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Abstract

The aim of this thesis is to present classes of test statistics for testing exponentiality against
some alternatives with an aging property under a random censorship model. The exponential dis-
tribution is widely used in the fields of reliability, survival analysis and life testing because of its
simple nature. The feature of the exponential distribution can be described as constant failure rate
function or constant mean residual life function. This property presents a good description of the
life length of a unit which does not age with time. But there are some situations that the occur-
rences of the initial failures and the wearout failures cause the changes of the failure rate function
and the mean residual life function. Such aging properties give rise to the correspondings for the
life distribution. By using the concepts of six nonparametric models for life distributions with
the aging property, we consider six testing problems under the random censorship model.

Censored data arise naturally in many fields. The underlying test may be a destructive one
so that units on test can not be re-used or, because of time and or cost constraint, we can not
afford to wait indefinitely for all the units to fail. And as in a clinical trial, patients may enter the
study at different times and leave, or die from a cause different from the one under investigation.
Depending on the nature of the underlying tests, some types of censored data may be found, and
we deal with the censored data observed under the random censorship model.

In Chapter 2 we give these notions on life distributions and types of censoring and we review
in Chapter 3 some basic results from the theory of counting processes, martingale limit theorem
and von Mises statistical functionals. Based on these mathematical foundations, we give an
asymptotic theory of all proposed statistics presented in Chapters 4-6 with unified approach.

Each of the sections of these chapters discusses different testing problems under the random
censorship model and proposes some classes of test statistics based on the Kaplan-Meier estima-
tor. The asymptotic distribution of all proposals is derived under the null hypothesis and fixed
distributions. And a consistent estimator of the asymptotic variance of each statistic under the
null hypothesis is constructed from the theory of counting processes. The comparison of the
tests on the basis of the Pitman asymptotic efficacy is also given for some alternatives under
the proportional censoring model and we recommend one test from this result for each testing
problem.
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Chapter 1

Introduction

The exponential distribution is as widely used in reliability and life testing as the normal dis-
tribution is in other areas of statistics. One of the reasons is that the mathematics associated with
the exponential distribution is relatively simple. In this respect the “lack-of-memory” property
that the remaining life of a used unit whose life time is represented by exponential variable is
independent of its initial age plays a central role.

This property can be expressed by a simple functional equation of the life distribution function
(df) and presents a good description of the life length of a unit which does not age with time. But
there are some situations that the occurrences of the initial failures and the wearout failures cause
the changes of the failure rate function and the mean residual function, and such aging properties
give rise to correspondings for the lifedf.

In Section 2.1 of Chapter 2 we define a variety of life distributions according to aging prop-
erties represented in nonparametric forms. These are: theincreasing failure rate(IFR), thein-
creasing failure rate average(IFRA), thenew better than used(NBU), thenew better than used
in expectation(NBUE), thedecreasing mean residual life(DMRL) and theharmonic new better
than used in expectation(HNBUE) classes. Each of the notions of aging has a simple statistical
interpretation and has a dual property by reversing the inequality or the direction of monotonic-
ity. These are named DFR, DFRA, NWU, NWUE, IMRL and HNWUE, respectively. The IFR
distribution has an increasing failure rate function and the IFRA distribution has an increasing
failure rate average. The NBU property states that the conditional survival probability of a used
but unfailed unit at any age is less than or equal to the corresponding probability of a new unit
and the IFRA class is contained in the NBU class. The NBUE property is a weaker version than
the NBU property, and says that the expected life length of a new unit is greater than or equal to
the expected remaining life of a used but unfailed unit at any age. The DMRL distribution has
a decreasing mean residual life function and the corresponding class contains the IFRA class,
but is contained in the NBUE class. The notion of the HNBUE property may be interpreted as
stating that the integral harmonic mean value of the mean residual life function at any age is less
than or equal to the integral harmonic mean value of a new unit. The class of the HNBUE life
distributions contains the above five classes and may be considered as a more natural class of the
life df’s. In this thesis we consider these life distribution classes as the alternatives for testing
exponentiality.

Section 2.2 of Chapter 2 defines three types of censoring: Type I, Type II and random censor-
ing. Censoring is often occurred in survival analysis and life testing, and the censored sample
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contains only partial information about a population of interest. In Chapters 4-6 the problem of
testing exponentiality is considered under the random censorship model.

In Section 3.1 of Chapter 3 we present the theory of counting process and martingale limit
theorem in connection with the treatment of the censored data observed under the random cen-
sorship model. In the censored case we make statistical inferences about the population distri-
bution F(t) or about some functionals ofF(t) by the use of the Kaplan-Meier estimator̂Fn(t).
This Kaplan-Meier estimator may be considered as a generalization of the usual empiricaldf in
the uncensored case. This fact together with the theory of counting processes and martingale
limit theorem helps us to discuss the behavior of statistics based on the Kaplan-Meier estimator
in the uncensored case, as well as in the censored case, with a unified approach. The normalized
process of this estimator is known to be expressed as the stochastic integral with respect to the
martingale generated from the censored data and this fact plays an important role in deriving the
asymptotics of all the test statistics proposed in this thesis.

In order to study the asymptotic behavior of statistics that are functionals of the empirical
df, von Mises [55] proposed a technique based on a form of Taylor expansion involving the
derivatives of the functionals. In Section 3.2 of Chapter 3 we review the approach presented in
Fernholz [16] based on the Hadamard differentiability of the functionals. Kumazawa [36], [38],
[41], [42] used her method to derive the asymptotic behavior of the statistics represented as a
functional of the Kaplan-Meier estimator̂Fn(t).

In Section 4.1 of Chapter 4 the problem of testing exponentiality against the IFR alternatives is
considered. The test statistic is constructed by using the property of the scaled total time on test
(TTT-) transformsH−1

F (t) and was discussed in Kumazawa [45]. The concept of the scaled TTT-
transforms introduced by Barlow and Campo [4] has proven to be very useful in the statistical
analysis of reliability and life testing. The asymptotic distributions of the suitably normalized
version of the statistic under the null hypothesis and fixed alternatives are given. The efficacy
consideration of the test for some IFR alternatives under the proportional censoring model is also
presented and it is shown that the efficacy decreases with the value of the expected proportion of
observing the censored data.

We present in Section 4.2 of Chapter 4 two classes of test statistics for testing against the
IFRA alternatives. The first class was proposed by Kumazawa [36] and includes the class of the
statistics given by Deshpande [14] in the uncensored case. The second one is considered as a
generalization of the statistic introduced in Kumazawa [45] that utilized the property of the TTT-
transforms. The asymptotic distribution of the proposed statistics is derived and the comparison
of the tests is made on the basis of the Pitman asymptotic efficacy.

Section 5.1 of Chapter 5 deals with the testing problem against the NBU alternatives. In
Kumazawa [42] the Kaplan-Meier estimator was used to generalize the class of the statistics
proposed in Koul [32]. The asymptotic distribution of the statistic with a weight function is
shown and the efficacies of the statistics for some alternatives are computed. From the numerical
evaluation of these efficacies one test is recommended.

For testing against the NBUE alternatives we present in Section 5.2 of Chapter 5 three statis-
tics N1, N2 andN3. The statisticsN1 andN2 are constructed by the same method as given in the
previous and were proposed by Kumazawa [37], [41]. In De Souza Borges, Proschan and Ro-
drigues [13] theN1-statistic with constant weight function was considered in the uncensored case.
And theN2-statistic with constant weight function was considered by Hollander and Proschan



3

[20] in the uncensored case and by Koul and Susarla [34] in the censored case with a modified
Kaplan-Meier estimator. TheN3-statistic is represented as a Kolmogorov-Smirnov type and was
introduced in Kumazawa [47]. For the first two statisticsN1 andN2 the asymptotic distribution
is found to be normal, but the asymptotic distribution of the third one is shown to be not normal.
So the efficacy comparison of the tests is made between theN1- andN2-tests, and we recommend
the use of the test based on the one member of the class of theN2-statistics.

In Section 6.1 of Chapter 6 two tests for exponentiality against the DMRL alternatives are
given. The proposed test statisticsP1 andP2 are constructed from the two measures of expo-
nentiality towards DMRL-ness. The first measure is based on the property of the scaled TTT-
transforms and the second one uses the notion of the definition. TheP1-statistic is a generalized
version of the one introduced by Kumazawa [45] and the class of theP2-statistics contains the
one proposed in Bergman and Klefsjö [9], in which a modified Kaplan-Meier estimator was used
and the proof given in there seems complicated. The asymptotic distributions of the statistics are
given and the efficacies of the tests against some alternatives are presented to select the optimal
test for the testing problem.

Finally, we consider in Section 6.2 of Chapter 6 the problem of testing exponentiality against
the HNBUE alternatives. Bergman and Klefsjö [8] introduced the test statisticsQ1 andQ2 based
on the modified Kaplan-Meier estimator and Kumazawa [46] proposed theQ3-statistics for this
testing problem. We present proofs on the asymptotic distributions of these statistics by the
theory of counting processes and martingale limit theorem. The efficacy consideration shows the
use of the one member of theQ2-statistics.
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Chapter 2

Life Distributions and Types of
Censoring

2.1 Life Distributions
We formulate a variety of life distributions based on notions of aging, which afford nonpara-

metric statisticians an opportunity to consider inferences according to their probabilistic and
geometrical properties.

Definition 2.1.1. A life distribution F(t) is a probability distribution satisfyingF(t) = 0 for t < 0.
The corresponding survival function is given byS(t) := F(t) := 1− F(t). The function

Λ(t) :=
∫ t

0

dF(s)
1− F(s−)

(2.1.1)

is called the hazard function associated with F(t).

Note that whenF(t) has a densityf (t) andS(t) > 0,

dΛ(t)
dt
=

f (t)
1− F(t−)

:= λ(t)

is referred to as the failure rate function. Here we may interpretλ(t)dt as the probability that a
unit alive at timet will fail in [t, t + dt), wheredt is small.

For a discussion of life distribution classes, we need the following notations:

µF :=
∫ ∞

0
S(t)dt;

τF := sup{t : F(t) < 1};
Ft(s) := {F(t + s) − F(t)}/S(t).

Definition 2.1.2. (a) F(t) is increasing failure rate (IFR) ifF t(s) is decreasing in t∈ [0, τF) for
each s≥ 0.

(b) F(t) is increasing failure rate average (IFRA) ifΛ(t)/t is increasing in t∈ [0, τF).
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(c) F(t) is new better than used (NBU) ifF t(s) ≤ F(s) for all t and s∈ [0, τF).
(d) F(t) is new better than used in expectation (NBUE) ifF(t) has a finite meanµF andµF ≥

eF(t) for all t ∈ [0, τF), where

eF(t) :=


∫ ∞

t
S(s)ds/S(t) if S(t) > 0,

0 otherwise,
(2.1.2)

and is called the mean residual life at age t.
(e) F(t) is decreasing mean residual life (DMRL) ifF(t) has a finite meanµF and eF(t) is

decreasing in allt ∈ [0, τF).
(f) F(t) is harmonic new better than used in expectation (HNBUE) ifF(t) has a finite meanµF

and ∫ ∞

t
S(s)ds≤ µF exp(−t/µF) for all t ∈ [0, τF).

By reversing the inequalities and the directions of monotonicity we get the six classes DFR,
DFRA, NWU, NWUE, IMRL and HNWUE, respectively. Here D=decreasing, I=increasing
and W=worse.

2.2 LIFE DISTRIBUTIONS
Different properties of the five classes IFR, IFRA, NBU, DMRL and NBUE and their duals

were considered by authors such as Marshall and Proschan [50], Barlow and Proschan [7], Lang-
berg, Léon and Proschan [48] and Hollander and Proschan [21]. The classes of the HNBUE and
HNWUE life distributions were first introduced by Rolski [52] and investigated by Klefsjö [28],
[30]. Here the chain of implications holds among these life distribution classes:

IFR =⇒ IFRA =⇒ NBU
⇓ ⇓

DMRL =⇒ NBUE =⇒ HNBUE

In this thesis we consider these life distribution classes as the alternatives for testing exponen-
tiality under the random censorship model defined in the next section.

2.3 Types of Censoring
Censored data arise naturally in a number of fields, particularly in problems of reliability and

survival analysis, and contain only partial information about the population distribution of inter-
est. We discuss three types of right censoring. To this end, letX◦1, X◦2, · · · , X◦n be independently,
identically distributed (iid) with life df F(t).

(a) Type I Censoring.We assume thatn units are put on test and we terminate our test at a
predetemined timeT, so that complete information on the firstk order statistics

X◦(1) ≤ X◦(2) ≤ · · · ≤ X◦(k)
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is available. Here the numberk is an integer-valued random variable (rv) with

X◦(k) ≤ T ≤ X◦(k+1).

