
functional of the Kaplan-Meier estimaté(t).

In Section 4.1 of Chapter 4 the problem of testing exponentiality against the IFR alternatives is
considered. The test statistic is constructed by using the property of the scaled total time on test
(TTT-) transformsH;l(t) and was discussed in Kumazawa [45]. The concept of the scaled TTT-
transforms introduced by Barlow and Campo [4] has proven to be very useful in the statistical
analysis of reliability and life testing. The asymptotic distributions of the suitably normalized
version of the statistic under the null hypothesis and fixed alternatives are given ffitaeye
consideration of the test for some IFR alternatives under the proportional censoring model is also
presented and it is shown that tE@acy decreases with the value of the expected proportion of
observing the censored data.

We present in Section 4.2 of Chapter 4 two classes of test statistics for testing against the
IFRA alternatives. The first class was proposed by Kumazawa [36] and includes the class of the
statistics given by Deshpande [14] in the uncensored case. The second one is considered as a
generalization of the statistic introduced in Kumazawa [45] that utilized the property of the TTT-
transforms. The asymptotic distribution of the proposed statistics is derived and the comparison
of the tests is made on the basis of the Pitman asymptfitaey.

Section 5.1 of Chapter 5 deals with the testing problem against the NBU alternatives. In
Kumazawa [42] the Kaplan-Meier estimator was used to generalize the class of the statistics
proposed in Koul [32]. The asymptotic distribution of the statistic with a weight function is
shown and thef@icacies of the statistics for some alternatives are computed. From the numerical
evaluation of thesefcacies one test is recommended.

For testing against the NBUE alternatives we present in Section 5.2 of Chapter 5 three statis-
tics Nz, N, andNs3. The statisticdN; andN, are constructed by the same method as given in the
previous and were proposed by Kumazawa [37], [41]. In De Souza Borges, Proschan and Ro-
drigues [13] theN; -statistic with constant weight function was considered in the uncensored case.
And the N,-statistic with constant weight function was considered by Hollander and Proschan



[20] in the uncensored case and by Koul and Susarla [34] in the censored case with a modified
Kaplan-Meier estimator. This-statistic is represented as a Kolmogorov-Smirnov type and was
introduced in Kumazawa [47]. For the first two statistisandN, the asymptotic distribution

is found to be normal, but the asymptotic distribution of the third one is shown to be not normal.
So the @icacy comparison of the tests is made betweemMth@ndN,-tests, and we recommend

the use of the test based on the one member of the class Njtbiatistics.

In Section 6.1 of Chapter 6 two tests for exponentiality against the DMRL alternatives are
given. The proposed test statisties and P, are constructed from the two measures of expo-
nentiality towards DMRL-ness. The first measure is based on the property of the scaled TTT-
transforms and the second one uses the notion of the definitionPFetistic is a generalized
version of the one introduced by Kumazawa [45] and the class dPikstatistics contains the
one proposed in Bergman and Kl&f$p], in which a modified Kaplan-Meier estimator was used
and the proof given in there seems complicated. The asymptotic distributions of the statistics are
given and the ficacies of the tests against some alternatives are presented to select the optimal
test for the testing problem.

Finally, we consider in Section 6.2 of Chapter 6 the problem of testing exponentiality against
the HNBUE alternatives. Bergman and Klé&f$8] introduced the test statisti€ andQ, based
on the modified Kaplan-Meier estimator and Kumazawa [46] proposeQ4istatistics for this
testing problem. We present proofs on the asymptotic distributions of these statistics by the
theory of counting processes and martingale limit theorem. Tieaey consideration shows the
use of the one member of tlig-statistics.






Chapter 2

Life Distributions and Types of
Censoring

2.1 Life Distributions

We formulate a variety of life distributions based on notions of aging, whitdrcanonpara-
metric statisticians an opportunity to consider inferences according to their probabilistic and
geometrical properties.

Definition 2.1.1. A life distribution Kt) is a probability distribution satisfying (t) = Ofort < 0.
The corresponding survival function is given$ft) := F(t) := 1 — F(t). The function

_(t dF(s)
NG ._fo TTFe (2.1.1)

is called the hazard function associated witft)F
Note that wher-(t) has a densityf (t) andS(t) > 0,

da@®)  f(t)
dt ~ 1-F(t-)

= A(t)

is referred to as the failure rate function. Here we may interp(@tlit as the probability that a
unit alive at timet will fail in [t,t + dt), wheredt is small.
For a discussion of life distribution classes, we need the following notations:

e = fo " st

TE ;= suft: F(t) < 1};
Fi(s) := {F(t+ 9) — F(t)}/S(t).

Definition 2.1.2. (a) F(t) is increasing failure rate (IFR) iF(s) is decreasing in € [0, ) for
each s> 0.
(b) F(t) is increasing failure rate average (IFRA)A(t)/tis increasing in te [0, 7F).
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(c) F(t) is new better than used (NBU)R(s) < F(s) for all t and se [0, 7).
(d) F(t) is new better than used in expectation (NBUHjJ (f) has a finite meapr andur >
ex(t) for all t € [0, 7¢), where

[7s(9ds/s® it S >0,

i (2.1.2)
0 otherwise,

er(t) :={

and is called the mean residual life at age t.

(e) F(t) is decreasing mean residual life (DMRL)H{t) has a finite meamr and e(t) is
decreasing in alt € [0, 7).

(N F(t) is harmonic new better than used in expectation (HNBUEYij has a finite meapg
and

f S(s)ds< ur exp(-t/ug) forallte [0, 7E).
t

By reversing the inequalities and the directions of monotonicity we get the six classes DFR,
DFRA, NWU, NWUE, IMRL and HNWUE, respectively. Heresdecreasing I=increasing
and W=worse.

2.2 LIFE DISTRIBUTIONS

Different properties of the five classes IFR, IFRA, NBU, DMRL and NBUE and their duals
were considered by authors such as Marshall and Proschan [50], Barlow and Proschan [7], Lang-
berg, Lén and Proschan [48] and Hollander and Proschan [21]. The classes of the HNBUE and
HNWUE life distributions were first introduced by Rolski [52] and investigated by Kbefag],

[30]. Here the chain of implications holds among these life distribution classes:

IFR = IFRA = NBU

U U
DMRL - NBUE = HNBUE

In this thesis we consider these life distribution classes as the alternatives for testing exponen-
tiality under the random censorship model defined in the next section.

2.3 Types of Censoring

Censored data arise naturally in a number of fields, particularly in problems of reliability and
survival analysis, and contain only partial information about the population distribution of inter-
est. We discuss three types of right censoring. To this en&Jlexs, - - -, X7 be independently,
identically distributedi{d) with life df F(t).

() Type I Censoring.We assume that units are put on test and we terminate our test at a
predetemined timé&, so that complete information on the fiksbrder statistics

XE)].) S ng) S cte S X(Ok)
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(b)

(€)

is available. Here the numbkiis an integer-valued random variabtg)(with

Each of the remaining unobserved life times is known to be greater than th& time

Type Il Censoring.As in Type | Censoringn units are simultaneously put on test and we
terminate our test after a predetermined number (or fraction) of failures are obtained. In this
case we have complete information on the firebservations

XE)]_) S X(Oz) S tt S X(C:,)

and the remaining observations are known to be greater)(p)ari-lere the numbaer (orr/n)
is a fixed constant.

Random Censorind.etUq, Uy, - - -, U, beiid with possibly discontinuous and defectigke
G(t). U; is considered as the censoring times associatedX#iindG(t) is referred to as the
censoringdf. Then we can only obsen(&;, 6;), 1 < i < n, where

Xi :==min(X7,Ui) and 6 = Lx<u

with 14 the indicator of the seA. Here we assume tha® and U; are stochastically in-
dependent. And in Chapters 4—6 we assume that the popudtieft) is continuous. This
random censorship model arises in medical applications with animal studies or clinical trials.
In a clinical trial, patients may enter the study affelient times: then each is treated with
one of several possible therapies. We want to observe their life times, but censoring occurs
according to loss to follow-up, drop-out and termination of the study.






Chapter 3

Counting Processes and von Mises
Functionals

3.1 Counting Processes

It was demonstrated by Aalen [1] how the theory of multivariate counting processes gives a
general framework in which both censored survival data and inhomogenuous Markov processes
may be analyzed, and how by means of martingale central limit theorem the asymptotic behavior
for the one- and the two-sample statistics and generalizations to censored data may be derived.
Here we give the results from the theory of multivariate counting processes in connection with
the treatment of the random censorship model.

Let (Q, 7, P), {ft : t € [0,00)} be a fixed stochastic basis. A multivariate stochastic pro-
cessN(t) = (Nz(t), Na(t), - - -, Nk(t)) defined on the time intervd0, o) is called a multivariate
counting process if each of thecomponent processeg(t) has a sample function which is a
right-continuous step function with zero at time zero and with a finite number of jumps, each of
size+1, and if furthermore two dierent component processes can not jump at the same time.
Then by Theorem 1.9 of Meyer [51], there exist right continuous, nondecreasing, predictable
processeg\(t) with zero at time zero such that

Mi(t) := Ni(t) - Ai(t)

are local martingales far= 1, 2,- - -, k. The proces#\(t) is called the compensator Bf(t).
Under the random censorship model described in Section 2.2, we can observe the possibly
right censored datgX;, 6;), 1 < i < n. Define stochastic procesgt) on [0, ) by

n
N(t) == ) Iixst o=y
i=1

N(t) represents the number of the uncensored units observed to failure @tdamearlier. By
Lemma 2.3 of Gill [18],

M(t) := N(t) - fo t Y(9)dA(S) (3.1.1)
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IS a square integrable martingale ond®), where
n
Y1) = ) Lixe (3.1.2)
i=1

Here the proces¥(t) represents the number of the units at risk at tina@md the functiom\(t)
denotes the hazard function associated withdfifé(t) defined in the equation (2.1.1) of Section
2.1.

