|

) <

The University of Osaka
Institutional Knowledge Archive

Tale Formal Verification for Dependable Systems by
Model Checking

Author(s) |#&)Il, &%

Citation |KFRKZ, 2004, HIFHX

Version Type|VoR

URL https://hdl. handle.net/11094/1455

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Formal Verification for Dependable System

by Model Checking

Tomoyuki Yokogawa

December 2003

Contents

1 Introduction

1.1 OVerview o

2 Model Checking

2.1 Model Checking
2.1.1 Symbolic Model Checking
2.1.2 Symbolic Model Verifier (SMV)
3 Fault Tolerance Verification
3.1 Model of Fault-Tolerant Systems
3.1.1 Guarded Command Programs
3.1.2 Faults
3.1.3 Fault Tolerance L
3.2 The Proposed Modeling Language
3.2.1 Syntax
3.2.2 Translation Method to the SMV Language
3.3 Case Studies L
3.3.1 Atomic Commitment Protocol
3.3.2 Byzantine Agreement
3.3.3 Leader Election
3.3.4 Otherresults
4 Feature Interaction Detection
4.1 Services and Interaction oL
4.1.1 Communication Services

11

11
11
11
12
13
14
15
16
20
20
24
27
28

4.2 Model 37
4.2.1 Notation 37
4.2.2 State Transition Model 38

4.3 Symbolic Representation 40
4.3.1 State Transition 40
4.3.2 Interaction State L Lo 42

4.4 Experimental Results oo 44
4.4.1 Nondeterminism Lo 44
4.4.2 Invariant Violationo 44

Bounded Model Checking 48

5.1 Existing Scheme 48

5.2 Proposed Scheme 49
5.2.1 Encoding 49
5.2.2 Constructing a Succinct Formula o1
5.2.3 Ilustrative Example L. 52

5.3 Representing Interaction State 54

54 Comparison Results 56
5.4.1 Nondeterminismo 56
5.4.2 Invariant Violation L. 58

Conclusions 60

6.1 Achievements 60

11

Chapter 1

Introduction

1.1 Overview

In recent years, the growing demand for high availability and reliability of computer
systems has led to a formal verification for dependable systems. Among them, there are
a number of researches of formal verification for fault-tolerant systems [18; 23, 27, 30].
Methods for formally verifying fault tolerance are classified into deductive verification and

model checking.

The term deductive verification normally refers to the use of axioms and proof rules
to prove the correctness of systems. The importance of deductive verification is widely
recognized by computer scientists. There are some examples where the fault tolerance was
verified by deductive verification [23, 30]. Kljaich proposed a formal verification system
based on the use of automated reasoning techniques to validate fault tolerance [23]. An
extend Petri net representation, called flow nets, is used to describe the system to be
verified. Melliar-Smith showed the methodology employed to demonstrated rigorously
that the SIFT fault-tolerant computer meets its requirements [30]. The process of formal
specification and verification of SIFT discovered four design errors which would have
been difficult or impossible to detect by testing. However, deductive verification is a
time-consuming process that can be performed only by experts who are educated in
logical reasoning and have considerable experience. The proof of a single protocol or
circuit can last days or months. Moreover deductive verification cannot be performed

fully automatically; thus the use of it is rare. An advantage of deductive verification is

that it can be used for reasoning about infinite state systems. However, no limit can be

placed on the amount of time or memory that may be needed in order to find a proof.

Model checking is an automatic technique for verifying concurrent systems. That can
be performed absolutely automatically in stead of restriction that it can verify only finite
state systems. Because of this property, it is preferable to deductive verification, whenever
it can be applied. For realistic designs, however, the number of states of the system can
be very large and the explicit traversal of the state space may become infeasible. This

problem is usually called the state explosion problem.

Symbolic model checking [29] is one of the most successful approaches to state explo-
sion. This method alleviates the problem by symbolically representing the state space by
Boolean functions. Many symbolic model checking tools use Binary Decision Diagrams
(BDDs) as the data structure to manipulate Boolean functions efficiently. Since Boolean
functions can often be represented by BDDs very compactly, the symbolic model checking

method can reduce the memory and time required for analysis.

