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                             Abstract

                                        '                                '                                                     12                                                       C is studied     Positive pion production by 185 MeV protons on
                                                   '
theoreticaily. We perform the phenomenologieal anaZysis of the

experimental data with the distorted wavd approximation. It is shown

                                                         '                                     .that the final state interaction, especially, the off-shell behavior

of the pion-nucleus optical potential is essential to understand this

particular process. in the previous calculations of 12c(p, T+)13c

     '           'reaction cross section, the theoretical yalues are an order of '

                                                            '
magnitude larger than the experimental data or more, when the

          '                           'Kisslinger-type pion-nucleus optieal potential is employed.. !g is

                                                       '                         .shown that this difficulty is due to the wrong off-shell behavior

of the Kisslinger-potential. We adopt here a Gaussian-type cut-off

function for reducing the off-shell contribution of the p-wave pion-

nucleus interaction in the Kisslinger--model. As a result, the•pion

elastic scattering and the i2c(p, r+ )13c reaetion cross section can

                                                               'be consistently explained. ' ' '
                                                                    '
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1. Introduction

     Pion induced nuclear reaetions have extensively investigated in

the low as well as the intermediate energies ( pion kinetic energy

.TT :S 300 MeV ) to determine the interaction of pion with nuclei and
                           '        'to clarify the nuclear structure with this interactionl-' S. ' lhese

reactions involve the pion capture, phenomena concerning the pionic

atom, elastic, ineiastie and eharge exchange reactions of pions by
                   '
cgmplex nuelei,etc. In these pion induced reactions, the excitation

of various modes of the nucleon or the nuclear motion is possible.

     Apart from the study of the nuciear structure, the investigation

of the pion-nucleus interaction itself is interesting. lrhere is a
                                           '                    ttstrong resonance in the pion-nueleon P33 chanhel with th'e' mass

mA = 1236 MeV, and the s and p-wave scatterings are dominant in the
                            '                                                                 '    'loW .9P.9..r..gy. r .. Be-g..e.yLs..g...of.....th...g.s.g.?.".g-h.-g p.l.o.T.}.r.n...ucleon interaction is quite

different from the nucleon-nueleon interaction, and these properties

are ' revealed in pion-nucleus interaetion. One of the main problems

in the low-energy pion7nucleus physias is the detemination of the

pion-nucleus optiaal potential.

     zn !gss, Kisslinger7) has proposed a pion--nueieits optical

potential which takes into account the s and p-wave character. of the,

low-energy pion-nucleon scattering. This seni-phenomenological

                    'potential has succeede.d to explain the low and intermediate-energy

pion-nucleus elastic scattering Å}n various nuclei.

     Recently, however, the following difficulty arises in the

theoretical analysis of the pion produetion reaction by 185 MeV
                                                 '                       'protons on nuelei.
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        p + ( A, Z ) --------> ( A+1, Z) + T+

Rost and Kunz8),and Keating and wills9) have calculated the cross

se' ction of this (p, T+) reaction on i2c in the distorted wave

                                                              '
approximation, and have shown that the theoretical values are

 an order of magnitude''larger or more., compared with the experimental data

10-12 ). They have used the phenomenological optical potential for ' '

                   '
the proton and the Kisslinger-type potential for the pion.

 lhe pararneters of these potentials are chosen so as to fit to the

respective elastic scatterings. The calculated cross sections are

shown to be strongly dependent upon the choice of the pion optieal

potential. Several modifications of the Kisslinger-potential are

tried, but the pion elastic scattering and the 12c(p, T'P)13c rea6t'ion

                                                                     9cross section can not be explained consistently.'                                                   Keating and Wills )

have eoncluded that the cause of the trouble would consist either

in the pion optical potential or in the distorted wave approximation
                                                        'itself. For these difficulties,Milier13)have reexamined the parameter

search for the Kisslinger-potential to fit the elastic seattering

                                                            'and the (p, lr+) reaction cross section. He obtained the potential-

                                                          '
parameters which ean fit to both of these experimental data. But his

     'parameters are quite different from the theoretical value which is
                                                                    '
given by the pion--nucleon phase shifts in the multiple scattering

theory. :t •,l' si hard, therefore, to aecept these parameters. Reeently,
i!tt' ner and phatak14) h5ve eaieulated the i2c(p, T+)i3c reaction cross

                                                            'section by the separable potential proposed by Landau et al.15'16). The

results are in a good agreement with the experimental data of the elastie

scattering and the (p, T+) reaction, but the parameters adopted for

the nuclear form factor'are too large. Because of these difficulties,
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there arises a doubt that the original parametrization of the Kisslinger-

potential might be wrong.

     The purpose of the present thesis is to investigate the ab6ve

mentioned theoretical difficulties in understanding the (p, T+) reaction'

cross section. The trouble comes from the partiauiar nature•of the
       '(p, "+) reaction. Zn (p, 1+) reaction, the momentum of the incident

proton is about p or 560 MeV/c in the er1 system of the proton and the

target nucleus, while for the pion k U'' 100 MeV/e. If we assume the

proton and the pion to be the free particles, the momentum of the

transferred neutron amounts to 460 MeVlc, which is far above t'ie nuclear

Fermi momentum. Since such a high-momentum eomponent is very small
                                                  '
in the nucieus, the cross section for this process is expected,to be

small. However,the proton and the pion are not free but interaet with

nucleus. They are described by the distorted waves and have various

momentum components. Tlie low-momentum neutrons can be transferred to
                                     t/
the nucleus if the highly off-shell pion is emitted at the pion-

nueleon vertex. IIherefore, the cross section of th,is (p, T+) reaction

is expected to be strongly dependent upon the momentum distribution

of the pion distorted wave` Thus the (p, Tr+) reaction eross seetion

is sensitive to the off-sheZl behavior of the pion-nueleus optical

potential. Xn eontrast with this, the elastic scattering is a!most

deterrhined by the on-shell part of the pion potential. Then it is

                      .
probable that the failure of the Kisslinger-potential in the calculation

of the (p, T+) reaetion is due to the wrong off-shell behavior of this

                '     Zn this thesis we give the general formula for the (p, z+) reaction

cross section by expanding the transition matrix elements into multipole
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series. In order to modify the off--shell behavior of the Kisslinger-

                                                '                                                              'type pion potential, we must deal with the non-loeal potential. '

Therefore we have obtained the pion wave funetion in,the momentum space
                             '                                              'by directly solving the integral equations. lhe effects of the nuclear

recoil, which are neglected in the previous calculations, are taken

into account by changing the pion' momentum effectively. . •

' We wilZ show that the off-shell extrapolation of the p--wave
                                   '
pion-nucleon interaction in the Kisslinger-potential is wrong.

                                                              '!ntroducing the phenomenological cut-off function, we have improved

the off•-shell behavior of the Kisslinger-potential.. This cut-o gf . .
procedure searcely affects the cross section of pion elastic scattering,

but appreciably reduces the absoZute value of the (p, r+) reaction

                                                                'cross sections. Thus we c.an explain the pion elastie scattering and

the 12c(p, T+)13c reaction cross section consistently. '

 '. In section 2, we describe the mechanism of the (p, T+) reaction

qualitatively, in order to clarify the problem involved. In section

3, the formulas for the differential cross seetion of the (p, "+)

                                         '
reaction are given, and the recoil correetion in the puclear matrix
                       '
e!ement is also studied. In section 4, we describe the proton and the
       '
pion optical potentials adopted in our calculations and. propose a
                                    '      '      'modification of the off•-shell extrapolation in the Kisslinger-potential.

The results of the numerical caZculations are given and are diseussed

                                                'in'seetion 6. !n section 7, we surmarize the results obtained in our
                 '                                 '      '
analysis. We adopt the natural units 'ff = c = 1 in this thesis throughout.
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2. Plane wave approximation

     !n this section we describe the (p, T+)reaqtion in the plane wave

approximation and give the qualitative argumgnts which are helpful to

clarify the prob!em involved. The interaction Hamiltonian of-the

pion--nueleon interaetign is assumed to be the pseudo-vector coupling and

                                            sit is given by in non-relativistic limit' as17)

                                /
       '

       ht- --- -v447i {/Y.fav rarsy.?(ÅëPrir7? Y.(/r2dtr (z.o

                                                                   '
where Åë( ]r) and tpN(n) are the pion and the nucleon field operators,
     'respectively. The f is the pion-nucleon couplirig constant (f2 = o.os3)

and V the pion mass. The spin and the isospin operators of the

nucleon are denoted as arand lE, respectively. The gradient operator

V. operates only on the pion coordinate. The (p, Tr+) reaction cross

                                    'section is then given by

                                                '      4a -- z7r t/flv. :ti.i "rEi.ER-Ef-grt21<flhtxle')!i rz.z2

                                       '        '                                                             t-where jflux is'the flux of the incident proton, lb the initial state
                                                         '
with proton and the target nucleus, and lf> the final state with the

emitted pion and the residual nucleus. The total energies of the

                       .                                             and E and E are thepion and the.proton are denoted by ET and E p, i f
same for the target and the residual nucleus. In eq. (2.2), the
                          '
sguare of the transition matrix is averaged over the initial state and

summed over the final state. We assume that the pion and the proton

are described by the plane wave. In the case of the spin-zero target

nucleus, the differential cross section for (p, T+) reaction is
                         '
                                -8-



given by,

       (iidka)pw =2!i{7Z-fEFk3(2z"/2/Frl21Z (z-.