Under the random censorship model, we make statistical inferences about the popiflation
F(t) or about some functionals ¢i(t) by the use of the Kaplan-Meier estimateg(t) or the
functionals ofF,(t). The estimatoiF,(t) was first introduced in Kaplan and Meier [26] and is
defined by

S (. dN(9
Fa() := 1-Sp(t) := 1 - ];l{l - Y(; } (3.1.3)

on the basis of the censored da¥g §i), 1 < i < n. Note that when we get a complete sample
the Kaplan-Meier estimatdn(t) reduces to the usual empiriadf. The asymptotic behavior of
En(t) on the whole line is discussed by Gill [17], [18] using the theory of counting processes and
martingale central limit theorem.

We present some results necessary to discuss the asymptotic distribution of the test statistics
based on the Kaplan-Meier estimat%{(t) in the later chapters. For any proc&¥¢) we define
the stopped procesd™ (t) by

WT(t) := W(T A t)

with T = maxj<n Xi.
Lemma 3.1.1. (Gill [18]) For all t we have

12 Fn(t) = F(©)

Zy(t):=n 0 (3.1.4)
t
= f Hn(s)dM(s), (3.1.5)
0
where
Hn(s) : = an (3.1.6)

S(9Y(9)
and J(s) = Lyy(s)>0;-

We denote byD[0, t] the space of right continuous functions defined on the intgfya] with
left limits, with the Skorokhod metric topology.

Lemma 3.1.2. (Gill [18]) Let ht) be a nonnegative continuous and nonincreasing function on
the interval[0, 7] such that

f " RdC(D) < o,
0
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where
_ (" _dA(9)
T = sudt: H(t) < 1}, (3.1.8)
and

H(t) := 1 - S()G(t).

Then the stochastic processes

. AU . T ‘ T
(h()Za()) ", ( j; h(f)dz,(1)) ., and ( fo Zy(t)dh(t))

converge jointly in [0, ty] weakly as n— oo to processes

h()Z(). fo ht)dz(t), and fo Z(t)dh(),

respectively, where @ is a Gaussian process with zero mean and covariance function
E{Z(9)Z(t)} = C(sAt).

3.2 Von Mises Functionals

In order to study the asymptotic behavior of statistics that are functionals of the empirical
df, von Mises [55] proposed a technique based on a form of Taylor expansion involving the
derivatives of the functionals. The approach presented in Fernholz [16] was constructed on the
basis of the Hadamardférentiability of the functionals, and Kumazawa [36], [38], [41], [42]
used her method to derive the asymptotic behavior of the statistics represented as functionals of
the Kaplan-Meier estimat(ﬁn(t) defined by the equation (3.1.3).

Let T(F) be a functional based da € D, a class ofdfs. And letV and“W be topological
vector spaces and(V, ‘W) the set of continuous linear transformations franio W. LetS be
a class of compact subsets®fsuch thatS contains all singletons, and |t be an open set of
V.

Definition 3.2.1. A functional T: A — W is Hadamard dfferentiable atF € A if there exists
TE() € L(V, W) such that for anK € S

_T(F +tH) - T(F) - TL(tH)
fim, t =0

uniformly for H e K. The linear transformatio(-) is called the Hadamard derivative of(-}
atF.

Then the following result follows from Theorem 4.4.2 of Fernholz [16].
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Theorem 3.2.1. (Kumazawa [38])Suppose thaf,(t) is an estimator of population d(t) such
that the stochastic process'/2[Fn{F~1(t)} - F{F~1(t)}] : 0 < t < 1} converges iD[0, 1] weakly
as n— oo to a continuous Gaussian procegt) with zero mean and continuous covariance
function, whereF(t) is a version (possibly stochastic) oftf. And suppose that the induced
functionalr(g) := T(g o F) for g € D[0, 1] is Hadamard dfferentiable at the identity function
[(t) := t with derivativer|(-) and that

nY2(T(F) - T(F)} — 0 in probability asn — .

Then we have as s oo N
nY2{T(Fn) - T(F)} -4 N(0, )

providedo? = Var{z|(W)} > 0.

Since most statistics such &s, M- and R-statistics can be expressed as Hadamaftereli
entiable functionals as shown in Fernholz [16], the above result would help us to derive the
asymptotic normality of the statistics. The other forms of statistics based on the Kaplan-Meier
estimator were discussed in Kumazawa [38].
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Chapter 4

Tests for IFR and IFRA

4.1 The IFR Alternative

We consider to test the null hypothesis
Ho: F(t) =1-explt/u) fort>0 (uunspecified)
against the alternative

Hi : F(t) is IFR, but not exponential

on the basis of the possibly right censored data%), 1 < i < n, defined in Section 2.2.

In analyzing the life distribution classes with the aging properties, Barlow and Campo [4] and
Klefsjo [29] proved that the dlierent forms of the aging properties can be expressed by their
corresponding properties of the scaled total time on test (TTT-) transfdgt(¢), where

s
He () = ———— (4.1.2)
HF
forO<t<1.
From the result of Barlow and Campo [4] we have tHat(t) = t for exponential distribution
F(t) and thatF(t) is IFR if and only ifH;l(t) is concave on the unit intervfl, 1]. Using this
property, Kumazawa [45] considered the measure

f fl tf HZL(t + u) HZ1 () 3 HE(t + Sl_ He'() }dudsdt

F(t)Sz(t) 1- 2F(t)
HF

of discrepancy between exponentiality and continuous IFR distribution, and proposed the test
statistic

TA —_ —
Fn(t)S2(t){1 - 2F(t)}dt
Ki ::fo (t) (; O} ’ 4.1.2)




14 Chapter 4 Tests for IFR and IFRA

where
T —_—
Un = f Sh(t)dt. (4.1.3)
0
The statistidk; may be considered as a generalization of the test statistic

n-2 n—j k-1
{k(Dj+y — Dj) = ¥(Djsk — Dj)}

j=0 k=2 v=1

introduced in Klefgp [31] under the uncensored model which we have a complete safnpie
-, Yo from F(t), where

Fal(i/m =
o " Fadt
’ Yoy Yi/n

and
{Yi<t}

n(t) - ZIlT

Sincefn(T) < 1 almost surely if the largest observatiorof the X;’s is censored, the integral
region in defining the statisti€; becomes to the finite random intery@) T]. Note that we reject
the null hypothesigH in favor of the alternative; for large values of the statisti;.

Theorem 4.1.1. (Kumazawa [45]) Suppose that the dfis(t) and (t) satisfy the conditions

f " h2(t)dC(t) < oo (4.1.4)
0

and
n'/?hy(T) — 0 in probability asn — co, (4.1.5)

where Gt) andry are defined in the equations (3.1.7) and (3.1.8) in Lemma 3.1.2 of Section 3.1,
respectively, and

hy(t) := ftm S(u)du.

Let the function §f) be of formﬂle(t—ai) with @1 = 0and anya;, 2 <i < £. Then the sequence
of the rv's

e fo 9Sadt |
Hn HF

converges in distribution as # oo to a normal rv with zero mean and variance

Jo " tuzha (t) — e ha(t)) 2dC('[)
[T




4.1 The IFR Alternative 15

where
2 = fo gISM)dt
and

ha(t) 1= ft ~ SUgISWdu

Proof: We prove the convergence in distribution of the sequence alitbe

W, := snl/z[foT 9(Sn(u)}du - fom g{S(u)}du] +tn1/2{f0T Sn(u)du— fom S(u)du}

to an appropriate normaV for any real numbers andt according to the Craar-Wold Device.
We set

V, = sn/? fOT[g{gn(u)} - g{S(u)}]du+ tnt/2 fOT{§n(u) — S(u)}du.
Then we obtain for some constavit> 0 by the condition (4.1.5)
nY2\W,, — V| = n1/2|sfoo g{S(u)}du+tfoo S(u)dul
<(M|g +T|t|)nl/2h1(T) = op(:lo) asn — oo,

By applying the formula

4 { 4 4 k-1
[Ta-][o=>a-0)]]a]]b
i=1 i=1 k=1 i=k+1 =1

to therv V,, we have

k—

l T l T .
vn:snl/ZZf {F(u) - Fr(u)} n{§n(u)—ai}H{S(u)—a/j}du+tnl/2f (F(u) - Fr(u)}du
k=10 i 0

=k+1 =1

=

Since the Kaplan-Meier estimat&(t) is uniformly consistent on the intervg0, T] from the
main result of Wang [56], the Slutsky’s Theorem implies tats asymptotically equivalent to

4 k-

4 T . 1 T —
st2 ) fo (F(U) - Fo@) | [ (S - ai) [ [1S@) - aj)du+ 2 fo {F(u) - Fr(u)du
k=1 1
)

i=k+1 j=

= L Zp(u)dhst(u),
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whereZ,(u) = nY2(F(u) — F(u)}/S(u) andhs(u) := shy(u) + thy(u). Hence Lemma 3.1.2 of
Section 3.1 together with the condition (4.1.4) yields that

Vh —4d N(Of h (u)dC(u)) asn — co.

Therefore the desired result follows from Corollary 3.1 of Serfling [53]. ]

Corollary 4.1.1. (Kumazawa [45]) Suppose that under the null hypotheslg the censoring df
G(t) satisfies the conditions (4.1.4) and (4.1.5) of Theorem 4.1.1. Then we have as

(RS

—4 N(0, 0?),

where . X
o= [ [rS() - neatsl] do/it.

