|

) <

The University of Osaka
Institutional Knowledge Archive

Title POSITIVE PION PRODUCTION BY 185 MEV PROTONS

Author(s) |[Kume, Kenji

Citation |KFRKZ, 1976, EHIHwX

Version Type|VoR

URL https://hdl. handle.net/11094/1448

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



POSITIVE PION PRODUCTION BY 185 MEV PROTONS

KENJI KUME

( DOCTOR THESIS )

DEPARIMENT OF PHYSICS, OSAKA UNIVERSITY



Contents

1. Introduction

2, Plane wave approximation

3. Formulation for the (p, w+) reaction cross section
4, Optical potential for proton and pion

5. Distorted waves of proton and pion

6. Results and discussions

7. Summary and conclusions

Acknowledgements |

References



Abstract

Positive pion production by‘185 MeV protons on 12C 4s studied
theoretically. We perform the phenomenological anﬁlysis of the
experimental data with thé distorted wavé approximation. It is shown
that the final state interaction, esﬁecially, the off-shell behavior
of the pion-nucleus optical potential is essential to understand this
particular process. In the previous calpulations of 12C(p, ﬂ+)l3C
reaction cross section, the theoretical values are an order of
magnitude larger than the experimental data or more, when the
Kisslinger—type pion-nucleus optical potential is employed. It is
shown that this difficulﬁy is due to the wrong off-shell behavior
of the Kisslinger-potential. We adopt here a Gaussian~type cut—off
function for reducing the off-shell contribution of the p-wave pion~
nucleus interactioﬁhin the Kisslinger-model. As a result, the pion

elastic scattering and the 12C(p, ﬂ+)l3c reaction cross section can

be consistently explained.



1. Introduction

Pion induced nuclear reactions have extensively investigated in
the low as well as the intermediate energies ( pion kinetic energy
Tp < 300 MeV ) to determine the interaction of pion with nuclei and
to clérify the nuclear structure with this interaction1_6). ‘These
reactions involve the pilon capture, phenémena concerning the pionic
atom, elastic, inelastic and charge exchange reactions of pions by
cpmplex nuclei,etc., In these pion induced reactions, the excitation
of various modes of the nucleon or the nuclear motion is possible.

Apart from the study of the nuclear structure, the investigation
of the pion—nucleus interaction itself is interesting. There is a

strong resonance in the pion-nucleon P,. channel with the mass

33
m = 1236 MeV, and the s and p-wave scatterings are dominant in the
low energy. Because of these, the plon-nucleon interactiom is quite
different from the nucleon-nucleon interaction, and these properties
are revealed in pion-nucleus interaction. One of the main problems
in the low-energy pion-nucleus physics is the determination of the
pion-nucleus optical potential,

In 1955, Kisslinger7) has proposed a pion-nucleis optical
potential which takes into account the s and p-wave character. of the
low-energy pion-nucleon scattering. This semi-phenomenological
potential has succeédqd to explain the low and intermediate-energy
pioﬁ—nucleus elastic scattering in varioué nuclei.

Recently, however, ;he following difficulty arises in the

theoretical analysis of the pion production reaction by 185 MeV

protons on nuclei.



p+ (A Z)——>(AH, Z) +0
Rost and Kunzg),and Keating and Willsg) have calculated the cross
section of this (p, ﬂ+) reaction on 12C in the distorted wave
approximation, and have shown that the theoretical values are
an order of magnitude larger or more, compared with the experimental daté
lO~12)' They have used the phenomenological optical potential for
the proton and the Kisslinger-type potential for the pion.
The parameters of these potentials are chosen so as to fit to the
respective elastic scatterings. The calculated cross sections are
shéwn to be strongly dependent upon the choice of the pion optical
potential, Several modifications of the Kisslinger-potential are
tried, but the pion elastic scattering and the 12C(p, ﬂ+313C reaéfion
cross section can not be explained consistently. Keating and Willsg)
have concluded that the cause of the trouble would consist either
in the pion optical potential or in the distorted wave approximation
itseif. For these difficulties,Miller13)have reexamined the parameter
search for the Kisslinger-potential to fit the elastic scattering
and the (p, ﬂ+) reaction cross section. He obtainéd the pdtential—
parameters which can fit to both of these experimental data. But his
parameters are quite different from the theoretical value which is
given by the pion-nucleon phase shifts in the multiple scattering
theory. Itziﬁ hard, therefore, to aécept these parameters. Recently,
Miiler and Phatak14) h;ve calculated the 12C(p, ﬂ+)13C reaction cross

section by the separable potential proposed by Landau et a1.15’16

)a‘ The
results are in a good agreement with the experimental data of the elastic
scattering and the (p, ﬂ+) reaction, but the parameters adopted for

the nuclear form factor.' are too large. Because of these difficulties,



there arises a doubt that the original parametrization of the Kisslinger-
potential might be wrong.

The purpose of the present thesis is to investigate the above
mentioned theoretical difficulties in understanding the (p, ﬂ+) reaction’
cross section. The trouble comes from the particular nature of the
(p, ﬂ+) reaction. In (p, ﬂ+) reaction, the momentum of the incident
proton is about p ¥ 560 MeV/c in the CM system of the proton and the
target nucleus, while for the pion k ¥ 100 MeV/c. If we assume the
proton and the pion to be the free particles, the momentum of the
transférred neutron amounts to 460 MeV/c, which is far above te nuclear
Fermi momentum. - Since such a high-momentum component is very small
in the nucleus, the cross section for this process is expected‘to be
small. However,the proton and the pion are not free but interact with
nucleus. They are described by the distorted waves and have various
momentum components. The low-momentum neutrons can be transferred to
the nucleus if the highly off-shell pion is emitted at the pion-
nucleon vertex. Therefore, the cross section of this (r, ﬂ+) reaction
is expected to be strongly dependent upon the momentum distribution
of the pion distorted wave. Thus the (p, ﬂ+) reactiog cross section
is sensitive to the off-sheli behavior of the pion-nucleus optical
potential. 1In contrast with this, the elastic scattering is almost
determined by the on-shell part of the pion potential. Then it is
probable that the fail;re of the Kisslinger-potential in the calculation
of the (p, ﬂ+) reaction is due to the wrong off-shell behavior of this
potential.

In this thesis we give the general formula for the (p, ﬂ+) reaction

cross section by expanding the transition matrix elements into multipole



series. In order to modify the off-shell behavior of the Kisslinger-
type pion potential, we must deal with the non-local potential.
Therefore we have obtained the pion wave function in- the momentum space
by directly solving the integral equations. The effects of the nuclear
recoil, which are neglected in the previous calculations, are taken
into account by changing the pion‘momentum effectively.

We will show that the off~shell extrapolation of the p-wave
pion-nucleon interaction in the Kisslinger-potential is wrong.
Inéroducing the phenomenological cut-off function, we have improved
the off-shell behavior of the Kissliﬁger—potential. This cut-off
procedure scarcely affects the cross section of pion elastic scattering,
but appreciably reduces tﬁe absolute value of the (p, ﬂ+) reaction
cross sections. Thus we can explain the pion elastic scattering and
the 12C(p, ﬂ+)13C reaction cross section consistently.

In section'Z, we describe the mechanism of the (p, ﬂ+) reaction
qualitatively, in order to clarify the problem involved. In section
3, the formulas for the differential cross section of the (p, ﬂ+)
reaction are given, and the recoil correction in the nuclear matrix
element is also studied. In section 4, we describe the proton and the
pion optical potentials adopted inm our calculations andrpropose a
modification of the off-shell extrapolation in the Kisslinger-potential.
The results of the numerical calculations are given and are discussed
in section 6. In section 7, we summarize the results obtained in our

analysis. We adopt the natural units“i = ¢ = 1 in this thesis throughout.



