

Title	レーザー同位体分離のためのウラン、ガドリニウム原 子の多段階共鳴光イオン化分光研究
Author(s)	宮部, 昌文
Citation	大阪大学, 2004, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/1453
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

レーザー同位体分離のためのウラン、ガドリニウム原子の

多段階共鳴光イオン化分光研究

2004年3月

宮 部 昌 文

レーザー同位体分離のためのウラン、ガドリニウム原子の

多段階共鳴光イオン化分光研究

2004 年 3月

部昌文

宮

Multi-step resonance ionization spectroscopy on atomic uranium and gadolinium for laser isotope separation

Masabumi Miyabe

March 2004

要旨

レーザー同位体分離は1回の分離操作で同位体を分離できるため、潜在的に優れた経済 性を有する分離法である。しかしそのためには、対象同位体の原子のみを効率よくイオン化で きる多段階共鳴遷移の組み合わせ(電離スキーム)を探すことが必要である。本論文では、ウラ ンやガドリニウムのレーザー同位体分離に最適な電離スキームを分光学的手法により提示し た。

第1章では、レーザー同位体分離の原理や、スキーム選定に必要となる分光データの種類、 分光研究の現状と問題点を示して本研究の位置づけを述べた。

第2章では、エネルギー準位に関する分光測定をまとめた。第2励起準位や電離準位に利用できる新しい準位を多数明らかにし、全角運動量J値を同定した。また、電離遷移の同位体シフトを測定し、その大きさが第2励起遷移よりやや大きいこと、電離遷移でも同位体選択性が期待できることを指摘した。また、観測される単色多光子電離遷移の多くが、始状態から共鳴2光子励起で第2励起準位を経由することを突きとめ、第2励起準位の同位体シフトの測定に利用できることを示した。

第3章では、光学遷移に関する分光測定をまとめた。分岐比測定法では励起状態の寿命が 長い場合でも精度良く測定ができる逆ブランチング法を考案し、発光分光で測定されたガドリ ニウムの振動子強度の文献値に、大きな系統誤差があることを示した。飽和法では、飽和が十 分観測できない場合でも断面積が測定でき逆飽和法を考案した。また光ガルバノ信号の飽和 を利用して断面積を簡単に測定する方法を考案した。

第4章では多段階電離スキームの電離効率を簡単に評価する方法を考案した。多段階電離 遷移を等価な1段階遷移に置き換える事で、スキーム断面積を導出した。スキーム断面積には 最大値が存在し、スキームの潜在的な電離能力を表すことを示した。前2章で測定した分光デ ータと、スキーム評価方法を基に、ウラン、ガドリニウムの最適スキームを選定し、その電離効率 や同位体選択性が十分高いことを確認した。

第5章では、自動電離準位の電離幅がJ値の増加とともに狭まる傾向があることを示し、この ような特徴が、遠心力ポテンシャル障壁の効果であることを示した。またこの事から、電離断面 積の大きな遷移を効率よく見つけるための指針を得た。また光学遷移の選択則を利用して、リ ドベルグ系列のスペクトルを単純化して観測し、イオン化ポテンシャルを精度良く決定すると共 に、その同位体効果を始めて明らかにした。さらにリドベルグ系列の摂動構造から、連続状態も 含むエネルギー準位間相互作用の強さを調べ、こうした摂動の結果、局所的に先鋭な自動電 離ピークが生じる可能性があることを示した。

第6章では、得られた結果をまとめ、本論文の総括を行うと共に、今後の展望について述べた。

i

Abstract

Since atomic vapor laser isotope separation technique (AVLIS) enables isotope enrichment without complicated cascade system, potentially it has economic advantage over traditional separation techniques. To perform efficient separation with this technique, however, it is indispensable to select a stepwise resonance excitation and ionization ladder (ionization scheme) enabling an efficient ionization of target elements. In this spectroscopic study, I have determined some optimum ionization schemes for AVLIS of uranium and gadolinium.

In chapter 1, principle of AVLIS, kinds of spectroscopic data necessary for the selection of the optimum ionization schemes and various difficulties of the spectroscopic study were described, so that the purpose of this study was clarified.

In chapter 2, identification of many high-lying levels was described. Not only many of the 2^{nd} excited levels and autoionizing levels previously unreported were identified, but also their total angular momenta were assigned. Many of the ionization transitions were found to have larger isotope-shifts in comparison to the 2^{nd} step transitions and thus higher isotopic selectivity is expected also for ionization process. Many of the observed single-color multi-step transitions were found to arise from the resonant two-photon transition from initial state to the 2^{nd} excited level. Thus the isotope-shifts of the 2^{nd} excited levels were determined from their isotope shifts.

In chapter 3, measurements of the optical transition cross-sections were described. As for a branching ratio method, I proposed an inverse branching ratio technique enabling higher accurate measurement for transitions to longer-lived upper levels. From the oscillator strength values measured by this technique, it was found that some literature values measured by emission spectroscopy have large systematic errors. As for a saturation method, I proposed an inverse saturation technique suitable for the transitions of which cross-sections are too small to observe a clear saturation of ion-yield. Additionally, I proposed a cross-section measurement method observing a saturation of optogalvanic signal by a simple instrumentation.

In chapter 4, in order to evaluate the overall photoionization efficiency of multi-step ionization scheme, a simplified method based on the rate-equation model was developed. By using this method and the spectroscopic data obtained in the previous chapters, highly efficient and isotope-selective ionization schemes were selected among many candidate schemes. Also, their high efficiencies and selectivites were experimentally confirmed.

In chapter 5, from the measured spectroscopic data, it was found that the autoionizing levels of higher J-value tend to have more intense ionization peaks and this can be interpreted as a centrifugal potential barrier effect. From this finding, an important strategy was obtained to find intense ionization transitions readily. From the simple structure of autoionizing Rydberg series measured from J=0 lower level, a highly accurate ionization potential and its isotopic effect were determined. From the calculation based on the multichannel-quantum-defect theory, it was shown that the weak configuration interaction between autoionizing level and Rydberg series might cause narrower and more intense ionization transitions.

In chapter 6, a summary of the results and a prospective of this study were described.

目	次
---	---

1	序論		1
	1.1	同位体の利用と同位体分離	1
	1.2	レーザー同位体分離のために必要な分光研究	2
	1.3	本論文の構成	4
	参考	与文献	7
2	エネノ	ルギー準位に関する分光データの測定	9
	2.1	共鳴光イオン化質量分析装置	9
	2.2	1波長多光子イオン化法による単色電離遷移の研究	13
	2.3	2波長多光子イオン化法による高励起奇パリティ準位の測定	20
	2.4	3波長3段階イオン化法による自動電離準位の測定	26
	2.5	2波長多光子法、3波長3段階法による同位体シフトの測定	35
	2.6	第2章のまとめ	42
	参考	考文献	43
	2章	の表	47
3	光学	遷移に関する分光データの測定	90
	3.1	時間分解ポンププローブ法による寿命及び分岐比測定	90
	3.2	飽和法による断面積測定	100
	3.3	光ガルバノ分光による飽和断面積の測定	111
	3.4	第3章のまとめ	117
	参え	考文献	118
	3章	『の表	121
4	最適	電離スキームの評価	140
	4.1	スキーム断面積による電離効率の簡易評価方法	140
	4.2	電離効率による選択	148
	4.3	分離効率による選択	149
	4.4	第4章のまとめ	152
	参考	考文献	153
	4章	重の表	154
5	原子	構造、分光特性に関する研究	159
	5.1	遠心力ポテンシャル障壁による電離速度のJ植依存性	159
	5.2	ガドリニウム原子のイオン化極限とその同位体効果の決定	162
	5.3	ウラン原子のイオン化極限とその同位体効果の決定	170
	5.4	多チャンネル量子欠損理論による Gd 原子の自動電離リドベルグ系列の解析	175

	5.5 第5章のまとめ		
	参考文献		
	5章の表		
6	結論		
	参考文献	······································	
謝	辞		
業	績目録		209
~~		••••••	

第1章 序論

1.1 同位体の利用と同位体分離

天然に存在する元素の多くは、原子核の質量数の異なる幾つかの同位体から構成されている。 こうした同位体を分離、濃縮した試料は、化学特性の均一な純粋材料として、環境中、生体中 の物質移行を調べるトレーサーとして、核的性質を利用した原子燃料や中性子吸収材料として、 さまざまな形で利用されている¹⁾。このような有用同位体を分離する方法としては、熱拡散法や 遠心分離法、電磁分離法、化学交換法、電気泳動法、蒸留法など、様々な方法が古くから考案 されている²⁾。

原子力分野で特に重要な同位体分離は、軽水炉燃料であるウラン235を天然存在比0.72%から 5%程度の濃縮度まで高めるためのウラン濃縮である。現在、実用化されているウラン濃縮法に は、遠心力場における濃度分布差を利用する遠心分離法と、多孔質隔膜の流速差を利用するガ ス拡散法があり、一方、研究段階の方法には、イオン交換樹脂による交換反応差を利用するゼ 学交換法や、同位体選択的光反応を利用するレーザー法などがある³⁾。レーザー法はさらに処理 対象が原子と分子の場合でプロセスが大きく異なるため、便宜上、原子法と分子法に分類され る。原子法レーザーウラン濃縮の特徴は、原理的に1段階の分離操作で高い濃縮度が得られる ため、分離器を多段階のカスケードに組む必要が無く、大型施設や多量の電力を必要としない 点にある。また、レーザー法は原子1個1個を分離するため、原理的に様々な元素、同位体の 分離に応用できる点も優れている。このような潜在的に優れた特徴から、米国では早くから原 子法レーザーウラン濃縮が次期ウラン濃縮技術の候補として研究され^{4,5)}、米国ウラン濃縮公社 (USEC)ではすでに実用プラントが設計できるまでの技術開発を完了しているといわれる⁶。さ らにフランス、イギリス、日本をはじめ、世界各国でもその開発が進められている^{7,9}。

原子力分野では、可燃性毒物への同位体の利用も重要と考えられる。現在、商業炉で は燃料の燃焼度を高めるため、ウランの濃縮度を高めることや、燃料中に高性能の可燃 性毒物を配置することが検討されている。可燃性毒物とは、熱中性子吸収断面積の非常 に大きい核種で、かつ、中性子吸収反応により生成される核種は逆に吸収断面積が小さ い核種である。このような可燃性毒物を燃料中に配置すると、新しい燃料を装荷した直 後に、原子炉内部の中性子線量が高くなり過ぎるのを抑えることができ、また燃焼が進 み、炉内に中性子を吸収する核分裂生成物が蓄積され中性子線束が減少する燃焼後期に は、中性子吸収が減り、炉内の中性子線量を長期間一定に保つことができる。現在、国 内の多くの商業炉では天然ガドリニア入り燃料が実際に利用されているが、融点の低下 や、燃料と被覆管、核分裂生成物との化学反応性が変化するため、使用量に制約がある。 そこで中性子吸収断面積の極めて大きい¹⁵⁷Gd,¹⁵⁵Gdだけを濃縮し、可燃性毒物の性能を 向上させることが期待されており、その分離法としてレーザー法が有望とされている¹⁰⁰。 また、ガドリニウムの同位体分離では医療用放射線源である¹⁵³Gdの前駆体として¹⁵²Gd の利用も期待されている。

1.2 レーザー同位体分離のために必要な分光研究

原子法レーザー同位体分離の原理を、ウランを例にして図1-1に示す。この方法では分離する 元素の金属を電子銃で加熱して原子ビームを作る。これにレーザー光を照射し、その波長を標 的同位体の共鳴吸収波長に正確に同調させる。原子の共鳴吸収波長は同位体毎に僅かに異なる (同位体シフト)ため、周波数幅の狭いレーザーを用いると、標的同位体だけを励起状態に変 えることができる。さらに、その励起同位体が脱励起する前に、その励起同位体の共鳴光を吸 収させると、励起同位体はさらに内部エネルギーの高い状態へと移る。これを繰り返して、イ オン化ポテンシャル(Ionization Potential,以下IPと記す)以上の内部エネルギーを持つ状態まで励 起すると、原子は軌道電子1個を放出して陽イオンへと変わる(自動電離)。このイオンを電 場で引き出し、電極に回収することで標的同位体のみを分離することができる。

FIGURE 1-1 Principle of Atomic Vapor Laser Isotope Separation (AVLIS).

このようなレーザー同位体分離では、連続的に蒸発する原子にレーザー光をむら無く 照射するため、パルス発振の繰り返し周波数が高く、発振効率も高い銅蒸気レーザー励 起の色素レーザーが光源として用いられる¹¹⁾。その光子1個当たりのエネルギーは2eV 前後のため、6eV程度のイオン化ポテンシャルを持つウランやガドリニウム原子をイオ ン化させるには、最低でも3段階の励起が必要となる。また、高密度の金属原子ビーム を発生させるには高温に加熱することが必要であるが、この場合、原子は基底状態だけ でなく準安定状態にも分布する。 従って原子の利用効率を上げるためには、基底状態 だけでなく準安定状態の原子も同じ第1励起準位へ励起し、その後、共通スキームで電 離させる多波長3段階イオン化法が必要となる。 レーザー同位体分離ではこのように複雑な同位体選択的光反応を利用して分離を行うため、 最適な光反応を実現するには様々な分光データが必要となる¹²⁾。

まず必要なのはエネルギー準位のデータである。ウランやガドリニウムはアクチノイド、ラ ンタノイド系列の中位にある元素であり、ウランでは6個、ガドリニウムでは10個の価電子が 様々な電子配置をとるため、非常に複雑な原子構造を有する。高リドベルグ状態を除く束縛状 態だけでも、数千個程度の準位が存在すると考えられる。価電子が多いため、イオン化ポテン シャルより高エネルギーの連続状態に存在する2重励起状態(自動電離準位)の数はさらに多 い。ところが、これまでにウランやガドリニウムで行われている分光測定の多くは、放電ラン プなどの発光分光が主で、高励起準位の占有数が少ないため、第2励起準位や電離準位として 利用することになる30000cm⁻¹以上の高励起準位はほとんど分かっていない。このため、高励起 準位を中心に、レーザー同位体分離で利用できそうなエネルギー準位を多数同定することが必 要である。

次に必要となるのは、より高い励起効率、より高い同位体選択性を得るために重要な、3段 階の各励起遷移の光吸収断面積や同位体シフト、超微細構造などのデータである。特にボトル ネックとなりやすい電離遷移で断面積の大きい遷移を探すことが重要である。これまでに報告 されているこれらの遷移データは、準位データよりもさらに少なく、また高励起遷移のデータ は誤差が大きい。遷移データは2つの準位の組み合わせとなるため、準位データよりも遙かに 多くの遷移を調べなければならない。このため、分光学的な知見に基づき、有望と思われる遷 移を絞り、系統的に効率よく測定することが求められる。そしてこのような分光学的な指針を 得るためには、全角運動量(J値)や、蛍光寿命など、エネルギー準位の量子状態を特徴づける データも必要となる。

また、同位体シフトの小さいガドリニウムでは、偏光による光学遷移の選択則の違いを利用 して同位体選択性を得る方法も検討されており、この方法が適用できるJ値の準位を知ることも 必要である¹³⁾⁻¹⁶⁾。

現在では、軽元素や、重元素の低励起状態については、準位エネルギー、J値、遷移断面積、 蛍光寿命などの分光データを理論的に計算できる原子構造計算コードがいくつか開発されてい る¹⁷⁻¹⁹⁾。しかしウランやガドリニウムのように多くの電子配置が同じエネルギー領域に混在す る原子系の高励起状態で、実在の準位や遷移と対応づけのできる、意味ある結果の得られるコ ードはまだ存在しない。従って、必要となる分光データは分光実験によって測定する必要があ る。

レーザー同位体分離では、このように個々の準位や遷移のデータを測定することが重要であ るが、それだけでは十分ではない。多段階光イオン化でのイオン化効率や同位体選択性は、イ オン化までに経由するエネルギー準位の選び方、光照射の条件によって大きく異なるため、3 段階の遷移を組み合わせた、スキーム全体としての電離効率や分離効率の評価が重要である。 しかも、3段階電離スキームの可能な数は数万通りにも達すると予想されるため、より簡単に、 こうしたスキームの評価ができる方法が必要である。分離効率については、Letokhov²⁰⁾らの提 案する簡易評価方法が知られているが、電離効率については、簡単で合理的な評価方法はこれ までのところ知られていない。これまでに電離スキームの電離効率を定量的に評価して最適ス キームを決めた例としては、Fedoseev²¹⁾らによるTb原子の3段階スキームの研究があるが、彼 らは各段階の遷移断面積の単純積を指標として利用している。しかしこのような指標では、多

段階スキームの電離効率を左右する光の照射条件が考慮されず、最適スキームの評価法として は不十分である。そこで、照射条件も考慮して最大の電離効率を求める方法を確立することが まず必要である。さらに、そうした評価方法により、多くのスキームの中から、電離効率と同 位体選択性に優れたスキームの候補を複数選び出すことが求められる。実際の光反応では、超 微細相互作用や、レーザー光の位相、デチューニングによる非線形な励起効果など、簡易評価 では扱えない効果も起こるが、選ばれた複数の候補スキームに対してこうした検討を行い、最 終的に、その分離プロセスに最も適した電離スキームを選び出すのが良い方法と考えられる。

本研究の目的は、このようにウランやガドリニウムの原子法レーザー同位体分離で求 められる分光データを、広く、より正確に測定し、その結果に基づいて、レーザー同位 体分離に適した電離効率、分離効率の高い3段階イオン化スキームの候補を決定するこ とである。

このため、本研究ではレーザー同位体分離と同じ原理に基づく3段階共鳴イオン化質量 分析法を主たる分光法として利用する。この分光法により、まず研究の第1段階として、スキ ーム決定の材料となる各種の準位データ、遷移データを収集する。ウランやガドリニウムでは 複雑な原子構造を反映して測定すべき対象が多いため、より簡便で正確な測定手法の考案、測 定対象に合った方法の工夫により、測定手法を確立する。これと平行して多段階スキームの電 離効率の合理的な評価方法を確立し、第2段階として最適スキームの候補を選定する。さらに、 分光データを基に、ウラン、ガドリニウムの原子構造や光物性の特徴を明らかにし、データ収 集やスキームの評価に反映させる。これら一連の研究により、最終的にはレーザー同位体分離 に適した多段階電離スキームの選定手法の確立をめざす。

1.3 本論文の構成

本論文は全6章から構成されており、図1-2に上述の研究方針に対する本研究の論文構成を示す。

第2章では、ウラン、ガドリニウムのエネルギー準位に関する分光測定についてまと めた。まず第2.1節では本研究全般に使用した実験装置の特徴をまとめた。第2.2節で は単色多光子イオン化法による単色イオン化遷移の観測と、ポンププローブ分光による 単色遷移の同定について述べた。単色多光子イオン化遷移の始状態を実験により確定す ることにより、高励起準位の探査や高励起準位の同位体シフト測定が可能であることを 示した。第2.3節では2波長多光子イオン化法、第2.4節では3波長3段階イオン化法 による第2励起準位と電離準位の準位探査とJ値の同定について述べた。この方法で多 数の未報告準位が、そのJ値も含めて同定できることを示した。第2.5節では第2励起 準位と電離準位の同位体シフトの測定について述べた。電離準位でも電離幅の狭い遷移 は同位体シフトが測定可能であること、得られた同位体シフトは電子配置と強い相関が あることを示した。またガドリニウムの同位体シフトの文献値の一部に系統誤差がある ことを明らかにした。

第3章では、エネルギー準位間の光学遷移に関する吸収断面積、振動子強度、放射寿 命などの分光測定についてまとめた。第3.1節ではパルスの時間差を変化させる時間分 解法、第3.2節では光強度を変化させる飽和法について述べた。時間分解法は第1励起

遷移、飽和法は高励起遷移の断面積測定に適していることを示し、発光分光による振動 子強度との比較を行った。この結果、発光分光で測定されているガドリニウムの振動子 強度に、赤外線領域の発光線を無視したことによる、大きな系統誤差があることを明ら かにした。また幅の狭い電離遷移では、断面積が幅によって変化することから、電離幅 の測定が重要であることを明らかにした。また、第3.3節では、光ガルバノ信号を利用 して、より簡単に断面積が測定できることを示した。

第4章では多段階共鳴電離スキームの電離効率、同位体選択性の評価方法と、レーザ 一同位体分離のための最適電離スキーム選定について述べた。まず第4.1節では、多段 階電離遷移を1段階遷移に簡略化することで、スキーム全体のイオン化効率を簡易的に 評価できる方法を考案した。様々な光強度比の中にスキーム断面積を最大にする最適強 度比が存在すること,その断面積の最大値が、スキームの潜在的な電離能力を表すこと を明らかにした。またスキーム断面積を実測して本方法の適用性を確認した。第4.2節 では、このスキーム断面積に基づき、ウラン、ガドリニウムの電離効率の高いスキーム を選び出した。また第4.3節では、Letokhovの簡易評価法に基づき同位体分離効率の高 いスキームを選び出した。

第5章では、測定した分光データの解析により明らかになった、ウラン、ガドリニウ ムの原子構造や分光特性についてまとめた。まず第5.1節では、自動電離準位の電離幅 がJ値の増加とともに狭まる傾向があることを示し、このような特徴が、遠心力ポテン シャルバリアの効果であることを示した。またこのことから、電離断面積の大きな遷移 を効率よく見つけるためには、J値の大きい準位を調べるべきであるとの指針を得た。 第5.2節と第5.3節では、ウランとガドリニウムの自動電離リドベルグ状態の同定によ り、イオン化ポテンシャルを精度良く決定すると共に、その大きさに同位体効果がある ことを明らかにした。また第5.4節では、ファノ型形状を示すガドリニウムの自動電離 リドベルグ系列の摂動構造を多チャンネル量子欠損理論により解析し、リドベルグ系列 と摂動準位、連続状態との相互作用の強さを調べた。この方法で、こうした摂動の結果、 局所的に極めて断面積の大きい、電離幅の狭い自動電離準位が生じる可能性があること を示した。

FIGURE 1-2 Items and corresponding chapters of this study.

参考文献

1) Growing Uses of Stable Isotopes: J. Atom Eng. Soc. Jpn. 35 (1993) 952.

- 2)日本における同位体分離のあゆみ:日本原子力学会同位体分離特別専門委員会中 根良平、北本朝史、清水正巳編 (1998).
- 3) 鈴木篤之、清瀬量平: 核燃料サイクル工学 (日刊工業新聞社 1981).
- 4) Levy R H and Janes G S: Method of and apparatus for the separation of isotope, US Patent 3 772 519, Nov. 13 (1973).
- 5) Tuccio S A, Dubrin J w, Peterson O G and Snavely B B: IEEE QE-10 (1974) 790.
- 6) Haynam C A, Comaskey B J, Conway J, Eggert J, Glaser J, Ng E W, Paisner J A, Solarz R W and Worden E F: Laser Isotope Separation, edt. Paisner J A, Proc. SPIE 1859 (1993) 24.
- Camarcat N, Lafon A, Perves J, Rosengard A and Sauzay: Laser Isotope Separation, edt. Paisner J A, Proc. SPIE 1859 (1993) 14.
- 8) Morioka N: Laser Isotope Separation, edt. Paisner J A, Proc. SPIE 1859 (1993) 1.
- 9) Schwab C, Damiao A J, Silveira A B, Neri J W, Destro M G, Rodrigues N A and Riva R: Prog. Nucl. Energy 33 (1998) 217.
- Santala M I K, Daavittila A S, Lauranto H M and Salomaa R R E: Appl. Phys B 64 (1997) 339.
- 11) 仁木秀明、藤原閲夫: 原子力工業 32 (1986) 74
- 12) Paisner J A and Solarz R W: Application of Laser Spectroscopy edt. Radziemski L, Paisner J A and Solarz R W (Marcel Dekker Inc. 1986) Chapter 3.
- 13) Balling L C: Appl. Phys. Let. 29 (1976) 411.
- 14) Niki H, Miyamoto T, Adachi S, Izawa Y and Chiyoe Y: Annual Progress Report 88-89 Institute for Laser Technology (1988) pp.43.
- 15) Niki H, Kitazima I and Izawa Y: Jpn. J. Appl. Phys. 37 (1998) 3343.

- 16) Sankari M, Suryanarayana and Gangadharan S: J. Nucl Materials 264 (1999) 122.
- 17) Fischer C F: Atomic Data 12 (1973) 87.
- 18) Cowan R D: The Theory of Atomic Structure and Spectra (Univ. Calif. Press, Berkeley 1981).
- 19) Imoto S: J. Nucl. Materials 166 (1989) 68.
- 20) Letokhov V S and Mishin V I: Opt. Comm. 29 (1979) 168.
- 21) Fedoseev V N, Mishin V I, Vedeneev D S and Zuzikov A D: J. Phys. B: At. Mol. Phys. 24 (1991) 1575.

第2章 エネルギー準位に関する分光データの測定

本章ではウラン、ガドリニウムのエネルギー準位に関する分光測定についてまとめる。 第1章で指摘したように、3段階電離スキームの第2励起準位、電離準位に関する、こ れまでに報告されている文献データは十分ではない。そこで候補となるエネルギー準位 を探査し、そのJ値や同位体シフトなどを調べることが必要である。このため本研究で は第2.1節で述べる共鳴光イオン化質量分析装置を用いて、(i)1波長多光子イオン化法、 (ii)2波長多光子イオン化法、(iii)3波長3段階イオン化法の3つのイオン化法で分光実 験を行った。第2.2節の1波長多光子イオン化法は、1つのレーザー光だけで起こる電 離遷移を観測するもので、より複雑な多波長多段階電離スペクトルを解析するための基 礎データを得るのが目的であるが、本研究では、さらに同位体分析法やポンププローブ 分光法により単色電離遷移の始状態を調べることで、高励起準位の探索やその同位体シ フトの測定が可能であることを示した。第2.3節の2波長多光子イオン化法では、第2 励起準位のエネルギー準位を探し、そのJ値を、J値の異なる準位から励起を観測する 方法で決定した。第2.4節の3波長3段階イオン化法では断面積の大きな電離準位を探 し、そのJ値を偏光組み合わせ法などで決定した。また第2励起準位、電離準位の同位 体シフトは2波長法、3波長法でそれぞれ測定し、その詳細は第2.5節にまとめた。

2.1 共鳴光イオン化質量分析装置

分光データの測定には多段階共鳴光イオン化質量分析法を用いた。使用した装置の概要を図 2-1に示す。光源には最大4台のエキシマレーザーで励起される5台の色素レーザーからなる システムを用いた。これらの光を真空容器に導入し、電子ビーム加熱や抵抗加熱により生成し た原子ビームに照射して光イオンを発生させ、四重極マスフィルターやリニア型、リフレクト ロン型飛行時間質量分析器(TOF)により検出した。また透過光はホロカソードランプに導いて、 光ガルバノ信号も同時に計測した。図は代表的な例で、個々の分光測定では、その目的に応じ て構成を変えた。以下、主要な要素機器の概要をまとめる。

(1) レーザー光源

レーザー光源には発振波長308nmのXeClエキシマレーザーで励起される色素レーザーを使用 した。エキシマレーザーにはLambda Physik製のEMG203MSC, EMG103MSCおよびResonetics製 のLX100X2台の合計4台を使用した。これらのレーザーのパルス持続時間は15nsec、最大パル スエネルギーはそれぞれ400mJ, 150mJ, 200mJ、最大繰り返し周波数は200, 200, 100Hzである。 これらの光をビームスプリッターで分岐して色素レーザーに入射し、波長可変レーザー光に変 換した。

色素レーザーにはLambda Physik製のFL3002E2台およびLaser Analytical Systems製の LDL202OG3台を使用した。前者は回折格子の高次回折光を入射方向に戻し、ビームスプリッ タとの間でレーザー共振器を形成させるLittrow型共振器構造、後者は回折格子に光をほぼ水平 に入射し、その高次回折光をミラーで再び回折格子に反射させ、ミラーの回転で波長を選択す る疑似斜入射型共振器構造を有している。前者は1つの回折格子で広い波長域(330-970nm)に対 応できるが、発振幅が6GHzと広い。また、これを1.2GHz程度の発振幅に狭めるためには共振器 内にエタロンを挿入する必要があり、その場合、一度にスキャンできる範囲が約1nmに限られ る欠点がある。一方、後者は回折格子だけで2GHz程度の発振幅が得られ、スキャン範囲の制限 もないが、色素の自然放出光が増幅されやすくスペクトル純度が低いこと、740nm 以上の赤外 光を得るには2400本/mmの回折格子を1800本/mmnに交換する必要があることなどの欠点があ る。レーザー色素には変換効率が10%以上と高く メタノールを溶媒とするCoumarin 153 (525-580nm), Rhodamin 6G (575-605nm), Sulforhodamin B (605-630nm), Sulforhodamin 101 (620-660nm), Oxazin 170 (665-720nm) の5種類を主に使用した。この波長は、レーザー同位体分 離で用いられる銅蒸気レーザー(発振波長510.5, 578.2nnm)励起色素レーザーの発振域に対応し ている。

これらのレーザー光を真空容器に導いて原子ビームに照射した。レーザー光は真空容 器の入射窓の直前でアイリスに通し、直径約3mmの強度の均一な部分だけを使用した。 レーザー光の重なりが重要な飽和法による断面積測定では、2色性ミラーや偏光素子で レーザービームを1本に結合させて使用した。1波長多光子実験では、多光子遷移に必 要な高い光子密度を得るため、レーザービームをレンズで集光し直径約 0.5mm まで小 さくした。これらのビーム径や空間プロファイルは真空容器の出射窓に設置した CCD カメラ(Sony 製)と画像処理器(浜松フォトニクス製 DVS-3000)で測定した。またレーザ ーのパルスエネルギーはパイロ電気素子(Molectron 製 J3-05、Laser Precision 製 RJ-7620) を用いて測定し、ビーム径を考慮して光子フルエンスに換算した。反応領域における代 表的な光子フルエンスは非集光の場合 10¹⁶ photons/cm²、集光の場合 10¹⁸ photons/cm²程 度である。各レーザーパルスは想定したスキーム以外の励起が起らないよう、4チャン ネル遅延パルス発生器(Stanford Research Systems 製 DG535)を用いて、5nsec 以上の時間 差を設けた。このパルサーのジッターは約±50ps、一方レーザーのパルスジッターは± 5ns 程度である。またトリガーに対するエキシマレーザーの発振タイミングのドリフト は、同期ユニット(Lambda Physics 製 EMG97)を用いて制御した。イオン引き込み電場 パルサー及びイオン信号平均用ボックスカーのトリガには、電離用エキシマレーザーの トリガを遅らせて使用した。反応領域の光照射が終わった後、電場パルスを印可するま での間隔は 20nsec 以上になるよう調整した。電場パルスの持続時間は 500 µ sec 程度と し、60Hz 程度の繰り返し周波数で、光パルスと電場パルスが重ならないようにした。 また寿命が 10nsec 程度の短寿命準位を経由するスキームでは、エキシマレーザーの発 振ジッターが測定に影響しないよう、1 台のエキシマレーザーで2 台の色素レーザーを 励起し、その上、下の遷移のパルス光を作り、さらに光路長を調整してシーケンスが逆 転しないようにした。

(2) 原子発生器

中性原子ビームは真空度10⁵ Paの真空容器内で原子線発生器を用いて生成した。当初の蒸発 装置では高温の金属ウランが強い腐食性を持つことを考慮して、14KWのピアス型電子銃加熱 器(ANELVA製 EGP210, 加速電圧8kV, エミッション電流0~1A)を使用した。水冷坩堝内の金属 ペレットを加熱、溶融させることによって原子ビームを発生させた。原子密度は、るつぼ上方 140mmの光反応領域において10⁹ atoms/cm³以上が得られた。しかし、この蒸発装置は電子銃の エミッション電流の変動が10%程度と大きく、さらに金属表面の酸化膜がチャージアップし頻 繁に突沸が発生すること、フィラメント形状が経時変化し時間安定性が良くないことが判明し た。そこでウランの準位探査を除く分光実験は、より安定な原子ビームが生成できる抵抗加熱 装置を製作して使用した。

抵抗加熱装置では、円筒型タングステンメッシュヒーターに直流安定化電源(Takasago製 10V, 200A)で直流電流を流し、筒の中心に置いたるつぼを加熱することで原子ビームを発生させた。 ウランの場合は、高温での強い粒界腐食性を考慮して、多結晶焼結タングステンるつぼ内にイ ットリアるつぼを入れ、さらにその内側に単結晶タングステン製るつぼを入れた3重構造るつ ぼに、数gの天然ウラン金属片を装填して使用した。またガドリニウムの場合はタンタルるつ ぼに天然ガドリニウム金属片(約10g)を入れて使用した。加熱温度は、タングステンレニウム熱 電対でモニターし、ウランの場合は1700~1800 ℃、ガドリニウムの場合は1450 ℃とした。直 流電源はPIDコントローラー(CHINO製 DA, KP型)でプログラム制御し、一定温度動作時の温度 変化は±1℃以内、昇温、降温時の変化速度は急激な変化を避けるため500℃/時以下とした。典 型的な原子密度は、るつぼ上方70mmの反応領域で、電子銃の場合と同様に10⁹atoms/cm³以上と なった。

(3) 質量分析器とイオン検出器

発生した光電離イオンは50~100 V/cmのパルス電場で質量分析器へ引き出し、マイクロチャンネルプレート(Galileo製)で検出した。質量分析器には直線型TOF質量分析器(ドリフト長: 1.2m, 質量分解能: M/ΔM=約300)、リフレクトロン型TOF質量分析器(Comstock製 RTOF/210ドリフ ト長: 1mx2, 質量分解能: M/ΔM=1500)を使用した。その信号は高速電流電圧変換アンプ(Femto 製)を介して、ボックスカー積分器(Stanford Research System社製 SR250)へと入力し、数10パル スの平均化処理を行ったのちA/Dコンバーターを介してコンピューターに取り込んだ。さらに 電離スペクトルの測定では波長校正用としてホロカソードランプ(ウランカソード: S&J Juniper 製, Photron製 P863, ガドリニウムカソード: Hamamatsu Photonics製 L233-64NB, L2783-64NE、 バッファガス: NeまたはAr)のガルバノ信号も同時にコンピューターに取り込んだ。この信号 は、バッファガス原子やカソード金属原子の共鳴吸収に伴うランプの放電インピーダンスの僅 かな変化を、ランプ点灯回路に直列に繋いだバラスト抵抗の電圧降下として、交流結合により 検出したものである。

レーザーの波長はフィゾー干渉型波長計(Laser Technics 製 100F, NewFocus 製 7711)と、 同時に記録したネオンやカソード金属のガルバノスペクトルを用いて± 0.05 cm⁻¹のエ ネルギー分解能で決定した。レーザーのパルス波形は、立上がり、立下がり時間 60 psec の高速応答性を有するバプラナ光電管 (Hamamatsu Photonics 製 R1328U-01) によって モニタし、レーザー発振やイオン計測系(イオンレンズ、検出器)のタイミングは4チ ャンネル遅延パルス発生器(Stanford Research System 製 DG535)によって調整した。この ジッターは±50psec で、エキシマレーザー自体の発振ジッター±5nsec に比べて十分小 さい。各トリガのタイミングは、真空容器入射窓付近に設置したパルス波形モニタの出 力やイオンレンズ系トリガを、長さの等しい同軸ケーブルで 300MHz 高輝度アナログオ シロスコープ(Tektronix 製 2467)やデジタルオシロスコープ(LeCroy 製 9374M)に接続し、 オシロスコープ上で波形をモニターしながら調整した。

FIGURE 2-1 Experimental setup for three-step resonance ionization mass spectrometry.

2.2 1波長多光子イオン化法による単色電離遷移の研究

2.2.1 目的と概要

レーザー共鳴光イオン化法によるエネルギー準位構造の研究で基本となるのは、単一 レーザー光の照射で現れる共鳴電離ピークの同定である。このような単色電離遷移はレ ーザー強度を増すと急激に増加するため、共鳴状態を経由する多光子電離過程で生じる ものと考えられる。その励起スキームを同定することは、多波長多段階共鳴分光に向け た予備データとして重要なばかりか、励起状態の準位エネルギーや全角運動量、断面積、 同位体シフト等を知るための貴重な手がかりにもなると考えられる。

重金属元素の単色多光子遷移は、これまでレーザー微量分析用の遷移探索や、高励起 準位の探索に利用されてきた。Young¹⁾やDonohue²⁾はレーザー質量分析に利用するため、 ランタノイドやアクチノイド元素の2光子、3光子電離遷移を多数観測している。Ray³⁾ やGomonai⁴⁾はさらに単色4光子遷移の観測も行っている。一方、単色遷移を調べるこ とで新しい高励起準位を探査する試みも、Mago⁵⁾、Jayasekharan⁶⁾、Nakhate⁷⁾、Levesque⁸⁾ らがウラン、サマリウム、ネオジウムなどで報告している。しかしこれまでの研究では、 多光子遷移の線幅や同位体シフト、励起スキーム等についての詳細な解析は行われてお らず、1波長多光子分光法で得られる情報も限られていた。

本節では、ウランとガドリニウム原子の単色電離遷移について調べた。これにより次 節以降の多波長分光スペクトルの解析において必要となる単色電離遷移データを整備 した。また、これまでほとんど報告の無かったガドリニウムの単色遷移については、強 度、線幅、同位体シフトなどを詳細に測定し、さらに、遷移の始状態をDasgupta⁹⁾の提 案した多色ポンププローブ分光法を用いて同定した。これにより、1波長分光のような 簡単な方法でも、高励起準位の探査や同位体シフトの測定が可能であることを示した。

2.2.2 測定結果

(1) Gdの単色多光子電離遷移の観測

単色電離遷移は、レンズで反応領域に焦点を結ばせたレーザー光と原子を直交させ、 イオンを質量分析することで測定した。測定したガドリニウムの単色電離スペクトルの 例を図2-2(a)に示す。また、波長の絶対値校正のため、同時に測定したガドリニウムの 光ガルバノスペクトルを図2-2(b)に示す。光ガルバノ分光(Optogalvanic Spectroscopy, 以 下OGと記す)については3.3節で述べる。

図2-2(a)の各ピークの波長を表2-1に示す。72個の単色電離遷移が530~635nmの範囲に 観測された。各遷移には1~72の番号を付け、図2-2(a)にも対応するピークにその番号を 付けた。強いレーザー光はGdのホロカソードランプにも照射したため、ガルバノスペ クトルにも52,56番の単色電離遷移が現れている。図2-2(b)の他のピークはGdの基底状態 や準安定状態からの1光子励起遷移によるもので、各ピークに遷移の上下準位を示した。

表2-1には波長のほか、観測されたピークの強度とピークの線幅(FWHM)も合わせて示した。相対強度は4段階で表し最も強い共鳴をIVとした。1段階の強度差はおよそ1オ ーダーである。但し強度や線幅はレーザー強度、バンド幅、原子の初期占有数分布など の条件で変るので正確ではない。幾つかの遷移で観測された広い線幅は、いずれかの共 鳴段のパワーブロードニングによるものと考えられる。またACシュタルクシフトは測 定誤差に比べ無視できる程度と考えられる³⁾。

FIGURE 2-2 Typical single-color ionization spectrum with simultaneously measured optogalvanic (OG) spectrum of Gd.

ほとんどの遷移では質量分解スペクトルも測定した。4台のボックスカー積分器で、 天然存在比の高い偶同位体、¹⁶⁰Gd、¹⁵⁸Gd、¹⁵⁶Gd、¹⁵⁴Gdの電離スペクトルを同時に測定 した。52番の単色遷移の例を図2-3に示す。各同位体のピークは確かにシフトしており、 単色電離遷移がイオン化までに少なくとも1個の共鳴準位を経由していることが示唆 される。同位体シフト測定では、偶-偶同位体のエネルギー間隔(160-158, 160-156, 160-154のシフト量)を求めた。誤差を減らすため、160-158のシフトは3.255倍、160-156, 0シフトは1.656倍して160-154のシフト量に換算し、それらを平均して160-154の同位体 シフトとした。ここで用いた3.255倍と1.656倍は相対同位体シフト因子である。一般に 同位体シフトの大きさは遷移によって異なるが、質量数毎のシフト量の比は遷移によら ずほぼ一定値となり相対同位体シフトと呼ばれる。本研究で利用した相対同位体シフト 因子は、Kronfeldt¹⁰⁾が報告しているガドリニウムの低励起状態の高精度同位体シフトか ら決めたものである。その精度は±0.006程度で、本研究の測定精度より十分高く、換 算による誤差は無視できる。

この様にして求めた同位体シフトを表2-1のIS₁₆₀₋₁₅₄に示す。この符号は、重い同位体の共鳴線が高波数側にある場合を正とした。測定誤差は約10mK(mK=10⁻³ cm⁻¹)である。

得られた同位体シフトの大きさには、イオン化までに経由する共鳴準位の同位体シフトが反映されており、励起スキームを同定することでその情報が引き出せるものと思わ

れる。そこで次にこれらの遷移の励起スキームを、エネルギー準位の文献データ¹¹⁾を基 に同定した。すると幾つかの遷移には可能な励起スキームが複数あることが分かった。 例えば、図2-3の52番遷移には近接する2つのスキームの候補(215-35735 cm⁻¹と 1719-19480 cm⁻¹)があり、観測されたエネルギーとのずれはどちらも1 cm⁻¹未満である。 そこで、このような励起スキームの始状態を誤り無く同定するためにポンププローブ法 を用いた同定実験を行った。

FIGURE 2-3 Typical mass-resolved single-color ionization spectra of Gd and measured isotope-shift between 160 Gd and 154 Gd (IS $_{160-154}$).

(2) ポンププローブ法によるGdの単色遷移の始状態の同定

始状態同定のための多色ポンププローブ分光法では、図2-4(a)に示すように単色電離 遷移を起すプローブ光を照射する直前に、文献等で予め始状態が分かっている遷移を起 すポンプ光を照射する。仮にポンプ遷移とプローブ遷移の始状態が共通な場合、ポンプ 光の波長を、共鳴波長を横切るように掃引すると、プローブ光によるイオン信号強度が 減り、くぼみが生じる。このくぼみの有無を観測することで始状態を識別した。ポンプ 遷移には最低多重項であるf⁷ds²(⁹D)項から始まる5個の遷移(表2-2)を用い、その光強 度は遷移が飽和する程度とした。プローブ光のみをレンズで集光し、反応領域で全ての 光が重なるようにした。反応域のビーム径と光子フルエンスは、集光ビームでは0.4 mm で5x10¹⁷photons/cm²、非集光ビームでは3mmで1x10¹⁶photons/cm²程度とした。ポンプ 光とプローブ光のパルスには約800nsの時間差をつけ、ポンプ遷移の上準位から不要な 遷移が起こらないようにした。

FIGURE 2-4 Principle of pump-probe measurement for single-color ionization transition of Gd.

FIGURE 2-5 Typical ion-dip spectra measured with pump-probe technique.

前述した52番遷移のくぼみスペクトルの例を図2-5に示す。くぼみは215 cm⁻¹を始状態 とするポンプ遷移でのみ現れている。従って、この遷移の始状態は1719 cm⁻¹ではなく215 cm⁻¹と同定される。この様にして、57個の多光子遷移の始状態が最低項である⁹D項に属 することが分かった。しかし、残りの15個の遷移は、⁹D項のポンプ遷移ではくぼみが現 れないことから、始状態はより高い分光項であることが示唆された。

ガドリニウムの第2、第3多重項は基底状態から6000 cm⁻¹以上にある¹¹F項と⁷D項である。その熱的な占有数は少ないため、光を強くしても十分な検出感度を得るのは難しい。

そこでこれらの多重項が関与する遷移の光イオン量を増やすため、図2-4(b)の様にプロ ーブレーザー光照射の1300 nsec前にエンハンスレーザーを照射し、⁹D項の原子をこれら の多重項に移すことを試みた。このレーザーの時間差はエンハンス遷移の上準位の寿命 や、光反応領域からのイオンの飛び去り効果が大きくなる時間スケールを考慮して決定 した。エンハンス光照射時の単色電離遷移のイオン量は、エンハンス無しの場合の10 ~100倍に増加した。そこで、エンハンスを行なった状態でイオンのくぼみスペクトル を測定することで、残り15個の遷移の始状態を決定した。その結果、これらの遷移の始 状態がいずれも¹¹F項や⁷D項であることを確認した。

表2-3にポンププローブ実験で決定した始状態を示す。表の第1、第2励起準位はエネ ルギーの計算値: E_1 +hv及び E_1 +2hv(但し E_1 は始状態 hv は光子エネルギー)に最も 近い準位である。この計算値の近傍10cm⁻¹の範囲内に適当な準位の報告がない遷移は空 欄とした。準位エネルギーの報告値と計算値の差を第1励起準位については「 Δ_1 」欄、 第2励起準位については「 Δ_2 」欄に示した。

(3) Uの単色多光子電離遷移の観測

ウラン原子の単色多光子遷移もガドリニウムと同様の方法で、530nm~665nmの範囲 で観測した。測定した遷移の波長と強度、および波長から推定される励起スキームを表 2-4に示す。観測した遷移の始状態の多くは、基底準位や620 cm⁻¹の第1準安定準位では なく、さらにエネルギーの高い準安定準位であることが分かった。610nmより短波長の 遷移の多くはMago⁵⁾、Dasgupta⁹⁾、Levesque⁸⁾らの文献値と一致した。

2.2.3 議論

(1) Gdの多光子遷移の励起スキーム

表2-3では計算値との偏差が10cm⁻¹未満の準位を示したが、以下では、波長の測定精度 と観測された共鳴線幅を考慮して、計算値とのエネルギーのずれが0.3cm⁻¹未満の準位を 共鳴準位とし、それ以外の準位は近共鳴状態として扱う。また3光子イオン化のうち1 段目の共鳴準位が実在するもの、2段目が実在するもの、および両方が実在するものを それぞれ(1+2)型、(2+1)型、(1+1+1)型と呼ぶ。

表2-3から、観測された遷移は(2+1)共鳴が多く、残りは(1+2)共鳴で、(1+1+1)共鳴は全く無い事が分かる。同様の結果はRay³⁾、Jayasekharan⁶⁾、Nakhate⁷⁾らも報告している。このような(2+1)共鳴と(1+2)共鳴の観測数の違いは、非共鳴2光子遷移断面積の違いによって説明できると考えられる。一般に2光子遷移の断面積は次のように与えられる。

$$\sigma_{k \to f}^{(2)} \propto \left| \frac{\langle f | d | i \rangle \langle i | d | k \rangle}{E_i - E_k - h \nu} \right|^2$$
(2.1)

ここでdは双極子演算子である。また分母は正確な1光子遷移エネルギーからのレーザ ーのデチューニング量を表し、(2+1)共鳴と(1+2)共鳴のデチューニング量は表2-3のΔ₁と Δ₂でそれぞれ表せる。この断面積を使うと(1+2)共鳴や(2+1)共鳴の遷移確率はレーザー 強度が弱い場合に次のように書ける。 $W \approx \sigma^{(1)} \sigma^{(2)} I^3$

ここで $\sigma^{(1)}(\sigma_{i\to j}{}^{(1)} \propto |< j| d | i > |^2)$ は1光子遷移の断面積、Iはレーザー強度である。例え ば51、52番遷移のように同じ共鳴準位と近共鳴準位が関与する(1+2)共鳴と(2+1)共鳴の 場合、両者の双極子マトリクスの項は等しいが、(1+2)共鳴のデチューニング量 Δ_{1+2} は 必ず(2+1)共鳴の Δ_{2+1} の2倍になる。このため(2+1)共鳴の確率が(1+2)共鳴の遷移確率よ り大きくなる。表2-1ではこのほか34と35番、40と41番、55と56番の遷移でも、同様の 信号強度の違いが見られる。また、これ以外の場合は(1+2)共鳴が弱すぎるため、本研 究では(2+1)共鳴だけが観測されていると考えられる。

また、(1+2)共鳴では、1段目の遷移が容易に飽和する代わりに、第1共鳴準位から先の2光子吸収遷移が起こりにくいので、多くの原子は第1共鳴準位に滞留する。そのため共鳴ピークのパワーブロードニングが起こり、(1+2)共鳴の線幅が拡がると考えられる。

観測された遷移の多くは3光子吸収によるものであるが、最も波長の長い4つの遷移 は、ガドリニウムのイオン化ポテンシャル49603cm^{-1 12)}から、4光子吸収過程によるも のと考えられる。4光子遷移は3光子遷移より起こりにくいが、他の元素でも幾つかの 4光子遷移が報告されている^{3),4)}。後述するように、観測された4光子遷移では3段目 の共鳴準位も実在する可能性が高く、このために遷移確率が高くなり、観測できたと考 えられる。

本研究では、Smith¹³⁾らがレーザー微量分析に有用と計算した2個の多光子遷移も観測 された。これらの遷移や表2-1の強い遷移は、こうしたレーザー超微量分析のための遷 移や、多段階共鳴電離分光の絶対波長のマーカーとしても有用と思われる。

(2) Gd多光子遷移の同位体シフトと励起スキーム

表2-3の励起スキームの同定結果に基づいて、介在するエネルギー準位の同位体シフト を、遷移の同位体シフトから次の関係を用いて計算した。

 $\Delta T_{1st} = \Delta \sigma_{(1+2)} + \Delta T_0,$

 $\Delta T_{2nd} = 2\Delta \sigma_{(2+1)} + \Delta T_0,$

ここで $\Delta\sigma_{(1+2)}$ と $\Delta\sigma_{(2+1)}$ は(1+2)と(2+1)遷移のシフト量、 ΔT_0 、 ΔT_{1st} 、 ΔT_{2nd} は始状態、第 1 励起準位、第2 励起準位のシフト量である。解析に用いた始状態のシフト量は Kronfeldt¹⁰⁾の値にノーマルマスシフトを加えて求めた。解析は精度の高い同位体シフト の文献値がある $f^7 ds$ (⁹D)項準位を始状態とする遷移についてのみ行った。表2-5にその結 果を報告値と共に示す。これらの値は基底状態のシフト量をゼロとする相対値である。 計算値と報告値は約±10cm⁻¹の測定精度の範囲で一致した。

また、観測された単色遷移には同じ準位の関与する遷移が複数含まれているため、そ の準位の同位体シフトをそれぞれ独立に計算して比較することで、測定エラーの有無が 確かめられる。今回の結果では、4光子遷移が関与する2つの準位を除けば、同じ準位 が関与する異なる遷移から決めた同位体シフトはよく一致した。このことは単色遷移の 同位体シフトが共鳴準位の同位体シフトをよく反映しており、単色電離分光から高励起 準位の同位体シフトが精度良く決められることを示している。4光子遷移の1と4番、 2と3番の共鳴だけはシフト量が一致しなかったが、これはこれらの遷移に3段目の共 鳴準位が介在していることを示唆している。

(3) Gdの高励起準位の予想

表2-3に示すように今回観測された9個の遷移には報告されている励起準位が1個も 対応していない。これらはいずれも、予想される第2準位のエネルギーが37000cm⁻¹以 上にあり、そのエネルギー範囲では、これまで僅かな準位しか報告されていない。従っ てこれらの遷移にも2段目の共鳴準位が介在していることは十分考えられる。そこで、 このような仮定から9個の未報告奇パリティ準位を予想し、表2-3の「Remark」欄に示 した。また、同欄には4光子遷移で予想される3段目の励起準位のエネルギーもあわせ て示した。これらのエネルギーには偶パリティ状態が実在する可能性が高い。 2.3 2波長多光子イオン化法による高励起奇パリティ準位の測定

2.3.1 目的と概要

ウランやガドリニウム原子では 5f(4f)開殻や 6d(5d)価電子がほとんど全ての電子配置 に存在し、さらにそれらの電子配置間に強い相互作用が働くために、その原子構造は非 常に複雑である。その構造は、ホロカソードランプや無電極放電ランプなどの古典的分 光光源を用いて古くから調べられており^{14),15)}、3段階電離スキームの第1励起準位付 近の原子構造は比較的良く分かっている。しかし 30000cm⁻¹ 以上の高励起奇パリティ状 態については、光源ランプ内の熱平衡占有数が少ないため、得られる情報は極めて限ら れている。

最近ではこのような高励起状態に多くの原子を占有させることが可能な、多段階共鳴 励起に基づく共鳴光イオン化法(RIS)や光ガルバノ分光法(OGS)が、高励起準位の探査に 利用されている。多段階 RIS による準位探査は Carlson¹⁶⁾, Suri¹⁷⁾, Mago^{18), 19)}, Fedoseev²⁰⁾、 多段階 OGS による準位探査は Broglia²¹⁾や Jimoyiannis²²⁾, Smyth²³⁾, Shi²⁴⁾らが行っている。 これらの方法は、準位密度の高い高励起状態を検出するのに十分な感度と選択性を有し ている。また OGS 法は、装置が簡単で、高融点金属を含む多くの原子に適用できる利 点も有している。この2つの方法は対象とする原子ソースや信号の発生機構が異なるた め、これらを同時に測定することで、より確実な高励起準位の探査ができるものと考え られる。

ウランやガドリニウムの高励起準位の情報はレーザー同位体分離に適した、励起効率 や分離効率の高い電離スキームを選び出すのに重要である。これまでも、ガドリニウム では Mishin²⁵⁾や Haynam²⁶⁾らが、ウランでは Herrmann²⁷⁾らが基底状態や準安定状態の原 子を効率よく電離する3段階スキームを、エネルギー準位の文献値や測定値を基に選ん でいる。しかし、高励起状態の多くが報告されていない状況では、それらが真に最適な スキームかどうかを判断する事は難しい。未知の高励起準位の存在を明らかにすること は、遷移データの測定、スキーム評価へと続く本研究の第1段階となる。

本節ではこの様な理由から、ウランとガドリニウムの高励起状態の探索を、共鳴イオン化信号と OG 信号の同時測定体系を用いて行った。

2.3.2 測定方法

2台の色素レーザーを用い、1段目の光は 3mm 径の均一ビーム、2光子電離を起こ すための2段目の光はレンズで直径 0.5mm に集光して用いた。励起の順番が逆転しな いよう、1段目と2段目のレーザーパルスは 5nsec 以上分離した。また真空容器を透過 したレーザー光はホロカソードランプに導き光ガルバノ信号を同時に測定した。

まず第1励起光の波長を調整して基底準位または準安定状態の原子を第1励起準位 に励起させた。続いて波長を掃引しながら第2励起光を照射し、波長とイオン電流の相 関曲線($\lambda_1+2\lambda_2$ スペクトル)を測定した。この2光子イオンスペクトルのピーク波長 から第2励起準位のエネルギーを算出した。同じ波長範囲で数回スペクトルを測定し、 ピーク波長の再現性を確認した。第1励起光強度は3光子イオン化が起こらないよう 1x10¹⁶ photons/cm²程度とした。第2励起光強度は、2光子イオン化信号の S/N 比を高め るため 1x10¹⁸ photons/cm² 程度とした。

また、第2励起光の波長が長く、第1励起準位からの2光子励起でイオン化ポテンシャル(IP)に達しない場合は、第2励起準位から IP を超える光子エネルギーを持つ第3のレーザー光を追加照射し、第2励起準位から連続状態への電離、あるいは、偶然存在する自動電離準位を介して電離させることで、高励起状態を探査する方法も併用した。

2.3.3 結果と議論

(1) OGS と RIS を組み合わせた準位探査法の実用性

本研究では、多くの遷移が RIS と OGS の両方のスペクトルで観測できた。S/N 比は多 くの場合 RIS の方が OGS より優れていた。これは、OGS の場合、第1遷移によるガル バノ信号が定常的に生じ、バックグランドノイズとなるためである。しかし幾つかの遷 移では、RIS の方が OGS より感度が低いことが分かった。ガドリニウムで測定した典 型的なスペクトルを図 2-6 に示す。これは第1励起準位 17380cm⁻¹ から第2励起光の波 長を変化させて測定した2色多光子電離スペクトル(下)と光ガルバノスペクトル(上) であり、33195 cm⁻¹ と 33189 cm⁻¹の、2つの第2励起準位に共鳴するピークが両方のス ペクトルに現れている。ここで 33195 cm⁻¹ 準位の RIS ピークは OGS ピークに比べて弱 いが、これには以下のような原因が考えられる。

- a. 高励起状態から連続状態への電離断面積が小さい、
- b. 高励起状態の輻射寿命がレーザーの持続時間に比べて短い、
- c. 高励起状態が第1励起準位と電離極限の中間点より低エネルギーにある、

2段目のレーザーが電離断面積に比べて弱い場合や、高励起状態の寿命がレーザーパ ルス長より短い場合には、高励起状態の原子は電離せずに下準位に崩壊してしまい、 (1+2)光子 RIS 信号は小さくなる。しかし、2段目のレーザーによって平衡状態から乱 された原子の占有数分布が放電電流に与える影響は遷移によって異なるため、ガルバノ 信号は必ずしも小さくならないと考えられる。実際、第3章で述べるようにこの 33195cm⁻¹ 準位の寿命は15nsecと短いことが分かっている。従って先のa,bの場合には、 RIS の強度が OGS に比べて相対的に低下し、準位探査の感度が下がる場合があると考 えられる。また、第1励起準位と電離極限の中間点より低エネルギーにある高励起状態 の探査では、第1励起準位から3光子吸収しないとイオン化しないため RIS 信号は非常 に弱くなる。このため色素レーザーを2台だけ利用する場合は OGS 法の方が有利であ る。この様な理由から、RIS と OGS 信号の同時計測は高励起状態の探査に都合の良い 方法であると考えられる。

(2) ガドリニウムの高励起状態

前述の方法で 31000~37000cm⁻¹ の範囲にあるガドリニウムの高励起状態を探査した。 励起には基底状態と準安定状態(0, 215, 533, 999, 1719 cm⁻¹)から励起する 20 個の偶パリ ティ第1 励起準位を利用した。表 2-6 にこれら 20 個の第1 励起準位を表す記号、準位 エネルギー、J 値をまとめた。

2段目のレーザー光強度が高いため、測定したスペクトルのほとんどで、このレーザ ー光のみを利用した単色多光子電離によるピークが観測された。そこでこれらのスペク トルから高励起準位のエネルギーを求める前に、前節の単色遷移の実験結果を用いて偽 のピークを識別した。また下準位の異なるスペクトルを比較する方法でも、2波長イオ ン化ピークと単色多光子イオン化ピークの識別を行った。図2-7に16920 cm⁻¹と16923 cm⁻¹の第1励起準位から観測した2色多光子電離スペクトルの例を示す。第2励起準位 に共鳴するピークにはその準位エネルギーを示した。この図で共通の高励起奇準位が関 与する2光子共鳴は、第1励起準位のエネルギー差が小さいために、接近しているもの の、わずかにずれたピークとして現れる。一方、〇印で示したように両方のスペクトル で全く同じ波長に現れるピークは、2段目のレーザー光だけを吸収した単色多光子電離 ピークであることが容易に識別できる。

本研究により、38 個の新しい準位を含む 90 個以上の高励起奇準位を観測した。表 2-7 にこれらの準位のJ値とエネルギーを示す。アスタリスク付きの準位は、第 2.4 節で述 べるように、原子をその準位に励起し、3 段目のレーザー光を、波長を変化させながら 照射して電離スペクトルを測定することで、実在準位であることを確認した準位である。 また「1st excited levels」の記号はこれらの準位への励起を確認した第1励起準位の記号 (表 2-6 参照)である。測定したエネルギー領域では、Martin¹¹⁾や Haynam²⁶⁾が報告してい る 58 個の準位が観測された。この報告されている準位エネルギーと測定したエネルギ ーの差は 0.1cm⁻¹ 以下であることが分かった。これは波長測定に用いたフィゾー干渉型 波長計の絶対波長精度やレーザーの発振幅から予想される測定誤差と同程度である。今 回観測したエネルギー領域ではこれまでに報告されているほぼ全ての準位が観測され たが、Martin¹¹⁾が報告している 33088.337cm⁻¹(*J*=4)だけは、この準位へ遷移可能な *J*=4,5 の 11 個の第 1 励起準位を用いても観測できなかった。

FIGURE 2-7 2nd-step transition spectra measured from adjacent 1st excited levels of Gd.