There are also some examples where fault tolerance property of concurrent systems
was verified by model checking [5, 19, 37]. Bernardeschi presented an approach for the
verification of the correctness of fault tolerant system [5]. The approach is based on pro-
cess algebras, equivalence theory and temporal logic. The usability of the approach is
supported by the availability of automatic tools for equivalence checking and for proving
the temporal logic properties by model checking. Gnesi described an experiment in formal
specification and verification performed in the context of a safety critical railway control
system [19]. In this research, verification of safety and liveness properties had been per-
formed using the verification tool suite SPIN. Schneider showed a practical application of
model checking for validating the requirements for a complex embedded system [37]. The
system verified in the case study is a dually redundant spacecraft controller, in which a
checkpoint and rollback scheme is used to provide fault tolerance during the execution of

critical control sequences.

In this dissertation, we aim to achieve formal verification for dependable systems
using model checking. There are a number of methods to verify dependable systems
using modelchecking. However, these methods for verification are specialized for specific

systems, and a general approach does not exist. Thus we propose a general method

for automatic verification for dependable systems using model checking. We propose
general approaches for automatic verification using model checking for two problems.
The first is verification for fault-tolerant systems, and the second is detection of feature
interaction. First, we propose a method to verify fault-tolerant systems, which is the
common dependable system, using model checking. We achieve verification for fault
tolerance using symbolic model checking by providing the framework to model fault-
tolerant systems and extracting transition relations as a Boolean formula from the model.
Second, we propose a method to detect feature interactions in telecommunication services
using model checking. Feature interaction refers to situations where a combination of
different services induce unexpected behaviors. We adopt a variant of State Transition
Rules (STR) [21, 34] to describe services and the behavior of the system. And we detect
feature interactions using symbolic model checking by extracting transition relations from
the model in a similar way. These methods use a symbolic model checking tool called
SMV (Symbolic Model Verifier) [29]. SMV is a tool for checking that finite-state systems
described by the input language of SMV satisfy specifications given in CTL (Computation
Tree Logic) [12].

First, we propose a method to verify fault-tolerant systems automatically using model
checking. Our aim is to provide a single method that can be applied to various kinds
of systems. We achieve this goal to adopting a model of fault-tolerant systems that is
proposed by Arora and Gouda [2]. In recent years, the model has been accepted as a

fundamentals for building and reasoning about fault-tolerant systems.

Of course, there are always situations where problem-specific properties, which cannot
be handled by our method, need to be verified. This is most likely when the designs to
be verified are detailed. However, we believe that our method is still useful especially in

early stages of development, where designs are in highly abstract level.

We assume that a system to be verified is given in the form of a guarded command
program [2]. We design a modeling language suited for describing guarded command
programs, and then we propose a translation method from the modeling language to
the SMV language. We present the CTL formula that describes fault tolerance. Finally
we apply the proposed method to some examples to demonstrate the usefulness of the

method.

B A B A

== \(CFt00) = (0CS10C) = \(CFt00) = (0CS10C)
= N = =
ooo ooo) dia ooo ooo
A diasB /
C ¥ ~~ Violation of

c
P ﬁ =)~ ocstoC
oog oog
oog oog

:DDD :DDD

Y

Figure 1.1: Interaction example.

Second we propose a method to detect feature interactions in telecommunication ser-
vices using model checking. Feature interaction refers to situations where a combination
of different services behaves differently than expected from the single services’ behaviors.
For example, consider a situation where user A has subscribed to the service Originating
Call Screening (OCS) and does not want calls to user C to be put through, and user B
has activated the service Call Forwarding (CF) to user C. In this situation, if A calls B,
the intention of OCS not to be connected to C is invalidated since the call is put through

to C by way of B. Figure 1.1 illustrate this interaction.

In today’s intelligent telecommunication networks, feature interaction is considered a
major obstacle to the introduction of new features and the provision of reliable services.
In practical service development, however, the analysis of interactions has often been
conducted in an ad hoc manner. This leads to time-consuming service design and testing

without any interaction-free guarantee.

Many approaches have been explored to overcome this situation. Keck and Kuehn
surveyed these approaches [24]. They also surveyed classification schemes, and mentioned
the one by Bouma and Velthuijsen [8] as a generally accepted categorization framework.
In this framework, the approaches to feature interaction are classified into on-line and

off-line and into avoidance, detection, and resolution.