2. Plane wave approximation

+ .
In this section we describe the (p, 7 )reaction in the plane wave
approximation and give the qualitative arguments which are helpful to
clarify the problem involved. The interaction Hamiltonian of -the

pion-nucleon interaction is assumed to be the pseudo-vector coupling and

17.

it is given by in non-relativistic limit as )
Hzr = —v4m Ff/fﬂf(#') (T )T P) b (r) ar (2.1)

where ¢( r) and wN( ) are the pion and the nucleon field operators,
respectively. The f is the pion-nucleon coupling constant (f2 = 0.083)
and H the pion mass. The spin and the isospin operators of the
nucleon are denoted as 0 and T, respectively. The gradient operator

V. operates only on the pion coordinate. The (p, ﬂ+) reaction cross

section is then given by

ag = 2wk X 5 I(Es # B £pmEn) [<F 1z )/ (2.2)

where jflux is 'the flux of the incident proton, [i> the initiai state‘
with proton and the target nucleus, and |f> the final state with the
emitted pion and the residual nucleus. The total energies of the
pion and the proton are henoted by ETT and Ep, and Ei and Ef are the
same for the target and the residual nucleus. In eq. (2.2), the
square of the transition métrix is averaged over the initial state and
summed over the final state. We assume that the pion and the proton

are described by the plane wave. In the case of the spin-zero target

. . . + . .
nucleus, the differential cross section for (p, ™ ) reaction is

-8-



given by,
2
(56 )y = 2 /’,iﬁ) -,-f"kj (zz+/) [Fe3)]” (z.3)

F(z) = / a‘;e (25) Rglr) y>dr (z . %)
o .

& = |k—-r/

Here, the target nucleus is assumed to be the closed shell, and the
residuai nucleus consists of the closed core plus one neutron state
with orbital and total angular momenta £ and I, respectively. Its
radial wave function is denoted as RB(r). The jl(qr) is the

spherical Bessel function. The p and k are the momenta of the

incident proton and the emitted pion, respectively. The cross section
is then directly proportional to the Fourier-transform of the bound-
neutron wave function. In the (p, ﬂ+) reaction, the momentum q of

the transferred neutron i$ especially large. Even when the pion is
emitted in the forward direction, q is about 460AMeV. The calculated

cross section of the 12C(p, ﬂ+)130 (ground state ) is shown in Fig. 1

with the experimental values by Dahlgren et al.;o). The result in

the plane wave approximation is smaller than the experimental data

by an order of magnitude. This is due to the fact that the high-

momentum component of a nuclear single particle state is very small,
The importance of the initial or the final state interactions in

+ .
the (p, T ) reaction can be seen as follows. The nuclear form factor

F(q) in eq. (2.4) is replaced by



| FUIP-«/) ——“—>/¢zrk(//<9 BIps FlapiuPoan’ap’ (2.6

in the distorted wave approximation. Here, ¢$(k') and &gﬁp') are the
distorted waves of the pion and the prqton in the momentum space,
respectively. The nuclear form factor F(|k' - p'l) has the peak where
the momentum transfer |[k' - p']| < 250MeV. Therefore the behavior of
the pion and the proton wave functions in this domain mainly determines
the above integral. 1In other words,the high-momentum components in
the respective wave functions are important. As will be shown in
section 6, the effects of the pion distorted wave, especially, the
high-momentum component, are essential in understanding the (p, ﬂ+)
reaction cross section, and these are closely related to the off-shell
Behavior of the pion-nulceus optical potential. In momentum space,

the Klein—Gordon'equation in the potential <k'|Vh(En)lkﬁ> is given by

( /x’z—kz)}érk(kﬁ = -2z F, [<KVulEx) /K> 7‘,,”5%”1 aK” (z.4)

In the Born approximation, the off-shell component hk[ # kal of the

pion wave function is proportional to

B o K7 Vi (Ex)/iK) (2.7)

kfz__ kz

’ +
Thus the cross section of the (p, ™ ) reaction is expected to be
sensitive to the off-shell behavior of the pion-nucleus, optical

potential.

-10-



. + . .
3. Formulation for the (p, T ) reaction cross section

. . + . .
In this section, we formulate the (p, ™ ) reaction cross section

for the numerical calculations including the nuclear recoil effects.

3.A:; Kinematics
First of all, we describe the kinematics of the reaction, as follows.
We denote the four momenta of the incident proton, emitted pion,

target and the residual nucleus as Pp’ Pﬂ, P_ and PR’ respectively.

T
The Lorentz-invariant variable s, which represents the square of the
total energy in the CM system of the proton and t:e target nucleus, is

defined by

S = (8 +PB)*

(3. 7)
- (fﬂ "'_Pk)z.
In the laboratory system, g is given by
= + )+ 2M.T; (3.2)
K o= (vt mp) + 2HTp

where mp and MN are the masses of the proton and the target nucleus,
respectively, and Tp the proton kinetic energy in the laboratory
system. The momenta of the incident proton p and the emitted pion

k in the proton or the pion-nucleus CM system are given by

[#(Z22=) oy 72 (5.0

I

1P/

W = [ e ] (5.4

-11-



*
where | is the pion mass and MN the mass of the residual nucleus. In

12 3

+
the reaction ~C(p, T )1 C (ground state), the numerical values are

P = SE/.5 mneV
(2.$)

L = /o/.'7 reV

L]

3.B. Cross section for the (p, ﬂ+) ;eaction

In this subsection we derivé a formula for the differential cross
section of the (p, ﬂ+) reaction. We expand the initial and the final
state by the eigenstates of the total angular momentum. As was given

in section 2, the interaction Hamiltonian of the pion and the nucleon -is

Hz = =47 ,—f—L / ) (T O )T o)) o r) 1. (5.4J
It is necessary to evaluate the following transition matrix element.
CFIHZIEY =L K5 TT2(~) [Hz] PT s T, Loz (390 (3.7)

Here, the initial state vector'“pc; (+)> with the outgoing-wave

LoToz
boundary condition is represented by the proton momentum p, spin

projection g, the spin I, and its projection I of the target

0

nucleus., If it is necessary the same symbol I

0z

0 represents the whole
set of the quantum numbers characterizing the target nucleus.

Similarly the final state vector |k; I IZ(—)> with the incoming-wave
boundary condition is specified by the pion momentum k and the residual

nuclear state with spin I and its projection IZ. These state vectors

are normalized as follows:

-12-



ST} 2020w (0] P0/} 1208 1409 = 5P Byt Szt byt , (-9

KK TIz(D]IK; L/Z5(2) =8 (K~) 512’ 8105,7 . - (3.9
They are expanded in terms of the eigenstates of the parity and the

total angular momentum,

IPT ; ToTog(t2)> = J_ e 72»,"2,//3)2 (ﬂ,,fm,,a‘/¢}mf-}

‘ef”f gf}:;y
dp I, ™ Tog JTM) [ar1,C(40D , (3.70)

- e P N k
/K ;T IgdrD> -fizm LY (R (L T ey Tz J757)
7)', (74
Tom’

X JTr7 by T 62D 3.17)

Here,Q,p and jp are the orbital and the total angular momenta of the
proton, respectively, and Yl n is the spherical harmomic. The state
vector with spin J and its pgogection M is denoted as |JM, c(+)> s
and the ¢ represents the channel index,

¢ =14 Jp,%} , (3./2)
which specifies the incident channel. In eq. (3.11), Rﬂ is the
orbital angular momentum of the emitted pion and lJ'M'; Qﬂ I(—))
is the eigenstate of the total angular momentum J' and its préjection

M'. The channel index (lﬂ, I ) represents the exit channels.

Substituting eqs. (3.10) and (3.11) into the transition matrix element

-13-



(3.7), we have

SK; LZIzrv/Hz] PT; I, T,30+0>

= X2 S . .
% 05.2;:‘ ’ (Lp £ mp 7 ldp mid(dp Ty mp Tix ] THI(ly I Te/T 1)

m’r/ "f/ ’;‘/H

5 ) (B Jawmnly <TH ;An T2 Hz ]It el . (3.3

+
Then the formula for the differential cross section of (p, 7 )
reaction,on the target nucleus Io to the specific residual nuclear

state I,can be derived from eqs. (3.13) and (2.2) with the Racah
*)

algebra as follows

2 £ . - / o7 L
__d_g_-= 77 —fﬁk El"[/J E ('2/’ p’Q-Irr I/’(__}I Ip— =
% 8p 98 L £ C-

’

(29 PP LT ITT LT L T Ay T LS T LR LA T

(4p £ 00/L0) Clr 7 M/Lo) Wy bpdy & ; +1 )

WT Cad "8 5 TL) W(Tep T4 5 In L)

CT ; Aa TdNHZ N T ¢ (00D <T75 LA T D Wtz Hs’e” /197é

Fileost) | (3./%)

*#) The reduced nuclear matrix element is defined for the tensor

operator £ of rank J as <j'm'| E |3 m> =(jImM|[j'm") (3" gy "j>_

—14-



where

[:7'_7::23'7-/} etc .
Here p and Ep are the momentum and the total energy of the proton,
respectively, and k and Eﬂ are the same for the pion. PL is the
Legendre polynomial. In the case of the spin-zero target nucleus

( I, =0 ), eq. (3.14) is reduced to

dg __ r* E  bp—bor U@f14¥, z-L
dﬂ”"’i"?fkg”z" ¢ (/-

LypILgpd [l TEETCInTEt] T (Rp £ 00 [2. 0 )0 I itrf 00/ 0)

Wlgplpdd 4 5 £ L) W lp b G 07 ; TL)

o : . #

(s kg Z(IWHLH fp ; (D (dp’,',(rr/z'/—/lﬁz//d,{; 1))
7),_/605‘9) . (3./:)

Due to the property of the Racah coefficient, the following selection

rules hold in eq. (3.15).