            14(Z2 =/, tt2 (Zti 1?B(r?2ZdX (Z.e

                   tt
              Z = lv< -- 2/
                               e

Here, the target nucleus is assumed to be the closed shell, and the

       'residual nucleus consists of the closed core plus one nelitron state

with orbital and total angular moraenta Åíand I, respectively. Its
                                        '
radial wave function is denot.ed as RB(r). The jÅí(qr) is the

spherical Bessel function. The p and k are the mornenta of the

incident proton and the emitted pion, respectively. The cross section

is then direct-ly- propor•tional;o.the.Fourier-transform of the bound-

neutron wave funetion. In the (p, T+) reaction, the momentum q of

the transferred neutronis,especially large. Even when the pion is

emitted in the forward direction, q is about 460 MeV. The calculated

cross section of the 12c(p, z+)13c (ground state ) is shown in Fig. 1

                                              10with the experimental values by Dahlgren et al.,•). The result in

the plane wave approximation is smaller than the'experimental data ,

by an order of magnitude. This is due to the fact that the high-

                                   'momentum component ofr a nuelear single particle state is very small.
                                                         '                                                              '
     The importance of the initial or the final state interactions in

the (p, T+) reaction can be seen as follows. The nuclear forrn factor

F(q) in eq. (2.4) is replaced by .

3)

-2

-9-



       iCCL.77-*h ------->/PT"tc(k: ÅëR2(m7/ iL'(ne-iK//?dK'dmi rz.'s2

                                          ''tin the distorted wave approximation. Here, ÅëI:(k') and 41:(p') are the'

distorted waves of the.pion qnd the proton in the momentum space,

respectively. The nuclear form factor F(Ilk' - p'l) has the peak where

the momentum transfer 1lk' - rp'l ;E 250Mev. Therefore the behavior of

                   'the pion and the proton wave functions in this domain mainly determines

the above integral. rn other words,the high-momentum components in

the respective wave functions are important. As will be shown in

section 6, the effects of the pion distorted wave, especially, the

high--momentum component, are essential in understanding the (p, T+)

reaction cross section, and these are closeiy related to the off-shell •

behavior of the pion-nulceus optical potential. In momentum spaee,

the Klein-Gordon equation in the potential <nc'IV. (E.) llk"> is given by

                                      '
      (lk'Z-KVf4."rk'2 = e2 F./<K'/VnllSr2!IK'!> 95/Krik"7 d,<". rz.d2

    '                                                      'ln the Born approximation, the off-shen component Ilkl "f llk'l of the

pion wave function is proportional to

                                                                     '       9,.i`(pto oc '5k-lkt.lf"-(E,M"c).l/K>
                                                                    rz•7?

                             '                                  +Thus the cross section of the (p, T ) reaction is expected to be

sensitive to the off-shell behavior of the pion--nucleus.optical

potential.
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3. Formulation for the (p, T+) reaction cross section

     In this section, we formulate the (p, T+) reaction cross section

for the numerical calculations including the nuclear recoil effects.

3.A;- Kinematics

     First of all, we describe the kinematics of the reaetion, as follows.

We denote the four momenta of the incident proton, emitted pion,

                                   'target and the residual nucleus as P p, Pu, PT and PR, respectively.

The Lorentz--invariant variable s, which represents the square of the

total energy in the cu system of the proton and t;ie target nuc!eus, is

      S ==, (?p f2r?z

                                                                  (3. /?
        = (2n "2R?Z.

In the laboratory system, s is given by

      /S' ==(MN"ldp?;-21VN727 7 , (3•Z?
                     I

where mp and MN are the masses of the proton and the target nucleus,

respectively, and T the proton kinetic energy in the laboratory
                  p
system. The momenta of the incident proton p and the emitted pion

k in the proton or the pion-nucleus CM .system are given by

                      .                                                       '
      /m! ,. z(' g/r (-t!-tz4 4. !eZM ?Z-- t.22 72`, t3.3]

     rv ., l'f'(-i!LÅ}-IS=Zt!i'2>2-/z7i7Z, (,.g?

                         '
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                              *where y is the pion mass and MN the mass of the residual nucleus. In

the reaction i2c(p, T+)13c (ground state), the numerieai vaiues are

      2 = S6 !.s Mev
                                                                    (TJ?. ee'2
      k = Ze/t7 MeV
                            '

                  '
                                tt
3,.B. Cross section for the (p, 7r+) reaction

     !n this subsection we derive a formula for the differential cross

section of the (p, r+) reaction. We expand the initial and the final

state by the eigenstates of the total angular momentum. As was given

in section 2, the interaction Hamiltonian of the pion and the nucleon-is

           '
      JX7z == "v/va-,JEf; :'r f,s4!oti ((zr vul(•xPt",77 st).,x,et c7t/t-. rS• g2

It is necessary to evaluate the following transition matrix element.

                                                                '

      (f-/Hz!J> =(IKi-Z3(-2 1Hzltgpci"J 1. roibl> r3e77

Here, the initial state vectorllpo; Io!oz (+)> with the outgoing-wave

boundary condition is represented by the proton momentum p, spin

projection u, the spin Io and its projection roz of the target

nucleus. rf it is neces.sary the same symbol 1                                               represents the whole                                             o
set of the quantum numbers characterizing the target nucleus.

Similarly the final state vector lk; I Iz(-)> with the incoming-wave

boundary condition is specified by the pion momentum ik and the residual

                                              . These state vectorsnuclear state with spin ! and its projection 1

                                      'are normalized as follows:

                                 -12-



    <pta; zp ieixt2/r!a/.' io!i.gitD = i(m-m-7 8ca! 8glhiifs,4S 7 (3•.8?

                                                                   '    (/A'J Z ls (-2/IK i7' Z!ls' tel? = 6' ()e("!k') 57zz' irzgze!. .                                                                (3.P]

They are expanded in terms of the eigenstates of the parity and the

                                      'total angular momentum,

    /2er7'Zobgrv>=ttfibd"4".Xb*mRrf7ctZ..,.,.(2Rz`ptecrldl'pti2

                                         or.M
                                                           '                     ,                  ((fp Ze mdt' -oY7M2kM.clt2)7 ' (3./o7

    /fUJZiy('i> ==•2i,..l2ifXk*"b(fo(f.xrefiiji7M'o '

        ' r.-"1
                    Kk-M/.'hzr-7> . k.//?

Here,2p and jp are the orbital and the total angular momenta of the

proton, respectively, and YÅí m is the spherical harmomic. The state
                          ppvector with spin J and itsi projection M is denoted as lst{, c(+)> ,

and the c represents the channel index,

    C--- !.(71,d>,T.], - O.l2?
which specifies the' incident ehannel. In eq. (3.11), 2T is the

orbital angular momentum of the emitted pion and IJ'M'; ÅíT I(-)>

is the eigenstate of Ehe total angular momentum J' and its pr6jeetion

M'. The channel index (2T, ! ) represents the exit channels.

Substituting eqs. (3.10) and (3.11) into the transition matrix element

                           -13-



(3.7), we have

                              '
    <IK7 z ls lel 1 "- 1 2aJ Zp Zo zU7>

   :.:i• iii. ;G. "' "4'-2tr(2p t nnp a ldle ltd'?(d'p -a ,"d' 4g1 jrn)(ivi",.h/JTiv?

   Mtr- n7. lad> ij

       '        A /?RJ"./. (Pl /bl.a"y (7M .'.tfjrrel1fix1,lf17oto) . /j7.13L.)

Then the formula for the differential cross section of (p, u+)

reaction}on the target nueleus Zo to the sPeeifie residual nuclear

state I,can be derived from eqs. (3.l3) and (2.2) with the Racah

algebra as follows*): '
  '

  Ytz = z772 'jf;tkEMtt7 afiti]iiii2.2.,4C' 21-PffC'2rr/-?/('-]Z-rO-l

             -- 7-id> dip'
   (-2d'RW-`LJ7tcr/7 tif)'a71d;i7tt171&'7ueT7uan-7

                                         '
   (2p 2/oolzo2(emV7/mpILo? hz(dKld>-tRif 2! L7

   h/(v" 2nof-!2n/] ZL? h!(7d> or/t>1 j Zo L7

         '' <v- J2vZtvllflz 1/ 7.'ctt7) (a/i Glzl--211fixllJ;'c/lt7>*

                                       '
                                        '
             .

k) The reduced nuclear matrix element is defined for the tensor

operator :' JIM of rank J as <j 'm' l :. Jl!f lj m> =(j Jnh lj 'm') <'j ' ll :.J ll j> .
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where

    l7]=Z7t17 etc.
Here p and E p are the momentum and the total energy of th'e proton,

respective!y, and k and ET are the same for the piop. PL is the
                                                        '
Legendre polynomial. In the ease of the spin-zero .target nuqleus

                                                 '( Io =O ), eq. (3.14) is redueed to .

                                     '                           '
    ddrza == IZ-JEskE.Ez2p-Ivt,2Ti-•g6'kl--t

              '                '
          Zrv>7op'd7 zfe171e2/J7ttr7thij (2p,eR/ooILo712.,effloo/LD7

          ru (d>• 2R d>i•?R!J -2t L? k! (d)o l7 d;-S/.e.ii zL?

         (d> ; 27 Zt'-7 11 Hz !/ d> J c(t2) <d>iJln/Zt"7MIVz!1of>/.' cirt2, >i'k

                   '         PL Ito se2 k.ls2                     '
                           '
Due to the property of the Racah coefficient, the following selection

rules hold in eq. (3.15).