This corollary shows that under the null hypotheXisthe asymptotic variance of the suitably
normalized version of the test statisg defined in the equation (4.1.2) is given by

fo " @Isdce

with g(t) := t3(1 - t)(2t — 1). Since this quantity depends on the unknown parametard

the censoringlf G(t), we must construct a consistent estimator from the censored observations
(Xi,6i), 1 < i < n. The same method as given in the proof of Lemma 2.4 of Kumazawa [42]
shows that

i
- fo QP (Sn(t-))dC(t)

is a consistent estimator of, where

= ._ [ J(u)

andJ(u) is given in Lemma 3.1.1 of Section 3.1. Hence the asymptotically exact test based on
the statistid<; can be constructed by using this estimafgr

Next we compute thefBcacies of the test statisti€; against some alternatives under the
proportional censoring model where the censodf@(t) is given byG(t) = S*(t) with censoring
parameten: the value oft has relation with the probability of obtaining uncensored observation,
e, P(Xy <Ujp) = Flﬂ In this situation Corollary 4.1.2 impligs = 1 without loss of generality
and O< A < 1. And the asymptotic variance of the suitably normalized versidf,ainderdH,
is given by

4 12 13 6 1

- + - + :

7-14 6-1 5-2 4-21 3-2

2 ._
0-/l .
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Table. 4.1 : Hicacies of the statistik;

when the censoring parametee 0, -5, 3, 3
Alternative

(i) (if) (iii) (iv)
.72834 .36459 .05833 .19632
66199 .33138 .05302 .17843
42453  .21251 .03400 .11443
30424 15229 .02437 .08200

INlvIFS |- Of &

The following IFR lifedfs are considered as the alternative for testing exponentiality.

() 1-expCt™h (Weibull),
(i) 1 —exp—(t+6t2/2)} (Linear failure rate)

(i) 1- exp[—{t rot+et-13  (Makeham)
and

(iv) fot deds/T(1 + 6) (Gamma)

wheret > 0, 6 > 0 and the null distributior#p with © = 1 is obtained whe® = 0. Since
each of the familieg$F,(t)} of the alternatives (i)-(iv) listed in the above satisfies the conditions
(A.1)-(A.4) given by Kumazawa [40], it is seen that the sequeifgg(t)} with 6, = cn™¥/2 and

c > 0 is contiguous to the nudlf and that the &icacy of the test statistik; is equal to

dBg[Kq]
do

2
ef f(Ky) := lim { } /(nVar[Ki]),
N—co 6=0

where Ey[-] denotes the expectation under tieF, and Varg|[:] the variance under the null
hypothesisH,.
After some calculations we obtain that for the alternative (i)

eff(Kq) = (—g In2+In3)?/c3,

for (ii)
_ iz 2
etf(Ky) = (5,)°/0%

for (iii)
_ iz 2
eti(Ky) = (5g)" /o2



18 Chapter 4 Tests for IFR and IFRA

and for (iv)

eff(Kq) = (—:—73 In2+ g In3)?/c2.

Table 4.1 shows thefiécacies of the test statisti€;, for the alternatives (i)-(iv) and some values
of the censoring parametgr The above results reveal that th@acy decreases with the value
of A.

4.2 The IFRA Alternative
For the problem of testing the null hypothesis

Ho: F(t) =1-explt/u) fort>0 (uunspecified)
versus the alternative
Ho . F(t) is IFRA, but not exponential

we may consider the following two measures of exponentiality against the tfFRAor nonde-
creasing functiony4(t) > 0 and constarg > 1,

ri= [ ualSBOIFQ)
0
and for nonnegative functiam(t),

b 2SO ff SEdudr
2 .= ,
HF

where
1-t

1
o) = valL- O [ sva9ds-2 [ sua(9ds.
0 0
The first measurd; relies on the fact tha(t) is IFRA if and only if for allg > 1
SP(t) > S(Bt) for anyt > 0.

Since the scaled TTT—transforth;l(t) defined in the equation (4.1.1) of Section 4.1 share the
property thatH-1(t)/t is decreasing in € [0, 1] for the IFRAdfs from Theorem 2.1 of Barlow
and Campo [4], we may consider the measure

1 1 HEl(S) HEl(t)
[ suatowai=E > - s

k7 P2ASO) 5 S(9dsdRt) N
HF

2
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for continuous IFRAdfs with positive weight functiony,(t).
Now from these measures we obtain two classes of test statistics

i
La(n. ) = fo U1 (SaBYIIFAD) (4.2.1)

and

iy Wa(Sa®)) [ Sn(u)dudFa(t)
Tin

Lao(y2) = (4.2.2)

by substituting the Kaplan-Meier estimaf@(t) for F(t).

Under the uncensored model Deshpande [14] studied the statistic
L1(y1,8) with y1(t) = t for the above testing problem. And the statidti€y,, 8) was introduced
by Kumazawa [36] and is a version of the test statistic proposed by Kumazawa [35] for testing
exponentiality against the NBU alternatives in the uncensored cas@ witeger> 2. We reject
the null hypothesigH in favor of the alternative, for small values ot.1 (1, 5).

And the statistid,(y») is an extended version of the test statigti@/,) with »(t) = constant
proposed in Kumazawa [45], by introducing the weight functig(t) in the measurd,. In the
uncensored data Klefs[31] investigated the testing problem on the basis of the same property
of the scaled TTT-transforms and proposed the test statistic, which is seen to be asymptotically
equivalent td_,(y2) with y,(t) = constantin the uncensored case. Here we rejigtin favor of
H,, for large values of.,(y>).

For testing against the IFRA alternatives, Barlow and Proschan [6] proposed the test statistics
based on the normalized spacings which are generalized to treat the censored observations under
the Type Il censoring model, and proved unbiasedness of the test against the alternatives.

Theorem 4.2.1. (Kumazawa [36]) Suppose that the weight functiga(t) is continuous and
piecewise dferentiable with bounded derivatives. And suppose that the(gfis absolutely
continuous and that the dfis(t) and (t) satisfy the conditions

f " S2(t)dC(t) < oo (4.2.3)
0

and
n*2y1{S(T)}S(T/B) — 0 in probability asn — c. (4.2.4)

Then the sequence of the rvi¥?{L1(y1,8) — W(F)} converges in distribution as — o to a
normal rv B with zero mean and varian&§B?], where

W) = [ ualsieondro.
Bi= - [ ZSEiISEOFD + [ ZEASUBIISOIF.

and ) is the limiting process of the normalized Kaplan-Meier procggs) given in Lemma
3.1.2 of Section 3.1.
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Proof: Following Theorem 3.2.2 of Section 3.2, we first show that the induced functional
7(g) := W(g o F) for g € D[O, 1] can be expressed as a composition of Hadamdferdntiable
transformations. For fixeB(t), v1(t) andB, we define

y1(91)(S) := BF 0 g5 (9),
¥2(91. 32)(9) = ¥1[1 — g1 o F{g2(9)}]

and

1
ya(@y) = fo g:(W)du

whereg, € D[0,1], g € LY[0,1], 0 < s < 1, F X9 = inf{t : F(t) > s} andg;(s) :=

inf{t, 1 : g(t) > s}. Then from Propositions 6.1.1, 6.1.2 and 6.1.6 of Fernholz [16] the above

transformationg(-) — y3(:) are all Hadamard élierentiable at(t). Thereforer(g) = v3 o y»{g,

v1(9)} is Hadamard dferentiable at(t) by the chain rule of Proposition 3.1.2 of Fernholz [16].
Next we note that

NY2{L1(y1, B) — W(F)} — {W(F]) — W(FT)}|

0 T
= n*?| Y{S(BX)}dF(X) — Y1{S(T)}dF(X)|
T/8 T/8

< 202y {S(T)IS(T/p)
=0p(n°) asn — co.

Hence Theorem 3.2.2 of Section 3.2 together with some calculations yields the desired mesult.
We consider the weight functiam (u) = u* as a special case.

Corollary 4.2.1. (Kumazawa [36])Lety;(u) = u*, @ > 1. Suppose that under the null hypoth-
esisH, the censoring df @) satisfies the conditions (4.2.3) and (4.2.4) of Theorem 4.2.1. Then
n'/2{L1(u®, B) — v~} converges in distribution as — oo to a normal distribution with mean zero
and variance

o2y = [ tlsOIC0.

where
fa,ﬁ(t) = (Q’/U)Z[ﬁztzv _ Z’Bt(ﬂ+1)v/,3 " tz”/ﬁ]
andl} = aﬁ + 1

Because of the dependency of the statikti(u®,8), « > 1,8 > 1, on the unknowng and
G(t), we must estimate the asymptotic varian((?heﬁ from the observationéX;, 6i), 1 <i < n. To
this end, we set

G -_f fo 5{Sn(t=)}dC(t).

Then itis seen thert-2 o is a consistent estimator 0{2 o 8 by the same method as given in Section
4.1. Hence the test rejectinfd in favor of H, for
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nY2{Ly(u", B) — v 1}/, 5 < z, is consistent against all continuous IFRA alternatives, wigre
is then -percentile of a standard normal distribution.

Next in order to derive the asymptotic distribution of the statisti@,), we discuss the asymp-
totic distribution of the statistic in the form

T —_ —_ —
Jo ¥ASn(®)} Jy Sn(u)dudFn(t)
Hn ’
whereu, is defined in the equation (4.1.3). Some test statistics proposed in this thesis can be
expressed as this form and we apply the following result to investigate their asymptotics.