Jop-25) S L £ 8prty |, JOr—LA) L L0517

7
[do=d5 1 S L & dotfe’ , Idp—tr[£T £ jporby . (3.76)

The transition matrix element in eq. (3.14) can be explicitly written

in the coordinate space,

ST ; RnZ-) W Hz W T 5 et D>

- D At BT + T
=z B g, 07 2 el (3.7
4 :3/

-15-



where

8z _ £ / 2”/ by LF :f',\
Zs =-m L = %?/—/ Tz G foupe v Tof () (3.78)

’

(-)2 1
Here, wl' I? (r) is the radial wave function of the pion in the
p .

channel_(?Z%, I' ). The upper index ( £_, I ) represents the channel

!

.n-’
with' the outgoing wave. is the isospin lowering operator for
the nucleon. The initial wave function with total angular momentum

J is denoted as ®§+)J and @I is the wave function of the residual

nucleus.

3.C. Correction to the nuclear recoil

In the (p,W+) reaction, the recoil energy of the target nucleus
is about 10 MeV for light nuclei. Therefore, the effect of the nuclear
center of mass motion in the transition matrix element can not be
neglected. To study this effect, we first separate the internal and
the center of mass coordinates of the target and the residual nucleus
explicitly, assuming the single particle model for the nucleus.

In the plane wave approximation, the transition amplitude Mpw

is symbolically written as

. /y .
Mow o <Ep]TK Sy tn) e NI R B "XR (B | (3.49)

where ¢i and wf are the intrinsic wave functions of the target and
the residual nucleus, respectively. The.xﬁ and Mﬁ.are the coordinates

of the proton and pion, and JdIR and £, are for the target and the

R

residual nucleus, respectively { see Fig.2 ). Here,the coordinate

X is  expressed by the Jcp and JtR as
xk, ~ XptAXg (3.20)
A+/ P -

-16-



A being the mass number of the target. Then the matrix element MpW

can be written

: -y et AXp) cpr,
Mpw o< (Eg/%(/r) TK e {KClp *%-7“)6"' /&>

3 .gﬂ__ .
= /765(”‘) TIK e"/KA-r-/ r ecf/rdlr

A/ R .
- L [t o ek,

where

P
andf
/o A
/3 ——-——-———Aﬂ K )

¢B(r) is the single particle wave function of the tramsferred neutron.
In deriving (3.21), we have assumed that the residual nucleué consists
of the target nucleus plus one~neutron state. Thus, the inclusion of
the nuclear recoil effect changes the pion momentum K in eq. (3.19)
to Ak/(A+l) and multiplies the transition matrix elements with a
factor (A+1)/A .
Similarly the matrix element MDw in the distorted wave approximation

is given by
A+l v [ 7
Mpw o< (7_—) / fa(l”—-lk/)W'/k’ﬁr ('%f_/"k/j #(’jdk/d@/ (3.22)

o~
where ¢B’ ¢ﬂ and ¢p are the momentum-space wave functions of the

-17-



bound neutron, emitted pion and the incident proton, respectively.
The effect of the nuclear recoil is then easily taken into account by
modifying the pion momentum effectively. The numerical evaluation of

the nuclear recoil effect is given in section 6.

-18-



4. Optical potentials for proton and pion

As was discussed in section 2, the distortion of the pion and
the proton wave functions is expected to give a significant change
of the (p, ﬂ+) cross section. In order to evaluate this effect, we
first determine the optical potentialé which represent the nuclear

interactions with these particles.

4.A, Optical potential for proton
The experiment of the elastic scattering of the 180 MeV proton

18,19

on light nuclei was performed by Johansson et al. ).. They analysed

their data by adopting the following optical potential phenomenologically,

Ve = UFXn + cw falr)

L) afeld oy dSnlr) / L go (s
*./:“uj ZFZZ§¢1,- + s ar r Lo, J
Here, I is the pion mass, and £ and @ are the operators for the orbital

angular momentum and spin of the proton, respectively. The Woods-

Saxon type nuclear form factors fi(r) are adopted

fier = '/ [+ exp( *;‘.”")] (4. z)

where a, are diffusenesses and Ri the nuclear radii. Johansson et al.
made a parameter search of the best fit with the data of 180 MeV

elastic-scattering cross section and the polarization of the 173 and 155 MeV

20’21), . The parameters U, W, US, WS, R, and a, for 12C are

brbtbns i i

listed in Table I.

-~19-



4.B. Optical potential for pion

The optical potential for the pion is in principle derived from
the multiple scattering theory with the data of the pion-nucleus
scattering. We shortly review the derivation of the original pion-
nucleus Kisslinger—potenti316’7’22_28)-

The pion-nucleus transition matrix TﬂN(E) is expressed in terms

of the pion-nucleon scattering amplitude t. and the Hamiltonian of

N
the target nucleus HN. The integral equation for the operator T“N(E)
is
lan(E) = 2 v t2 v G(E) 7;,-,‘/([-:)) (#.3)
¢ [
where many-body Green function G(E) is given by
£ = /
T () (. %)

The vy is the pion-nucleon potential and K“ the kinetic energy operator

for the pion. The free pion-nucleon scattering amplitude toN satisfies

Kanw(c) = V¢ + U; Gy (E) Taw (<) (% &)
2

and

G (E) = ! (4.6)
E—-Kyr —KntcE

where KN is the kinetic energy operator of the nucleon.

-20-



Because the t-matrix is directly connected to the pion-nucleon
experimental data but not the potential Vi, We eliminate the pion-
nucleon potential Vi in eqs. (4.3) and (4.5). For this sake, we-

introduce the " bound " collision matrix Ti(E) as

THHE) = U + ve GUE) T;(E) . (7.7

The operator Ti(E) describes the scattering of the pion by the i-th
nucleon in the nucleus and is related to the free pion-nucleon scattering

ix t .
matrix t . as

T(E) = Lanli) + Fan(i) (GE)— Gyw)) z‘\(z)} (%5)

where w is the total energy in the pion-nucleon CM system. Then
the pion-nucleus scattering amplitude TﬂN(E) is expanded by the

" bound " collision matrix Ti(E) as

TonlE) =2 7¢ Tg_,‘c‘-frlz)g- félz“-q—/gjz;'[]-(ﬁ) T oo (4 9)
A [4 9‘ ety -
Jd+k

The eq. (4.9) has a simple physical meaning. The first term represents
the pion-nucleon scattering in the nucleus and the folloﬁlng terms
represent the multiple scattering series of the pion in the nuclear
medium. Thus the pion-nucleus scattering matrix T#N(E) is formally

related to the free pion-nucleon transition matrix tﬂ It is hard,

N‘
however, to use eqs. (4.8) and (4.9) without any approximation in the

actual calculations, because of the complexity of the many-body

-21-



Green function G(E) involved. 1In order to study the elastic scattering

of the pion, we define the pion optical potential Vﬁ as,

Ko/ Tup (EDI0OD = Vg + Vg (0/¢(Ej/a>(o/7;,\/(£)(0)} (#.70)

where |0) stands for the nuclear ground state,and optical potential-V1T

is the function of the pion coordinate only. Once the optical potential

Vﬂ is known, it is sufficient for us to solve the one body Klein-Gordon
equation and the exact answer of the elastic scattering can be obtained.

To obtain the optical potential'V,’T we make the following two approximations.