Each of the remaining unobserved life times is known to be greater than the timeT.
(b) Type II Censoring.As in Type I Censoring,n units are simultaneously put on test and we

terminate our test after a predetermined number (or fraction) of failures are obtained. In this
case we have complete information on the firstr observations

X◦(1) ≤ X◦(2) ≤ · · · ≤ X◦(r)

and the remaining observations are known to be greater thanX◦(r). Here the numberr (or r/n)
is a fixed constant.

(c) Random Censoring.Let U1, U2, · · · , Un be iid with possibly discontinuous and defectivedf
G(t). Ui is considered as the censoring times associated withX◦i andG(t) is referred to as the
censoringdf. Then we can only observe(Xi , δi), 1 ≤ i ≤ n, where

Xi := min(X◦i ,Ui ) and δi := 1{X◦i ≤Ui }

with 1A the indicator of the setA. Here we assume thatX◦i andUi are stochastically in-
dependent. And in Chapters 4–6 we assume that the populationdf F(t) is continuous. This
random censorship model arises in medical applications with animal studies or clinical trials.
In a clinical trial, patients may enter the study at different times: then each is treated with
one of several possible therapies. We want to observe their life times, but censoring occurs
according to loss to follow-up, drop-out and termination of the study.
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Chapter 3

Counting Processes and von Mises
Functionals

3.1 Counting Processes
It was demonstrated by Aalen [1] how the theory of multivariate counting processes gives a

general framework in which both censored survival data and inhomogenuous Markov processes
may be analyzed, and how by means of martingale central limit theorem the asymptotic behavior
for the one- and the two-sample statistics and generalizations to censored data may be derived.
Here we give the results from the theory of multivariate counting processes in connection with
the treatment of the random censorship model.

Let (Ω, F , P), {Ft : t ∈ [0,∞)} be a fixed stochastic basis. A multivariate stochastic pro-
cessN(t) = (N1(t), N2(t), · · · , Nk(t)) defined on the time interval[0,∞) is called a multivariate
counting process if each of thek component processesNi(t) has a sample function which is a
right-continuous step function with zero at time zero and with a finite number of jumps, each of
size+1, and if furthermore two different component processes can not jump at the same time.
Then by Theorem I.9 of Meyer [51], there exist right continuous, nondecreasing, predictable
processesAi(t) with zero at time zero such that

Mi(t) := Ni(t) − Ai(t)

are local martingales fori = 1, 2, · · · , k. The processAi(t) is called the compensator ofNi(t).
Under the random censorship model described in Section 2.2, we can observe the possibly

right censored data(Xi , δi), 1 ≤ i ≤ n. Define stochastic processN(t) on [0,∞) by

N(t) :=
n∑

i=1

1{Xi≤t, δi=1} :

N(t) represents the number of the uncensored units observed to failure at timet or earlier. By
Lemma 2.3 of Gill [18],

M(t) := N(t) −
∫ t

0
Y(s)dΛ(s) (3.1.1)
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is a square integrable martingale on [0,∞), where

Y(t) :=
n∑

i=1

1{Xi≥t}. (3.1.2)

Here the processY(t) represents the number of the units at risk at timet and the functionΛ(t)
denotes the hazard function associated with thedf F(t) defined in the equation (2.1.1) of Section
2.1.

Under the random censorship model, we make statistical inferences about the populationdf
F(t) or about some functionals ofF(t) by the use of the Kaplan-Meier estimator̂Fn(t) or the
functionals ofF̂n(t). The estimator̂Fn(t) was first introduced in Kaplan and Meier [26] and is
defined by

F̂n(t) := 1− Ŝn(t) := 1−
t∏

s=0

{
1− dN(s)

Y(s)

}
(3.1.3)

on the basis of the censored data (Xi , δi), 1 ≤ i ≤ n. Note that when we get a complete sample
the Kaplan-Meier estimator̂Fn(t) reduces to the usual empiricaldf. The asymptotic behavior of
F̂n(t) on the whole line is discussed by Gill [17], [18] using the theory of counting processes and
martingale central limit theorem.

We present some results necessary to discuss the asymptotic distribution of the test statistics
based on the Kaplan-Meier estimatorF̂n(t) in the later chapters. For any processW(t) we define
the stopped processWT(t) by

WT(t) :=W(T ∧ t)

with T = max1≤i≤n Xi .

Lemma 3.1.1. (Gill [18]) For all t we have

Zn(t) : = n1/2 F̂n(t) − F(t)
S(t)

(3.1.4)

=

∫ t

0
Hn(s)dM(s), (3.1.5)

where

Hn(s) : = n1/2 Ŝn(s−)J(s)
S(s)Y(s)

(3.1.6)

andJ(s) := 1{Y(s)>0}.

We denote byD[0, t] the space of right continuous functions defined on the interval[0, t] with
left limits, with the Skorokhod metric topology.

Lemma 3.1.2. (Gill [18]) Let h(t) be a nonnegative continuous and nonincreasing function on
the interval[0, τH] such that ∫ τH

0
h2(t)dC(t) < ∞,
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where

C(t) :=
∫ t

0

dΛ(s)
1− H(s−)

, (3.1.7)

τH := sup{t : H(t) < 1}, (3.1.8)

and

H(t) := 1− S(t)G(t).

Then the stochastic processes

(h(·)Zn(·))T , (
∫ ·

0
h(t)dZn(t))T , and (

∫ ·

0
Zn(t)dh(t))T

converge jointly in D[0, τH] weakly as n→ ∞ to processes

h(·)Z(·),
∫ ·

0
h(t)dZ(t), and

∫ ·

0
Z(t)dh(t),

respectively, where Z(t) is a Gaussian process with zero mean and covariance function
E{Z(s)Z(t)} = C(s∧ t).

3.2 Von Mises Functionals
In order to study the asymptotic behavior of statistics that are functionals of the empirical

df, von Mises [55] proposed a technique based on a form of Taylor expansion involving the
derivatives of the functionals. The approach presented in Fernholz [16] was constructed on the
basis of the Hadamard differentiability of the functionals, and Kumazawa [36], [38], [41], [42]
used her method to derive the asymptotic behavior of the statistics represented as functionals of
the Kaplan-Meier estimator̂Fn(t) defined by the equation (3.1.3).

Let T(F) be a functional based onF ∈ D, a class ofdf’s. And letV andW be topological
vector spaces andL(V,W) the set of continuous linear transformations fromV toW. LetS be
a class of compact subsets ofV such thatS contains all singletons, and letA be an open set of
V.

Definition 3.2.1. A functional T : A →W is Hadamard differentiable atF ∈ A if there exists
T′F(·) ∈ L(V,W) such that for anyK ∈ S

lim
t→0

T(F + tH) − T(F) − T′F(tH)

t
= 0

uniformly for H ∈ K. The linear transformationT′F(·) is called the Hadamard derivative of T(·)
at F.

Then the following result follows from Theorem 4.4.2 of Fernholz [16].



12 Chapter 3 Counting Processes and von Mises Functionals

Theorem 3.2.1. (Kumazawa [38])Suppose that̃Fn(t) is an estimator of population dfF(t) such
that the stochastic process{n1/2[F̃n{F−1(t)} − F̃{F−1(t)}] : 0 ≤ t ≤ 1} converges inD[0,1] weakly
as n→ ∞ to a continuous Gaussian processW(t) with zero mean and continuous covariance
function, whereF̃(t) is a version (possibly stochastic) of F(t). And suppose that the induced
functionalτ(g) := T(g ◦ F) for g ∈ D[0,1] is Hadamard differentiable at the identity function
I (t) := t with derivativeτ′I (·) and that

n1/2{T(F̃) − T(F)} → 0 in probability asn→ ∞.

Then we have as n→ ∞
n1/2{T(F̃n) − T(F)} →d N(0, σ2)

providedσ2 = Var{τ′I (W)} > 0.

Since most statistics such asL-, M- and R-statistics can be expressed as Hadamard differ-
entiable functionals as shown in Fernholz [16], the above result would help us to derive the
asymptotic normality of the statistics. The other forms of statistics based on the Kaplan-Meier
estimator were discussed in Kumazawa [38].
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Chapter 4

Tests for IFR and IFRA

4.1 The IFR Alternative
We consider to test the null hypothesis

H0 : F(t) = 1− exp(−t/µ) for t ≥ 0 (µ unspecified)

against the alternative

H1 : F(t) is IFR, but not exponential,

on the basis of the possibly right censored data (Xi , δi), 1 ≤ i ≤ n, defined in Section 2.2.
In analyzing the life distribution classes with the aging properties, Barlow and Campo [4] and

Klefsjö [29] proved that the different forms of the aging properties can be expressed by their
corresponding properties of the scaled total time on test (TTT-) transformsH−1

F (t), where

H−1
F (t) :=

∫ F−1(t)

0
S(u)du

µF
(4.1.1)

for 0 ≤ t ≤ 1.
From the result of Barlow and Campo [4] we have thatH−1

F (t) ≡ t for exponential distribution
F(t) and thatF(t) is IFR if and only if H−1

F (t) is concave on the unit interval[0,1]. Using this
property, Kumazawa [45] considered the measure∫ 1

0

∫ 1−t

0

∫ s

0
su{

H−1
F (t + u) − H−1

F (t)

u
−

H−1
F (t + s) − H−1

F (t)

s
}dudsdt

=

∫ ∞
0

F(t)S2(t){1− 2F(t)}dt

µF

of discrepancy between exponentiality and continuous IFR distribution, and proposed the test
statistic

K1 :=

∫ T

0
F̂n(t)Ŝ2

n(t){1− 2F̂n(t)}dt

µ̂n
, (4.1.2)
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where

µ̂n :=
∫ T

0
Ŝn(t)dt. (4.1.3)

The statisticK1 may be considered as a generalization of the test statistic

n−2∑
j=0

n− j∑
k=2

k−1∑
ν=1

{k(D j+ν − D j) − ν(D j+k − D j)}

introduced in Klefsj̈o [31] under the uncensored model which we have a complete sampleY1, Y2,
· · · , Yn from F(t), where

D j :=

∫ F−1
n ( j/n)

0
Fn(t)dt∑n

k=1 Yk/n

and

Fn(t) :=

∑n
i=1 1{Yi≤t}

n
.

SinceF̂n(T) < 1 almost surely if the largest observationT of theXi ’s is censored, the integral
region in defining the statisticK1 becomes to the finite random interval[0,T]. Note that we reject
the null hypothesisH0 in favor of the alternativeH1 for large values of the statisticK1.

Theorem 4.1.1. (Kumazawa [45])Suppose that the df’sF(t) and G(t) satisfy the conditions∫ τH

0
h2

1(t)dC(t) < ∞ (4.1.4)

and
n1/2h1(T)→ 0 in probability asn→ ∞, (4.1.5)

where C(t) andτH are defined in the equations (3.1.7) and (3.1.8) in Lemma 3.1.2 of Section 3.1,
respectively, and

h1(t) :=
∫ ∞

t
S(u)du.

Let the function g(t) be of form
∏ℓ

i=1(t−αi) withα1 = 0 and anyαi , 2 ≤ i ≤ ℓ. Then the sequence
of the rv’s

n1/2
{∫ T

0
g{Ŝn(t)}dt

µ̂n
− µ2

µF

}
converges in distribution as n→ ∞ to a normal rv with zero mean and variance∫ τH

0
{µ2h1(t) − µFh2(t)}2dC(t)

µ4
F

,
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where

µ2 :=
∫ ∞

0
g{S(t)}dt

and

h2(t) :=
∫ ∞

t
S(u)g′{S(u)}du.

Proof: We prove the convergence in distribution of the sequence of therv’s

Wn := sn1/2
[∫ T

0
g{Ŝn(u)}du−

∫ ∞

0
g{S(u)}du

]
+ tn1/2

{∫ T

0
Ŝn(u)du−

∫ ∞

0
S(u)du

}
to an appropriate normalrv for any real numberss andt according to the Craḿer-Wold Device.
We set

Vn := sn1/2
∫ T

0

[
g{Ŝn(u)} − g{S(u)}

]
du+ tn1/2

∫ T

0
{Ŝn(u) − S(u)}du.

Then we obtain for some constantM > 0 by the condition (4.1.5)

n1/2|Wn − Vn| = n1/2|s
∫ ∞

T
g{S(u)}du+ t

∫ ∞

T
S(u)du|

≤ (M|s| + |t|)n1/2h1(T) = op(n0) asn→ ∞.

