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Chapter 1. Introduction 

1-1. Identification of the enzyme 

   In 1909, Dale and Dixon reported that tyramine (p-hydroxyphenylethyl 

 amine)'s effects on an intravenous injection were similar to those effects produced 

by adrenaline, producing both motor and inhibitory effects of nerves of the 

sympathetic system (Dale and Dixon, 1909). Hare successfully identified and 

extracted tyramine oxidase from rabbit liver in 1928 (Hare, 1928). Adrenaline 

oxidase enzyme was also discovered in 1936 by Balschko et al. (Balschko et al., 

1936). The enzymes were termed as monoamine oxidase (MAO) in order to 

distinguish it from diamine oxidase (histaminase) as well as to describe its substrate 

specificities in 1938 by Zeller (Zeller, 1938). 

1-2. Dispute between "one bi-function enzyme" and "two different 

enzymes" 

  Many researchers had studied about substrate specificity and inhibitor 

sensitivity of MAO. On the based of their researches, Hardegg and Heilbronn 

(1961) suggested that several forms of MAO exist not only in different species but 
also in several organs of the same species. This suggestion that MAO may exist not 

as a single enzyme but as several forms was revealed by one research that MAO 

can be distinguished to two different forms by using the irreversible MAO inhibitor, 

clorgyline (Johnston, 1968). Johnston termed these enzymes as type A and type B. 

In 1991 and 1988, the successful isolation of cDNAs of MAOA and MAOB from 

human (Grimsby et al., 1991) and rat (Ito  et  al., 1988) finally proved this notion. 
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  Two subtypes of MAO, MAOA and MAOB, have 70% amino acid sequences 

identity although each enzyme has unique substrate and inhibitor specificities 

(Figure 1-1) (Bach et al., 1988). MAOA oxidizes serotonin and noradrenaline, 

while MAOB does not; MAOA is selectively inhibited by clorgyline, while MAOB 

is highly inhibited by deprenyl. 

1-3. Geographical distribution of the enzyme 

  Some biochemical studies showed that MAOB activity is more abundant in the 

outer-membrane than in the inner-membrane of rat liver mitochondria (Schnaitman 

et al., 1967) and the activities of two enzymes are localized in the mitochondria of 

the rat brain (Student and Edwards, 1977).  In addition, MAOA is mainly located in 

catecholaminergic neurons and astrocytes in the rat brain (Westlund et al., 1993). 

Based on these reports, one report showed that mitochondria bound MAOA were 

localized in the whole regions of noradrenergic and dopaminergic neurons as well 

as serotonergic neurons (Arai et al., 2002). 

  In human brain, there are geographical differences in MAO activity. The 

highest levels of activity are shown in the basal ganglia and hypothalamus, whereas 

the lower activities are observed in the cerebellum and neocortex (O'Carroll et al., 

1983). According to the other positron emission tomography (PET) results, the 

anatomical distribution of labeled inhibitor was found to parallel the distribution of 

MAOA and MAOB activities in human brain (Fowler et  aL, 1987). The group 

showed that two iso-enzymes were not equally distributed in the human brain by 

using PET, and also showed that the main form in the basal ganglia was MAOB. In 

this report, they mentioned the necessity of some caution for generalizing results 

about the activities of some inhibitors obtained from one species to another one. As 
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an example, MAOA is only involved in dopamine metabolism in the rat brain, 

whereas both of MAOA and  MAOB enzymes can contribute to dopamine 

metabolism in the human brain (Youdim  et  al., 2006). 

1-4. Purpose of this research 

   Both enzymes, MAOA and  MAOB, are located in a mitochondrial 

outer-membrane and possess an FAD, as the co-factor, covalently bound to 

Cys406/397  (MAOA/MAOB) via  8a-(S-cysteinyl)-riboflavin linkage (the blue 

asterisk in Figure 1-1) (Walker et al., 1974). These enzymes catalyze deamination 

of biogenic and  xenobiotic amines, such as neuroactive serotonin (5-HT), 

norepinephrine (NE), and dopamine (DA) (Figure 1-2). MAO contains a flavin 

adenine dinucleotide (FAD) covalently bound to a cysteine residue as mentioned 

above. MAO plays a decisive role in some psychological disorders and other 

neurological diseases, including depression and Parkinson's disease. Because 

inhibition of MAO increases the level of neurotransmitters in the central nervous 

system, developing for the effective inhibitors represents one of the most important 

approaches to developing novel drugs to treat such the illnesses. 

  In addition, the oxidative deamination produces harmful hydrogen peroxide 

which may further generates free radicals (Youdim and Riederer, 1993). In order to 

develop more effective and specific inhibitors, it is important to understand 

inhibition and catalytic mechanisms based on the three-dimensional structures. 

  Development of selective and reversible MAO inhibitors is important not only 

from the standpoint of treating symptoms (i.e., by increasing the biological halflife 

of monoamine neurotransmitters), but also with regard to the neuroprotective 

effects (i.e., prevention or delay of neurodegeneration itself) (Saura et  al., 1996). 

  Binda et  al. (2002) first determined the X-ray structures of human  MAOB at 
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3.0 A, and later improved the resolution to 1.7 A, including co-crystals with 

various inhibitors (Binda et  al., 2003). On the other hand, the structure of MAOA 

was determined only at lower resolution: Ma et al. determined the structure of rat 

MAOA at 3.2 A (Ma et al., 2004b), and De Colibus et  al. (2005) solved the human 

MAOA structure at 3.0 A. Despite the limited resolution, we were still able to use 

these structures to obtain information that was useful to understand the distinct 

substrate and inhibitor specificities of MAOA and MAOB (Ma et  al., 2004b). 

Interestingly, the X-ray structure of monoclinic human MAOA at 3.0 A (De 

Colibus et  al., 2005) differs from those of rat MAOA and human MAOB in the 

loop conformations of residues 108-118 and 210-216, both important components 

of the active site. These components affect the substrate/inhibitor specificities of 

human MAOA, as reported previously (De Colibus et al., 2005, Edmondson et al., 

2007). From our earlier result, the backbone structure of rat MAOA, including 

residues 108-118 and 210-216, is nearly identical to that of human MAOB. 

Because the amino acid sequences of the two enzymes are 70% identical, we had 

anticipated this similarity. The sequence identity between human MAOA and rat 

MAOA is as high as 87% over the whole molecule, and 90% in residues 108-118 

and 210-216; therefore, in light of their high sequence identity, the structural 

differences between the two enzymes in these regions are exceptional. Because 

these regions take parts in the composition of active center, it is therefore important 

to understand whether the structural differences between rat and human MAOA in 

these regions exist, because it is critical to verify cautions in generalization of the 

results between two different species, or whether they are any artifacts, which is 

critical for the guidance of drug design. 

  The functional role of the C-terminal transmembrane helix has also been of 

biological interest. The significance of the binding of MAO to the mitochondrial 

outer membrane remains unclear. The X-ray structure of rat MAOA revealed that 

the C-terminus maintains a transmembrane structure (Ma et al., 2004b), while the 
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present available structures of both human MAOB and monoclinic human MAOA 

have resolved only a few residues in this helical region (Binda et al., 2003, De 

Colibus et al., 2005). One report showed that the C-terminal 29 amino acid residues 

in MAOB are responsible for targeting and anchoring the protein to the 

mitochondrial outer membrane (Mitoma and Ito, 1992). A C-terminal truncation 

leads to a significant decrease in MAOB catalytic activity, but does not produce 

any significant change in inhibitor specificity (Rebrin et al., 2001). Therefore, 

C-terminal anchoring for this enzyme must be important for its biological functions. 

From this research, we report the X-ray structure of human MAOA complexed 

with a reversible MAOA specific inhibitor, harmine, at 2.2 A resolution. The 

high-resolution structure provides greater insight into the enzymatic details of 

MAOA, especially in terms of substrate/inhibitor binding specificities. 

   Here, we report the X-ray structure of human MAOA complexed with a 

reversible MAOA specific inhibitor,  harmine, at 2.2 A resolution. The high-

resolution structure provides greater insight into the enzymatic details of MAOA, 

especially in terms of the structure of the substrate/inhibitor binding specificities. 

We also show whether the structural differences based on the comparisons between 

rat and human MAOA exist or not. 