(i) Coherent approximation
In the multiple scattering series (4.9), we take only the ground
state for the intermediate states,

<o/ Tan 102 = (o/‘Zr;M) f%, €0/ T:10)€0/ GE)102€0/T; Jo) + ++~°

= ALolt,/0) + ALalT,/0) (0/57(52/0)(—’%:!-(0/7}”/0))
(% 77)

and.eq. (4.11) can be rewritten as,

A—
A

L (olTinlod> = (A—-1)0/T, /0>

o+ (A—1)<0lT, 10>/ G(E) [0) (A?i (a/7?w/0>),

(%./2)

The factor A in eq. (4.£1) is g consequence of the antisymmetrization
of the nuclear wave function. Then the optical potential V1r is given
by

-2



Vo = (A-1)<o/T, /0> (%.73)
(ii) Impulse approximation

We neglect the binding effects for nucleons. The " bound "
collision matrix T is replaced épproximately by free pion-nucleon

t-matrix tﬁ

N The optical potential is then given by,

Ve = (A—=1) <o/Zwnw /o> (%. 1%)

Under these assumptions, the optical potential is determined by the
gross properties of the nucleus, like density, and is independent
on the detailed dynamics of the target nucleus. The optical potential

under the above two assumptions can explicitly be written as

KTV I K> = (A=1)20_ /d/?.’dl’/(lk’,’”':,;/P'"'J/'"c//,twlkM.z,’/Pms me?

e, Ms
e’ ms” x F(pmiml ; pmsme) (¢.75)
where

10,7 . = — 3k
F(pnsme ; pmgme) ) _ dfe APy & (PMml ) o ms, ey, 5 Patrsy e, )
sy My
L, o
z " 20('?”5”’(/%”-”:’”&; “"}7’?4’"5,4”(,4) (9‘. /6)

Here ¥, is the ground-state wave function of the target nucleus,
m is the spin projection of the nucleon, and m; and m, are the
isospin projection of the nucleon and the pion, respectively.

The eq. (4.15) is further simplified by factorizing out the tﬂN—matrix

at the some averaged nucleon momentum Py- Considering the momentum

conserving delta function in the toymatrix

N
KKAVaIKkY =2 Ckme, By~ § mimd |yl K iz, Po #1512 )

x /"J"'J/Mc,,' mgme ( g Y (#.717)

~23-



where

ﬁm;,;n,_’-,'m,nt (%) = /F(P"g ”7;,'"{: ; P ’”S”’C) df (’6‘» /?)
and
9 = wik |

For the nucleus of the spin zero, and for the positive pion, the eq.

(4.17) simplifies to

KN Vg lK> = K5 P-4 me|t,/ Ik, Fpme) )0/3)./2.7)3 (#.79)

and
- gD
P(%) = ¢2m)™3 g_ /e‘g’ Son () i
T
where t, is the spin-nonflip part of the pion-nucleon t-matrix and

1
E«W) is the nucleon-density function. In eq. (4.19) the tl—matrix

represents the power of the pion-nucleon scattering and §(%) the
probability of the nucleus to remain in the ground state after the
collision. Thé‘spin non-flip part of the pion-nucleon t-matrix can
generally be expressed in the pion-nucleon CM system aszz),

247 2l
KX () 1> = Z[/(ﬂ /)———Z-*—f——/ + IZ___Z‘_‘_L }

’z
t /2

+{(a+/) LR zl"*—;ﬂ;} H’]B(w&)} (%.27)

where X and w are the momentum of the pion,and the total energy of
the plon and the nucleon in the pion-nucleon CM system. [ and T
are the pion and the nucleon isospin operators. The symbol 2+
represents the total angular momentum j = £+1/2 and the superscript
of ty, represents the isospin of the pion—nucleon eigenchannel.

The t:ﬁatrix in eq. (4.21) is related to the pion-nucleon scattering

phase shifts by
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/! Em <)+ En 00 ¢ d,
Aoy = —=—— 5= e 4t s; ’ (#.22)
where
‘ Eﬂ(k} = Kz.f-'ﬁ(z 5
and ‘ _ C¥. 23)

En(r) = [ X3+ mp .

In order to calculate the optical potential by the phase shifts,
it is necessary to transform the t-matrix in the pion-nucleon CM
system to the one in the pion-nucleus CM system. Assuming the nucleon

at rest in the pion-nucleus CM system ( Py = 0 ), we have

K Zgp (E) [kD> = U x| Lgp(w) /XD , (% 2 %)
where
- =/ Ep(x) En(k) En (R0 Entxl) e En)Enlk) (4. 26)
E/T(k) En (#7) En (0D Ei (0) F”(k)mf

In the low enéfgy region that we are concerned, the s and p-wave
interactions dominate. Retaining only the s and p-wave parts in eq.
(4.21), we finally obtain the pion optical potential of the form,

2E, CRTValER)IK> = —bo ks PCB) T b, P(3) kK’ (4.26)

where

fig) =t [ €3 Py ar (4.27)

and _
Ep =Vk+pu*

Here, ?“713 the nuclear density, normalized to the nucleon number A.

The potential parameters b0 and b1 are given by the pion-nucleon phase

shifts as,

by = 2% T [ L s+ 200) + (A-NDols T | (Aar) (% 28)

Kox? J
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[

+ (A‘N)(-Z o33 'f'O/_?/)]} (a’27127) (9‘- 27)

.‘/:

where o, = eiaisin& , and N is the neutron number of the target nucleus.
In deriving the eq. (4.26) we have implicitly - assumed that the off-
shell extrapolation of the p-wave interaction is of the form KK’ and

have neglected the possible effects of the scattering angle tfansformation

29
between the pion-nucleon and the pion-nucleus CM system»ls’ ).

7
This potential (4.26), originally derived by Kisslinger ), is widely
applied to the analysis of the pion-nucleus elastic scattering.

Usually, the parameters bo and b1 in eq. (4.26) are treated as free

parameters., Only the parametrization of the type (4.26) is assumed.
Several ‘authors have analysed the data of elastic scattering by
adopting the potential (4.26) and assuming the bo and b1 as free

parameters, and obtained the best fit parameters b0 and b1 for the

available data. The best fit values for the low energy W+—1ZC elastic

31

scattering by Auerbach et a1.28), Marshall et’a1.30) and Amann et al.” "),

are shown in Figs. 3 and 4 with the theoretical values predicted by
eqs. (4.28) and (4.29). The pion-nucleon phase shifts are taken from
the work of Roper et al.32). In general, the best fit parameters are

not so different from the theoretical parameters. But RebO is an

exception. Especially, at low energy ( 1"5;60 MeV ), the discrepancies
between the best fit and the theoretical values are remarkable.

Energy dependences of the parameters b0 and b1 are qualitatively
understood by the low-energy behavior of the phase shifts 62ﬁ~k22+1.
9 _
Reb_~1/k
eby /

Imbo—le/k

Reblf» constant
Imblrv k3
-26—
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In fact, the calculated values by pion-nucleon phase shifts in Figs.

3 and 4 show the energy dependences in eq. (4.30), except Rebo.

The unexpected behavior of the Reb, is the consequence that the low-

0
energy s-wave pion—nucleon interaction is dominated by the isovector
type and the isoscalar interaction is very small. Therefore the Reb0
for the isospin-zero nucleus is almost cancelled and then the multiple
scattering or the in medium corrections might be important. These are

considered to be the reason for the discrepancies seen in Reb, of Fig.3.

0
This will be discussed in detail in section 6.
The Kisslinger—potential in eq. (4.26) has the following non-local

character in the coordinate space.

2ExVar) = — bk, Pcr) + b, VPV (£330
The Klein-Gordon equation for the radial wave function for 2-th partial

wave is then33)

200y, hot bokofln ~ZEn V.
i /" /- bf(rjd" /D()ﬂl" r= 7 J— 6. P _]}/’ =0 (%.32)
Here Vc is the Coulomb potential. For the nuclear density f(r), we

adopt the following form for 12C,

. gl
Py = L2 Y £ * - (%)
Pw ~itarsnieT L /7 w(4+)" ] € . (432)
In the harmonic oscillator model w = 4/3 and the b is determined
By the experiment of the electron scattering as b = 1.64 fm for'120,3453§).

In order to see the effects of the interior of the nuclear density,
we choose the parameters w =1 and ‘b = 1.72 fm, which.simulate.the
Fermi-type density distribution. Ihe ?}n} is shown in Fig.5.

So far we have assumed the off-shell extrapolation for the p-wave
part of the Kisslinger-potential to be the form KK/. Since the factor
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KiK' is divergent far off the energy shell ( |kl % |k'| ), it may be an
overestimation of the off-shell interaction. The elastic scattering

is , however, not so sensitive to the off-shell behavior of the pion
optical potential. And this is the reason why the parametrization of
the original Kisslingér—poténtial succeeded in the analysis of the pion
elastic scattering. On the other hand, the off-shell part in the pion
optical potential is expected to be substantially important for the

(p, ﬂ+) reaction. ( See the discussion in section 2. ) For these

reasons, we make a modification for eq. (4.26) as follows :

2F 0 KK Vir (ExdlIK> = —bo k) P(%) + b, P(F) F(K) K IKGKY (4. 3%)

Here, g(k) is the pion-nucleon vertex function, which is ‘analogous to-
the nucleon form factor in the Chew-Low theory, and improves the off-
shell behavior of the p-wave part optical potential. It is normalized

to one, on the energy shell,

}(/(o} =/ (4 25
Phenomenologically we have adopted the Gaussian-type for the vertex
function .