準位の J 値は選択則($\Delta J=0,\pm1$)を基に同定した。この方法で J 値を確定するためには J-1, J, J+1 の準位から励起を観測する必要がある。観測できない場合は可能性のある J 値が複数残る。この様にして確定した J 値と J 値の候補を表 2-7 の [J-value] 欄に示す。

34582cm⁻¹の準位だけは J 値が 1~4 の下準位から励起が観測され、J 値の同定に矛盾 が生じた。この準位は J=5 の下準位からは励起されないことから、J=3 と J=2 の準位が、 エネルギーの測定誤差である 0.1cm⁻¹ 程度の範囲に近接しているものと考えられる。そ こで、17930cm⁻¹ (J=4)->34582cm⁻¹ と 17227cm⁻¹ (J=1)->34582cm⁻¹のスキームで励起した 第 2 励起準位に 3 段目のレーザー光を照射して、電離スペクトルを測定した。図 2-8(a) と(g)にその結果を示す。(a)は第 1 励起準位が J=4 なので J=3 の第 2 励起準位、(g)は第 1 励起準位が J=1 なので J=2 の第 2 励起準位の電離スペクトルが現れる。647.33nm の ピークは両方のスペクトルに共通であるが、他の構造は異なっている。他の第 1 励起準 位でも同様に比較すると J=1,2 の第 1 励起準位では図 2-8(g)、J=2,3,4 の第 1 励起準位で は図 2-8(a)のスペクトルが観測されることが分かった。また 17617cm⁻¹ (J=3)-> 34582cm⁻¹ の励起スキームで観測したスペクトルには、両方の構造が重なって現れた。図 2-8(b)~ (f)のように、この励起スキームで第2励起光の波長を+0.006~-0.013nmの範囲で変化さ せると形状が変ることから、J=3 準位の方が J=2 より 0.03cm⁻¹ 高エネルギー側にあるこ とがわかった。この結果、J値の同定で矛盾が生じるのは、測定の誤りによるものでは なく、近接準位の存在によるものであることが確かめられた。

FIGURE 2-8 Variation of ionization spectra from 34582cm⁻¹ level of Gd.

(3) ウランの高励起状態

ウランの高励起状態は 31300~36400cm⁻¹ の範囲で探査した。励起には基底状態と準安 定状態(0, 620.323, 3800.829 cm⁻¹)から励起する 20 個の偶パリティ第1 励起準位を利用し た。表 2-8 にこれら 20 個の第1 励起準位を表す記号、準位エネルギー、J 値をまとめる。

測定した代表的な探査スペクトルを図 2-9 に示す。これは 14839cm⁻¹の第1 励起準位 から測定した 2 色多光子電離スペクトルと、同時に測定した Ne の OG スペクトルであ る。第2 励起準位に共鳴した主要な電離ピークには、その準位エネルギーを示した。レ ーザー強度は 1mJ 程度であるが、ガドリニウムと同様、幾つかのスペクトルで単色多光 子電離ピークが観測された。そこでこれらのピークから高励起準位のエネルギーを解析 する前に、前節の単色電離遷移の結果や Donohue²⁾, Dasgupta⁴⁾, Mago⁵⁾, Ray³⁾, Levesque⁸⁾ の報告値を参考にして、偽のピークを識別した。ウランでは、第1 励起準位から自動電 離準位への 2 光子遷移に伴うピークも複数観測された。この場合、この 2 つのレーザー を共鳴波長に固定し、3 段目のレーザー光を、波長を掃引しながら追加照射して、 (1+1+1)共鳴による電離ピークが現れないことから、偽のピークであることを確認した。

FIGURE 2-9 Typical 2-color 3-photon ionization spectrum of U

このような解析の結果、150 個の新しい準位を含む 450 個以上の高励起準位を 31300 ~36400cm⁻¹ の範囲に見いだした。表 2-9 に共鳴波長と下準位のエネルギーから算出した準位エネルギーを示す。精度は、レーザーの発振幅の違いなどからガドリニウムの場合より低く 0.2cm⁻¹ 程度である。表の「1st excited level」欄にはその準位への励起が確認できた下準位を記号で示す。また「Reported levels」欄には文献値と出典を示す。また、電離スペクトルを測定した準位はアスタリスクで示す。

Blaise¹⁴⁾や Crosswhite²⁸⁾の文献値と比較すると、今回観測した範囲に報告されている *J*=4~7の準位はほとんど観測できた。報告値とのずれは 0.2cm⁻¹以内であり、測定精度 の評価と一致した。報告準位の中で、励起可能な J 値を持つ 10 個以上の下準位から観 測ができなかった準位は、極めて短寿命の準位か、誤同定の可能性が疑われる。

高励起準位のJ値はJ値の選択則($\Delta J=0,\pm1$)を基に同定した。その結果を表 2-9の「J-value」欄に示す。約 160 個の準位でJ値が確定したが、J値の確定しない準位もまだ 300 個近く残っている。また 34128.38, 34764.98, 36000.33 cm⁻¹の準位は4種類以上のJ値の準位から励起され、J値が決まらなかった。これらの準位も、Gd の 34582cm⁻¹ 準位と同じく、0.3cm⁻¹程度の範囲にJ値の異なる準位が近接していることが予想される。

本研究で同定した J 値は報告値とほぼ一致したが、32626.635 cm⁻¹の準位だけは文献 値の5に対して6となった。また文献値の間でも33939.75,34578.25,34797.80cm⁻¹の J 値は5か6に分かれており、今回の結果はいずれも6となった。Crosswhite²⁸⁾のデータ は Blaise¹⁴⁾のデータを基にしており、32626.635,33939.75,34578.25cm⁻¹ 準位を5とした のは同じ発光スペクトルに基づいている。しかし前述したように、放電ランプの高励起 状態の占有数は少なく、発光強度も弱いと思われ、同定に誤りがある可能性はある。選 択則で決定した J 値にはまだ不確実さがあり、これを確定するにはゼーマン分裂の観測 ²⁹⁾や、第 2.4 節で述べる偏光組み合わせ法による研究が不可欠である。 2.4 3波長3段階イオン化法による自動電離準位の測定

2.4.1 目的と概要

多段階共鳴電離によるレーザー同位体分離では、高い電離効率を得るため、共鳴電離 過程の終状態に自動電離準位を用いる。しかし、光学的に活性な価電子が多数存在し、 それらが複雑に相互作用するウランやガドリニウムの電離準位構造は極めて複雑であ る。これまでに3段階電離で利用可能な偶パリティ自動電離準位を探すための研究が幾 つか報告されているが、同定された準位はまだ非常に限られている^{25),30)-32)}。また、同 定された準位でも、J値が確定していないものが多数存在する。多くの自動電離準位を 同定し、そのJ値を決定することは、レーザー同位体分離だけでなく、原子物理の立場 からも重要であると考えられる。

ウランやガドリニウム原子の束縛エネルギー準位のJ値は、多くの場合、ゼーマン効果^{29),33)}やJ値選択則に基づく方法で決定されている。しかしながら、線幅が広く、準 位密度も非常に高い自動電離準位では、これらの方法は有効ではない。一方、多段階電 離スキームの準位のうち、自動電離準位のJ値のみが未定な場合には、偏光組み合わせ 法が有効と考えられる。多段階電離スキームでは、(1)磁気副準位間の遷移確率の偏光依 存性と、(2)電離に寄与する副準位数の偏光依存性、に起因して、各励起段の光の偏光状 態を変えることで、発生するイオン量が変化するという性質がある。そこで、偏光の組 み合わせかたを様々に変化させて、光イオン量の変化パターンを測定し、理論的に予想 される変化パターンと比較する事によりJ値を同定するのが偏光組み合わせ法である。

この方法はまた、解析方法の違いから2つの方法に分類できる。J値が3以下の自動 電離準位では、特定の偏光組み合わせで禁制遷移により電離信号が消えることを利用し てJ値が決められる³⁴⁾⁻³⁶⁾。しかし、ウランやガドリニウムの様にf電子系列の中位に位 置する元素では、J値が3以上の自動電離準位が多数存在する。この場合、禁制遷移で 電離信号が消える遷移は少ないため、先に述べた2つの要因を考慮して、5通り程度の 偏光の組み合わせでイオン量の変化パターンを計算し、測定パターンと比較してJ値を 決める方法が用いられる³⁷⁾⁻⁴⁰。この方法でこれまでにJ値が同定された電離準位はウ ランやサマリウムの数個の準位に限られるが、その理由は、バンド幅の狭いリング色素 レーザーを励起光源に用いたためと思われる。Greenland が指摘するように、インコヒ ーレントな系では、変化パターンは各励起段の光強度や遷移断面積で大きく変らない。 従って、バンド幅の広いパルス色素レーザーの方が、より多くの電離準位のJ値を決め るのに適していると思われる。

本研究では、イオン化極限近傍から約 1000~4000cm⁻¹の範囲に存在する電離断面積の 大きな数 100 個のウラン、ガドリニウムの自動電離準位を 3 段階共鳴電離分光法で同定 した。また、これらの自動電離準位のJ 値を、選択則に基づく方法と、偏光組み合わせ 法を用いて決定した。さらに、ウランでは、J 値の決定した自動電離準位とJ 値選択則 を利用して、前節でJ 値が確定できなかった約 70 個の奇パリティ第 2 励起準位のJ 値 を確定した。

2.4.2 測定方法

(1) 電離スペクトル測定法

第1、第2段のレーザー光を照射して原子を第2励起準位へ励起し、引き続き波長を 掃引しながら電離光を照射して、自動電離準位に共鳴するイオン信号のピーク(電離ス ペクトル)を観測した。電離光の共鳴波長は、波長補正したフィゾー干渉型波長計や、 同時に記録したガルバノスペクトルを用いてエネルギー精度±0.05 cm⁻¹で測定し、そ の波長と第2励起準位のエネルギーから電離準位のエネルギーを算出した。第2励起光 の強度は、第1励起準位から第2励起準位への遷移が飽和する強さで、かつえ₁+2え₂の 2光子イオンが生じない程度に設定した。しかし比較的弱い第2励起光強度でも第1励 起準位から自動電離準位への2光子電離でイオンが発生しバックグランドノイズとな る場合があった。電離光強度は断面積10⁻¹⁵cm²の遷移が飽和する程度とした。レーザー 色素の発振限界付近では波長により強度が急激に変るため、常時強度をモニターしなが ら電離光強度が一定になるように連続光減衰器を調整した。レーザーパルスの時間波形 をバイプラナ光電管によってモニタし、発振タイミングを多チャンネル遅延パルス発生 器で調整した。電離スペクトル測定では、励起の順番が逆転しないよう、3つのパルス を時間的に分離して照射した。

(2) 偏光組み合わせ分光法とその解析方法

(2-a) 測定方法

偏光組み合わせ法では各励起段の偏光を様々に変えて、磁気副準位間の遷移確率や、 電離する副準位数を変化させ、これにより生じるイオン信号の変化を観測する。様々な 偏光の組み合わせで信号の変化パターンを測定し、理論との比較からJ値を決める。こ のため、実験ではまず3台の色素レーザーの偏光を、広い波長範囲で位相の調整が可能 な、Babinet-Soleil 位相補償板により、円偏光や直線偏光に変えた。偏光状態を保つた め、バビネ板を透過した光は直接、真空容器に導いた。それぞれのレーザービームの入 射角は 1/20rad 以下に抑え、原子ビーム上で交差させた。遷移が飽和すると信号強度の 偏光依存性が観測しにくいので、3つの光は同時に原子に照射し、発生したイオンは質 量分析して偶同位体のイオン信号のみを検出した。

本研究では、Greenland³⁷⁾の実験にならい、右周り、左周り円偏光による4つの組合わせ(RLR)、(RRR)、(LRR)、(LLR)と、3つの直線偏光の平行組合わせ(π π π)の、5つの偏光組合わせを用いた。ここでRは右円偏光、Lは左円偏光、 π は平行直線偏光である。色素レーザーの偏光度は色素の種類や発振波長により異なるが、ほぼ70%~98%の範囲であった。

グランレーザー偏光子の角度を変えながら、バビネ板透過光強度を測定することで、 円偏光の楕円率や、直線偏光の平行度を調整した。また円偏光の場合には、波長依存性 の小さいλ/4 フレネルロム波長板を用いて円偏光を直線偏光に戻し、これをグランレー ザー偏光子に導いて回転方向を確認した。このような偏光状態の確認は、光が真空容器 へ入射される直前で行った。これにより、円偏光では楕円率 tan⁻¹(A/B)(但し、A:最大 強度 B:最小強度)を 0.76 以内に抑え、直線平行偏光では互いの偏光面のずれを約 10% 以内に抑えた。 (2-b) 解析方法

実験に合わせ、5通りの偏光の組み合わせで、J 値未定準位のJ 値によってどのよう な変化パターンになるのかを計算し予想することが必要になる。このため、以下では磁 気副準位間遷移と偏光を考慮した自動電離準位の占有数計算を行う。

本研究で使用した色素レーザーは、幾つかの縦モードの重ね合わせにより、発振幅が数 GHz に拡がっている。このため、ラビ振動などのコヒーレントな効果は、異なる位相同士が打ち消し合い、小さくなると考えられるので、励起のダイナミクスはレート方程式で記述する。また、簡単のため次の条件が成り立つとする。

(a)全てのレーザーは同時に照射される。

(b)レーザーは完全偏光で、3つの副準位間遷移Δm=±1,0のうちどれか1つが起こる。 (c)レーザーパルス持続時間内での輻射脱励起や原子衝突が無視でき、縮退した磁気副 準位間の緩和が無視できる。

このような環境では異なる磁気副準位の原子はそれぞれ独立に電離すると考えられ、 それぞれの副準位電離スキームにおける電離ダイナミクスは次のような関係で表せる。

$$\frac{dN_{J_{3},m_{3}}}{dt} = W^{q_{3}}J_{3m_{3},J_{2}m_{2}}N_{J_{2},m_{2}}$$

$$\frac{dN_{J_{2},m_{2}}}{dt} = W^{q_{2}}J_{2m_{2},J_{1}m_{1}}(N_{J_{1},m_{1}} - N_{J_{2},m_{2}}) - W^{q_{3}}J_{3m_{3},J_{2}m_{2}}N_{J_{2},m_{2}}$$

$$\frac{dN_{J_{1},m_{1}}}{dt} = W^{q_{1}}J_{1m_{1},J_{0}m_{0}}(N_{J_{0},m_{0}} - N_{J_{1},m_{1}}) - W^{q_{2}}J_{2m_{2},J_{1}m_{1}}(N_{J_{1},m_{1}} - N_{J_{2},m_{2}})$$

$$\frac{dN_{J_{0},m_{0}}}{dt} = -W^{q_{1}}J_{1m_{1},J_{0}m_{0}}(N_{J_{0},m_{0}} - N_{J_{1},m_{1}})$$
(2-3)

ここで、W^q は偏光状態 q に依存する副準位間遷移の遷移確率であり、N_{Jm} は副準位 |J,m>の占有数である。観測できる光電離イオン生成量は N_{J3,m3}を、全ての可能な副準位 間電離スキームで足し合わせたもので、次のように書ける。

$$N_{ion}(t) = \sum_{m_3 = -J_3}^{J_3} N_{J_3, m_3}(t)$$
(2-4)

始状態の原子は全ての副準位に均等に占有されるので、t=0 での副準位占有率は次の様 になる。

$$N_{J_0,m_0}(0) = (2J_0 + 1)^{-1} \qquad for \ m_0 = -J_0 \ to \ J_0 \qquad . \tag{2-5}$$

一般に、副準位|J₁,*m*|>から副準位|J_u,*m*_u>への遷移確率は、光子フラックスの周波数スペクトルと断面積スペクトルの畳み込み積分で表すことができ、

$$W^{q}_{J_{u}m_{u},J_{l}m_{l}}(\omega) = \int n(\omega-\omega')\sigma^{q}_{J_{u}m_{u}J_{l}m_{l}}(\omega)d\omega' \qquad (2-6)$$

である。副準位間遷移の断面積は、親準位 $J_{I} \rightarrow J_{u}$ 間の遷移の規約断面積と Wigner の 3j シンボルを用いて次のように表せる ⁴¹⁾。

$$\sigma^{q}_{J_{u}m_{u},J_{l}m_{l}}(\omega) = 3(2J_{l}+1) \begin{pmatrix} J_{u} & 1 & J_{l} \\ -m_{u} & q & m_{l} \end{pmatrix}^{2} \sigma_{J_{u},J_{l}}(\omega)$$
(2-7)

ここで、qは遷移の前後における磁気量子数の変化mu-ml,を表し、直線偏光では0、円偏
光では ± 1 である。さらにこの規約断面積は規格化された形状関数 $g(\omega)$ と、規約行列要素 $< J_u \parallel D_z \parallel J_l >$ を用いて次のように表せる。

 $\sigma_{J_u,J_i}(\omega) = \frac{4\pi^2 \omega}{3\hbar c(2J_i+1)} g(\omega) \left| \left\langle J_u \right| \right| D_z \left| \left| J_i \right\rangle \right|^2$ (2-8)

第3.2節で述べる飽和法では、この断面積のピーク値 σ_{Ju,J}(w=0)を測定することになる。 そこで本研究では、ガウス型形状関数を仮定し、飽和断面積測定値からイオン生成量を 計算する。しかし、この断面積の大きさや仮定した形状関数の形がイオン量の変化パタ ーンに与える影響は小さい。

なお、(2-3)式の多段階レート方程式は、第4章で述べるように、光強度が飽和に比べ て極めて弱い場合を除けば、近似的に1段階レート方程式に置き換えが可能であり、そ の場合、この計算をさらに単純化することもできる。

2.4.3 結果と議論

(1) ウランの自動電離準位

ウランでは 100 個以上の第 2 励起準位から電離スペクトルを測定し、比較的強いピー ク約 1000 個を解析して関与する電離準位のエネルギーを求めた。図 2-10 に測定した電 離スペクトルの代表例を示す。これは 33363cm⁻¹(a)と 32332cm⁻¹(b)の 2 つの第 2 励起準 位から観測した電離スペクトルと、波長校正用の Ne の光ガルバノスペクトルである。 (a)の主要なピークに付けた 7~9 の数値は偏光組み合わせ法で決定した電離準位の J 値 である。⁶L_{11/2} limit はイオンの第 1 励起状態(289cm⁻¹)の位置を示し、これを系列極限と するリドベルグ系列構造が「Rydberg」の領域に現れている。(b)の ⁴I 9/2 limit はイオンの 基底状態の位置、即ちイオン化ポテンシャル(IP)である。

多くのピークは、対称で幅の狭いプロファイルを有しており、自動電離準位と連続状 態間の相互作用が弱いこと、共通の第2励起準位から連続状態へ向かう直接電離過程と、 自動電離準位を経由する電離過程の干渉が弱いことがわかる。このため電離準位のエネ ルギーは第2励起準位の場合と同様、ピークの中心波長から算出した。

表 2-10 に得られた自動電離準位のエネルギーをまとめる。これらの値の精度は、電離 ピークの線幅によって変化し±0.3~0.7cm⁻¹の範囲と評価される。測定した線幅は 2GHz 以下(ランク I),2-10GHz(ランク II),10GHz 以上(ランク III)に分類して示した。但しこの幅 には、レーザーのバンド幅や飽和拡がりの効果は考慮されていない。

ウランの幾つかのスペクトルでは 50170-50230cm⁻¹ の範囲にイオンの第1励起準位へ 収束する自動電離リドベルグ系列が観測された。これらの準位は第5章でまとめて解析 するため表 2-10 から除外した。また表 2-10 の準位のうち、49958.4 cm⁻¹⁴²⁾の電離極限よ り低エネルギーの 16 個の準位は、50 V/cm のパルス電場によって電場イオン化した、

リドベルグ系列に属さない価電子高励起状態と考えられる。実際、電場存在下での電離 極限の鞍点モデルと、報告されているウランの電離極限の電場依存性⁴³⁾から、今回のパ ルス電場では閾値が 45cm⁻¹程度低下することが予想される。

FIGURE 2-10 Typical photoionization spectra of U.

自動電離準位のJ値は、選択則に基づく方法のほか、偏光組み合わせ法を用いて同定 した。偏光法では、1つの自動電離準位のJ値を決めるために、数個の励起スキームを 利用した。一例として、図2-11に49961cm⁻¹の自動電離準位を終状態とするJ値の異な る6つの励起スキームで測定したイオン量の変化パターンを示す。黒丸が測定したイオ ン量の相対値である。直線、波線、点線は自動電離準位のJ値として可能性のある3つ の値に対して、理論的に予想される変化パターンである。測定したパターンはいずれも JAI=7の計算結果と一致しており、共通の自動電離準位のJ値は7であることが分かる。

また、この図から、電離準位のJ値によってパターンが大きく異なるスキーム(例えば 6→7→8→7,8,9) とそうでないスキーム(例えば、6→6→6→5,6,7)が存在することが分

かる。これらのパターンは光強度を変えてもあまり変化しない。そこで、今回の偏光組 み合わせ実験では、J値の同定がより確実に行えるよう、J値による変化の大きなスキ ームを選んで利用した。この様にして約80個の自動電離準位のJ値を決定した。

Polarization combinations

FIGURE 2-11 Ion yield patterns with six schemes terminated by an identical AI level.

選択則と偏光法で決めたJ値を、表 2-10の「J_{sel}」、「J_{pol}」欄に示す。本研究により約 130個の電離準位のJ値が確定できた。J_{sel}の数字が2ケタ以上のものはJ値の候補であ り、例えば567はJ値が5,6または7であることを意味する。ウランの自動電離準位の ように準位密度が高い場合、選択則で決定したJ値の正確さは絶対波長の測定精度や同 定の確度に依存する。波長誤差内に異なるJ値の準位が近接していると、J値の同定を 誤る可能性がある。特に電離極限近傍である 49945cm⁻¹ や 49970cm⁻¹付近は準位密度が 高いため、こうした誤りが起こる可能性がある。そこで、本研究では準位エネルギーだ けでなく、幅や強度などのピーク形状も考慮して準位を識別した。

偏光組み合わせ法で決めた J 値と選択則で求めた J 値の候補はよく一致した。図 2-10(a)の各ピークに示す数値は偏光法で確定した J 値であるが、ΔJ=±1,0 の選択則から 明らかなように、1つの電離スペクトルには、確かに3種類のピークが存在している。 ただし、強いピークの多くは J 値が 7,8,9 の電離準位によるもので、J=5,6 のピークは弱 い傾向が認められた。また電離準位の線幅と J 値の関係について注目すると、J 値が 4 ~9 の範囲では、J 値が増加するほど幅の狭いピークの割合が増すことがわかった。こ のような電離断面積と電離幅の特徴は第5章で詳しく考察する。

(2) ウランの高励起奇パリティ準位のJ値同定

前節ではJ値の異なる低励起準位から多数の励起を確認することで、ウランの高励起 奇パリティ準位のJ値を同定した。しかしながら、その観測には基底準位と 620cm⁻¹の 準安定準位からはじまる J=4~7の第1励起準位を用いたため、J=345,45,78,789 など J値が確定しない準位が多く残った。そこで本節では約70個の第2励起準位から観測 した電離スペクトルから、J値の確定した自動電離準位を多数同定し、これによって、 選択則に基づき第2励起準位のJ値を決定した。その結果を表 2-11に文献値とともに 示す。同定したJ値の多くは、報告されているJ値や表 2-7のJ値候補と矛盾しない事 が分かった。ただし 32626, 33939, 34578, 34797 cm⁻¹の準位は、J値が報告値の5に反し て6と同定された。この不一致の理由は不明であるが、本研究の結果は約30個の自動 電離準位のJ値を基に決定しており、信頼できるものと思われる。また近接する複数の 準位が共存する可能性のある 31857, 32135, 32970, 34128, 34209 cm⁻¹の領域には、それぞ れ、少なくとも1つの J=7 準位が存在することが分かった。

この様に J 値の確定した電離準位を利用すれば、電離スペクトルを測定するだけで、 信頼性の高いJ値の決定が可能である。

(3) ガドリニウムの自動電離準位

ガドリニウムでは 40 個以上の第2励起準位から電離スペクトルを測定し、比較的強 いピーク約 1200 個を解析して電離準位のエネルギーを求めた。図 2-12 に(a)34811cm⁻¹ と(b)34623cm⁻¹の第2励起準位から観測した電離スペクトルの例を示す。主要なピーク には、対応する自動電離準位のエネルギーと偏光組み合わせ法で決定した J 値を示す。 図のように、異なる第2励起準位から観測しても、同じエネルギー領域に現れる強いピ ークは同じである場合が多かった。また、断面積の特に大きい遷移ではスペクトルの飽 和拡がりが観測された。図 2-12(a)のスペクトルを、電離レーザー光強度を飽和強度の 2倍、40倍、70倍と変化させて測定した例を図 2-13 に示す。波長の測定誤差を減らす ため、このように断面積の大きい遷移では電離光強度を下げてピーク波長を測定した。

多くのピークは、ウランと同様、対称で幅の狭いプロファイルを有しており、その準 位エネルギーはピークの中心波長から算出した。ガドリニウムではイオンの第1、第2、 第7励起状態へ収束する自動電離リドベルグ系列が観測され、特に、J値の小さい系列 では、明らかに非対称なファノ型のプロファイルが観測された(第5章 図 5-12)。これ らの準位の解析には第5章で述べるように MQDT 法を用いた。

表 2-12 には、リドベルグ準位を除く自動電離準位のエネルギーを示す。約 300 個の自動電離準位が 49500~54500 cm⁻¹ の範囲に見いだされた。これまでに報告されている準位のうち、Haynam²⁶⁾と Guyadec⁴⁴⁾の準位は観測できたが、Mishin²⁵⁾のエネルギー準位は今回の値より約 3 cm⁻¹小さいことが分かった。ガドリニウムでも、選択則と偏光組み合わせ法で J 値を決定した。「 J_{pol} 」欄が 5,6,7 のものは偏光組み合わせ法で J 値を決めた準位である。このほか、ガドリニウムでは、J=0の第 2 励起準位から励起する電離準位は J=1と確定するため、J=1の準位が多数同定できた。

また偏光選択則による同位体分離で重要な J=0 の電離準位は、その原理を利用して同 定した。J=0 の自動電離準位への遷移が禁制遷移となる励起スキームと偏光組み合わせ で、同位体毎の電離スペクトルを測定した。すると奇同位体^{157,155} Gd の電離スペクトル では超微細構造により J=0 の電離状態へ向かう遷移の禁制が解けるため、図 2-14 のよ うに奇同位体の電離スペクトルのみにイオンピークが出現した。このような偶奇効果を

FIGURE 2-12 Typical photoionization spectra of Gd.

*J*_{pol}と *J*_{sel}の一致は良いが、幾つか矛盾する結果も得られた。例えば、Guyadec が *J*=0 と報告している 49799.6cm⁻¹ 準位は偏光組み合わせ法で *J*=0 の結果を得たが、複数の *J*=2 の第2 励起準位から励起が観測されており、選択則では *J*=2 と同定された。また偏光組み合わせ法により同じエネルギーに *J*=6 の準位も重なっていることがわかった。ガドリニウムでもこのように準位密度の高い領域では、複数の *J* 値の異なる準位が近接している可能性が高いと思われる。

FIGURE 2-13 Power broadening effect on autoionizing levels of Gd.

FIGURE 2-14 Determination of J=0 autoionizing level using odd-even effect.

2.5 2波長多光子法、3波長3段階法による同位体シフトの測定

2.5.1 目的と概要

レーザー同位体分離の同位体選択性を評価するには、高励起状態の同位体シフトのデ ータが不可欠である。ガドリニウムの場合、可燃性毒物に有用な¹⁵⁷Gd など奇同位体の 分離には、偏光による選択則の違いを利用する方法も考えられるが、この方法は医療用 線源の前駆体となる¹⁵²Gd の分離には利用できないこと、電離効率の点で不利なこと、 などの欠点もある。そこで、本節では同位体シフトによる分離法のために、ウランとガ ドリニウムの第2励起準位、電離準位の同位体シフトを測定した。

最近の同位体シフト測定では、古典的なフーリエ分光法に加えて、リング色素レーザ ーによる共鳴蛍光分光法^{10,14,28,45)-48)}が盛んに用いられているが、30000 cm⁻¹以上の高 励起準位に、この方法が利用された例はこれまであまりない⁴⁹⁾⁻⁵¹⁾。その1つの理由は、 こうした精密分光が主に核構造研究を目的としており、強い配置間相互作用のために純 粋な状態が少ない高励起準位を使う必要がないためと思われる。また、この方法で高励 起準位の遷移を観測するには、多段階共鳴励起や多光子励起など、手順が複雑になるこ とも理由の一つと考えられる。

これに対し、分解能の高い質量分析法と多段階共鳴電離法を組み合わせて同位体シフトを測定する方法^{27),52),53)}は、高励起準位の同位体シフトを測定する汎用性の高い方法 と考えられる。この方法は、先の方法では測定が困難な電離準位の同位体シフトにも有 効である。そこで、本節では2波長多光子、3波長3段階共鳴電離質量分析法を用いて ウラン、ガドリニウム原子の同位体シフトを測定した。測定は、3段階共鳴電離スキー ムの第2励起準位に当たる32000cm⁻¹~36000cm⁻¹に存在する奇パリティ準位と、 49950cm⁻¹~50500cm⁻¹に存在する偶パリティ自動電離準位について行った。

2.5.2 測定方法

発振幅約 2GHz の 3 台の斜入射型色素レーザーを光源に用い、各レーザーパルスは遅 延パルス発生器で 5 ns 以上時間的に分離して照射した。波長はフィゾー干渉型波長計で 測定した。その絶対値精度は約 0.005nm である。同位体シフトの測定は 2 波長法又は 3 波長法で行った。

図 2-15 に高励起状態の同位体シフトの測定原理を示す。(a)は第2励起準位のエネル ギーが高く第1準位から2光子イオン化が起こる場合、(b)は第2励起準位のエネルギー が低く、2光子イオン化が起こらない場合の第2準位の同位体シフト測定法、(c)は電離 準位の同位体シフト測定法である。(b)のように第2準位が第1準位と IP の中間より低 い場合は、2光子吸収では IP まで届かないため(点線矢印)、第2レーザー光の後に波 長の短い第3レーザー光を照射した。(a)(b)では第1励起レーザー、(c)ではさらに第2 励起レーザーも波長を²³⁵U と²³⁸U の共鳴線のほぼ中間に同調した状態で、最終段のレ ーザー波長を掃引した。エネルギー準位に共鳴して現れる、²³⁵U と²³⁸U の電離スペク トルのピーク波長を、2台のボックスカー積分器を用いて同時に測定した。

測定は5つの低励起偶パリティ準位を第1励起準位に用いて行った。表 2-13 にこれらの準位のエネルギーを、同位体シフトの報告値と共に示す。本研究では Engleman⁴⁶⁾の

報告した同位体シフトを下準位の同位体シフトとして利用した。238-235 のシフトは 238-234 シフトを 1.194 の相対同位体シフト因子で割ることによって求めた。比較のた め、Blaise¹⁴⁾の 238-235 シフトも表 2-13 に示す。Engleman の値と Blaise の値の精度はそ れぞれ、3mK、20~50mK と報告されている。

ガドリニウムの場合の測定手順もほぼ同じであるが、リフレクトロン型質量分析器に より質量分解した天然存在比の大きい6個の同位体の信号を同時に処理するため、6台 のボックスカー積分器を使用した。同位体シフトはまず第1レーザーで第1励起準位に各 同位体原子を励起し、次に第2レーザーを照射して、第2励起準位に共鳴する2光子電 離ピークのシフト量を観測することで決定した。シフト量から同位体シフトを算出する 方法は、第2.2節の単色遷移の場合と同様である。

FIGURE 2-15 Principle of isotope-shift measurement for high-lying states of U.

2.5.3 測定結果と議論

(1) ウランの第2励起準位と自動電離準位の同位体シフト

本方法を多くの準位に適用する前に、その測定精度を確認した。図 2-15(a)の励起スキ ームを用いて、5つの第1励起準位から、9つの共通する第2励起準位へ向かう遷移の 質量分解スペクトルを測定した。図 2-16(a)に 16929 cm⁻¹準位から観測した、準位エネル ギーが 34161 cm⁻¹付近の2光子電離スペクトルを示す。34160 cm⁻¹の第2励起準位に起 因する ²³⁸U のピークは、隣接する 34161 cm⁻¹準位のピークに向かって大きくシフトし ている。このようなスペクトルから、²³⁸U と ²³⁵U のピークのエネルギー間隔を求めた。 上準位の同位体シフトは、その値から、表 2-13 の下準位の同位体シフトを差し引いて 求め、さらに、各第2励起準位毎に平均した。得られた平均値を表 2-14 に、測定した 遷移の同位体シフトとともに示す。個々の値の平均値からのずれは、ほとんどが 20mK 程度までで、レーザーのライン幅から見積もられる精度と一致している。

(a) 2nd step transition
 (b) 3rd step transition
 FIGURE 2-16 Typical mass-resolved ionization spectrum of U.

第2励起準位の同位体シフト測定は 32000~36000 cm⁻¹に存在する約 120 個の準位に ついて行った。表 2-15 に得られた原子の基底準位を基準とする同位体シフトを、文献 値とともに示す。これらの値の符号は、²³⁸Uの線が高波数側にある場合をプラスとして いる。測定値と文献値の一致は、34599cm⁻¹ 準位を除いて満足できる。この準位は、文 献の間でも大きな食い違いが存在し、今回の値はそのほぼ中間の大きさである。表 2-14 に示すように、3つの異なる下準位から測定したこの準位の同位体シフトは 13mK の範 囲で一致している。さらに、後述するように、34599 cm⁻¹ 準位の今回の同位体シフトか ら求めた自動電離準位の同位体シフトも、他の第2励起準位から決めた値とよく一致す る。このようなデータ全体の整合性から 34599 cm⁻¹ 準位の今回の同位体シフトは最も確 からしいと考えられる。

自動電離準位の同位体シフトも49950~50500 cm⁻¹に存在する29個の準位について測定した。図2-16(b)に34434cm⁻¹(上)と34659cm⁻¹(下)の第2励起準位から観測した質量分解電離スペクトルの例を示す。これらの4つのピークは電離極限近傍の自動電離準位に対応している。はじめの2つの準位は極限直下にあり、レーザー照射後印加したパルス電場で電離したものと考えられる。49952 cm⁻¹ 準位への遷移の同位体シフトは、他の3つの準位へ向かう遷移の同位体シフトとは明らかに反対の符号である。これらの準位の同位体シフトは、第2励起準位と同じ方法で決定した。結果は表2-16 に示す。測定した同位体シフトは、第2励起準位と同様、-300~-800 mK の範囲に分布している。自動電離準位の同位体シフトの測定精度は49957、50421cm⁻¹準位を除いて±20 mK と

評価される。これら2準位は線幅が広いため、誤差は± 30 mK 程度である。

重元素の同位体シフトは主にフィールドシフトが寄与しているので、その準位同位体 シフトは電子配置に強く依存する。電子配置混合や Cross-Second-Order 効果 ⁵⁴⁾がなけれ ば、同じ配置、分光項に属する準位は同じ同位体シフトを持つ。その大きさは、核位置 で波動関数の振幅が極大となる s 電子の数によって大きく変化する。ウラン原子の基底 状態は $f^3 ds^2$ なので、電子配置に s 電子がないと大きな負のシフトを生じる。同位体シ フトが-700mK 近い第 2 励起準位は $f^4 dp$ の様な s 電子のない配置に属すると思われる。

(2) ガドリニウムの第2励起準位と自動電離準位の同位体シフト

測定したガドリニウムイオンの飛行時間(TOF)波形の例を図2-17に示す。各同位体の ピークは時間的に完全に分解されており十分な質量分解能がある。各ピークの飛行時間 に合わせてボックスカー積分器のゲートを設定し、各同位体の電離スペクトルを同時に 測定した。この様にして16824cm⁻¹の第1励起準位から観測した2色多光子電離スペク トルの例を図2-18に示す。同位体シフトが大きく異なる2つの第2励起準位34720cm⁻¹、 34719cm⁻¹に共鳴するピークが現れている。図では比較のため、偶同位体のスペクトル のみを示している。この様なピークのシフト量から、第2.2節の単色遷移の同位体シフ ト解析で用いたのと同じ方法で、約70個の第2励起準位の同位体シフトを求めた。

FIGURE 2-17 Typical TOF signal of Gd.

FIGURE 2-18 Typical mass-resolved 2-color multi-photon ionization spectrum of Gd.

FIGURE 2-19 Typical mass-resolved ionization spectrum of Gd.

表2-17に測定した第2励起準位の同位体シフトをまとめる。ガドリニウムの同位体シフトは+100から-300mKの範囲に分布している。測定精度は±10~20 mKである。文献値と比較すると、Ahmad^{55),56)}の値とは系統的なずれが認められるものの、それ以外の文献値とは一致している。また、表2-4の単色多光子遷移から求めた同位体シフトと比較すると、34624cm⁻¹と35606cm⁻¹準位を除くほとんどの準位で測定誤差内で一致した。1

波長法と、多段階法にはそれぞれ次の様な特徴があり、両者を組み合わせることでより 正確で系統的な測定が可能になるものと思われる。

(a)単色多光子法

使用するレーザーは1台。強い光で1波長多光子共鳴電離スペクトルを測定 長所:測定が容易である、 短所:励起スキームの確定が必要

(b)多段階法

第1レーザーで第1励起準位に励起、次に第2レーザーで2光子電離スペクトル を測定

長所:第1励起準位が確定している、短所:測定手順が1波長法より煩雑

ガドリニウムの自動電離準位の同位体シフトは、電離断面積の大きい50052.5, 50040.9cm⁻¹準位をはじめ約20個の準位で測定した。34811cm⁻¹の第2励起準位から観測 したこれらの電離準位のスペクトルを図2-19に示す。上の3つが同位体毎の共鳴イオン 化スペクトルで、下の2つは同時測定したGdの高速、低速光ガルバノスペクトル(第 3章3.3節参照)である。図からこの2つの自動電離遷移の同位体シフトは-79mK,-89mK となり、観測に用いた下準位(34801cm⁻¹)の同位体シフト-174mKから、自動電離準位の 同位体シフトは-253mK,-263mKとなった。表2-18にこれらの結果をまとめる。アスタリ スクは異なる下準位から観測した遷移の平均値であることを意味する。シフトの大きさ の分布は第2励起準位と同程度であることが分かった。

FIGURE 2-20 Isotope shift of Gd vs electron density around nucleus of Cm.

ガドリニウムでも同位体シフトと電子配置の関係に注目すると、電子配置が同じ準位 の同位体シフトは同程度であった。さらに3個のs電子がある配置は正符号、s電子が2 個以下の配置は負符号で、s電子数が減るほど大きな負のシフト量になることが分かっ た。これは同位体シフトの大きさが原子核近傍の電子密度に比例し、コア貫入性のs軌 道電子が多いほど大きいという原子構造計算の結果と、ガドリニウム原子の基底状態が ウランと同様、s電子2個のf⁷ds²配置であることから理解できる。図2-20にガドリニウ ムと同じ電子配置を持つキュリウムでRajnak⁵⁷⁾らがHXR法(相対論的補正を加えたハー トリーフォック法)により計算した各電子配置の原子核付近の電子密度と、今回得られた電子配置毎の同位体シフト平均値の関係を示す。同位体シフトの大きさは核の電子密度の増加に対して直線的に増加しており、アクチノイドとランタノイドで電子配置毎の電子密度の相対関係は変らないことが示唆される。また、以上の結果から、同位体シフトが-250mK程度の自動電離準位の電子配置は、s電子の無いf⁷d³などの配置であると推定される。

本章ではウランとガドリニウムのエネルギー準位に関する分光測定について述べた。 第2.1節では本研究全般に使用した共鳴光イオン化質量分析装置の概要をまとめた。

第2.2節ではウランとガドリニウムの単色多光子電離遷移を観測し、遷移の始状態をポ ンププローブ分光により決定した。この始状態と単色遷移の中心波長から、その励起ス キームを調べ、ほとんどの単色遷移が、1段目、2段目の準位のうちいずれか一方に共 鳴する3光子共鳴イオン化遷移であること、また2段目で共鳴する遷移の方が、1段目 で共鳴する遷移より多く、線幅が狭く強いことを示した。さらに、単色遷移の同位体シ フトから、経由するエネルギー準位の同位体シフトを決定した。

第2.3節では2波長多光子法で基底状態や準安定状態から励起する奇パリティ第2励 起準位を探査した。その結果、ウランでは新たに同定した150個の準位を含む約450個 の準位を31300~36400cm⁻¹の範囲で観測し、ガドリニウムでは新準位38個を含む約90 個の準位を31000~37000cm⁻¹の範囲で観測した。共鳴電離信号と光ガルバノ信号の同 時測定体系では、各スペクトルの信号感度に差があり、同時測定によって高励起準位を より確実に探査できることを示した。

第2.4節では3波長3段階共鳴電離質量分析法で自動電離準位のエネルギーとJ値を 決定した。その結果、ウランでは約150個の自動電離準位を49930~51200cm⁻¹の範囲 で観測し、ガドリニウムでは約350個の自動電離準位を49600~54600cm⁻¹の範囲で観 測した。これらの準位のJ値は、選択則による方法のほか、偏光組合わせ法によって同 定した。さらに、J値が確定した自動電離準位を使って、第2.3節でJ値が確定しなか ったウランの高励起奇パリティ準位のJ値を多数確定した。

第 2.5 節では2波長多光子、3波長3段階共鳴電離質量分析法を用いて、32000cm⁻¹ ~36000cm⁻¹ に存在する奇パリティ第2励起準位と、49950cm⁻¹~50500cm⁻¹ に存在する 偶パリティ自動電離準位の同位体シフトを測定した。同位体シフトの大きさはs電子の 数に比例しており、基底状態にs電子が2個あるウランやガドリニウムでは、s電子の 数が減るほどマイナス側に大きくシフトすることが分かった。

以上の結果、ウランとガドリニウムのレーザー同位体分離に必要な多段階電離スキー ムのうち、これまでほとんど知られていなかった高励起準位のエネルギー準位構造の全 容を明らかにすることができた。

42

- 1) Young J P, Donohue D L and Smith D H: Spectrochim. Acta 44B (1989) 147.
- 2) Donohue D L, Young J P and Smith D H: Appl. Spectrosc. 39 (1985) 93.
- 3) Ray A K, Lal B, Mago V K and Rao P R K: J. Opt. Soc. Am. B9 (1992) 1979.
- 4) Gomonai A I and Zapesochnyi I P: Opt. Spectrsc. 75 (1993) 568.
- 5) Mago V K, Lal B, Ray A K, Rao P R K and Sharma S D: J. Phys. B20 (1987b) 6531.
- 6) Jayasekharan T, Razvi M A N and Bhale G L: J. Opt. Soc. Am. B13 (1996) 641.
- 7) Nakhate S G, Razvi M A N, Bhale G L and Ahmad S A: J. Phys. B: At. Mol. Phys. 29 (1996) 1439.
- 8) Levesque S, Gagne J M and Babin F: Can. J. Phys. 76 (1998) 207.
- 9) Dasgupta K, Manohar K G, Bajaj P N, Suri B M, Talukdar R K, Chakraborti P K and Rao P R K: J. Opt. Soc. Am. B5 (1988) 1257.
- 10) Kronfeldt H-D, Klemz G and Weber D-J: J. Phys. B: At. Mol. Phys. 23 (1990) 1107.
- 11) Martin W C, Zalubas R and Hogan L: Atomic Energy Levels The Rare-earth Elements, NSRDS-NBS 60 (Washington DC: US Govt Printing Office 1978).
- 12) Worden E F, Solarz R W, Paisner J A and Conway J G: J. Opt. Soc. Am. 68 (1978) 52.
- 13) Smith D H, Mckown H S, Young J P, Shaw R W and Donohue D L: Appl. Spectr. 42 (1988) 1057.
- 14) Blaise J and Radziemski L J Jr: J. Opt. Soc. Am. 66 (1976) 644.
- 15) Miron E, David R, Erez G, Lavi S and Levin L A: J. Opt. Soc. Am. 69 (1979) 256.
- 16) Carlson L R, Paisner J A, Worden E F, Johnson S A, May C A and Solarz R W: J. Opt. Soc. Am. 66 (1976) 846.

- 17) Suri B M, Dasgupta K, Bajaj P N, Manohar K G, Talukdar R, Chakraborti P K and Rao P R K: J.Opt.Soc.Am.B4 (1987) 1835.
- 18) Mago V K, Lal B, Ray A K, Kapoor R, Sharma S D and Rao P R K: J. Phys. B: At. Mol. Phys. 20 (1987) 6021.
- 19) Mago V K, Ray A K, Lal B and Rao P R K: J. Phys. B21 (1988) 955.
- 20) Fedoseev V N, Mishin V I, Vedeneev D S and Zuzikov A D: J. Phys. B: At. Mol. Phys. 24 (1991) 1575.
- 21) Broglia M, Catoni F and Zampetti P: J. Physique Coll. 44 (1983) C7-251.
- 22) Jimoyiannis A, Bolovinos A and Tsekeris: Z. Phys. D22 (1992) 577.
- 23) Smyth M H C, Green L W, Sopchyshyn F C and Leeson P K: J.Phys. B24 (1991) 4887.
- 24) Shi G, Du H, Wang S, Jin C and Li Z: J.Opt.Soc.Am.B17 (2000) 103.
- 25) Mishin V I and Fedoseev V N: Opt. Spectrosc. 63 (1987) 420. [Opt. Spectrosk. 63 (1987) 710.]
- 26) Haynam C A, Comaskey B J, Conway J, Eggert J, Glaser J, Ng E W, Paisner J A, Solarz R W and Worden E F: SPIE 1859 (1993) 24.
- 27) Herrmann G, Riegel J, Rimke H, Sattelberger P, Trautmann N, Urban F –J, Ames F, Otten E –W, Ruster W and Scheerer F: Resonance ionization spectroscopy 1990 :Inst. Phys. Conf. Ser. 114 (1991) 251.
- 28) Crosswhite H M: Gmelin Handbook of Inorganic Chemistry no.55 suppl. A5 (Springer-Verlag, Berlin, 1982).
- 29) Oba M, Akaoka K, Miyabe M and Wakaida I: Eur. Phys. J. D10 (2000) 349.
- 30) Coste A, Avril R, Blancard P, Chatelet J, Lambert D, Legre J, Liberman S and Pinard J: J.Opt.Soc.Am.72 (1982) 103.
- 31) Manohar K G, Bajaj P N, Suri B M, Talukdar R, Dasgupta K, Chakraborti P K and Rao P R
 K: Appl.Phys.B48 (1989) 525.

- 32) Rodrigues N A S, Neri J W, Schwab C, Silveira C A B, Destro M G, Riva R and Mirage A: J. Phys.B: At. Mol. Phys. 33 (2000) 3685.
- 33) Langlois E and Gagne J M: J.Opt.Soc.Am. B4 (1987) 1222.
- 34) Wynne JJ and Hermann J P: Optics Letters 4 (1979) 106.
- 35) Bi-ru W, Yunfei X, Youfeng Z, Ji L, Junfeng S and Yunxian W: J. Phys. B: At. Mol. Phys. 25 (1992) 355.
- 36) Chernomorets MP, Dubov MV and Klishevich GV: Opt. Commun. 171 (1999) 253.
- 37) Greenland P T: J. Phys.B: At. Mol. Phys. 21 (1988) 4117.
- 38) Greenland P T, Travis D N and Wort D J H: J. Phys. B: At. Mol. Phys. 23 (1990) 2945.
- 39) Nittoh K, Nakayama K, Watanabe J, Adachi H, Ueda H and Yoshida T: J. Phys. B: At. Mol. Phys. 27 (1994) 1955.
- 40) Yi J, Lee J and Kong H J: Phys. Rev. A51 (1995) 3053.
- 41) Hurst G S and Payne M G: Principles and applications of resonance ionization spectroscopy (IOP publishing: Bristol 1988).
- 42) Solarz R W, May C A, Carlson L R, Worden E F, Johnson S A, Paisner J A and Radziemski L J Jr: *Phys.Rev.*A14 (1976) 1129.
- 43) Passler G, Nunnemann M, Huber G, Deisenberger R, Erdmann N, Kohler S, Kratz J V, Trautmann N, Waldek A and Peterson J R: Resonance Ionization Spectroscopy 1998, AIP Conf. Proceedings 454 (1999)183.
- 44) Le Guyadec E, Ravoire J, Botter R, Lambert F and Petit A: Optics Comm. 76 (1990) 34.
- 45) Gagne J M, Nguyen Van S, Saint-Dizier J P and Pianarosa P: J. Opt. Soc. Am. 66 (1976) 1415.
- 46) Englman R and Palmer B A: J. Opt. Soc. Am. 70 (1980) 308.
- 47) Conway J G and Worden E F: J. Opt. Soc. Am. B1 (1984) 788.

- 48) Jin Wei-Guo, Wakui T, endo T, Uematsu H, Minowa T and Katsuragawa H: J. Phys. Soc. Jpn. 70 (2001) 2316.
- 49) Jia L, Jing C, Zhou Z and Lin F: J. Opt. Soc. Am. B10 (1993) 2269.
- 50) Aly Naglaa El-Sayed, Koh K, Nomaru K, Niki H, Izawa Y and Nakai S: Laser Eng. 22 (1994) 183.
- 51) Oba M, Akaoka K, Miyabe M and Wakaida I: SPIE Proceeding Ser. 3886 (1999) 691.
- 52) Lu Yi-qun, Jun M, Zhang J S, Zhang Y C, Gao M G and Liu Y H: AIP Conf. Ser. 388 (1997) 327.
- 53) Ogura K and Shibata T: Jpn. J. Appl. Phys. 37 (1998) L1403.
- 54) Bauche J and Champeau R J: Adv. At. Mol. Phys. 12 (1976) 39.
- 55) Ahmad S A, Venugopalan A and Saksena G D: Spectrochim Acta 34B (1979) 221.
- 56) Ahmad S A, Venugopalan A and Saksena G D: Spectrochim Acta 37B (1982) 637.
- 57) Rajnak K and Fred M: J. Opt. Soc. Am. 67 (1977) 1314.
- 58) Hashida M, Sakabe S and Izawa Y: Phys. Rev. A54 (1996) 4573.
- 59) Wakasugi M, Horiguchi T, Jin W G, Sakata H and Yoshizawa Y: J. Phys. Soc. Japan 59 (1990) 2700.

no.	wavelength	intensity	linewidth	IS ₁₆₀₋₁₅₄
	(nm)		(mk)	(mk)
1	633.770	I	60	-95
2	630.836	II	80	-72
3	626.646	I	100	-37
4	624.543	I	160	-31
5	624.534	I	60	-138
6	623,165	I	70	-31
7	618.540	I	70	-41
8	609.902	I	60	-123
9	607.647	1	60	-23
10	606.258	I	70	-39
11	605.861	I	60	-46
12	605.233	П	90	-40
13	605.065	II	70	-36
14	604.196	I	60	-79
15	602.328	I	60	-33
16	600.082	I	40	-24
17	596.759	I	60	-128
18	596.648	1	60	-38
19	596.511	I	70	-134
20	596.234	I	60	-46
21	593.797	I	130	Ż
22	592.326	Ш	60	-31
23	591.706	I	140	24
24	591.332	I	80	-84
25	591.044	Ι	70	-32
26	591.022	I	100	-55
27	585.228	III	80	-88
28	584.872	I	80	53
29	584.259	I	70	-31
30	584.205	Ι	90	-122
31	581.788	I	40	-146
32	580.789	I	220	4
33	580.365	I	80	33
34	579.337	11	90	2
35	579.138	Ι	190	-118
36	575.656	Ι	80	-9
37	575.188	I	160	-113
38	575.059	11	60	33
39	574.636	Ι	180	-119
40	574.467	I	190	-119
41	574.050	I	60	1
42	573.217	п	160	-120
43	570. 9 43	I	190	-121
44	570.809	II	70	-39
45	570.628	I	70	-46

Table 2-1 Observed single-color multiphoton ionization transitions of Gadolinium.

47

Tabl	e 2-1	(continue	ed)
------	-------	-----------	-----

no.	wavelength	intensity	linewidth	IS ₁₆₀₋₁₅₄
	(nm)		(mk)	(mk)
46	569.625	I	260	-111
47	568.667	I	160	-119
48	567.955	1	110	-106
49	565.676	I	70	-35
50	563.198	II	110	-48
51	562.956	i I	240	-115
52	562.906	IV	80	-108
53	562.794	I	70	-74
54	562.253	II	80	-35
55	561.796	I I		
56	561.545	i III	100	-52
57	560.926	Ţ	70	-50
58	560.909	I	60	-82
59	550.591	II	90	-67
60	548.974	Ĩ	70	-50
61	545.253	I	220	-33
62	545.201	· I	180	-114
63	537.896	I	200	-93
64	537.741	I	190	
65	536.995	. I	150	
66	536.908	Ι	120	-37
67	535.065	· I	110	-13
68	534.975	· I	100	-117
69	534.543	IV	120	-52
70	534.122	1 I.	140	-34
71	532.282	, I	170	-103
72	532.147	Ι	180	-1

IS 160-154は同位体¹⁶⁰Gdと¹⁵⁴Gdの同位体シフト mkは10⁻³cm⁻¹

48

Wavelength		Initial state			Final sta	te
(nm)	$E_1 (cm^{-1})$	configuration	term	J_{I}	$E_2(cm^{-1})$	J ₂
622.443	0	$f^7 ds^2$	°D	2	16061	3
625.574	215	$f^7 ds^2$	°D	3	16195	4
638.269	533	$f^7 ds^2$	°D	4	16195	4
629.286	999	$f^7 ds^2$	°D	5	16885	5
640.854	1719	$f^7 ds^2$	°D	6	17318	6
617.659	6378	$f^7 d^2 s$	¹¹ F	2	22563	3
624.302	6550	$f^7 d^2 s$	¹¹ F	3	22563	3
627.488	6786	$f^7 d^2 s$	¹¹ F	4	22718	5
640.236	7103	$f^7 d^2 s$	¹¹ F	5	22718	5
634.787	7480	$f^7 d^2 s$	¹¹ F	6	23229	6
626.334	7234	$f^7 ds^2$	'nD	4	23196	5

Table 2-2 Transitions used for pump and enhancement process for Gd.

no.	Wavelength	Wavenumber	Initial		lst	step		2r	id ste	p	Remarks
	(nm)	(cm ⁻¹)	$E_1(cm^{-1})$.	$\overline{J_1}$	$E_2(\text{cm}^{-1})$	J ₂	Δ_1 (cm ⁻¹)	E ₃ (cm ⁻¹)	J;	Δ_2 (cm ⁻¹)	
1	633.770	15774.233	999.121	5				32547.60	5	0.01	48321.79°
2	630.836 ^d	15847.598	215.124	3	16061.273	3	-1.45	31907.02	3	-3.30	47757.89°
3	626.646	15953.560	0.000	2				31907.02	3	-0.10	47860.66°
4	624.543	16007.280	532.977	4				32547.60	5	0.06	48554.79°
5	624.534	16007.510	1719.087	6				33734.10	4	-0.01	
6	623.165	16042.676	1719.087	6				33804.51	7	0.07	
7	618.540	16162.631	1719.087	6				34044.33	5	-0.02	
8	609.902	16391.539	999.121	5				33782.14	5	-0.06	
9	607.647	16452.368	1719.087	6				34623.94	6	0.11	
10	606.258 °	16490.062	215.124	3				33195.30	3	0.05	1719-34699ª
11	605.861 °	16500.867	532.977	4				33534.71	4	0.00	1719-34720 ^a
12	605.233	16517.989	1719.087	6				34754.99	6	-0.07	0-33036ª
13	605.065 °	16522.575	999.121	5				34044.33	5	0.06	
14	604.196	16546.339	1719.087	6				34811.79	6	0.02	
15	602.328	16597.653	0.000	2				33195.30	3	-0.01	
16	600.082	16659.775	215.124	3				33534.71	4	0.04	
17	596.759	16752.543	1719.087	6				35224.17	6	0.00	
18	596.648	16755.659	532.977	4				34044.33	5	0.03	
19	596.511	16759.507	215.124	3				33734.10	4	-0.04	
20	596.234	16767.294	0.000	2				33534.71	4	0.12	
21	593.797	16836.107	6550.395	3	23389.782	3	3.28				40222.61 ^b
22	592.326	16877.918	999.121	5				34754.99	6	0.03	
23	591.706	16895.603	7103.420	5	23999.912	5	0.89	40894.57	5	-0.06	
24	591.332	16906.289	999.121	5				34811.79	6	0.09	
25	591.044	16914.527	215.124	3				34044.33	5	0.15	
26	591.022	16915.157	7103.420	5							40933.73 ^b
27	585.228	17082.622	532.977	4	17617.767	3	2.17	34698.22	4	0.00	
28	584.872	17093.020	532.977	4				34719.13	4	0.11	
29	584.259	17110.954	532.977	4				34754.99	6	0.11	
30	584.205	17112.535	999.121	5				35224.17	6	-0.02	
31	581.788	17183.627	215.124	3				34582.51		0.13	
32	580.789	17213.184	6786.184	4	23999.912	5	0.54	41212.62	6	0.07	
33	580.365	17225.760	532.977	4				34984.56	i 3	0.07	
34	579.337	17256.325	532.977	4				35045.76	3	0.13	
35	579.138	17262.255	532.977	4	17795.267	3	0.04				
36	575.656	17366.669	7480.348	6				42212.62	2 6	-1.07	42213.70 ^b
37	575.188	17380.799	0.000	2	17380.827	2	0.03				
38	575.059	17384.698	215.124	3				34984.56	i 3	0.04	
39	574.636	17397.495	532.977	4	17930.516	4	0.04				
40	574.467	17402.613	215.124	3	17617.767	3	0.03				
41	574.050	17415.255	215.124	3				35045.70	j 3	0.12	
42	2 573.217	17440.562	532.977	4	17973.611	4	0.07				
43	570.943	17510.025	999.121	5	18509.198	5	0.05				
44	570.809	17514.136	532.977	4				35561.30) 4	0.05	
44	5 570.628	17519.691	215.124	3				35254.59) 1	0.08	

 Table 2-3
 Excitation schemes for single-color multiphoton transitions of Gd.

no.	Wavelength	Wavenumber	Initial		lst	step		2n	d ste	p	Remarks
	(nm)	(cm ^{·I})	$E_1(cm^{-1})$	J,	$E_2(cm^{-1})$	J_2	Δ_1 (cm ⁻¹)	$E_3(cm^{-1})$	J_3	$\Delta_2 (\mathrm{cm}^{-1})$	
46	569.625	17550.540	532.977	4	18083.642	5	0.13				,
47	568.667	17580.106	215.124	3	17795.267	3	0.04				999-36161*
48	567.955	17602.144	7562.457		25164.640	2	0.04				
49	565.676	17673.059	215.124	3				35561.30	4	0.06	
50	563.198	17750.818	215.124	3				35716.79	3	0.03	0-17750 ^a
51	562.956	17758.448	215.124	3	17973.611	4	0.04	35735.21	5	3.19	
52	562.906	17760.026	215.124	3	17973.611	4	-1.54	35735.21	5	0.03	1719-19480 ^a
53	562.794	17763.560	532.977	4				36060.12	4	0.03	
54	562.253	17780.652	0.000	2				35561.30	4	0.00	
55	561.796	17795.116	0.000	2	17795.267	3	0.15				533-36123*
56	561.545	17803.070	0.000	2				35606.14	2	0.00	
57	560.926	17822.716	215.124	3				35860.58	3	0.03	
58	560.909	17823.256	532.977	4				36179.44	4	-0.04	
59	550.591	18157.258	999.121	5				37313.72	3	0.08	
60	548.974	18210.739	999.121	5							37420.63 ^b
61	545.253	18335.014	7480.348	6	25815.330	6	-0.03				999-37669ª
62	545.201	18336.763	7234.910	4	25571.672	4	0.00				
63	537.896	18585.786	7234.910	4	25820.720	4	0.02				
64	537.741	18591.143	0.000	2							37182.33 ^b
65	536.995	18616.970	6786.184	4	25403.265	3	0.11				
66	536.908	18619.987	6550.395	3							43790.38 ^b
67	535.065	18684.121	6378.146	2							43746.43 ^b
68	534.975	18687.265	6976.508	5	25661.340	6	-2.43				44351.08 ^b
69	534.543 ⁴	18702.367	999.121	5	19700.606	5	-0.88	38403.92	5	0.07	
70	534.122	18717.108	7103.420	5	25820.720	4	0.19				215-37649ª
71	532.282	18781.809	0.000	2							37563.66 [⊳]
72	532.147	18786.574	6378.146	2	25164.640	2	-0.08				

Table 2-3 (continued)

Δ₁, Δ₂: 準位エネルギーの報告値E₂,E₃と波長から計算したエネルギーの差

^a Excitation scheme candidates found not to be true from this study.