  In addition, we also show human MAOA structure with the full transmembrane 

helix. We measured activities of wild-type protein as well as mutants with several 

mutations at residue  G110 in loop 108-118, both in the solubilized and 

membrane-bound forms, in order to better understand the role of the 

transmembrane anchor. 
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Figure 1-1 Multi-sequence alignments of human and rat MAOA and human 
MAOB. This alignment was performed by  Clustal  W (Larkin et al ., 2007) and was 
shown by Espript program (Gouet et al., 2003). The blue asterisk shows the 
covalent binding residue Cys406 to FAD. 
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Figure 1-2 Normal and inhibited conditions of MAO enzyme 
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Chapter 2. Materials and Methods 

2-1. Construction of plasmid for expression of wild type and 

mutants  (G110A,  G110P) for MAOA 

  cDNA of human MAOA was amplified by PCR with a  6xHis tag at the 

N-terminus. The resulting cDNA was inserted into a yeast expression vector, 

 YEp51, as described for the expression of rat MAOA (Ma et  aL, 2002, 2004a, 

2004b). For another mutants, the expression plasmids were constructed using a 

QuickChange XL site-directed mutagenesis Kit (Stratagene Corp., CA, USA), 

according to the manufacturer's instructions. The primers (synthesized by Gene 

Design Inc., Osaka, Japan) used were 5'-GGGGAAAACATATCCATTTCGGGC 

 CGCCTTTCCACCAGTATGG-3' and  5'-CCATACTGGTGGAAAGGCGGCCC 

GAAATGGATATGTTTTCCCC-3' for human  G110A, 5'-CCCATTCCGTGCT 

GCATTCCCACC-3' and 5'-GGTGGGAATGCAGCACGGAATGGG-3' for rat 

 G110A and 5'-CTTACCCATTCCGTCCTGCATTCCCACC-3' and 5'-GGTGGG 

AATGCAGGACGGAATGGGTAAG-3' for rat  G110P. All constructs were 

confirmed by DNA sequencing using an ABI PRISM 3100 Genetic Analyzer 

(Applied Biosystems, CA, USA). 

2-2. Protein expression and purification 

  His-tagged wild-type and mutant MAOA proteins were expressed in 

Saccharomyces cerevisiae strain BJ2168 (a  prcl-407  prb1122 prp4-3 leu2 trpl 

ura3-52) (Wako Pure Chemical  Ind., Japan) and purified using a published method 

(Ma and Ito, 2002). 
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   Briefly, cells transformed with  YEp51 vector carrying His-MAOA cDNA were 

cultured in leucine-free synthesized medium, and expression was induced by 

galactose for 36 hours. 

  The detailed protocol of cultivation for human MAOA and the components of 

the medium are shown to Figure 2-1. After the induction by galactose, the cells 

were collected by centrifugation at 1,500 g for 10  min and washed with distilled 

water, and then, treated with yeast lytic enzyme (Zymolyase, Seikagaku Corp. 

Japan) with gently mixing for 3 hours at 30°C (50mM Tris-HC1 buffer pH7.5, 1M 

D-Glucitol (sorbitol),  10mM MgC12, 30mM DTT). And then, the cells were 

collected and treated with yeast lytic enzyme (Zymolyase, Seikagaku Corp., Tokyo, 

Japan) for 3 hours at 30°C and then disrupted by sonication. 

  After removing cellular debris by low-speed centrifugation, crude membrane 

fractions were collected by ultracentrifugation at 40,000 rpm in a Beckman 45-Ti 

rotor (Beckman Coulter, Inc., CA, USA) for 25 minutes (Figure 2-2). MAOA 

proteins were solubilized from the crude membrane fraction using 

N-dodecylphosphocholine (Anatrace, Inc., OH, USA) and purified by twice repeats 

of affinity chromatography on a Ni-column. The purified protein was eluted with 

buffer containing 500 mM imidazole, and dialyzed against buffer containing 10mM 

sodium phosphate (pH 7.6), 100 mM sodium chloride, 10% (v/v) glycerol, 5 mM 

 fl-mercaptoethanol, and 0.05%  (w/v)  N-dodecylphosphocholine as shown to Figure 

2-3. 

  The final concentration of protein prior to crystallization was 10 mg/ml. 
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Cultivation

5m1 Pre-cultivation (24hrs at 30°C)

1L Cultivation in 3L flask (24hrs)

5L Cultivation in fermenter (12 hrs)

Induction with Galactose (12 hrs)

Changin g New Med ium for induction

  3 

        Yes 

 •  Collecting of the cell

No

 1500  xg,  10  min

U111 cic111V111J 111 1

 togen  Base

Medium elements in 1 L

Yeast  Nib  ogen  Base  3.0  g

Ammonium Sulfate 5.0 g

Glucose (for cultivation) or2
0.0 gG

alactose (for induction)

Amine acid mixture (-Leu) 1.6 gcultivation)

A.. --^

fixture  1_1 pril

Figure 2-1 Protocol of cultivation for human MAOA and the components of the 
TflMinm

10



   Collecting 

membrane fraction

 1500  x g,  10min

Collecting of the cell

 Buffer contents  
 1M Glucitol(sorbitol) 

50mM Tris-HC1 pH 7.5 
10mM MgC12

         Additives with buffer

Suspension 

at room temp.

30mM DTT 

 1n-1M EDTA 

2mM PMSF

 1500  x  g,  10min

 Zymolyase Treatment 

  (30°C for 3hrs)
         Additives with buffer

 1500  x  g,  10min

Wash(3  times)?
No

Disruption 

By Sonication

 1500  x g, 10min

 Supernatant

1mM DTT 

1mM EDTA 

2mM PMSF

 4  Buffer 

 50mM 

          10mM ;
, 10min  10

mM 

          1mM

Tris pH7.5 

 MgC12 

 CH3  COOK 

DTT

 40Iupm,  25min

 Collection of Crude 
 Membrane Fraction 

(Microsomal Fraction)

Figure 2-2 Collection protocol of human MAOA for crude membrane fraction 
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Purification

Collection of Crude 
Membrane Fraction 

(Microsomal Fraction)

Dialysis Buffer

0.05% PC12 
 10mm Tris-HC1 pH7.5 

 100mM  NaCl 

10% glycerol 

5mM 13-ME

   Suspension 

 (30min on ice bath)

0.3% TritonX-100 

10mM  Tris-HC1 pH7.5

 40Iapm,  30min

 Solubilization with 

 FOS-Choline  1  2(PC  12) 
on ice bath for  30min

 40knam,  30min

Binding to Nickel  Column 

   with  supernatant

 lOrnM  Tris-HC1  pH7.5 
10% glycerol 

10mM imidazole 
 500mM  Nael 

 5mM  (3-ME 
0.7% PC12

Elution Elution Buffer

+500mM imidazole

       Dialysis 

Figure 2-3 Purification protocol of human MAOA from membrane fraction
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     2-3. Crystallization 

         2-3-1. Twin crystals 

        The purified protein after dialysis is used for crystallization. 

        Initial crystals were obtained by hanging drop vapor diffusion method. Drops 

     were prepared by mixing 2  ill protein solution (10  mg/ml protein solution) and 2  pi 

     reservoir solution (8% PEG4k, 100 mM Phosphate buffer (pH 5.2), 100  mM 

 Sodium acetate, 26% (v/v) Glycerol) and were equilibrated against 0.5 ml reservoir 

      solution at 277 K. 

        Two detergents were used for this protein,  PC12  (dodecylphosphocholine; 

 Fos-coline12) used for isolation, and DMDPO  (dimethyldecylphosphine oxide) 

      used for crystallization. Harmine hydrochloride (Wako Pure Chemical  Ind., Osaka, 

     Japan), a reversible inhibitor, which promotes the activity of N,N-dimethyltrypt 

      -amine in the liver and central nervous system (Callaway et. al., 2005), was 

      co-crystallized with human MAOA. 

        Harmine hydrochloride was added at a  protein  : harmine ratio of 1:5. Crystals 

     grew under the same conditions as those for the rat MAOA as low as 3.2 A 

     resolution. Under the conditions, the crystal could be made with hanging drop 

     vapor diffusion method at 4 °C. The obtained crystals are successfully frozen in the 

     nitrogen gas stream without any additional cryo-protectant at around 100 K. 

     Diffraction of the crystals could be gotten at 2.6 A resolution (Figure 2-4). 

        However, all of the crystals were found to be twin. The crystals contained two 

     different patterns in the diffraction. For solving this problem, some kinds of 

     crystallization methods, including seeding method, additive screening and changing 

     crystallization conditions, were tested in this study. 
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Figure 2-4 Crystal images and the diffraction images of human MAOA under old 
conditions. The highest diffraction was observed at  2.61A. Twin diffractions could 
be shown in below image. 
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   2-3-2. The Solving of twin problem 

   A. Seeding 

   Seeding has been critical for obtaining high diffraction-quality crystals for the 

structure. In this research, we had tried a seeding method to improve the diffraction 

quality as well as for solving the twin problem. 

   Streak seeding method, as detailed in Figure 2-5, was used in crystallization 

step (Stura and Wilson, 1991). Streak seeding methods, technically a micro-seeding 

method, usually use an animal whisker to touch or stroke over the surface of the 

protein crystal and then draw through the protein drop (Bergfors, 2003). The 

principles in the cases of general micro-seeding methods involve the introduction 

of nucleating agents, like a piece of crystal, into new drops at lower levels of 

reservoir where controlled. When seeds are introduced at lower levels of reservoir 

in a crystallization experiment, nucleation may be facilitated and crystal growth 

initiated (Figure 2-6). Stock solution included seeds was prepared from twin 

crystals. A few crystals from twin crystals was separately crushed by the 

micro-needle tool (Hampton Research, CA, USA) after transferring to precipitant 

drop, including 6% PEG4k, 100 mM phosphate buffer (pH 5.2), 100 mM sodium 

acetate and 26% (v/v) glycerol, which were used as the seed stocks. 