2
Ky —4*
Fk) = e A* (¢ 36)

where A is the cut- off mass.

We have calculated the pion elastic-scattering cross section on
120 by the potential (4.34) to see the cut-off mass or the nuclear
form-factor dependences. The parameters b0 and b1 are shown in Table II.
The Set I is the best fit value to the 30.2 MeV pion elastic scattering
on l2C30), and Set II is the theoretical value calculated by the pion-

nucleon phase shifts using the eqs. (4.28) and (4.29). The results are

shown in Fig.6. The curve a is the calculated cross section for 34.3 MeV
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elastic scattering with Coulomb interaction. The experimental values

for 30.2 MeV are by Marshall et al.30), and for 31.5 MeV by Kane36)

When tﬁé cut-off function g(k) is employed, it is necessary to solve

the Klein~Gordon equation in momentum space and then we have neglected
the Coulomb force. The curves b and-¢ (d and e ) show the calculated
cross section without the Coulomb interaction for several cut-off masses
and the nuclear form factor w = 4/3 and b = 1.64 (w=1and b = 1.72 ).
Since the Coulomb interaction is neglected, the results can not be
directly compared with the experimental data, but we can see immediately
that the cut-off mass or the nucleaf form factor dependences are very
small or even negligible. Therefore the off-shell behavior of the

pion potential is difficult to study from the elastic scattering.

In other words, the optical potential (4.34) is still ambiguous in the
off-shell part. For comparison, we have shown in Fig. 6, the calculated
cross. section by the potential Set II (curve f ). The failure of this

first-order potential is obvious.
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5., Distorted waves of proton and pion

In order to evaluate the (p, ﬂ+) reaction cross section with
the formalism in section 3, we have to obtain the distorted waves of
the incident proton and the emitted pion. In this section we describe

the numerical methods to obtain the distorted waves.

5.A. Distorted wave of proton
The distorted wave of the proton is obtained by solving the
Schrdinger equation numerically. The differential equation for the

radial part uz(r)/r of the 2-th partial wave is

. I/IH
{sz 4,«1 J }uﬁm = 0 s. 7

Here m_ and T_ are the mass and kinetic energy of the proton,
respectively, and Vp(r) is the proton optical potential given in
section 4. We solve eq. (5.1) under the outgoing-wave boundary

condition, where the asymptotic form of u£(+)(r) is given by,

Uy rr) >/-’?PI e %2 5, (pr+ do — £7.) . (£.2)
r— o0

Here 62 is the phase shift of the 2-th partial wave. In the calculation
of the (p, ﬂ+) reaction cross section, the Coulomb interaction is
neglected because the energy of the incident proton is high enough.

We adopt the standard Runge-Kutta method with 720 points to solve the

eq. (5.1) numerically.

-30-



5.B. Distorted wave of pion

The numerical procedure to obtain the pion distorted wave
function in the coordinate space is almost the same as that for the
proton wave function. The Klein-Gordon equation in the coordinate

space is given by

(—W*+ p2=Ex ) buyor) = —2E; Ve $, (1), .3)

If the original Kisslinger—-type optical potential or the local
potential is applied, the eq. (5.3) is nothing but a ordinary
differential equafion. But as was mentioned in section 4, the optical
potential V; that we are going to study is far from the local one

and it is mecessary to solve the eq. (5.3) in the momentum space,

We define the pion wave function in the momentum space as

-3 ., '
P, (k) = (277) /’_/e LR I (S

The wave function ¢me) satisfies the following integral equation.

(K*- Kz2) ?S,Ka(/x) = —=2Er | <K/Vir [K> 7%(0(/7(/) ax’ (5.5

The normalization of the wave function is chosen to be the momentum

delta function as,

_/75,«: (K) %k,’(k) dK = J(/m—//?o/) N $.4)

To reduce the number of variables, we perform the multipole expansion
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of the wave function and the optical potential as follows.

Pro(K) = z B0 Yo (RodYom ® (s.7)
, K ¥ A '
%Ka r) = 541 7/’2 o/r/ )}m (///ﬁ'\o))/,?m(/r/ p ’s.8)
K/ Vg lk’> =3 K/ v k> Yom (/?) )27;(1?/} . (S, 5D
Lm

The radial wave fuctions ¢E°(r) in the coordinate space and ¢;'(k)
in the momentum space are related to each other by the integral -

transformation as

(r/ = /—/ a‘g (1) 7‘1 k) kck ($-70)

where‘jz(kr) is "the spherical Bessel function. The original equation

(5.5) is reduced to the integral equation in one variable.

oo

(2~ pZ) ;élk’(k} = -——.2.Eyra<k/l/1/ﬁ/? ﬁé?k/)k’;k/ (.77

The equation (5.11) can be solved numerically in an analogous way
as in the continuum shell model calculations37)ﬁ The solution of the
eq. (5.11) has the singularity on the energy shell ( k =k, ) and

its general form is éiven by,

_ B ]

P = = LASGE—k3)+ P g (5. /2)
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For convinience, we have chosen the principal part of the integral
for the second term of the above equation. The structure of the

singularity in eq. (5.12) determines the asymptotic behavior of the

wave function in the coordinate space. In fact, it is given by,

A N ! [z . —[ﬁ%*—'%%
%,2 cr) rF w’ z;‘ko,—/_ﬁ‘[(A—an(ka))e

. _ L _
— (A+LTB&))e Slhor— 73 )] . ($.73)

Substituting eq. (5.12) into eq. (5.11) we have

_B(K) == E,r </?/V£/A'o> ‘ /4 ko
oQ P 2
+2£rr/ WVl <kIVEIED Bl b7 ak” ($. /%)
. 0 %

This is numerically solved by replacing the integral to the discrete
sum. The eq. (5.14), then, reduces to the algebraic equation.

To carry out this procedure, the principal part of the integral in
eq. (5.14) must be handled carefully. In general, the principal

part of the integral

6Lﬂéo Vs
7 = P/ Ak (& 18D

¢an be separated into two terms. ( a(k) is the arbitrary function

without singularity. )

kmﬁvx
—_ Alk) — AL QAlko) s/
I = '/0 /: ko Ao) ;/ -+ p/ k/ 2 ak (f./é)
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For the first term of which the integrand has no singularity, the
standard method of the numerical integration can be applied. The

principal part in the second integral can be easily performed and we

obtain,
— . Ake) ~AUR,) Bmox — b
I= 5 o ===+ Q) fn —o— ($.17)
¢ ¢ T ka ko
= Z_ O(- a/k[) .
; ‘ ke — k, + C - Alk,) (§./8)
where
_ Rpmon — oo . xX¢
R
The weighting factor for the i-th point in the numerical integration
is denoted as Q- The eq. (5.14) is written as

—Bck) = Eqb, T A+c Btho)] <t/vE/t,)

#25 X it <hrvPie By k]

k¢'2,__éoz . 20)

The variable k is-also ‘evaluated at each mesh point and we obtain the
coupled equation for B(ki) and A,

o
— Bko) = Z;n‘éa V?o.X’ A -ZZSTj; V%/ iZ?T:i;;’ é?z 5”%7) ($.2/).

—— M'
—~Blki) = EgloVis X F ZE/r% V“d‘ ’52# k;’ Bk;) (£.22)
where
X = A+ Bk) A ($.23)
and :
Voo = <kl VEIRD | ot (5. 24)

Finally, the algebraic equation that we must solve is given in the

matrix representation :
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: 1'( W ' 3
kz kz E 2
Vl" 4~ Ry b oAy '
j o+ Y vy 8ij 1 Vio|| 2B# e B 0
4 | Jd
! = ($.28)
i
1
[}
|
_________________ I | P S
' Vos (Voo )\ Ent,LAtCE] (~Blko))

In the eq. (5.25), the B(ko) is still undetermined and must be chosen
so as to satisfy the required boundary conditions. For the outgoing-

wave boundary conditions, we have

.24
A-imBlhs) =) £.26)

From eqs. (5.25) and (5.26), the pion wave function in the momentum

space can be completely determined. The phase shift ) for example,

2 >
can be obtained by
8 = <k U (A+iTBCk)) (£.27)
¢

In practice we have adopted the Simpson’s method of integration with
the upper limit of the integral kmax = 1 GeV and the 60 mesh points.
The calculated elastic-scattering cross sections are compared to the
results by the coordinate-space calculations and the agreement is
quite well.