Tn(w) =

(4.2.5)

Theorem 4.2.2. (Kumazawa [41]) Suppose that the d(t) is absolutely continuous and that
the df'sF(t), G(t) and the weight functiorn(t) satisfy the conditions

f w[z//{S(s)}S(s) +wiS(9)|ds < oo, (4.2.6)
0
nY2¢{S(T)} — 0 in probability as n— co, (4.2.7)
f - h2(t)dC(t) < oo, (4.2.8)
0
and
n'2hi(T) — 0 in probability as n— oo (4.2.9)

fori = 1and2, where
w0 = [ wd
hy(t) := ftm S(u)du,
and

ha(t) i= ft [wstsrs(s + wis()[s(as

Then we have as # o .
2 {Tolw) = 2} —a NO.5).

where
Hy = foo Y{S(9)}S(s)ds (4.2.10)
0

and

g ha(t) — ueho(t)y2dC(t
o2 o Jo Mg ha () /:F o(t)) (). (4.2.11)
HE
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Proof: We first show that the random vector

T T S
A= fo S,(t)dt— pir. fo WSa(9) fo S(UdUGFH(S) - )

is asymptotically equivalent to

B, = —( fo " haOH: IV, fo " haOH: (0 M(t)),

whereM(t) andHu(t) are defined in the equations (3.1.1) and (3.1.6) in Section 3.1, respectively.
We set

T S
W, = f W59 f S (WdudEn(9
0 0
and

W(F) = fo T s(s) fo S(uydudF(s)

to investigate the asymptotic behavior of the second component of the random Agcfeor
fixed F(t) andy(t), we define

71(9)(s) := F o g*(9)

and

1
7@ = [ WL~ 1dg
for s € [0,1] andg € D[0, 1], whereg*(s) = inf{t, 1 : g(t) > s}. Since the transformations
v1(-) andy,(-) are Hadamard elierentiable at(t) from Proposition 6.1.1 of Fernholz [16], the
functionalr(-) induced orDI[0, 1] by 7(g) := W(go F) for g € D[0, 1] is Hadamard dferentiable

atl(t) by the chain rule and the expression th@)) = y»{y1(g)}. Note that the derivative (g) of
7(g) atl(t) is given by

7@ = - fo [S(9IS(9) + FISSNg o F(9ds
We obtain from the conditions (4.2.7) and (4.2.9)
N2[{Wh — W(F)} — (W(FT) - W(T(FT)}

12 * N
-n fT WS(9) fo S(ududF(9
T 00
_ n1/2 1/2
=n ‘P{S(T)}fo S(s)ds+n j; Y{S(9)}S(s)ds

< nY2upP{S(T)} + nt/2 f ) ¥{S(9)}S(s)ds
T

= 0p(n°) asn — co.
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Therefore the Hadamardftirentiability ofr(-) implies that as1 — oo

nY2(W, — W(F)} = 7] (¢n) + 0p(n°)
T
= ho(T)Zo(T) - fo ha(®Ha(AM() + 0p(r).

where
dn(t) = nYHFT o FY(t) - FT o FY(t)} forO<t<1.

Hence Remark 2.2 of Gill [18] yields that
T
nY2(W, - W(F)} = — f ha(t)Hn()dM(1) + 0p(n°)  asn — co.
0

By applying Lemma 3.1.1 of Section 3.1 to the first component of the random &gtidrns
seen that

T T
nl/z{f Sn(9)ds— e} = —f hy () Ha(t)dM(t) + op(n®)  asn — co.
0 0

Therefore the random vectéy, is asymptotically equivalent 18, from Theorem 4.4 of Billings-
ley [10].

Since each component of the random ved®@gis represented as the stochastic integral with
respect to the square integrable martingdig), and the functions;(t)'s and the proceshl,(t)
are predictable, Theorem 2.1 of Anderssral. [2] together with the condition (4.2.8) implies
that B, converges in distribution as — oo to a normal distribution with zero mean vector and
dispersion matriXo j}1<i j<2, Where

Ti,j ::LHhi(t)hj(t)dC(t).

Hence we can conclude the proof from Corollary 3.3 of Serfling [53] and some calculations.
Corollary 4.2.2. Suppose that the df's(, G(t) and the functionW',(t) satisfy the conditions of

Theorem 4.2.3. Then we haveras> o
L) - B2} g N, o5,
HF
where uy, and cr?i,2 denote the correspondings to those given in the equations (4.2.10) and
(4.2.11) of Theorem 4.2.3 for the functidi(t), respectively.

Corollary 4.2.3. Suppose that under the null hypothegisthe censoring d&(t) and the func-
tion W, (t) satisfy the conditions (4.2.6)-(4.2.9) of Theorem 4.2.3. TH&h,(y») converges in
distribution asn — oo to a normal distribution with mean zero and variance

oy, = fo " ASOISADAC().
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where

t
o) : = fo Y,(s)ds

This corollary shows that under the null hypothesis the asymptotic variﬁjgma‘ the statistic
Lo(y») defined in the equation (4.2.2) depends on the unkn@nanrsdG(t). Similarly as in the
case of the statistit; (1, 8) we can find a consistent estimator

)
5= [ S-S0
0

This helps us to construct the asymptotically exact test baséd(gn).

Now we compare theficacy of the test statistids; (41,8), @« > 1, 8 > 1, andL,(y>) for
the alternatives (i)-(iv) listed in Section 4.1 under the proportional censoring model with the
censoring parametel In this situation from Corollaries 4.2.2 and 4.2.5 we may fakel and
0 < 1 < 1. And the asymptotic variances of the suitably normalized versions of the statistics
L1(u%,B) andL,(¥2) underHy are given by

2 AV B 1 B 28
‘Tl'_ﬁ(u) [2aﬁ+1—/l+2v—ﬁ(/l+l) v(B+1)- B+ 1)

and

1
o= fo P (Dt dt,

respectively. Then we have the followin@fieacies of the statistids; (u®, 8) against the alterna-
tives: for (i)

ef f{Ly(u”. B)} = (eBInB)?/ ('),

for (ii)
ef f{Ly(u".8)} = (aB(B - 1)*/ ("),
for (iii)
N e+l 2 a5,
ef f{Ly(u*,B)} = { ” 1 v+,8} /o]
and for (iv)

{(B-1)Inv - aBIng)?

eff{L.(u*,B)} =
. (v — )20
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Table. 4.2 : Hicacies of the IFRA-test statistics
when the censoring parameter - and3
Alternative
Statistic 0 Qi Gy (i)
A1=1/10
L;(ut,1.03) 1.267 0.3168 0.0626 0.4775
Li(ut, 1.95) 1.2841 0.2985 0.0606 0.4967
L;(u*®,3.42) 1.0506 0.1083 0.0329 0.4981
Lo(u®) 1.1945 0.2404 0.0554 0.4729
Lo(ut) 1.0810 0.3594 0.0643 0.5756
A=3/4
Li(u},1.03) 0.7012 0.1752 0.0346 0.2641
Li(u1,1.95) 0.7421 0.1725 0.0348 0.2870
L;(ut®,3.42) 0.8561 0.1600 0.0268 0.4058
Lo(uO) 0.7545 0.1518 0.0349 0.2987

Lo(ut) 0.5184 0.1728 0.0308 0.2760

For the test statistit,(2) we consider the weight function to be of fogma(u) = v, p > -1.
Corollary 4.2.5 implies that

s . 1 1 B(1-1,20+3)
T20 0t 2)2((p IR0+ 32— | (+1E
4B(1-2,40+7) 2B(1-A2A,p+2)
@+3F  (p+120+3)
4B(1-4,2p+4) 4B(1-1,3p+ 5))
e+1)20+3PF  (p+1)(20+3) )
whereB(, ) denotes the Beta function. Here we consider the two test statis{ied andL(u?).

Kumazawa [45] discussed the statis¥cequivalent td_,(u®). Then the asymptotic variances of
the suitably normalized versions b§(u®) andL,(u') underHj are given by

e 2 4 1 0 1
207 9(7-2) 3(6-1) 3(5-1) 4-a 4(3-2)

and
B }( 1 B1-45)  4B1-111)
7217 9\100(1- 1) 4 25
_B1-13) 2B1-16) 2B(-1 8))
10 25 5 )

respectively.
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And the dficacies ofL,(u®) andL,(u') are given: for the alternative (i)

for (ii)

for (iii)

and for (iv)

respectively.

ef f{L(u)} = (—g IN2+2In3F/c3,,

eff{Lz(ul)}:(—;—Z)InZ 3—In3+ 2 In5)2/021,

ef f{Lo(W%) = (3)2/02,0,

1 2, 2
ef f{Lo(u?)} = (—135 /0'2,1,

1
eff{Lo(O)) = (75730

ef fiLo(uh)) = (2520> 051,

ef f{Lo(W0)} = (—E In2+3In3f /03,

1 14
ef f{Lo(ul)} —(—%InZ 2—5In3+ 6|n5)2/0'§,1’

Table 4.2 shows thefiicacies of the IFRA-test statisties(u*, 1.03), L1 (u, 1.95), L(u*®, 3.42)

andL,(u®) for the alternatives listed in Section 4.1 and some values of the censoring parameter

A. For the statistid_;(u®, 8) we choose the values of andg so as to maximize |tsfécacy

against a particular alternative. Singe:= > .di/nis an estimate oP(X; < U;) =

1+/l , We

recommend thd=_1(_u , 1.95)-test statistic for small values 6f and theL(u?, 1.03)-test statistic
for large values o8, in the sense of the Pitman asymptotic relatitfeceency.
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Chapter 5
Tests for NBU and NBUE

5.1 The NBU Alternative

In this section we are interested in testing the null hypothesis

Ho: F(t) =1-explt/u) fort>0 (uunspecified)
versus the alternative

Hs3 : F(t) is NBU, but not exponential

under the random censorship model.
Koul [32] considered the parameter

f ) f T ASOWAS() - wIS(s+ DAF(SAFQ)
0 0

1 o0 (o)
_ 2 _
oy fo w(9ds fo fo W{S(s+ OdF(AF()

as a measure of the deviation Bft) from exponentiality towards the NBU alternatives and
developed the class of the test statistics in the uncensored case. Here the weight f(Acison
assumed to be nondecreasing. This parameteryqidh= t was first investigated in Hollander
and Proschan [19].