     /•ef7-.e2Sl .(. L --(-- 2ip t22/ . /.e. -.e,;/ --(L .(-- 2,. tl.1

                                                     '    le>-d)b!Z.<. Z- E$ d;.tdf.i. !dJ}7-thf-.`-z.`. d;..th . r3./d?

The transition matrix element in eq. (3.14) can be explicitly written

in the coordinate spac6s

    (J; 2vr zr-2 1/ n; /Z or J ert2 >
                                                      '  = {i. v!itlll;g < i.. i/ ."2.[',' z.t"F• Tge2 i/ i.r"cr.> /3./7L.)
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where

      :- .g."Z =•-MjliL ,7iE.i,- ,fill.>.l-2E' ar. v. spfl;r';'f'fri.(, ?.r./')'('m".) . t3.,,p)

 Here, zbE;,)i2T,r(r) is the radiai wave function of the pion in the

 channel (I'g", r' ). iche upper index ( 2T, I ) represents the channel

with' the autgoing wave. T(-') is' the isospin lowering operator for

 the nucleon. The initial wave funetion with total angular momentum

J is denoted as ÅëE+)J and Åëz is the wave function of the residual

nucleus.
                                    '

 3.C. Correction to the nuclear recoil -
                                                 '     !n the (p,vr+) reaction, the recoil energy of the target nueleus

is about 10 MeV for light nuclei. Therefore, the effect of the nuclear

center of mass motion in the transition matrix elemeat can not be

neglected. To study this effect, we first separate the internal and

the center of mass eoordinates of the target and the residual nucleus

explicitly, assuming the single particle model for the nucleus.

     rn the plane wave approximation, the transition amplitude Mpw

is synbolically written as

      Mp . oc < 2f 1 arAkc E"? -- xn) e-'IK (Z- -' X')al'ei"?(Zp -'utk)) lgi>7 (3 . 1 g?

where thi and tpf are the intrinsic wave functions of the target and

the residual nucleus, respectively. The )Åë p and )aTr are the coordinates

of the proton and pion, and asR and rcR, are for the target and the .

residual nucleus, respectively ( see Fig.2 ). Here)the coordinate

xR, is expressed by thenp anda[R as

    '      zRi = -IZ!liZfV!tlA/X , .. (3.zo?
                                                                   '
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A being the mass number of the target. Then the matrix element M
                                                                 pw

can be written '
                                                         '

     1"77al oe (y-,'19sur7 ar"reptV'"<(2CR-XL itZlil;f.4Z22ec'pm"12-i>

            = f-i711eev ap'IK e`'t'IK AA./ A"' e c'ieP/'d,r

           = `t?3ttZL/ f9B(try <7-K!e'tlKZiXe i"O"dto a2o

where

     lk == J2 --MR
                     7
 alt, of

     IK!=-"-A.,K.

ÅëB('ir) is the single particle wave function of the transferred neutron.

In deriving (3.21), we have assumed that the residual nucleus consists

of the target nucleus plus one-neutron state. Thus, the inclusion of

the nuclear recoil effect changes the pion momentum pt in eq. (3.19)

to AIk/(A+1) and multiplies the transition matrix elements with a

factor (A+1)/A .

     Similarly the matrix element MDw in the distorted wave approximation

is given by

    M.. .c (-tfli'iiL-•:i?2f i't7V2.c"p/./K/2<zT7/K!9e.r (Ltl}LLi-,,Ef!7 9f.rk,T7-dj"e/dzfi7p! (s.22.)

                        '

where arB, ÅëT and Åëp are the momentum-space wave functions of the

                              -17-



bound neutron, emitted pion and the incident proton, respectively.

The effeet of the nuclear recoil is then easily taken into aceount

modifying the pion momentum effectively. The numerieal evaluation

the nuclear recoil effect is given in section 6.

by

of

-18-



4. 0ptical potentials for proton and pion

    As was discussed in section 2, the distortion of the pion and

the proton wave functions is expected to give a signifieant change

of the (p, T+) cross section. rn order to evaluate this effect, we '

                                   'first determine the optical potentiais which represent the nuclear

                              .t                                        'interactions with these partieles. '

4.A. Optical potential for proton

     The experiment of the elastic seatteptng of the l80 MeV proton

on light nuclei was performed by Johansson et al.18'l9).. They analysed

                                                     'their data by. adopting the following optical potential phenomenologically,

       V(r2 = Uf, (rp " iwf2!r7

                 f/A--//Ju..d.ltigzMttnfsdL2StFe27l2a. (y.o

    '  'Here, v is the pion mass, and .9 and ar are the operators for the orbital

angular momentum and spin of the proton, respectively. The Woods-

Saxon type nuclear form factors fi(r) are adopted

        ft (r) = t/ t/t e4(2 (".lji,!g:-,.Rt ?7 xv. 2?

                                                                       '

where ai are diffusenesses and Ri the nuclear radii. Johansson et al.

made a parameter search of the best fit with the data of 180 MeV
                     .
elastic--scattering cros$ seetion and the polarization of the 173 and 155 MeV

'p- rotbns20'21). ,, rhe parameters u, w, us, ws, Ri and ai for l2c are

listed in Table l. ,                                                '
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4.B. Optical potential for pion

     The optical potential for the pion is in principle derived froni

the multipZe scattering theory with the data of the pion-nucleus

scattering. We shortly review the derivation of the original pton-

nucleus Kisslinger-potentia16,7,22-28). '
.

     The pion-nucleus transition matrix r7rN(E) is expressed in terms

of the pion-nucleon scattering amplitude tTN and the Handltonian of

the target nueleus HN. The integral equation for the operator TTN(E)

is

where

7-T7vts7 =

many--body

< r-(E7 =

z ar,
i

Green

.tZ
     i

function

      /

vTc'Cr(E7 7Tnv(E7
                   7

C(E) is given by

    E-Kn'HN+c'E .
                                'pion-nucleon potential and KT the

 The free pion-nucleon scattering

kinetie energy

amplitude t          asN

(Y. 3)

The

for

Vi is the

the pion.

(9.

 operator

satisfies

"?

rdnN (l7 = Vc' tv,• q, (E? thN (e'2 (-• 8)
2

and

GrotF2 = /

where KN is the

  E-Krr - KN tde

kinetic energy operator of

                --2O-

,

the nucleon.
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Because the t-matrix is direetly eonnected to the pion-nucleon

experimental data but not the potential vi, we eiiminate the pion-

nucleon potential vi in eqs. (4.3) and (4.5). For this sake, we':

introduce the " bound " collision matrix T.(E) as
                              -1

     ll!E2 =: 'Vv -t- zi7u q(E2ze(E?. (Y•72

The operator u(E) describes. the seattering of the pion by the i-th

nucieon in the nucieus and is related to the free pion-nucleon scattering

matrix t          . as.        TN

     Zt(E? = Z'nN (t'7 t- 1'-N (i7 (C '(E) - CZro (tu77 tc' (E7 7 (Y• S2

wh.er.g. .(A?...Is. the .g.g.ggl e4g.rey..ipLth.ei plqprnueleon CM system. Then

the pion-nue!eus scattering amplitude TTN(E) is expanded by the

" bound " collision matrix T.(E) as
                           i

    ITA/(E7=4T,' 't';, Te (7tE2td' t:21 ,a• q-tE7 Td' d7(E) lk "•••• (eF• 92

            A t4v efd .                               d' "k

The eq. (4.9) has a simple physical meaning. The first term represents

the pion-nucleon scattering in the nucleus and the foiloptng terms

represent the multiple. scattering series of the pion in the nuelear

medium. Thus the pion-nucleus scattering matrix Ttitw(E) is formally

related to the free pion-nucleon transition matrix tTN. Zt is hard,

however, to use eqs. (4.8) and (4.9) without any approximation in the

actual calculations, because of the complexity of the many-body
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Green function G(E) involved. In order to study the elastic scattering'
                                                                     '
of the pion, we define the pion optical potential Vit as,

   <ol7.,vrE?/o> : Vr7T -t- V7r <o/ijrE71p>(b/7TnivlE?10>. (Y.lo?
                                                          .                                           '
                         tt
where IO> stands for the nuclear ground stateiand optical potential-VT

                                            '
is the function of the pion coordinate only. Once the optical potential

VT is known, it is sufficient for us to solve the one body Klein--Gordon

equation and the exact answer'of the elastie scattering ean be obtained.

To obtain the opt. ical potential' VT we make the following two approximations.

(i) Coherent approximation

     Zn the multiple scattering series (4.9), we take only the ground

state for the intermediate states.,

    (ol77mvtlo> == (ol{.gzrt/o>tt.i(olTel4Xol(irre7/o><rolldT'/a,> -'•''' '

                = /} (piorp> fA (o!zt/p> <e/t r(E?!o2(/l2s':Li (ol-pt,vlo>2

                                                                 ty. /12

                        '
and eq. (4.11) can be rewritten as,

                             '    4'i-L! (p/7ptr)vlo> = !A-/)(o1Ttlo>

                - rA'-- /Xo!T, /p>(o!C7rE7 la> (W (o/7;nT7vlP>2>.

                                                                (". /z?

The faetor A in eq. (4.Yl) is a'consequence of the antisymnetrization
                       ,
of the nuclear wave funetion. Then the optieal potential VT is given

by
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    Vrr =(A-o (olt, lo> (y. /s?
                           '                               tt
(ii) Iurpulse approximation

     We neglect the binding effects fer nucleons. The " bound "

collision matrix Ti is replaced approximately by free pton-nucleen

tbmatrix tTN. The optieal potential is then given by,
 '                                   '                                           '
                                                '                   '     V7r = (A •- /2 <o/ZTT NIo> (-. 1-?
                                     .