By applying the formula

ℓ∏
i=1

ai −
ℓ∏

i=1

bi =

ℓ∑
k=1

(ak − bk)
ℓ∏

i=k+1

ai

k−1∏
j=1

b j

to therv Vn, we have

Vn = sn1/2
ℓ∑

k=1

∫ T

0
{F(u)− F̂n(u)}

ℓ∏
i=k+1

{Ŝn(u)−αi}
k−1∏
j=1

{S(u)−α j}du+ tn1/2
∫ T

0
{F(u)− F̂n(u)}du.

Since the Kaplan-Meier estimator̂Fn(t) is uniformly consistent on the interval[0,T] from the
main result of Wang [56], the Slutsky’s Theorem implies thatVn is asymptotically equivalent to

sn1/2
ℓ∑

k=1

∫ T

0
{F(u) − F̂n(u)}

ℓ∏
i=k+1

{S(u) − αi}
k−1∏
j=1

{S(u) − α j}du+ tn1/2
∫ T

0
{F(u) − F̂n(u)}du

=

∫ T

0
Zn(u)dhs,t(u),
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whereZn(u) = n1/2{F̂n(u) − F(u)}/S(u) andhs,t(u) := sh2(u) + th1(u). Hence Lemma 3.1.2 of
Section 3.1 together with the condition (4.1.4) yields that

Vn→d N(0,
∫ τH

0
h2

s,t(u)dC(u)) asn→ ∞.

Therefore the desired result follows from Corollary 3.1 of Serfling [53]. �

Corollary 4.1.1. (Kumazawa [45])Suppose that under the null hypothesisH0 the censoring df
G(t) satisfies the conditions (4.1.4) and (4.1.5) of Theorem 4.1.1. Then we have asn→ ∞

n1/2
{∫ T

0
g{Ŝn(t)}dt

µ̂n
− µ2

µF

}
→d N(0, σ2),

where

σ2 :=
∫ ∞

0

[
µ2S(t) − µFg{S(t)}

]2

dC(t)/µ2
F .

This corollary shows that under the null hypothesisH0 the asymptotic variance of the suitably
normalized version of the test statisticK1 defined in the equation (4.1.2) is given by∫ ∞

0
g2{S(t)}dC(t)

with g(t) := t2(1 − t)(2t − 1). Since this quantity depends on the unknown parameterµ and
the censoringdf G(t), we must construct a consistent estimator from the censored observations
(Xi , δi), 1 ≤ i ≤ n. The same method as given in the proof of Lemma 2.4 of Kumazawa [42]
shows that

σ̂2
n :=

∫ T

0
g2{Ŝn(t−)}dĈ(t)

is a consistent estimator ofσ2, where

Ĉ(t) := n
∫ t

0

J(u)
Y(u){Y(u) − 1}dN(u)

andJ(u) is given in Lemma 3.1.1 of Section 3.1. Hence the asymptotically exact test based on
the statisticK1 can be constructed by using this estimatorσ̂2

n.
Next we compute the efficacies of the test statisticK1 against some alternatives under the

proportional censoring model where the censoringdfG(t) is given byG(t) = Sλ(t) with censoring
parameterλ: the value ofλ has relation with the probability of obtaining uncensored observation,
i.e., P(X1 ≤ U1) = 1

1+λ . In this situation Corollary 4.1.2 impliesµ = 1 without loss of generality
and 0< λ < 1. And the asymptotic variance of the suitably normalized version ofK1 underH0

is given by

σ2
λ :=

4
7− λ −

12
6− λ +

13
5− λ −

6
4− λ +

1
3− λ .
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Table. 4.1 : Efficacies of the statisticK1

when the censoring parameterλ = 0, 1
10,

1
2 ,

3
4

Alternative
λ (i) (ii) (iii) (iv)
0 .72834 .36459 .05833 .19632
1
10 .66199 .33138 .05302 .17843
1
2 .42453 .21251 .03400 .11443
3
4 .30424 .15229 .02437 .08200

The following IFR lifedf’s are considered as the alternative for testing exponentiality.

(i) 1 − exp(−tθ+1) (Weibull),

(ii) 1 − exp{−(t + θt2/2)} (Linear failure rate),

(iii) 1 − exp
[
−{t + θ(t + e−t − 1)}

]
(Makeham),

and

(iv)
∫ t

0
sθe−sds/Γ(1+ θ) (Gamma),

wheret ≥ 0, θ ≥ 0 and the null distributionH0 with µ = 1 is obtained whenθ = 0. Since
each of the families{Fθ(t)} of the alternatives (i)-(iv) listed in the above satisfies the conditions
(A.1)-(A.4) given by Kumazawa [40], it is seen that the sequence{Fθn(t)} with θn = cn−1/2 and
c > 0 is contiguous to the nulldf and that the efficacy of the test statisticK1 is equal to

e f f(K1) := lim
n→∞

{
dEθ[K1]

dθ

∣∣∣∣∣
θ=0

}2

/(nVar0[K1]),

whereEθ[·] denotes the expectation under thedf Fθ and Var0[·] the variance under the null
hypothesisH0.

After some calculations we obtain that for the alternative (i)

e f f(K1) = (−3
2

ln 2+ ln 3)2/σ2
λ,

for (ii)

e f f(K1) = (
1
24

)2/σ2
λ,

for (iii)

e f f(K1) = (
1
60

)2/σ2
λ
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and for (iv)

e f f(K1) = (−7
3

ln 2+
3
2

ln 3)2/σ2
λ.

Table 4.1 shows the efficacies of the test statisticK1 for the alternatives (i)-(iv) and some values
of the censoring parameterλ. The above results reveal that the efficacy decreases with the value
of λ.

4.2 The IFRA Alternative
For the problem of testing the null hypothesis

H0 : F(t) = 1− exp(−t/µ) for t ≥ 0 (µ unspecified)

versus the alternative

H2 : F(t) is IFRA, but not exponential,

we may consider the following two measures of exponentiality against the IFRAdf’s: for nonde-
creasing functionψ1(t) ≥ 0 and constantβ > 1,

∆1 :=
∫ ∞

0
ψ1{S(βt)}dF(t)

and for nonnegative functionψ2(t),

∆2 :=

∫ ∞
0
Ψ2{S(t)}

∫ t

0
S(u)dudF(t)

µF
,

where

Ψ2(t) := ψ2(1− t){
∫ 1

0
sψ2(s)ds− 2

∫ 1−t

0
sψ2(s)ds}.

The first measure∆1 relies on the fact thatF(t) is IFRA if and only if for allβ > 1

Sβ(t) ≥ S(βt) for anyt ≥ 0.

Since the scaled TTT-transformsH−1
F (t) defined in the equation (4.1.1) of Section 4.1 share the

property thatH−1
F (t)/t is decreasing int ∈ [0, 1] for the IFRAdf’s from Theorem 2.1 of Barlow

and Campo [4], we may consider the measure∫ 1

0

∫ 1

s
stψ2(s)ψ2(t){

H−1
F (s)

s
−

H−1
F (t)

t
}dtds

=

∫ ∞
0
Ψ2{S(t)}

∫ t

0
S(s)dsdF(t)

µF
= ∆2



4.2 The IFRA Alternative 19

for continuous IFRAdf’s with positive weight functionψ2(t).
Now from these measures we obtain two classes of test statistics

L1(ψ1, β) :=
∫ T

0
ψ1{Ŝn(βt)}dF̂n(t) (4.2.1)

and

L2(ψ2) :=

∫ T

0
Ψ2{Ŝn(t)}

∫ t

0
Ŝn(u)dudF̂n(t)

µ̂n
(4.2.2)

by substituting the Kaplan-Meier estimatorF̂n(t) for F(t).
Under the uncensored model Deshpande [14] studied the statistic

L1(ψ1, β) with ψ1(t) = t for the above testing problem. And the statisticL1(ψ1, β) was introduced
by Kumazawa [36] and is a version of the test statistic proposed by Kumazawa [35] for testing
exponentiality against the NBU alternatives in the uncensored case withβ integer≥ 2. We reject
the null hypothesisH0 in favor of the alternativeH2 for small values ofL1(ψ1, β).

And the statisticL2(ψ2) is an extended version of the test statisticL2(ψ2) with ψ2(t) ≡ constant,
proposed in Kumazawa [45], by introducing the weight functionψ2(t) in the measure∆2. In the
uncensored data Klefsjö [31] investigated the testing problem on the basis of the same property
of the scaled TTT-transforms and proposed the test statistic, which is seen to be asymptotically
equivalent toL2(ψ2) with ψ2(t) ≡ constantin the uncensored case. Here we rejectH0 in favor of
H2 for large values ofL2(ψ2).

For testing against the IFRA alternatives, Barlow and Proschan [6] proposed the test statistics
based on the normalized spacings which are generalized to treat the censored observations under
the Type II censoring model, and proved unbiasedness of the test against the alternatives.

Theorem 4.2.1. (Kumazawa [36]) Suppose that the weight functionψ1(t) is continuous and
piecewise differentiable with bounded derivatives. And suppose that the dfF(t) is absolutely
continuous and that the df’sF(t) and G(t) satisfy the conditions∫ τH

0
S2(t)dC(t) < ∞ (4.2.3)

and
n1/2ψ1{S(T)}S(T/β)→ 0 in probability asn→ ∞. (4.2.4)

Then the sequence of the rv’sn1/2{L1(ψ1, β) −W(F)} converges in distribution asn → ∞ to a
normal rv B with zero mean and varianceE[B2], where

W(F) :=
∫ ∞

0
ψ1{S(βt)}dF(t),

B := −
∫ ∞

0
Z(βt)S(βt)ψ′1{S(βt)}dF(t) +

∫ ∞

0
Z(t/β)S(t/β)ψ′1{S(t)}dF(t),

and Z(t) is the limiting process of the normalized Kaplan-Meier processZn(t) given in Lemma
3.1.2 of Section 3.1.
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Proof: Following Theorem 3.2.2 of Section 3.2, we first show that the induced functional
τ(g) := W(g ◦ F) for g ∈ D[0,1] can be expressed as a composition of Hadamard differentiable
transformations. For fixedF(t), ψ1(t) andβ, we define

γ1(g1)(s) := βF−1 ◦ g⋆1 (s),

γ2(g1,g2)(s) := ψ1[1 − g1 ◦ F{g2(s)}]

and

γ3(g1) :=
∫ 1

0
g1(u)du,

whereg1 ∈ D[0,1], g2 ∈ L1[0,1], 0 ≤ s ≤ 1, F−1(s) := inf {t : F(t) ≥ s} and g⋆1 (s) :=
inf {t, 1 : g(t) ≥ s}. Then from Propositions 6.1.1, 6.1.2 and 6.1.6 of Fernholz [16] the above
transformationsγ1(·) − γ3(·) are all Hadamard differentiable atI (t). Thereforeτ(g) = γ3 ◦ γ2{g,
γ1(g)} is Hadamard differentiable atI (t) by the chain rule of Proposition 3.1.2 of Fernholz [16].

Next we note that

n1/2|{L1(ψ1, β) −W(F)} − {W(F̂T
n ) −W(FT)}|

= n1/2|
∫ ∞

T/β
ψ1{S(βx)}dF(x) −

∫ T

T/β
ψ1{S(T)}dF(x)|

≤ 2n1/2ψ1{S(T)}S(T/β)

= op(n0) asn→ ∞.

Hence Theorem 3.2.2 of Section 3.2 together with some calculations yields the desired result.�
We consider the weight functionψ1(u) = uα as a special case.

Corollary 4.2.1. (Kumazawa [36])Letψ1(u) = uα, α ≥ 1. Suppose that under the null hypoth-
esisH0 the censoring df G(t) satisfies the conditions (4.2.3) and (4.2.4) of Theorem 4.2.1. Then
n1/2{L1(uα, β)− υ−1} converges in distribution asn→ ∞ to a normal distribution with mean zero
and variance

σ2
α,β :=

∫ ∞

0
fα,β{S(t)}dC(t),

where
fα,β(t) := (α/υ)2[β2t2υ − 2βt(β+1)υ/β + t2υ/β]

andυ := αβ + 1.

Because of the dependency of the statisticL1(uα, β), α ≥ 1, β > 1, on the unknownsµ and
G(t), we must estimate the asymptotic varianceσ2

α, β from the observations(Xi , δi), 1 ≤ i ≤ n. To
this end, we set

σ̂2
α,β :=

∫ T

0
fα,β{Ŝn(t−)}dĈ(t).