We propose a formal approach which falls into the off-line detection category; that is,
the proposed approach is aimed at detecting latent feature interaction in given communi-
cation service specifications. Although formal approaches have been well studied in this

category, ours is different in that it uses model checking.

In our method, we achieve to detect feature interaction by the SMV tool by following

4

processes. First we extract the transition relation from given specification as a boolean
formula and describe SMV program using the formula. And second we describe the
property of interaction occurrence as a CTL formula. As experiments, we demonstrate

that we can detect all interactions for given service specifications by SMV.

As stated above, we achieved automatic detection for feature interaction using sym-
bolic model checking. However, there are some case where SMV requires much time
for detection process. To solve this problem, we propose the method to detect feature

interaction using bounded model checking.

Bounded model checking [7, 39, 38] is a new symbolic model checking method which
does not use BDDs. The central idea behind this method is to reduce the model checking
problem to the propositional satisfiability (SAT) checking problem and to look for coun-
terexamples that are shorter than some fixed length k for a given property. The formula
to be checked is constructed by unwinding the transition relation of the system k times

such that truth assignments satisfying the formula correspond to counterexamples.

In the literature, it has been reported that bounded model checking can work effi-
ciently, especially for the verification of digital circuits. An advantage of this method is
that it works efficiently even when compact BDD representation cannot be obtained. It
is also an advantage that it can exploit recent advances in decision procedures of satisfi-

ability. (The latest SAT tools include, for example, Grasp [28] and Chaff [31].)

In contrast, this method does not work well for asynchronous systems, because the en-
coding scheme into propositional formulas is not suited for such systems. When applying
this technique to asynchronous systems, a large formula would be required to represent

the transition relation, thus resulting in large execution time and low scalability.

To overcome this problem we have been working on new encoding. In this dissertation
we describe the encoding scheme. (Preliminary results were presented as a short paper
[42].) The new encoding reduces the size of the resultant formula by exploiting the
property that usually only small fraction of state variables take in part of each state
transition. Interestingly, as a side-effect, the new scheme often explores a larger state
space than the existing bounded model checking does for the same k. By applying the
proposed scheme and other model checking methods to feature interaction detection, we

show the effectiveness of the propose method.

The remainder of this dissertation is organized as follows. In Chapter2, we describe
model checking method. In Chapter3, we describe the method for automatic verification
for fault-tolerant systems and show the result of case studies. In Chapter4, we describe
the method to detect feature interactions and show the experimental reslts. In Chapter,
we propose to use bounded model checking for feature interaction detection and show its

effectiveness. In Chapter6, we conclude the dissertation.

Chapter 2

Model Checking

2.1 Model Checking

Model checking is an automatic technique for verifying finite state concurrent systems.
Model checking methods search the finite state space to determine if some specification is
true or not [13]. One benefit of the restriction to finite state systems is that verification
can be performed automatically. Although this restriction may seem to be a major dis-
advantage, model checking is applicable to several very important classes of systems. For
example, hardware controllers are finite state systems, and so are many communication
protocols. In many cases errors can be found by restricting unbounded data structures to
specific instances that are finite state. For example, programs with unbounded message
queues can be debugged by restricting the size of the queues to a small number like two

or three.

2.1.1 Symbolic Model Checking

The main challenge in model checking is dealing with the state explosion problem. The
problem occurs in systems with many components that can interact concurrently. To cope
with the problem, a method has been proposed that expresses the state space and the
transition relation by Boolean functions, and verifies systems by processing the Boolean
functions. This method is called symbolic model checking [10, 29].

In symbolic model checking, a Boolean function is expressed by using OBDDs (Ordered

binary decision diagrams)[9]. OBDDs provide a canonical form for Boolean functions

that are often substantially more compact than conjunctive or disjunctive normal form,
and very efficient algorithms have been developed for manipulating them. Therefore, it
achieves the conciseness to express the state space and the transition relation, and enables
the avoidance of the state explosion problem.