  In this method, new crystals which were improved in the diffraction quality but 

not in solving twin problem could be obtained. In the quality of diffraction, the 

crystals improved to  2.02-2.37  A resolution in outer shell, compared to 2.33-2.78 A 

resolution in outer shell before seeding (Figure 2-7). 
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Streaking method

Figure 2-5 The method of streak seeding (Stura and Wilson, 1991)

Precipitant 

PEG4K 6% 

 pH5.2 Na-Phosphate  100mM 
CH3COONa 100mM 

Glycerol 26%

Figure 2-6 Resultant crystals from the streak seeding 
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Figure 2-7 Diffraction images before and after seeding . Although the resolution 
increased to 2.02 A which was bigger than the resultant before seeding , these 
crystals were also twins. 
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  B. Searching new crystallization condition 

  To search new conditions, the crystallizations were carried out sitting-drop 

vapor diffusion methods at 4 °C by using 96well plate  (Corning Inc., NY, USA) 

with mixing 1  til for each of protein and reservoir solution. 

  First trial was carried out using crystallization screen kits from Hampton 

Research. We mainly used ammonium sulfate grid screen kit because the 

plate-shaped crystal with high resolution was founded. 

  After several trials, which are including to change variables in concentration of 

ammonium sulfate, protein and in pH. The best crystals were obtained by 

equilibrating with the reservoir solution containing 1.6 M ammonium sulfate and 

100  mM citric acid (pH 5.6 for wild type and pH 5.0 for mutant) at 277 K. Figure 

2-8 is shown to the crystal pictures and the diffraction image of human MAOA 

under new conditions. In the diffraction image, the solution of twin problem as well 

as the improvement of the resolution can be confirmed. 

  The crystals were successfully frozen in a nitrogen gas stream at 100 K using 

30% glycerol as the cryoprotectant. 
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 Figure 2-8 The crystal images and the diffraction images of human MAOA under 

new conditions. From the diffraction image, it can be confirmed the solution of 

twin problem as well as improvement of the resolution. Scale-bars indicate 50 
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2-4. X-ray experiments 

  The diffraction data were collected at 100 K using an imaging plate detector 

 (DIP6040, Bruker AXS, Tsukuba, Japan) at beamline BL44XU at SPring-8. 

  Data were indexed and integrated with the MOSFLM program and scaled with 

the SCALA program in the CCP4suite (Potterton et al., 2003). The crystal 

belonged to an orthorhombic space group C222. 

  It diffracted at 2.2 A better than both rat MAOA with P43212 (Ma et al. 2004) 

and the monoclinic human MAOA (De Colibus et al., 2005). The cell dimensions 

were a=135.3 A, b=218.7 A, c=54.4 A for wild-type and a=135.5 A, b=217.4 A, 

c=54.8 A for mutant  (G110A). Assuming that one molecule occupied an 

asymmetric unit, which corresponded to a solvent content of  63.51%, Vm was 

estimated as 3.37 A3  Da-1 (Mathews, 1968). Five and two crystals were used for 

data collection for wild-type and mutant, respectively. 

  Each of images was taken with the exposure time of 10 seconds and the 

oscillation angle of 0.5 degree. Statistics of the intensity data and structure 

determination are summarized in Table 1. Wild-type crystals diffracted X-rays 

isotropically, while mutant crystals exihibited anisotrophy in intensity distribution 

of their diffractions. Therefore, after merging 232 images of the mutant crystals, 

the effective resolution of each image was determined by inspection its R-factor, Eh 

1/(h)-</(h)>  I  /Eil(h), where  I(h) is the intensity value of h and  <I(h)> is the 

corresponding mean value of  1(h) for all images. The resolutions of 232 images 

were different from each other and were in the wide range from 2.17 A to 3.38 A. 
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Table 1 Data collection and refinement statistics

Beam line 

Wavelength (A) 

Exposure time (s) 

Oscillation angle (°) 

Space group 

Cell dimensions a (A) 

 b  (A) 

 c  (A) 

Resolution range (A) 

Completeness  (%) 

Number of unique reflections 

Redundancy# 

Rmergell 

 1/Q* 

 Refinement 

Rerystt 

 Rfree: 

r.m.s.d.  ## Bonds (A) 

              Angle  (`'  ) 

Ramachandran plot 

Allowed region (%) 

Additionally allowed (%) 

Generously allowed (%) 

Disallowed region (%)

  Wild type Mutant  (G110A) 

        BL44XU (SPring-8, Japan) 

                   0.9 

                 10.0 

                   0.5 

 C222 

  135.3 135.5 

  218.7 217.4 

  54.4 54.8 

60.28-2.20 (2.32-2.20) 49.57-2.16 (2.25-2.16) 

   99.8 (99.7) 71.4(21.5)a 

  41,775 (6.020) 31,614 (1,063) 

 4.9  (4.9)  2.8  (1.4) 

 0.138 (0.670) 0.079  (0.310) 

 6.7  (1.6)  7.1  (1.5) 

  0.201 0.193 

  0.255 0.244 

  0.023 0.019 

  2.125 1.812 

  90.8 90.2 

  8.8 9.4 

  0.2 0.2 

  0.2 0.2
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 a Completeness (%) was 90.5 (76.8) at 2.55 A and 94.1 (84.4) at 2.76 A. #Redundancy was the 
 number of observed reflections for each independent reflection.  *c1/0(1)> was the average of 
 intensity signal to noise ratio. §Completeness was a percentage of independent reflections 

 observed.  ¶Rmerge,  EhErnh,i)-</(h)>I/EhEi/(h,i), where  I(h,i) was the intensity value of the ith 
 measurement of h and  <I(h)> was the corresponding mean value of  I(h) for all I measurements. 

 The summation was over the reflections with  //Q(I) larger than 1.0.  tRegst was a conventional 
 crystallographic R factor,  ElFo-FcliElFol, where  Fo and  Fc were the observed and a calculated 

 structure factor, respectively. TRfi„ was a free R factor in the program CNS (Brunger et  aL, 
 1998) evaluated for the 5% of reflections that were excluded from the refinement. ##r.m.s.d. 

 represented root mean square deviation.  

2-5. Structure determination and refinement 

  The structure of the wild type protein was  determined by the molecular 

replacement (MR) method using the MOLREP program (Vagin and Teplyakov, 

1997). A reference model for molecular replacement was prepared by truncating 

residues 108-118, 210-216, and 501-527 from rat MAOA (PDB code: 105W). The 

initial phases were calculated at 3.0 A resolution using the reference model. Since 

the solvent content of the human MAOA crystal was as high as 63%, phase 

extension was performed from 3.0 A to 2.2 A by the solvent flattening method 

(Wang, 1985) using the program DM (Cowtan, 1994). The resulting map was 

referred to as the  MR/DM map. The initial model of human MAOA was built on 

the  MR/DM map. 

  The structure of the mutant was determined by the molecular replacement 

method using the wild-type structure as a reference model. The  MR/DM maps at 

several resolutions were compared to inspect the effective resolution of the 

intensity data set. Since the electron density map at 2.17 A resolution exhibited 

finer structure than those of the lower resolution, the intensity data up to 2.17 A 

were used for the structural refinement of the mutant. 
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   2-5-1. Molecular Replacement (MR) — the principle 

   Molecular Replacement (MR) is one of the methods to solve the phase problem 

in X-ray crystal structure determination. A known protein whose structure is 

similar to the target protein is located in the unit cell of the target protein crystal. 

Initial phases are estimated for the model crystal consisting of the known protein 

structures. Fourier synthesis with the initial phases and the observed structure 

amplitudes produces a crystal structure that is partly the initial model crystal 

structure and partly the target crystal structure. The structural model of target 

protein is built in the calculated electron density map and it is used for the 

structural refinement in the next step. This method is called molecular replacement 

(MR). 

   The initial phase determination in MR is required to two steps. 

   The first step is to determine the orientation of the model structure in the cell of 

the target molecule by comparing the Patterson function calculated from the known 

model in a P1 cell with that observed structure amplitudes for the crystal of target 

molecule. This is referred to as the rotation function. 

  The second step is to determine the position of the correctly oriented model in 

the cell of the target molecule. This calculation is often referred to as the translation 

function. (Waller and Dodson, 1993) 

  <The rotation function> 

  The rotation function is evaluated with the correlation between Patterson map 

for the target protein and Patterson map for a crystal consisting of a known 

molecule. Orientation search (rotation search) is performed by evaluating the 

correlations for various model crystals each with a different orientation  ((p,w,x) 
from the others. 