To perform the above calculations, we need an explicit form for
the pion optical potential of each f-th wave. The optical potential

given in section 4 is

2Eq <Y VigIk) = —byk, P(3) + b, Pr§) Jk KKIGKD | (S.28)
where

Pcg) = (27)73 / are " per (.25
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The nuclear density adopted there for 120 is,

~ r)2 :
fen = = L1ew(£)] e (¥ (§.30)

7V [24 3w b7

The nuclear form factor Piq) is then given by,

Pee) = 77‘3[21-3;1/_7 [//+2‘N~—h/b (KK /

+ X = b /mx’] e"”‘//’( ~&7* ($.37)

Using the equation
& 2 __b_"kz ,2 6% v
e~ Rlk-i1* = o~ F (R T, o KK

b3 ,2 2 o0
S A T SNy
=e7% ,2{0(2“’)‘! (2kK)R (cos6) , ($.32)

we can perform the partial wave decomposition of the pion optical
potential. Here, the iz(bzkk'/2) is the modified spherical Bessel

function. For the 2-th multipole, we obtain

2
- —f“ kZ+k’?)

2E, <k/viass = T

x [._1,0 k22 r3w— L%y F479) L) + Wb k4 Q}/(y)}
~é,;/k)<?(k9/(z+3w— Yhock% 479) hb’15 (3) wh(447)°L /;/}] (s, 33)

where
&=L sk (£.3%)
When k or k' becomes large, the potential behaves as ( without the cut-
off factor g(k) ) '
Py ~E k=) |
bzk-kle-—(é-hé /A kj_;/___;: e ¥ (. . (5. 38)
In the domain kAs k' the interaction rapidly falls off,while k ~ k'

the interaction do not damp even when k and k' are very large.

-36-



But this does not cause any trouble in the numerical calculation,
because the area where k ~ k' is very small in the whole domain of the

momentum space.
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6. Results and discussions

In this section, we give the results of the numerical calculations
of the 12C(p, ﬂ+)l3 C reaction cross section in the distorted wave
approximation. The pion and the proton distorted waves are calculated
by the methods described in section 5. For the low-lying states of 13c,
the neutron can be transferred to one specific single particle orbit.
The component of the residual nucleus with target nucleus plus one
neutron, contributes to the transition matrix element. In the distorted
wave approximation,therefore, the spectroscopic factor and the single
particle wave function are the model-dependent quantities.

For the single particle wave function of the transferred neutron,
we adopt the harmonic-oscillator type or the solution in the Woods-Saxon
potential. For the Woods-Saxon potential, the strength of the spin-orbit
force Uso= 6MeV, diffuseness a = 0.65fm and the nuclear radius R = 2.75fm
are fixed, and the depth of the central potential is adjusted to reproduce
the experimental single particle energies. Using the formula (3.15) in
section 3, we have calculated the (p, w+) reaction cross section. Because
the energy of the emitted pion is low (~ 35MeV ), the contributions from
the high partial wave can be neglected. We have taken into account the

partial waves up to £ = 7 for pion and all the proton partial waves that

are allowed by the angular-momentum selection rule. The convergence
of the calculated cross section is numerically checked.

First of all we have investigated the effect of the Coulomb interaction
in (p, ﬂ+} reaction cross section in the coordinate-space calculation

because we heglect it in the momentum space. The cuyrves a and b in Fig, 7

R 12 + 13
show the calculated cross section for ~“C(p, T ) ~C(ground state)
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reaction with and without the Coulomb interaction. Here the parameters
for the pion optical potential Set I in Table II are employed. As is
seen there, the repulsive Coulomb force reduces the (p, 1r+) reaction
cross section slightly in the foxrward direction, but is not so importépt
in the present analysis. Next, the effects of the proton distorted wave
ate_shown in Fig. .8. The curves a and b are the calculated cross section
for 12C(p, ﬂ+)l3C(3.09MeV;l/2+) reaction with and withouﬁ the distortion
of the proton wave. The effect of the proton disforted wave is to reduce
the absolute value of the cross section about an order of magnitude, but
the dependence to the potential parameters i$§. expected tc be small.
We have, therefore, fixed the parameters of the proton optical potential.
In order to see the effects of the pion distorted wave on (p, ﬂ#)
reaction, we have calculated the 12C(p, n+)l3C(ground state) reaction
cross section by the pion optical potential (4.34) with-the parameters
Set-I-in Table IT, "At first, we investigate the cut—éff mass A-dependence
of the cross section. 1In Fig.9, the curves a, b and ¢ show the results
with the cut-off masses A = w, 1GeV and 700MeV, respectively. By the off-
shell cut—off factor g(k), the cross section drastically reduces, and
it is in contrast to the results of the elastic scattering. The importance
of the effects of the pion optical potential, especially the off-shell
part , is obvious from these results. 'So far, we have assumed that the
pion nucleon vertex is»&escribed by ﬁhe coupliﬁg constént f. Because
the emission of the off-shell pion is important in the (p, ﬂ+) reaction,
we have cnnsidered the pion-nucleon vertex function v(kz) which is

normalized to one, on the energy shell,

Veks) =/ (6.1)
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and we have taken into account the vertex correction by replacing the

pion-nucleon coupling constant f as

f — fovEd ' t6.2)
Phenomenologically we have the Gaussian-type for v(kz)
Py . )
V(k*) = e-‘/\; (6. 3)

where the cut-off mass Av is assumed to be 700MeV. The curves d and e
in Fig. 9. are the results with nuclear recoil and the recoil plus vertex
corrections, respectively. (.The nuclear recoil correction.was-discussed
in section 3. ) As is seen there, these corrections reduce the cross
section about the factor 3, and are non-negligible. The curve f in the
same figure is the result by the first—order potential Set II. The
absolute value is about three order of magnitudes larger than the
experimental data. The failure of the first-order potential is obvious.
In order to see the importance of the off-shell part of the optical
potential in more detail, we have shown in Figs.10 and 11, the absolute

value of the pion optical potential IRe(k'IVQ(E“(kO))/k>lfor g =0

2

0

Set I are adopted, and the cut-off mass Ap-dependences are shown.

and 1, and k'="k,= 100MeV ( E (ko) = [k + uz ). Here, the parameters

As is seen there, the cut-off procedure greatly reduces the off-shell
interaction, especially far off the energy shell. 1In order to see the
off-shell effects on the pion wave function we have shown in Figs. 12

and 13, the real part of the pion wave function in momentum space, Re¢§?k),
for g = 0 and 1, respectively. The curves a and b are the results with
off~ghell cut-off masses j = & and 700MeV, respectively. From these
figures we can understand that the strong cut-off mass A-dependence

of the (p, ﬂ+) reaction cross section is due to the behavior of the
high-momentum parts of the piom wave function. It should be noticed

that the pion wave function neighbouring on the energy shell is scarcely
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affected by the off-shell cut-off procedure, namely the elastic-scattering
cross section is insensitive to the off-shell part of the ﬁotential.
As to the first-order optical potential, the pion wave function c¢ by
potential Set 1I, in Figs. 12 and 13, has a very large high-momentum
component which greatly enhances the (p, n+) reaction cross section.
This is due to theé strong p-wave nature of the potential Set II.
This property of the first_order optical potential is also seen in the
coordinate space wave function. Figs.l4 and 15 show the pion wave
function in coordinate space, for § = 0 and 1, respectivgly. The curves
A and B are the results with the potential Set I and II, respectively.
The p-wave dominance of the potential Set II is reflected to the
behavior of the wave function B, especially around the nuclear radius.
The best-fit potential to the elastic scattering ( Set I ) is more close
to the local potential, because of the large local s-wave term.