In model checking, it is necessary to describe the properties that the system must
satisfy as a specification. The specification is usually given as a formula in some logic.
For concurrent systems, it is common to use temporal logic, which can assert how the
behavior of the system evolves over time. A well-used temporal logic is CTL [12]. Time
is not mentioned explicitly in CTL; instead a formula might specify that eventually some
designated state is reached, or that an error state is never entered. Properties like even-
tually or never are specified using special temporal operators. These operators can be
combined with Boolean connectives or nested arbitrarily.

CTL formulas describe properties of computation trees. The tree is formed by unwind-
ing the execution sequences into an infinite tree with the designated initial state at the
root. The computation tree shows all of the possible executions starting from the initial
state. In CTL, formulas are composed of path quantifiers and temporal operators. The
path quantifiers are used to describe the branching structure in the computation tree.
There are two such quantifiers; one is A (“for all computation paths”) and another is E
(“for some computation path”). These quantifiers are used in a particular state to specify
that all of the paths or some of the paths starting at that state have some property. The
temporal operators describe properties of a path through the tree. There are four basic
operators, X (“next time”), F' (“in the future”), G (“globally”), U (“until”). In this
paper, we use only AF and AG. The formula AGp holds in state s if p holds in all states
along all sequences of states starting from s, while the formula AFp holds in state s if p

holds in some states along all sequences of states starting from s. An atomic proposition

is a CTL formula. If f and g are CTL formulas, so are =f, f Ag, fV g, AFf, and AGf.

2.1.2 Symbolic Model Verifier (SMYV)

SMV is a software tool that implements symbolic model checking [29]. It is based on
a language for describing hierarchical finite-state systems. Programs described in the

language contain specifications expressed by CTL. The model checker extracts a state

space and a transition system from a program in the SMV language and uses an OBDD-
based search algorithm to determine whether the system satisfies its specification. If the
system does not satisfy the specification, the verification tool will produce an execution
trace that shows why the specification is false.

Figure 2.1 is an example of an SMV program. A state of the transition system is
represented by a collection of state variables. The variables may be of Boolean, integer
subrange, or enumerated type. The keyword VAR is used to declare variables. The variable
request is declared to be a Boolean in the program, while the variable state can take
on the symbolic values ready or busy.

In the SMV language, the transition relation is described by specifying changes of
the values of variables with ASSIGN declaration, or by using a Boolean-valued function
with TRANS declaration. When using ASSIGN, the change of the value is individually
described for every variable. This is not appropriate for describing guarded command
programs in which each action updates multiple variables and selection of actions can
be non-deterministic. We therefore use TRANS and describe the transition relation as a
Boolean formula over the program variables. Similarly, initial states are described by a
Boolean formula.

Specifically the transition relation is a set of the pairs of the current state and the next
state that satisfy the Boolean formula defined in the TRANS statement. Also the initial
states are a set of states where the Boolean formula defined in the INIT statement holds.
The expression next (x) is used to refer to the variable x in the next state.

The specification is described as a formula in CTL under the keyword SPEC. SMV

MODULE main

VAR request:boolean;
state:{ready, busy};

INIT state = ready

TRANS (state = ready & request)
& next(state) = busy

SPEC AG(request -> AF state = busy)

Figure 2.1: SMV program

verifies whether all possible initial states satisfy the specification. In this case, the spec-
ification signifies that invariantly if request is true, then eventually the value of state
will be busy.

In model checking, only the correctness along fair computation paths is interested in
many cases. For example, we do not consider a computation where a certain process
has never selected as an object of verification. Such properties are expressed by keyword
FAIRNESS in SMV. The keyword FAIRNESS and a CTL formula force SMV to verify only

computation paths where the associated CTL formula becomes true infinitely often.

10

Chapter 3

Fault Tolerance Verification

3.1 Model of Fault-Tolerant Systems

3.1.1 Guarded Command Programs

To describe systems to be verified, we adopt the model proposed in [2]. A system is
described as a program that consists of a set of variables and a finite set of processes.
Each variable has a predefined nonempty domain. Each process consists of a finite set of
actions. Each action consists of a guard and a statement, where the guard is a Boolean
expression over program variables, and the statement is a set of assignments that updates
zero or more program variables and always terminates upon execution. The action is

described in the form
(guard) — (statement).