^b New odd-parity states proposed in this study.

^c The 3rd states expected to be involved in four-photon absorption.

^d The transitions predicted by Smith *et al* (1988)¹³⁾.

^e The transitions reported by Hashida et al (1996) ⁵⁸⁾.

wavelength	Int -	initial state	c	1 st step °		deviation	litoroturo
nm	Int -	$E_1 (cm^{-1})$	J_{1}	$E_2 (cm^{-1})$	J_2	cm ⁻¹	merature
665.01	I						
664.96	Ι						
644.85	II	5762.078	5	21265.094	6	0.17	
611.62	Ι	4275.707	6	20621.298	5	-0.10	
610.00	1	7326.118	7	23715.292	6	-0.27	
599.79	II	4275.707	6	20943.428	6	0.16	d
591.54	IV	0	6	16900.387	7	-0.04	b, d
589.87	III	6249.029	6	23197.009	7	0.21	d
580.50	I	5991.313	4	23212.495	5	0.58	a, d
578.32	II	7645.645	8	24932.895	8	-0.57	a, b
576.38	п	7326.118	7	24671.388	6	-0.41	
575.89	III	0	6	34718.064		0.59	a, b, d
575.76	Ι	0	6	34725.340	5	0.87	а
570.29	Ι	6249.029	6	23779.257	7	-0.15	a, d
568.54	Ι	4453.419	4	22038.034	4	-0.57	а
567.74	II	3800.829	7	21409.973	8	-0.33	a, b, d
566.95	III	620.323	5	18253.870	6	-0.19	a, b, d
558.45	Ι	7005.532	6	24906.878	6	0.40	a, d
557.76	Ι	4453.419	4	22377.764	5	-0.45	a, d
556.44	Ι	3800.829	7	21767.971	7	-0.73	a, d
555.75	II	620		36597.400	345	0.02	a, d
544.58	III	4275.707	6	22633.158	7	0.24	d
542.97	Ι						
540.08	II	3800.829	7	22311.809	6	-0.33	d
538.56	I	7645.645	8	26208.803	7	-0.27	
538.40	II	3800.829	7	22368.467	7	0.77	d
538.19	II	7005.532	6	25580.751	6	0.43	
533.65	Ι	4453.419	4	23186.939	4	0.16	
532.30	II	3800.829	7	22582.654	6	-0.63	d

Table 2-4 Observed single-color multiphoton ionization transitions of Uranium.

Int: イオン信号強度(IVが最大)

deviation: 準位エネルギーの報告値E2と波長から計算したエネルギーの差

^a Mago et al (1987) ⁵⁾.

^b Dasgupta *et al* (1988) ⁹⁾.

^c Blaise and Radziemski (1976)¹⁴⁾.

^d Levesque et al (1998)⁸⁾.

level	transition	ΔT ₁₆₀₋	₁₅₄ (mK)
(cm ⁻¹)	no.	measured	reported
17380.8	37	-113	-121.4 ª
17617.8	40	-119	-120.0 ^a
17795.3	35, 47	-118	-117.5 *
17930.8	39	-118	-119.8 *
17973.6	42, 51	-117	-122.6 ª
18083.6	46	-110	-114.5 ª
18509.2	43	-119	-121.4 ^b
33195.3	10. 15	-72	-69.2 °
33534.7	11, 20	-91	-84.8 °
33734.1	5, 19	-267	
33782.1	8	-241	
33804.5	6	-53	
34044.3	7, 13, 18, 25	-69	
34582.5	31	-291	
34623.9	9	-37	
34698.2	27	-173	-180.0 ^d
34719.1	28	109	
34755.0	12, 22, 29	-62	-69.8 ^d
34811.8	14, 24	-156	
34984.6	33, 38	68	
35045.8	34, 41	- 0	0.0 ^d
35224.2	17, 30	-243	
35254.6	45	-91	
35561.3	44, 49, 54	-71	-78.8 ^d
35606.1	56	-104	
35716.8	50	-95	
35735.2	52	-215	
35860.6	57	-99	
36060.1	53	-145	
36179.4	58	-161	
37313.7	59	-129	
37420.6	60	-95	
37563.7	71	-206	
38403.9	69	-99	

Table 2-5 Isotope-shifts for the 1st- and 2nd-excited levels of Gd.

^a calculated from the line IS of Kronfeldt *et al* $(1990)^{10}$.

^b calculated from the line IS of Wakasugi et al (1990)⁵⁹.

^c calculated from the line IS of Aly et al (1994)⁵⁰.

^d calculated from the line IS of Jia *et al* $(1993)^{49}$.

Symbol	Energy $(cm^{-1})^a$	J ^a	
1A	15121.220	1	
1B	17227.969	1	
2A	16923.378	2	
2B	17380.827	2	
2C	17749.978	2	
3A	16061.273	3	
3B	16920.400	3	
3C	17617.767	3	
3D	17795.267	3	
4A	16195.999	4	
4 B	16824.589	4	
4C	17930.516	4	
4D	17973.611	4	
5A	15665.424	5	
5B	16885.739	5	
5C	18083.642	5	
6A	17318.942	6	
6B	18070.257	6	
7A	16775.024	7	
7B	18014.403	7	

 Table 2-6 First excited states used for the survey of Gd.

^a Level energies and J-values are from Martin *et al* (1978)¹¹⁾.

	oł	oserved levels		reported le	vels
Energy(cm ⁻¹)	J-value	1st exc	cited levels	Energy(cm ⁻¹) J-valu	e Reference
30951.25	4,5,6	5B			
31064.70 *	1,2	1B, 2A			
31171.23	6	5B, 7A			
31236.88 *	0,1,2	1B			
31269.49	4	3A, 3B, 4B, 5B			
31368.12 *	3	2A, 3A, 3B, 4A			
31394.11	4	3A, 3B, 4A, 4B, 5B			
31413.12 *	2	1B, 2A, 3B			
31413.81	6,7	6A, 7A			
31542.41 *	3	2A, 3A, 3B, 4A, 4B		31542.413	3а
31627.19	.3	2A, 3A, 3B, 4A, 4B			
31633.99	5	4A, 4B, 5B, 6A		31633.995	5 a
31766.57	5	4A, 6A		31766.595	5 a
31772.90 *	1,2	1 B, 2 A			
31842.59 *	0,1,2	1 B			
31907.10	3,4	3A, 4A		31907.020	3 a
31972.31 *	2	1B, 2A, 3A			
32072.90 *	3	2A, 3A, 3B, 4A, 4B			
32176.49	4	3A, 3B, 4A, 4B, 5B		32176.447	4 a
32181.69 *	2,3,4,5	2A, 3A, 3B, 4A, 4B,	, 5B	32181.645	3 a
32220.38 *	2,3	2A, 3B		32220.343	2а
32255.39 *	2	1B, 2A, 3A, 3B			
32512.66	5,6	5B, 6A			
32547.51	5	4A, 4B, 5B, 6A		32547.600	5 a
32565.89 *	3	2A, 3A, 3B, 4A, 4B			
32570.17 *	3	2A, 2B, 3A, 3B, 4A			
32572.64 *	3,4	3A, 3B, 4A, 4B			
32632.91 *	2	1B, 2A, 2B, 3A, 3B			
32652.14 *	1,2	1B, 2A, 2B			
32660.84 *	1,2	1A, 1B, 2A, 2B		32660.836	1 a
32729.66 *	2	1B, 2A, 2B, 3B, 3C			
32881.70 *	1,2	1B, 2A, 2B			
32925.50 *	4	3A, 3B, 3D, 4A, 4B	, 5A, 5B	32925.478	4 a
32928.71	5	4A, 4B, 5A, 5B, 6A		32928.702	7 a
32957.82 *	2	1A, 1B, 2A, 2B, 2C,	, 3A, 3B, 3C, 3D	32957.765	2 a
33037.81 *	1,2	1A, 1B, 2A, 2B			
33061.50	5,6	5A, 5B, 6A		33061.555	6 a
33189.47 *	3	2A, 2B, 2C, 3A, 3B	, 3C, 3D, 4A, 4B, 4C, 4D	33189.474	3 a
33195.31 *	3	2A, 2B, 2C, 3A, 3B	, 3C, 3D, 4A, 4B, 4C, 4D	33195.300	3 a
33352.93 *	3	2A, 2B, 2C, 3A, 3C	, 3D, 4A, 4B, 4C, 4D		
33391.36 *	4,5,6	5C			
33405.97 *	2	1B, 2A, 2B, 2C, 3C,	, 3D		
33478.31 *	4	3A, 3B, 3C, 3D, 4A	, 4B, 4C, 4D, 5A, 5C		
33491.37 *	5	4A, 4B, 4C, 4D, 5A	, 5B, 5C, 6A, 6B	33491.370	5 a
33534.71 *	4	3A, 3B, 3C, 3D, 4A	, 4B, 4C, 4D, 5A, 5C	33534.711	4 a
33655.33 *	4,5,6	5C			
33734.11 *	4	3A, 3B, 3C, 3D, 4A	, 4B, 4D, 5A, 5B, 5C	33734.095	4 a
33782.18 *	5	4A, 4B, 4D, 5A, 5B	, 5C, 6A, 6B	33782.140	5 a
33804.48	6,7	6A, 6B, 7A		33804.505	7 a
33818.84 *	4,5,6	5C			
33823.07	5	4A, 4B, 4C, 4D, 5A	, 5B, 5C, 6A, 6B	33823.080	5 a

 Table 2-7 Observed high-lying odd levels of Gd.

	0	served levels		геро	ted leve	els
Energy(cm ⁻¹)	J-value	1st excited levels		Energy(cm ⁻¹)	-value	Reference
33951.44 *	3	2A, 2B, 2C, 3A, 3B, 3D, 4A, 4B, 4C,	4D	33951.525	3	a
34044.33 *	5	4A, 4B, 4C, 4D, 5B, 5C, 6A, 6B		34044.330	5	а
34555.00 *	3,4	3B, 3D, 4A, 4B, 4C, 4D		34554.985	4	a
34582.51 *	2	1B, 2A, 2B, 2C, 3A, 3B, 3C, 3D				
34582.54 *	3	2A, 2B, 2C, 3A, 3B, 3C, 3D, 4A, 4B,	4C, 4D			
34586.77 *	1,2	1B, 2B, 2C		34586.730	1	ь
34601.69 *	0,1,2	1B				
34623.96 *	6	5B, 5C, 6A, 6B, 7A		34623.935	6	а
34697.75 *	1,2	1B, 2A, 2B				
34698.20 *	4	3A, 3B, 3C, 3D, 4A, 4C, 4D, 5B		34698.222	4	а
34719.09	4	3A, 3B, 3C, 3D, 4A, 4B, 4C, 4D, 5B,	5C	34719.128	4	а
34720.20 *	5	4B, 4C, 4D, 5C, 6A, 6B		34720.193	5	a
34754.97 *	6	5B, 5C, 6A, 6B, 7A		34754.990	6	а
34811.75 *	6	5B, 5C, 6A, 6B, 7A		34811.786	6	а
34906.15 *	2	1B, 2A, 2B, 2C, 3A, 3B, 3C, 3D		34906.200	2	a
34911.43	5	4A, 4B, 4C, 5B, 5C, 6A, 6B		34911.443	5	a
34984.50 *	3	2A, 2B, 2C, 3A, 3B, 3C, 3D, 4A, 4B,	4C, 4D	34984.563	3	а
35045.72 *	3	2A, 2B, 2C, 3B, 3C, 3D, 4A, 4B, 4C,	4D	35045.755	3	a
35224.18 *	6	5B, 5C, 6A, 6B, 7A				
35254.62 *	1,2	1B, 2A, 2B		35254.585	1	а
35435.99 *	2	1B, 2A, 2B, 3B, 3C, 3D		35435.990	2	а
35561.28 *	4	3B, 3C, 3D, 4B, 4C, 4D, 5B, 5C		35561.302	4	а
35603.57 *	4	3B, 3C, 4B, 4C, 4D, 5B, 5C		35603.585	4	а
35606.18 *	2	1B, 2A, 2B, 3B, 3C, 3D		35606.143	2	a
35716.79 *	3	2A, 2B, 3B, 3C, 4C, 4D		35716.787	3	а
35735.22	5	4C, 4D, 5B, 5C, 6A, 6B				
35860.59 *	3	2A, 2B, 3B, 3C, 3D, 4C, 4D		35860.584	3	а
35997.01 *	3	2B, 3C, 3D, 4C, 4D		35997.029	3	a
36046.63	3,4,5	4D				
36060.12 *	4	3C, 3D, 4C, 4D, 5C		36060.122	4	а
36123.79 *	2	1B, 2B, 3C, 3D				
36160.86 *	6,7	6A, 6B, 7B				
36179.44 *	4	3C, 3D, 4C, 4D, 5C		36179.444	4	а
36182.69	3	2B, 3D, 4C, 4D		36182.700	3	a
36268.43 *	2,3	2B, 3C, 3D		36268.455	2	a
36270.13 *	5	4C, 4D, 5C, 6A, 6B				
36326.64 *	4	3C, 3D, 4C, 4D, 5C		36326.630	4	а
36357.09 *	5,6	5C, 6B				
36360.10 *	1,2,3	2C		36360.088	1	а
36381.66	5	4C, 4D, 5C, 6B		36381.675	5	a
36386.36	3,4	3C, 3D, 4C, 4D		36386.383	4	a
36541.25	5	4C, 4D, 5C, 6B		36541.260	5	а
36577.01	3,4	3C, 3D, 4C, 4D		36576.972	3	a
36616.72	3,4	3D, 4C, 4D		36616.719	4	а
36653.94	5	4C, 4D, 5C, 6B		36653.970	5	а
36853.16	5	4C, 4D, 5C, 6B		36853.110	5	a

Table 2-7 (continued)

^a Martin *et al* (1978)¹¹⁾.

^b Haynam *et al* (1993)²⁶⁾.

* The level identification was confirmed by measuring ionization spectrum.

Symbol	Energy $(cm^{-1})^{a}$	ſ
4A	16121.933	4
4B	17468.213	4
4C	18185.999	4
5A	14839.736	5
5B	15720.682	5
5C	16294.017	5
5D	16929.760	5
5E	17369.550	5
5F	18406.522	5
6A	14643.867	6
6B	15638.367	6
6C	16195.360	6
6D	16505.773	6
6E	17070.469	6
6F	17361.895	6
6G	18759.179	6
7A	15631.855	7
7B	16900.387	7
7C	18839.262	7
8A	20528.898	8

Table 2-8 First excited levels used for the survey of U.

^a Blaise and Radziemski (1976)¹⁴⁾.

observed levels		reported levels			
Energy (cm ⁻¹)	J-value	1st excited levels	Energy (cm ⁻¹) J-value	Reference
31319.95	4,5,6	5A			
31347.58	4,5,6	5A	31347.501	4	a
31425.97	4,5,6	5A	31425.797	5	a
31429.96	4,5,6	5A	÷		
31458.58 *	4,5,6	5A			
31509.59 *	5,6	5A, 5B, 6A, 6C	31509.394	5	a
31529.30 *	6,7	6B, 6C, 7A			
31536.97 *	5,6	5A, 6A, 6C	31536.907	5	a
31564.02 *	5,6	5B, 6A, 6C, 6D			
31575.61 *	6,7	6A, 6B, 6C, 6D, 7A			
31583.67 *	5,6,7	6A, 6C, 6D	31583.757	5	a
31602.84 *	5,6	5A, 5B, 6A, 6B, 6C, 6D			
31649.36 *	4,5,6	5A, 5B			
31651.86 *	6	5A, 5B, 6B, 6C, 6D, 7A			
31695.47 *	6,7	6B, 6D, 7A			
31697.73 *	5,6	5A, 5B, 6B, 6C, 6D			
31698.83 *	4,5,6	5A, 5B			
31712.20 *	6	5A, 5B, 6A, 6B, 6C, 6D, 7A			
31723.63 *	6,7	6A, 6C, 6D, 7A			
31747.01 *	6	5A, 5B, 6A, 6B, 6C, 6D, 7A			
31748.41 *	5,6	5A, 5B, 6A, 6B, 6C, 6D			
31785.87 *	5,6	5B, 6A, 6B, 6C, 6D	31785.794	5	a
31797.78 *	6	5B, 6A, 6B, 6C, 6D, 7A			
31821.73 *	6	5A, 6B, 6D, 7A			
31832.35 *	6,7	6B, 6C, 6D, 7A			
31837.92 *	4,5,6	5B	31837.887	4	a
31847.58 *	5,6	5A, 5B, 6A, 6B, 6C, 6D	31847.527	5	a
31853.75 *	4,5,6	5B			
31857.84 *	6,7	6A, 6B, 6C, 6D, 7A	31857.797	6	a
31865.70	4,5,6	5B			
31868.78 *	6	5A, 6A, 6B, 6C, 6D, 7A			
31884.40 *	5,6	5A, 6A, 6B, 6C, 6D	31884.362	5	a
31899.83	4,5,6	5B	31899.846	4	a
31906.10 *	6,7,8	7A			
31915.29 *	5,6	5A, 5B, 6A, 6C, 6D	31915.211	5	a
31966.84 *	6,7	6B, 6D, 7A			
31983.40	4,5,6	5D			
31988.79 *	5,6	5A, 5B, 5D, 6A, 6B	31988.865	5	a
31995.92 *	6,7,8	7A			
31997.27 *	4,5,6	5A, 5B, 5D	31997.503	4	h
32005.76 *	5,6	5A, 5B, 5D, 6D	32005.648	5	a
32018.12 *	6	5A, 5D, 6A, 6B, 7A			
32019.89 *	6,7	6B, 6D, 7A	32019.886	7	a
32022.20 *	4,5,6	5A, 5B, 5D			
32050.45	4,5,6	5B, 5D			
32068.10	4,5,6	5D			
32094.60	4,5,6	5D	32094.429	4	а
32099.05	5,6	5D, 6D			
32112.44 *	6,7	6B, 6D, 6E, 7A			
32123.35 *	5	4A, 5B, 5D, 6B, 6D, 6E	32123.534	5	a

Table 2-9 Observed high-lying odd levels of ²³⁸U

Energy (cm ⁻¹)J-value1st excited levelsEnergy (cm ⁻¹)J-valueF 32135.59 6,76B, 6D, 6E, 7A, 7B22126.00056	Reference
32135.59 * 6,7 6B, 6D, 6E, 7A, 7B	
32135.99 ⁻ 4,5 4A, 5B, 5D 32136.083 4 a	
32158.95 * 6,7,8 7A	
32170.23 3,4,5 4A	
32192.50 * 4,5,6 5B, 5D 32192.476 4 a	
32193.98 * 5,6 5B, 5D, 6B, 6D, 6E	
32199.92 * 5 4A, 5B, 5D, 6D, 6E 32199.915 5 a	
32220.34 * 6 5B, 5D, 6B, 6D, 7A	
32237.99 * 4,5 4A, 5B, 5D 32237.963 4 a	
32257.03 * 5 4A, 5B, 5D, 6B, 6E 32257.092 5 h	
32258.66 4,5 4A, 5B, 5D	
32267.77 * 5,6 5B, 6B, 6D 32267.674 6 a	b
32273.59 * 5,6,7 6B, 6D 32273.53 5,6,7 b	
32285.14 * 5 4A, 5B, 5D, 6B, 6E, 6F 32285.138 5 a	b
32286.20 * 6 5D, 6B, 6E, 6F, 7A 32286.218 6 a	b
32293.92 3,4,5 4A	
32332.49 * 6,7,8 7A, 7B	
32336.52 * 4,5 4A, 5B, 5D 32336.498 4 a	
32340.04 * 5,6,7 6B 32340.16 5,6,7 b	
32343.39 * 5 4A, 5B, 5D, 6A, 6B, 6E, 6F	
32347.28 * 5,6 5B, 5D, 6A, 6B, 6E 32347.194 6 b	h
32351.50 3,4,5 4A	
32364.50 * 6,7 6B, 6E, 6F, 7A	
32368.78 * 4,5 4A, 5B, 5D	
32422.89 5,6 5B, 5E, 6B	
32427.06 * 4,5 4A, 5A, 5B, 5D, 5E 32427.180 4 a	
32430.58 * 5,6 5B, 5D, 6B, 6D, 6E, 6F 32430.28 5,6,7 b	
32445.18 * 6 5B, 5D, 5E, 6B, 6F, 7A 32445.10 5,6 b	
32467.66 3,4,5 4A	1
324/1.88 * 5,6,7 6A, 6B, 6E, 6F 324/1.985 / a	D
324//.09 3,4,3 4A	
32480.00 4,5 4A, 5A, 5B, 5D, 5E 52480.079 4 a	
52482.45 + 5.0 JD, JD, JD, O, O, O, O, O = 52482.35 J, 0.7 U	
52469.00 + 4,5 4A, 5A, 5D, 5D, 5E < A < D < E < 23503.694 5	L
32303.49 3 4 5 4 5 5 5 5 5 5 5 5 5 5	U
52552.02 4,5 4A, 5A, 5D, 5D, 5E 6D 6E 6E 7A 52552.575 4 a	
32334.12 0 3A, 3D, 3D, 0D, 0D, 0D, 0P, 7A 32334.03 3,0 0	
32545.05 * 67 68 6B 6E 6E 78 32545.060 7 h	h
32343.50^{-1} 0.7^{-0} $0.7^$	
32540.55 5,4,5 4A 32582.42 * 6 54 5B 5D 5E 64 6B 6D 6E 6E 74 32582 350 6 h	h
32583.31 * 45.44.54.5B.5D.5E	
32505.51 $4,5$ $4A,5B,5D,5E,6A,6E,6E$ 32505.120 4 a	
32500.71 = 5 - 76, 55, 55, 55, 55, 55, 55, 55, 55, 55, 5	
32616 49 * 67 8 7 A 7 B	
32676.53 * 6 5A 5B 5D 5E 6A 6B 6F 7A 32626.635 5 h	dh
32638 75 * 5 4A 5A 5B 5D 5E 6A 6B 6F 6F 32638 740 5 h	
32639.80 * 4.5.6 5B 5D	
32655.52 * 4.5 4A.5A.5B.5D.5E 32655.466 4	
32660.66 * 5,6 5A, 5B, 5D, 5E, 6A, 6B, 6D, 6E, 6F 32660.627 5 a	Ъ

Table 2-9 (continued)

observed levels		reported levels			
Energy (cm ⁻¹)	J-value	1st excited levels	Energy (cm	¹) J-value	Reference
32672.70	3,4,5	4A	32672.510	3	a
32691.27 *	5	4A, 5A, 5B, 5E, 6B, 6E, 6F	32691.328	5	ab
32696.22 *	6	5A, 5B, 5E, 6B, 6D, 6E, 6F, 7A	32696.27	5,6,7	bd
32708.52	4,5,6	5A, 5B	32708.468	4	a
32734.69 *	5,6	5A, 5B, 5E, 6B, 6D, 6E, 6F	32734.663	6	bdh
32736.80	3,4.5	4A			
32754.42 *	6,7	6B, 6D, 6E, 6F, 7A	32754.213	7	bdh
32787.73 *	5	4A, 5A, 5E, 6A, 6B, 6D, 6E, 6F	32787.773	5	abd
32788.63	4,5	4A, 5E	32788.523	4	a
32789.72 *	6,7	6B, 6D, 6E, 6F, 7B	32789.63	6,7	b
32813.41 *	6	5A, 5E, 6A, 6B, 6D, 6F, 7A	32813.32	6	b
32831.09 *	5	4A, 5A, 5B, 5E, 6A, 6B, 6D, 6F	32831.128	5	a b
32851.83	3,4,5	4A			
32857.54 *	5	4A, 5A, 5B, 6A, 6B, 6D, 6F	32857.451	5	bh
32859.12 *	6,7,8	7B	32858.88	6,7,8	Ъ
32867.89 *	6	5A, 5B, 5E, 6A, 6B, 6D, 6F, 7A	32867.945	6	bdh
32873.19 *	4,5	4A, 5A, 5B, 5E			
32885.60 *	5	4A, 5A, 5B, 5E, 6A, 6B, 6D, 6F	32885.596	5	abd
32896.52 *	4.5	4A, 5A, 5B, 5E			
32900.15 *	6	5A, 5E, 6A, 6B, 6D, 6F, 7A	32900.090	6	bdh
32914.40	3,4,5	4A			
32925.13 *	6,7	6A, 6B, 6F, 7A	32925.0	5,6,7	d
32929.63 *	4.5	4A, 5B, 5E		- , - , -	
32961.99 *	5	4A, 5B, 5E, 6A, 6B, 6F			
32963.78	4.5	4A, 5A			
32970.67 *	6	5A, 5B, 5E, 6A, 6B, 6D, 6F, 7A, 7B	32970.73	6	bd
32994.33 *	5	4A, 5A, 5B, 5E, 6A, 6B, 6D, 6F	32994.222	5	ab
33009.95 *	6	5E, 6A, 6B, 6F, 7A	33009.886	6	bh
33042.76 *	4,5	4A, 5A, 5B			
33045.96 *	5	4A, 5A, 5B, 5E, 6A, 6D, 6E, 6F	33045.889	5	ab
33046.19 *	6.7	6E, 7B	33046.135	7	b h
33049.84	3.4.5	4A			
33082.62 *	6.7.8	7A, 7B	33082.65	6.7.8	Ъ
33083.13 *	5	4A, 5A, 5B, 5E, 6A, 6D, 6F	33083.180	5	bdh
33096.44 *	6	5A, 5B, 5E, 6A, 6D, 6F, 7A	33096.270	6	bdh
33103.00	3.4.5	4A			
33107.85	4.5.6	5A, 5B, 5E			
33118.92 *	6.7	6A, 6B, 6D, 6F, 7A	33118.995	7	abd
33129.30 *	6	5A, 6A, 6B, 6D, 6E, 6F, 7A	33129.212	6	bdh
33151.54 *	6.7	6A, 6B, 6D, 6F, 7A	33151.72	5.6.7	bd
33156.30	3.4.5	4A		0,0,1	
33173.11 *	6	5A. 5B. 6A. 6B. 6D. 6F. 7A	33173.22	6	ь
33185.45 *	456	5A, 5B	001,0122	Ť	-
33194.65	4.5	4A 5B			
33212.85 *	-,,J 5	4A, 5A, 5B, 6A, 6B, 6D, 6F	33212 768	5	bdh
33212.05	45	4A, 5A, 5B		-	
33217.30	7,J 2 4 5	44			
33776 01 *	5,7,5 678	7A 7B	33226 82	678	Ь
33220.71	215	ΛΔ	JJ420.02	0,7,0	U
33250.22 *	,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5A 5B 6A 6B 6D 7A	33252 410	6	bdh
6.26.20	0	<i>v</i> 11, <i>v</i> 12, <i>v</i> 11, <i>v</i> 12, <i>v</i> 12, <i>r</i> 11	33232.717	v	o u n

Table 2-9 (continued)

observed levels		reported levels			
Energy (cm ⁻¹)	J-value	1st excited levels	Energy (cm ⁻¹) J-value	Reference
33264.13 *	6,7	6B, 6D, 6F, 7A	33264.230	6	bdh
33274.94 *	5	4A, 6D, 6F	33275.16	5,6	b d
33275.93	3,4,5	4A			
33301.19	4,5	4A, 5B			
33303.71 *	5	4A, 5A, 5B, 6A, 6D, 6F	33303.747	5	bdh
33303.84 *	6,7,8	7A, 7B	33303.70	6,7,8	b
33304.30 *	5,6,7	6A, 6B, 6F			
33309.92	3,4,5	4A			
33313.96 *	5	4A, 5A, 5B, 6A, 6B, 6F	33313.9	5,6,7	d
33323.03 *	6	5A, 5B, 6A, 6B, 6F, 7A	33323.08	5,6	bd
33337.78 *	4,5	4A, 5A, 5B			
33363.02 *	6,7,8	7A, 7B	33363.01	6,7,8	Ъ
33378.61 *	6	5A, 5B, 6A, 6B, 6F, 7A	33378.778	6	abdf
33406.35 *	6,7	6A, 6B, 6F, 7A	33406.36	6,7,8	bdf
33412.75	4,5	4A, 5B			
33421.10 *	6	5A, 5B, 6A, 6B, 6F, 7A	33421.069	6	abf
33443.29 *	5	4A, 5A, 5B, 6A, 6B, 6F	33442.8	5	d
33444.91 *	4,5	4A, 5A, 5B	33444.961	4	a 1 1 61
33475.01 *	6	5A, 5B, 6A, 6F, 7A	33475.045	6	bdfh
33481.67 *	4,5	4A, 5A, 5B	33481.711	4	dn
33488.11 *	5,6	5A, 5B, 6A, 6B, 6F	33488.18	5,6,7	50
33497.31 *	5,6,7	6B, 6F	33497.0	5,6,7	a
33499.54	4,5	4A, 5B	22500.2	£	Ŀ
33500.66 *	2	4A, 5A, 5B, 6B	22516.96	5	0 0
33516.96 *	0	5A, 0B, 0F, /A	33510.80	0	
33539.00 -	0,/,8		33340.0	0,7,0	1
22549.48	4,5	4A, 5B, 5C	55544.090	4	au
33346.01	3,4,3	4A 6D 6E 7A	22540 72	67	⊾ <i>ፈ</i> ք
33549.00	0,7	0D, 0F, 7A	335 4 9.72 33554 A	0,7 A 5	d .
33554.97	4,5	4A, 5A, 5B, 5C, 5F	33571 1	-,,J -5	đ
3359/ 21 *	5	54 5B 5C 5F 6F 74 7B	33584 265	6	ah
33500.85 *	67	6R 6F 7A	33590.90	67	bdf
33607.65 *	5	44 54 5B 5C 5F 6B 6F	33607.03	5.6	bd
33674.84 *	6	5B 5C 5F 6B 6F 7A 7B	33624 814	6	bdfb
33645 54 *	678	7A 7B	33645.33	6.7.8	bf
33663.72	5	4A, 5B, 5C, 6B	33663.72	5.6.7	bd
33679.90	6.7	6B. 7A	33679.0	6.7.8	đ
33685.19	4.5	4A. 5B. 5C. 5F	33684.9	4.5	d
33720.57 *	.,2	4A. 5C. 5F. 6B. 6F	33720.602	5	bdh
33723.60 *	6	5B, 5C, 5F, 6B, 7A	33723.850	6	bdfh
33737.49 *	6.7	6B, 7A, 7B	33737.46	6,7	bdf
33742.55 *	5	4A, 5B, 5C, 5F, 6B	33742.715	5	bdh
33752.01 *	6	5B, 5C, 5D, 5F, 6B, 6D, 6F, 7A	33752.026	6	abf
33771.56	4,5	4A, 5B, 5C, 5F	33771.1	3,4,5	d
33800.66	5	4A, 5B, 5C, 6D, 6F	33800.75	5,6,7	b
33801.03 *	6.7.8	7A, 7B	33801.00	6,7,8	bf
33833.62 *	6	5B, 5C, 6B, 6D, 7A, 7B	33833.571	6	bdfh
33837.70 *	6,7	6D, 6F, 7A, 7B	33837.82	6,7	bdf
33853.28 *	5	4A, 5B, 5C, 5F, 6B, 6D, 6F	33853.279	5	abd

Table 2-9 (continued)

observed levels		reported levels			
Energy (cm ⁻¹)	J-value	1st excited levels	Energy (cm	¹) J-value	Reference
33870.01	3,4,5	4A			
33874.14 *	5	4A, 5B, 5C, 5F, 6B, 6D, 6F	33874.158	5	a b d
33907.23 *	6	5B, 5C, 5F, 6B, 6D, 6F, 7A	33907.155	6	abdf
33915.03 *	5	4A, 5B, 5C, 6B, 6D, 6F, 6G	33915.080	5	b d h
33928.68	4,5	4A, 5C	33927.9	4,5	d
33939.75	6	5B, 5C, 5F, 6F, 6G, 7A, 7B	33939.757	5 or 6	a b
33947.07	3,4,5	4A	33946.6	3,4,5	d
33952.92 *	6,7,8	7A, 7B	33952.90	6,7,8	b
33962.42 *	6,7	6B, 6D, 6F, 6G, 7A, 7B	33962.21	6,7	b d
33970.63	4,5	4A, 5B, 5C	33969.9	4,5	d
33978.79 *	6,7	6B, 6F, 6G, 7A	33978.92	6,7	bd
33984.64 *	6	5B, 5C, 5D, 5F, 6B, 6D, 6E, 6F, 6G, 7A	33984.649	6	a b
34003.41	5	4A, 5B, 5C, 5F, 6B, 6D, 6F, 6G	34003.32	5	bd
34009.64	4,5	4A, 5B, 5C, 5F	34008.8	4,5	d
34011.63	3,4,5	4A	34010.7	3,4,5	d
34025.19 *	5	4A, 5B, 5C, 5F, 6B, 6D, 6F, 6G	34025.252	5	bdh
34028.11 *	6	5B, 5C, 5F, 6B, 6F, 7A	34027.92	6	bd
34029.79	4,5	4A, 5B, 5C, 5F	34029.0	4,5	d
34048.58 *	6,7	6B, 6D, 6F, 6G, 7A, 7B	34048.45	6,7	bd
34055.97	5,6	5B, 5F, 6B, 6D, 6F, 6G	34056.002	6	bcdh
34071.19 *	5	4A, 4C, 5B, 5C, 5F, 6B, 6D, 6F, 6G	34071.240	5	bdh
34082.73 *	6,7,8	7B	34082.73	6,7,8	bc
34083.16	3,4,5	4C			
34086.68 *	5	4A, 4C, 5B, 5C, 5D, 5F, 6B, 6D, 6E, 6F, 6G	34086.723	5	a b d
34095.70	4,5	4A, 4C, 5B, 5C	34094.5	4,5	d
34117.74 *	6	5B, 5C, 5F, 6B, 6D, 6F, 7A	34117.78	6	bcd
34128.38 *	4,5,6,7	4A, 5B, 5C, 6B, 6D, 6F, 7A, 7B	34128.47	6	bcd
34144.50	3,4,5	4A			
34158.37 *	6,7,8	7A, 7B	34158.54	6,7,8	bc
34160.46 *	6	5B, 5C, 5D, 5F, 6B, 6D, 6E, 6F, 6G, 7B	34160.569	6	abc
34161.39	4,5	4A, 4C, 5C, 5F	34161.518	4	a
34165.40 *	5	4A, 4C, 5B, 5C, 5D, 5F, 6B, 6D, 6F, 6G	34165.480	5	bdh
34177.98	6,7	6B, 6D, 6F, 6G, 7A, 7B	34177.87	6,7	bc
34183.05	4,5	4A, 4C, 5B, 5C, 5F			
34194.21 *	5	4A, 4C, 5B, 5C, 5F, 6B, 6D, 6F, 6G	34194.13	5	Ъ
34209.92 *	6.7	6B, 6D, 6F, 6G, 7A, 7B	34209.72	6	bc
34226.60	3.4.5	4A, 4C			
34263.55 *	5	4A, 5B, 5C, 5D, 6D, 6E, 6F, 6G	34263.592	5	b h
34277.30 *	5	4A, 4C, 5B, 5C, 5D, 5F, 6B, 6D, 6E, 6F, 6G	34277.326	5	b h
34279.50	4.5	4A, 4C, 5B, 5F			
34290.73	4.5	4A, 5B, 5C			
34292.93 *	6	5B, 5D, 5F, 6B, 6D, 6E, 6F, 7A, 7B	34292.86	6	bce
34319.41 *	6.7	6B, 6D, 6F, 6G, 7B	34319.35	6,7	bc
34328.74 *	-,,	5B, 5C, 5D, 5F, 6B, 6D, 6E, 6F, 7A, 7B	34328.867	6	bch
34341.60 *	5	4A. 5B. 5C. 5F. 6B. 6D. 6E. 6F. 6G	34341.81	5,6	be
34348 28	345	4A			-
34372.87 *	ر. ۲	5B. 5C. 5D. 5F. 6B. 6D. 6F. 6G. 7A. 7B	34372.982	6	abc
34376 57 *	5	4A. 5B. 5C. 5D. 5F. 6B. 6D. 6E. 6F. 6G	34376.500	5	bh
34379 53	345	4A	0.0000	-	
34397.41	6	5B, 5C, 5D, 5F, 6B, 6G, 7A, 7B	34397.395	6	bch

Table 2-9 (continued)

observed levels		reported levels			
Energy (cm ⁻¹)	J-value	1st excited levels	Energy (cm ⁻¹) J-value	Reference
34398.01 *	5	4A, 4C, 5C, 6B, 6E, 6F, 6G	34397.978	5	ab
34412.84	4,5	4A, 4C, 5C, 5D, 5F	34413	4,5,6	e
34418.19 *	6,7	6D, 6E, 6F, 6G, 7B	34418.06	6,7	bc
34423.32 *	6,7,8	7B	34423.22	6,7,8	bc
34425.85	4,5	4A, 4C, 5B, 5C, 5D, 5F	34426.2	4,5,6	e
34434.68 *	6,7	6D, 6E, 6F, 7A, 7B	34434.792	7	bch
34438.82	3,4,5	4A, 4C			
34449.24	3,4,5	4A			
34458.79	4,5	4A, 4C, 5B, 5F	34458.98	4,5,6	e
34461.55 *	5	4A, 4C, 5B, 5C, 5D, 5F, 6D, 6E, 6F, 6G	34461.51	5	bc
34482.48	5	4A, 4C, 5C, 5D, 5F, 6D, 6E, 6G	34482.54	5	Ь
34486.81 *	6,7	6D, 6E, 6F, 6G, 7A, 7B	34486.767	7	bch
34508.23 *	6	5B, 5C, 6D, 6E, 6F, 6G, 7B	34508.23	6	bce
34509.38	5	4A, 4C, 5B, 5C, 5F, 6E	34509.58	4,5,6	e
34523.36 *	6	5B, 5C, 5D, 5F, 6D, 6E, 6F, 6G, 7B	34523.480	6	abc
34524.32	4,5	4A, 4C, 5B, 5C	34524.38	4,5,6	e
34536.43	3,4,5	4A, 4C			
34546.26	6,7,8	7B	34545.9	6,7,8	c
34555.34	5	4A, 4C, 5B, 5C, 5D, 5F, 6D, 6E, 6G	34555.50	5,6,7	Ъ
34578.25 *	6	5C, 5D, 6D, 6E, 6F, 6G, 7B	34578.246	5 or 6	bceh
34584.41	4,5	4A, 4C, 5D	34584.44	4,5,6	e
34585.55 *	5	4A, 4C, 5C, 5D, 5F, 6D, 6E, 6F, 6G	34585.58	5	bc
34599.54 *	6,7	6D, 6E, 6F, 6G, 7B	34599.667	7	ab
34619.88	3,4,5	4A, 4C			
34622.27 *	6	5C, 5D, 6D, 6E, 6F, 6G, 7B	34622.246	6	bch
34629.95 *	5	4A, 5C, 5D, 5F, 6D, 6E, 6F	34630.02	5,6	bc
34637.54	3,4,5	4A			
34639.88 *	6	5C, 5D, 6F, 7B	34640.05	6	bce
34654.72	4,5	4A, 4C, 5C	34654.3	4,5,6	се
34656.25 *	6	5C, 5D, 6D, 6E, 6F, 6G, 7B	34656.177	6	bch
34659.18 *	6,7	6D, 6E, 6F, 6G, 7B	34659.215	7	abc
34666.00	5	4A, 4C, 5C, 5D, 6D, 6E, 6G	34666.02	5,6	e
34675.91 *	6,7,8	7B	34675.3	6,7,8	c
34705.40 *	5	4A, 4C, 5C, 6D, 6F	34705.04	5	bc
34717.67	3,4,5	4A, 4C		_	
34717.96 *	6	5C, 5F, 6D, 6E, 6F, 6G, 7B	34718.064	6	abce
34725.50	5	4A, 5C, 5F, 6D, 6E, 6F, 6G	34725.34	5	bc
34743.97	4,5	4A, 5C, 5F			
34746.11 *	6	5C, 5D, 6D, 6E, 6F, 6G, 7B	34746.322	6	abc
34758.65	3,4,5	4A, 4C			
34764.98 *	4,5,6,7	4A, 4C, 5C, 5D, 5F, 6D, 6E, 6F, 6G, 7B	34764.78	5 or 6	bc
34773.50	3,4,5	4A, 4C		. .	
34797.80 *	6	SU, SD, SF, 6D, 6E, 6F, 6G, 7B	34797.958	5 or 6	o c n
34800.02	5	4A, 4C, 5D, 6D, 6E, 6F, 6G	34800.52	5,6	bce
34803.60 *	6,7	6D, 6E, 6F, 6G, 7B	34803.73	6,7	DC
34814.74	4,5	4A, 4C, 5C, 5D, 5F			
34848.21	5	4A, 5C, 5D, 5F, 6F	34848.4	5,6	се
34866.08	4,5	4A, 4B, 5C, 5D, 5F			
34876.50	3,4,5	4A		-	
34882.76	6	5C, 5D, 5F, 6D, 6E, 6F, 6G, 7B	34882.7	6	се

Table 2-9 (continued)

observed levels		reported levels			
Energy (cm ⁻¹)	J-value	1st excited levels	Energy (cm ⁻¹) J-value	Reference
34888.80	5	4A, 4B, 5C, 5D, 6D, 6E, 6F, 6G	34888.9	5,6	се
34894.92 *	6	5C, 5D, 5F, 6D, 6E, 6F, 6G, 7B	34894.9	6	се
34905.25 *	6,7	6F, 7B	34904.9	6,7	c
34933.76	3,4,5	4A			
34944.10	4,5	4A, 4B, 5E, 5F	0 40 5 0 (
34953.62	245	4A, 4B, 5C, 5D, 5E, 5F, 6D, 6E, 6F, 6G	34953.6	5,6	се
34970.82	3,4,5	4A, 4B	A 4050 A		
349/9.43	. 0	5C, 5D, 5E, 5F, 6D, 6E, 6G, 7B	34979.4	3,0	ce
34994.99 +	3,0,7	oD, or, oG			
34996.53	0	5C, 5D, 5F, 6E, 6F, 6G, 7B	24000 5	4.5.6	
34999.49	4,5	4B, 4C, 5C, 5D, 5E, 5F	34999.5	4,5,6	с
35004.97	2	4B, 5C, 5D, 5E, 5F, 6D, 6E, 6F, 6G	35005.0	5,6	ce
35018.01	0,/	6D, 6F, 6G, 7B	35017.9	5,6	c
35034.51	4,5	4B, 5C, 5D, 5F			
35036.91 +	6	5C, 5D, 5E, 5F, 6D, 6E, 6F, 6G, 7B	35036.7	5,6	ce
35042.91	4,5,6	5D, 5E, 5F	35042.8	4,5,6	c
35046.07	5,6	5C, 5D, 5E, 6E, 6F, 6G	35046.0	5	с
35055.74 *	6,7	6E, 6F, 6G, 7B	35055.8	5,6,7	c
35088.90	4,5,6	5C, 5D, 5E, 5F	35088.9	4,5	c
35101.87	5	4B, 4C, 5C, 5D, 5E, 5F, 6D, 6E, 6F, 6G	35101.9	5	сe
35104.07	4,5	4C, 5C, 5E, 5F	35104.2	4,5	c
35112.94	. 5	4B, 4C, 5C, 5D, 5E, 5F, 6D, 6E, 6F, 6G	35112.9	5	ce
35123.84 *	6	5C, 5D, 5E, 5F, 6D, 6E, 6F, 6G, 7B	35123.856	6	ac
35124.04	5,6,7	6F			
35124.91	3,4,5	4B, 4C			
35127.00	4,5,6	SE (E) (C) ED	35126.9	4,5	c
35135.66 *	6,7	6E, 6F, 6G, /B	35135.7	5,6,7	c
35148.52 *	6	5C, 5D, 5E, 5F, 6D, 6E, 6F, 6G, 7B	35148.583	6	ac
35163.56	3,4,5	4B			
35180.67	5	4B, 5D, 5E, 6E, 6F, 6G	35180.7	5,6	C,
35186.59	4,5		35186.9	4,5	c ,
35193.74 *	6	5D, 5E, 5F, 6D, 6E, 6F, 6G, 7B	35193.948	6	c h
35206.30	3,4,5	4B			
35210.58 +	6,7	6D, 6F, 6G, 7B	35210.5	5,6,7	c ,
35223.35 +	6	5D, 5E, 5F, 6D, 6F, 6G, 7B	35223.307	6	ch
35234.72	4,5	4B, 5E, 5F	35234.7	4,5	c
35242.05 *	2 4 5	4B, 5E, 5F, 6D, 6E, 6F, 6G	35242.172	5	ac
35243.76	3,4,5	4B	35243.6	3,4,5	с
35250.49	6	5D, 5E, 5F, 6E, 6F, 6G, 7B	35250.5	5,6	c
35253.30	4,5	4B, 5F	35253.2	4,3,6	c
35267.98 *	6,7,8	7B		_	
35291.29 *	5	4B, 5D, 5E, 6F, 6G	35291.4	5	c
35304.73	5	4B, 5D, 5E, 5F, 6D, 6E, 6F	35304.8	2	c
35316.24 *	5	4B, 5D, 5E, 5F, 6E, 6F, 6G	35316.1	2	C
35319.21 *	6,7	о р , /В			
35320.25	6	SE, OD, OE, OF, OG, 7B	35320.2	5,6	C
35321.10	3,4,5	4B	35321.1	3,4,5	c
35340.80	3,4,5	4B			
35352.93 *	6,7,8	7B			
35357.28	5,6	5D, 5E, 5F, 6D, 6E, 6F	35357.2	5	c

Table 2-9 (continued)
	observed levels		reported levels			
Energy (cm ⁻¹)	J-value	1st excited levels		Energy (cm ⁻) J-value	Reference
35370.86	5	4B, 5D, 5E, 5F, 6F, 6G		35370.8	5	c
35376.94	4,5	4B, 5D, 5E, 5F		35376.8	4,5	c
35388.60	4,5,6	5E, 5F		35388.4	4,5,6	c
35404.49 *	6,7	6E, 7B		35404.5	4,5,6	c
35406.51	5	4B, 5D, 5E, 5F, 6E, 6F, 6G		35406.4	5	C
35408.33 *	6,7	6E, 6F, 6G, 7B		35408.2	5,6,7	c
35417.53	3,4,5	4B		35417.4	3,4,5	с
35438.66	6	5E, 5F, 6E, 6F, 6G, 7B, 7C		35438.6	5,6,7	c
35440.51	4,5	4B, 5D, 5E, 5F		35440.5	4,5	C
35464.94	4,5	4B, 5D, 5E, 5F		35464.9	3,4,5	c
35483.67	4,5,6	5D, 5F		35483.5	4,5	c
35490.10	6	5D, 5E, 5F, 6F, 6G, 7B, 7C		35489.9	5,6	с
35492.38	3,4,5	4B		35492.5	3,4,5	c
35498.38	3,4,5	4B		35498.7	3,4,5	c
35504.71 *	5	4B, 5D, 5E, 5F, 6F		35504.7	4,5	C
35522.34	4,5,6	5D, 5E, 5F		35522.2	4,5	c
35529.16 *	6,7	6E, 6F, 6G, 7B				
35547.25	5	4B, 5D, 5E, 5F, 6E, 6F, 6G		35547.2	5	C
35547.65	6,7	6F, 7B, 7C				ć
35548.79	4,5	4B, 5D, 5E, 5F		35548.8	4,5	C
35552.56	4,5	4B, 5D, 5E, 5F		35552.6	4,5	c
35556.90	3,4,5	4B		35556.7	3,4,5	c
35556.66 *	6,7,8	7B, 7C				
35559.36	4,5	4B, 5D, 5F		35559.387	4	ac
35561.14	5,6	5D, 5F, 6E, 6F		35561.0	5	c
35565.75	7,8,9	8A				
35584.90	3,4,5	4B		35584.8	3,4,5	c
35609.51	7,8,9	8A				
35614.55 *	6	5E, 5F, 6E, 6F, 7B				
35618.83 *	5	4B, 5E, 5F, 6E, 6F		35618.8	5	c
35620.79 *	7	6E, 6F, 7B, 7C, 8A		35620.8	5,6,7	c
35625.42	4,5	4B, 5E, 5F		35625.3	3,4,5	C
35630.95	3,4,5	4B		35631.0	3,4,5	c
35637.74	6	5E, 5F, 6F, 7B, 7C		35637.8	5,6	c
35641.85 *	6,7,8	7B, 7C			_	
35646.15	5	4B, 5D, 5E, 6E, 6F		35646.2	5	с
35667.22	7,8,9	8A				
35674.84 *	5	4B, 5D, 5E, 5F, 6E, 6F		35674.918	5	ac
35680.47 *	6,7,8	7B				
35693.11	7	6E, 6F, 7B, 8A		35693.0	5,6,7	cg
35694.42	4,5	4B, 5E, 5F		35694.6	4,5	c
35717.32	3,4,5	4B		35717.3	3,4,5	с
35720.55	6	5D, 5E, 5F, 6E, 6F, 7B		35720.6	5,6	С
35725.65	5	4B, 5D, 5E, 5F, 6E, 6F		35725.5	5	с
35731.22	7	6E, 6F, 7B, 7C, 8A				
35736.53	7,8,9	8A		35736.0	6,7,8	g
35739.91	4,5	4B, 5D, 5E		35739.8	3,4,5	с
35747.70	3,4,5	4B		35747.7	3,4,5	C
35751.06	6	5D, 5E, 5F, 6E, 6F, 7B, 7C		35751.2	5,6	C
35760.14	4,5	4B, 5D, 5E, 5F		35760.231	5	ac

Table 2-9 (continued)

observed levels			rep	reported levels		
Energy (cm ⁻¹)	J-value	1st excited levels	Energy (cm ⁻¹) J-value	Reference	
35763.69	5,6	5D, 5E, 5F, 6F	35763.9	5	c	
35784.82	6	5D, 5E, 5F, 6F, 7B, 7C	35784.7	5,6	c	
35797.46	4,5	4B, 5E	35797.7	5	c	
35797.99	7,8	7B, 7C, 8A				
35798.72	5	4B, 5E, 6F	35798.5	4,5	c	
35809.28	4,5	4B, 5E	35809.5	4,5	c	
35816.49	7,8,9	8A (F. 7D. 7C. 8A				
35824.77	245	6F, /B, /C, 8A	25922 0	215	-	
35833.40	3,4,5	4D 4D 5E	25825.0	2,4,2 2,4,5	C	
35835.84	4,5	4B, JE 4D, SE CE	22822.1 25926 A	5,4,5	C	
33830.37	5	4B, 5E, 0F	33830.4	245	c	
35840.98	3,0,/	or GE (E (C 7C	33841.4	3,4,3 5.6	c	
35861.51	0		35861.8	5,0 5	C	
35864.60	2	4B, 5E, 6F, 6G	35804.8	5	C	
35886.88	0	SE, OF, OG, /C	35880.8),0 4 5	c	
35905.10	4,5	4B, 5E	35905.0	4,5	c	
35914.22	2	4B, 5E, 6F, 6G	35914.3	5	c	
35940.33	2	4B, 5E, 6F	35940.2	5	c	
35943.68	4,5	4B, 5E	35943.4	4,5	c	
35951.29	1	0U, /C, 8A	35951.5	5,0, <i>1</i>	c	
35960.84	4,5	4B, 5E	35960.9	4,5	C	
35963.97	6	5E, 6F, 6G, 7C	35964.0	5,0 5	c	
36000.33	4,5,6,7,8	4B, 5E, 6F, 7C, 8A	36000.2	5	c	
36014.70	6,7	6F, /C	36014.5	3,0,7	C	
36018.61	7,8	7C, 8A	20000	F		
36026.16	5	4B, 5E, 6F	36026.4	2	с	
36034.59	7	OF, /C, 8A	26042.8	215	-	
36042.98	3,4,5	4B	30042.8	3,4,5	c	
36049.94	3,4,5	4B	30030.2	4,5	c	
36053.59	(70	of, 7C, 8A	30033.3	5,0,7	C	
36056.84	0,/,8		30037.0	5,0	c	
30007.87	2	4B, 0F	26085.5	56	C	
30085.28	0,/	or, /C	36000.0	567	C	
30090.97	0,/	0F, /C 4D	36090.9	J,0,7	0	
30090.15	3,4,5	4B 4D	30093.9	4,5	0	
36100.47	3,4,5	4B .	36100.2	4,J 5	C	
30103.10	3,4,5	4B	30102.9	5	C	
36109.96	5,0,7		30110.1	567	C	
30115.07	(7	0F, 0A	30113.0	5,0,7	C	
36119.63	0,/		30119.0	5,0	C	
30127.77	/,8	/C, 8A	26155 4	215		
36155.48	3,4,5	4B 4D	30133.4	5,4,5	C	
36157.73	3,4,5		30137.7	5	cg	
36174.50	7	οr, /υ, δΑ	30174.3	3,0,/ 5	с 	
36186.88	5,6,7	0r (T. 20	30180.9	2	cg	
36187.79	6,7	of, /C	A /A A A	245	_	
36204.63	3,4,5	4B	36204.8	5,4,5	C	
36216.69	3,4,5	4B	36216.8	3,4,5	сg	
36231.01	7,8,9	8A				
36232.66	7,8,9	8A.	36232.7	5,6,7	C	

Table 2-9 (continued)

observed levels			reported levels			
Energy (cm ⁻¹)	J-value	·	1st excited levels	Energy (cm	¹) J-value	Reference
36235.63	7,8,9	8A		36235.0	5,6,7	g
36252.82	3,4,5	4B		36252.9	4,5	cg
36254.70	3,4,5	4B		36254.4	3,4,5	c
36258.88	3,4,5	4B		36258.8	4,5	c
36290.92	7,8,9	8A				
36292.29	3,4,5	4B		36292.8	4,5	cg
36298.53	3,4,5	4B		36298.5	3,4,5	с
36315.93	7,8,9	8A				
36377.62	7,8,9	8A				
36387.84	7,8,9	8A		36388.3	5,6,7	g

 Table 2-9 (continued)

* The level identification was confirmed by measuring ionization spectrum.

^a Blaise and Radziemski (1976)¹⁴⁾.

^b Miron *et al* (1979) ¹⁵⁾.

^c Mago *et al* (1987) ¹⁸⁾.

^d Carlson *et al* (1976) ¹⁶⁾.

^e Suri *et al* (1987) ¹⁷⁾.

^f Broglia *et al* (1983) ²¹⁾.

^g Shi *et al* (2000) ²⁴⁾.

^h Crosswhite (1982) ²⁸⁾.