Under these assuTrrptions, the optical potential .is determined by the

gross properties of the nucleus, like density, and is independent

on the deta"ed dynanics of the target nucleus. The optical potential

under the above. two assumptions can explicitly be written as

   (ic ii vT 1iK> = (A - 0Z : ./ldmde /( /K /mt'7' "p ;"J'ptci/ltw /K ldi .' m,ns mt >

                    '!,tc. ptS
                    ,nt', "s' a F(R /m.'m.i ,' pt ns mc? (Y. IS2
where '
   iC'("pitns!mc! J pmsmu) =F pt.2,E....,fdj?2•'"dMA ?oitjp/ms'hiEiArTzuts.mt,,">'i?An7sA,,frA?

                          "Ca"t"Ck                             " tp (2 MsWri h?7 ti7s!ir.7 ""J ptA ntsA tVcA? (Y. !6?

Here Ya is the ground-state wave function of the target nucleus,

                                   '
ms is the spin projection of the nucleon, and mT and ml are the

isospin projection of the nucleon and the pion, respectively.

The eq. (4.15) is further simplified by factorizing out the t                                                           -matrix                                                          rrN
at the some averaged nueleon momentum po. Considering the momentum

conserving delta function in the tTN-tnatrix

  <kZl vn llk> == i (/k 'ml7 veo-9 msimciltrwlt< mc.A?o Ms ldc>

                   "IPne,it",'.• ra...C$2 C". 17?
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where

                                                      '
                                  '    ,f?on,tm,t;", ., (g) = ./rFrhp-e n7,/ rai 7' Jep tn.m.) dapp c'v. m?

and

    2 =: i)AcL,o< .

For the nueleus of the spin zero, and for the positive pion, the eq.
                                                       '                                                        ' (4.17) simplifies to

    <Kil ll7r/IK> = <' IK!7 Ae --e ntck,11k. i'?o mr> 7C>l$2•fo77r23 (Yt197

and
                  '    P(22 = (2n? -3 i. fetg'"Rrv,.'.frrp dr

where tl is the spin-nonflip part of the pion-nueleon t-matrix and

  F.,(r) is the nucleon-density function. Zn eq. (4.19) the tl-matrix

represents the power of the pion-nueleon scattering and 9(%> the

                                                             'probability of the nucleus to remain in the ground state after the

collision. The spin non-flip part of the pion-nucleon t-matrix can
                                                      22generally be expressed in the pion-nucleon en system as ), •
    <PC/it, !w2 /jpc> = 4;; i :zrkv"o s.,!42tiftthZ.tlt . f2tili.t,,Z'.zl

                 ff(E./)jct&}:-st!lli.a-kZ"z"2ztksLE2ZtZ}Åë77pz(,,se2
                                                                  (". z12
                                                               7

where pc and co are the momentum of the pion,and the total energy of

thepion and the nucleon in the pion-nucleon CM system. T and 'U

are the pion and the nucleon isospin operators. Irhe symbol Åí+

represents the total anguZar momentum j-"= ÅíÅ}ll2 and the su-perseript '

of t2+ represents the isospin of the pion-nucleon eigenehannel.

The t-rdatrix in eq. (4.21) is related to the pion-nucleon scattering

                                          'phase shifts by
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   7           En (k? En (k!2 Ent (o2 E.rt (o)

In the iow energy region that we are eencerned

interactions doninate. Retaining only the

(4.21), we finally obtain the pion optical

   z E7n (/K ZI /v (ErrJ!IK) = -- bo fee2 10re?

                                    'where
   ,R( g2 = kT)'3/ed$r7No(av dm

and'
    Errr --- v'reE7"iA7 .

Here, 3S(r) is the nuclear density, normalized

The potential parameters bo and bl are given

shifts as, •
   be :'i"x. zr/- l' IL ror3.zor,?iF na-At2o!3]

                             '-25--

   it21 ` -"g "Jf- f".((."iÅí'.E(".) eiif2t s2.n 82i (-.2z?

where
                                   '    Etr(k7 `' vlT5?[;-i7T 7 '

    aFct (K2 =' )/3?i;7 Zp .

In order to calculate the optical potential by the phase shifts,

it is necessary to transform the t-matrix in the pion-nucleon CM

system to the one in the pion-nucleus CM system. Assuming the nucleon

at rest in the pion-nucleus CM system ( po = O ), we have

  <k'I Z2t (E2 /k> == 7t <Ki/ Jtkt(`o2 lx>, (V•Z92
where

      " Enrk2 ijrK-2 E7m(tc)Ent(tci7 tv Enlk?Fdilk?                       CY. 2S)
      Endk)mtp . .
   , the s and p-wave

s and p-wave parts in eq.

potential of the form,

't' J, P(e2 /K,-k'/ (".252

                  '

                       (s-. z 7L,)

                      '
  to the nucleon number A.

  by the pion-nucleon phase

            rofar2 (".zY2
        7



    b, = it-kKz 7f' l' fY(2a23Jtor3/ fgarts f2ev.(.2

                                                                '       .., f rA -!Y2(2 of33 tQt3,?77 (ol.1. .J? (t-. Z9)
where cti = ei6i sin6i , and N is the neutron number of Ehe target nucleus.

Zn derivÅ}ng the eq. (4.26) we have implicit!y- assumed that the off-

                          '                                    .shell extrapolation of the p--wave interaction is of the form tKIKiand
                                '       'have neglected the possible effects of the scattering angZe transformation
between the pion-nucleon and the pion-nucleus cM system.15'29). ,

                                                      7•This potential (4.26), originally derived by Kisslinger ),• is utdely

applied to the analysis of the pion-nucleus elastic scattering.
                                           '          'Usually, the paraneters bo and bl in eq. (4.26) are treated as free
             '                                         '
parameters. Only the parametrization of the type (4.26) is assumed.

     Several.'authors have analysed the data of elasLic scattering by
     '
adopting the potential (4.26) and assuming the bo and bl as free
    '                                                                'parameters, and obtained the best fit parameters bo and bl for the

available data. The best fit val'ues for the low energy T+--12c elastic ..

scattering by Auerbaeh et al.28), Marshan et a!.30) and Amann et al.31),

     '
are shown in Figs. 3 and 4 with the theoretical values predieted by
                     '
eqs. (4.28) and (4.29). The pion-nueleon phase shifts are taken from

the work of Roper et ai.32). rn generai, the best fit parameters are

                                           '  '
not so different from the theoretical parameters. But Rebo is an
                                   '                        'exc6ptipn. Especially, at low energy ( TTfS60 MeV ), the diserepancies

between the best fit and the theoretical values are remarkable.

Energy dependences of the parameters bo and bl are qualitatively

understood by the low-energy behavior of the phase shifts 62tvk22+l
r

                                        '     '' Reb tvl/k2 ' .                 o

              rmbo •v l/k .
              Reb t-v eonstant .. (Y•30)                 1
              zmb •-v k3
                 1                              -26-



Zn fact, the calculated values by pion-nucleon phase shifts in Figs.

3 and 4 show the energy dependences in eq. (4.30), except Rebo.

The unexpected behavior of the Rebo is the consequence that the low--

energy s-wave pion-nucieon interaction is dominated by the isoveetor

type and the isoscalar interaction is very small. Thereforg the Rebo

for the isospin-zero nueleus is aimost cancelled and then the multiple

scattering or the in medium corrections might be important. These are

considered to be the reason for the diserepancies seen in Rebo of Fige3.

lhis will be discussed in detaÅ}Z in section 6.

     The Kisslinger-potential in eq. (4.26) has the following non-local

character in the eoordinate space.

    2En vaar7 = -- b, k,2 i(r7 t b, I7J5rk7 g7 (y,s!?

The Klein-Gordon equation for the radial wave function for 2-th partial

wave is then33 )

  lt"r:'lvZ-'7:.afl?i;k,.,.-"-.1""(ri2.-".-2KW.k"2'belleo-2-P7i',7.v2,i,"V`72.=o.tg.3z2

                                                         NHere Vc is the Coulomb potential. For the nuclear density P(r), we

                           l2adopt the following form for                             c,

    f"'V(') = .y.tS'Z-..7b3 ('uwrSF7ZL7 e-!T"7Z. (g. w)

!n the harmonic oscillator model w = 473 and the b is deterrnined

b'y the experiment of the electron scattering as b = 1.64 fm for i' 2c.34'i''3'5).

                    -•!n order to see the effects of the interior of the nuclear density,
                                                    '
we choose the payameters w = 1 and Fb = 1.72 fm, which simulate the
                                    Ab. '
Fermi-type density distributÅ}on. The P(r) is shown in Fig.5.