A state of the system is defined as a valuation values of the program variables. There-
fore a Boolean expression over the program variables describes a set of states where that
expression evaluates to true, and a state transition is described by assignments that up-
date the program variables.

An action is enabled at a state iff its guard evaluates to true at that state. At each
state, a process is selected non-deterministicly, and if there exist enabled actions in the
process, one of them is also selected non-deterministicly and then the statement updates

the program variables. State transitions thus occur by execution of actions.

11

We assume that the sequence of state transitions is process-fair; that is, any process

is infinitely often chosen for execution.

3.1.2 Faults

A formal approach to defining the term “fault” is usually based on the observation that
systems change their state as a result of two quite similar event classes: normal system
operation and fault occurrences [14]. Thus, a fault can be modeled as an unwanted (but
nevertheless possible) state transition of a process. By using additional (virtual) variables
to extend the actual state space of a process, various kinds of faults, such as, crash faults,
omission faults, or some type of Byzantine faults, can be represented [1, 2, 43, 17].

In this model, we describe the occurrences of faults, that is, the unwanted transitions,
by a set of actions, F', over the variables of the program.

We refer to actions in F' as fault actions. These three types of faults are modeled by

actions as follows.

(1) Crash faults

First, we add a Boolean variable up to the process and set the initial value of up to true.
In addition, the guard of each action of the process is modified to the conjunction of the

guard and up, as shown below.
up A (guard) — (statement).
This means that no action is selected when up = false. Finally the fault action
fault : true — up := false

is added to the process. If the action is selected, up is set to false and no action becomes

selectable from then. We thus can represent a crash fault.

(2) Omission faults

A fault that causes a process to not respond to some inputs is called an omission fault.
This type of a fault can be represented in the same way as crash faults, except that an

additional action

12

up — up := false

is needed to represent that the process behaves incorrectly intermittently.

(3) Byzantine faults

Byzantine fault refers to fault which causes the process to behave in totally arbitrary
manner. Incorrect computation faults are an important subset of the Byzantine fault.
With this type of fault, a process simply produces an incorrect output. Consider the

following action
(guard) — v := valy,.

Where v is a variable that has the range of values {valy, - -, val,}(1 < k <n).

In the case, we can represent an incorrect computation fault by adding the fault action
fault : (guard) — v := {wvaly, -, val,}

to the process. If the action is selected, the value of v changes arbitrarily.

3.1.3 Fault Tolerance

In the model, the fault tolerance of the system is formally defined as follows. We assume
that a Boolean expression S that represents legal states is given. In addition, we assume
that S is never invalidated by non-fault actions. This property is referred to as the closure
property.

These assumptions stem from the following observation. A well-established method
for verifying fault-free systems is to detect a predicate that is true throughout system
execution. Such an invariant predicate identifies the legal states of system and asserts
that the set of legal states is closed under system execution without fault. For exam-
ple, Arora and Kulkarni proposed a methodology for constructing fault-tolerant systems
systematically [3]. In the methodology, fault-tolerant programs are incrementally con-
structing from non-fault-tolerant systems and each step of the construction, an invariant
property is required to be identified and verified. Following this observation, we require
that for each fault-tolerant system there exists a predicate S that is invariant throughout

fault-free system execution.

13

Let ¢ be any legal state, that is, any state of the program where S holds. If S is not
invalidated in ¢ by any action in the set F' of fault actions, then the program is said to
be tolerant to F. (This type of fault tolerance is referred to as masking fault tolerance.)

Otherwise, executing an enabled action in F' in ¢ may yield an illegal state, where —.5
holds. If continuous execution of a sufficiently large number of actions that are not in
F always yields a legal state from any illegal state, then the program is also said to be
tolerant to F'. (This type of fault tolerance is referred to as nonmasking fault tolerance.)

Figure 3.1 illustrates this concept.

Legal states

act Lact, [1.ldct,

Illegal states

Figure 3.1: Schematic overview of the fault tolerance property

3.2 The Proposed Modeling Language

To describe and verify fault-tolerant systems, we propose a modeling language for de-
scribing guarded command programs. By translating programs written in this language
into the SMV language, it becomes possible to model check fault tolerance. Using this

proposed language, we need not describe the non-determinism of systems, the fairness

14

property of the selection of processes and the fault-tolerance property explicitly. We note
that because of the lack of flexibility of the SMV language, it is difficult and tedious to
represent these properties by hand. By representing a given system as a guarded com-
mand program and the legal states as a Boolean formula, we can verify fault tolerance
automatically. In this section, we show the syntax of the modeling language and explain

how to translate it to the SMV language.