Energy	J	Jai	linewidth	literature
(cm ⁻¹)	- por	Sei meriani		
49930.0	5	56	III	
49930.4	9	789	II	
49938.4		78	Ι	
49940.2		789	Ι	
49943.4		7	II	
49944.5		5	II	
49944.7	9	789	I	
49945.4		6	П	
49946.6		6	II	
49947.9		7	II	
49951.9	8	78	Ι	
49954.5	5	5	II	
49955.7		67	П	
49957.1	7	7	II	
49958.6	8	78	Ι	
49959.9		678	II	
49961.4	7	7	II	
49963.6	8	78	III	
49963.9		56	III	
49966.6		7	Ι	
49968.5		6	III	
49970.1		6	Ι	
49971.8		789	Ι	
49972.4	4	45	III	
49972.9		7	Ι	
49974.5	4	456	III	
49974.7		7	III	
49977.5	9	789	II	
49977.9	5	5	II	
49979.3		7	II	
49979.8	5	56	II	
49982.2		7	I	
49983.7		6	II -	
49984.8		6	III	
49989.5		6	II	
49990.4	7	7	III	
49994.4	6	6	III	
49994.8		789	III	
49996.5		7	I	
49998.0		7	III	
49998.7		7	I	
50006.1		6	III	
50007.6	8	78	II	
50008.5	8	78	II	
50009.5	9	789	Ι	
50012.7		6	III	

Table 2-10 Term energies and J-values of AI levels of U.

Energy (cm ⁻¹)	$J_{\rm pol}$	$J_{\rm sel}$	linewidth	literature
(em)				
50015.5		6	III	
50018.2		7	П	
50019.5		789	I	
50020.9		56	II	
50023.9		7	III	
50027.0		567	III	
50028.5	4	45	III	
50029.3	9	789	II	
50032.7		56	III	
50035.6	9	789	II	
50036.8		56	III	
50039.7		78	III	
50041.9		56	II	
50043.3		56	Ι	
50049.8		5	III	
50059.0	. 7	7	Ι	
50061.5	8	78	III	
50063.0	7	7	II	
50066.1	6	6	II	а
50066.7	4	456	II	
50069.2		7	II	a
50071.8	6	6	11	
50072.5		789	Ι	
50077.9		56	II	
50079.4	7	7	III	
50080.2		56		
50083.5		78	II	
50084.6		78	Ι	
50086.3		6	II	
50087.2		78	I	
50090.0	8	78	Ι	
50090.9		6	п	
50093.4	9	789	Ι	
50094.3		7	III	
50096.7		78	II	
50097.3		456	II	
50099.9		6	Ι	
50100.5		78	II	
50102.1		6	п	
50108.9		7	Ţ	
50115.2		6	n	
50119.1		56	 П	a
50121.3		56	UI	-
50123.6	7	7	11	
50126.6	, 9	789	ī	
50133.5	,	67	Ť	•
		07	1	

Table 2-10 (continued).

Energy	J	J.,	linewidth	literature
(cm ⁻¹)	• pol	• sei	into widdi	morataro
50134.7		67	II	
50138.5	7	7	Ι	
50139.2	8	78	П	
50140.1	8	78	I	
50142.5	7	7	II	a
50143.8		-56	II	
50148.3		6	III	
50154.7		6	II	
50157.0	7	7	I	
50160.1	7	7	III	
50162.4	9	789	Ι	
50163.8	7	789	II	
50164.4	9	789	II	
50167.8	7	7	I	
50169.6	7	7	Ι	
50172.3		56	II	
50177.6		78	Ι	
50182.0	7	7	Ι	
50183.9		6	III	
50187.1	7	7	Ι	
50188.5		7	I	
50190.2	8	78	II	
50194.5	5	56	II	
50201.9		6	Π	
50210.5	7	7	Ι	
50210.9		456		a
50213.1	8	78	II	
50215.8	5	56	п	a
50216.4	5	56	II	
50219.3	9	789	II	
50234.7		7	III	
50249.3	8	78	III	
50253.5		56	II	
50256.0		7	III	
50261.4		6	III	
50273.1	8	78	III	
50275.7		6	III	
50277.5		7	III	
50284.6	9	789	II	
50289.9		56	III	
50290.3		78	III	
50306.8		7	II	
50309.0		78	III	
50309.9		45		
50311.6	8	78	Π	
50311.8		56	II	a b

Table 2-10 (continued).

70

Energy	$J_{\rm pol}$	$J_{\rm sel}$	linewidth	literature
(cm)				
50317.2	9	789	I	
50321.9	9	789	III	
50325.6		78	II	
50327.3		6	II	
50328.4		7	III	
50331.9	8	78	III	
50343.5		7	III	
50347.7	9	789	I	
50366.4	7	7	II	
50372.3		78	III	
50381.6	9	789	I	
50389.8		67	III	
50392.3		78	III	
50412.7	8	78	I	Ъ
50421.8	8	78	II	с
50434.1		67	II	
50437.4	8	78	III	
50438.8	6	6	III	
50441.6		7	III	
50443.5		7	II	
50458.5		456	II	
50469.0		78	III	
50476.4		78	II	
50501.3		78		
50520.0		789	III	
50530.7		78		
50555.4	9	789	Ι	
50572.0	7	7	III	
50581.7	7	7	II	
50602.9		789		d
50612.1		78	III	d
50621.4		789		d
50649.5	9	789	I	d
50651.9		789	П	d
50653.7		78	I	đ
50660.3		78	III	
50666.5		678	I	d
50672.3		78	I	b d
50702.0		789		d
50715.9		78	II	d
50740.1		678	III	d
50756.1	9	789	Ι	d
50769.7	8	789	III	d
50776.6		78	II	d
50783.9		78	II	d
50787.6		678		d

Table 2-10 (continued).

Energy (cm ⁻¹)	$J_{\rm pol}$	$J_{\rm sel}$	linewidth	literature
50822.4		78		
50825.9		789		d
50875.2	8	78	Ι	d
50883.9		678	III	
50932.5		78	II	d
50943.1		78	II	đ
50961.4		678	II	d
51193.4	9	789	II	d

Table 2-10 (continued).

^a Rodrigues *et al* (2000) ³²⁾.

^b Herrmann *et al* (1991)²⁷⁾.

^c Greenland *et al* (1990) ³⁸⁾.

^d Manohar *et al* (1989) ³¹⁾.

Energy ^d		J-value		
(cm ⁻¹)	present	previous ^d	literature	
31458.58	6	4,5,6		
31529.30	7	6,7		
31575.61	7	6,7	•	
31602.84	5	5.6		
31695.47	7	6.7		
31698.83	6	4.5.6		
31723.63	7	67		
21749 41	6	5.6		
21922 25	7	5,0		
31032.33	/ 5	0,/		
31855.75	5	4,5,0		
31857.84	7	6,7	6	a
31906.10	8	6,7,8		
31966.84	7	6,/		
31995.92	87	0,7,8		
32112.44	6	0,7		
32133.39	e e	678		
32130.95	0 6	5.6		
32273 59	7	567	567	h
32332.49	8	67.8	5,0,7	U
32340.04	7	5.6.7	5.6.7	Ъ
32364.50	7	6.7	-,-,-	-
32430.58	6	5,6	5,6,7	Ь
32482.43	6	5,6	5,6,7	b
32599.22	7	6,7	5,6,7	b
32616.49	8	6,7,8		
32626.53	6	6	5	a
32789.72	7	6,7	6,7	b
32859.12	8	6,7,8	6,7,8	b
32925.13	7	6,7		_
33082.62	8	6,7,8	6,7,8	Ь
33151.54	7	6,7	5,6,7	b
33226.91	8	6,7,8	6,7,8	b
33303.84	. 8	6,7,8	6,7,8	b
33304.30	0	2,0,1 470	670	L
22406 25	07	0,7,0	0,1,0	Մ հ
33488 11	6	5.6	567	Ь
33539.66	8	678	5,0,7	U
33549.60	7	6.7	5.6.7	h
33645.54	8	6.7.8	6.7.8	b
33737.49	7	6.7	6.7	b
33801.03	8	6.7.8	6.7.8	b
33837.70	7	6,7	6,7	b
33939.75	6	6	5	a
33952.92	8	6,7,8	6,7,8	b
33962.42	7	6,7	6,7	b
33978.79	7	6,7	6,7	b
34048.58	7	6,7	6,7	Ъ
34082.73	8	6,7,8	6,7,8	b
34158.37	8	6,7,8	6,7,8	b,c

 Table 2-11 J-values of intermediate levels of U determined from AI levels whose J-values was assigned.

Table 2-11 (Continued)

Energy ^d	J-value				
(cm ⁻¹)	present	previous ^d	literature	-	
34209.92	7	6,7	6	b	
34319.41	7	6,7	6,7	b,c	
34418.19	7	6,7	6,7	b,c	
34423.32	8	6,7,8	6,7,8	b,c	
34675.91	8	6,7,8	6,7,8	с	
34803.60	7	6,7	6,7	b,c	
34905.25	7	6,7	6,7	c	
35055.74	7	6,7	5,6,7	с	
35135.66	7	6,7	5,6,7	с	
35210.58	7	6,7	5,6,7	с	
35267.98	8	6,7,8			
35319.21	7	6,7			
35352.93	8	6,7,8			
35408.33	7	6,7	5,6,7	с	
35529.16	7	6,7	• •		
35641.85	8	6,7,8			
35680.47	8	6,7,8			

^a Blaise *et al* (1976) ¹⁴⁾.

^b Miron *et al* (1979) ¹⁵⁾.

^c Mago *et al* (1987) ¹⁸⁾.

^d Table 2-9.

Energy	,			
(cm^{-1})	J pol	$J_{\rm sel}$	linewidth	literature
405961		100		
49586.1		123		
49588.1	1	10		
49592.9	1	1		
49601.3		234		
49609.7		12	III	
49613.2		2		
49618.6		12	I	
49618.9		34		
49621.0		2		
49632.3		234		
49633.5	1	10		
49635.1		234		
49636.2	1	10		
49646.0		210	III	
49647.3		23		
49650.1		12		
49651.7		34		
49654.2	1	210		
49659.8		23		
49665.7		23		
49672.3		210		
49674.9		234		
49684.2	1	1		
49687.5	-	234		
49699.0		23		
49701 0		23		
49702.9		123		
49774 4	1	210		
49739 8	1	210		
49739.0	1	210		•
10716 0		122		
47/40.7		125		
49755.0		234		
49/39.2		343		
47/03.0 10707 (•	12		
49/9/.0	U	210		
49/99.0	U	2		a
49/99.0	0	567		
49801.9	6	567		
49809.6	6	567		
49810.9	6	567	-	
49811.7	1	1	I	
49838.0		567		
49839.5		567		
49848.8	1	10	I	
49848.8		567		
49853.4	1	10		

Table 2-12 Term energies and J-values of AI levels of Gd.

Energy	$J_{\rm pol}$	J sei	linewidth	literature
(cm)				
49864.5		123	III	
49868.5	1	1	III	
49875.0		123	III	
49883.7		567		
49885.5	0	210	I	b
49892.1	7	567		
49892.7	7	567		
49892.9		23		
49897.9		23	III	
49902.1	5	567		
49902.8	2	12		
49903.7	5	567		
49904 1	•	234		
49907.2	1	1		
49910.5	7	567		
49913.0	6	567		
49914 1	ĩ	1		
49925.4	•	567		
49931.8		210		
49939.6	1	1		
49941 4	7	567		
49974 1	,	234		
49982.2	1	1		
49985 9	1	1	T	
49994 9	1	1	-	
49997 4	i	10	T	
50004.9	2	12	•	
50004.9	-	567		
50007.2		567		
50008.6	1	1		
50008.8	2	12		
50010.2	-	567		
50015.2		567		
50020.0	2	210	m	
50020.0	1	1	T	
50025.7	1	123	1	
50020.8	2	123	ŢŢŢ	
50049.7	7	567	T	
50040.9	, ,	567	1	
50045 2	6	567		
50043.5	7	567	т	
50052.0	, ,	507	1	
50058.0	۵ ۲	507		
50000.9	0	107		
50070.0		123	TTT	
50100 2		123	111	
50106.5		123		
50126.0		456		

Table 2-12 (continued).

$\begin{array}{c} (\mathrm{cm}^{-1}) & J_{\mathrm{pol}} & J_{\mathrm{sel}} & \mathrm{linewidth} & \mathrm{literature} \\ \hline (\mathrm{cm}^{-1}) & J_{\mathrm{pol}} & J_{\mathrm{sel}} & \mathrm{linewidth} & \mathrm{literature} \\ \hline 50132.2 & 234 \\ 50143.9 & 5 & 567 \\ 50151.5 & 7 & 567 \\ 50153.3 & 1 & 1 \\ 50157.7 & 123 \\ 50160.5 & 6 & 567 \\ 50188.5 & 234 \\ 50196.6 & 6 & 567 \\ 50204.4 & 12 & \mathrm{III} \\ 50206.6 & 7 & 567 \\ 50228.9 & 6 & 567 \\ 50228.9 & 6 & 567 \\ 50242.8 & 0 & 210 & \mathrm{I} \\ 50258.1 & 12 \\ 50278.1 & 1 & 1 \\ 50283.7 & 2 & 2 \\ 50284.2 & 210 & \mathrm{III} \\ 50302.7 & 234 \\ 50312.1 & 234 & \mathrm{III} \\ 50302.7 & 234 \\ 50312.1 & 234 & \mathrm{III} \\ 50326.4 & 567 \\ 50326.4 & 567 \\ 50326.4 & 567 \\ 50326.4 & 567 \\ 50332.1 & 7 & 567 \\ 50336.5 & 6 & 567 \\ 50338.1 & 234 & \mathrm{III} \\ 50347.5 & 567 \\ 50336.5 & 6 & 567 \\ 50336.5 & 6 & 567 \\ 50337.8 & 12 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50377.9 & 210 \\ 50380.0 & 0 & 210 \\ 50397.2 & 2 \\ 50408.2 & 567 \\ 50412.4 & 5 & 567 \\ 50421.2 & 1 & 10 & \mathrm{III} \\ 50422.3 & 5 & 567 \\ 50431.5 & 7 & 567 \\ 50431.5 & 7 & 567 \\ \hline \end{array}$	Energy	•			
50132.2 234 50143.9 5 567 50151.5 7 567 50153.3 1 1 50167.7 123 50160.5 6 567 50167.4 5 567 50188.5 234 50196.6 6 567 50204.4 12 III 50206.6 7 567 50228.9 6 567 50228.9 6 567 50242.8 0 210 I 50258.1 12 5028.7 2 50284.2 210 III 5032.7 2.34 50312.1 234 III 50326.4 567 50327.3 2 50327.3 2 50327.3 2 50326.4 567 50327.3 2 50327.3 2 50327.3 2 50327.3 2 50327.3 2 50327.3 2 50326.4 567 50336.5 6 507 50352.6 23 50366.1 1 1 50377.9 210 50377.9 210 50377.9 210 50380.0 0 210 50377.9 210 50420.1 6 567 50417.4 5 507 50421.2 1 10 III 50422.3 5 507	(cm^{-1})	J_{pol}	$J_{\rm sel}$	linewidth	literature
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			02.4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50132.2	-	234		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50143.9	2	567		
50153.311 50157.7 123 50160.5 6 567 50188.5 234 50196.6 6 567 50204.4 12 111 50206.6 7 567 50210.3 7 567 50228.9 6 567 50228.9 6 567 50228.9 6 567 50228.9 6 567 50228.1 12 50278.1 111 50283.7 2 50284.2 210 50327.3 2 50322.5 7 567 50326.4 567 50327.3 2 50327.9 7 567 50332.1 7 567 50332.1 7 567 50332.1 7 567 50332.1 7 567 50332.1 1 50374.5 2 50366.1 1 1 50376.8 1 12 50376.8 1 50377.9 210 50377.9 210 50377.9 210 50377.9 210 50380.0 0 50417.4 5 567 50417.4 5 50417.4 5 50417.4 5 50421.2 1 10 III 50421.2 1 50431.5 <	50151.5	7	567		
50157.7123 50160.5 6567 50188.5 234 50196.6 6567 50204.4 12III 50206.6 7567 50210.3 7567 50228.9 6567 50242.8 0210I 50258.1 12 50284.2 210III 50327.1 22 50284.2 210III 5032.7 234 50312.1 234III 50324.5 567 50325.5 7 567 50326.4 567 50327.3 50327.3 2 50327.9 7 567 50332.1 7 567 50336.5 6 567 50336.5 6 567 50336.5 6 567 50377.9 210 50377.9 210 50377.9 210 50377.9 210 50377.9 210 50377.9 210 50380.0 0 210 50377.2 2 50408.2 567 50417.6 2 50421.2 1 10 III 50422.3 5 567 50421.2 1 50421.5 7 567 50431.5 7 567	50153.3	I	1		
50160.56 567 50188.5 234 50196.6 6 50204.4 12 111 50206.6 7 567 50210.3 7 567 50228.9 6 567 50242.8 0 210 I 50258.1 12 50284.2 210 50284.2 210 50284.2 210 50327.7 234 50312.1 234 50312.1 234 50327.3 2 50327.3 2 50327.3 2 50327.3 2 50327.9 7 567 50332.1 7 567 50336.5 6 567 50336.5 6 567 50336.5 6 567 50377.9 210 50377.9 210 50377.9 210 50377.9 210 50377.9 210 50380.0 0 210 50377.2 2 50408.2 567 50417.4 5 567 50417.6 2 12 10 50421.2 1 10 111 50422.3 5 567 50431.5 7 567	50157.7		123		
50167.45 567 50188.5 234 50196.6 6 50204.4 12 11 50206.6 7 567 50210.3 7 567 50228.9 6 567 50242.8 0 210 I 50258.1 12 50284.2 210 50284.2 210 50284.2 210 5032.7 234 50312.1 234 50312.1 234 50327.3 2 50326.4 567 50327.3 2 50327.9 7 567 50332.1 7 567 50336.5 6 567 50336.5 6 567 50326.4 567 50332.1 7 567 50336.5 6 567 50352.6 23 50366.1 1 1 12 50377.9 210 50377.9 210 50380.0 0 50417.4 5 567 50417.4 5 50417.6 2 12 50420.1 6 567 50421.2 10 111 50422.3 5 567 50431.5 7 567	50160.5	6	567		
50188.5 234 50196.6 6 567 50204.4 12III 50206.6 7 567 50210.3 7 567 50228.9 6 567 50242.8 0 210 I 50258.1 12 50278.1 11 50283.7 2 2 50284.2 210 III 50302.7 234 50312.1 234 III 50324.5 567 50325.5 7 50326.4 567 50327.3 2 50327.9 7 567 50326.4 567 50326.4 567 50332.1 7 567 50336.5 6 567 50336.5 6 567 50352.6 23 50366.1 11I 50377.9 210 50377.9 210 50377.9 210 50380.0 0 50397.2 2 50408.2 567 50417.4 5 50417.6 2 12 50420.1 6 567 50421.2 1 10 III 50422.3 567 50431.5 7 507	50167.4	5	567		
50196.66 567 50204.4 12III 50206.6 7 567 50210.3 7 567 50228.9 6 567 50242.8 0 210 I 50258.1 12 50278.1 11 50283.7 2 2 50284.2 210 III 50302.7 234 50312.1 234 III 50324.5 567 50325.5 7 567 50327.3 2 50327.3 2 50327.9 7 567 5032.1 5032.1 7 567 50332.1 7 567 50336.5 6 567 50336.5 6 567 50336.5 6 567 50352.6 23 50366.1 1 1 I 50377.9 210 50377.9 210 50377.9 210 50380.0 0 50397.2 2 50408.2 567 50417.4 5 50417.6 2 12 507 50421.2 1 10 III 50422.3 567 50431.5 7 50431.5 7 507	50188.5		234		
50204.412III 50206.6 7567 50210.3 7567 50228.9 6567 50242.8 0210I 50258.1 12 50278.1 11 50283.7 22 50284.2 210III 50302.7 234 50312.1 234III 50324.5 567 50325.5 7 50325.5 7 50327.3 2 50327.3 2 50327.3 2 50327.3 2 50327.3 2 50327.9 7 567 50332.1 7 567 50336.5 6 567 50336.5 6 567 50352.6 23 50366.1 11I 50377.9 210 50377.9 210 50377.9 210 50380.0 0 50397.2 2 50408.2 567 50417.4 5 567 50417.4 5 50421.2 10 50421.2 10 50421.2 10 50421.2 10 50431.5 7 567	50196.6	6	567		
50206.67 567 50210.3 7 567 50228.9 6 567 50242.8 0 210 I 50258.1 12 50278.1 11 50283.7 2 2 50284.2 210 III 50302.7 234 50312.1 234 III 50324.5 567 50325.5 7 50325.5 7 50326.4 567 50327.3 2 50327.9 7 567 50326.4 567 50327.3 2 50327.9 7 567 50336.5 6 567 50336.5 6 567 50352.6 23 50366.1 11I 50377.9 210 50377.9 210 50377.9 210 50377.9 210 50377.2 2 50408.2 567 50417.4 5 567 50417.4 5 50421.2 10III 50422.3 5 50431.5 7 567	50204.4		12	III	
50210.37 567 50228.9 6 567 50242.8 0 210 I 50258.1 12 50278.1 11 50283.7 2 2 50284.2 210 III 50302.7 234 50312.1 234 III 50324.5 567 50325.5 7 567 50326.4 567 50327.3 2 50327.9 7 567 50326.4 567 50327.3 2 50327.9 7 567 50336.5 6 567 50336.5 6 567 50336.5 6 567 50352.6 23 50366.1 11I 50377.9 210 50377.9 210 50377.9 210 50377.2 2 50408.2 567 50417.4 5 567 50421.4 5 50421.2 1 10 III 50422.3 567 50431.5 7 50431.5 7 507	50206.6	7	567		
50228.96 567 50242.8 0 210 I 50258.1 12 50278.1 11 50283.7 2 2 200 50284.2 210 5032.7 234 50312.1 234 50312.1 234 50312.1 234 50312.1 234 5032.5 7 567 50325.5 7 567 50327.3 2 50327.9 7 567 50332.1 7 567 50332.1 7 567 50332.1 7 567 50336.5 6 567 50336.5 6 567 50352.6 23 50366.1 1 1 1 50377.9 210 50377.9 210 50377.9 210 50380.0 0 210 50397.2 2 50408.2 567 50417.4 5 567 50417.6 2 12 50420.1 6 567 50421.2 10 111 50422.3 5 567 50431.5 7 567	50210.3	7	567		
50242.80 210 I 50258.1 12 50278.1 11 50283.7 2 22 50284.2 210 5032.7 234 50312.1 234 50312.1 234 50312.1 234 50312.1 234 5032.5 7 567 50325.5 7 567 50327.3 2 50327.3 2 50327.9 7 567 50332.1 7 567 50332.1 7 567 50336.5 6 567 50336.5 6 5037.9 7 567 50352.6 23 50366.1 1 1 1 50374.5 2 210 50377.9 210 50377.9 210 50380.0 0 50397.2 2 50408.2 567 50417.4 5 567 50417.6 2 212 50420.1 6 567 50421.2 10 50421.2 10 50431.5 7 567	50228.9	6	567		
50258.112 50278.1 11 50283.7 2 22 50284.2 210 50302.7 234 50312.1 234 50312.1 234 50312.1 234 50315.3 0 50324.5 567 50325.5 7 567 50327.3 2 50327.9 7 567 5032.1 7 567 50332.1 7 567 50332.1 7 567 50336.5 6 567 50336.5 6 567 50352.6 23 50366.1 111 50374.5 2212 50376.8 11250377.9210 50377.9 210 50397.2 2 50408.2 567 50417.4 5 567 50417.6 2 50420.1 6 567 50421.2 1 10 111 50422.3 5 567 50431.5 7 567	50242.8	0	210	Ι	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50258.1		12		
50283.722 50284.2 210 III 50302.7 234 50312.1 234 III 50315.3 0 210 50324.5 567 50325.5 7 50325.5 7 50327.3 2 50327.3 2 50327.9 7 567 50332.1 7 567 50332.1 7 567 50336.5 6 5750336.5 6 50338.1 234 111 50347.5 567 50352.6 23 50366.1 1 1 1 50374.5 2 210 50376.8 1 12 50380.0 0 50397.2 2 50408.2 567 50417.4 5 567 50417.6 2 12 50420.1 6 567 50421.2 1 10 III 50422.3 5 567 50431.5 7 567	50278.1	1	1		
50284.2 210 III 50302.7 234 50312.1 234 50312.1 234 50315.3 0 50324.5 567 50325.5 7 50325.5 7 50326.4 567 50327.3 2 50327.3 2 50327.9 7 567 50332.1 7 567 50336.5 6 50338.1 234 234 III 50347.5 567 50352.6 23 50366.1 1 1 1 50374.5 2 20376.8 1 12 50377.9 210 50377.9 210 50377.9 210 50397.2 2 50408.2 567 50417.4 5 50417.4 5 50421.2 10 101111 50422.3 5 50431.5 7 50431.5 7 50431.5 7 567	50283.7	2	2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50284.2		210	III	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50302.7		234		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50312.1		234	III	
50324.5 567 50325.5 7 567 50326.4 567 50327.3 2 50327.9 7 567 50332.1 7 567 50332.1 7 567 50332.1 7 567 50332.1 7 567 50332.1 7 567 50336.5 6 567 50338.1 234 III 50347.5 567 50352.6 23 50366.1 11II 50374.5 212 50376.8 112 50377.9 210 50377.9 210 50397.2 2 50408.2 567 50412.4 5 567 50417.6 50421.2 110 50422.3 5 567 50431.5 7 50431.5 7 567	50315.3	0	210		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50324.5		567		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50325.5	7	567		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50326.4		567		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50327.3		2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50327.9	7	567		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50332.1	7	567		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50336.5	6	567		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	50338.1		234	III	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50347.5		567		
50366.1 1 1 I 50374.5 2 12 50376.8 1 12 50377.9 210 50378.8 12 50380.0 0 50397.2 2 50408.2 567 50417.4 5 50417.6 2 50420.1 6 50421.2 1 50421.5 7 50431.5 7	50352.6		23		
50374.5 2 12 50376.8 1 12 50377.9 210 50378.8 12 50380.0 0 50397.2 2 50408.2 567 50417.4 5 50417.6 2 50420.1 6 50421.2 1 10 III 50421.5 7 50431.5 7	50366.1	1	1	I	
50376.8 1 12 50377.9 210 50378.8 12 50380.0 0 210 50397.2 2 50408.2 567 50417.4 5 567 50417.6 2 12 50420.1 6 567 50422.3 5 567 50421.2 1 0 III 50421.5 7 567	50374.5	2	12		
50377.9 210 50378.8 12 50380.0 0 210 50397.2 2 50408.2 567 50417.4 5 567 50417.6 2 12 50420.1 6 567 50421.2 1 10 III 50421.5 7 567	50376.8	1	12		
50378.8 12 50380.0 0 210 50397.2 2 50408.2 567 50417.4 5 567 50417.6 2 12 50420.1 6 567 50421.2 1 10 III 50423.3 5 567	50377.9		210		
50380.0 0 210 50397.2 2 50408.2 567 50417.4 5 567 50417.6 2 12 50420.1 6 567 50422.3 5 567 50421.2 1 10 III 50421.2 5 567 50431.5 7 567	50378.8		12		
50397.2 2 50408.2 567 50412.4 5 50417.4 5 50417.6 2 50420.1 6 50421.2 1 10 III 50421.3 5 50431.5 7	50380.0	0	210		
50408.2 567 III 50412.4 5 567 50417.4 5 567 50417.6 2 12 50420.1 6 567 50421.2 1 10 III 50422.3 5 567 50431.5 7 567	50397.2		2		
50412.4 5 567 50417.4 5 567 50417.6 2 12 50420.1 6 567 50421.2 1 10 III 50422.3 5 567 50431.5 7 567	50408.2		567	III	
50417.4 5 567 50417.6 2 12 50420.1 6 567 50421.2 1 10 III 50422.3 5 567 50431.5 7 567	50412.4	5	567		
50417.6 2 12 50420.1 6 567 50421.2 1 10 III 50422.3 5 567 50431.5 7 567	50417.4	5	567		
50420.1 6 567 50421.2 1 10 III 50422.3 5 567 50431.5 7 567	50417.6	2	12		
50421.2 1 10 III 50422.3 5 567 50431.5 7 567	50420.1	6	567		
50422.3 5 567 50431.5 7 567	50421.2	1	10	III	
50431.5 7 567	50422.3	5	567		
	50431.5	7	567		

Table 2-12 (continued).

Table 2-12 (continued).

Energy (cm ⁻¹)	$J_{\rm pol}$	$J_{\rm sel}$	linewidth	literature
50442.9	5	567		
50449.8	2	12		
50458.9	5	567		
50470.6		234		
50472.8	1	1		
50486.2	7	567		
50487.1		234		
50491.0	7	567		
50495.2	5	567		
50508.8		56		
50521.0		123		
50525.8		12		
50539.8	5	567		
50540.7	2	2		
50554.3		210		
50557.5		23		
50596.7		123		
50600.1	-	123		
50608.1	2	567		
50611.6	7	567		
50615.5	/	20/	T	_
50625.1	0	210	I	a
50623.3	0	567		•
506907		567		C
50725 3	0	210		
50738.8	7	567		
50739.7	7	567		
50741.9	•	23		
50746.5	0	210		
50764.4	2	210		
50775.5		123		
50780.8		234		
50781.9		210	III	
50790.3	2	210		
50795.4		210	III	
50803.8	0	210		
50805.8	1	12	ш	
50811.6	0	210		
50832.3		210	III	
50833.6				
50834.4	7	567		c
50839.6		12	III	
50865.3		123	III	
50869.5		123	_	
50871.2		567	III	

Energy (cm ⁻¹)	$J_{\rm pol}$	${J}_{\rm sel}$	linewidth	literature
50871.5	2	210		
50894.1		210	Ш	
50905.9		56		
50924.2		210	I	
50924.6		567	III	
50943.1	6	56		
50952.9		12		
50959.7		23	III	
50960.0		456		
50980.2	6	56		
50982.0	7	567		
51022.6		210	III	
51025.4	6	567		c
51025.6		123		
51045.4		567		С
51071.0		210	Ι	
51089.2		12		
51092.7		456		
51093.6		210	III	
51096.4		34		
51099.9		210	III	
51102.5	_	456		
51104.1	7	567		c
51116.4	.5	567		
51129.7		23		
51145.4	1	210		
51144.0	0	210	I	
51201 2	5	43		
51201.5	2	567		
51215.5	'	210	T	
51244.7 51258 A		210	T	
51256.7		12	Ŧ	
51280.5		234	1	
51281.0		210	T	
51282.1	2	210	1	
51295.8	õ	210	T	
51298.3	1	210		
51300.3	2	210	Ţ	
51303.2	-	567	-	
51307.2		210		
51333.4		210	I	
51340.6		210	-	
51344.3		210	III	
51346.7		234		
51359.8		123		

Table 2-12 (continued).

Energy (cm ⁻¹)	$J_{\rm pol}$	$J_{\rm sel}$	linewidth	literature
51369.1		12		
51377.6		234		
51384.8		23		
51385.3		210		
51387.7		210	T	
51391.5	1	210	-	
51393.6	ō	210		
51397.3	Ŭ	210		
51402.0		23	Ш	
51474.4		345		
51476 1		345		
51482.3		12		
51496 3		210	I	
51528.2		456	-	
51542.2		123		
51569.4		210	T	
51588.0		12	•	
51656.6		123		
51692.2		210	III	
51719.9		345	III	
51740.6		515		
51759.9		345		
51771 5		515		
51819 5		567		
51842.4		007		
51915 5	1	1		
51935.5	1	1		
51955.6	-	1		
51975.4	1	1		
52005 1	1	i		
52032.8	•	1		
52032.0	1	1		
52046 4	1	1		
52055.6	•	1		
52080 0	1	1		
52083 9	1	1		
52087.7	1	1		
52096.6	-	210		
52100.9	1	1		
52135.3	•	210		
52157.8		210		
52161.0		210		
52178.2		2.0		
52186.2	1	1		
52188 5	1	1		
52198.2	i	1		

Table 2-12 (continued).

Energy (cm ⁻¹)	J_{pol}	$J_{\rm sel}$	linewidth	literature
52199.1	· 1	1		
52205.9	1	1		
52280.9		210		
52283.2		210		
52284.1		210		
52395.4	1	1		
52423.7		123		
52437.1	1	1		
52445.9	1	1		
52461.0	1	1	4	
52472.6	- 1	1		
52481.9		210		
52710.8		210		
52738.7		210		
52818.9		210		
52837.4		210		
52844.6	1	1		
53020.9		210		
53046.0	1	10		
53089.0	1	1		
53201.1		234		
53582.7		345	III	
53587.5		345	Ι	
53611.7		345	III	
53962.9		234		
54043.5		234	III	
54455.0		123	III	
54518.9		234	III	
54567.5		234	III	

Table 2-12 (continued).

^a Haynam *et al* (1993) ²⁶⁾. ^b Guyadec *et al* (1990) ⁴⁴⁾.

^c Mishin *et al* (1988) ²⁵⁾.

Energy ^a	238-235	IS (mK)
(cm ⁻¹)	a	b
16505.773	190	177.6
16900.387	-280	-283.0
16929.760	45	42.4
17070.469	-55	-75.1
17361.895	-160	-165.5
33421.069	-360	-357.5
34659.215	-505	-490.8

Table 2-13 Energies of lower levels used for the 1st and the 2nd excited levels of U.

^a Blaise and Radziemski (1976)¹⁴⁾.

^b Englman and Palmer (1980) ⁴⁶⁾.

Table 2-14 Isotope shifts of 2^{nd} step transition of U.

Upper		Upper IS				
level (cm ⁻¹)	16505	16900	16929	17070	17361	(mK)
32582	-598			-368		-432
33985	-767		-637	-543	-430	-599
34086	-633		-486	-373		-449
34160	-969	-485	-816	-730	-623	-786
34372	-833		-654		-444	-626
34418	-719			-463	-366	-535
34434	-667			-398	-316	-482
34487	-711			-455	-396	-539
34599	-687			-415	-321	-495
34659	-705			-433	-359	-520
Lower IS(mK) ^a	178	-283	43	-75	-166	

^a Englman and Palmer (1980) ⁴⁶⁾.

Energy		isoto	pe shift (r	nK)
(cm ⁻¹)	configuration	This work	a	b
31915.29		-520		
32019.89	$f^4 sp$	-505		
32112.44		-570		
32267.77		-285	-300	-300
32273.59		-520		
32430.58		-575		
32582.42	$f^4 sp$	-430		
32584.41		-445		
33045.96	$f^3 ds^2$	-540		
33129.30		-230		
33624.84		-625		-630
33737.49		-530		
33752.01	$f^4 dp?$	-615	-610	-610
33833.62		-620		-635
33939.75		-495	-490	-490
33962.42		-690	1	
33984.64	f ⁴ dp?	-595	-590	-590
34028.11		-510		
34086.68		-450	-445	-443
34117.74		-570		
34128.38		-535		
34160.46	$f^4 dp(^7 M_6)$	-785	-770	-773
34161.39		-320		
34209.92		-715		
34263.55		-570		
34292.93		-620		
34328.74		-580		-580
34372.87	f⁴ dp	-630	-615	-615
34376.57		-520		
34398.01		-530		
34418.19		-530		
34434.68		-485		
34461.55		-525		
34508.23		-600		
34523.36		-505		
34578.25		-660		-655
34585.55		-380		
34599.54		-495	-450	-582
34622.27		-530		-550
34629.95		-495		
34639.88		-580		

. Table 2-15 Measured isotope shifts of intermediate levels of U.

.

.

.

Energy				.W)
Energy	configuration *	15000	ope snift (fr	IK)
(cm ')		This work	a	b
34656.25		-660		-660
34659.18	$f^3 ds \delta s (^7 L_7)$	-520	-505	-491
34705.40		-535		
34717.96		-440	-440	-440
34725.50		-465		
34746.11		-550		
34764.98		-440		
34797.80		-565		
34800.02		-515		
34803.60		-610		
34848.21		-510		
34882.76		-560		
34888.80		-395		
34894.92		-525		
34905.25		-645		
34953.62		-530		
34994.99		-525		
35004.97		-405		
35018.01		-600		
35036.91		-500		
35046.07		-595		
35055.74		-780		
35101.87		-560		
35112.94		-320		
35135.66		-555		
35148.52		-485	-470	-470
35180.67		-560		
35193.74		-510	-490	-490
35210.58		-615		
35223.35	$f^3 ds 8s(^5 L_6)$	-505	-500	-490
35242.05		-505		
35250.49		-535		
35291.29		-560		
35304.73		-545		
35316.24		-555		
35357.28		-580		
35370.86		-540		
35406.51		-510		
35408.33		-500		
35438.66		-470		
35490.10	H	-525		
35504.71		-520		

Table 2-15 (continued)

.

Energy		isoto	pe shift (n	ıK)
(cm ⁻¹)	configuration	This work	a	b
35529.16		-475		
35547.22		-435		
35547.65		-455		
35561.14		-450		
35614.55		-480		
35618.83		-575		
35620.79		-550		
35637.74		-555		
35646.15		-480		
35674.84		-510	-500	-500
35693.11		-315		
35720.55		-450		
35725.65		-495		
35731.22		-535		
35751.06		-415		
35763.69	• "	-535		
35784.82		-435		
35798.72		-545		
35824.77		-280		
35836.57		-475		
35840.98		-460		
35861.51		-450		
35864.60		-690		
35886.88		-505		
35914.22		-330		
35940.33		-525		
35963.97		-410		
36000.33		-360		
36014.70		-460		
36026.16		-410		
36034.59		-475		
36053.59		-480		
36067.87		-410		
36085.28		-580		
36090.96		-570		
36109.96		-470		
36115.67		-525		
36119.62		-505		
36174.50		-260		
36186.88		-540		
36187.79		-640		

Table 2-15 (continued)

^a Blaise and Radziemski (1976)¹⁴⁾.

^b Englman and Palmer (1980)⁴⁶⁾.

Energy	isotope
(cm ⁻¹)	shift (mK)
49951.9	-460
49957.1	-550
49958.6	-600
49961.4	-535
50083.5	-510
50084.6	-490
50090.0	-730
50123.6	-630
50187.1	-610
50190.2	-675
50210.5	-425
50412.7	-570
50421.8	-705

 Table 2-16 Measured isotope shifts of autoionizing levels of U.

E ₂	onfiguration	Term	τ.	isotope	shift 160	-154	4 (mK)
cm ⁻¹	Configuration	Term	5	this work			d	e
31236.88			0	-222				
31368.16			3	-234				
31413.11			2	-222				
31542.42 f	⁸ (7F)sp		3	-225				
31772.89			1	-268				
31842.59			2	-285				
31972.32			2	-243				
32632.95			2	-198				
32652.19			12	-227				
32660.86 f	sp?		1	-200	-209.0	c		
32729.68	-		2	2.0				
32881.72			1	18.0				
33037.82			1	-236				
33195.32 f	⁷ (8S)ds7s	°D	3	-72.0	-69.2	a		
33352.95			3	10.3				
33406.04			2	10.0				
33491.39 f	⁷ (8S)d ³	9 P	5	-270				
33534.73 f	7 (8S)ds7s	°D	4	-89.2	-84.8	a		
33734.10 f	$(8S)d^{3}$		4	-288				
33782.18 f	$7(8S)d^{3}$		5	-255				
33823.08 f	⁸ sp?		5	-143			-53	
33951.49	-		3	-288				
34044.36 f	⁷ (8S)ds7s	°D	5	-69.4				
34554.96 f	$7(8S)d^{3}$	$^{\prime}F$	4	-232			81	
34582.50			2	-276				
34582.53			3	-276				
34586.79			1	-270	-259.0			
34601.72			0	-271				
34623.97			6	-66.5				
34697.86			1	-23.4				
34698.19 f	⁸ sp?		4	-181	-180.0	b		-114
34719.13 f	⁷ (8S)s ² 7s	⁹ S	4	93.7			93	
34720.19			5	-276				52
34754.99 f	⁷ (8S)ds7s	°D	6	-75.1	-69.8	b		
34811.79 f	⁸ sp?		6	-174				-104
34906.20			2	-9.0				
34911.41 f	⁸ sp?		5	-197				-147
34984.53 f	⁷ (8S)s ² 7s	⁷ S	3	63.7			13	
35045.77 f	⁷ ds ² ?		3	-2.5	0.0	Ь	79	÷
35224.20			6	-246				
35254.56 f	⁷ (8S)ds7s	'D	1	-92.2				

 Table 2-17 Measured isotope shifts of intermediate levels of Gd.

-

E ₂	Configuration Tame		т_	isotope shift 160-154 (mK)			
cm ⁻¹	Comguratio	n lenn	J -	this work		d	e
35436.02	f ⁷ (8S)ds7s	'D	2	-86.4	-88.6	b	
35561.29	f^{7} (8S)sp ²	¹¹ P	4	-87.3	-78.8	Ъ	
35603.61	$f^8 sp?$		4	-206			-118
35606.12	f^7 (8S)ds7s	°D	2	-143			
35716.79	f^7 (8S)ds7s	'D	3	-107			
35735.09			5	-204			
35860.56	f ⁷ (8S)ds7s	°D	3	-91.0			
35996.98	$f^{8} sp?$		3	-214		-139	-144
36060.07	f^7 (8S)ds7s	°D	4	-135			
36123.58			2	-270			
36160.88			67	-276			
36179.48			4	-168		-45	
36182.72	_		3	-249			65
36268.42	$f^{s}sp?$		2	-100		-166	
36270.05			5	-253			
36326.59	f ⁷ (8S)ds7s	⁷ D	4	-121			
36356.97			56	-271			
36381.68	f^{7} (8S)sp ²	¹¹ P	5	-99.0			
36386.47	$f^{8} sp?$		4	-211			-132
36541.25	f^{7} (8S)ds7s	°D	5	-127			-70
36576.97	$f^8 sp?$		3	-229			91
36616.68	~ 1		4	-53.0			
36653.97	$f^{8} sp?$		5	-35.0			
36853.08	$f^{s}sp?$		5	-195			

. Table 2-17 (Continued)

^a Aly et al (1994) ⁵⁰⁾.

^b Jia *et al* (1993)⁴⁹⁾.

^c Haynam *et al* (1993)²⁶⁾.

^d Ahmad *et al* (1982)⁵⁵⁾.

^e Ahmad *et al* (1979)⁵⁶⁾.

Energy	isotope shift
(cm ⁻¹)	IS ₁₆₀₋₁₅₄ (mK)
49588.1	-20 *
49592.9	-240 *
49609.7	-170
49613.2	-95
49618.6	-90
49636.2	-175
49684.2	-155
49811.7	-65
49848.8	5 *
49853.4	-125 *
49868.5	-140
49982.2	-150 *
49985.9	-240 *
49994.9	-295 *
49997.4	-85 *
50025.7	-90
50029.7	-180 *
50040.9	-265
50052.5	-255
50070.6	-65
52844.6	-275

Table 2-18 Measured isotope shifts of autoionizing levels of Gd.

*averaged values measured from different lower levels

第3章 光学遷移に関する分光データの測定

本章では、前章で同定されたエネルギー準位間の光学遷移に関する分光測定について述べ る。レーザー同位体分離など、光反応を利用する応用では、反応の起こり易さや、起こり易 い条件を知ることが重要である。そのためには吸収断面積、振動子強度、放射寿命などの分 光データが必要となるが、ウランやガドリニウムでこれまでに報告されている遷移データだ けでは十分ではない。本研究では、これらを共鳴電離分光法で調べるため、第 3.1 節で述べ るパルスの時間間隔を変化させる時間分解法と、第 3.2 節で述べる光強度を変化させる飽和 法の2つの方法を利用した。またそれぞれの方法で、励起量を観測する方法と、励起されな かった量を観測する方法を組み合わせ、測定結果をクロスチェックする方法等も考案し、よ り正確な測定法を工夫した。さらに第 3.3 節では、より簡単な装置で遷移データを得るため、 光ガルバノ分光法による測定方法を検討した。これらの方法により、ウラン、ガドリニウム の多くの遷移データを取得した。

3.1 時間分解ポンププローブ法による寿命及び分岐比測定

3.1.1 目的と概要

放射寿命や分岐比、振動子強度、吸収断面積など、原子のエネルギー準位間遷移に関する 物性は原子の光に対する応答性を決める基本的な物性である。多段階共鳴電離によるレーザ ー同位体分離では、量子効率を高めるために、これらの物性値を多くの遷移や準位について 調べることが求められる^{1),2)}。またその値は、原子物理、プラズマ物理、宇宙物理、レーザー 化学をはじめ、光化学反応の様々な応用でも必要とされる³⁾⁻⁵⁾。しかしこれまでのところ、鉄 など一部の軽元素⁶⁾では、これらの物性の詳細な調査が行われているものの、ランタノイド、 アクチノイド元素ではまだ十分なデータは得られていない。

ガドリニウムやウランの3段階電離過程では、イオン化ポテンシャルが49600-49950 cm⁻¹ 程度であることから、15000-19000 cm⁻¹の偶準位と31000-36500 cm⁻¹の奇準位が第1、第2励 起準位として用いられる。このうち第1励起準位の寿命は、ウラン、ガドリニウムとも比較 的良く調べられている。しかし第2励起準位の寿命は、Miron⁷⁾やMarek⁸⁾らの2段階レーザー 誘起蛍光法による測定値や、Carlson⁹⁾, Mishin¹⁰⁾, Haynam²⁾らの3段階共鳴電離分光よる測定値 が報告されているものの、まだ測定値のない第2励起準位が多数存在する。

振動子強度の報告値も限られている。第2励起遷移の振動子強度はほとんど分かっていな い。第1励起遷移の振動子強度はウラン、ガドリニウムとも強い遷移でのみ調べられている。 ガドリニウムではCorliss¹¹⁾, Komarovski¹²⁾,西村¹³⁾らが報告しているが、Komarovskiや西村の 値の多くは、Corlissの値に比べ2倍以上大きく、寿命から計算される振動子強度の上限に近 い値となっており、その精度を確かめることが必要である。一方、ウランの第1励起遷移の 振動子強度はPalmer¹⁴⁾らのアトラスで、詳細な相対強度が明らかになっているが、絶対値は ガドリニウムと同様、Corliss¹⁵⁾の発光分光に基づいているため、その信頼性を確かめる必要 がある。電離効率の高いスキームを選ぶためには、寿命や振動子強度の、より正確な値を、 多くの準位や遷移について得ることが必要である。 振動子強度の測定方法の中で、寿命と分岐比を独立に測定して振動子強度を求める方法は、 最も信頼性の高い方法の1つと考えられる。分岐比の測定方法には大きく分けて2つあり、 1つは放電ランプの発光強度を紫外から赤外までの広い波長範囲にわたって観測して比を とる方法^{2),12),16)-18)}、もう一つはHackel¹⁹⁾らが提案した、複数のパルスレーザーをポンプ光源、 プローブ光源として用い、輻射寿命によって上準位から下準位へ落ちる占有数の割合を多段 階共鳴電離法で観測する方法である。前者は、原子構造が複雑な場合、弱い赤外遷移を多数 観測したり、その寄与分を推定する必要があり、測定の困難さや解析上のあいまいさがある。

一方、後者は励起原子の輻射崩壊を観測するので、後述する飽和法や吸収、発光法で問題 となる、光強度や空間強度分布、発振幅、偏光状態、J値などの励起に係わる条件や、原子 との光反応体積や原子密度、局所熱平衡条件など発光源に係わる条件を正確に知る必要がな いという点で優れた方法である。またレーザーの照射タイミングや電離スキームを変えるだ けで、寿命と分岐比を、同じ手順で測定できる利点もある。これまでBisson¹⁸⁾, Hackel¹⁹⁾, Carlson²⁰⁾らがこの方法で測定を行っているが、測定手順が複雑なため、広く利用されている とは言えず、その適用性や信頼性は明らかでない。

本節では、3段階遅延光電離法によりウラン、ガドリニウムの第1、第2励起準位の寿命 測定、および第1励起遷移の分岐比測定を行った。分岐比測定では上述した従来からの方法 に加えて、始状態以外の準位へ落ちる全ブランチの分岐比の総和が得られる逆分岐比測定法 を新たに考案し、幾つかの遷移で両方の測定結果を比較した。さらに、寿命と分岐比の測定 値に基づいて振動子強度を計算し、得られた値を文献値と比較した。また本分岐比測定法が 第2励起遷移にも適用可能であることを、振動子強度が精度良く求められているイッテルビ ウムの第2励起遷移で確認した。

3.1.2 測定方法

4台の色素レーザーを光源に用い、そのうち1~2台を、注目する準位へ原子を励起する ためのポンプレーザーに用い、残りを多段階共鳴電離でその準位の占有数変化を観測するた めのプローブレーザーとして用いた。アイリスを通してポンプ光は直径3mm、プローブ光は 直径5mmの均一ビームとし、これらを真空容器に入射して反応領域で重ねた。反応領域の 光子フルエンスは1x10¹⁶ photons/cm²/pulse程度とした。

本研究では4チャンネル遅延パルス発生器で各レーザーパルスのタイミングを変化させ ることによって測定を行うため、パルス波形をバイプラナ光電管で検出し、タイミングの変 化を常時確認した。イオン計測器やイオンを検出器に引き込むためのパルス電場のトリガに はプローブレーザーのトリガ出力を用い、遅延時間が変わってもイオンの観測条件が変わら ないようにした。また、光強度のゆらぎによってイオン量が変化しないよう、レーザーのパ ワーは各遷移が十分飽和する強さとした。

(1) 寿命測定

3波長3段階遅延光電離法による輻射寿命の測定原理を図 3-1 に示す。まず原子をポンプ 光パルスで寿命を測定する準位まで励起し、一定時間後にプローブ光パルスで電離した。ポ ンプ光を1波長1段階、プローブ光を2波長2段階にすることで第1励起準位の寿命を測定 し、逆に、ポンプ光を2波長2段階、プローブ光を1波長1段階にすることで第2励起準位 の寿命を測定した。ポンプパルスとプローブパルスの遅延時間を変化させ、イオン量の変化 を観測した。励起準位の占有数は遅延時間とともに減衰するため、その減衰曲線の傾きから 寿命を算出した。遅延時間は信号強度が1オーダー以上減少するまで変化させた。またイオ ンが観測領域から完全に飛び去るのに3µ sec 程度要するので、その時点の信号強度をゼロレ ベルとした。多くの場合、測定は20点以上の遅延時刻で行い、その間隔は寿命の10分の1 以下とした。各遅延時刻で、数百パルスの信号を平均化した。

FIGURE 3-1 Principle of radiative lifetime measurement.

(2) 分岐比測定

4波長3段階遅延電離法による分岐比の測定原理を図3-2(a)に示す。はじめに原子をポン プ光パルスでE₀準位からEp準位に励起し、次にE₀準位に残っている原子をプローブレーザー で電離した。ポンプパルスとプローブパルスの時間差が小さい場合、ポンプ光を照射すると イオン生成量は約半分に減少した。時間差を増加させると、Ep状態の励起原子の一部がE₀ 状態に戻ることにより、イオン生成量が徐々に回復した。そこで注目する各遷移でこのよう な崩壊回復曲線を測定した。分岐比はパルスの時間差が小さい時の減少分と、時間差を大 きくしたときの回復分の比を測定することにより求めた。

FIGURE 3-2 Principle of branching ratio measurement.

3.1.3 結果と議論

(1) 励起寿命

図3-3に測定したガドリニウムの減衰曲線の一例を示す。寿命はこの曲線を最小自乗法により指数関数で近似することにより、その傾きから決定した。

FIGURE 3-3 Typical decay curve of the 2nd exited state of Gd.

本測定では、寿命を正確に測定するため、ポンプ、プローブ遷移の選び方を工夫した。まず、レーザー光強度のゆらぎによる誤差を減らすため、振動子強度の大きい遷移を選び、遷

移を十分飽和させた。またレーザー発振タイミングのジッターによる影響を抑えるため、ジ ッターに比べて十分寿命の長い準位を経由するプローブスキームを用いた。また、第2励起 準位の寿命測定では、第2励起遷移の波長が十分長く、その光を2光子吸収しても、内部エ ネルギーがイオン化極限を超えないような第2励起遷移を用いた。さらに、光照射領域から 原子ビームが飛び去る効果(Flight out of view effect)による誤差を抑えるため、第1レーザー のビーム径を第2レーザーの径より小さくした。しかし、次節で述べる4波長3段階実験に よって、この方法でも遅延時間が1 µ sec以上となると、その効果が無視できないことが分か った。そこで、寿命の算出には遅延時間が1 µ sec未満のデータだけを用いることとした。

表3-1、表3-2にガドリニウムの第1励起準位、第2励起準位の寿命の測定値と文献値を示 す。表中の10個の偶準位と64個の奇準位の寿命は今回初めて測定されたものである。測定値 の誤差は、信号のばらつきによるもので10%程度である。文献値と比較すると、34586cm⁻¹ の値がHaynam²⁾の報告値の半分である以外は良く一致している。

電子配置や多重項が同一の励起準位は寿命の長さも同程度になることが知られている。実際に表3-1の 9 D, 11 D, 9 F項の第1励起準位の寿命はそれぞれ近い値となっている。但し 9 F4 状態だけは他の 9 F状態より寿命が短いことがわかった。Martin²¹⁾らの原子構造計算によれば、この状態の 9 F成分の純度は他の状態より低く、寿命の短い 9 D 成分の割合が高くなっている。従って、観測された寿命の短さは、この L-S 項の混じり合いの結果生じたものと思われる。一方、第2励起準位では、よりエネルギーの高い準位の中に寿命の短いものが多いことがわかった。これは恐らく、そのエネルギー領域に短寿命の電子配置の準位が偏在するためと思われるが、これらの状態の多くはまだ電子配置が同定されていない。

表3-3、表3-4にウランの第1励起準位、第2励起準位の寿命の測定結果を示す。誤差はガ ドリニウムと同様10%程度である。これらの寿命はMiron⁷⁾の報告値といずれも良く一致した。 ウランでは第2励起準位でも電子配置が同定されている準位が多いので、分光項の違いは 無視して、寿命と電子配置の関係に注目すると、f³dspの寿命は短く、f²d²s², f³s², f⁴dsの寿命 は長いことが分かった。これは励起準位と、蛍光遷移する下準位のカップリングの強さで理 解できる。一般に遷移の強さは上下準位の電子配置のうち、1つの電子の軌道角運動量だけ が±1だけ異なる遷移(1電子遷移)の確率がそれ以外の遷移に比べて大きい。ウランの場 合、第1励起準位より低エネルギーにある奇パリティ準位はf³ds²とf³d²sである。短寿命の f²dspはこの両方の配置と1電子遷移するが、f²d²s²やf³s²pはf³d²sとのみ、f⁴dsはf³ds²としか 1電子遷移しない。従ってウランの第1励起準位の寿命は、それより低エネルギー側に遷移 強度の大きな配置の準位がどれだけ存在するかで決まっていると考えられる。

この様に寿命も、第2章で触れた同位体シフトと同じ様に、電子配置や分光項と関係して いる。そこで横軸に寿命、縦軸に同位体シフトをとり、ガドリニウムのエネルギー準位の分 布を調べると図3-4のようになった。分布には電子配置毎に偏りが見られる。前章でも触れ たように同位体シフトはその準位のs電子の数を示し、+100~0mkにはs電子3個の配置 (*f*'s²7sなど)、0~-150mKには2個(*f*⁷ds7sなど)、-150~-220mKには1個(*f*⁸spなど)、それ 以下の範囲にはs電子の無い配置(*f*⁷d³など)が分布する。従ってs電子の数が合う電子配置 でエネルギー的にも可能な配置の中から、寿命の長さに応じて低エネルギー側に遷移しやす い配置がある配置、無い配置を探せば、電子配置が同定できると思われる。また、このよう な物性値の分布をパターン認識法でグループ分けし、配置を同定する試みも、ウランやキュ リウム原子で報告されている^{22),23)}。こうした研究でも、準位エネルギー、g因子、*J*値、同 位体シフトの物性値のほかに寿命データを加えることで、正確な配置の同定ができるものと 思われる。

FIGURE 3-4 Plot of isotope-shift data vs radiative lifetime data of 2nd step excited levels of Gd.

(2) 第1励起遷移の分岐比測定

ガドリニウムの第1励起遷移の分岐比測定は、図3-5に実線矢印で示すように、10個の励起 状態と5個の準安定状態間の、19個の遷移について行った。

FIGURE 3-5 Simplified energy level diagram for branching ratio measurement of Gd.

測定結果の一例を図3-6に△点で示す。999 cm⁻¹ 状態への再ポピュレーションは500nsecまでの範囲で認められる。その回復速度は18083 cm⁻¹ 状態の寿命とほぼ一致しており、これは

多段階のカスケードを経て18083 cm⁻¹ 状態へ再ポピュレーションする割合が無視できることを示している。このような方法で、カスケードによる再ポピュレーションの割合が小さいことを、測定する各遷移で確かめた。

FIGURE 3-6 Typical decay back and decay out curves for the 1st excitation transition.