" ‘Thus, the absolute Qalue-éfrthé’(ﬁ, n+) reaction cross section
can be understood by the off-shell cut-off procedure in the Kisslinger-
potential. The angular distribution, however, is not well explained.
Because of the high-momentum transfer in the (p, n+) reaction, the
interior of the nuclear density distribution will be important. In the
modified Kisslinger-potential (4.34), we use the nuclear density (4.33)
with w = 1 and b = 1.72 which differ from the harmonic-oscillator model
mainly interior of the nucleus (see Fig.5). The calculated cross section
with the single parti;le wave function in the Woods-Saxon potential is
shown in Fig.l1l6. The curves a and b show thé results with cut-off masses
A = 1.5GeV and 700MeV, respectively. They are in a good agreement
with the experimental data. Here, the vertex and the nuclear recoil

corrections are included. The curve c by the first-order potential
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( Set ITI ) is evidently against the data.
Our calculations show that the absolute value of the reaction
. . 12 +.13 ’
cross section in T C(p, m ) “C(ground state) can be reproduced by
adjusting the cut-off mass A. We have checked whether the situation
is similar in the reaction leading to the low-lying excited state

of 13C. Figs.17 and 18 show the calculated cross section for 12C(p, ﬂ+)13C

(3.09Mev;1/2)  and Y2c(p, 7)1 3c(6.86Mev;5/2T) under different .-
assumptions. ( The transition leading to the 3.68MeV and 3.85MeV states
are not separately observed. ) As is seen in Figs.9, 16, 17 and 18,

an overall agreement with the experimental data on (p, ﬂ+) reactions

is obtained by choosing the cut-off mass, A~ 700-1000 MeV. Strictly
speaking, the calculated cross section must be multiplied by the
sﬁectroscopic factor, which is slightly less than unity for the- ground
and the first excited state of 13C. This does not, however, change the
present discussions.

In the reaction 12C(p, n+)l3C(6.86MeV;5/2+) ,however, the theoretical
values are about 10 times larger than the experimental data, when the
cut-off mass p = 1GeV is adopted ( Fig.1l8 ). Because the 6.86MeV level
has the dominant configuration of 1d5/2 or 251/2 particle coupled to
the collective 2+(4.43MeV) state of ;ZC, the probability of the 1d5/2
particle coupled to the 12C ground state is small and is estimated to be
about 0.2 by Miller13). If we include this factor, the absolute values
of thevcalpulated cross section agree with those of experiment. Very
recently, however, the theoretical investigation of 13C by Meder and
Purcell38) show that the configurations of the 281/2 andf.lclS/2 particles
coupled to the 2+ state of 12C are dominant, while the probability of

12

the 1d particle coupled to the ground state of ~“C is very small

5/2

49—



-3 ). If we admit their predictions, we encounter

( i.e. about 10
large discrepancies between the theory and experiment. Here we must
notice that, in this case, it will not be allowed to calculate the pion
productiqn by keeping only a very small matrix element of the neutron

transfer to 1d orbit. ’The neutton.frahsfér_ﬁb thejZSll' "and” 1d5/2-'

_ 5/2
. . 12
orbits coupled to the 2 state of "°C,

p+ C(2) '
p+ % = . T~ g+ 13

will dominate the exitation of 5/2+ level of 130. At present, it is

hard to draw a definite conclusion about the exitation of 5/2+ due to
the lack of reliable data on the spectroscopic factor of this level. :
The effects of the tWo—step processes to the ground and the first excited
state of 13C, are examined by Millerl3). He showed that these are
minor corrections to the cross section, although they are not negligibly
small.

There is another approach to‘the (p, f+) reaction without employing
the distorted waves. Dilllg et al.?g) have ‘studied the’ eFfects of 5
two-nucleon correlation in the framework of the Jastrow model. Grossman
et 31.40) have calculated the (p, o ) reaction cross section by explicitly
including the pion production by two nucleons. There approaéhes are related
to ours through the effects of distorted wave, but the‘detal;ed
correspondences are not clear. We shall not discuss them further.

| Finally we shall shortly discuss about the first—order Kisslinger-

potential. As was discussed in sections 5 and 6, the first-order
Kiéslingef—potential fails to explain both the elastic and the (p, n+)

reaction cross section. This is because the s-wave term is too small
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and then the potential is strongly p-wave nature. The reason of this is
that thg pion-nucleon s-wave scattering in the low energy is dominated

by the isovector type, while only the isoscalar part,contributes to the
first-order optical potential for isospin-~zero nucleus. On the other
hand, the best~fit potential to the élastic scattering has the strongly
repulsive s-wave term and is more close to the local potential. The
similar situation is also seen in the pion-nucleus scattéring length

aN in the isospin-zero nucleus. Under the impulse approximation,

the plon-nucleus scattering length for isospin-zero nucleus is calculated

from the pion-nucleon scattering lengths a., and a, (azT) as,

1

: a

¢ impulse) = A4 _ci,’g_z___a Cé. 5)
Using the experimental values of a; and a, by Bugg et al.al),

A, = o s 70L 0.060 % !

a; = —0.092 o002 u/ (é6.6)
we calculate the pion—lZC scattering length as

N
a (7/m /Ie = — —
impulse) 420.050’ =t 6.7

while the experimental value =~ ) is

a rexp.) = —0.33 2 0028 (6.8)

Here, the theoretical value is too small to explain the experimental
data.

Previously Moyer and Koltun43) have calculated the multiple
scattering corrections ( incoherent scattering and nucleon binding
corrections ) to the pion-nucleus scattering length, which can account
for the major portion of the above disagreement. Firstly, we show the
importance of the nucleon—Binding effects in a simple model-calculations,
according to the discussion by Hifner 6). The nucleon-binding correction
6t = T-t is calculated by

St = T-# = £(G —Go)T = 2(G-GoIE, (6.9
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where G and Go are the many body and the two body Green functions
given in section 4. Adopting the Fermi-gas model, we incorporate the

Pauli-effects by

@ (P -Pr)

2"1’

where p and k are the momenta of the nucleon and the pion, respectively.
The nuclear Fermi momentum is denoted as Py and the theta function
ensures that the excited nucleon is above the Fermi-~-surface. Further

the binding-energy correction of the nucleon is expressed as
/

E + Unlo) ~ Tow — (5 + Untrpl)
where Uﬁ(p) is the momentum-dependent nucleon potential and UN(O) is

S PK /S CGgltE2/PK > = (6.71)
the potential for the nucleon in the Fermi sea. We assume UN(p)ﬂ=0.

In the low—energy limit E = 0 we can easily calculate the nucleon-

binding corrections in eq. (6.9). Noting that in the low-energy limit

<k p] tnNJ k'p"™ = —57%Fa in each eigenchannel, the nucleon-binding

N . . . .
correction §a in the pion-nucleus scattering length is given by

~N 2
da = - —;—r-‘ALPF ( Pauld covvection ) (6. sz
and
Sar = —a* [on funwr) | (Binding emergy covvedion) ¢6./3/

Then the correction to the impulse approximation is written as

2 3
a
a.N(;m,u/:e) - A ——————a';z 2 [—,%—/; > ,/2/«'/1/,\//0)7‘7 . (6.745)

ay =
Assuming p_ = 250MeV and U_(0) = -50MeV, we get for 12C
F N 4
a” = —-—0., ¢ 2 ,u-l (6.15)

The results seem to overestimate the nucleon—binding'effects in such

a oversimplified model. By adding both of the above effects, some
double~counting arises. It is, however, important to recognize that

the second-order corrections in eqs. (6.12) and (6.13) are always negative.

The nucleon binding effects, therefore, are expected to enhance the
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repulsive character of the s-wave term in the Kisslinger-potential.
Because we are concerned with the pion optical potential for

kinetic energy about 30MeV, the incoherent scatterin corrections,

namely the virtual excitation of the nucleus, are expected to be large.

Especially, the excitation of the isospin T = 1 excited state, like

giant dipole resonance, by the ﬁion-nucleon isovector interaction

will be important. Thus the strong repulsive force in the s-wave

part of the Kisslinger potential, required to fit to the elastic

scattering, can be understood qualitatively as the multiple scattering

effects. As was shown in Figs.3 and 4, the first-order potential

becomes to be close to the best-fit ﬁotential for the elastic scattering,

with the increase of the pion energy. The s-wave part of the Kisslinger-

potential, the strong repulsive nature and its energy dependence;

is quite an interesting problem. The quantitative understanding of

them is still an-open problem.
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7. Summary and conclusions

In the present thesis, we have performed a phenomenological
analysis of the (p, ﬂ+) reaction cross section on 12C in the distorted
wave approximation. 1In the previous analyses of the (p,ﬁ+) reaction
with the original Kisslinger-type pion optical potential, the
calculated cross sections were one or two order of magnitudes too
large compared with the experimental data. The local potentials
also failed to explain the (p, ﬂ+) reaction and the picon elastic
scattering cross section consistently. The original Kisslinger-
potential, however, has beeﬁ succeeded to explain the pion elastic
scattering in various nuclei, and has been widely applied to the
analysis of the elastic or the inelasric scattering of the pion.
Therefore it is substantially important to investigate the reason
why the Kisslinger-potential fails in the (p, ﬂ+) reaction. We have
shown that the difficulty comes from the wrong off-shell behavior
of the p-wave part of the Kisslinger-potential, which strongly
enhances the high momentum component of the pion wave function.