  The rotation function can be expressed as below. 
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 C(9,MHzi, v,  w  Ptarget(U,  v,  w)  Pmodel  {(u,  v,  14/)  xR(y,w,x)}  du dv dw 
  C: the value of the rotation function 

  cp,w,x: each set of rotation angles 

 Ptarget(u,  v, w): Patterson function of target molecule 

 Pmode(u, v, w): Patterson function of model molecule whose structure is known 

  (u, v, w): fractional coordinates 

 (9,v,x): rotation matrix 

The maximum in this function which exhibit maxima when the two Pattersons have 

many coincident peaks will tell us the best orientation for placing the phasing 

model in the unit cell of the desired protein. Near the maximum, the rotation search 

can be repeated at smaller angular intervals to refine the orientation. 

  <The translation function> 

  The translation search is performed in the asymmetric unit cell of native crystal 

by evaluating the correspondence between the calculated structure amplitudes of 

the model crystal consisting of a known protein in a given location and the 

observed structure amplitudes of the native crystal. The standard of the estimation 

can be expressed as the R-factor, which is regarded as a criterion of progress of 

structure determination. The R-factor compares overall coincidence between the 

amplitudes of two sets of structure factors, as follows. 

 R=E  IFobsi-  Weak  I  I  /  E  !Fobs  I  

'Fobs! : the observed structure-factor amplitude from the native data set  

IFcalc  I : the calculated amplitude from the model in its current location 

  If the observed and calculated intensities coincide to each other in the overall, 

the numerical differences are small. Because the sum of the differences is smaller 

than the sum of the intensities themselves, so R is smaller than one. All the 

differences equal zero in perfect agreement, and R equals zero. 
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   2-5-2. Density Modification (DM) — the theory 

   After solution of the phase problem by the isomorphous replacement , the 

molecular replacement, or the multiple wavelength anomalous dispersion method , 

the following step is the model building in the electron density map . 

   If this is successful and the important part in model can be followed in the 

electron density map, the structural  refinement can be started. The poor quality of 

the electron density map might prevent us from accurate tracing of the model . 

Wrong structural model may effect in the risk of introducing errors which cannot 

be easily removed during refinement. When some models were built in poor 

electron density, the structure may have some undetermined parts or wrong tracing 

models in important structures. So, in such a case, refinement of the electron 

density should be preceded through improvement of the protein phase angles. 

   DM is a general term of the procedure for improving the map with poor density . 

There are some methods, such as solvent flattening , histogram matching, 

multi-resolution modification, non-crystallographic symmetry averaging and 

Sayre's equation technique.  (Waller and Dodson, 1993) 

  Solvent flattening simply involves flattening the density in the solvent region . It 

is the most common density modification and is powerful to improve phases at 

fixed resolution, but weak at extending phases to higher resolution . 

  Histogram matching is a method of image processing, which forces the density 

to follow the accurate distribution of values. This modification is applied only to 

the density in the protein region. This method is weaker than solvent flattening for 

improving phases, but is much more powerful at extending phases to higher 

resolutions. 

  Multi-resolution modification is an extension to solvent flattening and 

histogram matching which allow them to be employed at two resolutions 

simultaneously. It is fast and fairly  powerful across a range of test data . 
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  Non-crystallographic symmetry averaging is one of the most powerful 

techniques available for improving phases. However it can only be applied when 

there is non-crystallographic symmetry in the crystal. So, we didn't use this method 

for these structures because of a monomer in the asymmetric unit, i.e. there is no 

non-crystallographic symmetry in this crystal for both of them, wild-type and 

mutant. It requires some additional information, such an averaging mask, 

describing the parts of the map to be averaged, and averaging operators, describing 

how the related regions are positioned and oriented. (Rhodes, 2006) 

  In this research, the solvent flattening and histogram matching are mainly 

applied for the refinement of electron density. The initial map was composed with a 

set of reflection data and calculate phases from the model crystal built by the 

rotation function followed by the translation function. If the phases are poor, the 

map will be noisy, and it may be difficult to follow the protein main chain. Noise 

peaks in the solvent region were removed by the solvent flattening. And the 

modified electron density is back-transformed to give a new phase set. The 

simplest method for defining a molecular boundary around the protein molecules is 

by visual inspection of the preliminary electron density map. However, this is 

rather subjective for a noisy map. An automated method has been proposed by 

Wang (1985). In the method, the noisy electron density map is smoothed with the 

next seven steps, as followed Wang (1985). 

1. Preparation a data file which contains the phase probability coefficients by the 

SIR(Single Isomorphous Replacement), the MAD, the SAD or the MR methods. 

2. Calculation of a Fourier map with the available phases and observed structure 

amplitudes. 

3. The calculated Fourier map is smoothened by Wang method (1985) to produce a 

mask which identifies both protein and solvent regions. Each grid point belonging 

to protein mask is assigned by the electron density with higher value than a 

threshold level determined from solvent content of the crystal (Wang, 1985). 
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4. Solvent  flattening  ; Before this step, a constant density,  pc, is added to the entire 

electron density map such that the average solvent density after adding such a 

constant will follow the following constraint: 

 (pc+<psoi>)/(pc+pmax)=s 

 <psol>- and  pm' are meaning the average solvent density and the maximum 

protein density in the Fourier map, respectively, and S is a constant. Since F(000) is 

not included in Fourier summation,  pc is added to p to estimate the electron density 

at any resolution. S is the averaged electron density of solvent region relative to the 

maximum electron density of protein region. In theory, if the phases are known the 

ratio, S can be estimated from knowledge of the protein and solvent composition, 
the mean temperature factor, and the resolution of the data. Ideally S should be 

evaluated and compiled from a number of solved structures so that optimal values 

can be used for the determination of other unknown structures with similar 

condition. S is empirically given depending on resolution. That of higher resolution 

map is larger than that of lower resolution. After p  c is evaluated from above 

equation, the removal of the noise in the map, termed solvent flattening, is carried 

out in the following two conditions: (1)  pc is added to the protein of map and any 

negative density remaining in this region is considered an error and set to zero, and 

(2) the density in the solvent region is substituted with the new average density, 

 pC+<psol>. With the removal of almost the entire noise in the solvent region and 

part of the noise in the protein region, the map becomes the partial structure of the 

protein under investigation. 

5. Calculation of new structure factors by Fourier transform of the solvent-flattened 

electron density. 

    Phase probability,  Pc(9), from the solvent flattening is given by the following 

equation, 

 PAO =  Nexp  [2  IFoliFell(<1F°12-Te12>)cos(9-90], 
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   where  F0 and  Fc are an observed and a calculated structure amplitudes, 

respectively, and  (pc is a phase angle of the calculated structure factor. N is 

determined under the normalizing condition, that is, integral  Pc(9) is 1. 

6. Phase combination Step. 

  When there are such experimental phase informations as  MIR, SIR, MAD and 

SAD, these experimental phase informations are combined with the phase from the 

solvent flattening. The phase probability is estimated by joint probability of an 

experimental phase probability and the phase probability by solvent flattening as 

follows, 

 Pcomb(9)=N  P0(9)  Pc(9), 

  Throughout this step, the correct solution in both direct and reciprocal space 

may be obtained simply through the removal of noise or errors. In other words, this 

approach may be regarded as a signal (image) enhancement process through error 

reduction (filtering of errors in direct and reciprocal space). 

7. Calculation of the improved map based on  IFobsi and acorn and a weighting factor 

of m (Wang, 1985). 

  The improved electron density map is calculated with coefficients of 

 mx1Fobsixexp[iacomb]. Where the weighting factor m and the combined phase  acornb 

are evaluated by the following equations, 

             m  cos(acomb) =  E  Pcomb(9)  cos((p) /  E  Pcomb((P) 

                            and 

             m  sin(occomb) =  Pcomb((p)  sin(9) /  E  P  comb((P). 

Procedures from step 2 to step 7 are iterated until the electron density refinement 

converges well. 
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   2-5-3. Structure refinement 

   After solving of the phase problem by MR, the REFMAC5 program 

(Murshudov et al., 1997) was used for structural refinement. The 

composite-omit-maps which were generated by the CNS  (Brunger et  al., 1997) 

were mainly used for remodeling of human MAOA. The Coot program (Emsley 

and Cowtan, 2004) was used for modeling. Electron density maps were generated 

by the CNS  (Brunger et al., 1997). 

   Both of proteins, wild-type and mutant  (G110A), were one molecule in an 

asymmetric unit. In order to an inhibitor and additional molecules such as 

detergents and additives, their geometry libraries were made by using the 

SKECHER program in the CCP4 suite (Collaborative Computational Project, 

1994). During the refinement steps, the all progress was monitored by comparing 

the measured structure-factor amplitudes  Fobs with  IFcalci from the current model. 

If our structure converged to the correct structure, both of these values used should 

be converged to each of them, too. Generally, the residual index, termed R-factor, 

is well for the confirmation of convergence. 

               R=Eh  IIF(h)obsi-lciF(h)calcii /  Eh  IF(h)thsi 

   Sometimes, R-factor is calculated at low resolution with a wrong model in a 

refinement step because of over fitting problem. In order to avoid its problem, R 

free is used during the refinement step. In general,  5-10% reflections are randomly 

selected for the Rfree calculation, but are not used during the refinement steps. If the 

correct model were built, both R-factor and  Rfree-factor would exhibit low values. 