     So far we have assumed the off-shell extrapolation for the p-wave

part of the Kisslinger-potential to be the form ptIKi. Since the factor
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tKtKt is divergent far off the energy shell ( itki N llk'l ), it may be an

overestimation of the off-sheZl interaction. The elastic scattering

is , however, not so sensitive to the off-shell behav'ior of the pion

optical potential. And this is the reason why the parametrization ef
                     '                           '                                     'the original Kisslinger-potential succeeded in the analysis of the pion

elastic scattering. On the other hand, the off-shell part in the pion

optical potential is expected to be substantially irmportant for the

(p, Tr+) reaction. ( See the discussion in section 2. ) For these

                    '                              'reasons, we make a modification for eq. (4.26) as follows :

                                                                         '
 ' ZE# <iifil VnrFrr711k> = -6o k.ZjP(l2 f b,P(227(k2 IKIk'!7(k!7 (Y•3S`)

       '
                                                            '
Here, g(k) is the pion--nucleon vertex function,- which is`analbgous to'

the nucleon form factor in the Chew-Low theory, and improves the off-

shell behavior of the p--wave part optical potential. It is normaiizeg

                                                      'to one, on the energy shell, '
     2rK.7=l '' '''(". JS?
          'Phenomenologically we have adopted the Gaussian-type for 'the vertex
                                           'function • .                          '                 ke2 '- k2

     je (K2 =e ptZi'E" . (-. 3KL)
                                     'whereAis the cut- off mass. '
     We have caZculated the pion elastic-scattering eross seetion on

12c by the potential (4.34) to see the cut-off mass or the nuclear

form-factor dependences. The parameters bo and bl are shown in Table Ir.

The Set r is the best fit value to the 30.2 MeV pion elastic scattering

on 12c30), and set zx is the theoretical value calculated by the pion-

nucleon phase shifts using the eqs. (4.28) and (4.29). The results are

shown in Fig.6. The curve a is-the calculated cross seetion for 34.3 MeV
         '
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elastic scattering with Coulomb interaction. The experimental values

for 30.2 Mev are by Marshall et al.30), and for 31.s Mev by Kane36).

when th/6 cut-off function g(k) is employed, it is necessary to soive

the Klein--Gordon equation in momentum space and then we have neglected

the Coulomb force. The curves b and-c (d and e) show the ealeulated

cross section without the Coulomb interaction for several cut-off masses

and the nuclear forrll factor w= 4/3 and b= !.64 (w -- 1 and b= 1.72 ).

Since the Coulomb interaetion is neglected, the results can not be '

direetly compared with the experimental data, but we can see irmediateiy

that the cut-off mass or the nuclear form factor dependenees are very

small or even negligible. Therefore the off-shell behavior of the
                                            '                                                    '
pion potentiai is difficult to study from the elastic scattering.

rn other words, the optical potential (4.34) is still ambiguous in the

off-shell part. For comparison, we have shown in Fig. 6, the calculated

cross section bY' the potential Set U (curve f).• The failure of this

first-order potential is obvious.
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5. Distorted waves of proton and pion

                                   '     in older to evaiuate the (p, u+) reaetion cross s.ection with

the formalism in section 3, we have to obtain the distorted waves of

the incident proton ana the enitted pien. In thÅ}s seetion we descrtbe
        '                       '                                  'the numerical methods to obtain the distorted waves.
                                  '

5.A. Distorted wave of proton
                                                              '
     The distorted wave of the proton is obtained by solving the

Sehr6dinger equation numericaily. The differential eguation for the

radial part uÅí(r)!r of the 2--th partial wave is

                      '
             '

    {lf.i21-td.Z,ftAt,'i77fyprv-72}aA(o=o. 'rs./2
                                                                 '
                                            '                '
Here mp and Tp are the mass and kinetie energy of the proton,

respectively, and V p(r) is the proton optical potential given in

section 4. We solve eq. (5.1) under the outgoing-wave boundary

condition, where the asymptotie form of u2(+) (r) is given by,

                   '                                          '                                                     '                        '                       '                          '                                       '                    '
     ecT)xr2 '-i:Tt;-zoo tEil il' ei62 si'n qxt j2 - 2.rr?. (J". z2

                        '        '        '                             '                                                   'Here 62 is the phase shift of the 2-th partial wave. In the caicu!ation

of the (p, T+) reaction cross section, the Coulomb interaction is

neglected because the energy of the ineident proton is htgh enough.

We adopt the standard Runge-Kutta method with 720 points to solve the

eq. (5.1) numerically. '
                                            '                '
                                              '
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5.B. Distorted wave of pion

     The numerical procedure to obtain the pion distorted wave

function in the eoordinate space is almost the same as that for the

proton wave function. The Klein-Gordon equation in the coordinate

space is given by

                                            '
    (-- ptZt ,tt2- FTZ? k.(m2 =: --2En Vrr 741K. (r? . (S'eJ)

If the original Kissiinger-type optical potential or the local

potential is applied, the eq. (5.3) is nothing but a ordinary
                 '
differential equation. But as was mentioned in section 4, the optical

potential Vu that we are going to study is far from the local one

and it is necessary to solve the eq. (5.3)"Å}n the momentum spaee.

We define the pion wave funetion in the momentum space as

     Y5/K. (-<7 = !z nJ' 3/21 e-i/K '" tet<. (m2 d/e" . ' (s'. "?

The wave function Åë",(as) satisfies the following integral equation.

     (PKZ- !2G(plZ) 95/K. (!K2 =' "ZETrrf(,Kll/r77' 1/Ki;> Åë/K. (A('2 d/kl. ('S-• S"'.)

The norrnalization of the wave function is chosen to be the momentum
                      .
delta funetion as,

    /j95,,,, (/K? 9e,r,,.i(k? dlk• : ,lr(/)e.-/1elir.,} . (S".6.)

To reduee the number of variables, we perform the multipole expansion
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of the wave function and the optical potential as follows.

     :95iK.(ro •= 2Z,. 9.ekO/r7k, )il; (""<o.))'rJ2nt (ij?? .
                                                               IS. 72

      St?K. av = Si.; •<"e fh2kOfr7 /?Xi c/k",.i7?rmtta"ty 7 k.,?)

                                         '
    <IKI V. 1!k!> =; (K!y21k!> 72. "".2 /2X; drA-7 .                                                               tS, 2?
                    2m

The radial wave fuctions iPJ5e(r) in the coordinate space and Åë2Ke(k)

in the momentum spaee are reiated to each other by the integral -

transformation as

                     op    Y2k"(r7=k"/. ti'p (kr2 t2kO(k?k2dk 7 (Y-i"?

where j2(kr) is'the spherical'Be"ssel function. The original equation

 (5.5) is reduced to the integral equation in one variable.

    t!k2-kp22 f2kO(k7 == '2En/.<cak1V21ki) 926 k2k/7kZ:ki !S". ii2

 '

The equation (5.11) can be solved numerically in an analogous way
as in the continuum sheu model calculations37' )-. Thd solutÅ}oh of the

eq. (5.11) has the singu.larity on the energy shell ( k =ko ) and

its general form is g' iven by,

     92k"rw == il; IA6rkZ-k.Z?+? "t\.27 . ' !s./z?
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For convinienee, we have chosen the principal part of the integral

for the second term of the above equation. The str,ucture of the

singularity in eq. (5.12) determines the asymptotie behavior of the

wave function in th,e coordinate spage. In fact, it is given by.

                              '    Y?2kO(ti '"-]1:.r:;.o2 -ziifa.rft'-'Zrna-i7rB(R.oept`'(ko""4ai!rri

                   -- c?4 +tnB(?o?)'e i(kok'- `il'!tY7 . ' rs. iJ)

                                       '                                 tt
                                                            '
                                                       'Substituting eq. (5.12) into eq. (5.ll) we have

    -'B(K2 == En <klY?/ko>'t4 k.

               '            tv2E"f, oo k.z--k2 <klV2/k-)6rki7k'2dk- . (s'. /y2

This is numerically solved by replacing the integral to the discrete

sum. The eq. (5.14), then, reduces to the algebraic equation.

To earry out this procedure, the principal part of the integral in

eq. (5.14) must be handled carefully. Zn general, the principal

part of the integral '
               kma`,c   z. p/. k22k.i7 dk.( (s. is?
                               '                                                                    '                                                '
can be separated into two terms. (a(k) is the arbitrary funetion

without singularity. )

   l :f,kMT aik,'-t -ka, rWAk.i- Pf, k"pm"kA.(-k27. ak- (s.i6?
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 For the first terTn of which the integrand has no singularity, the

standard method of the numerieal integration can be applied. The

principal part in the second integral can be ea$ily performed and we

obtain,

     i=: .,ii,:. `xv tt23.i?--kCZ.(ko] -t- a(k.2 .tz.,, km""k` .-' kp (s./77

                                                                    '       =Z ct,• alko           i ki -- k. + C'a(kp) (S.!8)
where
     c = Ln ( k""kpt.'-k'? - 2i•: -Z.i2IISC'-`k
                                                              (t. 19?

The weighting factor for the i•-th point in the numerieal integration

is denoted as cti. The eq. (5.14) is written as

     dfi(k) = Eifkp lAtc5(ko27 (k/ft/ko>

          .t2E"d2• kfct-ti-'k.a <klVflkd'>8Xkd'lkdf.                                                              (S. 2i7?

The var-iable k is-•also 'evaluated''at each mesh point and we obtain.th-e

coupled equation for B(k.) and A,
                 .-
                         '     --B(ke7 `. Enko VppX -t" 2End2[ Vod' 6diO-(di.2 kd'2E(k/'2 tS-2/7

     -fi(kt'J,= EnkeVtoX -2Eni V`i' 'Zd; S(II?-'i"ofks kd2'Eded'? (S•22?

                                           '

where

     Å~= AtC•B(k.2 rS. 23)                          7

     Vo,' = (ke!V?lke`>2 etc.                                                               Is. z"?