Then it is seen that̂σ2
α, β is a consistent estimator ofσ2

α, β by the same method as given in Section
4.1. Hence the test rejectingH0 in favor ofH2 for
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n1/2{L1(uα, β) − υ−1}/σ̂α, β < zη is consistent against all continuous IFRA alternatives, wherezη
is theη -percentile of a standard normal distribution.

Next in order to derive the asymptotic distribution of the statisticL2(ψ2), we discuss the asymp-
totic distribution of the statistic in the form

Tn(ψ) :=

∫ T

0
ψ{Ŝn(t)}

∫ t

0
Ŝn(u)dudF̂n(t)

µ̂n
, (4.2.5)

whereµ̂n is defined in the equation (4.1.3). Some test statistics proposed in this thesis can be
expressed as this form and we apply the following result to investigate their asymptotics.

Theorem 4.2.2. (Kumazawa [41]) Suppose that the dfF(t) is absolutely continuous and that
the df’sF(t), G(t) and the weight functionψ(t) satisfy the conditions∫ ∞

0

[
ψ{S(s)}S(s) + Ψ{S(s)}

]
ds< ∞, (4.2.6)

n1/2Ψ{S(T)} → 0 in probability as n→ ∞, (4.2.7)∫ τH

0
h2

i (t)dC(t) < ∞, (4.2.8)

and

n1/2hi(T)→ 0 in probability as n→ ∞ (4.2.9)

for i = 1 and2, where

Ψ(t) :=
∫ t

0
ψ(u)du,

h1(t) :=
∫ ∞

t
S(u)du,

and

h2(t) :=
∫ ∞

t

[
ψ{S(s)}S(s) + Ψ{S(s)}

]
S(s)ds.

Then we have as n→ ∞
n1/2

{
Tn(ψ) −

µψ

µF

}
→d N(0, σ2

ψ),

where

µψ :=
∫ ∞

0
Ψ{S(s)}S(s)ds (4.2.10)

and

σ2
ψ :=

∫ τH

0
{µψh1(t) − µFh2(t)}2dC(t)

µ4
F

. (4.2.11)
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Proof: We first show that the random vector

An := n1/2
(∫ T

0
Ŝn(t)dt− µF ,

∫ T

0
ψ{Ŝn(s)}

∫ s

0
Ŝn(u)dudF̂n(s) − µ2

)
is asymptotically equivalent to

Bn := −
(∫ T

0
h1(t)Hn(t)dM(t),

∫ T

0
h2(t)Hn(t)dM(t)

)
,

whereM(t) andHn(t) are defined in the equations (3.1.1) and (3.1.6) in Section 3.1, respectively.
We set

Wn :=
∫ T

0
ψ{Ŝn(s)}

∫ s

0
Ŝn(u)dudF̂n(s)

and

W(F) :=
∫ ∞

0
ψ{S(s)}

∫ s

0
S(u)dudF(s)

to investigate the asymptotic behavior of the second component of the random vectorAn. For
fixed F(t) andψ(t), we define

γ1(g)(s) := F−1 ◦ g⋆(s)

and

γ2(g) :=
∫ 1

0
Ψ(1− t)(1− t)dg(t)

for s ∈ [0, 1] andg ∈ D[0, 1], whereg⋆(s) = inf {t, 1 : g(t) ≥ s}. Since the transformations
γ1(·) andγ2(·) are Hadamard differentiable atI (t) from Proposition 6.1.1 of Fernholz [16], the
functionalτ(·) induced onD[0,1] by τ(g) :=W(g◦F) for g ∈ D[0,1] is Hadamard differentiable
at I (t) by the chain rule and the expression thatτ(g) = γ2{γ1(g)}. Note that the derivativeτ′I (g) of
τ(g) at I (t) is given by

τ′I (g) = −
∫ ∞

0
[ψ{S(s)}S(s) + Ψ{S(s)}]g ◦ F(s)ds.

We obtain from the conditions (4.2.7) and (4.2.9)

n1/2|{Wn −W(F)} − {W(F̂T
n ) −W{T(FT)}|

= n1/2
∫ ∞

T
ψ{S(s)}

∫ s

0
S(u)dudF(s)

= n1/2Ψ{S(T)}
∫ T

0
S(s)ds+ n1/2

∫ ∞

T
Ψ{S(s)}S(s)ds

≤ n1/2µFΨ{S(T)} + n1/2
∫ ∞

T
Ψ{S(s)}S(s)ds

= op(n0) asn→ ∞.
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Therefore the Hadamard differentiability ofτ(·) implies that asn→ ∞

n1/2{Wn −W(F)} = τ′I (ϕn) + op(n0)

= h2(T)Zn(T) −
∫ T

0
h2(t)Hn(t)dM(t) + op(n0),

where
ϕn(t) := n1/2{F̂T

n ◦ F−1(t) − FT ◦ F−1(t)} for 0 ≤ t ≤ 1.

Hence Remark 2.2 of Gill [18] yields that

n1/2{Wn −W(F)} = −
∫ T

0
h2(t)Hn(t)dM(t) + op(n0) asn→ ∞.

By applying Lemma 3.1.1 of Section 3.1 to the first component of the random vectorAn, it is
seen that

n1/2{
∫ T

0
Ŝn(s)ds− µF} = −

∫ T

0
h1(t)Hn(t)dM(t) + op(n0) asn→ ∞.

Therefore the random vectorAn is asymptotically equivalent toBn from Theorem 4.4 of Billings-
ley [10].

Since each component of the random vectorBn is represented as the stochastic integral with
respect to the square integrable martingaleM(t), and the functionshi(t)’s and the processHn(t)
are predictable, Theorem 2.1 of Andersenet al. [2] together with the condition (4.2.8) implies
that Bn converges in distribution asn → ∞ to a normal distribution with zero mean vector and
dispersion matrix{σi, j}1≤i, j≤2, where

σi, j :=
∫ τH

0
hi(t)h j(t)dC(t).

Hence we can conclude the proof from Corollary 3.3 of Serfling [53] and some calculations.�

Corollary 4.2.2. Suppose that the df’s F(t), G(t) and the functionΨ2(t) satisfy the conditions of
Theorem 4.2.3. Then we have asn→ ∞

n1/2
{
L2(ψ2) − µΨ2

µF

}
→d N(0, σ2

Ψ2
),

whereµΨ2 and σ2
Ψ2

denote the correspondings to those given in the equations (4.2.10) and
(4.2.11) of Theorem 4.2.3 for the functionΨ2(t), respectively.

Corollary 4.2.3. Suppose that under the null hypothesisH0 the censoring dfG(t) and the func-
tion Ψ2(t) satisfy the conditions (4.2.6)-(4.2.9) of Theorem 4.2.3. Thenn1/2L2(ψ2) converges in
distribution asn→ ∞ to a normal distribution with mean zero and variance

σ2
ψ2

: =
∫ ∞

0
φ2{S(t)}S2(t)dC(t),



24 Chapter 4 Tests for IFR and IFRA

where

φ(t) : =
∫ t

0
Ψ2(s)ds.

This corollary shows that under the null hypothesis the asymptotic varianceσ2
ψ2

of the statistic
L2(ψ2) defined in the equation (4.2.2) depends on the unknownsµ andG(t). Similarly as in the
case of the statisticL1(ψ1, β) we can find a consistent estimator

σ̂2
n :=

∫ T

0
φ2{Ŝn(t−)}Ŝ2

n(t−)dĈ(t).

This helps us to construct the asymptotically exact test based onL2(ψ2).
Now we compare the efficacy of the test statisticsL1(ψ1, β), α ≥ 1, β > 1, andL2(ψ2) for

the alternatives (i)-(iv) listed in Section 4.1 under the proportional censoring model with the
censoring parameterλ. In this situation from Corollaries 4.2.2 and 4.2.5 we may takeµ = 1 and
0 < λ < 1. And the asymptotic variances of the suitably normalized versions of the statistics
L1(uα, β) andL2(ψ2) underH0 are given by

σ2
1 := β

(
α

υ

)2 [
β

2αβ + 1− λ +
1

2υ − β(λ + 1)
− 2β
υ(β + 1)− β(λ + 1)

]
and

σ2
2 :=

∫ 1

0
φ2(t)t−λdt,

respectively. Then we have the following efficacies of the statisticsL1(uα, β) against the alterna-
tives: for (i)

e f f{L1(uα, β)} = (αβ ln β)2/(υ4σ2
1),

for (ii)

e f f{L1(uα, β)} = {αβ(β − 1)}2/(υ4σ2
1),

for (iii)

e f f{L1(uα, β)} = {α + 1
υ
− 2
υ + 1

− α

υ + β
}2/σ2

1

and for (iv)

e f f{L1(uα, β)} = {(β − 1) lnυ − αβ ln β}2
υ2(υ − β)2σ2

1

.
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Table. 4.2 : Efficacies of the IFRA-test statistics
when the censoring parameterλ = 1

10 and 3
4

Alternative
Statistic (i) (ii) (iii) (iv)

λ = 1/10
L1(u1,1.03) 1.2677 0.3168 0.0626 0.4775
L1(u1,1.95) 1.2841 0.2985 0.0606 0.4967
L1(u1.5,3.42) 1.0506 0.1083 0.0329 0.4981

L2(u0) 1.1945 0.2404 0.0554 0.4729
L2(u1) 1.0810 0.3594 0.0643 0.5756

λ = 3/4
L1(u1,1.03) 0.7012 0.1752 0.0346 0.2641
L1(u1,1.95) 0.7421 0.1725 0.0348 0.2870
L1(u1.5,3.42) 0.8561 0.1600 0.0268 0.4058

L2(u0) 0.7545 0.1518 0.0349 0.2987
L2(u1) 0.5184 0.1728 0.0308 0.2760

For the test statisticL2(ψ2) we consider the weight function to be of formψ2(u) = uρ, ρ > −1.
Corollary 4.2.5 implies that

σ2
2,ρ :=

1
(ρ + 2)2

( 1
(ρ + 1)2(2ρ + 3)2(1− λ)

+
B(1− λ,2ρ + 3)

(ρ + 1)2
+

+
4B(1− λ,4ρ + 7)

(2ρ + 3)2
− 2B(1− λ, ρ + 2)

(ρ + 1)2(2ρ + 3)
+

+
4B(1− λ,2ρ + 4)
(ρ + 1)(2ρ + 3)2

− 4B(1− λ,3ρ + 5)
(ρ + 1)(2ρ + 3)

)
,

whereB(·, ·) denotes the Beta function. Here we consider the two test statisticsL2(u0) andL2(u1).
Kumazawa [45] discussed the statisticAc

2 equivalent toL2(u0). Then the asymptotic variances of
the suitably normalized versions ofL2(u0) andL2(u1) underH0 are given by

σ2
2,0 =

1
9(7− λ)

− 2
3(6− λ)

+
4

3(5− λ)
− 1

4− λ +
1

4(3− λ)

and

σ2
2,1 =

1
9

( 1
100(1− λ)

+
B(1− λ,5)

4
+ +

4B(1− λ,11)
25

−

− B(1− λ,3)
10

+
2B(1− λ,6)

25
− 2B(1− λ,8)

5

)
,

respectively.
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And the efficacies ofL2(u0) andL2(u1) are given: for the alternative (i)

e f f{L2(u0)} = (−5
2

ln 2+ 2 ln 3)2/σ2
2,0,

e f f{L2(u1)} = (−77
90

ln 2+
33
90

ln 3+
2
15

ln 5)2/σ2
2,1,

for (ii)

e f f{L2(u0)} = (
5
24

)2/σ2
2,0,

e f f{L2(u1)} = (
19

1350
)2/σ2

2,1,

for (iii)

e f f{L2(u0)} = (
1
10

)2/σ2
2,0,

e f f{L2(u1)} = (
15

2520
)2/σ2

2,1,

and for (iv)

e f f{L2(u0)} = (−10
3

ln 2+ 3 ln 3)2/σ2
2,0,

e f f{L2(u1)} = (−281
225

ln 2+
14
25

ln 3+
1
6

ln 5)2/σ2
2,1,

respectively.
Table 4.2 shows the efficacies of the IFRA-test statisticsL1(u1,1.03),L1(u1, 1.95),L(u1.5,3.42)

andL2(u0) for the alternatives listed in Section 4.1 and some values of the censoring parameter
λ. For the statisticL1(uα, β) we choose the values ofα andβ so as to maximize its efficacy
against a particular alternative. Sinceδn :=

∑n
i=1 δi/n is an estimate ofP(X1 ≤ U1) = 1

1+λ , we
recommend theL1(u1,1.95)-test statistic for small values ofδn and theL1(u1,1.03)-test statistic
for large values ofδn in the sense of the Pitman asymptotic relative efficiency.
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Chapter 5

Tests for NBU and NBUE

5.1 The NBU Alternative
In this section we are interested in testing the null hypothesis

H0 : F(t) = 1− exp(−t/µ) for t ≥ 0 (µ unspecified)

versus the alternative

H3 : F(t) is NBU, but not exponential,

under the random censorship model.
Koul [32] considered the parameter∫ ∞

0

∫ ∞

0
[ψ{S(s)}ψ{S(t)} − ψ{S(s+ t)}]dF(s)dF(t)

= {
∫ 1

0
ψ(s)ds}2 −

∫ ∞

0

∫ ∞

0
ψ{S(s+ t)}dF(s)dF(t)

as a measure of the deviation ofF(t) from exponentiality towards the NBU alternatives and
developed the class of the test statistics in the uncensored case. Here the weight functionψ(·) is
assumed to be nondecreasing. This parameter withψ(t) = t was first investigated in Hollander
and Proschan [19].