R-factor is related to the resolution. Reasonable structure for these models should 

give an R no greater than (resolution)/10. For example, 2.2 A model should give 

R-factor smaller than 0.22 in the value. For judging the quality and usefulness of 
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the refined model, the models were checked using the program PROCHECK. The 

results of the check, Ramachandran plots, are shown in Figure 3-5, 3-6. 

   The structure of wild-type human MAOA was refined to  R=  0.201 and  Rfree= 

0.255 at 2.2 A resolution. The  G110A mutant was isomorphous with the wild type, 

the mutant structural model was prepared by replacing the residue 110 with 

alanine; this model refined to R= 0.193 and  Rfree= 0.244 at 2.17 A resolution. 

2-6. Determination of the kinetic properties 

  The activity of monoamine oxidase A was measured spectrophotometrically by 

monitoring the increase in absorbance at 314 nm upon oxidation of kynuramine and 

the formation of 4-hydroxyquinoline (Weissbach et al., 1960) in assay buffer (25 

mM Tris pH 7.5, 150 mM NaC1). The concentration of kynuramine ranged from 

62.5  !AM to 5.0 mM. The extinction coefficient of 4-hydroxyquinoline at 314 nm 

was determined to be 12,300  WI  cm  1. The kinetic constants were calculated 

according to the method of Ma and Ito (2002). The concentration of purified 

MAOA was determined by the absorbance of FAD. The oxidized form of FAD has 

an absorption peak at 456 nm and an extinction coefficient of 11,800  M-lcm-1 

(Weyler and Salach, 1985). The concentration of MAOA protein in the 

mitochondrial outer membrane was determined by titration with an irreversible 

inhibitor, clorgyline. Briefly, each 10  pi of prepared crude membranes from yeast 

cells expressing MAO as incubated with 0, 10, 20, 30, 40, 50, 60 80, or 100 pmol 

of clorgyline in assay buffer at room temperature for 2 hours. The remaining 

enzymatic activity was measured using kynuramine as a substrate, as described 

above. The minimum concentration of clorgyline that completely inhibited MAOA 

was considered equivalent to the concentration of the enzyme. 
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Chapter 3. Results and Discussions 

3-1. The overall structure of human monoamine oxidase A 

   Figure 3-1 shows the overall structure of human MAOA. It is nearly identical to 

that of rat MAOA, which has  —90% identical sequence to human MAOA. The 

composite-omit-maps and structural features were coincided with  substrate/ 

inhibitor cavity and the entrance, as well as with other regions including single 

transmembrane helix. 

   The C-terminal helix was built by iterations of structural refinements and 

calculations of composite-omit-maps (Figure 3-2). The statistics of the structural 

determinations of the wild-type and  G1  10A mutant are shown in Table 1. In the 

single transmembrane helix from residues 498 to 524, residues 498-521 were fitted 

uniquely on the composite-omit-map as in Figure 3-3, and converged well to a 

helical conformation after structural refinement. Although the map at the end of 

C-terminal region was poor in electron density, the residues, 522-524, were able to 

be successfully built into the model and their structures converged to a non-helical 

conformation after refinement. The end three residues, 525-527, were not visible. 

  The side chains of the transmembrane helix were located in the map, although 

the B-factors were higher than those of the extra-membrane domain. The averaged 

B-factor of backbone atoms for the C-terminal helix was 64.2 A2, while that for the 

extra-membrane domain was 34.3 A2. In the mutant,  G1  10A, the B-factor was 65.5 

A2 for the C-terminal helix and 33.5 A2 for the extra-membrane domain. 

  The peptide bond between the flavin-substituted Cys-406 and Tyr-407 was in 

the cis-conformation, as was that of human MAOB determined at 1.7 A resolution 

as shown in Figure 3-4. The corresponding peptide bond of rat MAOA was not 

assigned as the cis-conformation, because the resolution of the electron density 

map was too low to determine whether the peptide bond was in the trans- or 
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cis-conformation. It must be the same  cis-conformation as determined in human 

MAOA and MAOB. Although the Ramachandran plot for  Asp61 of the human 

MAOA was in the disallowed region, the residue fitted well in the 

composite-omit-map (Figure 3-5, 3-6).

Figure 3-1 Stereoview of the overall structure of human monoamine oxidase A. 
The picture shows two domains as three parts in different colors. N= N-terminus; 
C= C-terminus.  G110 (black arrow) located on a loop structure near the entrance is 
the mutation point. The extra-membrane domain consists of the FAD-binding 
region (yellow) and the substrate/inhibitor binding region (red). The C-terminal 
single helix transmembrane domain is shown in blue. FAD and harmine molecules 
are shown in the stick model. Oxygen atoms are shown in red, nitrogen atoms in 
blue, and other FAD atoms are shown in yellow; Harmine is shown in green . This 
model was generated by Pymol (DeLano, 2002). 
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Figure 3-2 Stereoviews of 
each step for the modeling of 
the transmembrane helix 
structure which was built by 
iteration with several models 
and Fo-Fc difference Fourier 
maps. (A) Truncated model 
from 500- to 524-residue and 
positively charged Fo-Fc 
difference Fourier map for the 
truncated part. (B) Each of 
five-alanine residues was 
gradually added to the truncated 
part until 524-residue in Fo-Fc 
difference Fourier map. (C) 
Overall helix-structure which 
was well changed from the 
alanine residue to each of 
specific residue in the map.



Figure 3-3 Stereoview of the C-terminal transmembrane helical structure. The 
composite-omit-map for the C-terminal domain is contoured at the 1.0  a level at 
2.2 A resolution. A structural model of the transmembrane helix from 498 to 524 is 
superposed on the composite-omit-map. The other parts of the protein structure are 
not shown for the clarity. 
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Figure 3-4 Stereoview of (A)  cis-conformation peptide between C406 and Y407 
and its composite-omit-map, and (B) the peptides between human  MAOA(yellow),  MAOB(

orange) and rat  MAOA(cyan). 
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Figure 3-5 Ramachandran plot for wild type of human MAOA .  Asp61 is located in 
disallowed region.
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Figure 3-6 Ramachandran plot for mutant of human MAOA .  Asp61 is located in 
disallowed region. 
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  The human  MAOAs were monomers rather than dimers, as in the case of rat 

MAOA. This monomeric state in crystals was consistent with that of the 

monoclinic human MAOA (De Colibus et  al., 2005). The statistics of the structural 

determinations of the wild-type and the  G110A mutant are shown in Table 1. 

  We also detected two molecules of  dimethyldecylphosphine oxide (DMDPO) in 

a Fo-Fc difference Fourier map and composite-omit-map (Figure 3-7). DMDPO is 

the detergent that was used in crystallizing the protein. The molecules were 

surrounded by three aromatic residues and a proline:  Trp116, Trp491,  Tyr121, and 

 Pro118. In vivo, the DMDPO site is likely occupied by phospholipid in the 

mitochondrial outer membrane. In addition, the horizontal arrangement of the 

positively charged residues—Arg129, His148,  Lys151, Lys163, Arg493, Lys503, 

Lys520 and  Lys522—that interact with the phospholipid hydrophilic head groups, 

indicates the location of the outer-membrane surface, as shown in  Figure 3-8. A 

one-turn helix parallel to the membrane surface was supposed to be buried in the 

membrane, as well as the single transmembrane helix, as seen in rat MAOA (Ma et 

al., 2004b). 
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Figure 3-7 The detergent molecules bound at the one-turn helix next to the 
transmembrane helix. The composite-omit-map (1.0  a level) was generated by 

 CNSsolve  (Brunger et al., 1998). The pocket is surrounded by hydrophobic amino 
acid residues:  W116, P118,  Y121,  L122, and  W491. These models were generated 
by Pymol (DeLano, 2002).
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Figure 3-8 Binding model of MAOA into the mitochondrial outer membrane. The 

positively charged residues Arg129, His148,  Lys151, Lys163, Arg493, Lys503, 
Lys520 and Lys522 are shown. These residues are presumed to interact with the 

phospholipid hydrophilic head group at membrane surface shown as blue 
semitransparent areas. The upper area represents the cytosolic side.
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3-2. The Structure of the entrance and substrate/inhibitor cavity 

   The  MR/DM and composite-omit-maps and structural features, including 

B-factors, were coincided with the residues 108-118 and 210-216, which were 

composed of the entrance and active center cavity, respectively, as well as with 

other regions. Residues 108-118 and 210-216 of the wild-type human MAOA were 

clearly assigned in the  MR/DM map. The MR/DM and composite-omit-maps and 

structural features, including B-factors, were reasonable for residues 108-118 and 

210-216, as well as for other regions. Residues 108-118 and 210-216 of human 

MAOA superposed well with the homologous regions of rat MAOA (Ma et  aL, 
2004b), as well as with the corresponding regions of human MAOB (Binda et al., 

2003), but differently from those of the earlier reported monoclinic human MAOA 

(De Colibus et al., 2005). Especially, 210-216 residues are important components 

for the formation of active center cavity in all kinds of MAO. To double-check the 

validity of the structure at these regions, we used the monoclinic human MAOA as 

a search model for the molecular replacement. The resultant maps at the two loop 

regions did not fit those of the monoclinic human MAOA, but fit our new structure 

well. A Fo-Fc difference Fourier map had no significant residual density at the 

residues 108-118 and 210-216 of our structure. These results further confirmed our 

structure. 