Finally, the algebraic equation that we rnust soZve is givep in the

matrix representation :
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                           I
       via'''fitil;'31:'i[iiili: '-' '•:i2/i"tu'ilvio

                           `                           i                           t                           ,                           t                           t                           `                           :
      --'--"-Y--oi - '- --'--Tv'o"e-

!n the eq. (5.25), the B(ko) is

so as to satisfy the required

wave boundary conditions, we

     A -i7T Btke2 =/ '
                     .
From eqs. (5.25) and (5.26), the

space can be completely

can be obtained by

     52 - -E{,r• .e-

In practice we have adopted the

the upper linit of the integral

The calculated e

results by the eoordinate-space

quite well.

    .To perform the above

the pion optical potential of
                    .
given in section 4 is

    2 En (IK/1 Vn /nk() = -- 6o k.2

                    'where

    P(g2 =

                still

              boundary

             have

        deterrnined

     (A d" i7T3(ko22

                Simpson

                k
                 max

 lastic-scattering compared
                calculations and the agreement is

          calculations, we need an explicit form for

              each Åí-th wave. The optieal potential

               IPrS2 tb,]Ors27(k2pt!k!8!K!7. t3".z8?

(zny -3 fd ir e`7/h7oN(r2 IS• zS2
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         z zEntopd2.kk.2BtPd') O

                    = (S. 2S?

 -giA-.r-A-;ii(k-.J3                       -hB(ko)

     undetermined and must be chosen

      conditions. For the outgoing-

                                 (Sr. i62

pion wave function in the momentum

 . Tt}e phase shift 6se , for example,

                                 (S.277

      's method of integration with

    = l GeV and the 60 mesh points.

 cross sections are to the



                                    12 The nuclear density adopted there for                                      C is,
                    '
    /'7V(h2 == .3/. t.Z. -. .7 b3 lu N rf7 Z7 e -li 7Z.

 The nuelear form factor J)<'q) is then given by,

     10(92 = n3i.3ul t('l1. IA! -- iF A!bz(k2.K-22f•

                  't f6Zk,vi7 e-e21K-"k-di .

 Using the equation
     e'ÅíZ/K-iKdi .,. e-eX(ka•f-,e?iZ7e g2,e`c•iK!

                     =e-g2(k'.k'27ico..(2koZ2l.-b-`kk!2P2(case27

 we ean perforrn the partiai wave decomposition of the p,ion optical

 potential. Here, the i2,(b2ik'12) is the rnodified spherical Bessel

 function. For the 2-th multipoie, we obtain

     zEn(k/v21k!2 =7.7fXxzf3N e-e2rk.Z.ht>

          x z/1-1 b. k.2/r(2 "s ht -- tlf6 2(k 2tk')2 z}2(w f ntl "Z2A /x; !rgof

        - bj Sno8(kt21re +3 hz-- i`"rb a(le 2tkii7? kA-iir77 f pth2kAi7Z

     7= fbZkk! .

 IMien k or k' becomes large, the potentiai behaves as ( without the

 off factor g(k) )
                                                  '                                           zb2k,k!e-g-Lbi fkZ+k'27(ler.421eS4kUgk;;ti;:;:s>."... e-f(k-k/2i

 In the domain kf3vk' the interaction rapidly falls off,while ktv k'

 the interaction do not damp even when k and k' are Very large.
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 6. Results and dÅ}scussions

    . Zn this section, we give the results of the numerical caleulations
                                                      x of the 12c(p, "+)i3 c reaction cross sectÅ}on in•the distorted wave

                                                                '
 approximation. The pion and the proton distorted waves are ealculated

                                                                      13 by the methods described in seetion 5. For the low-lying states of c,
 ' the neutron can be transferred to one speeific single particle orbit.

 The component of the residual nueleus with target nueleus plus one

 neutron, contributes to the transition matrix eiement. rn the distorted

 wave approximation,therefore, the spectroscopic factor and the single

 particle wave function are the model-dependent quantities.

                                                                 '      For the single parttcle wave function of the transferred neutron,
   '                                                            ' we adopt the harmonie-oscillator type or the solution im the Woods-Saxon

 potential. For the' Woods-Saxon potential, the strength of the spin-orbit

 force Uso= 6MeV, diffuseness a = O.65fm and the nuciear radius R = 2.75fm

 are fixed, and the depth of the central potential is adjusted to reproduee

 the experimental single particie energies. Using the formula (3.15) in

 section 3, we have calculated the (p, T+) reaction cross section. Because

 the energy of the emitted pion is low (N35MeV ), the contributions from
                                                        '
 the high partial wave ean be neglected. We have taken into account the

partial waves up to Åí = 7 for pion and ail the proton partial waves that

 are anowed by the angular-momentum selection rule. The convergence '

 of the calculated cross section is numerically checked.
                                                                '    '
      First of all we have investigated the effect of the Coulomb interaetion

 in <'p, rr+)' reaction cyass section in the coordinate--space calculation

 because we negleet it in the mementum spaee. The eurves a and b in Fige 7

                                       12                                               + 13                                                   C(ground state)show the calculated cross section for                                         C(P, R)
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reaction with and without the Coulomb interaction. Here the parameters •

for the pion optical potential Set r in Table Zr are employed. As is

seen there, the repulsive Coulomb force reduces the (p,u+) reaction

cross section slightly in the forward direction, but is not so importapt

in the present analysts. Next, the effects of the proton distortgd wave

i:e.;h,ZIIP,,i.".i;g6E8,:,,.lh.:,;)i\:S.:.222.".gl:,t::,cgl:.u.i:Ie:,grzs,:,g:II.i.on

of the proton wave. lhe effect of the proton distorted wave is to reduce

           .the absolute value oE.the eross section about an order of magnitude. but

the dependence to the potential parameters jS. expeeted te be small.

We have, therefore, fixed the parameters of the proton optical potential.
                                      --}
     In erder to see the effects of the pion distorted wave on (p, Tr!-;')

reaction, we have ealcuiated the 12c(p, T+)13c(ground state) reaetion

cross section by the piQp-ppti.ca. 1 .potential. (4.-34) with-the-parameters .

Set-Z-'in-Table 'II;''"At first,-we' -inVeS'tigate the eut--off mass A-dependence

of the cross section. In Fig.9, the curves a, b and c show the results

with the cut-off masses A = co, IGeV and 700MeV,;'respectively. By the off-

shell cut-off factor g(k), the cross section drastically reduces, and

it is in contrast to the results of the elastic scattering.. The importance

of the effects of the pion opticai potential, especially the off-shell

part , is obvious from these results. 'So far, we have assumed that the

pion nucleon vertex is described by ,the coupling constant f. Because

the enission of the o' ff-shell pion is' important in the (p, x+) reactioti,

we have cnnsidered the pion-nucleon vertex function v(k2) which is

    'normalized to one, on the energy shell,

        v(k.i2 =! (6./?
             '
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and we have taken into account the vertex correction by replacing the

pion--n y.f leon coupling constant f as .
     '                                                   ir      f'-------->' f•vrKZ2. !6.z7
phenome

 )o(lko.g?ic#11ey wkt i{;;:. t...ka\e the GaUSSIan"tYPe fOr V(k2) .. (6. 3.)

where the eut-off mass Av is assumed to be 700MeV. The curves d and e

in Fig. 9-are the results 'with nuclear recoil and the reeoil plus vertex

eorrections, respectively. ( The nuclear recoil correetion.was discussed

in section 3. ) As is seen there, these corrections reduee the cross

section about the factor 3, and are non-negZigible. The curve f in the

same figure is the result by the first-order potentiai Set IZ. The

absolute value is about three order of magnitud'es larger than the
                                                                     '                     'experimental data. The failure of the first-order potential is obvious.

   , !n order to see the importance of the off-shell part of the optical

potential in mote detail, we have shown in Figs.10 and 11, the absolute

value of the pion optical potential iRe<k'IVÅí(Err(ko))lk>l for 2 = O

and i, and k'= ko= iooMev (E (ko) = vE;iob-i-IF ). Here, the parameters

Set 1 are adopted, and the cut-off mass A-dependences are shown.

As is seen there, the cut--off procedure greatly reduces the off-shell

interaction, especially far off the energy shell. In order to see the

off-sheil effects on the pion wave funetion we have shown in Figs. 12

and Z3, the real part of the pion wave function in momentum space, Re(Pl[e(k),

for 2 = O and 1, respectively. The curves a and b are the results with

off--sheil cut-off masses A = di and 700MeV, respectively. From these

figures we can understand that the strong eut-off mass A-dependence

of the (p, T+) reaction eross section is due to the behavior of the

high-momentun parts of the pionT wave' functÅ}on. It should be noticed

that the pion wave function neighbouring on the energy shell is searcely
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affected by the off-shell eut-oEf procedure, namely the elastic-scattering
                                                         '                                    'cross section is insensitive to the off-shell part of the potential.
                '
As to the first-order opticai potential, the pion wave function c by

potential Set II, in Figs. 12 and Z3, has a very iarge high-momentum

component which greatly enhanees the (p, T+) reaction cross section.

This is due to the strong p-wave nature of the potential Set rX.

This property of the first-order optieal potential is also seen Sn the

coordinate spaee wave function. Figs.l4 and 15 show the pion wave

function in coordinate spaee,,ifor Åí = e and 1, respeetively. The curves
                                                       J
                                                                     'A and B are the results with the potential Set I and Zl, respectiveiy.

rhe p--wave dominance of the potential Set II is refZected to the

behavior of the wave function B, especially around the nuclear radius.

The best-fit potential to the elastie scattering ( Set Z ) is more close

                                                          'to the local potential, because of the large local s-wave term.