分岐比は原理的には遅延時間ゼロにおける初期減少分So-S(0)と、遅延時間無限大における、 最終的な回復成分S(∞)-S(0)の比から求められる。しかし現実には、S(0)はポンプとプローブ パルスが時間的に重なるために測定できない。また、S(∞)も遅延時間が大きすぎると、先に 述べた原子の飛行効果やカスケードによる再ポピュレーションによって、崩壊回復曲線の形 が変わってしまうために得られない。そこである有限時間における信号強度の差を測定し、 寿命を考慮して補正する方法を検討した。図3-7に崩壊回復曲線を、10 μ secまで遅延させて 測定した例を示す。白丸は分岐比の大きな下準位からのイオン信号、黒丸は分岐比の小さな 下準位からの信号である。前者では分岐遷移により急速にイオン量が増加し1 μ s付近でプラ トーとなった後、再び増加している。後者は分岐比が小さいため、1 μ sまではイオン量はほ ぼゼロでその後に増加している。このことから、飛行効果や再ポピュレーションの効果は1 μ s以上の時間スケールで顕著になることが分かる。従って正確な分岐比測定のためには、 遅延時間は1 μ secまでとする必要がある。そこで本測定では、遅延時間30nsecと1 μ secのイ オン生成量を測定して、BR'=(S(1000)-S(30))/(So-S(30))の関係から分岐比を求めた。この場合 に得られる分岐比は、先に述べたような寿命の影響で真の分岐比よりも小さいため、これを 以下の式で補正してEp状態の寿命を考慮した真の分岐比に換算した。

$$BR = \frac{BR'}{(e^{\frac{t1}{\tau}} - e^{\frac{t2}{\tau}}) + BR'(1 - e^{\frac{t1}{\tau}})}$$
(3.1)

寿命測定と同様に、精度の高い分岐比測定のためには、プローブスキームの選び方が重要 である。この測定法では、断面積の大きな遷移、長寿命準位の遷移を選ぶだけでなく、E₀状 態の全ての磁気サブレベルが電離するように、上準位ほど角運動量が大きくなるスキームを 選んだ。 励起状態の寿命が長く、1µsecまでの遅延時間では十分な信号の回復が観測できない場合 には、この方法だけで正確な測定を行うことは難しい。そこでこれを可能にする方法として、 図3-2(b)に示すように、通常の分岐比測定を行った直後に、プローブ遷移の波長を変え、ポ ンプ遷移の上準位を通るスキームで引き続き同じ測定を繰り返し、Eo準位以外の準位に崩壊 する原子の割合を測定する逆分岐法を考案した。8つの遷移について実際にこの方法で測定 を行った。結果の一例を図3-6に〇点で示す。イオン量の減少分がこの逆分岐比を表す。Eo 状態への遷移の分岐比はBR'=(S'(1000)-S(30))/(So-S(30))で求められる。ここではS'(1000)は遅 延時間1000nsにおけるイオン量を表し、他の値は通常法で求めたものと同じである。真の分 岐比はこのBR'を次式で補正して求めた。

$$BR = \frac{BR' - e^{\frac{t^2}{\tau}}}{(e^{\frac{t^2}{\tau}} - e^{\frac{t^2}{\tau}}) + BR'(1 - e^{\frac{t^2}{\tau}})}$$
(3.2)

表3-5に測定した19個の遷移の分岐比を示す。2つの方法で得られた結果は良く一致し、より精度の高い分岐比測定が可能であることが確認できた。表には得られた分岐比の平均値を示す。

また分岐比と寿命は次式によって振動子強度と関係しており、本研究で得られたそれぞれ の値から振動子強度を計算した。

$$g_l f = \frac{\lambda^2}{8\pi^2 cr_e} g_u \frac{BR}{\tau}$$
(3.3)

但し、 g_u 、 g_l は上下準位の縮重度、 λ は遷移波長、cは光速、 r_e は古典電子半径(2.818x10⁻¹³ cm) である。その結果も表3-5に報告値とともに示す。寿命や分岐比測定において予想される誤 差を考慮すると、振動子強度測定値に含まれる誤差は約20%と評価される。最後のLS欄の値 は、上下準位がLS結合で記述できるとして、6Jシンボルから計算した多重項間遷移の線強 度(Line Strength)である。これは近似的に振動子強度の相対値を表している。F項、D項とも *J*が小さい状態では比較的良く一致しているが、*J*値の大きい遷移、特に⁹D₅、 ⁹F₄では一致が 良くないことがわかる。これはこの励起準位の角運動量合成形式が、純粋なLS結合ではな く、*JJ*結合に近いことを意味していると考えられる。実際、Martin²¹⁾らの原子構造計算結果 からも、⁹D₅、 ⁹F₄項のLeading Termの純度は46%、 38%と低く、他の状態との混じり合いが 大きいと考えられる。

FIGURE 3-7 Flight-out-of-view effect on decay back curve.

表3-5からKomarovski¹²⁾の値は今回の値より系統的に大きいことがわかる。この違いは彼ら が分岐比計算のために測定した発光スペクトルが可視光の領域だけであり、850nm以上の赤 外域の分岐遷移を無視したためであると思われる。彼らは電子衝突で励起させた原子の発光 強度比から振動子強度を決めているが、多数の弱い赤外線遷移の発光強度は全て合わせても、 可視光の遷移強度の和の25%以下にしかならない、として無視している。しかしこの赤外成 分の寄与は個々の遷移の振動子強度としては小さいものの、遷移の数が多いため、総和とし ては無視できないことが、ガドリニウムと同様に複雑な原子構造を持つウランなどで指摘さ れている⁴⁾。今回の結果でも、表の各第1励起準位から基底状態と4つの準安定状態への遷 移の分岐比を1から差し引いて求めた赤外分岐遷移の分岐比の和は、18509cm⁻¹を除いていず れも、30~40%に達している。これは、ウランの第1励起準位15720cm⁻¹から900nm以上の赤 外遷移の分岐比が約50%と報告されているのと同程度で納得できる大きさである。従って Komarovskiの報告値は寿命から計算される振動子強度の上限値を与えており、真の振動子強 度はこれより小さいと考えるのが妥当と考えられる。

振動子強度の過大評価は、原子ビームのレーザー光吸収から求めた西村の値でも認められる。彼らの吸収法では、振動子強度は共鳴吸収によるレーザー強度のわずかな変化と、各準 安定準位の原子密度絶対値から求めている。従って、ガドリニウム原子ビーム中での占有数 が少ない、高い準安定状態からの遷移ほど誤差が大きいものと思われる。

表3から、各第1励起準位から基底状態や4つの準安定状態への遷移の分岐比の和は0.65 程度でほぼ一定値となることがわかる。これは「1つの多重項のうち始状態または終状態が 共通な遷移の線強度を全て加えると、それぞれ始状態、終状態の統計重率に比例する」とい う、Burger-Dorgelo-Ornsteinの総和則²⁴⁾を、次のように分岐比に直して考えることによって説 明できる。

$$\sum_{J} BR(LJ, L'J') = \frac{4mr_e\omega^{-3}}{3\pi c\hbar e^2} \tau_u (2L'+1) \langle L \| D \| L' \rangle^2$$
(3.4)

ここで、L,Jは下準位の角運動量と全角運動量、L',J'は上準位の角運動量と全角運動量、 τ_u は上準位の寿命である。各第1励起準位($^{9}D_{J}, ^{9}F_{J}$)から準安定状態 $^{9}D_{J}$ への分岐比の和は、上

下準位の軌道角運動量の組み合わせだけで決まる遷移積分の動径部分と、第1励起準位の寿命の積で表せる。前節の結果から ${}^{9}D_{J}$, ${}^{9}F_{J}$ 項の第1励起準位の寿命は、J値によらずそれぞれ 125ns, 590nsとほぼ一定値であることから、分岐比の和が一定値になることが理解できる。分 岐比の和の絶対値は、 ${}^{9}D_{-}{}^{9}D$ 項間、 ${}^{9}F_{-}{}^{9}D$ 項間の遷移積分の動径部分が反映されていると考え られる。

ウランの分岐比の測定は基底状態と620cm⁻¹準安定状態から励起する4個の遷移で同様に 行った。表3-6に得られた結果を示す。分岐比測定値のばらつきはガドリニウムより大きく 0.1程度だった。これは、プローブスキームに1波長2光子イオン化を利用したため、遷移が 飽和せず、レーザー強度の変動に伴う信号のばらつきが大きかったためである。分岐比と寿 命から計算した振動子強度の値は報告値と良く一致する事が分かった。

(3) イッテルビウムの第2励起遷移の分岐比測定

共鳴電離分光による分岐比測定は、第2励起遷移にも適用できる。ただし第2励起遷移 が第1励起遷移と異なるのは、下準位にも寿命があるため、上準位からの再ポピュレーショ ンを評価する場合にこの寿命を考慮しなければならないことである。また高励起準位からは 崩壊遷移の数が多くなり、分岐比の小さい遷移が増えるため、測定の難しさも予想される。 第2励起遷移の分岐比測定は分岐比の大きな遷移でのみ有効と考えられる。そこで、本研究 では原子構造が単純で、正確な第2励起遷移の振動子強度が得られているイッテルビウムの 17992.1(*J*=1)->32694.7(*J*=1)遷移で、その測定原理を実証した。この遷移の上下準位の寿命は それぞれ、15.9 nsec²⁵⁾と875 nsec²⁶⁾で、下準位の寿命効果が小さく、再ポピュレーションが観 測しやすいことも、この遷移を利用した理由の1つである。

分岐比は第1励起準位に原子を励起するパルスと、第1励起原子をイオン化するパルスを 1 μ sの間隔に固定し、注目する遷移を起すパルス光をイオン化パルスの5nsec前まで照射す る場合と200nsec前に照射する場合、そして照射しない場合でイオン量を測定し、その変化を 記録することで求めた。このようにすると第1励起準位の寿命が分岐比測定に影響しない利 点がある。遅延時間が5nsecの場合は第1励起準位の占有数は大きく減少するが、200nsec程 度になると第1励起準位への再ポピュレーションがすすみイオン量は増加する。この変化か ら分岐比を求め*BR* =0.17を得た。これに第2励起準位の寿命の補正を行うと分岐比は BR=0.21となり、振動子強度は*gf*=0.28となった。これはコヒーレントな励起によって生じる ラビ振動の周波数から振動子強度を求めたHaynamの値(*gf* = 0.23)²⁷⁾や、発光分光から求めた Borisovの値(*gf* = 0.37)²⁸⁾に近く、第2励起遷移の分岐比が測定可能であることが確かめられた。 3.2.1 目的と概要

前節では分岐比から振動子強度や断面積を求める方法を検討し、主に第1励起遷移の断面 積測定に適用した。また第2励起遷移の断面積測定への適用性を調べるため、イッテルビウ ムの第2励起遷移で予備試験を行った。この試験の結果、分岐比測定法は第2励起遷移にも 適用できることが分かったが、分岐遷移の数が多く個々の遷移の分岐比が相対的に小さくな る第2励起遷移では、精度良く振動子強度を決められる遷移が少ないことも分かった。また、 分岐比法は原理的に電離遷移の断面積測定には適用できない。

そこで本節では、分岐比の小さな励起遷移や電離遷移にも使える断面積測定法として、飽 和法に注目した。この方法はインコヒーレントな励起ダイナミクスが支配的な系で、光強度 を増加させると遷移の上、下準位の占有率の差が小さくなり、やがて吸収と誘導放出が拮抗 して上準位の占有率が変化しなくなることを利用して、飽和に必要なレーザー光強度から断 面積を求める方法である。本方法を最初に考案し、Rb の電離遷移の断面積測定に利用した のは Ambartzunian^{29),30)}である。その後、Bekov³¹⁾らは Yb の3段階イオン化スキームで各励 起ステップの断面積測定に本方法を用いている。また Burkhardt³²⁾は飽和法を基に、原子ビー ムの原子密度の精密測定法を提案している。最近では Lievens³³⁾らが Ni の1 波長2光子、2 波長2段階スキームの電離断面積測定に本方法を利用している。

本研究では、まず飽和の原理による正確で簡単な測定法を確立するための予備試験を行った。はじめにレーザーの発振幅による断面積ピーク値の違いを調べた。また、レーザービームの空間強度分布が(1)均一ビーム(トップハット型)の場合と(2)レンズで集光したガウス型ビームの場合の飽和曲線を測定し、ガウスビームで行った場合の補正方法について検討した。さらに、飽和が完全に現れなくても飽和断面積が得られる方法として、逆飽和法を考案しその適用性を調べた。さらに本研究では、共鳴イオン化分光法以外で簡単に遷移の飽和断面積を知る方法として、光ガルバノ分光法による飽和断面積測定法も検討した。これらの結果から飽和法による測定手順などを確定し、これによって前節で分岐比測定により正確なgf値を求めたガドリニウムの第1励起遷移と、イッテルビウムの第2励起遷移の振動子強度が正しく測定できることを確かめた。最後にこの方法を用いて U, Gd の多数の第2励起遷移、電離遷移の飽和断面積を測定し、エネルギー準位の量子状態と断面積の大きさの関係などについて考察した。

3.2.2 測定原理

(1) 電離遷移、励起遷移のレート方程式

(1-a) 電離遷移

下準位の初期占有数が N_{L0} の原子に1秒当たりの光子数(光子フラックス)がnの光をパルス長tの間だけ照射した時に、電離断面積 σ の遷移により、どれだけの原子がイオン化するかは、次のレート方程式で計算できる。

$$\frac{dN_U}{dt} = n\sigma N_L$$
$$\frac{dN_L}{dt} = -n\sigma N_L$$

(3.5)

100
ここで、 $n\sigma = W$ は遷移確率である。一般に、自動電離速度(無輻射遷移速度)はパルス長より十分速いため、誘導放出は考えない。これを解くと、2準位間電離遷移によるイオン量 N_u と原子の残量 N_L の時間変化は次式となる。

$$N_{U} = N_{L0}(1 - e^{-n\sigma t})$$

$$N_{L} = N_{L0}(1 + e^{-n\sigma t})$$
(3.6)

下準位の寿命 τ がパルス長に比べて短い場合は、イオン量は近似的に次式で表せる。

$$N_{U} = N_{L0} \frac{n\sigma}{n\sigma + \frac{1}{\tau}} (1 - e^{-(n\sigma + \frac{1}{\tau})t})$$
(3.7)

ここで n ot=S は飽和パラメータと呼ばれ、S=1 は下準位原子の 64%、S=3 は下準位原子の 95%がイオン化されることを意味する。1パルスのエネルギー(光強度)を光子1個のエネ ルギーで割ると、パルス当たりの光子密度(光子フルエンス)となり、nt で表せる。このた め(3.6),(3.7)式は、イオン量の光強度依存性を表している。光強度を増加させてイオン量を飽 和させ、飽和パラメータが1程度の光強度でのイオン化率の絶対値を知れば断面積が求めら れる。これが飽和法の測定原理である。イオン量が飽和まで達しないと、正確な断面積の測 定は困難になるので、強いレーザー光源が不可欠である。飽和曲線全体を(3.6),(3.7)式で最小 自乗近似するのが正確だが、線形領域の接線と飽和レベルの線の交点がおよそ飽和パラメー タ1の位置になるため、交点の光強度から簡易的に断面積を求める方法もよく利用される。

(1-b) 励起遷移

励起遷移の飽和も同じ方法で解析できるが、上準位に励起された原子の自動イオン化に よる引き抜きがないため、誘導放出項が入る点が異なる。レート方程式は次のようになる。

$$\frac{dN_U}{dt} = n\sigma(N_L - N_u)$$

$$\frac{dN_L}{dt} = -n\sigma(N_L - N_U)$$
(3.8)

これを解くと、2準位間遷移による励起原子量の時間変化は次式となる。

$$N_U = \frac{N_{L0}}{2} (1 - e^{-2n\sigma t}) \tag{3.9}$$

寿命や上準位から分岐比 BR で decay back がある場合のレート方程式は次のようになる。

$$\frac{dN_L}{dt} = -n\sigma(N_L - N_U) - \frac{N_L}{\tau_L} + BR\frac{N_U}{\tau_U}$$

$$\frac{dN_U}{dt} = n\sigma(N_L - N_U) - \frac{N_U}{\tau_U}$$
(3.10)

このレート方程式の一般解は次のようになる。

$$N_{U} = \frac{N_{L0}}{\sqrt{D}} n\sigma e^{\frac{AU}{2}} (e^{\sqrt{\frac{D}{2}}} - e^{-\sqrt{\frac{D}{2}}})$$

$$A = 2n\sigma + \frac{1}{\tau_{L}} + \frac{1}{\tau_{U}}$$

$$D = 4(n\sigma)^{2} + (\frac{1}{\tau_{L}} - \frac{1}{\tau_{U}})^{2} + 4n\sigma \frac{BR}{\tau_{U}}$$
(3.11)

101

下準位寿命が光照射時間に比べて十分に長く(τ_L>>t)、分岐比が1に近い時には、次式で近似できる³⁴⁾。

$$N_{U} = N_{L0} \frac{n\sigma}{2n\sigma + \frac{1}{\tau_{U}}} (1 - e^{-(2n\sigma + \frac{1}{\tau_{U}})t})$$
(3.12)

従って励起の飽和曲線は(3.9)や(3.12)式で表せる。電離との違いは、n ot に係数2が付くため、十分飽和させても上準位の占有数が50%までであることである。これにより励起と電離が同じ強度で飽和する場合、電離断面積の方が励起断面積より2倍大きいことになる。

(2) 断面積ピーク値と原子吸収幅、レーザー発振幅の関係

前述のレート方程式では遷移確率は一定値 W=n σと考えたが、実際は光子フラックスも 吸収断面積も周波数による分布をもつスペクトルである。このため、吸収断面積から振動子 強度などを求める場合に、このようなスペクトルの拡がりを考慮した取り扱いが必要になる。

原子の共鳴周波数をv_A、レーザーの発振周波数をv_L、スペクトルの規格化形状関数をg

$$\sigma(v - v_{\lambda}) = \sigma_{0}g_{\lambda}(v - v_{\lambda})$$

$$J(v - v_{L}) = J_{0}g_{L}(v - v_{L}) = hv_{L}n_{0}g_{L}(v - v_{L})$$
(3.13)

ここで、積分断面積、全光強度、全光子フラックスは形状関数の規格化条件から次式で表せる。

$$\int \sigma(v - v_A) dv = \sigma_0 \qquad \int J(v - v_L) dv = J_0 = h v n_0 \qquad (3.14)$$

また各スペクトルのピーク値は次のようになる。

$$\sigma_{peak} = \sigma_0 g_A(0) \tag{3.15}$$

$$J_{A} = J_2 g_A(0)$$

これらを用いると遷移確率も周波数スペクトルとなり、断面積スペクトルと発振スペクトル の重ね合わせで次のようになる。

$$W(v_{A} - v_{L}) = \frac{1}{hv} \int_{-\infty}^{\infty} \sigma(v - v_{A}) J(v - v_{L}) dv$$
(3.16)

スペクトルの形状関数は、一般には Gauss 型と Lorentz 型の中間の Voigt 型であり、畳み込み 積分により次のように表せる。

$$g_{A}(v - v_{A}) = \int g_{H}(v - v')g_{I}(v' - v_{A})dv'$$
(3.17)

$$g_{H}(v-v_{o}) = \frac{\Gamma_{2\pi}}{(v-v_{o})^{2} + (\Gamma_{2})^{2}}$$
均一広がり 半値幅 Г

$$g_{I}(v-v_{0}) = \frac{2}{\Delta\sqrt{\pi}}e^{\frac{4(v-v_{0})^{2}}{\Delta^{2}}}$$
不均一広がり 半値幅 $\Delta\sqrt{\ln 2}$

ここで、本研究の実験条件に合わせて、レーザーの発振幅が吸収スペクトルより大きい場合 を考える。レーザーを共鳴周波数に同調させた時の遷移確率は次のように表せる。

$$W(0) = n_0 \sigma_0 g_L(0) \int g_A(v - v_A) dv = n_0 \sigma_{peak} \frac{g_L(0)}{g_A(0)}$$

(3.18)

この式は、レーザー発振幅が広い場合、その拡がりを吸収スペクトルの拡がりに置き換えられることを示している。その実効的な吸収スペクトルの幅は g_A(0)/g_L(0)倍、高さは g_L(0)/g_A(0) になる。このように断面積の観測量は、光の発振幅で変るため注意が必要である。 遷移の起こり安さを表す物理量で観測条件によらないのは振動子強度である。これは吸収ピークの面積である積分断面積と次の関係がある。

 $\sigma_0 = \pi c r_e f$

(3.19)

但し*c*は光速、*r_e*は古典電子半径である。実効的な吸収スペクトルの形状がローレンツ型と ガウス型の場合の断面積ピーク値と振動子強度の関係は、(3.15)(3.19)式からそれぞれ次のよ うに表せる。

$$\sigma_{peak} = 2cr_e \frac{f}{\Gamma_{FWHM}} = 1.690 \times 10^{-11} \frac{f}{\Gamma_{FWHM}(GHz)} (cm^2)$$

$$\sigma_{peak} = 2\sqrt{\pi \ln 2} cr_e \frac{f}{\Gamma_{FWHM}}$$
(3.20)

ガウス型の場合、係数が√πln2=1.4倍になる点が異なる。Voigt 関数の係数は両者の中間の値 となるので、同じ値の断面積から計算した振動子強度は、ローレンツ型の式が最大値、ガウ ス型の式が最小値を与える。

(3) 光強度の空間不均一性の影響

レーザー光の2次元強度分布が不均一な光(ガウス型)と均一な光で飽和曲線を測定する 場合を考える。レーザー照射面内の原子の面密度を n_0 とし、ビーム中心軸から ρ だけ離れた 位置の単位面積に照射される光子フルエンスを ϕ (ρ)とする。

(3-a) 均一ビーム

半径 R の均一ビームでは、光子フルエンスの空間分布とビーム全体の光子フルエンスは次式 となる。

 $\phi(\rho) = \phi_0 \quad \text{for} \quad |\rho| \le R$ $= 0 \qquad |\rho| > R$ (3.21)

 $\int \phi(\rho) 2\pi \rho d\rho = \pi R^2 \phi_0$

これより、ビーム断面内の全生成イオン数は次式で求められる。これは(3.6)式と等価である。 $N = \int n_0 (1 - e^{-\sigma_0}) 2\pi p dp = n_0 \pi R^2 (1 - e^{-\sigma_0})$ (3.22)

(3-b) ガウスビーム ガウスビームでは、光子フルエンスの空間分布とビーム全体の光子フルエンスは次式となる。

 $\phi(\rho) = \phi_0 e^{-\left(\frac{\rho}{R}\right)^2} \tag{3.23}$

 $\int \phi(\rho) 2\pi \rho d\rho = \pi R^2 \phi_0$

これより、ビーム断面内の全生成イオン数は次式で表せる³⁵⁾。

$$N = \int n_0 (1 - e^{-\sigma\phi_0 e^{\frac{p}{k}}}) 2\pi \rho d\rho = n_0 \pi R^2 (\gamma + \ln(\sigma\phi_0) + E_1(\sigma\phi_0))$$
(3.24)

但し γ オイラー定数(=0.57721....)

E₁(x) 積分指数関数(n=1)

$$En(z) = \int_{1}^{\infty} e^{-zx} dx / x^{n}$$

上式の括弧内の関数は(3.22)の括弧内の関数と似た曲線となるが、増加率が徐々に低下する 漸近値のない単調増加関数である。これはガウスビームの裾野が無限に続くため、光を強く すると裾野の部分でイオン化する原子が無限に増え続けることに対応している。このような 意味で、これはイオン化領域効果あるいはエッジ効果と呼ばれる。

3.2.3 測定方法

アイリスで強度の均一な部分を切り出した3つのレーザー光を、2つの2色性ミラーで一本のビームに結合し原子に照射した。飽和のエッジ効果を抑えるため、3つの光のうち、測定する遷移を起す光の径が最も大きくなるように、アイリスを調整した。最小ビーム径は3mm 程度で、ビーム径や空間強度分布は CCD カメラと画像処理器で確認した。またレーザーの発振幅(カタログ値 2GHz~6GHz)はフィネス 20 のソリッドエタロン(CVI 社製、FSR=6GHz, 20GHz)の干渉フリンジにより測定した。

イオン量の飽和は、測定する遷移を起こす光の強度を連続可変減衰器(Newport 社製 金属 コート円形可変 ND フィルタ)で変化させて観測した。光強度の絶対値は真空容器入射直前の 結合ビームのうち不要な成分をブロックしパイロ電気素子で測定した。また光強度の相対的 な変化は、ビームスプリッタで分岐させた成分によりパイロ素子でモニターした。この光強 度信号とイオン信号はボックスカー積分器でそれそれ同じショット数だけ平均化し、コンピ ューターに記録した。光パルスのタイミングはバイプラナ光電管で常時モニターし、測定す る遷移のパルスが他のパルスと重ならないようにした。得られた飽和曲線を原理のレート方 程式の解(3.6),(3.9)式などで最小自乗近似する事で、断面積を計算した。

3.2.4 結果と考察

(1) 予備試験1 電離幅の狭い遷移での発振幅の影響

原理で述べたように飽和法で断面積を測定する場合、原子の吸収幅がレーザーの発振幅よ り狭い場合には、レーザー光に含まれる遷移に利用されない波長成分のために、飽和に必要 な見かけ上の光強度が大きくなり、断面積を過小評価する可能性が生じる。そこでこれが断 面積測定に与える影響を調べるために、同じ遷移の飽和曲線をレーザーの発振幅を変えて測 定した。

Lamda Physik 社の色素レーザーは、回折格子で波長選択する場合、発振幅は 0.2cm⁻¹であ るが、レーザー共振器内にエタロンを挿入すると 0.04cm⁻¹に狭められる。各々の発振幅で測 った電離スペクトルの例を図 3-8 に示す。623.78nm 付近の狭い電離ピークの吸収幅(FWHM) は 0.15cm⁻¹程度である。2つの光で飽和曲線を測定し電離断面積を求めると、0.04cm⁻¹の時 の方が、0.2cm⁻¹で測った時より約 1.3 倍大きい値となった。これにより(3.18),(3.20)式で検討 した実効的な吸収スペクトルの考え方が確かめられた。また、この事から 0.2cm⁻¹の発振幅 で電離断面積を測定する場合、幅の狭い電離準位では断面積を過小評価する可能性があるこ とがわかった。このため本研究では、通常の飽和断面積の測定は発振幅 0.2cm⁻¹ の光で行う ものの、有望なスキームの断面積は、さらに発振幅の狭い光による測定も行って、第4章の スキーム評価に用いることとした。

FIGURE 3-8 Comparison of ionization spectra measured with different laser-bandwidth.

(2) 予備試験 2 ガウス型空間強度分布の影響

使用した色素レーザーは $2x10^{17}$ (光子/ cm^2 ・パルス)以上の光子フルエンスが出力可能 である。しかしレンズを用いて反応領域で焦点を結ぶようにレーザー光を集光させると、遷 移を飽和させる光強度がより簡単に得られる。そこで、3波長の光を結合した後に焦点距離 50cm のレンズを入れ、反応領域で焦点を結ばせて飽和曲線を測定した。この飽和曲線から 電離断面積を計算する場合は、測定原理で述べたように光強度の増加に伴って空間的に不均 ーに飽和が起こる効果を補正する必要がある。そこでこの補正を行った場合(σ_B)と行わ ない場合(σ_c)、そしてレンズを使わず均一ビームで測定した断面積(σ_A)の比較を行った。 その結果を表 3-7 に示す。 $\sigma_B \geq \sigma_C$ では5倍以上の差が生じるが、 $\sigma_A \geq \sigma_B$ は概ね一致し、 補正を行えばどちらの方法でも測定可能と思われる。しかし、エッジ効果がある場合は、飽 和曲線の飽和が不明瞭になるため、正確な断面積を得るのに十分な光強度まで飽和曲線を測 定できたかどうかがわかりずらい。また反応体積が小さくなるため、イオン信号自体も小さ くなり S/N 比が低いなどの問題もある。このため、本研究では集光ビームは用いず、均一ビ ームだけで断面積測定を行うことにした。

(3) 予備試験3 逆飽和曲線による励起断面積の測定

飽和法では光強度を変化させて、イオンが光強度に比例して増加する領域から、増加が止まり完全に飽和するまでの領域で曲線を記録することで精度の良い断面積測定が可能となる。しかし、励起遷移の中には、十分飽和させることが難しい弱い遷移も多数存在する。また弱い光でも断面積が求められれば、多くの遷移の断面積測定が容易になる。本研究では、

これを可能にする方法として逆飽和法を考案し、その実証試験を行った。

FIGURE 3-9 Typical Inverse Saturation curve for the 1st step transition of Gd.

測定方法は、前節の逆分岐測定法と同じスキーム(図 3-2)で、パルスのタイミングを変 える代わりに、測定する励起遷移を起す光の強度を変化させる。すると光強度の増加に伴っ て、下準位の占有数が減少しイオン量が減少する。このくぼみ成分が光強度の増加によって 飽和する様子から断面積を求める。この方法が通常の飽和法に比べて優れている点は、くぼ みの飽和する深さが予想できることである。励起遷移の飽和は光吸収と誘導放射の速度が等 しくなることで起こるので、飽和深さは上下準位の占有数が等しくなる量、即ち着目励起光 を照射しない場合の信号強度の半分である。上下準位のJ値が異なる遷移では、偏光により 遷移可能な副準位遷移の割合を乗じた量が飽和深さとなる。このように逆飽和法では飽和深 さが飽和曲線全体を測ることなく分かるため、ある光強度でのくぼみの程度を測るだけでも 断面積が求められる。図 3-9 に、測定したガドリニウムの2つの第1 励起遷移の逆飽和曲線 を示す。どちらもプローブ遷移は上準位ほど J 値が大きくなる遷移を用いている。 215->17749cm⁻¹ 遷移の飽和深さが浅いのは、215cm⁻¹の7つの磁気副準位のうち、17749cm⁻¹ に励起されるのが 5 個の副準位に限られるため、くぼみの深さが最大でも(0.5x5+2)/7=0.643 だからである。両曲線とも遷移強度の小さい磁気副準位遷移の飽和が起こりにくいため、計 算上の飽和深さまで達していないが、ほぼ予想値に漸近しており、本方法によって飽和が観 測できない場合でも断面積が測定可能であることが分かった。

この方法で求めたガドリニウムの第1励起遷移の振動子強度を他の測定結果と比較して 表 3-11 に示す。値の一致はよく、この方法の実用性が確認できた。 (4) 予備試験4 イッテルビウムの第2励起遷移の飽和特性

予備試験の最後に、飽和法で断面積が精度良く測れることを確認するため、前節で分岐比 を測定した Yb の第2励起遷移 17992.1(*J*=1)->32694.7(*J*=1)の飽和曲線を測定した。結果の一 例を図 3-10 に示す。光子フラックス 1x10²⁰photon/s・cm²程度でイオン発生量が飽和した。 この曲線を原理の(3.9)式で近似することで励起断面積 3.6x 10⁻¹³ cm²を得た。

この 32694cm⁻¹ 準位の寿命は 10nsec 程度なので自然幅は 100MHz,ドップラー幅は幾何学 的配置から 50MHz、測定時のレーザーの発振幅(Δ_L)は 5GHz で、 $\Delta_A << \Delta_L$ が良い近似とし て成り立つ。この場合、原理で述べたように断面積と発振幅の積が振動子強度に比例するこ とから、(3.20)式を用いて振動子強度が求められる。ローレンツ型形状を仮定し、得られた 値に 17992cm⁻¹ 準位の統計重率 g=3 を乗じて、gf=0.32 を得た。この値は、前節の分岐比測 定で得られた gf 値 0.28 や Haynam²⁷⁾、Borisov²⁸⁾の文献値 0.23、0.37 と良く一致しており、こ の事から、飽和法により高励起準位の励起、電離断面積を容易に測定できることが確かめら れた。

FIGURE 3-10 Saturation curve of photoion yield for the 2nd step transition of Yetterbium.

(5) ウラン、ガドリニウムの飽和断面積測定

以上の予備試験により、測定方法や解析方法の特徴や精度が確かめられたので、次にこれ らの方法をウラン、ガドリニウムの多くの第2励起遷移、電離遷移の断面積測定に適用した。 電離断面積は、2.3 節で測定した電離スペクトルを基に、各第2励起準位毎にイオン量の多 いピークを複数選び、その飽和曲線を測定することで求めた。図 3-11 にガドリニウムの第2 励起遷移(上図)、電離遷移(下図)の飽和曲線の例を示す。また、得られたガドリニウム とウランの励起、電離断面積を表 3-8 と表 3-9 にそれぞれ示す。電離断面積は各第2励起準 位から測定した電離遷移のうち、最も大きな断面積を示し、その遷移の自動電離準位もあわ せて示した。同様に、ウランの場合は第2励起遷移の断面積も、幾つかの第1励起準位から 測定した遷移のうち、最も断面積の大きいものだけを第1励起準位とともに示した。

測定した第2励起断面積は10⁻¹³~10⁻¹⁶ cm²、電離断面積は10⁻¹⁴~10⁻¹⁶ cm²の範囲に分布す

ることが分かった。これらの断面積は次章で電離効率の高いスキームを選び出すための基礎 データとして用いた。また予備試験の考察に基づき、ウランの電離遷移では、発振幅 1~2GHz の光による断面積と電離幅の測定も行ない、結果を表 3-10 に示した。電離断面積の文献値 は少ないが、ウランの 34599.7→50412.6cm⁻¹遷移では Ruster³⁶⁾の値(3.5x10⁻¹⁵cm²)が報告されて おり、本研究の値 2.0~4.9x10⁻¹⁵cm² と比較的良く一致した。

第2励起遷移の断面積は第2励起準位の寿命や分岐比と関係し、分岐比が一定であれば寿 命が短いほど大きくなる。図 3-12 に、測定したウラン(上図)とガドリニウム(下図)の 第2励起遷移断面積と、第2励起準位の寿命の相関図を示す。比較のため(3.3),(3.20)式より 計算した分岐比 0.05 (Gd では 0.1)のピーク断面積(6GHz)を実線で示す。この線より右上に はほとんど測定点が無いことから、第2励起遷移の分岐比の上限はガドリニウムで 0.1、ウ ランで 0.05 程度であることが分かる。第1励起遷移に比べて分岐比絶対値が小さいのは、分 岐遷移の数の違いによるものと思われる。また、この様な分布から、第2励起準位の寿命が 短い遷移ほど励起断面積の大きいものが多いことが理解できる。

同様の性質は電離遷移にもあると考えられる。第2章2.4節で示したように、ある第2励 起準位から電離断面積が大きい電離準位は、他の第2励起準位からの断面積も大きい場合が 多い。このような、多くの第2励起準位と遷移の振動子強度が大きい自動電離準位が存在す るということは、そうした電離準位の蛍光寿命が短いと考えれば理解できる。後述するよう に、電離断面積の大きい電離準位は、電離幅が狭いことも明らかになっている。不確定性原 理によると寿命が短いことと幅が狭いことは相反するように思われる。しかし、観測される 電離幅は 1GHz 程度の大きさで、連続状態への自動電離速度は 1nsec 程度なので、蛍光を発 して第2励起準位へ脱励起する寿命が 10~100nsec 程度の短さでも矛盾は生じない。電離幅 と断面積の関係については5章5.1節で考察する。

FIGURE 3-11 Typical saturation curve of photoion yield for the 2nd step transition (upper) and the autoionization transition of Gd (lower).

FIGURE 3-12 Plot of cross-section of 2^{nd} step transition vs lifetime of 2nd excited level of U and Gd.

3.3 光ガルバノ分光による飽和断面積の測定

3.3.1 目的と概要

前節の共鳴イオン化信号の飽和から断面積を求める方法の利点は、イオン信号の検出感 度が高いこと、質量分析との組み合わせで元素選択性も高いことである。しかし原子ビーム 蒸気では密度がゆらぎ、信号が変動しやすいことや、第1励起遷移の測定でも、3段階全て の光が無いとイオン化しないため、全てのレーザーの発振状態がイオン信号の変動原因にな るなど、不利な点もある。

そこで本節では、共鳴イオン化飽和法が適用しにくく、分岐比法でも測定が困難な、分岐 比の小さな第1励起遷移の断面積測定を主な目的として、光ガルバノ分光による測定法を検 討した。ホロカソードランプではホロカソード放電によりカソード金属の原子がスパッタさ れ、バッファガス原子と平衡状態となり、密度変動の少ない原子ソースが得られる。光ガル バノ分光では、放電プラズマ中の元素に共鳴する光を照射して、占有状態の分布を変化させ ることで、それが平衡状態に戻るまでに生じる放電持続電流のわずかな変化パルスを観測す る。このような電流変化は通常、励起原子がイオンや電子と衝突を繰り返すうちにイオン化 し、これによって放電抵抗が変わるために誘起されるので、衝突頻度を反映して、マイクロ 秒スケールのパルスとなる(低速ガルバノ効果)。しかし、原子が直接光イオン化される場 合は、生じる電子群がカソードに一気に流れこむため、新たにレーザーパルスと同程度の持 続時間のパルスも発生する(高速ガルバノ効果)^{37,38}。

光ガルバノ効果は古くから知られているが、信号の発生機構が複雑で、これを断面積測定 に用いた例は少ない。バッファガス(ネオン)のガルバノ信号の時間波形は図 3-13 の様に、 同ーランプ、同一放電条件であっても、遷移により様々な形状を示す。この原因は各遷移の 始状態から終状態への変化が、放電抵抗を増加、あるいは減少させ、様々な時定数で摂動が 緩和されるためである。ガルバノ分光ではこのパルスに適当なゲートを設け、特定時刻の信 号を積分するため、ゲート位置によって強度や符号が変化する。ゲートを固定し、始状態が 同じ遷移のガルバノ信号を測る場合に限り、強度比から振動子強度比が計算できることが経 験的に知られている³⁹。しかしスパッタ原子のガルバノ波形は、バッファガスより一様に短 く、形状も、高さ以外は遷移によらないことが第2章の実験で明らかになった。これはスパ ッタ原子の放電への影響が、バッファガス原子ほど直接的ではないためと思われる。さらに Martin の経験式のように、ガルバノ信号強度が、遷移に関与する原子数に比例するなら、原 子数の飽和によりガルバノ信号も飽和すると考えられ、イオン信号とガルバノ信号の同時観 測により共鳴イオン化飽和信号の変動の有無を容易にチェックすることもできると考えら れる。本節ではこの様な考えから、光ガルバノ信号の飽和特性から断面積を測定する方法に ついて調べた。

3.3.2 測定方法

色素レーザー光をホロカソードランプに入射し、放電電流の微小変化をカップリングキャ パシタを介し、プリアンプで増幅することによって検出し、ボックスカーで積算してコンピ ューターに記録した。カップリングキャパシタの容量は 1000pF、バラスト抵抗は 10kΩとし た。レーザー光はランプ入射直前にアイリスを通して直径約 4mm の均一ビームとした。光 はネガティブグロー領域だけでなく、カソード近傍のダークスペース領域を含むカソード電 極内部全域に照射した。共鳴イオン信号とガルバノ信号の同時測定では、真空容器透過直後 の光をランプに導いた。光強度の変化やモニター方法は、飽和測定の場合と同様である。

FIGURE 3-13 Various waveform of OG-signal of Neon.

3.3.3.結果と議論

(1) 予備試験 光ガルバノ信号の回復時間の測定

ホロカソードランプのプラズマ内では、電子やバッファガス原子、スパッタカソード原子 などが混在し、衝突を繰り返すが、その衝突周波数が大きいと励起原子が衝突緩和されたり、 スパッタにより新しいカソード原子が供給されたりして、遷移が飽和しにくくなり断面積が 正しく測れない恐れがある。信号が飽和するには、始状態原子の供給速度が光パルス時間よ り遅いことが必要である。そこでこの速度の目安を得るため、図 3-14 のように、2台のレ ーザーで同じ遷移を起す共鳴励起パルスを作り、その時間間隔を変化させながら、ガルバノ 信号の強度変化を測定した。この方法では第2パルスを照射した場合(A)と、照射しない場 合(B)で信号の変化(B/A)を測定する。第1パルスによりガルバノ信号が発生するが、遅延時 間を増やすと信号はほぼ2倍まで増加する。これを実測した結果を図 3-15 に示す。縦軸は 信号の増加率(B/A)である。この図からレーザーパルス長(約 15nsec)の間に、新たに始状 態原子が供給される割合は5-10%程度であり、回復速度は遅いことが分かる。同様の方法で バッファガス原子のガルバノ信号の回復時間を測定すると、カソード原子より早く、15nsec で 50%近く回復する。この差はカソード原子の場合、スパッタ速度が回復速度の律速になっ ているためと考えられる。従って、15nsec のパルス光で得られるカソード原子の光ガルバノ 信号の飽和は、共鳴電離信号の飽和と比べて同じか、若干起こりにくい程度と予想される。

FIGURE 3-14 Principle of OG-recovery time experiment

FIGURE 3-15 Typical recovery curve of Gd-OG signal.

(2) 共鳴イオン化信号とガルバノ信号の飽和の同時測定

光ガルバノ信号と共鳴電離信号で飽和特性を比べるため、ガドリニウムの幾つかの第1励 起遷移で2つの信号の同時測定を行った。得られた飽和特性曲線の一例を図 3-16 に示す。 上がガルバノ信号、下が共鳴イオン信号である。共鳴イオン信号の方が、レーザーの発振状 態や原子蒸気の変動により、信号がばらついているが、両者の飽和断面積は同程度であり、 ガルバノ信号の飽和から第1励起遷移の断面積を簡易的に測定できることが確かめられた。 そこでこの方法をガドリニウムの多くの第1励起遷移に適用し、求めた断面積から振動子強 度を計算して表 3-11 に示した。振動子強度への換算では発振幅の誤差や形状関数の仮定によ る誤差が大きいと考えられるが、他の値と良く一致した。

この様な測定を通じて、本方法の欠点も分かった。1つは共鳴遷移による信号の他に、非 共鳴のガルバノ信号によるバックグランドノイズが生じる場合があることである。同じ遷移 でも、ホロカソードランプの個体差や、放電状態の違いで現れる場合がある。また、短波長 のレーザー光の場合、電極に光を当てないように径を小さくすると消えるため、光電効果が 1つの原因と考えられる。このような場合、共鳴、非共鳴の2本の飽和曲線を測定して差を とれば、正しい飽和曲線が得られると思われる。また、バッファガス(ネオン)の共鳴線に 近い遷移は測定困難である。2つ目は、この方法を第2励起遷移に適用しようとすると、第 1遷移と第2遷移の信号が重畳されて現れ、第2励起光強度を変化させると第1遷移の成分 も変化するために信号が飽和しにくいことである。このため、低速ガルバノ信号による高励 起遷移の断面積測定には限界があると思われる。

FIGURE 3-16 Typical OG-saturation curve of Gd.

(3) 高速ガルバノ信号の飽和の同時測定

低速ガルバノ信号の実験により高励起遷移の断面積測定には限界があることが分かった が、こうした高励起遷移の断面積測定には高速ガルバノ信号が有効と考えられる。高速ガル バノ信号による光電離断面積の測定は Stockhausen⁴⁰⁾らが考案した方法があるが、飽和法によ る測定例はない。高速ガルバノ分光では3段全ての光が必要なため、低速ガルバノ分光に比 べれば手順が複雑になるが、共鳴イオン化飽和法との同時計測が容易なため、蒸気変動の確 認等にも有用と考えられる。

図 3-17 に 533 ->18083 ->34811 ->50052 cm⁻¹の電離スキームの各励起段の飽和特性を、同時

に測定した(a)共鳴イオン化信号、(b)高速ガルバノ信号、(c)低速ガルバノ信号で比較した図 を示す。図 3-16 の場合はランプに第1励起光しか入射せず、ランプ内で光イオンは生成さ れないが、この図では第1励起遷移(533 ->18083 cm⁻¹)や第2励起遷移(18083 ->34811 cm⁻¹)の 場合でも、ランプに3段階全ての光を照射し、ランプ内で光イオンを生成している点が異な る。比較のため(c)の曲線は極性を逆転させているが、全ての曲線の光強度依存性は良く一致 している。低速ガルバノ信号は、上述したようにイオン化させない場合は飽和が観測できな いが、イオン化させると信号が非常に強くなり、飽和が観測できるようになった。これは、 光励起原子が電子との衝突イオン化等によって放電に及ぼす影響に比べ、光イオンが放電に 及ぼす影響の方が遙かに大きく、前者の効果が無視できるためと考えられる。

このように、低速、高速光ガルバノ信号を共鳴イオン化信号の飽和法と併用することで多 くの利点があることが分かったため、本研究では、これらの信号の同時測定体系で多くの断 面積を測定した。光ガルバノ分光による断面積測定法は、高密度蒸気ビームの作りにくい、 高融点金属原子の分光に特に有用な方法と思われる。

FIGURE 3-17 Typical rapid OG-saturation curve of Gd.

3.4 第3章のまとめ

本章では、エネルギー準位間の光学遷移に関する分光測定について述べた。

第3.1節では、3段階遅延光電離法によりウラン、ガドリニウムの第1、第2励起準位の寿 命および第1励起遷移の分岐比をそれぞれ測定した。分岐比測定では、従来の分岐比測定法 に加えて、始状態以外の準位へ落ちる全ブランチの分岐比の総和が得られる逆分岐比測定法 を考案し、2つの分岐比曲線で挟み撃ちにすることで、励起準位の寿命が長い場合でも、高 精度の分岐比測定が可能であることを示した。さらに、寿命と分岐比の測定値に基づいて振 動子強度を計算し、得られた値を文献値と比較した。また本分岐比測定法が第2励起遷移に も適用可能であることを、振動子強度が精度良く求められているイッテルビウムの第2励起 遷移で実証した。

第3.2節では、分岐比の小さな励起遷移や電離遷移にも使える断面積測定法として、飽和 法による断面積測定について検討した。まず飽和の原理による正確で簡単な測定法を確立す るための予備試験を行った。はじめにレーザーの発振幅による断面積ピーク値の違いを調べ た。また、レーザービームの空間強度分布が(1)均一ビーム(トップハット型)の場合と(2)レン ズで集光したガウス型ビームの場合の飽和曲線を測定し、ガウスビームで行った場合の補正 方法について検討した。さらに、飽和が完全に現れなくても飽和断面積が求められる方法と して、逆飽和法を考案しその適用性を調べた。これらの結果から、飽和法による測定手順な どを確定し、さらに分岐比測定で求めたガドリニウムの第1励起遷移のgf値やイッテルビウ ムの第2励起遷移のgf値との比較を行い、振動子強度が正しく測定できることを確認した。 またこの方法でウランやガドリニウムの多数の第2励起遷移、電離遷移の飽和断面積を測定 し、エネルギー準位の量子状態と断面積の関係などについて考察した。また幅の狭い電離遷 移では、断面積が幅によって変化することから、電離幅の測定が重要であることを明らかに した。

さらに第3.3節では簡単な装置で飽和断面積を得る方法として、光ガルバノ信号の飽和特性から断面積を測定する方法を考案した。その結果、低速ガルバノ信号が第1励起遷移の簡 易測定に利用できること、高速光ガルバノ信号が第2励起遷移や、電離遷移の断面積測定に 利用できることを示した。

以上の結果、多段階電離スキームの電離効率の評価に不可欠な多数の遷移データを、それ ぞれに適した分光手法を用いて精度良く、効率的に整備することができた。

参考文献

- 1) Le Guyadec E, Ravoire J, Botter R, Lambert F and Petit A: Opt. Commun. 76 (1990) 34.
- 2) Haynam C A, Comaskey B J, Conway J, Eggert J, Glaser J, Ng E W, Paisner J A, Solarz R W and Worden E F: SPIE 1859 (1993) 24.
- 3) Blagoev K B and Komarovski V A: Atomic Data and Nucl. Data Table 56 (1994)1.
- 4) Doidge P S: Spectrochim. Acta 50B (1995) 209.
- 5) Hannaford P and Lowe R M: Aust. J. Phys. 39 (1986) 829.
- 6) The Opacity Project Team: The Opacity Project Vol. 1. Institute of Physics Publications, Bristol, UK (1995).
- 7) Miron E, David R, Erez G, Lavi S and Levin L A: J.Opt.Soc.Am.69 (1979) 256.
- 8) Marek J and Stahnke H J: Z. Physik. A298 (1980) 81.
- 9) Carlson L R, Paisner J A, Worden E F, Johnson S A, May C A and Solarz R W: J. Opt. Soc. Am. 66 (1976) 846.
- 10) Mishin V I and Fedoseev V N: Opt. Spectrosc. 63 (1987) 420.
- 11) Corliss C H and Bozman W E: N.B.S. Monograph 53 (1962).
- 12) Komarovski V A and Smirnov Yu M: Opt. Spectrosc. 73 (1992) 507.
- 13) Nishimura A, Oba H, Ogura K and Shibata M: Opt. Commun. 110 (1994) 561.
- 14) Palmer B A, Keller R A and Engleman R Jr.: An Atlas of Uranium Emission Intensities in a Hollow cathode Discharge LA-8251-MS (1980).
- 15) Corliss C.H: J. Res. Nat. Bur. Stds. 80A (1977) 1.
- 16) Avril R, Petit A D, Radwan J and Vors E: SPIE 1859 (1993) 38.
- 17) Bisson S E, Worden E F, Conway J G, Comaskey B, Stockdale J A D and Nehring F: J. Opt. Soc. Am. B8 (1991) 1545.

- 18) Bisson S E, Comaskey B and Worden E F: J. Opt. Soc. Am. B12 (1995) 193.
- 19) Hackel L A and Rushford M C: J.Opt.Soc.Am .68 (1978) 1084.
- 20) Carlson L R, Johnson S A, Worden E F, May C A, Solarz R W and Paisner J A: Opt. Commun.
 21 (1977) 116.
- 21) Martin W C, Zabulas R and Hagan L: Atomic Energy Levels The Rare Earth Elements, Nat. Stand. Ref. Data Ser. Natl. Bur. Stand. 60 (1978).
- 22) Peterson K L, Anderson D L and Parsons M L: Phys. Rev. A17 (1978) 270.
- 23) Lewis R V and Peterson K L: Phys. Rev. A35 (1987) 1119.
- 24) Sobelman I I: *Atomic spectra and radiative transitions*. Berlin, Heidelberg, New York : Springer (1979).
- 25) Baumann M, Braun M, Gaiser A and Liening H: J. Phys. B: At. Mol. Phys. 18 (1985) L601.
- 26) Gustavsson M: J.Opt.Soc.Am. 69 (1979) 984.
- 27) Haynam C, Comaskey B, Johnson M, Paisner J and Worden E: Resonance ionization spectroscopy : Inst. Phys. Conf. Ser. 94 (1988) 41.
- 28) Borisov S K, Kotochigova S A, Krynetskii B B, Mishin V A and Stel'makh O M: Sov. Phys. Tech. Phys 29 (1984) 798.
- 29) Ambartzumian R V, Apatin A M, Letokov V S, Makarov A A, Mishin V I, Puretski A A and Furzikov N P: Sov. Phys. JETP 43 (1976a) 866.
- 30) Ambartzumian R V, Furzikov N P, Letokov V S and Puretski A A: Appl. Phys. 9 (1976b) 335.
- 31) Bekov G I, Letokov V S, Matveev O I and Mishin V I: Opt. Lett. 3 (1978) 159.
- 32) Burkhardt C E, Libbert J L, Xu J, Leventhal J Jand Kelley J D: Phys. Rev. A 38 (1988) 5949.
- 33) Lievens P, Vandeweert E, Thoen P and Silverans R E: Phys. Rev. A54 (1996) 2253.
- 34) Solarz R W, Paisner J A, Carlson L R, May C A and Johnson S A: UCRL-77590 (1975).

- 35) Hurst G S, Payne M G, Kramer S D and Young J P: Rev. Mod. Phys. 51 (1979) 767.
- 36) Ruster W, Ames F, Kluge H –J, Otten E –W, Rehklau D, Scheerer F, Herrmann G, Muhleck C, Riegel J, Rimke L H, Sattelberger P and Trautmann N: *Nucl. Inst. Meth. Phys. Res.* A281 (1989) 547.
- 37) Broglia M, Catoni F and Zampetti P: J. Physique Coll. 44 (1983) C7-479.
- 38) Broglia M, Catoni F, Montone A and Zampetti P: Phys. Rev. A36 (1987) 705.
- 39) Martin W C, Huber C E and Sandeman R J: Phys. Scripta 22 (1980) 373.
- 40) Stockhausen G, Mende W and Kock M: J. Phys. B: At. Mol. Phys. B29 (1996) 665.
- 41) Klose J Z and Voigt P A: Phys. Rev. 16 (1977) 2032.
- 42) Hannaford P and Lowe R M: J. Phys. B: At. Mol. Phys. B14 (1981) L5.
- 43) Poulsen O, Andersen T, Bentzen S M and Nielsen U: Phys. Rev. A24 (1981) 2523.
- 44) Solarz R W, Carlson L R and May C A: UCRL-76306 (1976).
- 45) Adachi S, Niki H, Izawa Y, Nakai S and Yamanaka C: Jpn. J. Appl. Phys. 29 (1990) L833.
- 46) Voigt P A and Kornblith R L: J.Opt.Soc.Am. 66 (1976) 492.

Energy ^a	Configuration	nª _	Lifetime (nsec)		
cm ⁻¹	•		This work	Literature ^b	
16061.273	$f^7 ({}^8 S_0) dsp$	¹¹ D ₃	211±8	e • • • •	
16195.999	$f^{7}(^{8}S_{0})dsp$	¹¹ D ₄	260±9		
16775.024	$f^7 ({}^8S_0) dsp$	¹¹ F ₇	475±47		
16824.589	$f^7 ({}^8 S_0) dsp$	J=4	298± 8		
16885.739	$f^7 ({}^8S_0) dsp$	¹¹ D ₅	196±6	Š.	
16920.400	$f^7 ({}^8S_0)s^2p$	⁷ P ₃	389±11		
16923.378	$f^{7}(^{8}S_{0})s^{2}p$	⁷ P ₂	420±14		
17227.969	$f^{7}(^{8}S_{0})dsp$	⁹ F ₁	594±14		
17318.942	$f^7 ({}^8S_0) dsp$	¹¹ D ₆	220±16		
17380.827	$f^{7}(^{8}S_{0})dsp$	⁹ F ₂	621±20	597	
17617.767	$f^7 ({}^8S_0) dsp$	⁹ F ₃	655±45		
17749.978	$f^{7}(^{8}S_{0})dsp$	⁹ D ₂	148± 3	136	
17795.267	$f^{7}(^{8}S_{0})dsp$	⁹ D ₃	129±3	130	
17930.516	$f^7 ({}^8S_0) dsp$	⁹ D4	124± 3	130	
17973.611	$f^{7}(^{8}S_{0})dsp$	⁹ F₄	496±33	443	
18070.257	$f^7 ({}^8S_0) dsp$	⁹ D ₆	113±4	108	
18083.642	f^{7} (⁸ S ₀)dsp	⁹ D ₅	112±2	100	
18509.198	$f^{7}(^{8}S_{0})dsp$	⁹ F ₅	584±23	536	

Table 3-1 Measured lifetimes of the 1st excited states of Gd

^a Martin *et al* (1978)²¹⁾. ^b Marek *et al* (1980)⁸⁾.

Energy ^a	Energy ^a Configuration ^a		Lifetime (nsec)		
cm ⁻¹	Configuration	J* -	This work	Literature	
31064.6	· · ·	12	1500±100		
31236.7		210	2280± 80		
31368.1	•	3	1130±190		
31413.0	:	2	1690± 60		
31542.4	f ⁸ sp	3	1140±100		
31772.8		12	2470±180		
31842.4	-	210	2190±170		
31972.3		2	1320±100		
32072.9		3	925±52		
32181.7		3	136± 5		
32220.4	f ⁸ sp?	2	756±35		
32255.4		2	1740±170		
32565.9		34	660±34		
32570.2	· · · · · · · · · · · · · · · · · · ·	3	1320±150		
32572.6		34	475±16		
32632.9		2	960±45		
32652.1		12	1670±240		
32660.8	f ⁸ sp?	1	690± 40	800 ^b	
32729.7		2	1680±190		
32881.7		12	>4000		
32925.5	$f^{7}(^{8}S)d^{3} {}^{9}P$	4	138±10		
32957.8	f^{7} (⁸ S) ds 7s ⁹ D	2	15± 1		
33037.8		12	704± 44		
33189.5	f⁸ sp?	3	863±34		
33195.3	f^{7} (⁸ S) ds7s ⁹ D	3	15± 1		
33352.9	- 	3	786± 20		
33391.4		456	241±49		
33406.0		2	3100±200		
33478.3	÷.,	· 4	722±25		
33491.4	$f^{7}(^{8}S)d^{3} P$	5	211 ± 20		
33534.7	•	4	16± 1	14 [°]	
33655.3		456	1080±160		
33734.1	$f^{7}(^{8}S)d^{3}$	4	99± 2		
33782.2	$f^{7}(^{8}S)d^{3}$	4	102± 3		
33818.8	·*	456	1070± 80		

Table 3-2 Measured lifetimes of the 2nd excited states of Gd

Energy ^a	Configuration ³	7a	Lifetime	e (nsec)
cm ⁻¹	Configuration	J	This work	Literature
33951.5		3	154± 3	
34044.3	f ⁷ (⁸ S)ds7s ⁹ D	5	16± 3	12 ^c
34555.0	$f^7 ({}^8S) d^3 {}^7F$	4	23 ± 1	
34582.5	•	2	289± 9	
34582.5		3	295± 36	
34586.8		1	335± 9	820 ^b
34601.7		210	337±28	
34623.9		6	20± 2	- -
34697.7		12	220± 8	
34698.2	f ⁸ sp?	4	14± 3	
34720.2		5	43 ± 1	2
34755.0	f ⁷ (⁸ S)ds7s ⁹ D	6	17± 1	16 ^c
34811.8	f ⁸ sp?	6	12± 2	Ę
34906.2		2	116± 6	
34984.5	$f^{7}(^{8}S)s^{2}7s^{7}S$	3	14± 1	
35045.7		3	19± 2	
35224.2		6	34± 1	
35254.6	f^7 (⁸ S)ds7s ⁷ D	1	14± 1	-
35436.0	f ⁷ (⁸ S)ds7s_ ⁷ D	2	17± 1	
35561.3	$f^{7}(^{8}S)sp^{2}P$	4	28± 5	
35603.6	f ⁸ sp?	4	7± 1	<u>,</u>
35606.1	f ⁷ (⁸ S)ds7s ⁹ D	2	19± 1	14. . 1
35716.8	f ⁷ (⁸ S)ds7s ⁷ D	3	18± 1	
35860.6	f ⁷ (⁸ S)ds7s ⁹ D	3	20± 1	
35997.0	f ⁸ sp?	3	9± 1	
36060.1	f ⁷ (⁸ S)ds7s ⁹ D	4	22 ± 1	
36123.8		2	95±4	2
36160.9		67	171±12	*.
36179.4		4	26± 2	
36268.4	f ⁸ sp?	2	15± 2	
36270.1		5	51± 4	•
36326.6	f ⁷ (⁸ S)ds7s ⁷ D	4	19± 1	
36357.1		56	130±16	
36360.1	$f^{s}sp?$ ⁷ G	1	21± 3	

Table 3-2 (continued)

^a Martin *et al* (1978)²¹⁾.

^b Haynam *et al* (1993)²⁾.

^c Mishin *et al* (1987)¹⁰⁾.

Energy h	Conference	h		Lifetime (nsec)
cm ⁻¹	Configura	tion "	This work	Literature
14643.87	f ³ dsp	⁷ M ₆	255	
14839.74	f ⁴ ds	7L5	2200	
14858.79	f^4s^2	⁵ I7		
15631.86	$f^2 d^2 s^2$	5L7	533	300 ^f , 607 ^g
15638.37	$f^2 d^2 s^2$	5K6	605	170 ^f
15720.68	f ³ dsp	⁷ L ₅	513	
16121.93	f ³ dsp	⁷ K4	235	
16195.36	f4ds	⁷ L ₆	i	
16294.02	f^3s^2p	۶Is	630	
16505.77	f^3s^2p	۶K ⁶	520	330 ^b , 400 ^c , 530 ^f
16900.39	f ³ dsp	⁷ M ₇	200	205 ^a , 255 ^b , 205 ^c , 190 ^d , 196 ^e , 300 ^f
16929.76	f ³ dsp	⁷ K5	450	
17070.47		⁵ L ₆	280	390 ^a
17361.90	f ³ dsp	⁷ L6	485	660 ^a , 390 ^b , 410 ^c , 330 ^f
17369.55	$f^2 d^2 s^2$	5	740	
17468.21	$f^2 d^2 s^2$	4	355	370 ^c
17559.32		5	3800	
17893.88		4	975	
17908.17	f^3s^2p	۶Is	; 770	540 ^c
18186.00		4	1625	
18253.87		6	620	
18295.78	f ⁴ ds	7L7	1840	
18299.50		4	1070	
18383.25		4	1975	
18406.52	f³ dsp	⁷ K	, 180	
18607.80		4	1020	
18759.18		6	390	
18794.83		4	1408	
18839.26	$f^2 d^2 s^2$	⁵K-	, 1581	
18932.77	f ³ dsp	⁷ L	5 109	100 ^f
_			415	

 Table 3-3
 Measured lifetimes of the 1st excited states of U

^a Klose and Voigt $(1977)^{41}$.