  Harmine, a reversible  inhibitor, is located in the active center cavity of the 

enzyme. Its chemical structure was shown in Figure 3-9. It interacts with Tyr69, 

 Asn181, Phe208, Va1210, Gln215, Cys323,  Ile325,  I1e335, Leu337, Phe352, 

Tyr407, Tyr444, and FAD (Figure 3-10). Especially, the amide group of the 

 G1n215 side chain interacts tightly with harmine by a  TC  IT interaction with an 

inter-plane distance of 3.4 A. Seven water molecules occupy the space between the 

inhibitor and these groups. The inhibitor and the FAD are bridged through two 

water molecules by hydrogen bonds. FAD tightly interacts to MAOA protein 
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through several residues, Ser24, Arg45,  Arg51, Tyr69, Va1244, Thr435 and Met445 

with hydrogen bond, and  11e19,  G1y20,  G1u43,  A1a44,  G1y50,  G1y66,  G1y67,  11e273, 

Leu277, Va1303, Trp397, Tyr407 and Tyr444 with hydrophobic interaction, in 

human MAOA. In addition, FAD interacts with eight water molecules by hydrogen 

bond. Some residues,  G1y22,  11e23,  G1y25,  G1u43, Arg45, Arg47,  G1y49,  G1y50, 

 G1n74, Gln215,  A1a272, Tyr402, Ser403,  G1n436, and  G1n446, are connecting to 

FAD with hydrogen bond throughout water molecules. Figure 3-11 shows the 

interactions between FAD and human MAOA in detail. 
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Figure 3-10 Stereoview of the substrate/inhibitor binding site. The Fo-Fc difference 
Fourier map contoured at  2.06 was generated at 2.2 A resolution for the inhibitor 
(harmine) and FAD. Amino acid residues are shown in yellow, and FAD and 
harmine are shown in green. Dotted lines indicate hydrogen bonds.
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Figure 3-11 The picture of the interactions among FAD, inhibitor(harmine) and 
human MAOA. This picture was generated by the Ligplot program. (wallace et al., 
1995)
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3-3. Structural comparisons with other MAOs 

   3-3-1. human MAOA and human MAOB - structure of the  substrate/ 

   inhibitor cavity with specific reversible inhibitor and its specificities 

   The superposed residues surrounding the substrate/inhibitor cavity of human 

MAOA, rat MAOA, and human MAOB are shown in Figure 3-12. All 16 residues 

surrounding the substrate/inhibitor cavity are conserved between human and rat 

MAOA. In human MAOA, six of the 16 residues differ from the structures of 

human MAOB. 

 The structure of human MAOA with harmine is superposed to that of human 

MAOB with other inhibitors including isatin (pdb code,  10JA), rasagiline analogue 

(pdb code, 2C67), and  1,4-diphenyl-2-butene (pdb code, 10J9). The positions of 

the aromatic rings of these reversible inhibitors are highly conserved, as shown in 

Figure 3-13. Coplanar aromatic rings make  t—n interactions with  G1n215 of 

human MAOA or Gln206 of MAOB  (G1n215/206). The aromatic rings interact 

with  Phe352/343 and Tyr407/398 at the opposite side of  G1n215/206. The 

molecular structure of the  harmine in human MAOA could not be accommodated 

into human MAOB because of its structural overlap with Tyr326 of MAOB. Thus, 

 Ile335 in MAOA and Tyr326 in MAOB play a crucial role in substrate/inhibitor 

selectivity. These results are consistent with our previous structural analysis of rat 

MAOA, and with site-directed mutagenesis studies (Ma et al., 2004b, Geha et al., 

2001). The structure of  1,4-dipheny1-2-butene in human MAOB would collide with 

Phe208 of human MAOA, which corresponds to  I1e199 of human MAOB. 
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Figure 3-12 Stereoview of the substrate/inhibitor binding sites of human MAOA, 
MAOB, and rat MAOA. Residues of human MAOA are shown in yellow, rat 
MAOA in orange, and human MAOB in cyan. The residues that are important in 
forming the substrate/inhibitor cavity are labeled. The residue numbering is 
according to the residue positions in human MAOA, which are the same as in rat 
MAOA. The residue numbers of human MAOB are shown in parentheses. Two 
residues,  1199 of human MAOB and 1335 of human or rat MAOA, are present as 
different rotamers in different complexes. The cavity is calculated by VOIDOO 
(Kleywegt et. al., 1994) with a 1.57A radius probe. These models were generated 
in Pymol (DeLano, 2002) (RMSD was 0.545 A for human MAOB and  0.612 A for 
rat MAOA).
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Figure 3-13 Stereoview of structure of the substrate/inhibitor binding sites in 
human MAOA and MAOB complexed with specific inhibitors. The residues are 
numbered according to human MAOA, and the numbers in the parentheses are for 
human MAOB; MAOA and MAOB residues are shown in yellow and light blue, 
respectively. Inhibitors are colored as follows: orange, harmine; green, isatin 

 (10JA); purple, rasagiline analogue (2C67); and red,  1,4-dipheny1-2-butene 
 (10J9)). FAD is shown in black. Nitrogen and oxygen atoms are shown in blue and 

red, respectively.  1199 of MAOB is present as different rotamers in different 
complexes. The rotamer of this residue, in MAOB with  1,4-dipheny1-2-butene, is 
shown in red. The residues Q215 and Y407 that forms important hydrophobic 
interactions to the inhibitors are shown as thick stick models.
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  We also compared the shapes and sizes of the substrate/inhibitor cavities 

between human MAOA and MAOB by using the VOIDOO program. Figures 3-14, 

15 and 16 are generated by 1.4 A probe radius (like water molecular radius) which 

differ from the 1.57 A probe radius in Figure 3-12. When we calculated the cavity 

with 1.4 A probe radius, the cavity connected to the outside of the molecule. In 

order to avoid this, we artificially insert a mutation on the entrance  loop with more 

large residues like alanine or valine for the calculation of the cavity. The shape of 

the cavity for human MAOA is composed of only one cavity in Figure 3-14, but the 

cavity for human MAOB seems to be divided into two cavities by two specific 

residues, Tyr326 and  11e199, in Figure 3-15A. We can confirm that the cavity is not 

only divided because the residues can make another formation with the specific 

inhibitor,  1,4-dipheny1-2-butene, as shown in Figure  3-15B, but also restricted by 

two specific residues, Tyr326 and  11e199, which was known as the differences 

between two subtypes of MAO as mentioned above. In a comparison of human 

MAOB with the different inhibitors in Figure  3-15A and  3-15B, the important 

structural characteristic is the formation of the rotamers in  Ile199 residue. As 

shown in Figure 3-13, the structure of human MAOB bounded  1,4-dipheny1-2- 

butene differs from another human MAOB structure combined with reversible 

inhibitors in the residue (the rotamer is shown in red). The residue made the 

restricted form according to kinds of inhibitor. 

  One little special cavity which has about 51.10 A3 volume is also generated by 

changing side chain from Phe208 (MAOA) to  11e199 (MAOB). As to be related to 

these rotamers, Binda et  cd.(2003) was shown to function as a "gate" in the middle 

of substrate/inhibitor cavity. We also compared the cavity sizes between human 

MAOA and MAOB. The two models and the cavities are superposed in Figure 

3-16. The cavity size for human MAOA and MAOB are 297.72 A3 and 366.32 A3, 

respectively. The differences of the cavity size between human MAOA and MAOB 

result in the change of the side chain, Phe208  (MAOA) to  I1e199  (MAOB). 
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  The selectivity of the reversible inhibitors is due to the different size and shape 

of the substrate/inhibitor cavity, restricted by  11e335 and Phe208 in MAOA, which 
correspond to Tyr326 and 11e199 of MAOB. When the structures of human MAOA 

with harmine and rat MAOA with clogyline are compared with each other, the side 
chains of 11e335 have different conformations. The different inhibitors are 

accommodated by the induced fit of 11e335, as observed for 11e199 of human 

MAOB (Binda et al., 2003). 