3.2.1 Syntax
The program is described in the following form.

program :: "program"
macros_definition
legal_states_description
process_descriptionl

process_description?2

The set of legal states is specified as a Boolean formula.
legal_states_description :: "spec" expression
The processes are described in the following form.

process_description :: "process'" process_name
"begin"
var_declaration
macros_definition
action_description
fault_description

n end n

The variables of a process are declared with two elements. One is the type of the
variable, while the other is a set of the initial values of the variable.

The type associated with a variable declaration can be either Boolean, a set of integers,
or enumeration of symbols. An integer type is defined either by upper and lower bounds

like {1..5} or by an enumeration of elements like {1,2,3,4,5}.

15

Actions (including fault actions) which specify the transition relation of the system

are described in the following form.

action_description :: "action" seq_of_actions
fault_description :: "fault" seq_of_actions
seq_of_actions :: actionl ";"

action2 ";" ...
action :: guard ":>" statement ";"
guard 1. expression
statement :: assignmentl ","

assignment2 "," ...

assignment 1t left ":=" right
left :: variable_name

| process_name "." variable_name
right :: expression

["{" valt "," val2 "," ... "}"

The left hand side of an assignment denotes the variable that will change by the action.
If the right hand side is an expression, the assignment means that the variable changes
to the value of the right hand side. On the other hand, if the right hand side is a set, the

variable changes to one value of the set non-deterministicly.

3.2.2 Translation Method to the SMV Language

Action

As stated above, an action is represented in the proposed language as follows.
P :> xl:=exprl, x2:=expr2, --- , xn:=exprn

The changes of the variable values caused by the action can be represented as a
Boolean formula next(x1)=exprl & next(x2)=expr2 & --- & next(xn)=exprn. Note
that the action can be selected only in the states represented by a Boolean formula P.

Consequently, the state transition by the action is described as the following formula.

P & next(xl)=exprl & --- & next(xn)=exprn

& next(yl)=yl & --- & next(ym)=ym

16

Here y1,--- ,ym are the variables that do not change in the next state. The formula
holds iff this action is enabled and the value of each variable in the next state is assigned
as designated by this action. The formula thus represents that this action is selected. A
fault is expressed as an action and can be described similarly.

Let a; be this formula for an action. Then the transition of a process that has N

actions is expressed as formula A =a; Vas V---Vay.

State Transitions

Let A; be a formula that expresses the transitions of process i. Since only one process is
selected simultaneously, the transitions of the system that has m processes is represented
as formula (A; Aruny) V (As Arung) V-V (A A run,,), where a Boolean variable run;
represents that a process ¢ is selected. The constraint that only one process is selected
can be expressed by setting only one element in runy, runs, - - -, run,, to true.
Consequently the transition relation of the system is represented as the following

formula.

(A1 Arung) V (Ag Arung) V-V (A Arung) A ((rung A =rung A -« A =rung,) V

(=runy Arung A« A =rung,) -V (mrung A rung A - A rung,))

We assume the fairness for selection of processes; that is, each process must be selected
infinitely often. Thus, only execution sequences where each run; holds infinity often are

verified. This can be specified using FAIRNESS as follows.

FAIRNESS runl

FAIRNESS runm

The set of initial states is also described by a Boolean formula. When a variable x has
initial values xg, 1, - - -, the set of states where x has the initial values is described by a
formula (x = x¢) V (r = x1) V - - -. Since the initial states are those where such a formula
holds for each variable, the conjunction of each formula represents the set of the initial

states.

17

Specifying Fault Tolerance

To use SMV, we have to express the property to be verified as a formula of a temporal
logic called CTL.

So far we have shown the method for expressing the transition relation of a system
in the SMV language, without considering verification of fault tolerance. In order for
verification to be carried out, it is necessary to describe the fault tolerance property
explicitly. For this purpose, we introduce a Boolean variable f and modify guards of fault
actions such that they can be selected only when f = 0. When f = 1, only non-fault
actions are selected.