^b Carlson *et al* (1976)⁹⁾.

^c Miron *et al* (1979)⁷⁾.

^d Hannaford and Lowe (1981)⁴²⁾.

^e Poulsen *et al* (1981)⁴³⁾.

^f Solarz *et al* (1976)⁴⁴⁾.

^g Hackel and Rushford (1978)¹⁹⁾.

Laval	Configuration	7	Li	fetime	
Level	Configuration	5	This work	a	b
31458.58		6	2000		
31509.49	f ⁴ sp	5	255		
31536.94		5	34		
31575.61		7	2500		
31583.71		5	85		
31602.84		6	455		
31649.36		456	385		
31651.86		6	1305		
31695.47		7	1950		
31697.73		56	700		
31698.83		56	485		
31712.20		6	1796		
31747.01		6	775		
31748.41		6	613		
31785.83		5	153		
31797.78		6	380		
31821.73		6	842		
31832.35		7	1360		
31837.90		4	200		
31847.56		5	263		
31853.75		456	720		
31857.82		7	602		
31868.78		6	800		
31884.38		5	345		
31915.25		5	473		
31966.84		7	705		
31988.83		5	125		
31997.38	f ⁴ sp	4	126		
32005.70		5	71		
32018.12		6	950		
32019.89	f ⁴ sp	7	800		
32022.20		456	490		
32112.44		7	1150		
32123.44		5	250		
32136.04		4	900		
32192.49		4	90		
32193.98		6	1155		
32199.92		5	380		
32220.34		6	470		
32237.98		4	118		
32257.06	f ⁴ sp	5	86		

 Table 3-4
 Measured lifetimes of the 2nd excited states of U

			Li	fetime	
Level	Configuration	J -	This work	a	b
32267.70		6	242	300	
32273.56		7	1154	840	
32285.13	⁵ K ₅	5	107	110	
32286.25		6	500	480	
32336.51	⁵ I ₄	4	51		
32340.10		7	2037		
32343.39		- 5	390		
32347.22		6	560	470	
32364.50		7	2000		
32368.78		45	198		
32427.12		4	82		
32430.43		6	1410		
32445.14		6	825	570	
32471.96		7	900	690	
32482.49		6	849		
32489.09		4	116		
32503.51	⁵K₅	5	69	70	
32532.61		4	78		
32534.08		6	900	890	
32541.81		5	280		
32545.93		7	1000	840	
32582.39	f ⁴ sp	6	748	780	
32583.22		4	42		
32584.41		5	295		
32626.58		6	774	790	
32638.73		5	603	440	
32639.80		456	440		
32655.49		4	130		
32660.68		5	260	240	350
32691.33		5	333		
32696.25		6	911		
32734.69		6	1216	970	400
32787.74		5	160	175	145
32789.68		7	1964		
32813.36		6	840	780	
32831.07		5	85	100	40
32857.49	$f^{3} ds \delta s^{7} L_{5}$	5	22	26	40
32867.93		6	832	560	
32873.19		45	159		
32885.56	f ³ ds8s	5	35	40	50
32896.52		5	879		

Table 3-4 (continued)

	0 6		Li	fetime	
Level	Configuration	J	This work	a	b
32900.08	$f^3 s^2 d?$	6	672	510	455
32925.13	-	7	1450		
32929.63		5	953		
32961.99		5	1022		
32970.70		6	1292	870	
32994.23		5	75	80	
33009.87		6	690	520	
33042.76		45	272		
33045.87	$f^3 ds^2$	5	167	180	400
33083.11		5	500	380	490
33096.35		6	1160	580	
33118.97		7	450	440	350
33129.26		6	640	600	350
33173.16		6	860	570	
33185.45		456	224		
33212.78		5	513	430	
33217.96		45	200		
33252.39		6	545	440	
33264.22		6	1105	820	
33275.05		5	460	440	
33303.76		5	256	250	400
33304.30		7	1900		
33313.96		5	450		
33323.06		6	470	470	
33337.78		45	570		
33378.72		6	165	140	
33406.35		7	630		
33421.10	f ³ ds8s ⁷ L ₆	6	19	30	
33443.29		5	390		
33444.93	f ³ ds8s	4	62		
33475.00		6	168	200	
33481.69		4	76		
33488.14		6	1038		
33500.66		5	491		
33516.91		6	779	600	
33549.66		7	568		
33590.88		67	886		
33607.34		5	476	310	
33624.78		6	292	330	
33720.61		5	460	320	
33742.67		5	507	340	

Table 3-4 (continued)

T1	C		7	Li	fetime	
Level	Configu	ration	J .	This work	a	b
33752.02	(f ⁴ dp)		6	164	145	
33833.51			6	372	330	
33853.33			5	- 77	85	
33874.20			5	80	90	
33907.16			6	219	215	
33915.09			5	375	280	
33978.86			7	1261	1180	
33984.59	(f ⁴ dp)		6	92		
34025.22			5	140	160	
34028.01			6	590	330	
34071.18			5	167	140	
34086.68			5	29	40	
34117.71			6	595	420	
34128.42			4567	1723	1080	
34160.50	f⁴ dp	⁷ M ₆	6	49	47	
34165.44			5	763	440	
34194.17			5	387	300	
34209.81			67	640	490	
34263.61			5	798	560	
34277.30			- 5	423	340	
34292.90			6	219	180	
34319.35			7	680	950	
34328.79			6	183	205	
34341.71			5	1578		
34372.88	f⁴ dp		6	106	120	
34376.50			5	352	310	
34398.00			5	262	230	
34418.12			7	1823	1110	
34434.67			7	400	320	
34461.52			5	409	360	
34486.72			7	350	350	
34508.22			6	943	770	
34523.38			6	245	240	
34578.24			6	155	160	
34585.51			5	537	570	
34599.64			7	33	58	
34622.21			6	47	55	
34629.96			5	835	620	
34639.88			6	1168	820	
34659.11	f³ ds8s	⁷ L ₇	7	26	23	
34705.25			5	900	570	

Table 3-4 (continued)

Laval	Configuration	Ţ	Li		
Level	Configuration		This work	a	b
34717.97		6	76	70	
34746.20		6	273	310	
34764.89		4567	540	440	
34797.90		6	160	175	
34803.64		7	545	380	
34894.91		6	450		
34905.07		7	1375		
34994.99		67	573		
35036.81		6	257		
35123.83		6	48		
35148.50		6	80		
35193.79		6	52		
35223.29	f ³ ds8s ⁵ L ₆	6	35		
35242.11		5	78		
35291.35		.5	670		
35316.17		5	275		
35504.71		5	220		
35614.55		6	553		1
35618.82		5	84		
35620.79		7	520		
35674.85		5	59		

\mathbf{I} able \mathbf{J} \mathbf{I} (continued)

^a Miron *et al* (1979)⁷⁾. ^b Solarz *et al* (1976)⁹⁾.

Lower	Upper	This V	Vork		<i>gf</i> -valı	ie in liter	ature	
		BR	gf	a	b	C	d	e
0 ⁹ D ₂	17227 ⁹ F ₁	0.63	0.016					
0 ⁹ D ₂	17380 ⁹ F ₂	0.34 *	0.013	0.010	0.023	0.018	0.009	0.017
0 ⁹ D ₂	17749 ⁹ D ₂	0.35 *	0.056	0.030	0.109			
\cdot 0 $^{9}D_{2}$	17795 ⁹ D ₃	0.41	0.110	0.054	0.146			
215 ⁹ D ₃	17380 ⁹ F ₂	0.26 *	0.011	0.012	0.019			
215 ⁹ D ₃	17617 ⁹ F ₃	0.27 *	0.014	0.012				
215 ⁹ D ₃	17749 ⁹ D ₂	0.32	0.053	0.028	0.066	0.084		
215 ⁹ D ₃	17930 ⁹ D ₄	0.47	0.160	0.076	0.190			
215 ⁹ D ₃	17973 ⁹ F ₄	0.50	0.043	0.019	0.068			
533 ⁹ D ₄	17617 ⁹ F ₃	0.24	0.013					
533 ⁹ D ₄	17795 ⁹ D ₃	0.25	0.068	0.073	0.110	0.130		
533 ⁹ D ₄	17930 ⁹ D ₄	0.10 *	0.036	0.027	0.067			
533 ⁹ D ₄	17973 ⁹ F ₄	0.14 *	0.012		0.027			
533 ⁹ D ₄	18083 ⁹ D ₅	0.41	0.200	0.120	0.280			
999 ⁹ Ds	17930 ⁹ D ₄	0.12	0.046	0.036	0.085	0.083	0.029	
999 ⁹ D5	18070 ⁹ D ₆	0.18 *	0.110	0.095	0.280	0.210		
999 ⁹ D5	18083 ⁹ D ₅	0.18 *	0.088	0.073	0.210			
999 ⁹ D₅	18509 ⁹ F ₅	0.35 *	0.032		0.097	-		
1719 ⁹ D ₆	18070 ⁹ D ₆	0.50	0.320	0.170	0.360	0.510		

Table 3-5 Measured branching ratios and oscillator strengths of Gd

*: 従来の方法と逆分岐比法で測定した結果の平均値

^a Corliss *et al* (1962)¹¹⁾.

^b Komarovski *et al* (1992)¹²⁾.

^c Nishimura *et al* (1994)¹³⁾.

^d Adachi *et al* (1990)⁴⁵⁾.

^e Haynam *et al* (1993)²⁾.

Transi	tion cm ⁻¹	This Work		gf-value in literature			
Lower	Upper	BR	gſ	а	b	с	d
0	16900.39	0.65	0.256	0.234	0.180	0.54	0.35
0	17361.90	0.20	0.027	0.020	0.019		
620	18406.52	0.20	0.058	0.079			
620	18759.18	0.40	0.061	0.069			

Table 3-6 Measured branching ratios and oscillator strengths of U

^a Palmer et al (1980)¹⁴⁾.

^b Corliss *et al* (1977) ¹⁵⁾.

^c Voigt et al (1976) ⁴⁶⁾.

^d Klose et al (1977) ⁴¹⁾.

 Table 3-7 Saturation cross-sections measured with homogenious and Gaussian beam

 (preliminal experiment of U)

Transitio	n cm ⁻¹	cross-section 10 ⁻¹⁶ cm ²			
E ₂	E ₃	σ _A	σ_{B}	σc	
34398.4	50048.4	6.7	4.2		
34622.1	50235.2		2.3		
34659.1	50084.4	9.4	7.5	2.0	
34746.3	49988.3	11.6	7.8	2.0	
34797.7	49954.3	5.8	3.8		
34800.0	49946.0		5.0	1.2	
34803.8	50113.7	12.3	12.1	3.8	
34994.9	50307.5		3.3		
34994.9	50441.6	10.0	13.3		
35124.0	50442.2		11.4		
35124.0	50978.2		6.0		
35223.6	50930.2	2.3	5.5		

σA: 均一ビーム

σ_B: ガウス型ビーム

σc: ガウスビームの測定値を均一ビームとして解析した場合

E	Cross-section $\sigma_2 x 10^{-16} (\text{cm}^2)$						E						
E2	J=1		<i>J=</i> 2			J=3		J=4	J=	=5	J=6	03	Е3
cm ⁻¹	17227	16923	17380	17749	16920	17617	17795	17973	16885	18083	18070	10 ⁻¹⁶ cm ²	cm ⁻¹
31064.7		0.52										102	50029.5
31236.9	6.54											18.1	49995.2
31413.1	0.39	0.41		0.41								18.3	49699.1
31542.4												39.2	50132.2
31772.9	0.98		0.45									20.3	50554.2
31842.6	0.4											5.9	49647.1
32073.0				3.6									
32181.7		15.3										7.4	50025.8
32220.4		2.71		3.92								24.8	50352.4
32255.4		2.06		2.96								7	50352.3
32565.9				4.42								76.4	49974.1
32570.2		3.58	1.69	26.5								14.7	50780.8
32572.7				8.05								57.9	49619.0
32633.0	4.13	4.34		2.54								48.4	51129.9
32652.2	0.23	0.25	0.24										
32660.9	1.04	3.66										60.6	49799.4
32729.7	6.2	21	5.57	7.27								13.7	50600.2
32881.7		11				1.01						22	50832.1
32925.5				21.2								9.1	49759.2
32957.8	1820	496	779	2.77	65.7	2020	2330	2070					
33037.8	0.32	0.96	0.33									105	50625.1
33189.5			5.22	7.3	4.4	7.29		0.7				34.3	51346.7
33195.3		147	2720	95.8	2580	6740	109	6.21					
33353.0			20.8	0.8	28.9	8.23	8.49					5.6	50352.4
33406.0	11		8.54			22.5	16.7					9.2	50397.1
33478.3				0.8			14.4	0.53				2.2	50477.4
33491.4								0.7			3.08	1.2	50508.9
33534.7				103	466		5110	1000				3.5	49836.0
33734.1					22		332	118					
33782.2								2.05		152	215	4.1	50980.4
33804.5											219		
33823.1								0.8		3.05	4.2	9.9	50980.4
33951.5				39.1			22.2	25.9				2.8	51099.3
34044.4								1220		954	1350	3.4	50673.7
34582.5	2.21	0.76	25.3		37.4							9.5	50029.6
34586.8	16.2		30.7			0.34						82.1	50624.7
34601.7	20											79.4	49994.6
34624.0									3.02	11.2	60,4	902	50052.7
34697.9	2.32	63.8	28.6			5.53						29	52283.2
34720.2			•									8.4	50126.0
34755.0									160	270	1280	20.5	49910.6
34811.8									1.52	63.1	64.9	1030	50052.5
35224.2										16.8	17	27	50615.5
35254.6	276	242	228				_					1.6	50748.1

Table 3-8 Measured cross-sections of the 2nd excited states of Gd

E ₂	1 0	ross-section	x10 ⁻¹⁶ cm ²	E ₁	E ₃
cm ⁻¹	5	σ2	σ3	cm ⁻¹	cm ⁻¹
31458.6	6	12.6	12.3	14839	50079.2
31509.5	5	8.2	5.6	14643	49972.7
31536.9	5	40	19.4	14839	50148.4
31575.6	7	2.2	10.8	14643	50090.1
31583.7	5	2.6	11.2	14643	50020.6
31602.8	6	13.4	2.9	14839	49963.9
31649.4	456	<2.5	8.1	14839	50030.7
31651.9	6	<1.6	22	14839	50277.5
31695.5	7	<1.2	12.2	15638	50438.8
31697.7	56	10.3	12.3	14839	49945.6
31698.8	56	<3	6.3	14839	49946.1
31712.2	6	3.1	14.1	14839	50069.2
31747.0	6	<1.5	9.2	14839	50079.6
31748.4	6	37.9	8.5	14839	50015.4
31785.8	5	7	<2.1	14643	50083.4
31797.8	6	<1.6	6.3	14643	50121.2
31821.7	6	2.9	5.5	14839	49957.4
31832.3	7	8.7	41.1	15638	50367.4
31837.9	4	3.4	4.9	15720	50145.7
31847.6	5	44.3	6.9	14839	49959.6
31853.8	456	4.6	10.9	15720	50227.7
31857.8	7	4.4	51	15638	50063.6
31868.8	6	37.5	15	14839	50079.4
31884.4	5	24.5	8.1	14839	50080.4
31915.3	5	9.1	24	14643	50148.4
31966.8	7	3.4	5	15638	49957.4
31988.8	5	4.6	9.2	14839	49972.3
31997.4	4		8		50092.5
32005.7	5	219	<4.6	14839	49945.3
32018.1	6	4.8	10	14643	49995.0
32019.9	7	5.2	28	14643	50123.6
32022.2	456	4.2	<4.7	14839	50032.9
32112.4	7	<1.3	53.4	15638	50124.0
32123.4	5	7.7	10.5	15720	49955.5
32135.6	67		5.6		50312.5
32136.0	4	<1.7		15720	
32192.5	4	9.4	<3.3	15720	50180.0
32194.0	6	2.6	4.8	15720	49961.9
32199.9	5	<1.8	5.5	15720	50165.4
32220.3	6	2.9	9.1	15638	49957.1
32238.0	4	4	15.6	15720	49972.6

Table 3-9 Measured cross-sections of the 2nd excited states of U

E ₂	, c	ross-section	x10 ⁻¹⁶ cm ²	E ₁	E ₃
cm^{-1}	J —	σ2	σ3	cm ⁻¹	cm ⁻¹
32257.1	5	4.1	5.5	15638	50121.1
32267.7	6	<1.5	12.3	15638	50187.1
32273.6	7	<1.7	21	15638	50090.4
32285.1	5		4.2		50042.7
32286.2	6	<1.6	5.6	15638	50066.0
32336.5	4	6.8	6.4	15720	49972.4
32340.1	7	<1.6	18.6	15638	50061.8
32343.4	5	0.97	5.6	15720	49979.5
32347.2	6	<1.9	8.6	15638	50058.6
32364.5	7	<1.5	4.6	15638	49956.7
32368.8	45	4.9	18.8	15720	50143.8
32427.1	4	<2.1	6.3	15720	50131.9
32430.4	6	<3.1	19.8	15638	50143.9
32445.1	6	<2	10.6	15720	50312.3
32472.0	7	22.2	8.4	15638	
32482.5	6	<1.18	10.9	15720	49961.5
32489.1	4	27.16	6.2	15720	50049.7
32503.5	5	17.34	9	15720	50426.1
32532.6	4	42.2	5.1	15720	50155.8
32534.1	6	<1.8	13.1	15638	50058.5
32541.8	5	4.37	<2.5	15638	49979.3
32545.9	7	10.3	11.1	15638	50367.0
32582.4	6	2.2	13.9	15638	50581.3
32583.2	4	<1.67	5.7	15720	50110.7
32584.4	5	3.58	14.8	15720	50143.8
32626.6	6	7.55	7.6	15720	50059.0
32638.7	5	9.59	12.5	15720	50148.0
32639.8	456	<1.92	7	15720	50008.7
32655.5	4	6.69	4.5	15720	50316.2
32660.7	5	2.35	8.6	15720	50043.3
32691.3	5	11.47	4.3	15720	51021.1
32696.2	6	<2.49	6	15720	49954.5
32734.7	6	3.5	9.4	15638	49989.7
32787.7	5	40.8	6.7	14643	49972.6
32789.7	7	3.6	5.6	15638	49990.2
32813.4	6	<2.6	<2.6	14643	50068.9
32831.1	5	55.8	3.9	14643	50028.6
32857.5	5	2257.2	5.6	14643	49972.5
32867.9	6	6.1	18	15638	50148.3
32873.2	45	<2.23	8.6	15720	50338.7
32885.6	5	102.5	4.3	14643	

Table 3-9 (Continued).

E ₂	7	cross-section	$1 \times 10^{-16} \text{cm}^2$	E ₁	E ₃
cm ⁻¹	J -	σ2	σ3	cm ⁻¹	cm ⁻¹
32896.5	5	28.3	12.6	15720	50148.2
32900.1	6		7.1		
32925.1	7	6.4	7.1	14643	49957.2
32929.6	5	<2.83	4.4	15720	50677.1
32962.0	5	4.38	4.2	15720	50940.4
32970.7	6	<1.2	4.2	14643	50738.0
32994.2	5	6.6	5	14643	50144.0
33009.9	6	7.5	8.9	14643	49961.4
33042.8	45	10.44	9	15720	50510.8
33045.9	5	11.8	4.2	14643	50058.3
33083.1	5	<9.2	8.1	14643	49945.1
33096.4	6	8	10.4	14643	50091.1
33119.0	7	7.3	4.6	14643	50123.6
33129.3	6	6.7	13.4	14643	49961.5
33173.2	6	16.9	8.1	14643	49961.4
33185.4	456	5.2	<5.7	14839	50063.9
33212.8	5	<2.4	7.4	14643	50066.1
33218.0	45		9.1		50049.8
33252.4	6	40.6	8	14643	
33264.2	6		20.8		50365.6
33275.1	5		<3.2		
33303.8	5	9.7	9.7	14643	50371.9
33304.3	7		8.4		50089.8
33314.0	5	<7.8	7.9	14643	49979.6
33323.1	6	<3.6	7	14839	50312.3
33337.8	45	7.9	7.5	14839	49972.3
33378.7	6	121.6	7.8	14643	50242.0
33406.4	7	<3.2	24.2	14643	49990.1
33421.1	6	354.7	4.5	14643	50123.6
33443.3	5	24.2	10.9	14839	50066.2
33444.9	4		6.8		50309.9
33475.0	6	17.3	13.5	14839	50072.0
33481.7	4	8.8	<4.6	14839	49972.5
33488.1	6	14.4	<3.6	14839	49996.2
33500.7	5	<1.37	<5.6	15638	49954.4
33516.9	6	<4.76	19.7	15638	50312.0
33549.7	7	9.68	22.2	15638	49957.4
33590.9	67	<1.61	14.2	15638	49961.8
33607.3	5	20.2	<7.6	15638	50065.6
33624.8	6	<4.42	<6.3	15638	50037.0
33720.6	5		<3.9		50066.2

Table 3-9 (Continued).

E ₂	T -	cross-sectior	$1 \times 10^{-16} \text{cm}^2$	E ₁	E ₃
cm^{-1}	<i>J</i> .	σ2	σ3	cm^{-1}	cm ⁻¹
33723.8	6		5.5		49955.8
33742.7	5	3.96	8.4	15638	49973.0
33752.0	6	<5.07	<3.5	15638	50022.7
33833.5	6	3.4	13	15638	50148.5
33853.3	5	73	15.7	17361	49972.7
33874.2	5	87	11.5	17361	49972.9
33907.2	6	12	17.5	18406	49961.5
33915.1	5	5.23	<5	15638	50016.1
33978.9	7	6.9	11.7	17361	50061.4
33984.6	6	38	17.2	17361	50079.3
34025.2	5	31.9	<5.3	17361	50032.6
34028.0	6	4.2	17.4	17361	49961.4
34071.2	5	60.7	<4.7	17361	50066.1
34086.7	5	144	15.8	17361	49972.6
34117.7	6	10.5	<3.2	17361	50123.6
34128.4	4567	7.4	<3.3	17361	49958.3
34160.5	6	22	31.4	16505	49961.5
34165.4	5	8.4	<3.1	17361	49946.0
34194.2	5	55.5	<3.8	17361	50077.3
34209.8	67	22.5	<4.6	17361	50089.6
34263.6	5	5.5	23.3	17361	50138.5
34277.3	5	26.6	<3.3	17361	49972.3
34292.9	6	30	9.9	17361	50142.2
34319.4	7	36.5	<7.5	17361	50071.9
34328.8	6	<11.3	<2.3	17361	49974.4
34341.7	5		<5.2		49972.5
34372.9	6	94.4	7.1	17361	49961.1
34376.5	5	17.9	16.6	17361	50066.1
34398.0	5	47.3	6.7	17361	50049.7
34418.1	7	22	27	17361	50090.0
34434.7	7	50	24	16505	49958.4
34461.5	5	31.1	4.7	17361	49972.3
34486.7	7	33	22	17361	50090.0
34508.2	6	6.9	<3.6	17361	50015.6
34523.4	6	3	5.7	17361	49934.2
34578.2	6		4		
34585.5	5	<2.6	3.6	17361	50032.8
34599.6	7	120	19	17361	50412.6
34622.2	6	34.8	9.8	17361	49961.2
34639.9	6	<1.25	14.8	17361	49979.4
34659.1	7	132	9.4	17361	50084.4

Table 3-9 (Continued).
E ₂	Ţ	cross-section	$n \times 10^{-16} cm^2$	E ₁	E ₃
cm ⁻¹	5	σ2	σ3	cm ⁻¹	cm ⁻¹
34705.2	5	4	<2.2	17361	
34718.0	6		4.4		
34746.2	6		4.7		
34764.9	4567		4.2		
34797.9	6		5.8		
34803.6	7		12.3		
34894.9	6	7	3.1	17361	
34905.1	7	19	3.9	17361	
34995.0	67	17	10	17361	
35036.8	6		2.1		
35123.8	6		11.4		
35148.5	6		3		
35193.8	6		3.1		
35223.3	6		2.3		
35242.1	5		8.7		
35291.3	5		1.4		
35316.2	5		5		
35504.7	5		1.2		
35614.6	6	18	3.7	17361	
35618.8	5	15		17361	
35620.8	. 7	18		17361	

Table 3-9 (Continued).

Lower le	vel	Upper lev	rel	σ3	Width	
E ₂	J_2	E ₃	J_3	$x10^{-16} cm^2$	GHz	
31832.3	7	50367.4	7	43	20.3	
32019.9	7	50123.6	7	45	3.7	
33096.4	6	50091.1	8	37	1.7	
33549.7	7	49957.4	7	53	2.5	
33853.3	5	49972.7	4	16	>14	
33984.6	6	50138.4	7	19	4.3	
34160.5	6	49961.5	7	.41	3.6	
34292.9	6	50581.6	7	22	3.8	
34418.1	7	50090.0	8	107	1.2	
34434.7	7	49958.4	8	45		
34486.7	7	50090.0	8	92	1.7	
34599.6	7	50084.5		58	1.6	
34599.6	7	50412.6	8	49	2.4	

Table 3-10 Measured ionization cross-sections of U using 1.2GHz bandwidth light .

Width: 自動電離幅の測定値

Transitio	n cm ⁻¹	gf-valu	e measur	ed in this	study		gf-valu	ie in lite	rature	
E ₀	E	SA	DIP	BR	OG	а	b	с	d	е
0 16	920.40	0.008	·		0.009					
16	923.38	0.003			0.003					
17	227.97	0.013		0.016	0.010					
17	380.82	0.013		0.013	0.018	0.01	0.023	0.018	0.0093	0.017
17	617.77	0.003			0.002					
17	749.98	0.053		0.056	0.062	0.03	0.109			
17	795.27	0.091		0.110	0.086	0.054	0.146			
215 16	5920.40	0.011			0.011					
16	5923.38	0.009			0.010					
17	380.82	0.011		0.011	0.015	0.012	0.019			•
17	617.77	0.017		0.014	0.021	0.012				
17	749.98	0.069	0.060	0.053	0.075	0.028	0.066	0.084		
17	795.27	0.003	0.010		0.005	0.006				
17	7930.52		0.170	0.160	0.160	0.076	0.184			
17	7973.61		0.031	0.043	0.043	0.019	0.068			
533 17	7617.77			0.013						
17	795.27			0.068		0.073	0.112	0.126		
17	7930.52			0.036		0.027	0.066			
17	7973.61			0.012			0.026			
18	3083.64			0.200		0.12	0.278			
999 17	7930.52			0.046		0.036	0.084	0.082		
18	3070.26			0.110		0.095	0.28	0.209		
18	8083.64			0.088		0.073	0.214			
18	3509.20			0.032		0.018	0.096			
1719_18	3070.26			0.320		0.17	0.364			

Table 3-11Oscillator strength measured with various technique.(preliminal experiment of Gd)

SA 飽和法 DIP 逆飽和法 BR 分岐比法 OG 光ガルバノ法の飽和

^a Corliss *et al* (1962)¹¹⁾.

^b Komarovski *et al* (1992)¹²⁾.

^c Nishimura *et al* (1994)¹³⁾.

^d Adachi *et al* (1990)⁴⁵⁾.

^e Haynam *et al* (1993)²⁾.

第4章 最適電離スキームの評価

本章ではこれまでに得られた分光データを基に、多段階共鳴電離スキームの電離効率や同 位体選択性を評価し、レーザー同位体分離のための最適電離スキームを選定する方法と、そ れに基づく評価結果をまとめる。多段階光電離過程では、エネルギー準位の選択に多くの任 意性があるが、その効率化のためには、電離効率の高い電離スキームを選びだすことが重要 である。多段階光電離過程にはレーザーのパルス長、タイミング、光強度、波長のデチュー ニングなど、様々な照射条件が関係するが、これらの効果を全て考慮してシミュレーション を行い、最適化を図ることは、計算に莫大な時間を要することになり実用的ではない。また、 位相効果が顕著に現れる体系では、僅かな条件の違いによりイオン化効率が様々に変化して しまい、最適スキームの選択は困難である。

そこで第4.1節では、多段階電離遷移を1段階遷移に簡略化してレート方程式を解くこと により、スキームのイオン化効率の指標として利用できる「スキーム断面積」を計算する独 自の方法を考案した。一般に多段階スキームの電離効率は各段階のレーザー光強度などの照 射条件によって変化するため、1段階遷移の振動子強度のような、原子固有の物理量とはな らない。しかし本研究により、様々な光強度比の中にスキーム断面積を最大にする最適強度 比が存在し、その強度比や断面積の最大値が実験条件によらないため、スキームの潜在的な 電離能力を表すことが分かった。また2段階電離遷移のスキーム断面積を実測して本方法の 適用性を確認した。第4.2節では、この結果を基に、ウラン、ガドリニウムの多くのスキー ムのスキーム断面積を計算し、電離効率の高いスキームを選び出した。

レーザー同位体分離のための最適スキームの選び出しでは、電離効率だけでなく、同位体 の選択性が重要になる場合も多い。特にウランに比べて同位体シフトが小さいガドリニウム のレーザー同位体分離では、高い選択性が不可欠である。このような多段階スキームの同位 体選択性を評価する簡便な方法は Letokhov らが考案している。そこで第4.3 節では、第2章 の同位体シフトのデータと Letokhov らの方法に基づき、選択性の高いスキームの選び出し を行った。

4.1 スキーム断面積による電離効率の簡易評価方法

4.1.1 目的と概要

レーザー同位体分離では、多段階電離スキームの情報が重要であり^{1),2)}、原子を効率よく 電離できるスキームを選び出す研究が行われている³⁾⁻⁹⁾。

1波長1段階遷移では、遷移確率の大小は振動子強度や吸収断面積により簡単に比較する 事ができる。しかし複数の波長の光が関与する多波長多段階遷移の場合には、光強度などの 条件によってスキーム全体の遷移確率が変化するため、観測条件によらない原子固有の物理 量としてその断面積を定義することが出来ないという問題がある。このため電離効率の高い スキームを多くのスキームの中から選定したり、その最適照射条件の算出したりするための 最適化計算が必要となる。

一般に、多段階光電離のダイナミクスは密度行列式で量子力学的に記述される¹⁰。しかし これを最適化計算に用いると、様々な光照射条件の下で電離効率計算を繰り返す、複雑な数 値計算が必要となる。レーザー同位体分離の実際のプロセスでは、電離によるイオンの引き 抜き速度が速く、レーザーの発振幅や原子の吸収幅も広いと考えられる。この様な場合、コ ヒーレントな情報は失われるため、密度行列式の非対角成分を無視し位相によらない成分だ けを残すレート方程式近似が比較的良く成り立つものと考えられる¹⁰⁻¹³。

そこで、本節ではレート方程式により最適化計算を簡単化する方法を検討した。多段階遷移を等価な1段階遷移に簡略化する手法を用いて、スキームの潜在的な電離能力の目安となるスキーム断面積を導出するとともに、最適な光子フラックス比を計算できる方法を考案した。以下ではこの評価計算方法とその近似精度についてまとめるとともに、用いた近似が実際の系でも成り立つことを確かめるために行ったウラン原子の2段階スキーム断面積の測定実験について述べる。

4.1.2 多段階電離効率の評価方法の理論的検討

(1) 最適化計算

図 4-1 に示す K+1 個の準位からなる多段階電離スキームで、同時に全ての励起段の光が 照射された場合を考える。但しnは光子フラックス、Nは占有数、σは断面積、Wは遷移確 率、IP はイオン化ポテンシャルを表し、これより上方にある最終準位 N_kは自動電離準位と する。1~K-1 段では光吸収と同時に誘導放出を考えるが、電離段(K 段)は自動電離速度が通 常、光励起速度より十分早いため誘導放出(下向き矢印)を無視する。また自然崩壊や衝突 等による脱励起も光反応時間や励起速度に比べて十分遅いものとして無視する。レーザーパ ルス強度は時間的、空間的に一定とする。また準位の縮退はないものとし、励起速度と誘導 放出速度は共に W_mで表す。但し、縮退がある場合でも各副準位の電離スキームが独立な場 合はモデルの拡張は容易である。図 4-1 (a)に示すスキームのレート方程式は次のように書け る。

(4.1)

$$\frac{dN_{k}}{dt} = W_{k}N_{k}$$

$$\frac{dN_{k-1}}{dt} = W_{k-1}(N_{k-2} - N_{k-1}) - W_{k}N_{k}$$
....
$$\frac{dN_{1}}{dt} = W_{1}(N_{0} - N_{1}) - W_{2}(N_{1} - N_{2})$$

$$\frac{dN_{0}}{dt} = -W_{1}(N_{0} - N_{1})$$

但し

 Nm
 :
 レベル占有数 (m=0~K)

 Wm
 :
 励起(電離)速度 (m=1~K)

$$W_m = \int n_m (v - v_L) \sigma_m (v - v_A) dv$$

 $n_m(\nu - \nu_L)$: 光子フラックスプロファイル $\sigma_m(\nu - \nu_L)$: 遷移断面積プロファイル

ここでは最適条件の近似計算を行うので、各励起段の励起速度が早い場合を考える。すると、 始状態の原子は、照射開始直後の短い過渡的状態ののち、途中の中間準位にほとんど滞留す ることなく一定のスピードで電離するようになる。そこで全ての中間準位の占有数が時間的 に一定とみなし、

$$\frac{dN_m}{dt} = 0 \quad (m = 0 \sim \text{K-1}) \tag{4.2}$$

の近似が良い近似となる。この近似精度は次節で検討する。このような準定常状態の電離ダ イナミクスは2準位系のそれと等価である。そこで(4.1)(4.2)式より、K-1次元の連立方程式 を解くと、等価な1段階励起過程(図4-1(b))のレート方程式が次のように導ける。

$$\frac{dN_k}{dt} = W_{eff} N_t$$

$$\frac{dN_i}{dt} = -W_{eff} N_t$$
(4.3)

但しWeffはスキーム全体の実効励起速度を表し次のように書ける。

$$\frac{1}{W_{eff}} = \sum_{m=1}^{k} \frac{m}{W_{m}}$$
(4.4)

これが(4.1)式の多段階過程と、(4.3)式の等価な1段階過程を結ぶ関係式となる。

FIGURE 4-1 Simplified photoionization scheme

励起速度は一般に光強度プロファイルと光吸収断面積プロファイルの畳み込み積分で表されるが、この形状関数の畳み込み部分を断面積に含めて実効断面積とすれば、断面積と光強度の積で表すことが出来る¹²⁾。そこで(4.4)式を $W_m = n_m \sigma_m$ によって書き直すと次式となる。

$$\frac{1}{n\sigma_s} = \sum_{m=1}^k \frac{m}{n_m \sigma_m} \tag{4.5}$$

但し全光子フラックスを $n= \sum n_m$ とした。ここで σ_s をスキーム断面積と呼ぶ。これは多段階 電離スキームの1段階スキームと見なした場合の電離断面積に相当する、面積の次元を持つ 量である。(4.5)式を光子フラックス比 ϕ_m を使って σ_s について解くと次のようになる。

$$\sigma_s = \frac{1}{\sum_m \phi_m} \frac{1}{\sum_{m=1}^k \frac{m}{\phi_m \sigma_m}}$$

 $n_1:n_2:\cdots:n_k=\phi_1:\phi_2:\cdots:\phi_k \qquad (\phi_1=1)$

この式はスキーム断面積の大きさが光子フラックスの絶対値 n_m ではなくその比 ϕ_m によって変わる事を示している。 σ_s は ϕ_m によって0以上の任意の値をとるが、とりうる値には上限値 σ_{opt} が存在する。この σ_{opt} と、 σ_{opt} を与える ϕ_m の最適値は次の極値条件から導ける。

 $\frac{\partial \sigma_s}{\partial \phi_s} = 0$

(4.7)

(4.8)

(4.6)(4.7)式から、フラックス比の最適値とスキーム断面積の最大値 σ_{opt} はそれぞれ次のようになる。

$$\sigma_{opt} = \frac{1}{\left(\sum_{m=1}^{k} \sqrt{\frac{m}{\sigma_m}}\right)^2}$$
$$n_1 : n_2 : \dots : n_k = \sqrt{\frac{1}{\sigma_1}} : \sqrt{\frac{2}{\sigma_2}} : \dots : \sqrt{\frac{k}{\sigma_k}}$$

この σ_{opt} はその多段階スキームで達成しうる最大電離効率を表すためスキームの潜在的な 電離能力の指標となる。これらの式から分かることは、まず第1に、全ての断面積が等しい 場合でも、効率よく電離するためには上の準位ほど強い光が必要であり、1: $\sqrt{2}$:....: \sqrt{K} が最 適比になることである。2点目は σ_{opt} がどの一段階遷移の断面積 σ_{m} よりも小さくなり、次 の関係を満たす事である。

$$\sigma_{opt} \leq \frac{\sigma_{m}}{m}$$

(4.9)

3点目は(4.6)式や(4.8)式が、任意のステップ数のスキームを1段階スキームに置き換えるため、ステップ数の異なるスキーム同士でも電離効率の比較が容易なことである。これら(4.6) ~(4.9)式の特徴から、本方法は多段階電離スキームの電離効率の計算方法としてだけでなく、 光照射条件の効率の関係を理解する上でも有用と思われる。

(2) 近似精度の確認

(4.2)式の近似精度を電離率の時間変化曲線によって検証する。はじめに最も簡単な2段階 過程について考える。(4.1), (4.3)式を初期条件 $N_0(0)=N$, $N_1(0)=N_2(0)=0$ のもとで、電離率 N_2/N について解くと次式が得られる。ただし2段階の励起速度の比を $\theta = W_2/W_1$ で表す。

 $N_2/N = 1 + C_1 \exp(C_3 x) + C_2 \exp(C_4 x)$

(4.1)' (4.3)'

N₂/N=1-exp(-x) 但し X=Wefft

$$X = W_{eff}t$$

$$C_1(\theta) = a_2/(a_1-a_2)$$

 $C_{2}(\theta) = a_{1}/(a_{2}-a_{1})$ $C_{3}(\theta) = (1+2/\theta)a_{1}$ $C_{4}(\theta) = (1+2/\theta)a_{2}$

$$a_{1,2} = \frac{-(2+\theta)\pm\sqrt{4+\theta_2}}{2}$$

 $C_i(4/\theta) = C_i(\theta)$ (i=1~4)

係数 $C_1(\theta) \sim C_4(\theta)$ には次の関係が成り立つ。

(4.10)

従って全ての係数は $\theta = 2$ を中心として $\theta \ge 4/\theta$ で同じ値をとる。 $\theta \to 0$ の場合、係数の値 は C₁(0)=-1, C₂(0)=0, C₃(0)=-1, C₄(0)=-∞となり、(4.1)'式は(4.3)'式に漸近する。係数の θ に関 する対称性から $\theta \to \infty$ の場合も同じ事が成り立つ。従って(4.1)'式で表される2段階スキーム の電離率の時間変化曲線は、励起速度比 W₁:W₂が 1:2 の時に(4.3)'式の1段階スキームの曲線 との差が最も大きく、W₁>>W₂や W₁<<W₂の時には1段階曲線に漸近するという特徴を持つ ことが判る。よって(4-2)式の近似は $\theta = 2$ の時に最大誤差を生じる。最適化計算では光強度と イオン信号が線形な領域よりも、イオン信号が飽和する領域での電離率曲線の振舞いに興味 がある。そこで、飽和点(X=1)で $\theta = 2$ の時の電離率を計算し比較すると

 $N_2/N = 1-1.207 \exp(-1.172) + 0.207 \exp(-6.828) = 0.626$ (4.1)'

 $N_2/N = 1 - \exp(-1) = 0.632$

(4.3)'

となり、飽和点での近似誤差は約1%程度であることが判る。

FIGURE 4-2 Three-step rate equation vs equivalent single-step rate equation

同じ方法は3段階以上の多段階電離スキームにも適用できるが、励起速度比のパラメータが 増え、最大誤差を与える $\theta_m = W_m/W_1$ が解析的に求められない。しかし様々な θ_m の組合せで (4.1),(4.3)式の曲線を比べると、曲線の存在範囲は2段階の場合と同様で、飽和点付近の差が 最も小さいことがわかった。その結果を図 4-2(上)に示す。光照射条件を様々に変化させても 2本の曲線の差は、この図の2本の曲線で挟まれた範囲から外れることはない。図 4-2(下) は(4.1)式の3段階レート方程式による各励起段の占有数の時間変化を示したものである。光 照射開始直後の短い過渡的状態では各中間準位に原子が滞留するが、その後は基底状態の原 子は中間準位に滞留することなくイオン化する。滞留を無視した等価1段階スキームの近似 が、図 4-2(上)の曲線の立ち上がり部分で悪いのは止むを得ないが、どんな強度比でも、差は この2本の曲線の囲む範囲を超えないことから、本近似は広い光強度範囲で有効と考えられ る。

4.1.3 2段階スキーム断面積の測定実験

(1) 測定方法

測定には、ウランの 17361cm⁻¹ にある第1励起状態を始状態とする 17361.9→ 34659.1→ 50412.6cm⁻¹の2段階共鳴イオン化スキームを用いた。

まず基底状態の原子を飽和の数倍の光強度で 17361.9cm⁻¹ 準位に励起した。この λ_1 パルス 光の照射が完全に終わった後、約 10nsec 遅延させて λ_2, λ_3 のパルスを同時に照射した。 17361.9cm⁻¹ 準位の寿命は 485nsec なので、 λ_2, λ_3 のパルス持続時間に比べて安定状態と見 なせる。このため 17361cm⁻¹ 状態の原子の λ_2, λ_3 による 2 段階電離スキームの断面積が測定 できる。

測定では、まず λ_2 , λ_3 の強度をそれぞれの光軸に設置した連続可変減衰器で調整し、強度 比 λ_2 : λ_3 を一定値にした。次に、2色性ミラーで2つの光を結合した光をもう1台の可変減 衰器に通し、全光強度 λ_2 + λ_3 を変化させた。この全強度に対するイオン信号の飽和曲線か ら2段階電離遷移の断面積を測定した。結合ビームは反応領域の直前でアイリスに通し、空 間分布の均一な部分(直径約 3mm)だけを原子に照射した。強度比を変えて飽和曲線を測定 することにより、スキーム断面積の最大値と最適フラックス比を求めた。

(2) 結果と議論

測定は計算上の最適フラックス比である 1:5 のほか 1:3, 1:8, 1:10, 1:20, 1:30, 1:40, 1:50 の強 度比で、強度比を一定に保ち、トータルフルエンスを変化させることで行った。測定した 2 段階スキームのイオン量の飽和曲線のうち、最適比 1:5 の場合(●)と、1:50 の場合(○) の例を図 4-3 に示す。実線は第2励起遷移と電離遷移の断面積から計算した等価 1 段階スキ ームの飽和曲線である。図の縦軸は実測値を 1-exp(n σ)で最小二乗近似して、n が∞の時の 値が 100%となるように選んだ。

これらの飽和曲線から得たスキーム断面積と光子フラックス比の関係を図 4-4 に黒丸で示 す。実線は評価式から予想される曲線である。予想曲線と実測値は良く一致している。図よ りスキーム断面積の最大値は 3.85x10⁻¹⁶cm²程度、最大値を与える光子フラックス比は 1:5 程 度と求められる。この光子フラックス比は 2 段階遷移の断面積比(14:1)から予想される値 とほぼ一致している。

FIGURE 4-4 Plot of scheme cross-section vs photon flux ratio.

本評価法で用いたレート方程式では寿命や偏光の効果は考慮されていないが、その影響は 小さいと考えられる。まず、寿命を含む2段階レート方程式に、測定したスキームの第1、 第2励起状態の寿命485 nsecと26 nsecを代入して数値計算すると、寿命による信号の低下 は数%であり、飽和曲線の形状変化も小さいことが分かった。これは中間準位での滞留が少 ないため、その準位から自発崩壊する原子も少ないためと考えられる。

また偏光による多段階励起では、第3章でも述べたように偏光状態の組み合わせとスキー ムのJ値の組み合わせが電離効率に影響を与える。磁気副準位毎の遷移強度が異なり、各遷 移の飽和が不均一に起こるためである。今回のスキームではJ値は $6 \rightarrow 7 \rightarrow 8$ と変化し、 λ_2 と λ_3 の偏光状態は平行直線偏光とした。このような偏光の組み合わせでは、異なる副準位 の原子は独立に励起、電離するため、その励起ダイナミクスは(4.1)式が、副準位毎に独立に 起こるようモデルを拡張する事で評価できる。即ち、各副準位毎に(4.6)式の σ_s が得られ、 全体の断面積はその平均値

$$\sigma_s = \frac{\sum_{m=-J}^{J} \sigma_s^m}{2J+1}$$

(4.11)

で与えられる。但し、J は多段階遷移の始状態のJ 値である。この方法で今回のスキームの 副準位間遷移を評価すると、副準位の有無によるスキーム断面積の差も小さい事がわかった。

以上から多段階スキーム全体の電離効率を決める主なパラメータが光子フラックス比で あること、(4.8)式を用いればその最適比まで計算できること、また(4.8)式の σ_{opt} はスキーム の潜在的な電離能力を表す指標として利用できることなどが分かった。

以上の検証によって、評価式による予想は測定値と良く一致することが示され、スキーム 断面積の考え方が実際の系において成立することが確認できた。 前節の検討により、3段階電離スキームの潜在的な電離能力は次式を用いて評価できるこ とが分かった。そこで第3章の断面積測定値を基に、ガドリニウムでは約400個、ウランで は約200個の電離スキームについて、次式によりスキーム断面積を計算し、イオン化効率の 高いスキームを選び出した。

 $\sigma_s = \frac{1}{\left(\sqrt{\frac{1}{\sigma_1}} + \sqrt{\frac{2}{\sigma_2}} + \sqrt{\frac{3}{\sigma_3}}\right)^2}$

(4.12)

ガドリニウム、ウランそれぞれの結果を表4-1、表4-2に示す。表4-1でアスタリスクを付 けたスキームは、J値の変化が下準位から順にJ=2→1(2)→1→0 となるため、偏光選択則に 基づくレーザー同位体分離に利用できるスキームである。また表4-2ではウランの基底状態 からのスキームのみを示している。全ての断面積は10⁻¹⁶cm²単位である。ガドリニウムの第 1段目の遷移断面積には、振動子強度から(3.20)式により求めた線幅6GHzのピーク断面積を 用いた。振動子強度には、第3.1節で分岐比を測定した遷移については表3-5の値、その他の 遷移については表3-11の測定値、またはCorliss¹⁴⁾の文献値を利用した。また、ウランの第1 励起遷移の断面積はPalmer¹⁵⁾の振動子強度から求めた。表に示したのは評価したスキームの うち、スキーム断面積が約1.5x10⁻¹⁶ cm²より大きいスキームである。これらのスキームの中 には、電離幅がレーザーの発振幅(約6GHz)より狭く、発振幅の狭いレーザーを用いるこ とで、断面積のピーク値がさらに大きくなるものも多い。実際にウランでは、選ばれた幾つ かのスキームの電離断面積を発振幅1.2GHzの光で測定している(第3章 表3-10)。そこで3 段全ての光が発振幅1.2GHzの場合のスキーム断面積を評価し、結果を表4-3に示した。表4-2 と比べると、50090cm⁻¹のように電離幅の狭い電離準位を使うスキームの電離効率は、発振幅 の逆数で増加し、49972cm⁻¹のように幅の広い電離準位が関与するスキームと順位が逆転して いる。この事から電離効率の高い電離スキームを効率よく探すには、電離幅の狭い電離準位 を探すことが重要であることがわかる。

スキーム断面積による評価方法では、スキーム断面積を最大にする光子フラックス比も計算できる。表4-4にウランのスキームで計算した最適光子フラックス比を示す。いずれも電離光のフラックス比が大きい。この比が極端に大きいと、レーザー装置等の負担が増えて問題となるが、表のスキームはいずれも4倍以内であり実用上問題はないと思われる。また同様の方法でガドリニウムの533->18083->34811->50052スキームの最適強度比を求めると、 n:m:n=1:4.5:1.4となり、電離遷移よりも第2励起遷移の方が律速になることが分かる。

電離スキームの電離率とトータル光子フラックスの関係は(4.3)'式から評価できる。例えば、基底準位の原子の95%をイオン化するのに必要な光子フルエンス(1パルス当たりの単位面積を通過する光子数)は0.95=1-exp(-3)より

$$\sum_{m=1}^{k} n_m t = \frac{3}{\sigma_s}$$

で与えられ、その値は表 4-4 のようになる。これに波長 600nm の光子エネルギーを掛ける と、95%のイオン化に要する全段のレーザーパワーの合計は、低いもので約 1.2mJ/cm²とな る。これは実機で想定されるトータルパワー(数 mJ/cm²程度)と比較して、様々な効率の 低下要因を考慮しても、十分高い電離効率であると考えられる。 4.3 分離効率による選択

4.3.1 目的と概要

前節ではスキームの電離効率に注目して最適スキームの候補を選んだ。しかし、レーザー 同位体分離ではスキームの同位体選択性も重要な選択基準となる。同位体選択性に関係する 光物性値はいくつかあり、例えば、偏光と全角運動量、核スピン、核磁気モーメントの関係 で決まる選択性はガドリニウムのレーザー同位体分離で重要である。また、超微細構造の拡 がりも同位体選択性を低下させる要因となるため重要である。しかし、本節では同位体シフ トのみを考慮して、Letokhov¹⁶⁾らの同位体選択性の指標と第2章の同位体シフトのデータを 基に、スキームの同位体選択性を評価する。本節で選ばれた有望なスキームについて、超微 細構造を測定することにより、選択性の高いスキームが選び出せると思われる。

4.3.2 選択性評価指標

2つの同位体の共鳴ピークのうち一方のピークに波長を完全に共鳴させた場合、もう一方 の同位体の共鳴位置におけるレーザー強度は、レーザーの発振プロファイルから知ることが できる。選択性の高いスキームを扱うので、同位体シフトがレーザーの発振幅よりずっと大 きい場合を考える。この場合、共鳴中心からのデチューニングが大きいので、プロファイル はローレンツ型を仮定する。すると、共鳴位置と、そこから同位体シフト分だけ離れた位置 の強度比は

 $S_i = \left(\frac{2 \cdot IS}{\Delta_{FWHM}}\right)^2 \tag{4.13}$

となる。Letokhov¹⁶⁾らはこれを光学的な同位体選択性と定義している。ここで IS は同位体シ フト、 Δ_{FWHM} はレーザーの発振幅やドップラー幅、超微細構造幅を含むスペクトル幅の合計 値(FWHM)である。但し、この式は同位体シフトがレーザーの発振幅より十分広いことを仮 定しており、シフト量が小さい場合は IS を $\sqrt{IS^2 + (\Delta_{FWHM}/2)^2}$ に置き換える必要がある。

多段階励起の場合のスキーム全体としての選択性は、S_iが1段当たりの選択性を与えるため、その積で表すことができ、3段階スキームの場合は次式となる。

 $S = S_1 \cdot S_2 \cdot S_3 \tag{4.14}$

このSを使うと、初めの同位体比が1:1の場合、同位体分離により励起される原子の同位体 比は1:Sとなり、着目同位体の初期存在比とSの積が、分離後の濃縮度となる。

4.3.3 着目同位体と評価結果

ウランでは天然ウランを濃縮する場合、235と238の同位体比が重要であるが、この質量数 差は3と大きく同位体シフトも大きいため、通常の3段階スキームで分離能力が問題になる ことは少ない。一方、使用済み燃料を再処理して得られた回収ウランを再濃縮する場合には、 ²³⁵Uとの質量差が1しかない²³⁶Uが回収ウラン中に0.5%程度存在し、これが高い中性子吸収 断面積を持ち反応度を低下させるため、これを取り除く分離能力が必要とされる。第2章で 得られた同位体シフトは235-238の差で、その大きさは様々であるが、リング色素レーザーに よる精密分光によれば、各同位体毎のシフト量の比(相対同位体シフト)は 238-236: 238-235: 238-234= 1: 1.66(2): 2.00(1)

で、1%程度の誤差で一定であることが明らかになっており¹⁷⁾、238-235の同位体シフトを (1.66-1)/1.66=0.40倍することで、236-235の同位体シフトが求まる。そこで、ウランの同位体 選択性については、この236-235の同位体シフトを基に評価した。評価は4.2節で電離効率が 比較的高かったスキームに対して行った。結果を表4-5に示す。なお、選択性の値はレーザー の発振幅が1.2GHzの場合の値である。上位のスキームでは²³⁶Uを5桁近く減らすことが可能で ある。

一方、ガドリニウムの場合は、¹⁵²Gdと¹⁵⁷Gdが有用である。選択性評価に必要な154-152, 157-156の同位体シフトは第2章の方法と同様に、160-154の同位体比に0.89,0.069を乗じるこ とで求められる。ここでは、154-152の同位体シフトから選んだ選択性の高いスキームを表4-6 に示す。表には参考のため電離効率の特に高い34811,34624cm⁻¹準位を経由するスキームも 加えた。これより、¹⁵²Gdでは十分選択性の高いスキームが存在することがわかった。一方、 157-156の同位体シフトは154-152より1桁小さいので、同程度の選択性を得るには、レーザ ーの発振幅を10分の1(120MHz)まで狭める必要がある。従って、同位体シフトを利用して ¹⁵⁷Gdを分離するには、超微細構造幅も120MHz以下の遷移が必要である。

4.3.4 選定したスキームの同位体選択性の確認

本研究では、パルスレーザーによる共鳴イオン化分光法で得られた分光データを基に、ウラン、ガ ドリニウムの最適スキームの候補を選んだ。しかし、パルスレーザーは発振幅が広いため、同位体選 択性に影響する超微細構造の物性が考慮されていない。従って、選ばれたスキームが超微細構造を持 つ同位体の共鳴イオン化においても、評価通りの電離効率、同位体選択性を持つかどうかを確認する 必要がある。図4-5は、選ばれたスキームの1つに、3段の波長を全て²³⁵Uの共鳴線に合わせ、約95% の電離率になるような光照射条件で飛行時間波形を観測したものである。このスキームでは、スキー ム断面積による飽和パラメータS=3(95%電離)の照射条件で、238信号は235の数10分の1以下、濃縮度 95%以上が得られることが確かめられた。

FIGURE 4-5 Typical TOF signal of U with optimal 3step RIMS scheme.

また図4-6は、偏光選択則による分離が可能なガドリニウムの高効率分離スキームにより、偶同位

体のイオン化を抑制したTOF信号の例であり、同様に高い分離度が得られることが確認できた。

FIGURE 4-6 Typical TOF signal of Gd with optimal 3step RIMS scheme.

本研究の目的は、純粋に分光データだけに基づいて電離効率、分離効率の高いスキームを選び出す ことであるが、工学試験へのスケールアップでは、装置の仕様や運転条件による制約(例えば、色素 レーザーの変換効率の高い波長領域や発振バンド幅)などを考慮して最終的に最適スキームが選定さ れる。このため、本研究で選定した幾つかのスキームは、日本原子力研究所やレーザー濃縮技術研究 組合で実施された工学試験に供されている。これらの試験の中でも、本研究により選定したスキーム が評価通りの特性を示すことが確認されている。 第4章では多段階共鳴電離スキームの電離効率や同位体選択性を評価し、レーザー同位体 分離のための最適電離スキームを選びだす方法と、それに基づく評価結果をまとめた。

第4.1節では、多段階電離遷移を等価な1段階遷移に簡略化する方法により、スキームの イオン化効率の指標となる「スキーム断面積」を計算する方法を考案した。様々な光強度比 の中にスキーム断面積を最大にする最適強度比が存在し、その最大値や最適強度比が実験条 件によらないため、スキームの潜在的な電離能力を表すことが分かった。また2段階電離ス キームのスキーム断面積を実測することにより本方法の適用性を確認した。

第4.2節では、この評価方法により、ウラン、ガドリニウムの多くのスキームのスキーム 断面積を計算し、電離効率の高いスキームを選び出したほか、その最適な光強度比を求めた。 電離幅の狭いスキームではレーザー線幅に逆比例して電離効率が向上することから、電離幅 の狭い電離準位の重要性が明らかになった。選定されたスキームの電離効率はレーザー同位 体分離で必要とされる効率を十分上回ることが分かった。

第4.3節では、第2章の同位体シフトのデータと Letokhov らが考案した多段階スキームの 同位体選択性を評価する方法に基づき、分離効率の高いスキームの選び出しを行った。選定 されたウランの電離スキームは、回収ウランの再濃縮で問題となる U236 も分離、除去でき る高い同位体選択性を有することが分かった。

以上の結果、ウランやガドリニウムのレーザー同位体分離に適した電離スキームの候補を 選び出すことができた。

参考文献

- 1) Scheeline A: Spectrochim. Acta 43B (1988) 15.
- 2) Boumans P W J M: Spectrochim. Acta 43B (1988) 5.
- 3) Hui Q, Chen D Y, Niu J G, Cheng Y, Xu X Y and Zhao W Z: Resonance ionization spectroscopy 1990 :Inst. Phys. Conf. Ser. 114 (1990)297.
- Ruster W, Ames F, Kluge H –J, Otten E –W, Rehklau D, Scheerer F, Herrmann G, Muhleck C, Riegel J, Rimke L H, Sattelberger P and Trautmann N: *Nucl. Inst. Meth. Phys. Res.* A281 (1989) 547.
- 5) Saloman E B: Spectrochim. Acta 45B (1990) 37.
- 6) Saloman E B: Spectrochim. Acta 46B (1991) 319.
- 7) Saloman E B: Spectrochim. Acta 47B (1992) 517.
- 8) Saloman E B: Spectrochim. Acta 49B (1994) 251.
- 9) Fedoseev V N, Mishin V I, Vedeneev D S and Zuzikov A D: J. Phys. B: At. Mol. Phys. 24 (1991) 1575.
- 10) Shore B W: The Theory of Coherent Atomic Excitation (Wiley and Sons, 1990).
- 11) Wilcox L R and Lamb Jr. W E: Phys. Rev. 119 (1960) 1915.
- 12) Singhal R P, Adrian P, Ledingham K W D and Towrie M: J. Anal. Atom. Spectr. 4 (1989) 599.
- 13) Paisner J A and Solarz R W: Applications of Laser Spectroscopy chapter 3 (Dekker 1990).
- 14) Corliss C H and Bozman W E: N.B.S. Monograph 53 (1962).
- 15) Palmer B A, Keller R A and Engleman R Jr.: An Atlas of Uranium Emission Intensities in a Hollow cathode Discharge LA-8251-MS (1980).
- 16) Letokhov V S and Mishin V I: Opt. Comm. 29 (1979) 168.
- 17) Oba M, Akaoka K, Miyabe M and Wakaida I: Eur. Phys. J. D21 (2000) 255.