  From results of these comparisons, we can confirm that these differences of 

shapes and sizes of the substrate/inhibitor cavity came from characteristic 

substrates/inhibitors. 
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Figure. 3-14 Stereoview of the substrate/inhibitor binding site of human MAOA. 
The carbon atoms are shown in yellow; nitrogen in blue and oxygen in red. FAD 
is shown as black without a classification of each of atoms. The residues that are 
important in  forming the substrate/inhibitor cavity are labeled. The cavity shown 
with a red mesh and semitransparency surface model is calculated by the 
VOIDOO program (Kleywegt and Jones, 1994) with a 1.4 A radius probe. The 
cavity size for human MAOA is 297.72 A3. This picture was generated by the 
Pymol program (DeLano, 2002).
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Figure. 3-15 Stereoviews of the substrate/inhibitor binding site of MAOB. The 
models of human MAOB are binding with the specific inhibitors, rasagyline (A) 
and 1,4-diphenyl- 2-butene (B). The carbon atom is shown in cyan. ; nitrogen in 
blue and oxygen in red. FAD and  1,4-dipheny1-2-butene inhibitor are shown in b

lack and red without any classification of each of atoms in the color, respectively. Th
e residues that are important in forming the substrate/inhibitor cavity are labeled. 

The cavities are shown with a mesh and semi-transparency surface model by cyan 
and red color with binding rasagyline and  1,4-dipheny1-2-butene, respectively. The 
cavity sizes for human MAOB complexes with rasagyline and  1,4-dipheny1-2- b
utene are 366.32 A3 and 308.66 A3. All cavities were calculated by the VOIDOO 

program (Kleywegt and Jones, 1994) with a 1.4 A radius probe.
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Figure. 3-16 Stereoview of comparison of the cavity shapes and size between 
human MAOA and MAOB. The carbon atoms are shown in yellow and cyan for 
human MAOA and MAOB, respectively. The cavities are shown with mesh and 
semi-transparency surface model by orange and cyan color for human MAOA and 
MAOB, respectively. The cavity sizes for human MAOA and MAOB are 297.72 
A3 and 366.32 A3, respectively. These models in this picture were generated by the 
Pymol program (DeLano, 2002).
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 3-3-2.  Orthorhombic and monoclinic structure of human MAOA 

   We compared our orthorhombic human MAOA with monoclinic human 

MAOA by De Colibus et al. (2005) (2BXS). The differences of the  substrate/ 

inhibitor cavities between two structures are shown in Figure 3-16 as well as Figure 

3-17. In Figure 3-17, harmine and clorgyline are shown in orange and blue color, 

respectively. There are the significant differences at two  loop structures, 

 F208-R217 and F108-P118, as shown in Figure 3-17A. The differences in size and 

shape of the substrate/inhibitor cavity will be related to the variations of 

substrate/inhibitor specificities for enzyme of human MAOA. Our human MAOA 

structure is similar to that of rat MAOA and human MAOB at the loops, but 

different from those structures of another model by De Colibus et al. (2005) (PDB 

ID: 2BXS), in which it seems that the loop from Alal  11 to  Va1115 is flexible and 

was not determined. Our structure at high resolution, however, gives clear electron 

density at this region, as shown in Figure  3-18A. 

   In 2BXS structure, the  loop structure with  F208-R217 residues makes a 

round-folded structure beside the substrate/inhibitor cavity, taking different fold as 

the present our structure. These differences directly affect the entrance through 

which the substrate/inhibitor gets into the binding site (red semi-transparent circle 

in Figure  3-17A). Further more, the location of Q215 is totally different in the 

different structures. In our structure, the loop,  F208-R217, makes one-turned helix 

and round-folded structure beside substrate/inhibitor cavity. From this structure, 

aromatic reversible inhibitor can be located in the substrate/inhibitor cavity with 

the specific interaction between  G1n215 and Tyr407. 

  The loop of  A111-V115 with our structure is fully visible in electron density 

map; it forms the part of entrance for substrate/inhibitor. To confirm that our map is 

reliable, we used composite-omit-map rather than the 2Fo-Fc map, the later may 
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introduce more bias from the model structure. Figure 3-18 is shown to the 

comparison between orthorhombic and monoclinic structures of human MAOA in 

two  loop structures,  F108-P118 and  F208-R217, with their composite-omit-map. 

Our  loop structures of orthorhombic MAOA are coincided into the 

composite-omit-map without any disorder in Figure 3-18A, but the structures of 

monoclinic MAOA with the composite-omit-map had some disorder on the loop as 

shown in Figure 3-18B. In addition, the DM maps which previously mentioned 

were also used for a verification of this structure of A111-V115 whether it is clearly 

located in the wild-type human MAOA or not. 

  For rational and proper drug design, the three dimensional structures must be 

based on a self verification such as by using several different maps. In the 

structural comparison between rat and human MAOA, we could confirm that there 

was high structural homology in substrate/inhibitor cavity. In contrast to the 

suggestion by De Colibus et  al. (2005) that one mammalian form of MAO cannot 

be unambiguously extrapolated to other mammalian forms because of the 

differences of the two loop structures F108-P118 and  F208-R217 between rat 

MAOA and monoclinic human MAOA structures, our results indicate that the 

difficulty of the unambiguous extrapolation must take from not the difference of 

two loop structures, but the differences in the additional information, because of 

high structural and sequential identities in the active cavity. 
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Figure. 3-17 Comparison between orthorhombic and monoclinic structure of 
human MAOA. Human MAOA is shown in yellow color with the inhibitor, 

 harmine in orange. The monoclinic MAOA (2BXS) is shown in light blue with its 
inhibitor, clorgyline in blue. (A) Red semitransparent circle represents the putative 
substrate/inhibitor entrance which calculated from CAVER program. The 
superposing of the structures is generated by Pymol program (DeLano, 2002). (B) 
In the case of rat, clorgyline showed in purple here, was bound in a different 
orientation 
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Figure. 3-18 Comparison between orthorhombic and  monoclinic structure of 
human MAOA in two  loop structures,  F108-P118 and F208-R217. (A) 
orthorhombic human MAOA is shown in yellow color with the inhibitor, harmine 
in orange, and with composite-omit-map at 1.0  Q contoured level. (B) The 
monoclinic MAOA (2BXS) is shown in cyan color with its inhibitor, clorgyline in 
blue, and with composite-omit-map at 1.0  Q contoured level. A few disordered 
parts are shown in Red semitransparent circle. 
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   3-3-3. Human and rat MAOA 

   As mentioned above, unlike rat MAOA and human MAOB which form a tight 

dimer in the crystals, human MAOA as an orthorhombic crystal was a monomer in 

the C222 crystal (Figure 3-19B).  In the packing model, this is similar to the model 

of monoclinic human MAOA. The monoclinic human MAOA published by De 

Colibus et  al. (2005) is a monomer in the crystal. The results with the analytic 

ultracentrifugation showed that monoclinic human MAOA also exists as a 

monomer in aqueous detergent solutions. Similarly, our orthorhombic human 

MAOA exists as a monomer, which differed from rat MAOA. This structure 

indicates that our human MAOA may exist as a monomer in aqueous detergent 

solutions such as the model of monoclinic human MAOA. Rat MAOA is packing 

of tetrameric formation as two dimers in the crystal. However, four monomers are 

packing with two units which are composed of two monomers. Rat MAOA likely 

forms a dimeric structure in a manner similar to MAOB, in vivo (Binda et  al ., 2002, 

2003). 

  hi comparison of human MAOB between two different inhibitors, isatin and 

 1,4-dipheny1-2-butene, the different rotamer conformations showed that  11e199 

exhibits that functions as a "gate" between Tyr326 and 11e199 (Figure 3-13) (Binda 

et al., 2003). When small inhibitors, like isatin and rasagyline, are bound to the 

substrate/inhibitor binding cavity, the  Ile-199 restricted to separate the cavity as 

two parts. Here, we will term this form as a "restriction form". However, when a 

special inhibitor, like  1,4-dipheny1-2-butene, is bound to this cavity, the  Ile-199 is 

rotated to a conformation such one cavity as "open form". In the comparison 

between rat and human MAOA, the rotamers which are similar to the rotamers in 

human MAOB are found with  11e335 residue (Figure 3-12). 
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Figure. 3-19 Stereoviews of (A) rat MAOA and (B) human MAOA packing model 

in  P43212 and C222 crystal, respectively. 
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3-4. The loop structures at the substrate entrance and its function 

in enzyme activity 

When the structure of the substrate/inhibitor cavity was calculated using the 

VOIDOO program (Kleywegt and Jones, 1994) with a radius of 1.57 A, the cavity 

was completely closed, as shown in Figure 3-20A; when we calculated with a 

radius of 1.40 A, however, a narrow path was detected between the cavity and the 

outside of molecule in Figure 3-20B. The entrance for substrate/inhibitor is 

surrounded by residues V93-E95,  Y109-P112, and F208-N212, which lie in three 

different  loops. The steady-state width of the entrance is too narrow for such 

compounds as harmine to pass through. We assume that structural fluctuations 

that enlarge the entrance are essential in order for the cavity to accept substrates . 

To understand the relationship between the structural fluctuations and the 

enzymatic reactions, we made a mutation at  Gly110 (in the loop 109-112 beside the 

entrance) in rat MAOA and human MAOA. Although this site is far from the active 

center, the activity of the purified  G110A mutants dropped significantly. Sequence 

 alignments of MAOA  (Thr88-Tyr121) and MAOB  (Thr79-Tyr112) for a few 

mammals are conserved well as shown in Figure 3-21. These alignments are also 

shown to the similarity of mutation point. To further analyze the structure-function 

relationship at this site, we determined the structure of human  G110A. The Ca trace 

of human  G110A was almost identical compared to wild-type MAOA, both in the 

loop structures and in other parts of the protein, implying that the activity change 

was derived from a dynamic alteration of the structure of the enzyme (Figure 3-22). 