For the testing problem based on the censored observd¥ads), 1 < i < n, Kumazawa [42]
proposed the class of the statistics

T T
Ma(y) = fo fo U (Sn(s+ D)AFW(SAFAD). (5.1.1)

which corresponds to the the Koul's [32] NBU statistic in the uncensored case. The statistic
M1 (y) with ¢(t) = t was considered in Chen, Hollander and Langberg [11] using a modified
Kaplan-Meier estimator of (t).
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Theorem 5.1.1. (Kumazawa [39], [42]) Suppose that the weight functigft) is continuous
and piecewise d@fierentiable with bounded derivatives. And suppose that tik€tdlfs absolutely
continuous and that the dfis(t) and ((t) satisfy the conditions

f - S2(t)dC(t) < oo (5.1.2)
0

and
nY2y{S(T)} — 0 in probability asn — co. (5.1.3)

Then the sequence of the m%?{M; () —W(F)} converges in distribution as — oo to a normal
rv B with zero mean and variandg B?], where

W(F) := fom fom Y{S(s+ t)}dF(s)dF(t),
B:= —j; j(; Z(s+t)S(s+ t)y'{S(s+ t)}dF(s)dF(t)+

00 t
+2 fo fo Z(t - 9S(t — 9dF(y' {S(O)}dF(t)

and Zt) is the limiting process of £t) given in Lemma 3.1.2 of Section 3.1.

Proof: To apply Theorem 3.2.2 of Section 3.2, we first note that the induced functi(g)ak
W(go F) for g € D[O, 1] can be expressed as a composition of Hadamdrerdntiable transfor-
mations. For fixed-(t) andy(t), we define

y1(91)(s) := F o gi(9),

¥2(92)(s 1) 1= ga2(S) + g2(t),
¥3(93, 91)(s, 1) == ¢[1 — g1 o F{gs(s D},

and

1 1
¥4(0s) = fo fo ga(s, t)dsdt

whereg; € D[0,1], g2 € L*[0,1], g3 € L[0,1] x [0, 1], 0 < s, t < 1 andg}(s) = inf{t, 1 : g(t) >

s}. Then from Propositions 6.1.1, 6.1.2 and 6.1.6 of Fernholz [16] the above transformations
v1(-) — y4(-) are all Hadamard tlierentiable at(t). Thereforer(g) = y4 o ya{y2 o y1(Q9), 9} is
Hadamard dterentiable at(t) by the chain rule of Proposition 3.1.2 of Fernholz [16].
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Next we have

NY2{M1(y) — W(F)} — (W(F]) - W(FT))|
< n%?| f " Y{S(s+ t)}dF(S)dF(t)|+
0 T-t
+n'? f f U(S(s+ t)}dF(S)dF(t)]+
T 0

T T
+nt72 f UAS(T)AF(9AF ()
0 T-t
< 3nY2y{S(T))

=0p(n°) asn — co.

Hence the desired result follows from Theorem 3.2.2 of Section 3.2 and some calculations.
We consider the weight functioi(u) = u* as a special case.

Corollary 5.1.1. (Kumazawa [42])Lety/(u) = u*, @ > 1. Suppose that under the null hypothesis
Hoy the censoring df @) satisfies the conditions (5.1.2) and (5.1.3) of Theorem 5.1.1. Then
nY2{M1(u®) — (@ + 1)~} converges in distribution as — co to a normal distribution with mean
zero and variance

fo 1, (S()AC().

where
f, (1) = afz(a/ + 1)‘4{(a +1)Int+ 1)2t%+2,

From Lemma 2.4 of Kumazawa [42], the asymptotic variancelgiu®), @ > 1, under the null
hypothesis may be consistently estimated by

i
7= [ Si(t-)ace),
0

Using this estimator, we can construct the asymptotically exact test based on the statistic
Mi(u®), a > 1.

Now we compute thef@cacies of the test statistidd;(u*), « > 1, against the alternatives
()-(iv) listed in Section 4.1 under the proportional censoring model. From Corollary 5.1.2 we
may takeu = 1 and O< A < 1, and the asymptotic variance undég is found to be equal to

o @+ 1F + (o - 2)3
To T a1+ 1%(a+ 17

Some calculations yield that for the alternative (i)

2

ef fiMy(u*)} = (a/:yw,
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Table. 5.1 : Hicacies of the NBU-test statistics

when the censoring parameter -+ and3
Alternative
1 0 G @iy  (iv)
A1=1/10

My(u}) 1.2676 0.3169 0.0625 0.4774

My(u*®) 1.1560 0.1849 0.0481 0.4862

Mi(u?) 1.0366 0.1151 0.0364 0.4737
1=23/4

My(u}) 0.7009 0.1752 0.0346 0.2640

My(u*®) 0.8062 0.1289 0.0335 0.3391

My(u?) 0.8075 0.0897 0.0283 0.3690

for (ii)
ef f{My(u)} = m,
for (i)
et M) = T e 7 202
and for (iv)
Ry
ef My (")) = {In(e+ 1) - a}

a?(a + 1)y'02

Table 5.1 shows thefecacies of the test statistidé, (ut), M1 (u'®) andM¢(u?) for the alternatives

()-(iv) and some values of the censoring parameatewWe recommend th&l,(ul)-test statistic

for the testing problem in the sense of Pitman asymptotic relaffi@ency.

Remark. Joe and Proschan [24], [25] obtained some results odébeeasing 10@-percentile

(0 < @ < 1) residualand thenew better than used with respect to the &geercentileaging
properties and developed the statistic for testing exponentiality against these life distributions in
the uncensored case. And Hollander, Park and Proschan [22], [23] introducedwhieetter

than used at timé&, aging property and considered the problem of testing exponentiality versus
this aging property in the uncensored and the censored case. Under the random censorship
model Kumazawa [44] proposed the classes of the test statistics generalizing their statistics to
accommodate the censored data, and derived the asymptotic distributions of the statistics under
some milder conditions.
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5.2 The NBUE Alternative

We develop a test of the null hypothesis

Ho: F(t) =1-exp(t/u) fort>0 (uunspecified)
against the alternative

H, : F(t) is NBUE, but not exponential

on the basis of the possibly right censored dataX), 1 < i < n, defined in Section 2.2.
Kumazawa [37] introduced the class of the test statistics

AR AL
fin Jy ¥1(9Sn(9ds

Ni(y1) = (5.2.1)

based on the measure

f T U OeSE) - f " s(9dst
0 t

of exponentiality against the NBUE lifdf's using weight functiony,(t), where

t
B(t) = fo va(9ds

The measure with1(t) = constantwas considered in De Souza Borges, Proschan and Rodrigues
[13] for the above testing problem in the uncensored case. Note that we reject the null hypothesis
Hy in favor of H, for small values of the statistid; (4/1).

The parameter

00 t
f WSO F (D) — f S(9dsdF()
0 0

as a measure of the deviationeft) towards the NBUE alternatives with weight functigg(t)
was considered in Kumazawa [41], and the class of the test statistics

B w2(5a®) f Sa(9)dscEa(®)
Tin

Nz(lﬁz) = (522)

was discussed. Hollander and Proschan [20] used this measurgaftith= constantand pro-

posed the resulting statistic in the uncensored case. In the censored case Koul and Susarla [34]
generalized the statistic given in Hollander and Proschan [20] based on a modified Kaplan-Meier
estimator, and gave the asymptotics of their statistic under some strong regularity conditions.
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Noting that a lifedf F(t) is NBUE if and only if the scaled TTT-transforms}(t) defined
by the equation (4.1.1) of Section 4.1 satisfy*(t) > t for all t € [0, 1] from Theorem 2.4 of
Klefsjo [29], we may consider

1
Aaw) 1= fo J(L- DIHEL() — tidt

as a measure of NBUE-ness with weight functigft). Then change of variable formula in
multiple integral shows that

00 t
) = 2 VSO o SOIIRY | (-t

HF

which also yields theN,(,)-statistic. The measur&,(y) with ¢(t) = constantwas used by
Kumazawa [45] and investigated the resulting statis§ainder the random censorship model.
Based on the same property, Kléfg§31] proposed the statisti&s, which is known to be the
cumulative TTT-statistic discussed in Barl@t al. [3], Chapter 6, on testing against the IFR
alternatives and which is equivalent to the Hollander and Proschan’s [20] statistic. Note that we
rejectHy in favor of H, for large values ofNy (7).

On the basis of the fact that the NBUE property is expressed by means of the mean residual
life er(t) defined in the equation (2.1.2) of Section 2.1, the test statistic

N3 := sup §n(t)(l - 2) (5.2.3)
O<t<T HMn

was introduced in Kumazawa [47], where

[T Su(9ds
Q=== _—

— forO<t<T.
Sh(t)

Kumazawa [43] discussed the asymptotic behavior of the suitably normalized vers&porof
the fixed intervallO,u], 0 < u < 7y, under the random censorship. The statidticmay be
considered as a natural extension of the statistic given by Barlow and Doksum [5] and Koul [33]
in the uncensored case, and we rejigtin favor of H, for large values oNs.

In order to derive the asymptotic distribution of the statidti¢/), we first assume that; (t)
IS not constant on the unit intenvl, 1].

Theorem 5.2.1. (Kumazawa [37]) Suppose that the weight functigni(t) is nonnegative and
right continuous. And suppose that the d¥€) and ((t) satisfy the conditions

f " h2(t)dC(t) < oo (5.2.4)
0

and

nY2h(T) — 0 in probability as n— oo (5.2.5)
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fori =1, 2and3, where T is the largest observation of thgsX

hy(t) := ‘ftm S(s)ds
ha(t) = ft " pa(9S(9ds
and

hs(t) = j:oo Y1(9)S(9)ds

Then we have as w
N2 {Nuw) - 22} 54 NE. ),
MFM2

whereu, = hy(0), uz = hz(0) and

o (0 MO

Proof. By applying the same method as given in the proof of Theorem 4.2.3 of Section 4.2, itis
seen that the random vector

T T T
Ao 1= fo Sa)dt — e fo U (OSaOdt - 11, fo 10800t - p3)

is asymptotically equivalent to

B, = ( fo ' Z.(0dhy (D), fo ' Z.(0dh (1), fo ' Zn(t)dhg(t)).