For the testing problem based on the censored observations(Xi , δi), 1 ≤ i ≤ n, Kumazawa [42]
proposed the class of the statistics

M1(ψ) :=
∫ T

0

∫ T

0
ψ{Ŝn(s+ t)}dF̂n(s)dF̂n(t), (5.1.1)

which corresponds to the the Koul’s [32] NBU statistic in the uncensored case. The statistic
M1(ψ) with ψ(t) = t was considered in Chen, Hollander and Langberg [11] using a modified
Kaplan-Meier estimator ofF(t).
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Theorem 5.1.1. (Kumazawa [39], [42]) Suppose that the weight functionψ(t) is continuous
and piecewise differentiable with bounded derivatives. And suppose that the dfF(t) is absolutely
continuous and that the df’sF(t) and G(t) satisfy the conditions∫ τH

0
S2(t)dC(t) < ∞ (5.1.2)

and
n1/2ψ{S(T)} → 0 in probability asn→ ∞. (5.1.3)

Then the sequence of the rv’sn1/2{M1(ψ)−W(F)} converges in distribution asn→ ∞ to a normal
rv B with zero mean and varianceE[B2], where

W(F) :=
∫ ∞

0

∫ ∞

0
ψ{S(s+ t)}dF(s)dF(t),

B := −
∫ ∞

0

∫ ∞

0
Z(s+ t)S(s+ t)ψ′{S(s+ t)}dF(s)dF(t)+

+ 2
∫ ∞

0

∫ t

0
Z(t − s)S(t − s)dF(s)ψ′{S(t)}dF(t)

and Z(t) is the limiting process of Zn(t) given in Lemma 3.1.2 of Section 3.1.

Proof: To apply Theorem 3.2.2 of Section 3.2, we first note that the induced functionalτ(g) :=
W(g◦ F) for g ∈ D[0,1] can be expressed as a composition of Hadamard differentiable transfor-
mations. For fixedF(t) andψ(t), we define

γ1(g1)(s) := F−1 ◦ g⋆1 (s),

γ2(g2)(s, t) := g2(s) + g2(t),

γ3(g3,g1)(s, t) := ψ[1 − g1 ◦ F{g3(s, t)}],

and

γ4(g3) :=
∫ 1

0

∫ 1

0
g3(s, t)dsdt,

whereg1 ∈ D[0, 1], g2 ∈ L1[0,1], g3 ∈ L1[0,1] × [0, 1], 0 ≤ s, t ≤ 1 andg⋆1 (s) = inf {t, 1 : g(t) ≥
s}. Then from Propositions 6.1.1, 6.1.2 and 6.1.6 of Fernholz [16] the above transformations
γ1(·) − γ4(·) are all Hadamard differentiable atI (t). Thereforeτ(g) = γ4 ◦ γ3{γ2 ◦ γ1(g), g} is
Hadamard differentiable atI (t) by the chain rule of Proposition 3.1.2 of Fernholz [16].
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Next we have

n1/2|{M1(ψ) −W(F)} − {W(F̂T
n ) −W(FT)}|

≤ n1/2|
∫ T

0

∫ ∞

T−t
ψ{S(s+ t)}dF(s)dF(t)|+

+ n1/2|
∫ ∞

T

∫ ∞

0
ψ{S(s+ t)}dF(s)dF(t)|+

+ n1/2|
∫ T

0

∫ T

T−t
ψ{S(T)}dF(s)dF(t)|

≤ 3n1/2ψ{S(T)}
= op(n0) asn→ ∞.

Hence the desired result follows from Theorem 3.2.2 of Section 3.2 and some calculations.�
We consider the weight functionψ(u) = uα as a special case.

Corollary 5.1.1. (Kumazawa [42])Letψ(u) = uα, α ≥ 1. Suppose that under the null hypothesis
H0 the censoring df G(t) satisfies the conditions (5.1.2) and (5.1.3) of Theorem 5.1.1. Then
n1/2{M1(uα) − (α + 1)−2} converges in distribution asn→ ∞ to a normal distribution with mean
zero and variance ∫ ∞

0
fα{S(t)}dC(t),

where
fα(t) := α2(α + 1)−4{(α + 1) ln t + 1}2t2α+2.

From Lemma 2.4 of Kumazawa [42], the asymptotic variance ofM1(uα), α ≥ 1, under the null
hypothesis may be consistently estimated by

σ̂2
α :=

∫ T

0
fα{Ŝn(t−)}dĈ(t).

Using this estimator, we can construct the asymptotically exact test based on the statistic
M1(uα), α ≥ 1.

Now we compute the efficacies of the test statisticsM1(uα), α ≥ 1, against the alternatives
(i)-(iv) listed in Section 4.1 under the proportional censoring model. From Corollary 5.1.2 we
may takeµ = 1 and 0< λ < 1, and the asymptotic variance underH0 is found to be equal to

σ2
α :=

α2{(α + 1)2 + (α − λ)2}
(2α − λ + 1)3(α + 1)4

.

Some calculations yield that for the alternative (i)

e f f{M1(uα)} = α2

(α + 1)6σ2
α

,
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Table. 5.1 : Efficacies of the NBU-test statistics
when the censoring parameterλ = 1

10 and 3
4

Alternative
λ (i) (ii) (iii) (iv)

λ = 1/10
M1(u1) 1.2676 0.3169 0.0625 0.4774
M1(u1.5) 1.1560 0.1849 0.0481 0.4862
M1(u2) 1.0366 0.1151 0.0364 0.4737

λ = 3/4
M1(u1) 0.7009 0.1752 0.0346 0.2640
M1(u1.5) 0.8062 0.1289 0.0335 0.3391
M1(u2) 0.8075 0.0897 0.0283 0.3690

for (ii)

e f f{M1(uα)} = α2

(α + 1)8σ2
α

,

for (iii)

e f f{M1(uα)} = α2

(α + 1)4(α + 2)4σ2
α

,

and for (iv)

e f f{M1(uα)} = {ln(α + 1)− α}2
α2(α + 1)4σ2

α

.

Table 5.1 shows the efficacies of the test statisticsM1(u1), M1(u1.5) andM1(u2) for the alternatives
(i)-(iv) and some values of the censoring parameterλ. We recommend theM1(u1)-test statistic
for the testing problem in the sense of Pitman asymptotic relative efficiency.
Remark. Joe and Proschan [24], [25] obtained some results on thedecreasing 100α-percentile
(0 < α < 1) residualand thenew better than used with respect to the 100α-percentileaging
properties and developed the statistic for testing exponentiality against these life distributions in
the uncensored case. And Hollander, Park and Proschan [22], [23] introduced thenew better
than used at timet0 aging property and considered the problem of testing exponentiality versus
this aging property in the uncensored and the censored case. Under the random censorship
model Kumazawa [44] proposed the classes of the test statistics generalizing their statistics to
accommodate the censored data, and derived the asymptotic distributions of the statistics under
some milder conditions.
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5.2 The NBUE Alternative
We develop a test of the null hypothesis

H0 : F(t) = 1− exp(−t/µ) for t ≥ 0 (µ unspecified)

against the alternative

H4 : F(t) is NBUE, but not exponential,

on the basis of the possibly right censored data (Xi , δi), 1 ≤ i ≤ n, defined in Section 2.2.
Kumazawa [37] introduced the class of the test statistics

N1(ψ1) :=

∫ T

0
Ψ1(t)Ŝn(t)dt

µ̂n

∫ T

0
ψ1(s)Ŝn(s)ds

(5.2.1)

based on the measure ∫ ∞

0
ψ1(t){µFS(t) −

∫ ∞

t
S(s)ds}dt

of exponentiality against the NBUE lifedf’s using weight functionψ1(t), where

Ψ1(t) :=
∫ t

0
ψ1(s)ds.

The measure withψ1(t) ≡ constantwas considered in De Souza Borges, Proschan and Rodrigues
[13] for the above testing problem in the uncensored case. Note that we reject the null hypothesis
H0 in favor ofH4 for small values of the statisticN1(ψ1).

The parameter ∫ ∞

0
ψ2{S(t)}{µFF(t) −

∫ t

0
S(s)ds}dF(t)

as a measure of the deviation ofF(t) towards the NBUE alternatives with weight functionψ2(t)
was considered in Kumazawa [41], and the class of the test statistics

N2(ψ2) :=

∫ T

0
ψ2{Ŝn(t)}

∫ t

0
Ŝn(s)dsd̂Fn(t)

µ̂n
(5.2.2)

was discussed. Hollander and Proschan [20] used this measure withψ2(t) ≡ constantand pro-
posed the resulting statistic in the uncensored case. In the censored case Koul and Susarla [34]
generalized the statistic given in Hollander and Proschan [20] based on a modified Kaplan-Meier
estimator, and gave the asymptotics of their statistic under some strong regularity conditions.
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Noting that a lifedf F(t) is NBUE if and only if the scaled TTT-transformsH−1
F (t) defined

by the equation (4.1.1) of Section 4.1 satisfyH−1
F (t) ≥ t for all t ∈ [0,1] from Theorem 2.4 of

Klefsjö [29], we may consider

∆2(ψ) :=
∫ 1

0
ψ(1− t){H−1

F (t) − t}dt

as a measure of NBUE-ness with weight functionψ(t). Then change of variable formula in
multiple integral shows that

∆2(ψ) =

∫ ∞
0
ψ{S(t)}

∫ t

0
S(s)dsdF(t)

µF
−

∫ 1

0
tψ(1− t)dt,

which also yields theN2(ψ2)-statistic. The measure∆2(ψ) with ψ(t) ≡ constantwas used by
Kumazawa [45] and investigated the resulting statisticAc

3 under the random censorship model.
Based on the same property, Klefsjö [31] proposed the statisticA3, which is known to be the
cumulative TTT-statistic discussed in Barlowet al. [3], Chapter 6, on testing against the IFR
alternatives and which is equivalent to the Hollander and Proschan’s [20] statistic. Note that we
rejectH0 in favor ofH4 for large values ofN2(ψ2).

On the basis of the fact that the NBUE property is expressed by means of the mean residual
life eF(t) defined in the equation (2.1.2) of Section 2.1, the test statistic

N3 := sup
0≤t≤T

Ŝn(t)
(
1− êt

µ̂n

)
(5.2.3)

was introduced in Kumazawa [47], where

êt :=

∫ T

t
Ŝn(s)ds

Ŝn(t)
for 0 ≤ t ≤ T.

Kumazawa [43] discussed the asymptotic behavior of the suitably normalized version ofêt on
the fixed interval[0,u], 0 < u < τH, under the random censorship. The statisticN3 may be
considered as a natural extension of the statistic given by Barlow and Doksum [5] and Koul [33]
in the uncensored case, and we rejectH0 in favor ofH4 for large values ofN3.

In order to derive the asymptotic distribution of the statisticN1(ψ1), we first assume thatψ1(t)
is not constant on the unit interval[0,1].

Theorem 5.2.1. (Kumazawa [37]) Suppose that the weight functionψ1(t) is nonnegative and
right continuous. And suppose that the df’sF(t) and G(t) satisfy the conditions∫ τH

0
h2

i (t)dC(t) < ∞ (5.2.4)

and

n1/2hi(T)→ 0 in probability as n→ ∞ (5.2.5)
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for i = 1, 2 and3, where T is the largest observation of the Xi ’s,

h1(t) :=
∫ ∞

t
S(s)ds,

h2(t) :=
∫ ∞

t
ψ1(s)S(s)ds

and

h3(t) :=
∫ ∞

t
Ψ1(s)S(s)ds.