To further confirm the role of the flexibility of  G110, a  G110P mutant was made, 

which gave this region a highly rigid quality. As expected, the  G110P mutant 

showed an increase of Km of 19-fold (Table 2). Together with the structural 

characteristics of the substrate/inhibitor binding site, these results suggest that the 

loop flexibility is critical for open the entry for substrates/inhibitors . 

                          59



Figure 3-20 Stereoview of (A) the active center cavity which was calculated by 
VOIDOO (Kleywegt and Jones, 1994) with 1.57 A probe radius and connected 
to the surface with  —1.55 A radius probe, and (B) the pathway from the active 
center to protein surface. The entrance is surrounded by specific residues: 
V93-E95 in the  K90-L97 loop structure,  Y109-P112 involving mutation point, 

 G110, in the F108-P118 loop structure and F208-N212 in the  F208-R217 loop 
structure. This pathway was generated at 1.4 A probe radius. 

                           60



Figure. 3-21 Sequence alignments of  MAOA  (Thr88-Tyr121) and MAOB 
 (Thr79-Tyr112) for a few mammals. These alignments are shown to the 

similarity of mutation point. The asterisk means the  G110 mutation 
 point.(MA0A/MA0B: rat  P21396/P19643, mouse  Q64133/Q8BW75, human 

P21397/P27338, orangutan  Q5RE60/Q5RE98, dog P58027/Q7YRB7, bovine  Q
5NU32/P56560, pig  P21398/Q6PLK3, guinea pig  Q6Q2JO/P58028) 
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Figure. 3-22 The comparison of the structures between wild type (yellow color) 
and  G110A mutant (sky blue). wild type and  G110A at for the putative entrance 
site are showed in both stick (for side chain) and cartoon (for main chain), the 
composite-omit-maps were contoured at 2.0 a level.  K90-L97,  F108-P118 and 

 F208-R217 loop structures on the entrance (the left) and the active site (the right), 
respectively. 
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Table. 2. The kinetic parametersforFtrR wild-type and mutant human MAOA.MA

Enzyme Solubilized form  MPT Membrane-bound form

 Km(mM) lost  kcat/Km  Km(mM)  kcat  kcatlKm

 (mind)  (mind  mM')  (mind)  mhfl  nal-1)

Rat WT  0.096+0.016 146+21  1530+143 0.026+0.001  152+5  5792+434

Rat  G110A  0.913+0.096 122+10  134+14  0.039+0.003  145+3  3757+268

Rat  G110P  1.834+0.178  44±3 24±4  0.184+0.039  142+29  773+14

Human WT  0.117+0.004 181+31  1544+263 0.044+0.004  165+2  3803+349

Human  G110A  0.526+0.083  116+13  221+20  0.093+0.003  131+4  1407+41

   Interestingly, the mutant enzymes showed more significant changes when they 

were solubilized from the membrane, as compared to wild-type enzymes. For rat 

 G1  10A, the Km for the substrate  kynuramine increased nearly 10-fold  (0.096  mM 

to  0.913 mM) compared to the wild-type in the detergent-solubilized form. 

However, there was very little change in the membrane-bound form  (0.026 mM to 

0.039 mM). The human mutant also showed similar results. The kcat values for the 

wild-type and all mutants of rat MAOA or human MAOA are comparable, ranging 

from 116 to 181  min-1 for both the solubilized and membrane-bound forms, except 
for solubilized rat  G110P mutant, which has a  kcat of 44  min-1. Since solubilized 

 G1  10P has a very high Km value, it is difficult to accurately estimate the maximum 

activity, because we observed some substrate-inhibition phenomena at very high 

concentration of substrate (i.e., the activity decreases while the substrate 

concentration increases too high). Therefore, the low  kcat may not reflect a true 

quality of  G1  10P. These results suggest that the mutation on  G110 does not affect 

enzyme catalytic activity, but rather affects substrate binding , especially in the 

solubilized form. 
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  These differences in Km between the membrane-bound and solubilized forms 

were previously caused by the inactivating effect of the detergent. Although the 

detergent may have some effects on enzyme activity, it cannot fully explain why 

the mutants showed significantly bigger change than the wild-type. 

  Therefore, we conclude that it is the membrane anchoring, but not detergent, 

that affects enzyme catalytic efficiency (Km) in MAOA. The decrease of the 

activity in C-terminal truncated MAOB (Rebrin et. al., 2001) also support the idea 

that membrane anchoring is essential for MAO's functions. 

  There is also a possibility that the different Km values between mutant and 

wild-type are caused by the larger residues in the mutants, which may block the 

entrance. If the size plays a major role in blocking the entrance, the mutants should 

show similar decreases in substrate affinity in both the membrane-anchored and 

solubilized forms. However, our result showed that only the solubilized form but 

not the membrane-anchored form had a dramatic change in Km, indicating that the 

residue size at  G110 is not a major factor that affects the Km. Instead, flexibility at 

this site, together with the membrane anchoring, plays the major role. Since the 

mutation site is far from the active center, and the crystal structure of  G1  1  OA 

shows little change in the detailed structure, the only possible change would be in 

the flexibility of the  loop of  109-112, as supported by the above data. From the 

membrane binding model shown in Figure 3-8, the C-terminal helix and a small 

part of the enzyme is buried in the membrane, leaving large parts of enzyme in the 

cytosol. Therefore, it is possible that fluctuations of the extra-membrane domain 

(e.g., due to Brownian motion) of the MAO enzyme are not synchronized with its 

transmembrane domain buried in the membrane. This discrepancy between the 

motions of the extra-membrane and transmembrane domain may therefore cause 

conformational changes in or around the entrance loops near the active site, which 

in turn open the entrance for the substrate/inhibitor. Obviously, the flexible  G110 is 

important for inducing this conformational change. Substitution of  G110 with 
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alanine produce a small amount of resistance to this change, but this becomes more 

obvious when enzyme is solubilized. When  G110 is replaced with the rigid residue 

proline, the resistance to conformational change at the loop becomes more 

significant, both in membrane-bound and solubilized forms. This model partially 

explains the role of the C-terminal anchoring of MAOA, and is a novel concept in 

membrane protein function. 

  Figure 3-23 shows  the models of human monoamine oxidase A as 

membrane-bound form. These models indicate a closed form (right) and an 

artificial-opened form (left), based on this concept for membrane protein function, 
in the entry. The overall model makes a complex with the specific reversible 

inhibitor, harmine (right). 
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Figure. 3-23 The models of human monoamine oxidase A as membrane-bound 

form. 
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Chapter 4. Conclusion 

   In this research, the structures of human monoamine oxidase A complexed with 

a reversible inhibitor, harmine, were determined at 2.20A and  2.17A resolution for 

the wild-type and the  G110A mutant, respectively. The backbone structure of 

human MAOA was nearly identical to that of rat MAOA, but contrasted in the 

important loop structures with monoclinic human MAOA. 

   We determined three important structural parts for human MAOA in this 

research. The first is the specific residues, Glu215 and Tyr407, for binding 

between specific reversible substrates/inhibitors and human MAO enzymes, both of 

MAOA and MAOB. The aromatic reversible inhibitors determined thus far, 
including harmine, were accommodated in the same substrate/inhibitor cavity by 

making tight  7E-it interactions between their aromatic ring and Tyr407. The amide 

group of  G1n215 is interacted with  it-n interactions to the reversible inhibitor, either. 

The second structure that was  determined is the crucial structure for the specific 

substrate/inhibitor selectivities in human MAO. The specific selectivity of 

substrate/inhibitor is due to the structural restriction of  11e335 of MAOA (Tyr326 

of MAOB) which makes the different size and shape of the substrate/inhibitor 

binding cavity. The final part is the transmembrane helix structure for which the 

functional role is unknown. Human MAOA has a transmembrane helix, as did rat 

MAOA. The helix structure is clearly confirmed in this study. Additionally, the 

enzymatic function of C-terminal helix structure was confirmed through some 

activity experiments with changing the flexibility of special  loop structure on the 

entrance. The active center cavity was closed in the steady state. Through the 

results of activity experiment, we knew that movements of the extra-membrane 

domain fixed to the mitochondrial membrane by the transmembrane helix must 

change the conformation of the entrance to accept substrates/inhibitors. Together 

with the structural relationship with the substrate/inhibitor binding site, these 

                          67



results give a conclusion that the  loop flexibility is critical for opening the entry for 

substrates/inhibitors. 

These insights in this research provide important information for a rational and 

effective drug design. In particular, these will be useful for the drug design of 

reversible specific inhibitors which affect in symptomatic effects such as to 

increase the biological duration of monoamine transmitters, as well as in 

neuroprotective effects such as the prevention or delay of neurodegeneration itself .
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