Since the random vectdd, converges in distribution as — oo to a normal distribution with
zero mean vector and dispersion matix j}1<i j<3 With

Oij = ](; hi (t)h; (1) dC(t),

the desired result follows from Corollary 3.3 of Serfling [53]. O
Next we consider the test statistic given by

[ St
2

in the case ofy;(t) = constant This statistic is also considered as a test statistic for testing
against the HNBUE alternatives in Section 6.2 and treated in a more general framework: we
have the following result from Theorem 6.2.5 of Section 6.2.
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Corollary 5.2.1. (Kumazawa [37]) Suppose that the dfis(t) and (t) satisfy the conditions
fo " h2(t)dC(t) < oo

and
n'?hi(T) — 0 in probability as n— oo,

fori = 1and?2, where

hy(t) := ftm S(s)ds
and

ho(t) = f sS(s)ds
t
Then we have as s

T —
sSn(s)ds
nl/Z{fO ’;( )_ - ,u_zz} —4 N(0, 0?),
l'ln /'tF
Where/,tz = h2(0) and
o Jo {2u2ha(t) — ueha(t)12dC()
0- .

He

The asymptotic behavior of the statishiz(y1) under the null hypothesis can be summarized
as follows.

Corollary 5.2.2. (Kumazawa [37]) Suppose that under the null hypothegis the censoring
df G(t) and the weight functior,(t) satisfy the conditions (5.2.4) and (5.2.5) of Theorem 5.2.1.
Thenn'2{Ny(y1) — 1} converges in distribution as — oo to a normal distribution with mean

zero and variance ,
o2 = f {1 - Tl—(t)} S2(tydC(t).
0 M2

The similar methods as given in earliers show that

.
T2 ::f {1—
0

is a consistent estimator of given in Corollary 5.2.3, where

110V 5210800
2

i
T = fo v1(95n(9)ds
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In order to derive the asymptotic distributions$(y») from Theorem 4.2.3 of Section 4.2, we
set

t
P(t) = fo Va(9ds
ha(t) i= ft " s(9ds
and

hy(t) := fow[wz{S(S)}S(S) +¥2{S(9)}]S(s)ds

Corollary 5.2.3. (Kumazawa [41])Suppose that the df5(t), G(t) and the weight functios(t)
satisfy the conditions of Theorem 4.2.3 of Section 4.2. Then we have>as

u
N2 No(y) - 22 | 4 N(O.02).
HF
where

o= [ walS(9IS(9ds

and

2 . foTH (i, (1) — ueha(8)}2dC(t)
0y, = i -

Corollary 5.2.4. (Kumazawa [41]) Suppose that under the null hypothegis the censoring

df G(t) and the weight functiog,(t) satisfy the conditions (4.2.6)-(4.2.9) of Theorem 4.2.3 of
Section 4.2. Then'2{N,(y,) — v} converges in distribution as — c to a normal distribution
with mean zero and variance

7= [ - s dco).

where

1
V= f Y,(s)ds
0

A consistent estimator
T —_— —_—
5= [ Iy - WalS(IPS)C
0

can be constructed from the previous discussions and we can obtain an asymptotically exact test
based on the test statisti(i/,) defined in the equation (5.2.2) by using this estimator.

We need the following lemma to give the asymptotic distribution of the test statistiefined
in the equation (5.2.3).



36 Chapter 5 Tests for NBU and NBUE

Lemma 5.2.1. (Kumazawa [47]) Suppose that the dfis(t) and (t) satisfy the conditions

fo " S2(t)dC(t) < oo, (5.2.6)

fo " h2(t)dC(t) < oo, (5.2.7)
and

n?h(T) — 0 in probability as n— oo, (5.2.8)
where

h(t) := ftw S(s)ds

Then the stochastic process

Bn(t) := nl/Z{S (t)(l - ,U_n) S(t)(l B e;_it))}

for0 <t < T converges weakly in[D, 4] as h— oo to a Gaussian proce$’(t) with zero mean
and covariance function

E(B(9B()) = fo " gWaUdC).

where
h(s)

hu) h(s)h
gs(u) := 1{“§S{ﬂ (W) , h(sh(u)

- S( )} 1{uzs}
HF ,uF

Proof: We haveforOxt<T

f Zn(u)dh(U) h(t) fOT Zn(u)dh(u) nl/zh(T)h(t) nY/2h(T)

Bn(t) = —=S(t)Za(t) - =
Hn MEMR HFHn Hn

(5.2.9)

with Z,(t) = nY2{F,(t)—F(t)}/S(t). Hence Lemma 3.1.2 of Section 3.1 together with thanter-
Wold Device and the Slutsky’s Theorem implies that the limiting proces®, () can be ex-
pressed as

I Z(udh(v) heo) " Z(u)dh(u)
HE

— SMZ(t) -

. fo " g(udzZ() = B),

whereZ(t) is the limiting process oZ,(t). Therefore some calculations yield the desired result.
m]
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Theorem 5.2.2. (Kumazawa [47]) Suppose that under the null hypothesig the censoring df
G(t) satisfies the conditions (5.2.6)-(5.2.8) of Lemma 5.2.6. Then we have>as
2N t
% g sup[wi T - Fow)
On O<t<oo O—(OO)
where Wt) denotes a standard Gaussian process with zero mean and covariance function
E{(W(sW(t)} = sAt,

o?(t) = f t S2(s)dC(s)
0
and

T
—~2 . _ 2 ~
o ._fo Sy (s-)dC(s).

Proof: Note that we are in the situatiangy = 7 = co. Lemma 5.2.6 shows that the limiting
process oBy(t) given in the equation (5.2.9) under the null hypothé@disis given by

B(t) = fo " (Lgey - FOISWAZ().

Then it is seen that the stochastic procg) : 0 < t < oo} has the same distribution as the
process{W{o(t)} — F(t)W{o(e0)} : 0 < t < oo}. Hence we can conclude the proof from the
Continuous Mapping Theorem and the fact @fats a consistent estimator of(co). O

In the uncensored case the varianéét) becomes td-(t), so we have
: n'/2Nz
lim P( _ 8 x) _ P( sup[W(F (1)} — F(OW(1)] < x)

N—oo On O<t<co

_ p( SUp{W(t) — tW(L)} < x)

O<t<1
=1-exp2x%) forall x>0,

which can be also derived by the result of Barlow and Doksum [5] since in this situatien
L1 7o has the limiting valud.
Here we assume that under the null hypothEsisthe censoringlf G(t) satisfieF op™(s) > s

for all s > 0 with ¢(9) := o(s)/o(e0): this condition holds for the proportional censoring model

given byG(t) = S*(t) with 0 < A < 1. Then we have for akk > 0

lim P( MNs x) - P( sup [Wie(t)} - FOW(L)] < x)

n—oo On O<t<oo

P( SUPIW(t) — F o o LOW(L)} < x)
O<t<1

> P( sup{W(t) - tW(1)} < x) =1 - exp(2xd).
O<t<1
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Table. 5.2 : Hicacies of the NBUE-test statistics

when the censoring parameter - and3
Alternative
Statistic (i) Qi Gy (iv)
A1=1/10

Ni(u’) 0.7218 0.7217 0.0451 0.1804
Ni(u®%) 0.3785 0.5195 0.0241 0.0831
Ni(u})  0.2307 0.4101 0.0144 0.0455
No(u®)  1.2474 0.6490 0.0721 0.3874
No(u®®) 1.3319 0.5711 0.0728 0.4408
No(u') 1.3732 0.5056 0.0711 0.4776
A=3/4
Ni(u’) 0.0100 0.01 0.0006 0.0025
Nz(u®%) 0.0019 0.0026 0.0001 0.0004
Ni(u')  0.0003 0.0006 0.0000 0.0000
No(u’) 0.1863 0.0969 0.0107 0.0578
No(u®®) 0.2738 0.1174 0.0149 0.0906
No(u})  0.3497 0.1287 0.0181 0.1216

The asymptotic distribution of the suitably normalized versioiNgfunder the null hypothesis
for arbitraryG(t) can not be evaluated and the above expression would be useful to determine the
critical point of theNs-test.

Now we shall compare thefecacies of the test statistid (1) andN, (i) for the alternatives
()-(iv) given in Section 4.1 under the proportional censoring model. For the selection of the
weight function we take/1(t) = ¥»(t) = t*. Then Corollaries 5.2.3 and 5.2.5 imply that 1
and the censoring parametesatisfies O< 1 < 1: here we assume > —1/2 for the statistic
N1(u?) anda > —1 for No(u®*). And the asymptotic variances unddp are given by

2. Ta+3)-2(1- )+ (1 42
L (1— )2+32(q + 2)

and

>._ 1 2 1
72 '_{(1—/1)(a+2)2 B (@+2)(@+2-2) M e +3-2)

M+ 17,

respectively. Then some calculations yield that: for the alternative (i)

I(a + 2)
I'a+2)
In(e + 2) 2
(¢+D(a+2)o,

ef f{Ny(u")} = {y + /o,

ef f{N2(u")} = {
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for (ii)
N (@ + 1)
ef f{Ny(u")} = 2
01
ef f{No(u")} = ;
2 B (a+ 2)40'5,
for (iii)
(2a+l _ 1)2
effiNi(u*)} = ————,
1 22cy+40-§
a — 1 2
ef f{N(u”)} = {2(0 + 2)(a + 3)0'2} '
and for (iv)
oy = L@+ 1P
ef f{Ny(u")} = (@+ 2202

In(a + 2) 1 }2 e
25

ef f{N2(u")} = { (@+12 (a+1)(@+?2)

respectively, whereg is the Euler’'s constant.