Then we have as n→ ∞
n1/2

{
N1(ψ1) − µ3

µFµ2

}
→d N(0, σ2),

whereµ2 = h2(0), µ3 = h3(0) and

σ2 :=
(
µ3

µFµ2

)2∫ τH

0

{h1(t)
µF
+

h2(t)
µ2
− h3(t)

µ3

}2

dC(t).

Proof: By applying the same method as given in the proof of Theorem 4.2.3 of Section 4.2, it is
seen that the random vector

An := n1/2
(∫ T

0
Ŝn(t)dt− µF ,

∫ T

0
ψ1(t)Ŝn(t)dt− µ2,

∫ T

0
Ψ1(t)Ŝn(t)dt− µ3

)
is asymptotically equivalent to

Bn :=
(∫ T

0
Zn(t)dh1(t),

∫ T

0
Zn(t)dh2(t),

∫ T

0
Zn(t)dh3(t)

)
.

Since the random vectorBn converges in distribution asn → ∞ to a normal distribution with
zero mean vector and dispersion matrix{σi, j}1≤i, j≤3 with

σi, j :=
∫ τH

0
hi(t)h j(t)dC(t),

the desired result follows from Corollary 3.3 of Serfling [53]. �
Next we consider the test statistic given by∫ T

0
tŜn(t)dt

µ̂2
n

in the case ofψ1(t) ≡ constant. This statistic is also considered as a test statistic for testing
against the HNBUE alternatives in Section 6.2 and treated in a more general framework: we
have the following result from Theorem 6.2.5 of Section 6.2.
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Corollary 5.2.1. (Kumazawa [37])Suppose that the df’sF(t) and G(t) satisfy the conditions∫ τH

0
h2

i (t)dC(t) < ∞

and

n1/2hi(T)→ 0 in probability as n→ ∞,

for i = 1 and2, where

h1(t) :=
∫ ∞

t
S(s)ds

and

h2(t) :=
∫ ∞

t
sS(s)ds.

Then we have as n→ ∞

n1/2
{∫ T

0
ŝSn(s)ds

µ̂2
n

− µ2

µ2
F

}
→d N(0, σ2),

whereµ2 = h2(0) and

σ2 :=

∫ τH

0
{2µ2h1(t) − µFh2(t)}2dC(t)

µ6
F

.

The asymptotic behavior of the statisticN1(ψ1) under the null hypothesis can be summarized
as follows.

Corollary 5.2.2. (Kumazawa [37]) Suppose that under the null hypothesisH0 the censoring
df G(t) and the weight functionψ1(t) satisfy the conditions (5.2.4) and (5.2.5) of Theorem 5.2.1.
Thenn1/2{N1(ψ1) − 1} converges in distribution asn → ∞ to a normal distribution with mean
zero and variance

σ2 :=
∫ ∞

0

{
1− Ψ1(t)

µ2

}2

S2(t)dC(t).

The similar methods as given in earliers show that

σ̂2
n :=

∫ T

0

{
1− Ψ1(t)

µ̂2

}2

Ŝ2
n(t−)dĈ(t)

is a consistent estimator ofσ2 given in Corollary 5.2.3, where

µ̂2 :=
∫ T

0
ψ1(s)Ŝn(s)ds.
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In order to derive the asymptotic distribution ofN2(ψ2) from Theorem 4.2.3 of Section 4.2, we
set

Ψ2(t) :=
∫ t

0
ψ2(s)ds,

h1(t) :=
∫ ∞

t
S(s)ds,

and

h2(t) :=
∫ ∞

0
[ψ2{S(s)}S(s) + Ψ2{S(s)}]S(s)ds.

Corollary 5.2.3. (Kumazawa [41])Suppose that the df’sF(t), G(t) and the weight functionψ2(t)
satisfy the conditions of Theorem 4.2.3 of Section 4.2. Then we have asn→ ∞

n1/2
{
N2(ψ2) −

µψ2

µF

}
→d N(0, σ2

ψ2
),

where

µψ2 :=
∫ ∞

0
Ψ2{S(s)}S(s)ds

and

σ2
ψ2

:=

∫ τH

0
{µψ2h1(t) − µFh2(t)}2dC(t)

µ4
F

.

Corollary 5.2.4. (Kumazawa [41]) Suppose that under the null hypothesisH0 the censoring
df G(t) and the weight functionψ2(t) satisfy the conditions (4.2.6)-(4.2.9) of Theorem 4.2.3 of
Section 4.2. Thenn1/2{N2(ψ2) − ν} converges in distribution asn→ ∞ to a normal distribution
with mean zero and variance

σ2
ψ2

:=
∫ ∞

0
[ν − Ψ2{S(t)}]2S2(t)dC(t),

where

ν :=
∫ 1

0
Ψ2(s)ds.

A consistent estimator

σ̂2
n :=

∫ T

0
[ν − Ψ2{Ŝn(t−)}]2Ŝ2

n(t−)dĈ(t)

can be constructed from the previous discussions and we can obtain an asymptotically exact test
based on the test statisticN2(ψ2) defined in the equation (5.2.2) by using this estimator.

We need the following lemma to give the asymptotic distribution of the test statisticN3 defined
in the equation (5.2.3).
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Lemma 5.2.1. (Kumazawa [47])Suppose that the df’sF(t) and G(t) satisfy the conditions∫ τH

0
S2(t)dC(t) < ∞, (5.2.6)∫ τH

0
h2(t)dC(t) < ∞, (5.2.7)

and

n1/2h(T)→ 0 in probability as n→ ∞, (5.2.8)

where

h(t) :=
∫ ∞

t
S(s)ds.

Then the stochastic process

Bn(t) := n1/2
{
Ŝn(t)

(
1− êt

µ̂n

)
− S(t)

(
1− eF(t)

µF

)}
for 0 ≤ t ≤ T converges weakly in D[0, τH] as n→ ∞ to a Gaussian processB(t) with zero mean
and covariance function

E{B(s)B(t)} =
∫ τH

0
gs(u)gt(u)dC(u),

where

gs(u) := 1{u≤s}

{h(s)
µF
− S(s)

}
− 1{u≥s}

h(u)
µF
+

h(s)h(u)

µ2
F

.

Proof: We have for 0≤ t ≤ T

Bn(t) = −S(t)Zn(t) −
∫ T

t
Zn(u)dh(u)

µ̂n
+

h(t)
∫ T

0
Zn(u)dh(u)

µF µ̂n
− n1/2h(T)h(t)

µF µ̂n
+

n1/2h(T)
µ̂n

(5.2.9)

with Zn(t) = n1/2{F̂n(t)−F(t)}/S(t). Hence Lemma 3.1.2 of Section 3.1 together with the Crámer-
Wold Device and the Slutsky’s Theorem implies that the limiting process ofBn(t) can be ex-
pressed as

− S(t)Z(t) −
∫ τH

t
Z(u)dh(u)

µF
+

h(t)
∫ τH

0
Z(u)dh(u)

µ2
F

=

∫ τH

0
gt(u)dZ(u) = B(t),

whereZ(t) is the limiting process ofZn(t). Therefore some calculations yield the desired result.
�
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Theorem 5.2.2. (Kumazawa [47])Suppose that under the null hypothesisH0 the censoring df
G(t) satisfies the conditions (5.2.6)-(5.2.8) of Lemma 5.2.6. Then we have asn→ ∞

n1/2N3

σ̂n
→d sup

0≤t<∞

[
W{ σ(t)

σ(∞)
} − F(t)W(1)

]
,

where W(t) denotes a standard Gaussian process with zero mean and covariance function
E{W(s)W(t)} = s∧ t,

σ2(t) :=
∫ t

0
S2(s)dC(s)

and

σ̂2
n :=

∫ T

0
Ŝ2

n(s−)dĈ(s).

Proof: Note that we are in the situationτH = τF = ∞. Lemma 5.2.6 shows that the limiting
process ofBn(t) given in the equation (5.2.9) under the null hypothesisH0 is given by

B(t) =
∫ ∞

0
{1{u<t} − F(t)}S(u)dZ(u).

Then it is seen that the stochastic process{B(t) : 0 ≤ t < ∞} has the same distribution as the
process{W{σ(t)} − F(t)W{σ(∞)} : 0 ≤ t < ∞}. Hence we can conclude the proof from the
Continuous Mapping Theorem and the fact thatσ̂2

n is a consistent estimator ofσ2(∞). �
In the uncensored case the varianceσ2(t) becomes toF(t), so we have

lim
n→∞

P
(n1/2N3

σ̂n
≤ x

)
= P

(
sup

0≤t<∞
[W{F(t)} − F(t)W(1)] ≤ x

)
= P

(
sup

0≤t≤1
{W(t) − tW(1)} ≤ x

)
= 1− exp(−2x2) for all x ≥ 0,

which can be also derived by the result of Barlow and Doksum [5] since in this situationσ̂2
n =∑n

i=1
n−i

n2(n−i+1) has the limiting value1.

Here we assume that under the null hypothesisF(t) the censoringdfG(t) satisfiesF◦φ−1(s) ≥ s
for all s ≥ 0 with φ(s) := σ(s)/σ(∞): this condition holds for the proportional censoring model
given byG(t) = Sλ(t) with 0 < λ < 1. Then we have for allx ≥ 0

lim
n→∞

P
(n1/2N3

σ̂n
≤ x

)
= P

(
sup

0≤t<∞
[W{φ(t)} − F(t)W(1)] ≤ x

)
= P

(
sup

0≤t≤1
{W(t) − F ◦ φ−1(t)W(1)} ≤ x

)
≥ P

(
sup

0≤t≤1
{W(t) − tW(1)} ≤ x

)
= 1− exp(−2x2).
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Table. 5.2 : Efficacies of the NBUE-test statistics
when the censoring parameterλ = 1

10 and 3
4

Alternative
Statistic (i) (ii) (iii) (iv)

λ = 1/10
N1(u0) 0.7218 0.7217 0.0451 0.1804
N1(u0.5) 0.3785 0.5195 0.0241 0.0831
N1(u1) 0.2307 0.4101 0.0144 0.0455
N2(u0) 1.2474 0.6490 0.0721 0.3874
N2(u0.5) 1.3319 0.5711 0.0728 0.4408
N2(u1) 1.3732 0.5056 0.0711 0.4776

λ = 3/4
N1(u0) 0.0100 0.01 0.0006 0.0025
N1(u0.5) 0.0019 0.0026 0.0001 0.0004
N1(u1) 0.0003 0.0006 0.0000 0.0000
N2(u0) 0.1863 0.0969 0.0107 0.0578
N2(u0.5) 0.2738 0.1174 0.0149 0.0906
N2(u1) 0.3497 0.1287 0.0181 0.1216

The asymptotic distribution of the suitably normalized version ofN3 under the null hypothesis
for arbitraryG(t) can not be evaluated and the above expression would be useful to determine the
critical point of theN3-test.