This is the reason why the calculated cross section of (p, ﬂ+)

reaction was too large in the previous analysis. In order to improve
these points, we have adopted the Gaussian-type cut-off function to
reduce the off-shell: contribution of the'p—ﬁave pion-nucleon interaction
in the original Kissljnger—model. As aresult, a satisfactory agreement
with the experimental data on both of the elastic'scattering and the

(p, ﬂ+) reaction cross section is obtained by choosing the cut-off

mass A”700-1000 MeV. Thus, the (p, ﬂ+) reaction offers us the
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invaluable informations about the pion-nucleus interaction through
the final state interactions. A systematic analysis of the (p, ﬂ+)
reaction on different nuclei is desirable, but the experimental data
of elastic scéttering in low energy are not so rich except for 120,}
and the determination of the phenomenological pion optical potential
is difficult.

Apart from the (p, n+) reaction, the problem of the pion optical
potential at the low energy ( pion kinetic energy T" <70 MeV ) is not
understood quantitatively, as yet., The failure of the first-order
optical potential suggests the importance of the s-wave rescattering
effects in the nucleus, but the theoretical understanding of them is
insufficient. At present, the major interests about the pion-nucleus
interaction are concentrated on the (3,3) resonance region. However,
the much more efforts to. study the low energy pion-nucleus optical
potential are necessary for the thorough understanding of the pion-nucleus
interaction, It is, therefore; highly desirable to perform the

experiments of the low-energy pion-nucleus elastic scattering in

various nuclei.
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Table Captions

Table I. The best-fit parameters to the 185 MeV proton-
12C elastic scattering cross section by Johansson et al.lg).
Table II. The parameters for the 30.2 MeV pion—lzc Kisslinger-
potential. Set I is the best-fit wvalue to thé elastic
scattering cross section by Marshall et al.30). Set II
is the theoretical value given by the pion;nucleon phase

shifts which are taken from the work by Roper et a1.32).



Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Figure Captions

12C(p, 1?)13C reaction cross section. The solid line is the

calculated crbss section in the plane wave approximation.
The experimental values are taken from Dahlgren et al.l,).
Coordinates of the initial and the final systems in the

(r, ﬁf) reaction.

The parameter bo of the Kissli ger—-potential for 120.

The solid line is the theoretical value: calculated by the
pion-nucleon phase shifts by Roper et a1-32)- The dots are

the best fit parameters for the pion elastic scattering

on 12C, and are taken from the works of Auerbach et a1.28),

30 : 31
Marshall et al. ), and Amann et al.” ).

12

The parameters b, of the Kisslinger-potential for ~“C.

1
The solid line is the theoretical wvalue. calculated by the

32

pion-nucleon phase shifts by Roper et al.”"). The dots are

the best fit parameters for the pion elastic scattering

on 12C and are taken from the works of Auerbach et al.?S),

31);

The nuclear density for 12C. The curve A is calculated

: .. 30
Marshall et al. ), and Amann et al.

by the harmonic-oscillator model with b = 1.64, and curve B
by the parametérs w=1and b = 1,72'in eq. (4.33).

34.3 MeV pion elastic scattering crossAsection on‘lZC.

Curve a is qalculated with the Coulomb interaction by the
best-fit pion potential to 30.2 MeV elastic scattering

data ( Set I ). Curves b and ¢ ( d and e ) show the cut—off

mass A ~dependences of the elastic scattering cross section

with nuclear-density parameters w = 4/3 and b = 1.64 (w =1



and b = 1.72 ) in eq. (4.33). Here, the Coulomb interaction
is neglected. The curve f is calculated by using the first-—
order optical potential ( Set II ). The experimental data
30
are taken from Marshall et al. ) for 30.2 MeV data and Kane
36 '
) for 31.5 MeV data.

12 +.13 ) .

Fig. 7. c(p, ™ ). C(ground state) reaction cross section. Curves
a and b are calculated with and without the Coulomb interaction.
Here, the harmonic-oscillator model for the neutron bound

10
state is used. The experimental values are taken from ref. ).

Fig. 8. 12C(p, ﬂ+)13C(3.09 MeV:l/2+) reaction cross section. The
curves a and b are calculated with and without the effects
of distortion in the proton wave function. The harmonic-
oscillator model for the neutron bound state is used. The

10
experimental values are taken from ref. ).

Fig. 9. 12C(p, w+)13C(ground state) reaction cross section. Curves
a, b,and ¢ are calculated with the pion potential Set I
with off-shell cut-off masses A = ®, 1GeV and 700MeV, respectively
Curves d and e are the results with éut—off mass A = 700MeV
and also with the nuclear recoil and the nuclear recoil plus
pion-nucleon vertex corrections,respectively. The curve f is
foxr the pion potential Set II. Here the harmonic-oscillator
model to the neutron bound state-is adopted. The experimental
values are téken from ref.lo).

Fig.lo. The abSdluté value of the real part of pion optical potential

‘Eé(k'l Vz(Eﬂ(ko))‘ k>| for angular momentum £ = 0 and ko = k's=

100MeV. The parameters Set I is employed. Curves a, b and c

are calculated with off-shell cut-off masses A = », 1GeV and



Fig.11.

Fig.iZ.

Fig.13.

Fig.l1l4.

Fig.l15.

Fig.16.

Fig.17.

700MeV, respectively.

The absolute value of the real part of pion optical potential

IRe<k'] VZ(En(kO))] k)l for angular momentum £ = 1 and k, = k's=

0
100MeV. The others are the same as in Fig.l10.

Radial wave function of the pion, in the momentum space with
angular momentum £ = 0. Curves a and b are calculated by the
potential Set I with off-shell cut-off masses A = ©.and 700MeV,
respectively. The curve c is the result by the first-order
pion optical potential,

Radial wave function of the pilon, in the momentum space with
angular momentum % = 1., The others. are the same as.in Fig.1l2.
Radial wave function of the pion, in the coordinate space with
angular momentum £ = 0. Curves A and B are calculated by the
potential Set I and Set II, respectively.

Radial wave function of the pion, in the coordinate space with
angular momentum { = 17 Curves A and B are calculated by the
potential Set I and Set II, respectively.

lZC(p, ﬂ+)13C(ground state) reaction cross section. Curves

a and b are calculated by the pion potential Set I with

off-shell cut-off masses A = 1.5GeV and 700MeV, respectively.,

The parameters w = 1 and b = 1.72 for the nuclear density in

eq. (4.33) are used. ‘The neutron bound state is taken to be

the Woods-Saxon type. Curve c is for the pion potential Set II.

10).

The experimental values are taken from ref.

12C(p, n+)13C(3.09MeV;1/2+) reaction cross section. Curves

a and b are calculated by the pion potential Set I with



off-shell cut-off masses A = ® and 700MeV, respectively.
Curves ¢ and d are for the potential Set I with cut-off mass
A = 700MeV, and also with the nuclear recoil and nuclear recoil
plus pion-nucleon vertex corrections, respectively. The curve
f is for the potential Set II. In the above calculations,
the harmonic—osciliator model for the neutron bound state
is used. Curve e is the same as d but with nuclear-density
parameters w = 1 and b = 1.72 in eq. (4.33), and the Woods-
Saxon type for the neutron bound state. The experimental data
are taken from ref.lo).

Fig.18. .120(p, ﬂ+)l3C(6.86MeV;5/2+) reaction cross section. Curves
a, b and ¢ are calculated by the pion potential Set I with
off-shell cut-off masses A = ®, 1GeV and 700MeV, respectively.
Curve d is for the potential Set II, For the neutron bound-state
wave function, the harmonic-oscillator model is used. The

experimental data are taken from ref.lo).



Table I
U -16 MeV
W -10 MeV
U 2.5 MeV
'S
1 -1 MeV
s
a, *) 0.5 fm
i
Rl 2.29 fm
R2 3.07 fm
R3 2.29 fm
R4 3.07 fm
*¥) 1i=1-4
Table II
3 3
b0 ( fm® ) b1 ( fm* )

Set 1

Set 11

-4.41 + 0.14 1

-0.71 + 0.63 i

5.26 + 0.18 1

7.75 + 0.56 i
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