''  -'' tih'ds, thd' ti6gbitiLb' "atid'6i'tEe' '' (' b, z+) reaction cro$s section

can be understood by the off-sheil cut-off procedure in the Kissltnger-

potential. The angular distribution, however, is net well explained.

Because of the highTTnomentum transfer in the (p, T+) reaction, the

interior of the nuclear density distribution will be important. In the

modified Kisslinger-potential (4.34), we use the nuelear density (4.33)

with w = l and b = 1.72 which differ from the harmonie-oscillator model
                                                                       '
                                                          'mainly interior of the nucleus (see Fig.S). The calculated cross seetion

                    -•with the single particle wave function in the Woods--Saxon potential is

             'shown in Fig.16. The curves a and b show the results with cut--off masses

A = 1.5GeV and 700MeV, respectiveZy. They are in a good agreement

with the experimental data. Here, the vertex and the nuclear recotl

corrections are includ.e,d.. The eurve c by the first-order potential
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 ( Set rl ) is evidently against the data.

     Our ealculations show that the absolute value of the reaetion
                                                   tcross section in 12c(p, T+)i3c(ground state) can be reproduced by

adjusting the cut-off. mass A. We have checked whether the situation

is similar in the reaetion leading to the Zow-iying exeited state

of i3c. Figs.i7 and is show the cazculated cross section for i2c(p, T+)13c

 (3.ogMev;y2+) and 12c(p, T+)13c(6.s6Mev;s12+) under different •" '

assumptions. ( The transition leading to the 3.68MeV and 3.85MeV states

are not separately observed. ) As is seen in Figs.9, 16, 17 and 18,

an overall agreernent with the experimental data on (p, T+) reactions

is obtained by choosing the cut--off mass, Afy700-1000 MeV. Strictly

speaking, the calculated cross seetion must be multiplied by the .

speetroscopic factor, which is slightly less than unity for the' ground

                              13and the first ex..c.ited state of C. This does not, howeve!, ehange the

                                                       '                                'present discussions. • .                                                   '                                                '                                        '     in the reaction 12c(p, T+)13c(6.s6Mev;s12+)' ,however, the theoretical

values are about 10 times larger than the experimental data, when the

cut-off mass A= IGeV is adopted (Fig.l8 ). Because the 6.86MeV level

has the dominant configuration of lds12 or 2sl/2 particle coupled to

the conective 2+(4.43Mev) state of l2c, the probability of the ld
                                                                 5/2
particle coupied to the l2c ground state is smau and is estimated to be

about o.2 by Miuer13). If we include this factor, the absolute values '

of the ealculated cross section agree with those of experiment. Very
         vrecently, however, the theoretical investigation of 13c by Meder and

purcen38) show that the configurations of the 2sy2 and;-lds12 partieles

coupled to the 2+ state of 12c are dominant, while the probability of

the lds/2 particle coupled to the ground state of 12c is very small
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( i.e. about loe3 ). tf we adnit their predictions, we encounter

large discrepancies between the theory and exPer!ment. Here we must

qotice that, in this case, it will not be allowed to calculate the pion

production by keeping only a very small matrix ele' ment of the neutron
                                                               '                                                'transfer to lds/2 orbit. '.the neut'ron.trahsfer, .to the'2si72'and'lds/2:"- '

          '                                'btbits coupled to the 2+ state of 12c,

                            •s
     p+ i2c < uP •++ li:-<(.d2+s,)/2& ll.]ll)S.)/ T+ i3c(dsi2,2si/2op 2+), "• si?

w' ili doninate the exitation of s/2+ level of 13c. At pres'ent, it is

tiard to draw a definite conclusion about the exitation of 5/2+ due to
                                        '
                                                                    ttthe lack of teliable data on the spectroscopic factor of this level.

The effects of the two-step processes to the ground and the first excited

state of 13c, are exanined by Miiler13). He showed that these are

minor corrections to the cross section, although they are not negligibly

sinall .

                                         '                                 '     There is another approach to the (p, rr+) reaction without employing

                                        '                                                            'the distorted waves. Dill.ig•et ql.99); tiaSre.'studie'd •the''effeqt$'bf,i '

                                       f'                         'two--nucleon correlatÅ}on in the frainework of the Jastrow moqel. Grossman

et al.40) have calculated the (p, T+) reaction cross seetion by explicitly

including the pion production by two nucleons. There approaches are rel' ated
                                                      'to ours through the effects of distorted wave, but the detailed

correspondences are not ciear. We shali not discuss them further.
   '
     Finally we shall shortly discuss about the first-order 1ttsslinger•-

potential. As was discussed in sections 5 and 6, the first-order

Kisslinger-potentiai fails to explain both the elastie and the (p, T+)

reaction cross section. This is beeause the s-wave term is too small
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and then the potential is strongly p-wave nature. The reason -of this is

that th.e.. pion-nucleon s-wave scattering in the low energy is dominated

                                                 tby the isovector type, while only the isosca.lar part eontributes to the

first-order optical ?otential for isospin-zero nucleus. On the other

hand, the best-fit potential to the elastic scattering has the strongly

repulsive s-wave term and is more close to the local potential. The

similar situation is also seen in the pion-nucleus scattering length

aN in the isospin-zero nucleus. ' under the impulse approximation,

        '                    '
the pion-nueleus seattering length for isospin--zero nucleus is caiculated

from the pion-nucleon scattering lengths ai and a3 (a2T) aS, .

        aN(/np"lse? = 'A .2't.{IE-6jtZaS ". .s-?
                                                      4iUsing the experimental values of al and a3 by B.ugg et al. ),

        al = e./7pt e,peg lc`-1

       a3 = -p•o92 ZP•op2 lc4-t (6.57
we eaicuiate th6 pion-i2c seattering iength as

.hii. tha ." ..r pi.lll([.:['.etk .-'-.i..-'42o')oigcs' i" -] ",. 7.,}

       ANrexz) = -o,33 t o`o28. icx ij (6,8]
Here, the theoretical value is too smali to explain the experimental

data.
                                        '     previously Moyer and Koltun43) have calculated the multiple

scattering corrections ( incoherent scattering and nucleon binding

corrections ) to the pion--nucleus scattering length, which can account

for the major portion of the above disagreement. Firstly, we show the

importance of the nucleon-binding effects in a simple model--calculations,

according to the discussion by Htifner 6). The nucleon-binding eorrection

                                                                   '
6t = T-t is calculated by

        it = z- 7r ; tCCr -- (irp 2Z ;; t(e -9e?t. (6. 97
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where G and Go are the many body and the two body Green functions

given ip seetion 4. Adopting the Fermi-gas model, we ineorporate the
                                                 t
Pauli-effects by

                                   e (A -Pf?
      (JeplK1(rp(E2!,ePIK) = t-7,,. -- sf.;ii.iE (6• 10)

where rp and lk are the momenta of the nucleon and the pion, respectively.

The nuelear Femi momentum is denoted as pF and the theta function

ensures that the excited nueleon is above the Femi-surface. Further

the binding-energy correetion of the nucleon is expressed as

                                           /       <h'IK/esrE21"')V> = E-uNte2 - 7. . (.Z.l; t uNcfl7 (6'1,')

where UN(p) is the momentum-dependent nucleon potential and UN(O) is

the potential for the nucleon in the Femi sea. We assume UN(p)fUO.

In the low--energy limit E = O we can easily calculate the nueleon-

binding eorrections in eq. (6.9). Noting that in the iow-energy linit

<'
 lk pI t"Ntlk'p'> = -4Tlz-a in each eigenchannel, the nucleon-binding

correction saN in the pion-nucleus scattering length is given by

                                                               '       5a"/ = --;ll'AZf?E (pcu./; cnrvee-e" )                                                                (6, IL)
and

       i otN -- -- aZ )ta /U" (aJ/ . (s.' edt"f e-e ril eevvt ts `""2 (b• 137

   Then the correction to the impulse approximation is written as

        LtN = a"(,-v"/se7 -A a'Z+324'Z tSpit evluNloJ `7 .
                                                                 i6, 15sJ
                                                12Assuming pF = 250MeV and UN(O) = -50MeV7 we get for C

         aN= -e,yz 1.,-1 (6.i57
rhe results seem to overestimate the nucleon-binding effects in such

a oversimplified model. By adding both of the above effects, some

double-counting arises. It is, however, irnportant to reeognize that

the second-order eorreetions in eqs. (6.i2) and (6.13) are always negative.

The nucleon binding effects, therefore, are expected to enhance the
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repulsive character of the s-wave terrn im the Kisslinger--potentiale

                        '     Because we are concerned with the pion optical potential for

kinetie energy about 30MeV, the incoherent $catterin corrections,

namely the virtual excitation of the nueleus, are expected to be large;

EspeeiaZly, the excitation of the isospin T.= 1 excited state, like

giant dipole resonance, by the pion-nucleon isovector interaction
                  .
                                          .will be important. !reius the strong repulsive force in the s-wave

part of the Kisslinge"r. potential,'' rdquÅ}red to fit to the elastic

scattering, can be understood qualitatively as the multiple scattering

effeets. As was shown in Figs.3 and 4s the first-order potential

becomes te be close to the best-fit potential for the elastie seattering,

with the increase of the pion energy. The s-wave pairt of the Kisslinger-•

potential, the strong repulsive nature and its energy dependencei

is quite an interesting problem. The quantitative understanding of

them-.is.still an-open problemv
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7. Summary and conclusions

     Zn the present thesis, we have performed a phenomenological

analysis of the (p, T+) reaction cross section on 12c in the distorted

                                                                   'wave approximation. !n the previous analyses of the (p,T+) reaction

with the originai Kisslinger-type pidn optical potential, the .

calculated cross seetions were one or two order of magnitudes too

large compared with the experimental data. The local potentials

also failed to explain the (p, T+) reaction and the pion elastic

           '                                           'scattering cross section consistently. The original Kisslinger--

                                                    '            '                          'potential, however, has been succeeded to explain the pion elastic

scattering in various nuclei, and has been widely applied to the

analysis of the elastie or the inela$rtc scattering of the pion.