Now we shall compare the efficacies of the test statisticsN1(ψ1) andN2(ψ2) for the alternatives
(i)-(iv) given in Section 4.1 under the proportional censoring model. For the selection of the
weight function we takeψ1(t) = ψ2(t) = tα. Then Corollaries 5.2.3 and 5.2.5 imply thatµ = 1
and the censoring parameterλ satisfies 0< λ < 1: here we assumeα > −1/2 for the statistic
N1(uα) andα > −1 for N2(uα). And the asymptotic variances underH0 are given by

σ2
1 :=
Γ(2α + 3)− 2(1− λ)α+1 + (1− λ)2α+2

(1− λ)2α+3Γ2(α + 2)

and

σ2
2 := { 1

(1− λ)(α + 2)2
− 2

(α + 2)(α + 2− λ)
+

1
(2α + 3− λ)

}/(α + 1)2,

respectively. Then some calculations yield that: for the alternative (i)

e f f{N1(uα)} = {γ + Γ
′(α + 2)
Γ(α + 2)

}2/σ2
1,

e f f{N2(uα)} = { ln(α + 2)
(α + 1)(α + 2)σ2

}2,
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for (ii)

e f f{N1(uα)} = (α + 1)2

σ2
1

,

e f f{N2(uα)} = 1

(α + 2)4σ2
2

,

for (iii)

e f f{N1(uα)} = (2α+1 − 1)2

22α+4σ2
1

,

e f f{N2(uα)} =
{ 1

2(α + 2)(α + 3)σ2

}2

,

and for (iv)

e f f{N1(uα)} = (α + 1)2

(α + 2)2σ2
1

,

e f f{N2(uα)} =
{ ln(α + 2)

(α + 1)2
− 1

(α + 1)(α + 2)

}2

/σ2
2,

respectively, whereγ is the Euler’s constant.
Table 5.2 gives the efficacies of the test statisticsN1(u0), N1(u0.5), N1(u1), N1(u2), N2(u0),

N2(u0.5), N2(u1) andN2(u2) for the alternatives and some values of the censoring parameterλ.
Here we recommend the use of theN2(u1)-test for the testing problem in the sense of the Pitman
asymptotic relative efficiency.
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Chapter 6

Tests for DMRL and HNBUE

6.1 The DMRL Alternative
Kumazawa [45] considered the measure of dispersion from exponentiality to DMRL lifedf’s

F(t) given by ∫ 1

0

∫ 1

s
(1− s)(1− t){

1− H−1
F (s)

1− s
−

1− H−1
F (t)

1− t
}dtds,

and proposed the test statisticAc
4 for testing the null hypothesis

H0 : F(t) = 1− exp(−t/µ) for t ≥ 0 (µ unspecified)

against the alternative

H5 : F(t) is DMRL, but not exponential

based on the Kaplan-Meier estimatorF̂n(t). Here the property that the scaled TTT-transforms
H−1

F (t) defined in the equation (4.1.1) of Section 4.1 satisfy that{1 − H−1
F (t)}/(1 − t) is nonin-

creasing int ∈ [0,1] for DMRL life df’s from Theorem 2.5 of Klefsj̈o [29] is used in defining the
above measure. By using weight functionψ1(t) this measure can be generalized as

∆1 : =
∫ 1

0

∫ 1

s
(1− s)(1− t)ψ1(1− s)ψ1(1− t){

1− H−1
F (s)

1− s
−

1− H−1
F (t)

1− t
}dtds

=

∫ 1

0
Ψ1(t)dt−

∫ ∞
0
Ψ1{S(t)}

∫ t

0
S(s)dsdF(t)

µF
,

where

Ψ1(t) := ψ1(t){
∫ 1

0
sψ1(s)ds− 2

∫ 1

t
sψ1(s)ds}.

The method of replacingF(t) by the Kaplan-Meier estimator̂Fn(t) suggests to construct the test
statistic

P1(ψ1) :=

∫ T

0
Ψ1{Ŝn(t)}

∫ t

0
Ŝn(s)dsd̂Fn(t)

µ̂n
(6.1.1)
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for the above testing problem. Klefsjö [31] developed the test statisticA4 in the uncensored
case by using the same property of the scaled TTT-transformsH−1

F (t) and theA4-statistic may be
considered as the corresponding toP1(ψ1) with ψ1(t) ≡ constantin the uncensored case. Note
that we rejectH0 in favor ofH5 for small values ofP1(ψ1).

And we may use

∆2(α, β) :=
∫ ∞

0

∫ t

0
Sα+1(s)Sβ+1(t){eF(s) − eF(t)}dF(s)dF(t)

as a measure of DMRL-ness of lifedf F(t). The measure∆2(α, β) with α = β = 0 was first
considered by Hollander and Proschan [20] and Chen, Hollander and Langberg [12]. Bergman
and Klefsj̈o [9] discussed∆2(α, β) with α andβ nonnegative integers. It is seen that the measure
∆2(α, β) with α = β is equal to∆1(ψ1) with ψ1(u) = uα, so in this case the both measures lead us
to construct the equivalent test. Then some simple calculations yield that

∆2(α, β) =
∫ ∞

0
{a1 + a2Sβ+1(t) + a3Sα+β+3(t)}S(t)dt

=:
∫ ∞

0
g{S(t)}dt, (6.1.2)

where

a1 : = − 1
(β + 1)(β + 2)(α + β + 3)

,

a2 : =
1

(α + 2)(β + 1)
,

and

a3 : = − α + β + 4
(α + 2)(β + 2)(α + β + 3)

.

The test statistic

P2(α, β) :=

∫ T

0
g{Ŝn(t)}dt

µ̂n
(6.1.3)

may be constructed by the use of the Kaplan-Meier estimatorF̂n(t) and we rejectH0 in favor of
H5 for large values ofP2(α, β). Chen, Hollander and Langberg [12] and Bergman and Klefsjö
[9] considered the test statistic based on a modified Kaplan-Meier estimator, and proved the
asymptotic normality of the normalized version under some stronger conditions than those given
in the below.

In order to derive the asymptotic distribution of theP1(ψ1)-statistic, we apply Theorem 4.2.3
of Section 4.2. To this end we set

φ(t) :=
∫ t

0
Ψ1(s)ds. (6.1.4)
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Corollary 6.1.1. Suppose that the df’s F(t), G(t) and the functionΨ1(t) satisfy the conditions of
Theorem 4.2.3 of Section 4.2. Then we have asn→ ∞

n1/2
{
P1(ψ1) −

µψ1

µF

}
→d N(0, σ2

ψ1
),

where

µψ1 : =
∫ ∞

0
φ{S(s)}S(s)ds,

σ2
ψ1

: =

∫ τH

0
{µψ1h1(t) − µFh2(t)}2dC(t)

µ4
F

,

and

h2(t) : =
∫ ∞

t

[
Ψ1{S(s)}S(s) + φ{S(s)}

]
S(s)ds.

Corollary 6.1.2. Suppose that under the null hypothesisH0 the df G(t) and the functionΨ1(t)
satisfy the conditions (4.2.6)-(4.2.9) of Theorem 4.2.3 of Section 4.2. Then we have asn→ ∞

n1/2{P1(ψ1) − υ} →d N(0, σ2
ψ1

),

where

υ : =
∫ 1

0
φ(s)ds (6.1.5)

and

σ2
ψ1

: =
∫ ∞

0

[
υ − φ{S(t)}

]2

S2(t)dC(t).

From this corollary the asymptotic varianceσ2
ψ1

under the null hypothesis depends on the
unknown parametersµ andG(t). By the similar method as given in the previous sections we can
construct a consistent estimator

σ̂2
ψ1

:=
∫ T

0

[
υ − φ{Ŝn(t−)}

]2

Ŝ2
n(t−)dĈ(t)

by the theory of counting processes.
Next we consider the asymptotic behavior of the test statisticP2(α, β) defined in the equation

(6.1.6). This result can be proved by Theorem 4.1.1 of Section 4.1 and stated as follows.

Corollary 6.1.3. Suppose that the df’s F(t) and G(t) satisfy the conditions∫ τH

0
h2

1(t)dC(t) < ∞ (6.1.6)
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and
n1/2h1(T)→ 0 in probability asn→ ∞, (6.1.7)

where

h1(t) :=
∫ ∞

t
S(u)du.

Then the sequence of the rv’s

n1/2
{
P2(α, β) − µ2

µF

}
converges in distribution as n→ ∞ to a normal rv with zero mean and variance∫ τH

0
{µ2h1(t) − µFh2(t)}2dC(t)

µ4
F

,

where

µ2 :=
∫ ∞

0
g{S(t)}dt,

h2(t) :=
∫ ∞

t
S(u)g′{S(u)}du,

and the function g(t) is defined in the equation (6.1.2).

Corollary 6.1.4. Suppose that under the null hypothesisH0 the df G(t) satisfies the conditions
(6.1.9) and (6.1.10) of Corollary 6.1.3. Then we have asn→ ∞

n1/2P2(α, β)→d N(0, σ2
α,β),

where

σ2
α,β :=

∫ ∞

0
g2{S(t)}dC(t).

Because of the dependency of the asymptotic variance of the statisticP2(α, β) under the null
hypothesis on the unknownsµ andG(t), we may consider an estimator

σ̂2
α,β :=

∫ T

0
g2{Ŝn(t−)}dĈ(t).

The consistency can be proved by the same technique as used in the proof of Lemma 2.4 of
Kumazawa [42].

Now we compare the efficacies of the test statisticsP1(ψ1) and P2(α, β) for the alternatives
(i)-(iv) presented in Section 4.1 under the proportional censoring model with the censoring pa-
rameterλ. From Corollaries 6.1.2 and 6.1.4 we may takeµ = 1 and 0< λ < 1. And the
asymptotic variances of the suitably normalized versions ofP1(ψ1) andP2(α, β) underH0 are
given by

σ2
1 :=

∫ 1

0
{υ − φ(t)}2t−λdt
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Table. 6.1 : Efficacies of the DMRL-test statistics
when the censoring parameterλ = 1

10 and 3
4

Alternative
λ (i) (ii) (iii) (iv)

λ = 1/10
P2(0, 0) 0.5638 0.6609 0.0469 0.1131
P2(0, .5) 0.6575 0.6334 0.0540 0.1435
P2(0, 1) 0.7284 0.5997 0.0585 0.1701
P2(.5,0) 0.5942 0.6608 0.0491 0.1222
P2(.5, .5) 0.6840 0.6293 0.0557 0.1526
P2(.5,1) 0.7509 0.5931 0.0597 0.1787
P2(1, 0) 0.6211 0.6611 0.0510 0.1306
P2(1, .5) 0.7076 0.6256 0.0571 0.1608
P2(1, 1) 0.7711 0.5874 0.0606 0.1866

λ = 3/4
P2(0, 0) 0.0534 0.0625 0.0044 0.0107
P2(0, .5) 0.0857 0.0826 0.0070 0.0187
P2(0, 1) 0.1182 0.0973 0.0095 0.0276
P2(.5,0) 0.0594 0.0660 0.0049 0.0122
P2(.5, .5) 0.0934 0.0859 0.0076 0.0208
P2(.5,1) 0.1269 0.1002 0.0100 0.0302
P2(1, 0) 0.0647 0.0689 0.0053 0.0136
P2(1, .5) 0.1003 0.0887 0.0081 0.0228
P2(1, 1) 0.1348 0.1026 0.0106 0.0326

and

σ2
2 :=

a2
1

1− λ +
a2

2

2β + 3− λ +
a2

3

2α + 2β + 7− λ+

+
2a1a2

β + 2− λ +
2a1a3

α + β + 4− λ +
2a2a3

α + 2β + 5− λ ,

respectively, whereφ(t), υ andai ’s are given in the equations (6.1.7), (6.1.8) and (6.1.3)-(6.1.5),
respectively. Here for the statisticP1(ψ1) we consider the weight functionψ1(t) to be of formtα.
So the resulting statisticP1(ψ1) is equivalent to the statisticP2(α, α).

Then the efficacies of theP2(α, β)-test are given as follows: for the alternative (i)

e f f{P2(α, β)} =
{ ln(β + 2)

(β + 1)(β + 2)
− ln(α + β + 4)

(β + 2)(α + β + 3)

}2

/{(α + 2)2σ2
2},

for (ii)

e f f{P2(α, β)} =
{ 1

(β + 2)2(α + β + 4)σ2

}2

,
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for (iii)

e f f{P2(α, β)} =
{a1

2
+

a2

β + 3
+

a3

α + β + 5

}2

/σ2
2,

and for (iv)

e f f{P2(α, β)} =
{
a1 +

a2 ln(β + 2)
β + 1

+
a3 ln(α + β + 4)

α + β + 3

}2

/σ2
2.

Some numerical evaluations of the above expressions with some values ofα andβ yield the
entries of Table 6.1. Here we recommend the test based on theP2(1,1)-statistic for this testing
problem.

6.2 The HNBUE Alternative
For testing the null hypothesis

H0 : F(t) = 1− exp(−t/µ) for t ≥ 0 (µ unspecified)

versus the alternative

H6 : F(t) is HNBUE, but not exponential,

under the random censorship model, Bergman and Klefsjö [8] proposed the class of the test
statisticsQ1(k) andQ2(k) with k integer≥ 2 based on the property that ifF(t) is HNBUE then
for k = 2, 3, · · · , ∫ ∞

0
Sk(t)dt ≥ µF

k

and ∫ ∞

0
{1− Fk(t)}dt ≤ µFνk

with νk :=
∑k

j=1
1
j . In Bergman and Klefsjö [8] a modified Kaplan-Meier estimator was used

to define the statisticsQ1(k) andQ2(k) and the asymptotic normality of the suitably normalized
versions of the statistics was derived under some strong conditions. Then these statistics can be
represented as

Q1(k) : =

∫ T

0
Ŝk

n(t)dt

µ̂n
(6.2.1)
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and

Q2(k) : =

∫ T

0
{1− F̂k

n(t)}dt

µ̂n
(6.2.2)

by using the Kaplan-Meier estimator̂Fn(t) defined in the equation (4.1.1) of Section 4.1. Here
we reject the null hypothesisH0 in favor ofH6 for large values ofQ1(k) and rejectH0 for small
values ofQ2(k). It is seen that the test statisticN2(ψ) with ψ(t) = tα andα nonnegative integer,
introduced in Section 5.2 for testing against the NBUE alternatives, is asymptotically equivalent
to Q1(α + 2).