Table 4-1 Efficient photoionization schemes of Gd

		level-ene	rgy cm ⁻¹			cro	ss-sectio	on 10 ⁻¹⁶ c	cm ²
rank —	Eo	Ei	E ₂	E ₃	-	σ_i	σ2	σ3	scheme
1	0.0	17380.8	34586.8	50624.7	*	73	31	82	3.2
2	0.0	17228.0	34601.7	49994.6		90	20	79	2.6
3	0.0	17380.8	34586.8	50029.5		73	31	40	2.4
4	0.0	17228.0	34586.8	50624.7	*	90	16	82	2.4
5.	0.0	17228.0	34601.7	49985.6		90	20	51	2.3
6	0.0	17380.8	34586.8	52135.3	*	73	31	32	2.2
7	0.0	17380.8	34697.8	52283.2		73	29	29	2.0
8	0.0	17228.0	34586.8	50029.5		90	16	40	1.9
9	0.0	17380.8	34697.8	52055.5		73	29	23	1.8
10	0.0	17228.0	34586.8	52135.3	*	90	16	32	1.7
1	215.1	17380.8	34586.8	50624.7	*	44	31	82	2.8
2	215.1	17380.8	34586.8	50029.5		44	31	40	2.2
3	215.1	16923.4	34697.8	52283.2		29	64	29	2.1
4	215.1	17380.8	34586.8	52135.3	*	44	31	32	2.0
5	215.1	16923.4	34697.8	52055.5		29	64	23	1.9
6	215.1	17380.8	34697.8	52283.2		44	29	29	1.8
7	215.1	16923.4	34697.8	52280.8		29	64	19	1.7
8	215.1	17380.8	34697.8	52055.5		44	29	23	1.7
9	215.1	17750.0	32572.7	49619.0		213	8	58	1.6
10	215.1	17750.0	32570.2	50781.0		213	27	15	1.6
1	533.0	18083.6	34811.8	50052.5		625	63	1030	13.5
2	533.0	18083.6	34811.8	50041.0		625	63	618	12.1
3	533.0	18083.6	34811.8	51104.1		625	63	42	4.2
4	533.0	18083.6	34754.9	49910.6		625	270	21	3.9
5	533.0	18083.6	34624.0	50052.7		625	11	902	3.7
6	533.0	18083.6	34811.8	50834.5		625	63	22	2.9
7	533.0	18083.6	34754.9	50699.7		625	270	12	2.6
8	533.0	18083.6	34811.8	51045.5		625	63	14	2.1
9	533.0	18083.6	34811.8	51819.6		625	63	14	2.1
10	533.0	18083.6	34624.0	49809.7		625	11	51	2.0
1	999.1	18070.3	34811.8	50052.5		282	65	1030	12.0
2	999.1	18083.6	34811.8	50052.5		225	63	1030	11.2
3	999.1	18070.3	34624.0	50052.7		282	60	902	11.2
4	999.1	18070.3	34811.8	50041.0		282	65	618	10.8
5	999.1	18083.6	34811.8	50041.0		225	63	618	10.1
6	999.1	18070.3	34754.9	49910.6		282	1280	21	4.3
7	999.1	18070.3	34624.0	49809.7		282	60	51	4.3
8	999.1	18070.3	34811.8	51104.1		282	65	42	3.9
	999.1	18083.0	34811.8	51104.1		225	03	42	3.8
10	999.1	18083.0	34734.9	49910.0		225	270	21	3.5
1	1719.1	18070.3	34811.8	50052.5		693	65	1030	14.0
2	1719.1	18070.3	34624.0	50052.7		693	60	902	13.0
3	1719.1	18070.3	34811.8	50041.0		693	65	618	12.5
4	1719.1	18070.3	54754.9	49910.6		693	1280	21	4.7
2	1719.1	18070.3	34624.0	49809.7		693	60	51	4.7
0	1/19.1	18070.3	24624.0	51104.l		693	00	42	4.3
/	17101	10070.3	24754 0	49810.9		693	100	4/	د.د
ð A	1719.1	18070 2	34/34.9 3/811 P	50824 #		073 602	1280	12	3.1
10	17101	18070.2	34911.0	51045 5		602	65	44	2.9
10	1/17.1	100/0.3	54011.0	31043.J		095	05	14	4.4

(Laser bandwidth: 6 GHz)

 σ_1 : 第3章で測定した電面積及び Corliss(1962)¹⁴⁾の gf 値から求めた断面積等

σ2σ3: 第3章で測定したピーク電面積

scheme: 計算したスキーム断面積

*: 偏光による同位体分離が可能なスキーム

E	Energy level	(cm ⁻		cros	s-section	n 10 ⁻¹⁶ c	m ²	
E ₁ J	1 E ₂	J_2	E ₃	$\overline{J_3}$	σι	σ2	σ3	scheme
17361.9	5 34599.6	7	50412.6	8	65	120	20	2.4
16505.8 6	5 34434.7	7	49958.4	8	43	50	24	2.0
17361.9	5 33853.3	5	49972.7	4	65	73	16	1.9
17361.9	5 34659.1	7	50421.8	8	65	132	13	1.8
15720.7 5	5 34086.7	5	49972.6	4	69	59	16	1.8
17361.9 6	5 34086.7	5	49972.6	4	65	144	12	1.8
16505.8 6	5 34160.5	6	49961.5	7	43	22	31	1.7
17361.9	5 34434.7	7	49958.4	8	65	23	24	1.7
16505.8 6	5 34659.1	7	50421.8	8	43	103	13	1.6
17361.9	5 33874.2	5	49972.9	4	65	87	12	1.6
14643.9	5 33378.7	6	50242.0		489	122	8	1.6
17361.9	5 34160.5	6	49961.5	7	65	15	31	1.6
14643.9	5 32857.5	5	49972.5	4	489	2257	6	1.5
15638.4 6	5 33874.2	5	49972.9	4	76	60	12	1.5
17361.9	5 33984.6	6	50138.4	7	65	38	14	1.5
16505.8	5 34486.7	7	50090.0	8	43	22	22	1.5
15720.7	5 33984.6	6	50079.3	7	69	24	17	1.5

 Table 4-2
 Efficient photoionization schemes of U

(Laser bandwidth = 6 GHz, from ground state)

σ₁: Palmer (1980)¹⁵⁾のgf値から求めたピーク電面積

σ2σ3: 第3章で測定したピーク電面積

scheme: 計算したスキーム断面積

Tal	ble 4	-3	Efficient	photoionization schemes	of	U	
-----	-------	----	-----------	-------------------------	----	---	--

	En	ergy level	(cm ⁻¹)		cros	s-section	n 10 ⁻¹⁶ 0	²	AI-width
Ei	J_1	E ₂	J_2	E ₃	J_3	σl	σ ₂	σ3	scheme	GHz
17361.9	6	34599.0	57	50412.6	8	323	600	49	7.7	2.4
16505.8	6	34486.2	77	50090.0	8	216	110	92	6.8	1.7
16505.8	6	34434.3	77	49958.4	8	216	250	45	5.8	
17361.9	6	34434.7	77	49958.4	8	323	115	45	5.1	
16505.8	6	34160.5	56	49961.5	7	216	110	41	4.5	3.6
16505.8	6	34599.0	57	50412.6	8	216	80	49	4.4	2.4
17361.9	6	34160.5	56	49961.5	7	323	75	41	4.2	3.6
15638.4	6	33549.3	77	49957.4	7	380	48	53	4.1	2.5
15720.7	5	34160.	56	49961.5	7	347	50	41	3.6	3.6
14643.9	6	33096.4	46	50091.1	8	2445	40	37	3.6	1.7
15638.4	6	31832.3	37	50367.4	7	380	44	43	3.6	20.3
17361.9	6	34292.9	9 6	50581.6	7	323	150	22	3.4	3.8
16505.8	6	34418.	17	50090.0	8	216	21	107	3.3	1.2
14643.9	6	32019.9	97	50123.6	7	2445	26	45	3.3	3.7
17361.9	6	33984.0	66	50138.4	7	323	190	19	3.2	4.3
15638.4	6	34160.:	56	49961.5	7	380	34	41	3.1	3.6
17361.9	6	33853.	3 5	49972.7	4	323	365	16	3.1	>14

(Laser bandwidth = 1.2 GHz, from ground state)

AI-width: 自動電離準位の電離上測定値

$\label{eq:Table 4-4} \quad \mbox{Optimum photon flux ratio for several best schema of } U$

(Laser bandwidth = 1.2 GHz)

Ener	gy level (cn	1 ⁻¹)	optimum	k ratio	total fluence	
E ₁	E ₂	E ₃	n ₁	n ₂	n 3	photon/cm ²
17361.9	34599.6	50412.6	1:	1.0 :	4.5	3.9E+15
16505.8	34486.7	50090.0	1:	2.0 :	2.7	4.4E+15
16505.8	34434.7	49958.4	1:	1.3 :	3.8	5.2E+15
17361.9	34434.7	49958.4	.1:	2.4 :	4.6	5.9E+15
16505.8	34160.5	49961.5	1:	2.0 :	4.0	6.7E+15
16505.8	34599.6	50412.6	1:	2.3 :	3.6	6.7E+15
17361.9	34160.5	49961.5	1:	2.9 :	4.9	7.2E+15

総フルエンスは95%の電離効率(飽和パラメータ 5-3)を得るのに必要な光子フルエンス

rank	Ener	gy level (cm	-1)	isotope	Selectivity		
	E ₁	E ₂	E ₃	IS ₁	IS ₂	IS ₃	S ₂₃₆₋₂₃₅
1	16505	34160.5	49961.5	212	-780	-535	1.7E+05
2	15638	34160.5	49961.5	204	-780	-535	1.5E+05
3	18406	34160.5	49961.5	-273	-780	-535	7.2E+04
4	15720	34160.5	49961.5	-266	-780	-535	7.1E+04
5	15638	32267.7	50187.1	204	-285	-610	6.6E+04
6	14643	33129.3	49961.5	-460	-230	-535	6.6E+04
7	16505	34418.1	50090.0	212	-530	-725	6.1E+04
8	15638	32273.6	50090.4	204	-520	-725	5.9E+04
9	16505	34486.7	50090.0	212	-545	-725	5.3E+04
10	16505	34659.1	50421.8	212	-520	-705	5.2E+04
11	17361	34160.5	49961.5	-198	-780	-535	5.0E+04
12	15638	32019.9	50123.6	204	-505	-630	2.1E+04
13	16505	34434.7	49958.4	212	-485	-600	1.8E+04
14	17361	34418.1	50090.0	-198	-530	-725	1.1E+04
15	17361	34486.7	50090.0	-198	-545	-725	9.8E+03
16	17361	34659.1	50421.8	-198	-520	-705	8.8E+03
17	16505	34599.6	50412.6	212	-495	-570	8.0E+03
18	15638	32112.4	50124.0	204	-570	-630	5.7E+03
19	17361	34372.9	49961.1	-198	-630	-535	4.2E+03
20	17361	34434.7	49958.4	-198	-485	-600	2.7E+03

 $\label{eq:table 4-5} Table \ 4-5 \ Optimal \ photoionization \ schemes \ of \ U \ having \ high \ selectivity.$

(Laser bandwidth = 1.2 GHz, from ground state)

²³⁶U-²³⁵Uの同位体シフトは²³⁸U-²³⁵Uのシフトに相対シフト因子 0.40 を乗じて算出した Selectivity S 236-235: 計算した 3 段階スキームの同位体選択性

		Energy le	evel (cm ⁻¹))	isotope-sh	54 (mK)	Selectivity	
rank –	E ₀	E ₁	E ₂	E ₃	IS ₁	IS ₂	IS ₃	S ₁₅₄₋₁₅₂
1	0.0	17228.0	34601.7	49848.8	-125.7	-271	5	2.0E+05
2	0.0	17228.0	31772.9	49588.1	-125.7	-268	-20	1.5E+05
3	0.0	17380.8	31772.9	49588.1	-121.4	-268	-20	1.5E+05
4	0.0	17228.0	34582.5	50070.6	-125.7	-276	-65	1.2E+05
5	0.0	17380.8	34582.5	50070.6	-121.4	-276	-65	1.2E+05
6	0.0	17228.0	31842.6	49618.6	-125.7	-285	-90	1.2E+05
7	0.0	17228.0	31842.6	49613.2	-125.7	-285	-95	1.1E+05
8	0.0	17228.0	34601.7	50070.6	-125.7	-271	-65	1.1E+05
9	0.0	17228.0	34697.9	49994.9	-125.7	-23	-295	9.4E+04
10	0.0	17228.0	34601.7	49997.4	-125.7	-271	-85	8.9E+04
11	215.1	17617.8	32881.7	50029.7	-120.0	18	-180	8.3E+04
12	0.0	17228.0	31772.9	49997.4	-125.7	-268	-85	8.3E+04
13	0.0	17380.8	31772.9	49997.4	-121.4	-268	-85	8.2E+04
14	0.0	17380.8	34697.9	49994.9	-121.4	-23	-295	8.0E+04
109	999.1	18070.3	34624.0	50040.9	-118.6	-67	-265	1.2E+04
112	999.1	18070.3	34624.0	50052.5	-118.6	-67	-255	1.0E+04
144	533.0	18083.6	34811.8	50040.9	-114.5	-174	-265	3.0E+03
149	999.1	18070.3	34811.8	50040.9	-118.6	-174	-265	2.8E+03
157	533.0	18083.6	34811.8	50052.5	-114.5	-174	-255	2.3E+03

 $\label{eq:table 4-6} \textbf{ Optimal photoionization schemes of Gd having high selectivity.}$

(Laser bandwidth = 1.2 GHz)

¹⁵⁴Gd-¹⁵²Gd 同位体シフトは¹⁶⁰Gd-¹⁵⁴Gd のシフトに相対シフト因子 0.89 を乗じて算出した Selectivity S₁₅₄₁₅₂:計算した3段階スキームの同位体選択性

第5章 原子構造、分光特性に関する研究

前章までは様々な分光法や解析方法を用いて多くの分光データを測定し、電離効率や同位 体選択性の高い電離スキームの選び出しを行った。しかし、このような分光実験を進めるう ちに、優れた電離スキームを選び出すためには、当初考えていたような分光データの測定だ けでは不十分であり、原子の光に対する振る舞いを、原子物理の立場から深く追求する必要 があることが明らかになってきた。そこで本章では、第5.1節で、自動電離準位の電離幅と 電離断面積、J値、寿命の関係について、第2章、第3章の分光データを基に考察した。電 離準位の線幅がJ値の増加とともに狭まる傾向があることを示すとともに、このような特徴 が、遠心力ポテンシャル障壁の効果として定性的に理解できることを示した。第5.2節と5.3 節では、ウランとガドリニウムの自動電離リドベルグ状態の同定により、イオン化ポテンシ ャルを精度良く決定すると共に、その大きさに同位体効果があることを明らかにした。また 第5.4節では、ファノ型形状を示すガドリニウムの自動電離リドベルグ系列の摂動構造を多 チャンネル量子欠損理論により解析し、リドベルグ系列と摂動準位、連続状態との相互作用 の強さについて調べた。

5.1 遠心力ポテンシャル障壁による電離速度の J 値依存性

第2章の自動電離準位の探査では、ウランの自動電離準位の電離幅とJ値を多数測定した。 また、第3章の電離断面積の測定では、電離幅の狭い自動電離準位が、電離効率を大幅に向 上させることを見いだした。そこで本節では、こうした幅が狭く断面積の大きい電離遷移の 起源について考察した。

表 2-10 から分かるように、ウランの $J=4\sim6$ の自動電離準位は全てランク II または III の 幅広いピークであるが、J=8,9 の自動電離準位の多くはランク I の狭いピークである。また 測定した電離幅の大きさを 7 段階に再分類して、J 値毎にその度数分布をまとめると図 5-1 のようになり、この J 値の範囲では、J 値が大きくなるほど狭い準位が増える傾向がはっき りした。さらに、J=7 の電離準位で幅が狭いピークは ${}^{6}L_{11/2}$ 極限より低エネルギー側にのみ存 在している。このことから、 ${}^{6}L_{11/2}$ 極限を境に幅が変化する様子は、J=6の下準位から観測す る時が最も顕著であると予想できる。Coste¹⁾らは 33421.1cm⁻¹ (J=6)準位から電離スペクトル を観測し、電離幅が ${}^{6}L_{11/2}$ 極限を境に変化すると報告したが、それはちょうどこの場合に当 たる。

このような電離幅の特徴は、自動電離過程における遠心力ポテンシャル障壁の効果で説明 できると考えられる²⁾。自動電離準位から連続状態への無輻射遷移(自動電離)では、角運 動量とパリティが保存される。この保存則のため、遷移前後の角運動量の差は、放出電子が 運ぶことになる。遷移可能な連続状態は自動電離準位のエネルギーによって変わるので、放 出電子の運ぶべき角運動量もエネルギーによって変わる。表 5-1 はイオン化極限から 289cm⁻¹ ($^{6}L_{11/2}$ 極限)上方までの領域と、さらに上方の領域で、自動電離準位のJ値毎に、放出電子が 運び去る角運動量(*l*,*j*)の大きさを示したものである。簡単のため、電子の軌道角運動量は3 までを示す。なおイオンの第3励起状態 $^{6}K_{9/2}$ のJ値はイオンの基底状態 $^{4}I_{9/2}$ と同じである。 表より、*J=*4~6 の準位では、 ϵp 連続状態への自動電離は両方の領域で許容されるが、*J=*7 の自動電離準位は⁶L₁₁₂極限より高エネルギー領域でのみ許容され、J=8,9の自動電離準位は両方の領域で禁止されることがわかる。

FIGURE 5-1 Histogram of uranium autoionizing levels having different rank of peak width.

一般に、自動電離はイオンコア付近(原子の内部領域)での短距離相互作用である電子--電子相関によって起こる。本研究のようにイオン化極限近傍の自動電離では、放出電子の運 動エネルギーが小さいため、角運動量が大きい *εf*連続状態の波動関数は、角運動量の2乗 に比例して高さが変化する遠心力ポテンシャル障壁によって外部領域へのトンネル効果が 妨げられ、*εp*連続状態に比べて自動電離速度が遅くなる。その結果、不確定性原理により、 *J*=4~6の自動電離準位が幅広いピーク形状を示すのに対し、*J*=8,9の準位は周波数幅が狭く なると考えられる。また *J*=7 の準位は *εp*連続状態への自動電離が禁止される ⁶L_{11/2}極限より 低いエネルギー領域でのみ幅が狭くなると考えられる。

J=4,5,6 で幅の狭い準位が観測されないのは、電離速度の早い電子放出が可能な場合、多く の原子がその反応経路で電離するためと思われる。幅が広いと強いピークが減るのは、自動 電離準位への光学遷移の振動子強度の大きさに一定の上限があり、線幅に逆比例してピーク の高さが下がるためと考えられる。実際、電離断面積の大きなウランの 10 個の遷移で、幅 と断面積ピーク値の関係を調べると、図 5-2 のように、一本の反比例曲線上に分布し、その 振動子強度は g=0.01 程度であることが分かった。

第3章の断面積測定でも触れたように、高励起準位間遷移の分岐比には上限値がある。ガ ドリニウムの第2励起遷移では、ガドリニウムで0.1程度、ウランでは0.05程度である。ウ ランの電離遷移はさらに多くの分岐遷移が可能なため、分岐比の上限は0.01程度と考えられ る。するとこの分岐比と振動子強度から式(3.3)により、これらの自動電離準位の蛍光寿命が 約 100 nsec と求まる。これは観測される高励起準位の寿命と矛盾しない。従ってウランで観 測された電離断面積の大きな自動電離準位は、このような分岐比の上限に近い遷移であると すれば、振動子強度上限に一定の上限があるという図 5-2 の分布が説明できる。

FIGURE 5-2 Peak value of ionization cross-section vs peak width.

FIGURE 5-3 Comparison of ionization spectra from 2nd-step levels of J=3 and 6.

図 5-3 はガドリニウムの電離スペクトルを J=6 と J=3 の第2励起準位から、100cm⁻¹の範囲 で観測して比較したものである。ガドリニウムでもこの様に、自動電離準位のJ値が3から 7 の範囲では、J値が大きいものほど幅が狭くなる傾向が認められた。この場合の放出電子 の運ぶ角運動量の大きさは表 5-2 のようになる。この結果、ガドリニウムではJ値が1~4 の自動電離状態は幅が広く、これよりJ値が大きくても、小さくても幅が狭くなることが予 想される。第2章の表 2-11 でもその様な傾向が現れており、この様な性質は重金属原子の自 動電離に共通する特徴であると考えられる。 5.2 ガドリニウム原子のイオン化極限とその同位体効果の決定

5.2.1 目的と概要

1価イオンのエネルギー準位の直下には、その準位に収束する中性原子のリドベルグ状態 による系列構造が観測される場合が多い。リドベルグ状態は1個の軌道電子だけが高いエネ ルギー軌道にある状態で、その電子と残りのイオン芯との結合が弱いため、イオン芯の電子 状態を収束極限のイオン状態と等しいとみなせる高励起状態である。このような系列構造の 観測は様々な元素で進められており、原子のイオン化ポテンシャル(IP)^{1),3)-5)}や、電子配置間 相互作用⁶の研究に利用されている。また系列準位の分光学的な特徴を明らかにするために、 寿命や自動電離速度の主量子数依存性を調べる研究や⁷⁾、微細構造、超微細構造、同位体シ フトを測定する研究⁸⁾⁻¹¹⁾なども報告されている。

しかし、ランタノイド系列の中位にあるガドリニウムでは、複雑な原子構造のため、これ までに行われた高励起状態の研究は少ない。ガドリニウムのリドベルグ系列は Worden¹²⁾らに よって初めて観測されている。彼らは 10 個のランタノイド元素の IP を、3 段階共鳴電離法 で決定した。しかし、得られた IP の誤差は約 5cm⁻¹で、同じ手法を用いて軽元素で行われて いる測定の誤差に比べて約1オーダー大きいものであった。Bekov¹³⁾も同じ方法でガドリニ ウムの IP を測定したが、誤差は Worden の値と同程度であった。またどちらの報告でも、個々 の系列準位のエネルギーや帰属についての記述はなく、原子構造を調べるためにはさらに詳 しい測定が必要であった。

これらの研究で測定誤差が大きかった理由の1つは J=2~4の第2励起準位を用いたことにある。分光項の多重度から考えて、彼らの観測したスペクトルには他のリドベルグ系列の準位やリドベルグ系列に属さない価電子準位による重なりや、摂動による系列構造の乱れなどがあったと考えられる。

そこで本研究では、第2章で決定したJ値が0と1の第2励起準位を用いて、J値の小さ いリドベルグ系列を観測した。観測のしやすさから、イオンの励起準位へ収束する自動電離 リドベルグ系列を主に観測した。またその分光学的な特徴を調べるために、イオンを質量分 解して同位体毎のスペクトルを観測し、系列準位の同位体シフトもあわせて測定した。高励 起状態の分光法としては、従来から、放射光等の紫外線光源と大型分光器を組合わせる発光 分光、吸収分光などが利用されているが¹⁴⁻¹⁶、これには、(1)観測できる励起状態が基底状 態から双極子遷移の可能なものに限られる、(2)多くの準安定状態から同時に励起が起こる場 合にピークの同定が難しい、などの欠点がある。これに対して共鳴光イオン化分光法は、注 目する励起状態だけを選択的に励起するため、比較的単純なスペクトルが得られるうえ、多 段階励起の中間準位を変えることで、基底状態から直接には励起できない色々な準位が観測 できるという特徴があり、準位密度の高い重金属原子の高励起状態の観測方法として優れた ものと考えられる。

5.2.2 測定方法

3台の色素レーザーの光をガドリニウム原子に照射した。光照射時に反応領域の残留電場 がゼロになるよう、光電離イオンを質量分析計へ導くためのパルス電場(約 50v/cm)は、光 照射後数 100nsec 経ってから反応領域に印加した。真空容器を透過したレーザー光は、ホロ カソードランプにも導き、発生する光ガルバノ信号を波長校正信号としてコンピューターに 同時記録した。さらに、多くの共鳴ピークではフィゾー干渉計による波長の直接測定も行った。得られる波長の絶対値の精度は±0.005nm 程度と評価される。波長を固定した第1、第2励起レーザーの偏光方向はバビネ板で調整し、波長掃引する電離レーザーの偏光方向は掃引範囲に中心波長のある0次水晶波長板で調整した。

5.2.3 結果と議論

(1) J=0,1の第2励起準位から観測した自動電離リドベルグ系列

表 5-3 の 10 個の J=0,1 の第 2 励起準位を用いて、イオン化極限から約 4000cm⁻¹ 上方までの エネルギー領域の電離スペクトルを測定し、イオンの基底状態 E_1 (0cm⁻¹)、第 1 励起状態 E_2 (261.841cm⁻¹)、第 2 励起状態 E_3 (633.273cm⁻¹)、第 7 励起状態 E_7 (3082.011cm⁻¹)、第 8 励起状態 E_8 (3427.274cm⁻¹)、第 9 励起状態 E_9 (3444.235cm⁻¹) に収束するリドベルグ系列を観測した。 図 5-4 に関連するガドリニウムのエネルギー準位図を示す。電子配置は E_9 だけが f^7ds では なく f^7s^2 である。系列極限より上方の黒い領域は、系列極限に接続する連続状態である。ま た図 5-5(a)(b)に 34601.68cm⁻¹ 準位から観測した $E_2 E_3$ に収束する系列、図 5-5(c)に 34697.74cm⁻¹ 準位から観測した E_9 に収束する系列のスペクトルの一部を示す。これらは ¹⁶⁰Gd から ¹⁵²Gd までの同位体イオンを積算して求めた天然ガドリニウムのスペクトルである。ピークの数値 は後述する方法で決めた主量子数 n を表している。

FIGURE 5-4 Simplified energy level diagram and general schemes of three-step photoionization of Gd atom.

FIGURE 5-5 Rydberg series spectra (a) E_2 -,(b) E_3 - and (c) E_9 -seies.

J=0の第2励起準位の場合、J=1の電離準位だけが許容遷移であり、また後述するように、 そのJ=1の準位が生じる電子配置の数が限られることから、非常に単純なスペクトルが観測 された(図 5-5(a),(b))。一方、J=1の第2励起準位の場合には、J=0,1,2の3種類の電離準位が 励起されるのでスペクトルはやや複雑になるが、それでも長い系列スペクトルを識別するこ とができた(図 5-5(c))。観測された幾つかの系列では、主量子数 35 以下に価電子状態との摂 動によるファノ型のピーク¹⁷⁾が観測された。しかし、より短波長側のピークは幅の狭い左右 対称のピークとなっており、広い摂動フリー領域のあることが分かった。これら摂動フリー のスペクトルから各リドベルグピークの波長を求め、観測に用いた下準位のエネルギー文献 値¹⁸⁾を加えることにより、各準位のエネルギーを導出した。その結果を表 5-4(a)-(c)に示す。

(2) イオン化極限の決定

観測された摂動の無い領域のリドベルグ準位のエネルギーから、次のようなリドベルグリ ッツの式を使って、収束極限をパラメーターとして量子欠損 *δ*を計算した。

$$E = I - \frac{R_{Gd}}{\left(n - \delta\right)^2} \tag{51}$$

但し、I は系列極限、n は主量子数である。ここでガドリニウムの質量補正されたリドベル グ定数として

$$R_{Gd} = R_{\infty} \frac{M}{M + m_e} = 109736.933 \, cm^{-1}$$

(5.2)

を用いた(R_{ω} =109737.318 cm⁻¹)。また系列極限は原子の IP に 1 価イオンの励起準位エネルギー¹⁸⁾を加えたものを用いた。

後述するように観測した系列はf電子系列なので、多くの準位の量子欠損が0~1の範囲に 入るように主量子数を割り当てた。しかし IP の決定に直接関係するのは主量子数から量子 欠損を差し引いた量なので、この主量子数の割り当ての妥当性が問題となることはない。

表 5-4(a)-(c)の各系列の量子欠損は表の δ の欄に示す。またこの表を基に、3つの電離極限 の値に対して計算した量子欠損の n 依存性を図 5-6(a)-(c)に示す。摂動の無い系列では、この 量子欠損の主量子数依存性は極めて小さいことが求められるため¹⁹⁾、量子欠損が最も広い範 囲で一定になる●の電離極限が最も確からしい値である。IP は、電離極限の値からイオン準 位のエネルギー文献値 E₂,E₃,E₉ を差し引くことで求められる。観測された多くの系列でこの ような解析を行い、観測範囲と得られた IP の値を表 5-5 にまとめた。この表からガドリニウ ムの IP の平均値は 49601.45cm⁻¹、誤差は約 0.3cm⁻¹と求められた。この誤差は測定値の統計 誤差(線幅による誤差を含む)、波長絶対値の測定誤差及び下準位のエネルギー誤差から評価 したものである。得られた IP の値は Worden¹²⁾の報告値と Bekov¹³⁾の報告値のほぼ中間の大 きさで、従来より 1 桁以上精度の高い値である。

FIGURE 5-6 Relationship between quantum defect and principal quantum number. (a) E_2 -,(b) E_3 - and (c) E_9 -seies

主量子数の大きい準位ほど、その量子欠損は系列極限の値に対して敏感である。従って主量 子数の大きい系列が観測された 34601.68(10)や 34697.74(10)cm⁻¹などの解析から、本来もっと 精度の高い IP が得られると期待される。しかしこれらの準位はエネルギー誤差が 0.1 cm⁻¹ と比較的大きいため、これが IP の誤差を大きくしている。より高い精度で IP を決めるには、 第2励起準位のエネルギーを精度よく決めることが必要である。

(3) J=1 のリドベルグ系列の電子配置

観測した幾つかの系列の電子配置は選択則によって推定できる。まず今回観測した系列の パリティは偶、イオン芯のパリティは奇なので、リドベルグ電子のパリティは奇でなければ ならない。そこでここでは p 電子と f 電子を考える。電子のスピン、軌道角運動量を合成し た全角運動量は、p 電子で 1/2 または 3/2、f 電子で 5/2 または 7/2 なので、これら4 種類の電 子とイオン芯の全角運動量の結合を考える。

ガドリニウムイオンの E_2 、 E_9 状態の J 値は 7/2 なので、この準位に収束する系列には次の J 値のものが存在可能である。

 p電子系列
 [core] $np_{1/2}$ J=3,4
 f 電子系列
 [core] $nf_{5/2}$ J=1,2,3,4,5,6

 [core] $np_{3/2}$ J=2,3,4,5
 [core] $nf_{7/2}$ J=0,1,2,3,4,5,6,7

ここで[core]は E_2 の場合[$f^7 ds$ ($^{10}D^{\circ}_{7/2}$)]、 E_9 の場合[$f^7 ds$ ($^{8}S^{\circ}_{7/2}$)]である。

一方、イオンの E₃状態の J 値は 9/2 なので、この準位に収束する系列には次の J 値の準位が 存在可能である。

p 電子系列	[core] <i>np</i> _{1/2}	J=4,5 f電子系列	$[core]nf_{5/2}$	<i>J</i> =2,3,4,5,6,7
	[core] <i>np</i> _{3/2}	<i>J</i> =3,4,5,6	$[core]nf_{7/2}$	<i>J</i> =1,2,3,4,5,6,7,8
ここで[core]は	$[f^7 ds({}^{10}D^{\circ}_{9/2})]$	である。		

本研究で *J*=0 の第2励起状態から観測された E_2 , E_3 , E_9 に収束する系列は、選択則により *J*=1 でなければならないので、上の結果から、それらはいずれもリドベルグ電子が f 軌道に 入った配置であることがわかる。中でも E_3 に収束する系列は唯一の配置 : $f^7 ds (^{10}D^9_{9/2}) n f_{7/2}$ に確定する。これまで電離準位の電子配置はほとんど同定されていないので、配置の確定し た系列が得られたことは、今後のガドリニウムの分光研究において重要と思われる。

(4) リドベルグ系列の同位体シフト

本研究では多くの系列で、天然存在比の高い5つの同位体¹⁶⁰Gd,¹⁵⁸Gd,¹⁵⁷Gd,¹⁵⁶Gd,¹⁵⁵Gdの 質量分解電離スペクトルを同時に測定した。一例として、34601 cm⁻¹から観測した E₃に収束 する系列の質量分解スペクトルのうち*n*=40付近と*n*=55付近を拡大したものを図5-7に示す。 2つの領域の横軸倍率は共通である。図から主量子数が変わっても、シフト量はほとんど変 わらないことがわかる。また奇同位体のピークが、対応する偶同位体のピークよりも僅かに 広がっており、奇準位の超微細構造の影響と考えられる。

スペクトルのシフト量から同位体シフトを計算する手順はこれまで同様である。まず m=160の同位体のピークを基準に各同位体ピークのエネルギー間隔、160-158, 160-157, 160-156, 160-155を求め、それぞれに 3.255, 1.826, 1.656, 1.240の相対同位体シフト因子を乗 じで 160-154 のシフト量に換算し、さらにその平均値を求めて遷移の同位体シフトとした。 このようにして求めた遷移の同位体シフトの一例を、表 5-4(a)-(c)の IS₁₆₀₋₁₅₄欄にまとめて

167

示す。符号は重い同位体が高波数側にある場合を正とした。同位体シフトの測定誤差は遷移 の強度によっても変わるが、良いもので 10 mK (mK = 10^3 cm⁻¹)程度である。各表の最下段に は、系列の全ての準位のシフト量の平均値とその標準偏差を示した。このような解析を多く の系列で行って、得られた結果を比較したものが表 5-6 である。IS_{up}の値は表 5-4 のような 遷移の同位体シフトから、第2励起準位の同位体シフト IS_{low}を考慮して、 系列準位の同位 体シフトを求めたものである。この表から、同一極限に収束する系列の同位体シフトは誤差 範囲で一致し、さらに f^7ds (10 D)配置の E₁, E₂, E₃ へ向かう系列の同位体シフトはいずれも-77 ±20 mK 程度、一方 f^7s^2 (8 S)配置の E₉ へ向かう系列のシフト量は 33±20 mK となることが 分かった。

FIGURE 5-7 Partial mass-resolved ionization spectra of E₃-series.

(5) イオン化ポテンシャルの同位体効果

リドベルグ状態は1つの軌道電子(リドベルグ電子)だけが核から遠く離れた軌道を回る 状態であり、その電子の束縛エネルギーは主に核からのクーロン力に起因する。リドベルグ 電子の核における存在確率は小さいため、同位体の核の違いがその束縛エネルギーに及ぼす 影響も小さいと考えられ、このため、リドベルグ状態の同位体シフトはイオン芯の同位体シ フト、即ち、収束極限のイオン準位のシフト量と近似的に等しいと考えられる。実際、アル カリ(土類)金属原子では、nの大きいところでリドベルグ準位の同位体シフトがイオン化極 限の同位体シフトの計算値に漸近する様子が明らかになっている¹⁰⁻¹¹。また前節で述べたよ うに、ガドリニウムの同一リドベルグ系列の多くの準位でシフト量が変わらないことや、同 じ電子配置のイオン状態へ向かう系列のシフトが等しいことからも、この考えが支持される。

ガドリニウムイオンのエネルギー準位の同位体シフトは、 $Brix^{20}$ が報告しており、 $Kronfeldt^{21}$ の相対同位体シフト比によって 160-154 の同位体シフトに換算し E_1 を基準に表すと、 $E_2 \sim E_3$ がほぼゼロ、 E_9 が+94 mK となる。一方、表 5-6 から E_1 を基準にして E_9 の同位体シフトを求めると+110±28 mK となり、両者は誤差範囲で一致する。しかし、この様なリドベルグ系列の観測で得られるイオン準位の同位体シフトには、もう1つの物性情報として、中性

原子と1価イオンという2つの系の同位体シフト、言い換えれば、IPの同位体シフトの情報 が含まれている。イオン基底準位の同位体シフトを中性原子の基底準位から測った-80mKという値は、中性原子の系と1価イオンの系という2つの系の間の同位体シフトに対応している。

準位の同位体シフトは電子配置と強く相関している。特に原子核近傍のs電子密度に比例 しており、密度が増えるほどシフト量はプラス側に増加する。ガドリニウムの中性原子と1 価イオンの基底準位の電子配置はそれぞれ $f^{7}ds^{2} \geq f^{7}ds$ であり、中性原子から見るとイオン の基底状態はs電子密度が減少することになるので、その同位体シフトは負符号となること が理解できる。また中性原子励起状態の同位体シフトの報告値と比較すると、s電子が1つ だけの配置、例えば、 $f^{7}d^{2}s$, $f^{7}dsp$, $f^{8}sp$, $f^{7}sp^{2}$ などの同位体シフトは-80~-150 mK 程度なので ²⁰⁾⁻²³⁾、-80 mK という1価イオンの基底状態の同位体シフトも妥当な大きさであると思われる。

このような方法で IP の同位体効果を調べる場合、価電子準位との摂動があると、波動関数の混じり具合で同位体シフトの大きさが変化してしまうので、摂動の無い系列を利用する必要がある。本研究では、図 5-6 の量子欠損の主量子数依存性曲線からも分かるように、n=40以上では観測したほとんどの系列で量子欠損がほぼ一定になっているので、今回得られた値も十分妥当なものと考えられる。また観測されたリドベルグ系列が、核近傍の存在確率の小さいf電子系列であることも、同位体シフトの主量子数依存性が小さい理由の1つと考えられる。

Pendrill¹¹⁾が測定したアルカリ土類金属のリドベルグ準位の同位体シフトは、正常質量シフト(NMS: Normal Mass Shift)の計算結果と良く一致することが示されている。しかしアルカリ(土類)金属とランタノイド原子とでは、同位体シフトの起源が異なり、前者では質量シフト、後者では核の体積変化に伴う体積シフト(FS: Field Shift)が主である。このため今回のガドリニウムの系列の同位体シフトに含まれる正常質量シフトもわずか 6.6~7.1mK 程度と見積もられ、そのエネルギー依存性も小さい。従って本解析では、Pendrill¹¹⁾と同様の方法で、リドベルグ準位や下準位の正常質量シフト、特異質量シフト(SMS: Specific Mass Shift)、体積シフトを分けることはしなかった。

原子やイオンの基底状態は、配置間混合の少ない比較的純粋な電子配置の準位なので、2 つの系の基底状態間の同位体シフト量は、原子構造計算に用いる波動関数の精度を確かめる 上で重要な値と考えられる。また、この値により、未知の自動電離準位の同位体シフトを既 に報告されているイオン準位の同位体シフトから予想できるようになるので、レーザー同位 体分離で重要な同位体シフトの大きい電離遷移を探すことにも利用できると考えられる。 5.3 ウラン原子のイオン化極限とその同位体効果の決定

5.3.1 目的と概要

前節では、ガドリニウム原子のリドベルグ準位の同位体シフトが、主量子数の増加ととも に、系列極限のイオン準位の同位体シフトに近づくことを示し、中性原子の基底状態に対す るイオンの基底状態の同位体シフト、即ち、IPの同位体効果を決定した。本節では、ウラン イオンの第1励起状態(289.040 cm⁻¹)へ収束する自動電離リドベルグ系列とその同位体シフ トを同様の方法で解析し、ウランの IP の報告値を検証したほか、その同位体効果を決定し た。決定した同位体効果の大きさは、経験的、理論的な方法から予想される値と比較した。

5.3.2 結果と議論

(1) 自動電離リドベルグ系列の解析

3つの第2励起準位(33421.1cm⁻¹[f³ds8s⁷L J=6], 34434.8cm⁻¹[J=7], 33363.0cm⁻¹[J=8])から 測定した電離スペクトルの中に、イオンの第1励起状態(289.040 cm⁻¹)へ収束する強い系列構 造が観測された。これがリドベルグ状態であることは、電場存在下で光を照射した時に、ピ ーク幅が著しく拡がることから確認した。系列のJ値は 2.3 節と同様に偏光組み合わせ法で 決定した。n=45 の準位の結果を図 5-8 に示す。〇が測定したイオン量の変化パターン、太線 が計算結果である。励起スキームのJ値の組み合わせが異なるため、変化パターンは異なる が、いずれもリドベルグ準位のJ値が7であることを示唆している。このような測定を多く のリドベルグ準位で行った。

FIGURE 5-8 Ion yield patterns with three schemes of which are terminated by Rydberg state of n=45.

図 5-9(a)に 33421cm⁻¹ から観測したリドベルグ系列 (*n*=45~74)のスペクトルとJ値同定の 結果を示す。最も強い系列は Coste¹⁾の報告した *f*³*ds*(*n*p)系列 (*n*=45~68)と同一で、そのJ 値は7 である。このほかに *n*=60-66 の領域には、50216cm⁻¹(*J*=5)の価電子状態からの摂動で *J*=5 の系列が現れている。また、*n*=46-59 の領域には、弱い *J*=6 の系列の一部が現れている。 さらに、*n*>=75 の領域では強い *J*=7 の系列が消え、代わりに J 値未決定の弱い系列が現れて いる。

図 5-9(b)には 34434cm⁻¹から観測したスペクトルを示す。J=7 の系列が n=43-54 の範囲で現

れている。B~E のピークはリドベルグ準位ではない一般の自動電離準位によるピークである。また2章の図 2-9(a)には 33363cm⁻¹から観測した *J*=7 の系列が同じく *n*=43-54 の範囲で現れている。これらのリドベルグ準位のエネルギーと図 5-9(a)の強い系列のエネルギーは±0.1cm⁻¹で一致しており、同一系列と考えられる。従って、この系列は *J*=6,7,8 の下準位から励起するため、選択則からもその *J* 値は 7 となり、偏光組み合わせ法の結果と一致する。

また3つのスペクトルとも, n が 47 以下では、n が小さくなるにつれて、量子欠損及び強度が急激に減少しており、強い摂動準位の存在が示唆される。

FIGURE 5-9 Rydberg series spectra from (a)33421cm⁻¹, (b)34434cm⁻¹.

これらのスペクトルから求めた各リドベルグ準位の主量子数 n, エネルギー E_{Ryd} を表 5-7 に示す。また、 I_2 =50247.64cm^{-1 1)}を系列極限¹⁾として、(5.1)式から求めた量子欠損 δ の値も表 5-7 に示す。ここで、ウランの質量補正されたリドベルグ定数には R_u =109737.063 cm⁻¹ を用

いた。表から n の大きい領域の量子欠損はほぼ一定(0.6~0.7)であり、決定したエネルギーと I₂の文献値に矛盾のないことが確かめられた。

(2) リドベルグ準位の電子配置

観測されたリドベルグ原子のイオンコアは、電離極限のイオン準位と同じ電子配置 $f^{3}ds$ (${}^{6}L_{11/2}$)をとる。またリドベルグ準位は偶パリティのためリドベルグ電子の角運動量は奇パリ ティとなる。そこでリドベルグ電子をpまたはf電子とすると、全角運動量の合成法則によ り、可能な系列は次の 20 通りになる。

$$p_{j=1/2}$$
 J= 6,

 $p_{j=3/2}$ J= 7,6,5,4

 $f_{j=5/2}$ J= 8,7,6,5,4,3

 $f_{j=7/2}$ J=9,8,7,6,5,4,3,2

観測された強い系列がf電子系列とすると、J値が7の系列のほかに8や9の系列が現れると思われる。なぜならJ値が7や8の状態は共にp電子の放出が禁止された状態(表 5-1)であり、両者の電離速度や電離断面積の違いは小さいと考えられるからである。ところが今回の観測では、J=7の系列は強いが、J=8の系列は観測されていない。一方p電子系列とすると、J=8以上の系列は生じない。この事から、観測された系列はCoste¹⁾の同定通り、p電子系列の可能性が高いと思われる。さらにp電子系列でJ=7の状態が生じるのは $p_{j=3/2}$ 系列のみのため、観測された強い系列の電子配置は $f^3ds(^{6}L_{11/2})(np_{j=3/2})$ と推定される。

(3) リドベルグ系列の同位体シフト

イオン化極限から289.041 cm⁻¹上方にあるイオン準位へ収束する16個のリドベルグ準位に ついて質量分解スペクトルを観測した。図 5-10 にそのスペクトルの一部 (n=53-57)を示す。 これは図 5-9(a)の質量分解スペクトルである。同位体シフトの大きさはnが変ってもほとん どゼロである。このことはリドベルグ準位の同位体シフトが 33421.1cm⁻¹ 準位の同位体シフ ト-360mK と同程度であることを示している。従ってリドベルグ準位の電子配置 $f^3ds(np)$ と 33421 cm⁻¹準位の f^3ds8s 配置では、核における電子密度の差は小さいと考えられる。これは nが大きくなるとp電子によるスクリーニング効果が弱まり、核の電子密度が増大すること、 あるいは、下準位の電子配置が純粋な f^3ds8s 配置ではなく、s電子1個の配置との混じり合 いが大きいことを示していると考えられる。

得られたリドベルグ準位の同位体シフトを表 5-8 にまとめる。同位体シフトは、摂動の影響が少ない n=47-58 の準位でほぼ一定値であり、その平均シフトは-362±16 mK である。

Wavenumber (cm)

FIGURE 5-10 Partial mass-resolved ionization spectra of Rydberg-series of U.

(4) イオン化ポテンシャルの同位体効果

第 5.2 節の解析から、他の準位による摂動がなく、n の十分大きいリドベルグ準位の同位 体シフトは、収束極限のイオン準位の同位体シフトと近い値になることが明らかになった。 ウランの場合、n=47-58 の量子欠損が一定で摂動の小さい領域と考えられるが、その同位体 シフトは表 5-8 のようにやはり一定値(-362 mK)となった。従ってウランでもガドリニウムと 同様に、系列の同位体シフトが系列極限のイオン準位(289.040 cm⁻¹)の同位体シフトを表すと 考えられる。

このイオンの 289.040 cm⁻¹ 準位の同位体シフトは、イオン基底準位を基準として-807mK と 報告されている²⁴⁾。従って、その差、-362mK+807mK= +445mK がウランの原子とイオンの 基底状態同士の相対同位体シフト、IP の同位体差となる。

Diringer²⁵は価電子によるスクリーニング効果 ²⁶⁾の経験値から、原子とイオンの基底状態 の絶対同位体シフトを 1200 mK、1600 mK とそれぞれ評価している。従って、基底状態間の 相対同位体シフトは+400 mK となる。一方、Blaise²⁴⁾らは核位置の電子密度が最も小さい f^4d , f^3dp 配置の新しい同位体シフト測定値を基に、イオンの基底状態の配置 (f^3s^2)の同位体シ フトを 1950 mK と再評価している。また同様の考え方で Engleman²⁷⁾のデータから原子基底 状態の配置 (f^3ds^2)の同位体シフトを求めると、約 1260 mK となる。従って、これらの同 位体シフトによると、差は+690 mK となる。

理論的には、フィールドシフト IS と核位置の電子密度 $|\psi(0)|^2$ の関係は IS= $|\psi(0)|^2 \pi (a_0^3/z)c$ で表すことができ²⁸⁾、 $|\psi(0)|^2$ は原子構造計算によって計算できる。ウランでは幾つかの純粋な電子配置の $|\psi(0)|^2$ の値が Rajnak²⁹⁾により相対論的ハートリーフォック法で計算されている。

173

彼らの $f^{3}ds^{2} \geq f^{3}s^{2}$ 配置の電子密度から、2つの純粋な電子配置の相対同位体シフトを算出 すると、+240 mK となる。さらに、Passler³⁰⁾らもアクチノイド元素の質量数の隣り合う同位 体間の IP の差を+100 mK オーダーと予想している。従って今回の値はこれらの経験値や理 論値とおおよそ一致している。IP の同位体差はこれまで、電子構造の単純な元素でのみ報告 されており^{10),31)-33)}、ウランの同位体差を決めたのはこれがはじめてである。 5.4 多チャンネル量子欠損理論によるGd原子の自動電離リドベルグ系列の解析

5.4.1 目的と概要

イオン化極限よりエネルギーの高い状態に原子を励起させると、配置間相互作用によって その励起状態から連続状態への無輻射遷移が起こり、軌道電子の1つが原子からはじき出さ れて自動電離が起こる。このような自動電離状態の共鳴構造は、一般に、自動電離状態を介 さずに連続状態へ直接光学遷移する過程との干渉によってローレンツ形から外れ、左右非対 称に変形する。この自動電離状態に特有のスペクトル形状は、Beutler³⁴⁾によって発見され、 Fano¹⁷⁾によって理論的に解釈されており、一般にはボイトラーファノ型形状と呼ばれている。

このファノ型形状は、通常の価電子励起状態だけでなく、自動電離リドベルグ系列でもし ばしば観測される。その系列構造の大きな特徴は、同一系列でも主量子数によって形状が変 化することである。特に、インターローパーと呼ばれる線幅の広い摂動準位が存在する領域 では、系列の途中で非対称形状の符号が反転(q値反転)することが Connerade^{34),35)}らによっ て示されている。こうした自動電離リドベルグ系列のスペクトル構造は、束縛リドベルグ系 列を扱う固有チャンネル量子欠損理論(MQDT)とファノの形状理論とを融合した、位相シフ ト基底 MQDT 理論によって解析されている³⁷⁾⁴⁰⁾。この方法は 1980 年代以降、電離スペクト ルの解析によく用いられているが、その適用原子は、これまでのところ希ガス、アルカリ(土 類)金属、及び一部の遷移金属など、原子構造の比較的単純なものに限られている^{41),45)}。

第2.4節では、原子構造の複雑な元素でも、多重度の小さな状態から観測すると、スペクトルの系列構造を単純化して観測できることを示した。そこで本節では、こうして観測した J=1の自動電離リドベルグ系列のうち、摂動領域の構造を位相シフト MQDT 法で解析し、高励起状態間の相互作用の強さを調べた。またこのような相互作用が、摂動領域のリドベルグ状態の電離断面積を増大させる効果についても考察した。

5.4.2 量子欠損理論による解析方法

(1) 固有チャンネル MODT 法

MQDT ではリドベルグ状態の波動関数を表すのに2つの異なる基底が重要な役割を果た す。1つは、リドベルグ電子がイオンコアから遠く離れ、クーロン力で結びついている状態 を表す衝突チャンネルと呼ばれる基底であり、もう1つは、電子がイオンコア近くにあり、 電子-電子間相互作用が強く働いている状態を表す緊密結合チャンネルと呼ばれる基底であ る。それぞれの基底は中間領域で滑らかに繋がる。離散状態では、波動関数が無限遠で発散 しないために次のような境界条件が課される⁴⁶。

$$\sum_{\alpha=1}^{n} A_{\alpha} U_{i\alpha} \sin \pi (v_i + \mu_{\alpha}) = 0$$
 (i, $\alpha = 1, 2, ..., N$)
但し $U_{i_{\alpha}}$: 2 つの基底 i, α のユニタリ変換行列要素
 μ_{α} :固有量子欠損
 v_i : 有効主量子数

すると、全ての基底の振幅がゼロではない解(non-trivial solution)を持つ条件として

$$F(v_1v_2...v_N) \equiv |U_{i\alpha}\sin\pi(v_i + \mu_\alpha)| = 0$$

が得られる。これはコンパチビリィティ方程式と呼ばれる MQDT の基本式である。この式

(5.3)

で U やμαなどのパラメータには、2 つの系列間に働く相互作用の強さや、内部領域での近距 離相互作用の強さ等の情報が含まれている。またvi は次のようなリドベルグリッツの関係を 通してリドベルグ準位のエネルギーと結ばれている。

$$E = I_{i\infty} - \frac{R}{v_i^2}$$
(5.4)
但し R : リドベルグ定数 R = 0.5(a.u.)
 $I_{i\infty}$: 収束極限

2極限2チャンネルの場合には(5.4)式は次のように変形できる。

$$G(v_1 v_2) \equiv v_1 - \frac{1}{\sqrt{1 - v_2^2 \Delta}} = 0$$
(5.5)

 $\Delta = \frac{I_{2\infty} - I_{1\infty}}{R}$

観測された系列準位のそれぞれに、2つの極限を基準とする有効主量子数(v₁,v₂)の組を 与え、その小数点以下だけに注目して(v₁,v₂)平面にプロットすると、全ての点は(5.3)、 (5.5)式で表される2本の曲線の交点上に乗る(Lu-Fano プロット⁴⁷⁾)。そこでこのことを逆に 利用して、測定値から、行列要素 U や固有量子欠損μαなどのパラメータをフィティングに よって決めることができる。この方法は今日の束縛リドベルグ状態の標準的な解析方法とな っており、Lu-Fano プロットはこのフィティング精度や相互作用の特徴を視覚化するために 用いられる。例えば、Lu-Fano プロット上の反発交差が大きい場合は、2つの系列準位が接 近した場合の波動関数の混じり合いが大きく、系列間の相互作用が強いことを表す。

(2) MQDT 表記の任意性

上述のファノの定式化には任意性があり、MQDT パラメータの取り方を変えるとほかにも 色々な表記が可能である。例えば次のような散乱行列 S を用いた Seaton の表記方法⁴⁸⁾はそ の良い例である。

 $F(v_i v_2 ... v_N) = |\delta_{ij} \tan \pi v_i + R_{ij}| = 0 \quad (i, J=1, 2, ..., N)$ (5.3)

但し δ_{ij} :クロネッカー関数 R_{ij} :リアクタンス行列 $R_{ij} = -i \left(\frac{S-1}{S+1} \right)_{ij}$

但し *i* :虚数単位

前章で述べたファノの表記法(固有チャンネル MQDT 法)の優れた点は、ユニタリ変換行 列として、よく知られている角運動量の変換行列が使えることである。実際、2チャンネル の場合に U は次のような 2 次元の回転行列で書ける。

 $U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \qquad \theta : 回転角$ これを用いて(5.3)式を書き直すと $F(v_1v_2) = \begin{vmatrix} \cos\theta \sin\pi(v_1 + \mu_{\alpha 1}) & \sin\theta \sin\pi(v_1 + \mu_{\alpha 2}) \\ -\sin\theta \sin\pi(v_2 + \mu_{\alpha 1}) & \cos\theta \sin\pi(v_2 + \mu_{\alpha 2}) \end{vmatrix} = 0$ となる。一方(5.3)'式は

$$F(v_1v_2) = \begin{vmatrix} \tan \pi v_1 + R_{11} & R_{12} \\ R_{12} & \tan \pi v_2 + R_{22} \end{vmatrix} = 0$$

である。この2つの関数は (θ , μ_{a1} , μ_{a2})を適当に変換することで(\mathbf{R}_{11} , \mathbf{R}_{22} , \mathbf{R}_{12})に置き換えられ、等価である。

(3) 位相シフト基底 MQDT 法

この様な表記の任意性のため、1980年代前半、自動電離スペクトルの解析に適した表記法 として位相シフト基底による MQDT 法が考案された。この方法は位相シフト衝突チャンネ ル(解離チャンネル)の量子欠損µiと反応行列R(対角要素ゼロ)の非対角行列要素Rijを 利用するのが特徴である。解くべき式は次の行列方程式である。

$${R + \tan[\pi(v_1 + \mu_2)]}a_1 = 0$$

(5.6)

ここで、 $a_i = \cos[\pi(v_i + \mu_i)] A_i$ は位相シフトチャンネルの振幅を表すベクトル、 A_i は固有チャンネルの振幅ベクトルである。全ての基底ベクトル a_i が0とならない解を持つ条件は、この行列式が0になることである³⁸⁾。

$$F(v_{1}\cdots v_{N}) \equiv \begin{vmatrix} \tan \pi (v_{1} + \mu_{1}) & R_{12} & R_{1N} \\ R_{12} & \tan \pi (v_{2} + \mu_{2}) & \vdots \\ R_{1N} & \cdots & \tan \pi (v_{N} + \mu_{N}) \end{vmatrix} = 0$$
(5.7)

この式では、内部領域における近距離効果(量子欠損)は基底に、各チャンネル間相互作用 はR行列の非対角要素にだけそれぞれ含まれるので、スペクトル解析にとって非常に都合が よい。遷移の双極子モーメントDを近距離相互作用のパラメータとすると、光吸収断面積は 次のように書ける³⁷⁾。

$$\sigma = K \left| \sum_{i=1}^{n} a_i D_i \right|^2 = K \left| \sum A_i \cos[\pi (\mathbf{v}_i + \mu_i)] D_i \right|^2$$
(5.8)

但し $K=4\pi^2 \sigma \hbar \omega$

これを使って第1チャンネルが連続状態(オープンチャンネル)、第2チャンネルがリドベル グ状態(クローズチャンネル)の式を具体的に書くと次のようになり、見かけ上、Fanoのプロ ファイル関数¹⁷⁾と同じ式が得られる。

$$\sigma = K \frac{(D_1 - R_{12} \cot \pi (v_2 + \mu_2) D_2)^2}{1 + R_{12}^4 \cot^2 \pi^2 (v_2 + \mu_2)} = K D_1^2 \frac{(q + \varepsilon)^2}{1 + \varepsilon^2}$$
(5.9)
$$(\square \cup q = -\frac{D_2}{R_{12} D_1}$$

$$\varepsilon = \frac{\tan \pi (v_2 + \mu_2)}{R_{12}^2}$$

q:ファノの形状パラメータ(q値)

(5.9)式より ϵ を横軸にしてq値を0~5で変化させた時のプロファイルを描くと図 5-11のようになる。ここで極小の位置は ϵ ---qであり、極小値はゼロである(ファノ極小)。さらにこの式のエネルギー ϵ は v_2 をパラメーターとする tan 関数になっているので、 v_2 を横軸にすると、この様なファノ型構造が周期的に現れる、系列全体の共鳴スペクトルを表すことがわかる。また D_iは中間準位から i 状態へ向かう遷移の双極子モーメント、R_{ij}は ij チャンネル間相互作用のパラメータで、スペクトル解析で求めるべきパラメーターである。