Table 5.2 gives theflicacies of the test statistids; (u°), N1(u%®), Ny(ut), Ni(u?), No(u°),
No(u%®), No(ut) andN,(u?) for the alternatives and some values of the censoring parameter
Here we recommend the use of tNg(u')-test for the testing problem in the sense of the Pitman
asymptotic relative féiciency.
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Chapter 6
Tests for DMRL and HNBUE

6.1 The DMRL Alternative

Kumazawa [45] considered the measure of dispersion from exponentiality to DMRdifife

FOgvenby 1K 1 HEW
fof(l—s)(l—t){ s 1op Jdus

1-s 1-t
and proposed the test statiséi§; for testing the null hypothesis
Ho: F(t) =1-explt/u) fort>0 (uunspecified)

against the alternative
‘Hs : F(t) is DMRL, but not exponential

based on the Kaplan-Meier estimaféx(t). Here the property that the scaled TTT-transforms
HZ1(t) defined in the equation (4.1.1) of Section 4.1 satisfy that HZ*(t)}/(1 - t) is nonin-
creasing irt € [0, 1] for DMRL life df's from Theorem 2.5 of Klef$j [29] is used in defining the
above measure. By using weight functig{(t) this measure can be generalized as

G 1-H49 1-HZ(t)
Api= fo f (1= 91~ Opa(l - a1 - Y=~ =)

Jo wa(dt— [ WS} ; S(9dsdR)
HF ’

dtds

where

1 1
Ya(t) = a0 fo sy(9ds— 2 f s(9ds.

The method of replacing (t) by the Kaplan-Meier estimatdt,(t) suggests to construct the test
statistic T o _
fo \Pl{sn(t)}fo Sn(s)dsdFn(t)

Hn

(6.1.1)

P1(¥1) =
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for the above testing problem. Klefs[31] developed the test statisthy in the uncensored
case by using the same property of the scaled TTT—transfbrFr%) and theAy-statistic may be
considered as the correspondingRy/1) with y1(t) = constantin the uncensored case. Note
that we rejectHy in favor of Hs for small values oP(i1).

And we may use

00 t
MWﬁ%=L LEVW$§”mwA9—amMH$wm

as a measure of DMRL-ness of lit F(t). The measuré\,(a,B) with « = 8 = 0 was first
considered by Hollander and Proschan [20] and Chen, Hollander and Langberg [12]. Bergman
and Klefsp [9] discussed\y(«, 8) with @ andB nonnegative integers. It is seen that the measure
Ay(a, B) with a = B is equal toA (1) with y1(u) = u®, so in this case the both measures lead us

to construct the equivalent test. Then some simple calculations yield that

Amuﬂ=£ﬂm+m§”m+%sﬁwmﬁmm
=: f:o g{S(t)}dt, (6.1.2)
where
a 1
A =T BT DB+ )@ +B+3)
N 1
&= 2B+
and
L a+p+4
B =T+ B+)a+B+3)
The test statistic
()
Pa(@,p) = ———— fo () (6.1.3)

n

may be constructed by the use of the Kaplan-Meier estinfat(ty and we rejectH, in favor of
‘Hs for large values oP;(«,B). Chen, Hollander and Langberg [12] and Bergman and Kiefsj
[9] considered the test statistic based on a modified Kaplan-Meier estimator, and proved the
asymptotic normality of the normalized version under some stronger conditions than those given
in the below.

In order to derive the asymptotic distribution of tRg(y)-statistic, we apply Theorem 4.2.3
of Section 4.2. To this end we set

t
o(t) ::fo‘I’l(s)ds (6.1.4)
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Corollary 6.1.1. Suppose that the df's(f, G(t) and the function'1(t) satisfy the conditions of
Theorem 4.2.3 of Section 4.2. Then we have as

J7i
n2{Py(ys) - ﬂiF} —4 N(0,02,),

where
My, - :fo ©{S(9)}S(9)ds
ot - e he(D)2dC(0)
0-1/’1 .= 7] ,
Hr
and

ho(t) : = f [aISIS( + ¢S [s(as

Corollary 6.1.2. Suppose that under the null hypothesis the df Gt) and the functionV,(t)
satisfy the conditions (4.2.6)-(4.2.9) of Theorem 4.2.3 of Section 4.2. Then we have @s

N2{Py(y1) — v} —a N(0,07),

where
1
u::f p(9)ds (6.1.5)
0
and

o2 = fo ) [u - go{S(t)}]zsz(t)dC(t).

From this corollary the asymptotic varianog1 under the null hypothesis depends on the
unknown parametegsandG(t). By the similar method as given in the previous sections we can
construct a consistent estimator

T . 2 .
7, = [ [v- oSt Sieracn
by the theory of counting processes.

Next we consider the asymptotic behavior of the test statiffa, ) defined in the equation
(6.1.6). This result can be proved by Theorem 4.1.1 of Section 4.1 and stated as follows.

Corollary 6.1.3. Suppose that the df's(§ and (t) satisfy the conditions

f " R(HdC(D) < oo (6.1.6)
0
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and
n'/?h,(T) — 0 in probability asn — co, (6.1.7)

where

hy(t) := ftw S(u)du.

Then the sequence of the rv’s

2oy - 2)

converges in distribution as # oo to a normal rv with zero mean and variance
Jo 2 (t) - ueha(1))dC()
It ’

where
o = fo gIS(t)dt.
ha(t) = f S (SW)dy
t

and the function @) is defined in the equation (6.1.2).

Corollary 6.1.4. Suppose that under the null hypothegis the df GQit) satisfies the conditions
(6.1.9) and (6.1.10) of Corollary 6.1.3. Then we havaas o

nl/zpz(a’ﬁ) —d N(O’ O-(Zl’,ﬁ)’

where .
02, = fo IS H)AC).

Because of the dependency of the asymptotic variance of the st&igtig3) under the null
hypothesis on the unknowpsandG(t), we may consider an estimator

i
72, [ PBit-eCw,

The consistency can be proved by the same technique as used in the proof of Lemma 2.4 of
Kumazawa [42].

Now we compare thefcacies of the test statistid® (1) and P,(a,B) for the alternatives
()-(iv) presented in Section 4.1 under the proportional censoring model with the censoring pa-
rameterd. From Corollaries 6.1.2 and 6.1.4 we may take= 1 and 0< A4 < 1. And the
asymptotic variances of the suitably normalized versionB:¢§1) and P»(«,8) underH, are
given by

1
0'% ::f {v - o(t)}2tdt
0
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Table. 6.1 : Hicacies of the DMRL-test statistics

when the censoring parameter - and3
Alternative
1 0 Gy @iy  (iv)
A1=1/10

P,(0,0) 0.5638 0.6609 0.0469 0.1131
P,(0,.5) 0.6575 0.6334 0.0540 0.1435
P,(0,1) 0.7284 0.5997 0.0585 0.1701
P,(50) 0.5942 0.6608 0.0491 0.1222
P,(5.5) 0.6840 0.6293 0.0557 0.1526
P,(51) 0.7509 05931 0.0597 0.1787
P,(1,0) 0.6211 0.6611 0.0510 0.1306
P,(1,.5) 0.7076 0.6256 0.0571 0.1608
P,(1,1) 0.7711 05874 0.0606 0.1866
A=23/4
P,(0,0) 0.0534 0.0625 0.0044 0.0107
P,(0,.5) 0.0857 0.0826 0.0070 0.0187
P,(0,1) 0.1182 0.0973 0.0095 0.0276
P,(50) 0.0594 0.0660 0.0049 0.0122
P,(5.5) 0.0934 0.0859 0.0076 0.0208
P,(51) 0.1269 0.1002 0.0100 0.0302
P,(1,0) 0.0647 0.0689 0.0053 0.0136
P,(1,.5) 0.1003 0.0887 0.0081 0.0228
P,(1,1) 0.1348 0.1026 0.0106 0.0326

and
o, & 3 a3
1-14 26+3-1 2a+28+7-4
2a.
4 1d 4 2a;83 + 2a0a3 ’
B+2-1 a+B+4-1 a+28+5-24

respectively, where(t), v andg;’s are given in the equations (6.1.7), (6.1.8) and (6.1.3)-(6.1.5),
respectively. Here for the statisti; (1) we consider the weight functiagy (t) to be of formt®.
So the resulting statistie; (1) is equivalent to the statistie;(«, ).

Then the #icacies of théP;(«, B)-test are given as follows: for the alternative (i)

In(B + 2) In(a + 8+ 4)
B+1)B+2) B+2)@+p+3)

2
ef f{Py(a.f)) = { } /(@ + 2202),

for (ii)

1 2
eff{Pz(Ol,ﬂ)} = {(ﬁ+2)2(a, +IB+4)O'2} ’
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for (iii)

a & a %
/0-2’

eff{PZ(a’ﬁ)}:{E+,8+3+ a+p+5

and for (iv)

axIn(B + 2) N azln(a + B + 4)}2/0_%

ef {{Py(a. B)} = {a1+ 1 s

Some numerical evaluations of the above expressions with some valuesnal yield the
entries of Table 6.1. Here we recommend the test based da,{tiel)-statistic for this testing
problem.

6.2 The HNBUE Alternative
For testing the null hypothesis

Ho: F(t) =1-explt/u) fort>0 (uunspecified)
versus the alternative

He : F(t) is HNBUE, but not exponential

under the random censorship model, Bergman and Kid&jj proposed the class of the test
statisticsQ1 (k) and Q2 (k) with k integer> 2 based on the property thatF{(t) is HNBUE then
fork=2,3,---,

f sk(pdt > XE
o k

and

f {1 - FAO)dt < v
0

with v = Z‘j‘zl % In Bergman and Klefgj [8] a modified Kaplan-Meier estimator was used

to define the statistic®,(k) and Q. (k) and the asymptotic normality of the suitably normalized
versions of the statistics was derived under some strong conditions. Then these statistics can be
represented as

T Sk()dt
QK @ = foﬁ—() (6.2.1)

n
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and

11— FX@))dt
Qz(k):=f°{ = o) (6.2.2)

n

by using the Kaplan-Meier estimaté(t) defined in the equation (4.1.1) of Section 4.1. Here
we reject the null hypothesis in favor of Hg for large values of); (k) and rejectH, for small
values ofQ,(k). It is seen that the test statistib (i) with ¢(t) = t* anda nonnegative integer,
introduced in Section 5.2 for testing against the NBUE alternatives, is asymptotically equivalent
to Qi(a + 2).