Kumazawa [46] introduced a measure of exponentiality against the HNBUE lifedf’s given by

∆1 : =
∫ ∞

0
ψ(t)

{
µF exp(−t/µF) −

∫ ∞

t
S(u)du

}
dt

= µ2
F

∫ ∞

0
ψ(µF t)e−tdt−

∫ ∞

0
S(u)

∫ u

0
ψ(t)dtdu

with nonnegative weight functionψ(t). Note that∆1 = 0 whenF ∈ H0 and∆1 > 0 whenF ∈ H6.
If we select the weight functionψ(t) := tα with α > 0, the above measure∆1 becomes

∆1 = µ
α+1Γ(α) −

∫ ∞
0

uαS(u)du

α

and a class of the test statistics

Q3(α) :=

∫ T

0
uαŜn(u)du

µ̂α+1
n

(6.2.3)

for α > 0 may be constructed by using the Kaplan-Meier estimatorF̂n(t). This statistic in the
uncensored case closely relates to the class of the statisticsTα introduced in Kimball [27] and
may be considered as a natural extension ofTα for the censored observations. Some properties
of Tα are discussed in Leeet al. [49] in detail. Under the uncensored model Singh and Kochar
[54] considered the above testing problem by using the weight functionψ(t) := exp(−t/µF)/µF

in the measure∆1 and discussed some properties of the resulting test statistic.
Here Theorem 9.4 of Dharmadhikari and Joag-dev [15] states thatF(t) is an HNBUE lifedf if,

and only if, ∫ ∞

0
g(t)dF(t) ≤

∫ ∞
0

g(t) exp(−t/µF)dt

µF

for all nondecreasing, convex functiong(t) on [0,∞). Hence the measure∆1 may be also derived
from this characterization of the HNBUE life distributions. Note that we rejectH0 in favor of
H6 for small values ofQ3(α).

Now the asymptotic distribution of the test statisticQ1(k) can be derived from Theorem 4.1.1
of Section 4.1.
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Corollary 6.2.1. Suppose that for fixed integer k≥ 2 the df’s F(t) andG(t) satisfy the conditions∫ τH

0
h2

1(t)dC(t) < ∞ (6.2.4)

and

n1/2h1(T)→ 0 in probability as n→ ∞, (6.2.5)

where

h1(t) :=
∫ ∞

t
S(u)du.

Then we have as n→ ∞
n1/2

{
Q1(k) − µ2

µF

}
→d N(0, σ2

k),

where

σ2
k : =

∫ τH

0
{µ2h1(t) − µFh2(t)}2dC(t)

µ4
F

,

µ2 : =
∫ ∞

0
Sk(t)dt,

and

h2(t) : = k
∫ ∞

t
Sk(u)du.

Corollary 6.2.2. Suppose that for fixed integer k≥ 2 and the null hypothesis F(t), the censoring
df G(t) satisfies the conditions (6.2.4) and (6.2.5) of Corollary 6.2.1. Then we have asn→ ∞

n1/2
{
Q1(k) − 1

k

}
→d N(0, σ2

1,k),

where

σ2
1,k :=

∫ ∞
0
{S(t) − kSk(t)}2dC(t)

k2
.

Again we can prove the asymptotic normality of the suitably normalized version of the statistic
Q2(k) from Theorem 4.1.1 of Section 4.1.

Corollary 6.2.3. Suppose that for fixed integer k≥ 2 the df F(t) and the censoring dfG(t) satisfy
the conditions (6.2.4) and (6.2.5) of Corollary 6.2.1. Then we have asn→ ∞

n1/2
{
Q2(k) − µ2

µF

}
→d N(0, σ2

k),
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where

σ2
k : =

∫ τH

0
{µ2h1(t) − µFh2(t)}2dC(t)

µ4
F

,

µ2 : =
∫ ∞

0
{1− Fk(t)}dt,

h1(t) : =
∫ ∞

t
S(u)du,

and

h2(t) : = k
∫ ∞

t
Fk−1(u)S(u)du.

Corollary 6.2.4. Suppose that for fixed integer k≥ 2 and the null hypothesis F(t), the censoring
df G(t) satisfies the conditions (6.2.4) and (6.2.5) of Corollary 6.2.1. Then we have asn→ ∞

n1/2{Q2(k) − νk} →d N(0, σ2
2,k),

where

σ2
2,k :=

∫ ∞

0
{νkS(t) + Fk(t) − 1}2dC(t).

From Corollaries 6.2.2 and 6.2.4 the asymptotic variances of the suitably normalized versions
of Q1(k) andQ2(k) underH0 hypothesis are found to depend on the unknownsµ andG(t), and
may be estimated by

σ̂2
1,k : =

∫ T

0
{Ŝn(t−) − kŜk

n(t−)}2dĈ(t)

k2

and

σ̂2
2,k : =

∫ T

0
{νkŜn(t−) + F̂k

n(t−) − 1}2dĈ(t),

respectively. The consistency of these estimators can be proved by the same method as given in
Section 4.1.

Next we consider the asymptotic distribution of the test statisticQ3(α) defined in the equation
(6.2.3).

Theorem 6.2.1. (Kumazawa (1989a))Suppose that for fixed constantα > 0 the df’s F(t) and
G(t) satisfy the conditions∫ τH

0
h2

i (t)dC(t) < ∞ (6.2.6)
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and

n1/2hi(T)→ 0 in probability as n→ ∞ (6.2.7)

for i = 1 and2, where

h1(t) :=
∫ ∞

t
S(u)du

and

h2(t) :=
∫ ∞

t
uαS(u)du.

Then we have as n→ ∞
n1/2

{
Q3(α) − µ2

µα+1
F

}
→d N(0, σ2

α),

whereµ2 := h2(0) and

σ2
α :=

∫ τH

0
{µ2(α + 1)h1(t) − µFh2(t)}2dC(t)

µ2α+4
F

.

Proof: We have

Wn : = n1/2
{
Q3(α) − µ2

µα+1
F

}
=

∫ T

0
Zn(s)dh2(s)

µ̂α+1
n

− µ2
n1/2(̂µα+1

n − µα+1
F )

µ̂α+1
n µα+1

F

− n1/2h2(T)

µ̂α+1
n

with Zn(t) = n1/2{F̂n(t) − F(t)}/S(s). It is seen from Corollary 3.3 of Serfling (1980) and the fact
thatµ̂n is a consistent estimator ofµF that the second term of the right hand side is asymptotically
equivalent to

−
µ2(α + 1)

∫ T

0
Zn(s)dh1(s)

µα+2
F

from the conditions (6.2.6) and (6.2.7).
Now Lemma 3.1.2 of Section 3.1 together with the Cramér-Wold Device implies that the ran-

dom vector (∫ T

0
Zn(t)dh1(t),

∫ T

0
Zn(t)dh2(t)

)
converges in distribution asn→ ∞ to(∫ τH

0
Z(t)dh1(t),

∫ τH

0
Z(t)dh2(t)

)
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with the limiting processZ(t) of Zn(t). Hence the limitingrv of Wn asn→ ∞ can be expressed
as ∫ τH

0
Z(s)dh2(s)

µα+1
−
µ2(α + 1)

∫ τH

0
Z(s)dh1(s)

µα+2
F

=

∫ τH

0
{µ2(α + 1)h1(t) − µFh2(t)}dZ(t)

µα+2
F

.

The desired result follows from the Fubini’s Theorem and some calculations. �

Corollary 6.2.5. Suppose that for fixed constantα > 0 and the null hypothesisF(t), the cen-
soring df G(t) satisfies the conditions (6.2.6) and (6.2.7) of Theorem 6.2.5. Then we have as
n→ ∞

n1/2{Q3(α) − Γ(α + 1)} →d N(0, σ2
3,α),

where

σ2
3,α :=

∫ ∞

0

{
Γ(α + 2)S(u) −

∫ ∞
u

tαS(t)dt

µα+1

}2

dC(u).

Because of the dependency of the asymptotic varianceσ2
3,α underH0 on the unknown param-

etersµ andG(t), we may use a consistent estimator

σ̂2
3,α :=

∫ T

0

{
Γ(α + 2)̂Sn(u−) −

∫ T

u
tαŜn(t)dt

µ̂α+1
n

}2

dĈ(u)

by the theory of counting processes.
We shall consider the efficacies of the tests based on the statisticsQ1(k), Q2(k) and Q3(α)

against the alternatives (i)-(iv) listed in Section 4.1 under the proportional censoring model with
G(t) = Sλ(t). Then Corollaries 6.2.2, 6.2.4 and 6.2.6 imply thatµ = 1 and 0< λ < 1. And the
asymptotic variances of their suitably normalized versions underH0 are given by

σ2
1,k : =

1
k2(1− λ)

− 2
k(k− λ)

+
1

2k− λ − 1
,

σ2
2,k : =

2k∑
i=2

ai,k

i − 1− λ ,

and

σ2
3,k : = (k!)2

2k∑
i=0

i! bi,k

(1− λ)i+1
,

respectively, where

ai,k : =
∑
ℓ+m=i

cℓ,kcm,k,

bi,k : =
∑
ℓ+m=i

dℓ,kdm,k,
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Table. 6.2 : Efficacies of the HNBUE-test statistics
when the censoring parameterλ = 1

10 and 3
4

Alternative
λ (i) (ii) (iii) (iv)

λ = 1/10
Q1(2) 1.2474 0.6490 0.0721 0.3874
Q1(3) 1.3732 0.5056 0.0711 0.4776
Q2(2) 1.2474 0.6490 0.0721 0.3874
Q2(3) 1.1289 0.6932 0.0691 0.3287
Q3(1) 0.7217 0.7217 0.0451 0.1804
Q3(2) 0.3889 0.5600 0.0243 0.0847

λ = 3/4
Q1(2) 0.1863 0.0969 0.0107 0.0578
Q1(3) 0.3497 0.1287 0.0181 0.1216
Q2(2) 0.1863 0.0969 0.0107 0.0578
Q2(3) 0.1386 0.0851 0.0084 0.0403
Q3(1) 0.01 0.01 0.0006 0.0025
Q3(2) 0.0008 0.0011 0.0001 0.0002

ci,k :=

νk − k for i = 1

(−1)i
(
k
i

)
for i = 2, 3, · · · , k,

and

di,k :=

−k for i = 0
1
i! for i = 1, 2, · · · , k.

Here we assume for the statisticQ3(α) thatα = k is positive integer.
As stated in the beginning of this section theQ1(k)-statistic is equivalent to theN2(ψ)-statistic

with ψ(t) = tk−2, we do not give the expressions for the efficacies of the test based onQ1(k). Then
some calculations show that for the alternative (i)

e f f{Q2(k)} =
{
k

k−1∑
i=1

(−1)i
(
k− 1

i

)
ln(i + 1)
(i + 1)2

}2

/σ2
2,k,

e f f{Q3(k)} =
(
Γ(k+ 2){1− νk+1}

)2

/σ2
3,k,

for (ii)

e f f{Q2(k)} =
{
νk − k

k−1∑
i=0

(−1)i
(
k− 1

i

)
1

(i + 1)3

}2

/σ2
2,k,

e f f{Q3(k)} =
{kΓ(k+ 2)

2

}2

/σ2
3,k,
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for (iii)

e f f{Q2(k)} =
{k

2

k−1∑
i=1

(−1)i
(
k− 1

i

)
i

(i + 1)2(i + 2)

}2

/σ2
2,k,

e f f{Q3(k)} = Γ2(k+ 1)
(k− 1

2
+

1
2k+1

)2

/σ2
3,k,

and for (iv)

e f f{Q2(k)} =
{
νk − k

k−1∑
i=1

(−1)i
(
k− 1

i

)
ln(i + 1)
i(i + 1)

}2

/σ2
2,k,

e f f{Q3(k)} = Γ2(k+ 1){νk+1 − k− 1}2/σ2
3,k,

respectively, whereγ denotes the Euler’s constant.
Table 6.2 shows the efficacies of the tests based on the statisticsQ1(2), Q1(3), Q2(2), Q2(3),

Q3(2) andQ3(2) against the alternatives (i)-(iv) and some values of the censoring parameter
λ. The poorness of the performance of the test based on theTα-statistic, equivalent to the
Q3(α)-statistic in the uncensored case, was pointed out in Leeet al.[49] and it seems that the
Q3(α)-statistic in the censored case inherits the characteristic of theTα-statistic. Here we recom-
mend theQ1(3)-test for testing exponentiality against the HNBUE alternatives under the censored
model based on the concept of the Pitman asymptotic relative efficiency.
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