FIGURE 5-11 Typical Fano Profiles with valious q-parameters

同様に、第1チャンネルだけがオープンになっている3チャンネルの式は $T_i = \tan[\pi(v_i + \mu_i)]$ を 使って、次のように書ける。

$$\sigma = K \frac{((T_2 T_3 - R_{23}^2)D_1 - (R_{12} D_2 T_3 + R_{13} D_3 T_2 - R_{23} (R_{13} D_2 + R_{12} D_3)))^2}{(T_2 T_3 - R_{23}^2)^2 + (R_{12}^2 T_3 + R_{13}^2 T_2 - 2R_{12} R_{13} R_{23})^2}$$
(5.10)

この3チャンネルの式も2チャンネルの場合と同様、Beutler-Fano型のプロファイル関数に 変形できることが Giusti-Suzor³⁸⁾や Ueda³⁹⁾によって示されている。3チャンネルの場合、こ のほかにも、摂動準位が系列に属さない単独準位の場合の式³⁶⁾や、連続状態が2個ある場合 の式⁴²⁾などが導出されている。

ガドリニウムのように構造の複雑な原子では、さらに多くのチャンネルを考慮した数値計算 が必要となる。その場合、連続状態も複数存在するのが普通であるが、実際に観測されるス ペクトルのかなりの部分は、オープンチャンネルを1つとしても説明ができる。そこで、連 続状態の量子状態を指定することなく、一般化された1つの連続状態として扱うことがしば しば行われる。以下では、Baig⁴⁰らの手法に沿って、そのようなオープンチャンネルを1つ だけ含む多チャンネル系の MQDT 式を導出する。

第1チャンネルをオープンとすると、その基底は規格化条件 A₁²=1 より、

 $a_1^2 = \cos^2[\pi(v_i + \mu_i)] = [1 + \tan^2[\pi(v_1 + \mu_1)]]^{-1} = [1 + T_1^2]^{-1}$ (5.11)

と書ける。一方、(5.7)式の行列式を(5.6)式の MQDT 行列(R+T)の余因子 C_{lj}を使って 1 行目 で展開すると、

$$T_1 C_{11} + \sum_{i=2}^n R_{1i} C_{1i} = 0$$
(5.12)

となる。この2式より T₁を消去すると q₁ が余因子 C を用いて次のように書ける。

$$a_{1}^{2} = \frac{C_{11}^{2}}{C_{11}^{2} + \left|\sum_{2}^{n} C_{1i} R_{1i}\right|^{2}}$$

次に残った n-1 行列に着目すると次のような連立方程式となる。

 $\begin{pmatrix} T_{2} & R_{23} & \cdots & R_{2n} \\ R_{23} & T_{3} & & R_{3n} \\ \vdots & & \ddots & \vdots \\ R_{2n} & R_{3n} & \cdots & T_{n} \end{pmatrix} \begin{pmatrix} a_{2} / a_{1} \\ a_{3} / a_{1} \\ \vdots \\ a_{n} / a_{1} \end{pmatrix} = - \begin{pmatrix} R_{12} \\ R_{13} \\ \vdots \\ R_{1n} \end{pmatrix}$ (5.14)

上式に非斉次連立方程式のためのクラマース規則を適用すると次のような振幅比が得られる。

(5.13)

$$\frac{a_i}{a_1} = -\frac{C_{1i}}{C_{11}} \tag{5.15}$$

(5.13)、(5.15)を(5.8)式に代入すれば、第1チャンネルだけがオープンの MQDT の一般式が得られる。

$$\sigma = K \frac{\left|\sum_{i=1}^{n} C_{1i} D_{i}\right|^{2}}{C_{11}^{2} + \left|\sum_{i=2}^{n} C_{1i} R_{1i}\right|^{2}}$$
(5.16)

この式の利点は、数値計算コードを大幅に簡略化できることである。一般に、より高いイオン準位へ収束する系列ほど相互作用する連続状態の数が増すが、各系列ピークのファノ極小の断面積がほぼゼロと見なせる場合には、オープンチャンネルを1つとして上式を使うことができる。

5.4.3 結果と議論

(1) J=1 の自動電離リドベルグ系列の摂動構造の観測

原子を0 cm⁻¹→17227.97cm⁻¹→31236.7, 34601.7 cm⁻¹のスキームで *J*=0 の中間準位に励起 し、さらに電離光の波長を掃引して、イオン化極限(49601.45cm⁻¹)付近から約 700cm⁻¹上方ま での電離スペクトルを測定した。

図 5-12 に(a)31237cm⁻¹と(b)34602cm⁻¹の2つの *J*=0の第2励起準位から観測した電離スペクトルを 650cm⁻¹の範囲で比較したものを示す。縦線はイオンの励起準位の位置を示している。両者とも、イオンの第1励起状態(E₂=261.841cm⁻¹)及び第2励起状態(E₃=633.273cm⁻¹)に収束する自動電離リドベルグ系列が観測された。これらの系列の電子配置は 5.2 節で考察したように[$f^7ds(^{10}D^{0}_{72})nf_{5/2,7/2}$]₌₁(E₂系列)、[$f^7ds(^{10}D^{0}_{9/2})nf_{7/2}$]₌₁(E₃系列)と考えられる。

FIGURE 5-12 Ionizatin spectra including E_2 and E_3 series measured by 2^{nd} step levels of J=0 図から分かる通り、系列スペクトルに重なっている価電子状態のピークは少なく、構造は

比較的単純である。どちらのスペクトルでも 49780cm⁻¹ と 50140cm⁻¹ 付近で系列ピーク強度 が増大するとともに、ピークの左右非対称性が反転しており、特徴的な摂動による影響が認 められる。このような q 値反転構造は Conerrade^{35),30}らが理論的に調べているが、鮮明な構 造が観測された例はあまりない。

2つのスペクトルを比較すると、摂動の無い領域のピークの波長は誤差範囲で一致してお り、同一系列が現れていると考えられる。しかし34602cm⁻¹からのスペクトルではE₂,E₃系列 とも、摂動中心より低エネルギー側で強度が急激に小さくなるのに対し、31237cm⁻¹では低 エネルギー側の構造が強いまま長く続いており、同じ系列でありながらスペクトルの現われ 方に大きな違いが見られる。これは介在する様々な相互作用の違いによるものと思われるが、 そのために、31237cm⁻¹のE₂系列のスペクトルでは、E₃系列の低nメンバーが重なって構造 が複雑になっている。一方、この観測範囲より高エネルギー側、50760cm⁻¹にはイオンの第 3励起状態があるが、E₃状態とのエネルギー差が大きいため、E₄系列がE₃系列に重なって 構造を複雑にしている様子は認められない。そこで以下では、まず構造の単純な E₃系列で 解析を行い、次に得られたパラメータを利用してE₂系列の解析を行った。

(2) 多チャンネル量子欠損理論解析

(2-a) E3系列の1オープン3チャンネルモデルによる解析

図 5-13 に(a)31237cm⁻¹と(b)34602cm⁻¹の第2励起準位から観測した E₃系列の摂動領域の拡 大図を示す。図中の数字は、これらの系列がコア貫入性の小さいf電子系列であることから、 広い範囲で量子欠損が 0~1 の範囲になるように同定した系列メンバーの主量子数である。 どちらのスペクトルでも、*n*=35 付近でq値がほぼ0になっており、リドベルグ状態が本来存 在する位置で電離断面積が極小になっている。この様に断面積が増減するのは、リドベルグ 状態を介して連続状態へ向かう電離過程と、摂動準位を介して連続状態へ移る電離過程とで 確率振幅が干渉するためである。

この領域には連続状態、摂動準位、E₃系列準位の3種類のチャンネルがあるので、解析には3チャンネルモデルを用いた。MQDTパラメータのうち収束極限と固有量子欠損の値は、5.2節で述べた非摂動領域の解析結果とその誤差を考慮して、L₂=50234.72cm⁻¹、 μ_2 =0.13とした。

(5.10)式を基に数個のパラメータによる最小二乗近似を繰り返すことで、パラメータ D_iと R_iを求めた。図 5-13(a)と(b)では同一系列を異なる中間準位から観測しているので、パラメ ーターR は共通で、パラメータ D の違いだけで両スペクトルが再現できなければならない。 図 5-13(a)(b)の下側のトレースはこの様にして再現したスペクトルで、どちらの場合も良い 一致が得られた。上述したようにこの2つのスペクトルでは、摂動の両側のピークの高さに 違いがあるが、その違いも断面積比の違いでよく再現できた。また摂動中心より高エネルギ ー側ではピーク幅が狭まり、特に n=36-37 の高さが増加する様子が分かった。表 5-9 に得ら れた 2 組のパラメータを示す。摂動準位は今回の実験だけでは同定できないので、ここでは イオンの低励起状態に収束する系列準位の中で、量子欠損が 0.1 程度のものを仮に同定した。

FIGURE 5-13 Comparion of measured and calculated E_3 -series spectra

表 5-9 でチャンネル間相互作用に注目すると、摂動準位と系列準位間の相互作用エネルギ

-R₂₃が他のパラメーターに比べて小さいことが分かる。そこで図 5-13(b)の R₂₃を変えてス ペクトルの変化を調べると図 5-14 のようになり、摂動の増大とともに、インターローパー の輪郭が消えてその振動子強度が系列の広い範囲にわたって分散する様子や、インターロー パーとリドベルグ状態の区別が無くなり、系列ピークの数が見かけ上1つ増える様子などが 分かった。この結果、観測された特徴的な形のスペクトルが現れた理由は、このクローズチ ャンネル間相互作用が比較的小さく、摂動が局在しているためであることがわかった。

FIGURE 5-14 Spectral variation on interaction between two close channels.

高励起状態間の相互作用の強さと他の物性値との関係はまだ明らかではないが、これまで に行ったウランやガドリニウムの高角運動量電離状態の分光では、今回の様な特徴的な形の スペクトルが観測されることはなかった。このことは高角運動量状態間の相互作用が低角運 動量の場合よりもかなり強いことを示唆していると思われ、こうした角運動量と相互作用の 強さの関係が今後の重要な研究課題になるものと考えられる。

E₃系列の自動電離では、基底状態と第1励起状態の2種類のイオンが生じうる。このよう なイオンの生成割合(自動電離の分岐比)はイオンの電荷移行反応と関係するため(Shibata 1994, Hashida 1996)、レーザー同位体分離にとっても重要である。今の場合、E₃系列のスペ クトルは3チャンネルモデルで良く再現できるので、この事から、一方のイオンだけが生成 される(分岐比 100%)と言えるかどうかを、2 オープン4チャンネルモデルによって検証 した。図 5-13(b)のスペクトルを再現した結果を図 5-15(a)(b)に示す。また、用いたパラメー タを表 5-10 に示す。2つの連続状態へ 50%づつ分岐する場合(a)でも、片方に 100%分岐する 場合(b)でも、スペクトルに大きな差は見られない。従って今回のスペクトルでは、自動電離 の分岐比を知ることは難しいと考えられる。しかしリドベルグ状態と両連続状態との相互作 用が大きい場合には、相互作用によってスペクトル形状が大きく変化するので、分岐比を求 めることも可能と思われる。

FIGURE 5-15 Comarison of E₃-series spectra having different branching ratio of AI decay.

(2-b) E2系列の1オープン5チャンネルモデルによる解析

この領域には E_2 系列(第2 チャンネル)のほか、前述した E_3 系列の低エネルギーメンバー(第3 チャンネル)や、49770cm⁻¹付近の大きな摂動(第4 チャンネル)、49720cm⁻¹ 近傍の小さな摂動(第5 チャンネル)などが存在するため、 E_3 系列より構造が複雑になっている。そこでこれらを考慮するため、1 オープン5 チャンネルのモデルを利用した。また 34602cm⁻¹から測定した E_2 系列のスペクトルは小さく S/N 比も良くないので、解析は 31237cm⁻¹からのスペクトルについてのみ行った。まず、以前報告した無摂動領域の解析結果を参考にして、この系列の収束極限を I_2 =49863.29cm⁻¹、固有量子欠損を μ_{\Box} =0.062 とした。また E_3 領域と共通のパラメータである I_3 や μ_3 は同じ値にして、(5.16)式により残りのパラメータを決定した(但し、 E_3 領域とは連続状態が異なるので、 R_{I3} の値は E_3 領域の R_{I2} =0.1 よりも小さいものと

した)。その結果を表 5-11 に示す。またこれらのパラメータから再現したスペクトルを図 5-16 に示す。再現したスペクトルと測定結果の一致は比較的良いが、49720cm⁻¹ 付近の構造はや や異なっている。この付近のファノ極小はゼロになっておらず、これはオープンチャンネル を1つしか考慮していないことが主な原因と考えられる。しかし、2 オープン4 チャンネル モデルでこの部分を計算すると、各オープンチャンネルとリドベルグ状態間の相互作用が強 い場合に(0.3 a.u.程度)、図 5-17 のファノ極小部分(矢印)の一致が良くなるものの、低エネ ルギー側のピークの形状が合わなくなることが分かった。従って E₂ 系列の正確な解析のた めにはさらにチャンネル数を増やした、2 オープン4 クローズの MQDT モデルによる取り扱 いが必要と考えられる。

FIGURE 5-16 Comparison between measured and calculated E₂-series spectra.

(2-c) 摂動による電離断面積の変化

MQDT によるスペクトル計算ではレーザーの周波数プロファイルの畳み込み計算は行っていない。従って図 5-13 や図 5-15 に示した系列スペクトルの計算結果で、摂動中心より高 エネルギー側のピークは、主量子数が大きくなるほど幅が狭くなっている。その幅が計算の 刻み幅(約 0.02cm⁻¹)より狭い部分では完全なピークが描けず、ピークの高さにばらつきが 生じていると考えられる。これらのピークの幅が狭いことは、観測されているこれらのピー クの幅が、実験で用いたレーザーの発振幅とほぼ等しく、0.07cm⁻¹ 程度であることからも理 解できる。

図 5-12(a)(b)のエネルギー範囲で最も断面積が大きいのは、49994.6cm⁻¹の価電子自動電離 準位に向かう遷移であり、どちらの場合もその断面積は 8x10⁻¹⁵cm²程度である(表 3-8)。しか しこのピーク幅はレーザーのバンド幅より広いので、これ以上高分解能のレーザーを使って も観測される断面積は増えないと考えられる。これに対し、例えば E₃系列の *n*=36-38 付近の ピークはこれより1~2割ほど低いものの、幅が狭いので、よりバンド幅の狭いレーザーで 観測すると断面積が増えると予想される。仮にピークの幅が 0.03cm⁻¹程度なら、リドベルグ 状態の方が価電子状態よりも電離断面積が大きくなり、レーザー同位体分離の光利用効率の 向上に役立つ可能性がある。

5.5 第5章のまとめ

第5章では、これまでに測定した分光データの解析により明らかになった、ウラン、ガド リニウムの原子構造および分光特性に関する特徴についてまとめた。

第5.1節では、自動電離準位の電離幅と電離断面積、J値、寿命の関係について、第2章、 第3章の分光データを基に考察した。電離準位の線幅がJ値の増加とともに狭まる傾向があ ることを示すとともに、このような特徴が、遠心力ポテンシャルバリアの効果として定性的 に理解できることを示した。このことから電離断面積の大きな遷移を効率よく探すには、J 値の大きな遷移を探すべきであるという、スキーム選定研究の重要な指針を得ることができ た。

第5.2節では、ガドリニウム原子の*J*=0及び1の準位から6つのイオン状態へ収束するリ ドベルグ系列のスペクトルを観測した。観測された摂動の無い系列スペクトルから、第1イ オン化ポテンシャルの値を、これまでより1桁以上高い精度で決定した。また、リドベルグ 状態の同位体シフトから、このイオン化ポテンシャルの同位体効果を初めて明らかにした。

第 5.3 節ではウラン原子の自動電離リドベルグ状態の同定により、同様に、ウランのイオン化ポテンシャルを精度良く決定すると共に、得られたイオン化ポテンシャルの同位体効果が、理論的な予想とほぼ一致することを示した。

第5.4節では多チャンネル量子欠損理論を用いて、ガドリニウムの自動電離リドベルグ系 列のスペクトルを解析した。*J=*0の中間準位から観測したイオンの第1、第2励起状態に収 束する系列に現れたファノ型摂動構造を、位相シフト基底 MQDT 法で解析し、リドベルグ 状態、摂動準位、連続状態間の相互作用の強さを決定した。この結果、観測された特徴的な 非対称性の反転構造が比較的弱い摂動によって生じることや、バンド幅の狭いレーザーで系 列の摂動構造を観測すれば、局所的に非常に強い電離遷移が見つかる可能性のあることを見 いだした。また本研究によりガドリニウムのような複雑な原子構造の原子でも、MQDT 法に よるスペクトル解析が有効であることを示した。

以上の結果、ウランやガドリニウムの原子構造や分光特性が明らかとなり、最適スキーム を選び出すための分光測定の指針を得ることができた。

- 1) Coste A, Avril R, Blancard P, Chatelet J, Lambert D, Legre J, Liberman S and Pinard J: J. Opt. Soc. Am. 72 (1982) 103.
- 2) Mishin V I, Lombardi G G, Cooper J W and Kelleher D E: Phys. Rev. A35 (1987) 664.
- 3) Marijnissen A, Meulen J J, Hackett P A and Simard B: Phys. Rev. A 52 (1995) 2606.
- 4) Worden E F, Carlson L R, Johnson S A, Paisner J A and Solarz R W: J. Opt. Soc. Am. B10 (1993) 1998.
- 5) Page R H and Gudeman C S: J. Opt. Soc. Am. B7 (1990) 1761.
- 6) Lu K T: Phys. Rev. A16 (1977) 2184.
- 7) Vidolova-Angelova E.P. Angelov D A, Krustev T B and Mincheva S T: Z. Phys D23 (1992) 215.
- 8) Hong F L, Maeda H, Matsuo Y and Takami M: Jpn.J.Appl.Phys. 33 (1994) 1696.
- 9) de Graaff R J, Bente E A J M, Hogervorst W, Wannstrom A: Phys. Rev. A37 (1988) 4532.
- 10) Lorenzen C -J, Niemax K and Pendrill L R: Phys. Rev. A28 (1983) 2051.
- 11) Pendrill L R: Physica Scripta T70 (1997) 151.
- 12) Worden E F, Solarz R W, Paisner J A and Conway J G: J. Opt. Soc. Am. 68 (1978) 52.
- 13) Bekov G I, Vidolova-Angelova E P, Letokhov V S and Mishin V I: Laser Spectroscopy IV (Berlin: Springer-Verlag 1979) p 283.
- 14) Smith G and Tomkins F S: Proc. R. Soc. Lond. A342 (1975) 149.
- 15) Yoo R K, Ruscic B and Berkowitz J: J. Phys. B: At. Mol. Phys. B28 (1995) 1743.
- 16) Baig M A, Ali R and Bhatti S A: J. Opt. Soc. Am. B14 (1997) 731.
- 17) Fano U: Phys. Rev. 124 (1961) 1866.
- 18) Martin W C, Zalubas R and Hogan L: Atomic Energy Levels The Rare-earth Elements, NSRDS-NBS 60 (Washington DC: US Govt Printing Office 1978).

- 19) Maeda H, Matsuo Y and Takami M: Phys. Rev. A45 (1992) 1732.
- 20) Brix P: Z. Phys. 141 (1954) 1.
- 21) Kronfeldt H-D, Klemz G and Weber D-J: J. Phys.B: At. Mol. Phys. 23 (1990) 1107.
- 22) Ahmad S A, Venugopalan A and Saksena G D: Spectrochim Acta 37B (1982) 637.
- 23) Afzal S M, Venugopalan A and Ahmad S A: Z. Phys D41 (1997) 95.
- 24) Blaise J, Wyart J -F, Verges J, Engleman Jr. R, Palmer B A and Radziemski L J: J. Opt. Soc. Am. B 11 (1994) 1897.
- 25) Diringer M: Ann. Phys. 10 (1965) 7.
- 26) Kopfermann H: Nuclear Moments (Academic Press, New York, 1958) p.167.
- 27) Englman R and Palmer B A: J. Opt. Soc. Am. 70 (1980) 308.
- 28) Heilig K and Steudel A: Progress in Atomic Spectroscopy Part A, ed. W. Hanle and H. Kleinpoppen (Plenum Press, New York, 1978) p.296.
- 29) Rajnak K and Fred M: J. Opt. Soc. Am. 67 (1977) 1314.
- 30) Passler G, Nunnemann M, Huber G, Deisenberger R, Erdmann N, Kohler S, Kratz J V, Trautmann N, Waldek A and Peterson J R: *Resonance Ionization Spectroscopy 1998*, AIP Conf. Proceedings 454 (1999) 183.
- 31) Barbier L and Champeau R -J: J.de Phys. (paris) 41 (1980) 947.
- 32) Hogervorst W and Eliel E R: Z. Phys A 310 (1983) 19.
- 33) Buch P, Nellessen J and Ertmer W: Phys. Scr. 38 (1988) 664.
- 34) Beutler H: Z. Phys. 93 (1935) 177.
- 35) Connerade J P: Proc. R. Soc. Lond. A362 (1978) 361.
- 36) Connerade J P, Lane A M and Baig M A: J. Phys. B: At. Mol. Phys. 18 (1985) 3507.

- 37) Cooke W E and Cromer C L: Phys. Rev. A32 (1985) 2725.
- 38) Giusti-Suzor A and Lefebvre-Brion H: Phys. Rev. A30 (1984) 3057.
- 39) Ueda K: Phys. Rev. A35 (1987) 2484.
- 40) Baig M A, Akram M, Bhatti S A, Sommer K and Hormes J: J. Phys. B: At. Mol. Phys. 27 (1994) 1693.
- 41) Baig M A and Bhatti S A: Phys. Rev. A 50 (1994) 2750.
- 42) Martins M and Zimmermann P: Z.Phys. D27 (1993) 115.
- 43) Hieronymus H, Neukammer J and Rinneberg H: J. Phys. B: At. Mol. Phys. 25 (1992) 3463.
- 44) Farooqi S M, Nawaz M, Bhatti S A, Ahmad N and Baig M A: J. Phys. B: At. Mol. Phys. 28 (1995) 2875.
- 45) Bhatti S A, Nawaz M, Farooqi S M, Ahad A, Butt S, Ahmad N and Baig M A: J. Phys.B: At. Mol. Phys. 30 (1997) 1179.
- 46) Lu K T: Phys. Rev. A4 (1971) 579.
- 47) Lu K T and Fano U: Phys. Rev. A2 (1970) 81.
- 48) Seaton M J: Rep. Prog. Phys. 46 (1983) 167.
- 49) Shibata T and Ogura K: JAERI-Research 94-025 (1994).
- 50) Hashida M, Sakabe S and Izawa Y: Phys. Rev. A54 (1996) 4573.
- 51) Haynam C A, Comaskey B J, Conway J, Eggert J, Glaser J, Ng E W, Paisner J A, Solarz R W and Worden E F: SPIE 1859 (1993) 24.

Energy above I.P.	Ion core	J _{AI}	4	5	6	7	8	9
(cm ⁻¹)		1			j			
>0	⁴ I ° _{9/2}	ер ef	1/2, 3/2 5/2, 7/2	1/2, 3/2 5/2, 7/2	3/2 5/2, 7/2	5/2, 7/2	7/2	
>289.0	⁶ L° _{11/2}	εp εf	1/2, 3/2 5/2, 7/2	1/2, 3/2 5/2, 7/2	1/2, 3/2 5/2, 7/2	3/2 5/2, 7/2	5/2, 7/2	7/2

Table 5-1 Magnitude of the angular momentum carried by ejected electron $\epsilon \lambda_{\varphi}$. (Uranium)

Table 5-2 Magnitude of the angular momentum carried by ejected electron $\epsilon \lambda_{\varphi}$. (Gadolinium)

Energy above	Ion core	J _{AI}	0	1	2	3	4 ::	5	б	7
I.P. (cm^{-1})	1011 COLE	1				-	j - 14			
>0	¹⁰ D° _{5/2}	ер ef	5/2, 7/2	3/2 5/2, 7/2	1/2, 3/2 5/2, 7/2	1/2, 3/2 5/2, 7/2	3/2 5/2, 7/2	5/2, 7/2	7/2	
>261.8	¹⁰ D° _{7/2}	ер ef	7/2	5/2, 7/2	3/2 5/2, 7/2	1/2, 3/2 5/2, 7/2	1/2, 3/2 5/2, 7/2	3/2 5/2, 7/2	5/2, 7/2	7/2
>633.3	¹⁰ D [°] _{9/2}	ер ef		7/2	5/2, 7/2	3/2 5/2, 7/2	1/2, 3/2 5/2, 7/2	1/2, 3/2 5/2, 7/2	3/2 5/2, 7/2	5/2, 7/2

energy (cm ⁻¹)	J-value
31236.74	0
34601.68	0
31064.55	1
31772.75	1
32660.836	1 ^a
32881.69	1
33037.80	- 1
34586.75	1°
34697.74	1
35254.585	1 ^a

Table 5-32nd-step levels used for Rydberg series analysis of Gd.

^a Martin *et al* (1978)¹⁸⁾. ^b Haynam *et al* (1993)⁵¹⁾.

Table 5-4Term energy of Rydberg series of Gd.

	Energy	· ·	IS ₁₆₀₋₁₅₄
n	(cm ⁻¹)	0	(mK)
37	49783.25	-0.02	197
38	49787.32	0.00	182
39	49791.12	0.02	193
40	49794.65	0.03	205
41	49797.90	0.05	193
42	49801.01	0.04	203
43	49803.85	0.05	197
44	49806.50	0.06	194
45	49809.01	0.05	197
46	49811.33	0.06	209
47	49813.50	0.07	205
48	49815.57	0.07	203
49	49817.52	0.06	188
50	49819.32	0.07	196
51	49821.04	0.06	203
52	49822.65	0.06	215
53	49824.13	0.09	207
54	49825.63	0.05	204
55	49826.99	0.05	213
56	49828.28	0.04	202
57	49829.47	0.07	211
58	49830.66	0.04	194
59	49831.72	0.08	215
60	49832.76	0.08	192
61	49833.75	0.10	202
62	49834.70	0.09	213
63	49835.63	0.06	223
64	49836.47	0.08	194
65	49837.31	0.06	212
66	49838.09	0.06	174
67	49838.82	0.09	215
68	49839.55	0.07	234
69	49840.22	0.09	194
70	49840.90	0.05	189
71	49841.55	0.02	179
72	49842.15	0.02	208
73	49842.70	0.07	
	Averaged	IS :	200 (15)

(a) E_2 -series measured from 34601.68 cm⁻¹ level.

δ:量子欠損計算値

Table 5-4Term energy of Rydberg series of Gd.

	Energy	δ	IS ₁₆₀₋₁₅₄
11	(cm^{-1})	U	(mK)
36	50149.92	0.03	
37	50154.28	0.06	
38	50158.32	0.10	197
39	50162.19	0.10	213
40	50165.75	0.11	199
41	50169.10	0.10	177
42	50172.16	0.12	233
43	50175.04	0.12	209
44	50177.71	0.12	213
45	50180.21	0.13	221
46	50182.57	0.13	211
47	50184.75	0.13	201
48	50186.84	0.12	185
49	50188.71	0.16	199
50	50190.59	0.13	219
51	50192.31	0.13	203
52	50193.92	0.14	192
53	50195.43	0.15	182
54	50196.91	0.12	200
55	50198.27	0.12	190
56	50199.51	0.17	184
57	50200.78	0.13	208
58	50201.95	0.13	204
59	50203.07	0.11	204
60	50204.07	0.16	200
61	50205.06	0.16	218
62	50206.01	0.16	204
63	50206.92	0.17	206
64	50207.79	0.15	198
65	50208.60	0.18	186
66	50209.38	0.19	192
67	50210.16	0.15	190
68	50210.91	0.10	198
69	50211.57	0.14	212
70	50212.20	0.18	190
71	50212.84	0.17	210
72	50213.42	0.21	188
73	50214.03	0.16	200
74	50214.62	0.11	212
75	50215.13	0.14	178

(b) E_3 -series measured from 34601.68 cm⁻¹ level.

Table 5-4Term energy of Rydberg series of Gd.

n	Energy (cm ⁻¹)	δ	IS ₁₆₀₋₁₅₄ (mK)
76	50215.64	0.14	216
77	50216.13	0.15	208
78	50216.67	0.02	178
79	50217.08	0.11	210
80	50217.52	0.11	222
81	50217.91	0.18	196
82	50218.30	0.23	202
83	50218.72	0.18	192
84	50219.13	0.08	236
85	50219.50	0.08	
86	50219.86	0.04	
87	50220.16	0.18	
	Average	IIS :	200 (15)

(b) E_3 -series measured from 34601.68 cm⁻¹ level.

 $\delta: 量子欠損計算値$

195

Table 5-4	Term energy	of Rydberg	series of Gd.
	00		

(c) E_9 -series measured from 34	4697.74 cm⁻	^t level.
------------------------------------	-------------	---------------------

n	Energy (cm ⁻¹)	δ	IS ₁₆₀₋₁₅₄ (mK)
42	52983.46	0.02	
43	52986.17	0.07	
44	52988.92	0.05	64.9
45	52991.33	0.09	63.8
46	52993.64	0.10	81.4
47	52995.85	0.09	56.8
48	52997.89	0.10	55.6
49	52999.83	0.10	69.3
50	53001.64	0.11	58.4
51	53003.39	0.09	57.3
52	53005.00	0.09	46.5
53	53006.54	0.08	57.9
54	53007.98	0.08	49.3
55	53009.36	0.07	66.6
56	53010.66	0.05	61.1
57	53011.86	0.08	57.4
58	53012.98	0.11	57.2
59	53014.09	0.11	59.1
60	53015.13	0.11	55.7
61	53016.10	0.14	63.0
62	53017.04	0.15	59.8
63	53017.98	0.11	49.8
64	53018.87	0.08	43.7
65	53019.63	0.16	58.4
66	53020.50	0.04	
67	53021.24	0.06	
68	53021.91	0.12	
69	53022.63	0.06	
70	53023.31	0.03	
71	53023.89	0.10	
	Averaged	1 IS:	59 (8)

 $\delta:$ 量子欠損計算値

	Ion-co	ore	2nd-level			
	Configuration	Energy	Energy	J	n	IP
		(cm ⁻¹)	(cm ⁻¹)			(cm ⁻¹)
E ₂	' ds(¹⁰ D° _{7/2})	261.841	34601.68	0	32-74	49601.48
			31236.74	0	23-66	49601.42
			31772.75	1	41-76	
			32881.69	1	33-62	
			34586.75	1	44-68	49601.45
			31064.85	1	36-64	49601.40
			34697.74	1	44-65	49601.45
E ₃	' ds(¹⁰ D [°] _{9/2})	633.273	34601.68	0	22-84	49601.44
			31236.74	0	20-56	49601.40
			31772.75	1	27-87	
			32881.69	1	22-39	
			32660.84	1	19-57	49601.45
			34697.74	1	42-75	49601.45
E7	⁻⁷ ds(⁸ D ^o _{5/2})	3082.011	35254.59	1	34-54	49601.45
			34697.74	1	46-87	49601.45
E ₈	⁻⁷ ds(⁸ D ^o _{7/2})	3427.274	34697.74	1	28-46	49601.50
E9	^{c7} s ² (⁸ S ^o _{7/2})	3444.235	34601.68	0	23-48	49601.45
			34586.75	1	25-66	49601.45
			35254.59	1	18-48	49601.45
			34697.74	1	29-77	49601.49

 Table 5-5
 Ionization potential of Gd determined from convergence limits of Rydberg series.

	configuration	E _{ion} (cm ⁻¹)	E _{low} (cm ⁻¹)	IS _{low} ¹⁶⁰⁻¹⁵⁴ (mK)	IS _{up} ¹⁶⁰⁻¹⁵⁴ (mK)
Eı	$f^7 ds ({}^{10} D_{5/2})$	0	35254.59	-90.8 ±10	-80 ±18
E ₂	$f^7 ds ({}^{10} D_{7/2})$	261.84	31236.86 31772.75 34697.74 34601.68 34586.79 35254.59	$\begin{array}{c} -222 \pm 10 \\ -268 \pm 10 \\ -23.4 \pm 10 \\ -275 \pm 10 \\ -256 \pm 10 \\ -90.8 \pm 10 \end{array}$	-79 ± 17 -73 ± 28 -79 ± 18 -75 ± 25 -76 ± 13 -77 ± 22
E ₃	$f^7 ds(^{10} D_{9/2})$	633.27	31236.86 31772.75 34601.68	-222 ± 10 -268 ± 10 -275 ± 10	-81 ± 14 -79 ±28 -75 ±21
E9	$f^7 s^2 ({}^8 S_{7/2})$	3444.2	34586.79 34601.68 34697.74	-256 ± 10 -275 ± 10 -23.4 ± 10	39 ± 24 27 ± 32 36 ± 14

Table 5-6Isotope shifts of Rydberg series of Gd.

 IS_{low}: 電離遷移の下準位(第2励起準位)の同位体シフト

 IS_{up}: リドベルグ系列の同位体シフト平均値

Energy		δ	
present	literature ^a	"	
50195.25	50195.27	46	0.23
50197.15	50197.17	47	0.38
50199.04	50198.99	48	0.48
50200.90	50200.90	49	0.55
50202.70	50202.67	50	0.58
50204.41	50204.42	51	0.62
50206.03	50206.03	52	0.65
50207.58	50207.61	53	0.66
50209.05	50209.06	54	0.67
50210.40	50210.42	55	0.72
50211.76	50211.76	56	0.70
50213.00	50213.00	57	0.72
50214.16	50214.18	58	0.75
50215.36	50215.33	59	0.69
		-60	
	50217.43	61	
50218.56	50218.44	62	0.57
50219.42	50219.41	63	0.64
50220.29	50220.32	64	0.66
50221.13	50221.10	65	0.66
50221.93	50221.94	66	0.67
50222.71	50222.70	67	0.65
50223.44	50223.45	68	0.66
50224.13	50224.14	69	0.68
50224.81		70	0.67
50225.45		71	0.68
50226.07		72	0.67
50226.66		73	0.68
50227.25		74	0.64

Table 5-7Term energies and quantum defects of AI Rydberg series of J=7 of U.

^a Coste *et al* (1982).

Energy (cm ⁻¹)	n	isotope shift (mK)
50188.5	43	-420
50191.8	44	-530
50193.3	45	-385
50195.3	46	-395
50197.1	47	-385
50199.1	48	-375
50201.0	49	-365
50202.7	50	-360
50204.4	51	-345
50206.0	52	-340
50207.6	53	-375
50209.1	54	-355
50210.4	55	-340
50211.8	56	-380
50213.0	57	-360
50214.2	58	-360

Table 5-8Measured isotope shifts of autoionizing Rydberg levels of U.

Table 5-9 Three channel MQDT parameter of E_2 -Rydberg series.

Channels	I_i	μ	D _i	Reaction	matrix R _{ij}
(a) 31237cm ⁻¹					
$f^7 ds({}^{10}D_{7/2,5//2})\varepsilon$	I		1		
f ⁷ ds(¹⁰ D _{9/2})nf	50234.72	0.13	1.8	R ₁₂ =0.1	
摂動準位	52458.13	0.113	3.95	R ₁₃ =0.158	R ₂₃ =0.0632
(b) 34601cm ⁻¹				· · · · · · · · · · · · · · · · · · ·	
$f^7 ds ({}^{10} D_{7/2,5//2}) \varepsilon$	1		1		
$f^7 ds ({}^{10} D_{9/2}) nf$	50234.72	0.13	5	R ₁₂ =0.1	
摂動準位	52458.13	0.113	47.4	R ₁₃ =0.158	R ₂₃ =0.0632

(D and R are in atomic unit : $1a.u.=2.1947x10^{5}cm^{-1}$)

Table 5-10 Two-open four-channel MQDT parameter of E_3 -Rydberg series from 34601 cm⁻¹ level.

Channels	I _i	μ_i	Di	Rea	action matrix	R _{ij}
 (a) case_A 1.連続状態 2.連続状態 3. E₃系列 4.摂動準位 	50234.72 52458.13	0.13 0.113	0.707 0.707 5 47.4	R ₁₂ =0 R ₁₃ =0.0707 R ₁₄ =0.112	R ₂₃ =0.0707 R ₂₄ =0.112	R ₃₄ =0.0632
 (b) case_B 1.連続状態 2.連続状態 3. E₃系列 4.摂動準位 	50234.72 52458.13	0.13 0.113	1 0 5 47.4	R ₁₂ =0 R ₁₃ =0.1 R ₁₄ =0.158	R ₂₃ =0 R ₂₄ =0	R ₃₄ =0.0632

Channels	I _i	μ,	D _i	Reaction matrix R_{ij}
1.連続状態			1	
2. E ₂ 系列	49863.29	0.062	6.123	R ₁₂ =0.1
3. E ₃ 系列	50234.72	0.13	2	$R_{13}=0.05$ $R_{23}=0.01$
4. 摂動準位	51536.30	0.113	15.652	R ₁₄ =0.224 R ₂₄ =0.137 R ₃₄ =0
5.摂動準位	51536.30	0.22	7	$R_{15}=0.1$, $R_{25}=0.08$ $R_{35}=0$ $R_{45}=0$

Table 5-11 Five-channel MQDT parameter of E_2 -Rydberg series measured from 31237 cm^{-1} level.

第6章 結論

本研究により、ウランやガドリニウム原子の準位データ、遷移データを効率よく、精度 良く測定するための分光法を確立した。これにより、レーザー同位体分離に利用可能な多 数の高励起準位、自動電離準位を見いだし、そのJ値、同位体シフト、寿命を決定した。 また、多段階スキームの評価に不可欠な、振動子強度、遷移断面積、電離幅のデータを整 備した。また、得られた分光データの詳細な解析により、ウランやガドリニウムの原子構 造や自動電離の特徴を明らかにし、データの信頼性を確認したほか、スキーム選定のため の分光測定を効率よく行うための指針を得た。さらに、スキーム断面積によるスキームの 電離効率評価法を考案し、レーザー同位体分離に適した、電離効率、同位体選択性の高い 電離スキームの候補を選びだした。

以上の結果、レーザー同位体分離に適した多段階電離スキームを選定する一連の研究手 法を確立し、ウラン、ガドリニウムの最適電離スキームを提示するという当初の目標を達 成した。

以下、章ごとに得られた研究成果を総括する。

第2章ではウランとガドリニウムのエネルギー準位に関する分光測定を行い、ウランと ガドリニウムのレーザー同位体分離に必要な多段階電離スキームのうち、これまでほとん ど知られていなかった高励起準位のエネルギー準位構造の全容を明らかにした。

(1) ウランとガドリニウムの単色多光子電離遷移を観測し、遷移の始状態をポンププロー ブ分光により決定した。この始状態と単色遷移の中心波長から、その励起スキームを調べ、 ほとんどの単色遷移が、1段目、2段目の準位のうちいずれか一方に共鳴する3光子共鳴 イオン化遷移であること、また2段目で共鳴する遷移の方が、1段目で共鳴する遷移より 多く、線幅が狭く強いことを示した。さらに、単色遷移の同位体シフトから、経由するエ ネルギー準位の同位体シフトを決定した。

(2) 2波長多光子法で基底状態や準安定状態から励起する奇パリティ第2励起準位を探査した。その結果、ウランでは新たに同定した150個の準位を含む約450個の準位を31300 ~36400cm⁻¹の範囲で観測し、ガドリニウムでは新準位38個を含む約90個の準位を31000~37000cm⁻¹の範囲で観測した。共鳴電離信号と光ガルバノ信号の同時測定体系では、各スペクトルの信号感度に差があり、同時測定によって高励起準位をより確実に探査できることを示した。

(3) 3 波長 3 段階共鳴電離質量分析法で自動電離準位のエネルギーとJ値を決定した。その結果、ウランでは約150個の自動電離準位を49930~51200cm⁻¹の範囲で観測し、ガドリニウムでは約350個の自動電離準位を49600~54600cm⁻¹の範囲で観測した。これらの準位のJ 値は、選択則による方法のほか、偏光組合わせ法によって同定した。さらに、J値が確定し た自動電離準位を使って、第2.3節でJ値が確定しなかったウランの高励起奇パリティ準位のJ値を多数確定した。

(4) 2波長多光子、3波長3段階共鳴電離質量分析法を用いて、32000cm⁻¹~36000cm⁻¹に存在する奇パリティ第2励起準位と、49950cm⁻¹~50500cm⁻¹に存在する偶パリティ自動電離 準位の同位体シフトを測定した。同位体シフトの大きさはs電子の数に比例しており、基底 状態にs電子が2個あるウランやガドリニウムでは、s電子の数が減るほどマイナス側に大 きくシフトすることが分かった。

第3章では、エネルギー準位間の光学遷移に関する分光測定を行い、多段階電離スキー ムの電離効率の評価に不可欠な遷移データを、それぞれに適した分光手法を用いて精度良 く、効率的に取得した。

(1) 3段階遅延光電離法によりウラン、ガドリニウムの第1、第2励起準位の寿命および 第1励起遷移の分岐比をそれぞれ測定した。分岐比測定では、従来の分岐比測定法に加え て、始状態以外の準位へ落ちる全ブランチの分岐比の総和が得られる逆分岐比測定法を考 案し、2つの分岐比曲線で挟み撃ちにすることで、励起準位の寿命が長い場合でも、高精 度の分岐比測定が可能であることを示した。さらに、寿命と分岐比の測定値に基づいて振 動子強度を計算し、得られた値を文献値と比較した。また本分岐比測定法が第2励起遷移 にも適用可能であることを、振動子強度が精度良く求められているイッテルビウムの第2 励起遷移で実証した。

(2)分岐比の小さな励起遷移や電離遷移にも使える断面積測定法として、飽和法による断 面積測定について検討した。まず飽和の原理による正確で簡単な測定法を確立するための 予備試験を行った。はじめにレーザーの発振幅による断面積ピーク値の違いを調べた。ま た、レーザービームの空間強度分布が(1)均一ビーム(トップハット型)の場合と(2)レンズで 集光したガウス型ビームの場合の飽和曲線を測定し、ガウスビームで行った場合の補正方 法について検討した。さらに、飽和が完全に現れなくても飽和断面積が求められる方法と して、逆飽和法を考案しその適用性を調べた。これらの結果から、飽和法による測定手順 などを確定し、さらに分岐比測定で求めたガドリニウムの第1励起遷移のgf値やイッテル ビウムの第2励起遷移のgf値との比較を行い、振動子強度が正しく測定できることを確認 した。またこの方法でウランやガドリニウムの多数の第2励起遷移、電離遷移の飽和断面 積を測定し、エネルギー準位の量子状態と断面積の関係などについて考察した。また幅の 狭い電離遷移では、断面積が幅によって変化することから、電離幅の測定が重要であるこ とを明らかにした。

(3) 飽和断面積を簡単な装置で測定する方法として、光ガルバノ信号の飽和特性を利用す る方法を考案した。その結果、低速ガルバノ信号が第1励起遷移の簡易測定に利用できる こと、高速光ガルバノ信号が第2励起遷移や、電離遷移の断面積測定に利用できることを 示した。 第4章では多段階共鳴電離スキームの電離効率や同位体選択性を評価し、レーザー同位 体分離のための最適電離スキームを選びだす方法を考案した。これによりウランやガドリ ニウムのレーザー同位体分離に適した電離スキームの候補を選び出した。

(1) 多段階電離遷移を等価な1段階遷移に簡略化する方法により、スキームのイオン化効率の指標となる「スキーム断面積」を計算する方法を考案した。様々な光強度比の中にスキーム断面積を最大にする最適強度比が存在し、その最大値や最適強度比が実験条件によらないため、スキームの潜在的な電離能力を表すことが分かった。また2段階電離スキームのスキーム断面積を実測することにより本方法の適用性を確認した。

(2) ウラン、ガドリニウムの多くのスキームのスキーム断面積を計算し、電離効率の高い スキームを選び出すとともに、その最適光強度比を求めた。電離幅の狭いスキームではレ ーザー線幅に逆比例して電離効率が向上することから、電離幅の狭い電離準位の重要性を 明らかにした。選定されたスキームの電離効率はレーザー同位体分離で必要とされる効率 を十分上回ることを確かめた。

(3) 第2章の同位体シフトのデータとLetokhovらが考案した多段階スキームの同位体選択性を評価する方法に基づき、分離効率の高いスキームの選び出しを行った。選定された ウランの電離スキームは、回収ウランの再濃縮で問題となるU236も分離、除去する高い同 位体選択性を有することが分かった。

第5章では、これまでに測定した分光データを解析して、ウランやガドリニウムの自動 電離過程の特徴やその原子構造について調べ、最適スキームを効率よく選び出すための分 光測定の指針や、新たな分光学的知見を得た。

(1) 自動電離準位の電離幅と電離断面積、J値、寿命の関係について、第2章、第3章の 分光データを基に考察した。電離準位の線幅がJ値の増加とともに狭まる傾向があることを 示すとともに、このような特徴が、遠心力ポテンシャルバリアの効果として定性的に理解 できることを示した。このことから電離断面積の大きな遷移を効率よく探すには、J値の 大きな遷移を探すべきであるという、スキーム選定研究の重要な指針を得ることができた。

(2) ガドリニウム原子のJ=0及び1の準位から6つのイオン状態へ収束するリドベルグ系列 のスペクトルを観測した。観測された摂動の無い系列スペクトルから、第1イオン化ポテン シャルの値を、これまでより1桁以上高い精度で決定した。また、リドベルグ状態の同位 体シフトから、このイオン化ポテンシャルの同位体効果を初めて明らかにした。

(3) ウラン原子の自動電離リドベルグ状態の同定により、同様に、ウランのイオン化ポテンシャルを精度良く決定すると共に、得られたイオン化ポテンシャルの同位体効果が、理論的な予想とほぼ一致することを示した。

(4) 多チャンネル量子欠損理論を用いて、ガドリニウムの自動電離リドベルグ系列のスペ クトルを解析した。*J*=0の中間準位から観測したイオンの第1、第2励起状態に収束する系 列に現れたファノ型摂動構造を、位相シフト基底MQDT法で解析し、リドベルグ状態、摂 動準位、連続状態間の相互作用の強さを決定した。この結果、観測された特徴的な非対称 性の反転構造が比較的弱い摂動によって生じることや、バンド幅の狭いレーザーで系列の 摂動構造を観測すれば、局所的に非常に強い電離遷移が見つかる可能性のあることを見い だした。また本研究によりガドリニウムのような複雑な原子構造の原子でも、MQDT法に よるスペクトル解析が有効であることを示した。

本研究ではレーザー同位体分離への応用という観点から多段階共鳴光イオン化分光法を 利用したが、本方法は、レーザー極微量分析やレーザーイオン源など、多方面への応用が 期待できる¹⁾。特に、ウランのレーザー微量分析法の開発は、アクチノイド元素の環境中、 生物中の挙動研究や、無届核開発防止のための保障措置査察、核燃料施設における汚染エ リアの評価等等の分野で重要である²⁾⁻⁴⁾。また、現在制度化のための法整備が進められてい る放射性廃棄物の規制免除制度では、極低レベル廃棄物中の様々な核種の汚染濃度を正確 に分析する技術が重要であり、アクチノイド元素をはじめとする難分析核種の分析に、多 段階共鳴光イオン化分析法の適用が検討されている⁵⁾。本研究で確立された、高励起準位と 高励起遷移の様々な分光法や解析方法は、これらの応用を進める上でも有用と考えられる。

また本研究で得られたウランとガドリニウムの分光データ自体も、様々な分野で用いら れると思われる。その信頼性を示す2つの実例がある。第2章で述べたように、ガドリニ ウムの同位体シフトの文献値に系統的な誤差が見いだされたが、これは基準となる準位の 同位体シフトに経験値を用いたことが原因であることが、Venugopalan⁶によって報告され、 本データに基づき過大評価が修正されている。また、天文学への利用のために振動子強度 文献値の精度を評価したMorton⁷によって、第3章で述べた方法により得られた振動子強度 データが、ガドリニウムの最も信頼できる値として評価され、発光分光で得られた従来の 振動子強度データについて、赤外遷移の分岐比への寄与を見直す必要性が指摘されている。 レーザーの応用開発は重要であるが、その基礎となるのは正確な分光データであり、その 測定に本研究で考案、改良された分光手法が役立つものと思われる。

- 1) Wendt K, Trautmann N and Bushaw B A: Nucl. Inst. Meth. Phys. Res. Sec. B 172 (2000) 162.
- 2) Herrmann G, Riegel J, Rimke H, Sattelberger P, Trautmann N, Urban F –J, Ames F, Otten E –W, Ruster W and Scheerer F: Resonance ionization spectroscopy 1990: Inst. Phys. Conf. Ser. 114 (1991) 251.
- 3) Hotchkis M A C, Child D, Fink D, Jacobsen G E, Lee P J, Mino N, Smith A M and Tuniz C: Nucl. Inst. Meth. Phys. Res. Sec. B172 (2000) 659.
- 4) Erdmann N, Benninghoven A, Betti M, Gouder T, Gruning C, Kollmer F, Lievens P, Miserque F, Philipsen V, Silverans RE and Vandeweert E: Resonance ionization spectroscopy 2000: AIP Conf. Proceedings 584 (2001) 40.
- 5) Mueller P, Blaum K, Bushaw B A, Diel S, Geppert Ch, Naehler A, Noertershaeuser, Trautmann N and Wendt K: Radiochim Acta 88 (2000) 482.
- 6) Venugopalan A and Ahmad S A: Spectrochim. Acta B56 (2001) 129.

7) Morton D C: Astrophys. J. Suppl. Series 130 (2000) 403.

謝辞

本論文をまとめるにあたり、終始懇切なご指導、ご鞭撻を賜りました大阪大学レーザー 核融合研究センター教授 井澤靖和博士、ならびに貴重なご指導、ご助言を頂きました、 大阪大学原子力工学専攻教授 西嶋茂宏博士、山中伸介博士、竹田敏一博士に深厚なる謝 意を表します。また貴重なご助言、ご教示を頂きました福井大学工学部助教授 仁木秀明 博士に深く謝意を表します。

また本研究の遂行に際し、一貫して変わらぬご指導、ご助言を頂きました日本原子力研 究所 分析科学研究グループ 渡部和男博士、若井田育夫博士、同位体分離研究室長 有 澤孝氏、柴田猛順博士、環境科学研究部長 安達武雄博士、長岡鋭博士に深謝します。

またレーザー共鳴電離分光の原子物理、核物理、核化学への応用についてご指導を頂き ましたドイツマインツ大学物理学部教授のK. Wendt博士、N. Trautmann博士、E.-W. Otten博 士、および滞在中研究を共にしたP. Mueller氏、C. Geppert氏、S. Philipp氏をはじめとする LARISSA研究グループの方々、およびK. Blaum博士 (CERN)、W. Noertershaeuser博士 (GSI)、 H. Wang博士(KEK)、J. – h. Yi教授(KAERI)に感謝します。

また、同位体分離研究室で終始研究を共にしてきた 大場正規氏、赤岡克明氏、および 丸山庸一郎氏、加藤政明氏、鈴木庸氏氏、大図章氏、大場弘則氏、西村昭氏、小倉浩一氏、 杉山僚氏、田村浩一氏、原山清香氏、および原子核科学研究グループ飯村秀紀氏に心より 感謝いたします。
業績目録

原著発表論文

- 1 Pressure shifts of valence and core exciton peaks in potassium iodide A. Yamada, H. Fukutani, M. Miyabe, K. Yagi, H. Kato, T. Koide, T. Shidara, T. Miyahara and S. Sato J. Phys. Soc. Jpn 54(1985) 4005-4013. 2 Piezoreflectance study of excitons of rubidium iodide in the fundamental absorption region M. Miyabe, K. Yagi, A. Yamada and H. Fukutani Solid State Comm. 60(1986) 281-284. 3 Piezoreflectance of potassium iodide in the vacuum ultraviolet region from 5 to 30 eV M. Miyabe, K. Yagi, A. Yamada, Y. Aiura, T. Koide, T. Shidara, H. Kato and H. Fukutani J. Phys. Soc. Jpn 56(1987) 378-386. 4 Piezoreflectance of rubidium chloride in the vacuum ultraviolet region from 6 to 30 eV K. Yagi, M. Miyabe, A. Yamada, Y. Aiura, H. Fukutani, M. Yuri, M. Shirasaki, M. Kobayashi, A. Misu, H. Kato, T. Koide and T. Shidara J. Phys. Soc. Jpn 57(1988) 1478-1488. 5 Studies on photoionization process in atomic vapor laser isotope separation applied to heavy elements at JAERI T. Arisawa, I. Wakaida, K. Akaoka, M. Miyabe and M. Oba J. Mass Spectrom. Soc. Jpn. 41 (1993) 253-276. 6 Highly excited odd-parity states of atomic gadolinium Masabumi Miyabe, Ikuo Wakaida and Takashi Arisawa J. Phys. B: At. Mol. Opt. Phys. 29(1996) 4073-4080. 7 Separation of an isotope as a precursor of a gamma-ray laser medium T. Arisawa, M. Miyabe, A. Sugiyama, K. Yamazaki, A. Ohzu, Y. Suzuki, K. Akaoka, I. Wakaida and Y. Maruyama Hyperfine Int. 107 (1997) 101-128. 8 Measurement of radiative lifetime and branching ratio of Gd I using three-step
 - resonance ionization spectroscopy <u>Masabumi.Miyabe</u>, Ikuo Wakaida and Takashi Arisawa Z. Phys. <u>D39</u> (1997) 181-187.
- 9 Identification of single-color multiphoton ionization transitions of atomic gadolinium <u>Masabumi Miyabe</u> and Ikuo Wakaida J. Phys. B: At. Mol. Opt. Phys. 30(1997) 4193-4206.

- 10 Analysis of the even-parity Rydberg series of Gd I to determine its ionization potential and isotope shift <u>Masabumi Miyabe</u>, Masaki Oba and Ikuo Wakaida J. Phys. B: At. Mol. Opt. Phys. 31(1998) 4559-4571.
- 11 Zeeman effect of atomic uranium in the high lying odd levels measured by laser induced fluorescence spectroscopy Masaki Oba, Katsuaki Akaoka, <u>Masabumi Miyabe</u> and Ikuo Wakaida Eur. Phys. J. D 10(2000) 349-352.
- 12 Highly excited odd-parity levels of atomic uranium <u>Masabumi Miyabe</u>, Masaki Oba and Ikuo Wakaida J. Phys. B: At. Mol. Opt. Phys. 31(2000) 4957-4972.
- 13 Spectroscopy for high atomic energy levels using external cavity laser diode Masaki Oba, Ikuo Wakaida and <u>Masabumi Myabe</u> Jpn. J. Appl. Phys. 40(2001) 357-358.
- 14 Isotope shift measurement of high-lying energy levels of atomic uranium by resonance ionization mass spectrometry <u>Masabumi Miyabe</u>, Masaki Oba and Ikuo Wakaida J. Phys. Soc. Jpn 70(2001) 1315-1320.
- Ultra Trace Isotope Determination in Environmental, Bio-Medical and Fundamental Research by High Resolution Laser-Mass Spectrometry
 K. Wendt, C. Geppert, <u>M. Miyabe</u>, P. Muller, W. Nortershauser and N. Trautmann
 J. Nucl. Sci. Tech. 39(2002) 303-307.
- 16 Total angular momenta of even-parity autoionizing levels and odd-parity high-lying levels of atomic uranium <u>Masabumi Miyabe</u>, Christopher Geppert, Masaki Oba, Ikuo Wakaida and Klaus Wendt J. Phys. B: At. Mol. Opt. Phys. 35(2002) 3865-3877.
- 17 Isotope shift and hyperfine structure of the highly excited atomic uranium Masaki Oba, Katsuaki Akaoka, <u>Masabumi Miyabe</u> and Ikuo Wakaida Eur. Phys. J. D 21(2002) 255-260.
- Nuclear moments and isotope shifts of ¹³⁵La, ¹³⁷La and ¹³⁸La by collinear laser spectroscopy
 H. Iimura, M. Kiizumi, <u>M. Miyabe</u>, M Oba, T. Shibata, N. Shinohara, Y. Ishida, T. Horiguchi and H. A. Schuessler
 Phys. Rev. C 68 (2003) 054328.

国際会議プロシーディング、原研レポート

1	Simplified Method for Estimating multistep photoionization efficiency M Mivabe I Wakaida K. Akaoka, M. Obba and T. Arisawa
	6'th International Symposium on Resonance Ionization spectroscopy and its Applications
	(RIS92), (Santa Fe, USA, May 1992) : IOP conference Series no.128 pp.139-142 (1993).
2	Characterization of multistep photoionization sequence
	<u>M.Miyabe</u> I Wakaida K. Akaoka, M. Ohba and T Arisawa
	International Conference on Laser Advanced Materials (LAMP'92), (Nagaoka, Japan,
	June 1992) Processings of LAMP 92 pp.1239-1243 (1992).
3	Effect of hyperfine structure on multistep photo-ionization of atom
	K. Akaoka, M. Ohba, I Wakaida, <u>M.Miyabe</u> and T Arisawa
	International Conference on Laser Advanced Materials (LAMP'92), (Nagaoka, Japan,
	June 1992) Processings of LAMP 92 pp.1243-1250 (1992).
4	Resonance Ionization Spectroscopy of gadolinium
	<u>M.Miyabe</u> and I. Wakaida
	8'th International Symposium on Resonance Ionization spectroscopy and its Applications
	(RIS96), (State College, USA, June 1996): All conference proceedings 388 pp.319-322.
5	Determination of J-values and g-factors of high-lying levels of uranium atoms by
	two-step laser induced fluorescence spectroscopy
	M. Ohba, K. Akaoka, <u>M.Miyabe</u> and I Wakaida
	Pittcon'97 pp.306 (1997), (Atlanta, USA, March 1997).
6	High resolution spectroscopy of uranium atom by laser induced fluorescence method
	M. Ohba, K. Akaoka, <u>M.Miyabe</u> and I Wakaida
	Proceedings of SPIE 3886 pp.691-698 (2000), (Osaka, Japan, November 1999).
7	Resonance ionization spectroscopy for AVLIS
	M.Miyabe, I Wakaida and T Arisawa
	JAERI-conf-95-005 Vol2 pp.930-937 (1994).
8	Determination of ionization potential of atomic gadolinium and its isotope effect:
	analysis of unperturbed Rydberg series
	Masabumi Miyabe, Masaki Oba and Ikuo Wakaida
	JAERI-research 97-078 (1997).
9	Analysis of J=1 autoionizing Rydberg series of atomic gadolinium with multichannel
	quantum defect theory
	Masabumi Miyabe, Masaki Oba and Ikuo Wakaida
	JAERI-research 98-028 (1998).

Laser induced fluorescence spectroscopy of Neodymium atoms produced by laser ablation

H. Wang, H. Ohba, M. Saeki, <u>M. Miyabe</u>, H. Miyatake and H. Iimura JAERI-conf (2004) in press.

10