Kumazawa [46] introduced a measure of exponentiality against the HNBU#fkfgiven by

ai= [ O] exp(tpe) - [ " S(dult

i [ wtuevetat- [ sw [ "y(ydtdu

with nonnegative weight function(t). Note thatA; = 0 whenF € Hy andA; > 0 whenF € Hg.
If we select the weight function(t) := t* with @ > 0, the above measure becomes

A = (@) - o uS(u)du
and a class of the test statistics
T —_
Jy uSh(u)du
n

for « > 0 may be constructed by using the Kaplan-Meier estimﬁmr). This statistic in the
uncensored case closely relates to the class of the stafisticdroduced in Kimball [27] and
may be considered as a natural extensioii ofor the censored observations. Some properties
of T, are discussed in Leet al. [49] in detail. Under the uncensored model Singh and Kochar
[54] considered the above testing problem by using the weight fungiign= expt/ur)/ur
in the measurd; and discussed some properties of the resulting test statistic.

Here Theorem 9.4 of Dharmadhikari and Joag-dev [15] state$(heis an HNBUE lifedf if,
and only if,

b 9(t) expt/ue)dt
HF

fom g)dF(t) <

for all nondecreasing, convex functig(t) on [0, ). Hence the measure may be also derived
from this characterization of the HNBUE life distributions. Note that we refégtin favor of
He for small values ofs(a).

Now the asymptotic distribution of the test statigflg(k) can be derived from Theorem 4.1.1
of Section 4.1.
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Corollary 6.2.1. Suppose that for fixed integerk?2 the df's Ht) andG(t) satisfy the conditions

fo " h2(t)dC(t) < oo (6.2.4)
and

nY/2hy(T) — 0 in probability as n— oo, (6.2.5)
where

hy(t) = jt'oo S(u)du.

Then we have as # o
2 Qu) - £2} 4 N(O. o),

HF
where
o o tu2ha(®) - peha(t)2dC()
T = Z ;
M
p2 = f sk(ydt,
0

and

ho(t) : = kftw S¥(u)du.

Corollary 6.2.2. Suppose that for fixed integerk2 and the null hypothesis(E), the censoring
df G(t) satisfies the conditions (6.2.4) and (6.2.5) of Corollary 6.2.1. Then we have-as

2 Q) - i} —a NO.oF)

where
Jo 18(t) - kS*(B)dC(t)
k2 '

Again we can prove the asymptotic normality of the suitably normalized version of the statistic
Q2(k) from Theorem 4.1.1 of Section 4.1.

Corollary 6.2.3. Suppose that for fixed integerk2 the df Ht) and the censoring db(t) satisfy
the conditions (6.2.4) and (6.2.5) of Corollary 6.2.1. Then we have-asco

2 ._
O1k =

029 - £2} 4 N, )
HF
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where
2 o b (t) - peha()12dC)
O-k .= 2 ,
He
o= [ 1L- Pt
0
ha(t) : =f S(u)du,
t
and

hy(t) : = k ft ) F*(u)S(u)du.

Corollary 6.2.4. Suppose that for fixed integerk2 and the null hypothesis(E), the censoring
df G(t) satisfies the conditions (6.2.4) and (6.2.5) of Corollary 6.2.1. Then we have-as

NY2(Qa(K) — v —d N(0,03,),

where .
05y 1= f (nS(t) + FX(t) — 112dC(t).
0

From Corollaries 6.2.2 and 6.2.4 the asymptotic variances of the suitably normalized versions
of Q1(k) and Q»(k) underH, hypothesis are found to depend on the unknowasdG(t), and
may be estimated by

L,y (Sa(t-) - KSK(t-)PdC(
k2

O-l,k_

and

T —_ —_
Tyt = fo Sn(t-) + FX(t-) — 1}2dC(1),

respectively. The consistency of these estimators can be proved by the same method as given in
Section 4.1.

Next we consider the asymptotic distribution of the test stat@tie) defined in the equation
(6.2.3).

Theorem 6.2.1. (Kumazawa (1989a))Suppose that for fixed constant> 0 the df's Kt) and
G(t) satisfy the conditions

f - h2(t)dC(t) < oo (6.2.6)
0
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and

n'?hi(T) — 0 in probability as n— oo (6.2.7)
fori = 1and2, where

hy(t) = ftw S(u)du
and

hy(t) = ftw u*S(u)du.

Then we have as B o

nl/z{QS(a) - ﬂ"ﬁl} —q N(0,52),
F

whereu, := hy(0) and

2 I taler + D) - e ha(0)2AC()

a 'u’2:a/+4
Proof: We have
W = o - )
Mg

T
_ b 299 G ) h(T)
=L - T _

ﬁ%wl m+1ﬂg+l ﬁ%wl

with Z,(t) = nY2{Fn(t) - F(t)}/S(9). It is seen from Corollary 3.3 of Serfling (1980) and the fact
thatuy, is a consistent estimator pf that the second term of the right hand side is asymptotically
equivalent to
T
pa(er + 1) [ Zn(s)dhy(s)

a+2

HE

from the conditions (6.2.6) and (6.2.7).
Now Lemma 3.1.2 of Section 3.1 together with the CeatWWold Device implies that the ran-

dom vector . .
([ zattanuC). | Zetoaheco)

converges in distribution as— oo to

([ zodm. [ zeane)
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with the limiting proces€(t) of Z,(t). Hence the limitingv of W, ash — oo can be expressed
as

" Z(9dhe(9)  paler+ 1) [ Z(9dlhu(9
Iua+1 IJ('?.Z

fOTH {t2(a + L)y (t) — puehy(t)}dZ(t)
a+2 .

HE
The desired result follows from the Fubini’s Theorem and some calculations. O

Corollary 6.2.5. Suppose that for fixed constamt> 0 and the null hypothesig(t), the cen-
soring df Qt) satisfies the conditions (6.2.6) and (6.2.7) of Theorem 6.2.5. Then we have as

n— oo

N/2{Qs(e) - T(a + 1)} =4 N(0,03,),

where

, +1

00 “ e S(t)dty 2
o2 = fo {r(a+2)5(u)—f“m—()} dC(u).

Because of the dependency of the asymptotic variarj%eunderﬂo on the unknown param-
etersu andG(t), we may use a consistent estimator

T _ TS, (0)dty2
72, = f {r(a+2)sn(u—)—f“?f+”l()} dcu)
0 n

by the theory of counting processes.

We shall consider thefigcacies of the tests based on the statis@eék), Q»(k) and Qs(«a)
against the alternatives (i)-(iv) listed in Section 4.1 under the proportional censoring model with
G(t) = S'(t). Then Corollaries 6.2.2, 6.2.4 and 6.2.6 imply that 1 and 0< 1 < 1. And the
asymptotic variances of their suitably normalized versions uftjesire given by

5 . 1 2 1
Tk Tied-) kk=a)  2k—A-1’

2 . _ ai,k
O-Z’k'_Zi—l—/l’

and

respectively, where

bi,k .

Il

o
)
=

o
3
T
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Table. 6.2 : Hicacies of the HNBUE-test statistics
when the censoring parameter -+ and3
Alternative
A 0 Qi Gy (i)
A1=1/10
Q1(2) 1.2474 0.6490 0.0721 0.3874
Q:(8) 1.3732 0.5056 0.0711 0.4776
Q2(2) 1.2474 0.6490 0.0721 0.3874
Q(3) 1.1289 0.6932 0.0691 0.3287
Q3(1) 0.7217 0.7217 0.0451 0.1804
Qs3(2) 0.3889 0.5600 0.0243 0.0847
A1=3/4
Qi1(2) 0.1863 0.0969 0.0107 0.0578
Q:1(3) 0.3497 0.1287 0.0181 0.1216
Q2(2) 0.1863 0.0969 0.0107 0.0578
Q2(3) 0.1386 0.0851 0.0084 0.0403
Qs(1) 0.01 0.01 0.0006 0.0025
Q3(2) 0.0008 0.0011 0.0001 0.0002

— w—k fori=1
T DI fori=2,3,00,k

and

I fori=1,2,---,k

-k fori=0
di,k = {

Here we assume for the statis@g(«) thata = k is positive integer.

As stated in the beginning of this section Qgk)-statistic is equivalent to thi,(y)-statistic
with y(t) = t“-2, we do not give the expressions for tifé@acies of the test based @i(k). Then
some calculations show that for the alternative (i)

k-1 -
et 1Qu001 = {ky -1/ T ek
i=1

|
2
ef {Qs(k)} = (r(k +2)1- vk+1}) /02,
for (ii)

K3 k=1) 1 2
ef f{Qu()} = {m— K (_1)'( . )— /02
2 {k ; i (|+1)3} 2k
2
e Qs = {02,
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for (iii)
k-1 [ 2
e f1QuK) = {5 Z( )'( | )(|+ I
2
et Qs(K) = Ik + 1“5 + o) 13
and for (iv)

ef f{Qa(K)} = {Vk— kZ( 1)( | )Ilr}flfll))} /0550
ef f{Qa(K)} = [A(K + L){vksr — k— 1}?/0,,

respectively, wherg denotes the Euler’s constant.

Table 6.2 shows theflecacies of the tests based on the statisfig€2), Q1(3), Q2(2), Q2(3),
Q3(2) andQ3(2) against the alternatives (i)-(iv) and some values of the censoring parameter
A. The poorness of the performance of the test based of jhstatistic, equivalent to the
Qs(a)-statistic in the uncensored case, was pointed out indted[49] and it seems that the
Qs(a)-statistic in the censored case inherits the characteristic df tstatistic. Here we recom-
mend theQ, (3)-test for testing exponentiality against the HNBUE alternatives under the censored
model based on the concept of the Pitman asymptotic relafivgemcy.
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