Therefore it is substantially irnportant to investigate the reason
                                                                 'why the Kisslinger--potential fails in the (p, T+) reaetion. We have

shown that the difficulty comes from the wrong off--shell behavior
                                     '
of the p-wave part of the Kisslinger-potential, which strongly

enhances the high mornentum component of the pion wave function.

This is the reason why the calculated cross section of (p, T+)

reaction was too large in the previous analy$is. In order to improve
               '
these points, we have adopted the Gaussian--type cut-off function to

reduce the off-shell` contribution of the p-wave pion-nucleon interaction

in the original Kisslinger-model. As aresult, a satisfaetory agreement
                     .
                                 '                                                'with the experimental data bn both of the elastic scattering and the

(p, T+) reaction cross section is obtained by ehoosing the cut-off

mass AeM700-1000 MeV. Thus, the (p, "+) reaction offers us the
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invaluable informations about the pion--nucleus interaction through

the final state interactions. A systematic anaiysis of the (p, T+)

reaction on different nuelei is desirable, but the experimental data

of elastic seattering in low energy are not so rich except for C,,

and t.he determination of the phenomenologicai pion optical potential

is difficult.

     Apart from the (p, T+) reaction, the problem of the pion optical

potential at the low energy ( pion kinetic energy TT S70 MeV ) is not

understood quantitatively, as yet. The Åíailure of the first•-order

opticaZ potential suggests the importance of the s"wave reseattering

effects in the nucleus, but the theoretical understanding of them is

insuffieient. At present, the major interests about the pion-nucleus

interaction are concentrated on the (3s3) resonance region. However.

the much more efforts to.study the low energy pion-nucleus optical

potential are necessary for the thorough understanding of the pion-nucleus

interaction. It is, therefore, highly desirable to perform the .;

experiments of the low-energy pion-nucleus elastic scattering in '

various nuclei.
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            Table Captions

The best-fit parameters to the 185 MeV
12
  C elastie scattering cross section by

The parameters for the 3o.2 Mev pion-12

potentiai. Set 1 is the best-fit value

scattering cross section by Marshall et

is the theotetical value given by the

shifts whieh are taken from the work by

proton-

 Johansson et al.18).

C Kisslinger-

 to the elastic

 al.30). set !r

pion-nueieon phase

 Roper et al.32).
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              Figure Captions

                     '
12c(p, T+)13c reaction cross section. [rhe solid line is the

caleulated cross section in the plane wave approximation.

The experimental values are taken frora Dahlgren et al.10).

Coordinates of the initial and the final systens in the

(p, "+) reaction.

The parameter bo of the Kissli iger-potential for 12c.

                                                 '
The solid line is the theoretical valueet calculated by the

                        . 32pÅ}on-nueieon phase shifts by Roper et al. ). The dots are

the best fit parameters for the pion elastÅ}c scattering

on i2c, and are taken from the works of Auerbach et ai.28),

iiprshan et al.30), and Amann et al.31).

The parameters bl of the Kisslinger-potential for 12c.

The solid line is the theoretical value;,' calculated by the

pion'-nucleon phase shifts by Roper et al.32). The dots are

the best fit parameters for the pion elastic scattering

on 12c and are taken from the werks of Auerbach et al.?8),

Marshan et hl.30), and Amann et ai.,31).

                        i2                          C. The curve A is calculated .The nuclear density for

by the harmonic-oscillator model with b = 1.64, and curve B

by the parameters w = 1 and b za 1.72; tin eq. (4.33).

34.3 }fev pion elastic scattering cross seetion oniL12c.

Curve a is calculated with the Coulomb interaction by the

best•-fit pion potential to 30.2 MeV elastic scattering

data ( Set Z ). Curves b and c (d and e) show the cut-off

mass A-dependences of the elastic scattering eross seetion

with nuelear-density parameters w -" 4/3 qnd b = 1.64 ( w = 1



Fige 7•

Fig. 8.

Fig• 9e

Fige10•

 and b = 1.72 ) in eq. (4.33). Here, the Coulomb interaction

 is neglected. Irhe curve f is calculated by using the first-

 order optieal potential ( Set rr ). The experimental data
                               30 are taken from Marshall et al. ) for 30.2 MeV data and Kane
       ' 36   ) for 31.5 MeV data.
                 ,                  . 12c(p, rr+)l3c(ground state) reaction cross section. curves

 a .and b are ealculated with and without the Coulomb interaction.

 Here, the harmonie--oscillator model for the neutron bound
                                                            10
                                                              )e state is used. The experimental values are taken froin ref.

 12c(p, T+)13c(3.og Mev:y2+) reaction cross section. rhe

 curves a and b are caiculated with and without the effects

 of distortion in the proton wave function. The harmonic-

 oscillator model for the neutron bound state is used. The
                                      ' 10 experimental values are taken from ref. ).
                                                            ' 12c(p, T+)13c(ground state) reaction eross section. curves

 a, b,and c are calculated with the pion potential Set Z

 with off-shell cut-off masses A = oo, IGeV and 700MeV, respectively

 Curves d and e are the results with cut-off mass A -- 700MeV
              ,
 and also with the nuclear recoil and the nuclear recoil plus

 pion-nucleon vertex correetions,respectively. The curve f. is

 for the pion potential Set ZZ. Here the harmonic-oscillator

 model to Lhe neutron bound state-is adopted. The experimental

              . 10 vtilues are tiqken from ref. ).

 The absolute value of the real part of pion optical potential
SRe<k'1 VÅí(ET(ko))1 k>l for angular momentum Åí = o and ko = krE

 100MeV. !rhe parameters Set Z is employed. Curves a, b and c

 are calculated with off-shell cut-off masses A = co, ICeV and



Fig.11.

Fig.12.

Fig.13.

Fig.14.

Fig.15.

Fig.16.

Fig.17.

  700MeV, respectiveZy.

  !Erhe absolute value of the real part of pion optical potential

IRe<k'1 v2(ET(ko))1 k>l ,Åíor angular momentum Åí = 1 and ko = kP--

  100MeV. The others are the same as in Fig.10. .

  Radtal wave funetion of the pion, in the momentutn space with

  angular momentum Åí= O. Curves a and b are calculated by the

  potential Set r with off-shell cut--offi masses A = co.'an'd 700MeV,

  respectively. The curve c is the result by the first--order

  pion optieal potential.

  Radial wave funetion of the pion, in the momentum space with

  angular momentum 2 u 1. The othets•are the •same a$..i'n'. Fig.12.

  Radial wave functton of the pion, in the eoordinate spaee with

  angular momentum Åí= O. Curves A and B are calculated by the

  potential Set r and Set rr, respecttveZy.

  Radial wave function of the pion, in the coordinate space with

  angular momenturn Åí= lt Curves A and B are calculated by the

  potential Set I and Set rZ, respeetÅ}vely.

  12c(p, T+)13c(ground state) reaction cross sectione curves

  a and b are Åëalculated by the pion potential Set I with

  off-shell cut-off masses A = 1.5GeV- and 700MeV, respectively!

 The parameters w = 1 and b = 1.72 for the nuelear density in

  eq. (4.33) are used. The neutrbn bound state is taken to be

  the Woods"Saxon type. Curve ic is for the pion potential Set Zr.

  rhe experimental values are taken from ref.10).

  12c(p, "+)13c(3.ogMev;1/.2+) reaetion cross section. Curves

  a end b are calculated by the pion potential Set r with ,



Fig.18.

off-shell cut-off masses A = co and 700MeV, respectively.

Curves c and d are for the p.otential Set I with cut-ofÅí mass

A = 700MeV, and also with the nuclear recoil and nuclear reeoil

plus pion--nucleon vertex corrections, respeetively. The curve

f is for the potential Set Il. Xn the above calculations,

the harmonic-oscillator model for the neutron bound state

is used. Curve e is the same as d but with nuclear-density
         '
parameters w = 1 and b = 1.72 in eq. (4.33), and the Wood$-

Saxon type for the neutron bound state. The experimental data
are tak'en from ref.10).

.12c(p, T+)13c(6.s6Mev;s/2+) reaction cross section. Curves

a, b and c are calculated by the pion potential Set ! with

off--sheil cut--off masses A = co, IGeV and 700MeV, respectively.

Curve d is for the 'potential Set I:. For the neutron bound-state

wave function, the harmonic-oscillator model is used. The
                          '                                 '                                    10 .                                      )eexperimental data are taken from ref.



Table I

U '-- 16MeV
W -• 10MeV
U •2.5MeV

s

W -1MeVs

a.*) O.5fm1

Rl 2.29fm
R2 3.07fm
R3 2.29fm
R4 3.07fm

") i" 1-- 4

Table Il

bo(fm3) bl(fm3)

SetI
SetI!

•- 4.•41+O.l4i

-O.71+O.63i

5.26+O.18i

7.75+O.56i
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