We let the value of f to change as follows. If the system is in the legal states, the
value of f is always false. If the system is not in the legal states, the value of f changes
to true or false non-deterministicly. Once the value of f has changed to true, it remains
true invariantly in the illegal states. This is intended to represent the fact that faults will
stop occurring. If the system has come back to the legal states, the value of f changes to
false.

The guard of each fault action is modified as follows. Suppose that a fault action is

given in the modeling language as shown below.

P :> vl:=exprl, v2:=expr2, --- , vn:=exprn

Then the condition of execution is modified to P A —f, and another action is obtained as

follows.

PA=f — v = expri,vg :=expro, -+, 0, := expr,

Note that the only difference between the two actions is that the latter is not enabled
when f is true. In addition, we do not exclude the possibility that f is always false. Thus
this modification does not deviate the resulting transition system from the behavior of
the given program.

The change of the value of f is described as the following formula F. Here S is a

Boolean formula that represents the set of legal states.

F =S & next(£f)=0

18

| 1S & If & (next(f)=1|next(£)=0)
| 1S & f & next(f)=f

(! represents negation.)

The value of f changes independently from the executions of actions. So by adding
F' to the formula that represents the behavior of the whole system as a conjunctive, the
changes of the value of f are incorporated into the transition relation. Thus the TRANS

statement becomes as follows.

TRANS
(Al & runl | A2 & run2 | --- | Am & runm)

& ((runl & !'run2 & --- & 'runm)

| ('runl & !'Tun2 & --- & runm))

& F

Using f, the property to be verified, that is, the fault tolerance, is expressed in CTL

as follows.
AG(f — AF(9))

This CTL formula expresses the property that if f holds, then S will always hold
eventually. The CTL formula holds iff the system is either masking fault-tolerant or non-
masking fault-tolerant. In the case of nonmasking fault-tolerant systems, even though the
system falls into the illegal state where S does not hold by a fault action, if f changes
to true and faults stop occurring, then S will hold eventually by execution of non-fault
actions. In the case of masking fault-tolerant systems, S always holds. Thus AF(S)
always holds, so does this CTL formula.

The proposed method focuses on checking the fault tolerance property. Using different
CTL formulas, however, other properties can also be verified. For example, the closure

property can also be checked by using another CTL, as explained below.

Remark

As stated in 2.3, we assume that the closure property holds; that is, S is never invalidated

by non-fault actions. It should be noted that we can also check the closure property

19

as follows. First, with the method described in this section, a given guarded command
program is translated into an SMV program by considering non-fault actions only. Second,
CTL formula AG(S — AG(S)), which represents the closure property, is checked by the
SMV tool.

3.3 Case Studies

In this section, we show the results of applying the proposed method to several examples.
These examples are known to be fault-tolerant and all verification results coincided com-
pletely. The first two examples, namely atomic commitment and Byzantine agreement
protocols are masking fault-tolerant, while the third one is non-masking fault-tolerant. All
experiments were performed on a Linux machine with a 500MHz Pentium III processor

and 256 Mbytes of memory.

3.3.1 Atomic Commitment Protocol

The first example is the atomic commitment protocol [2, 6]. In the protocol, each process
casts one of two votes, Yes or No, then reaches one of two decisions, Commit or Abort.
If no faults occur and all processes vote Yes, all processes reach a Commit decision. A
process reaches a Commit decision only when all process voted Yes. And all processes that
have reached a certain decision reach the same decision. We consider using the two-phase
commit protocol to implement the atomic commitment protocol. We assume that faults
may stop processes.

In the first phase, each process casts its vote and sends the vote to a distinguished co-
ordinator process c. In the second phase, the coordinator process reaches a decision based
on the votes received from other processes and broadcasts the decision to all processes.

The coordinator process ¢ has the following two phases and can be described as three

actions.

Phase 1: Process ¢ casts its vote, enters the second phase, and starts waiting for the

votes of other processes (the first action).

Phase 2: If ¢ detects that all processes have voted Yes and not stopped, it reaches a

20

process ¢
begin
var
ph : {0..2}{0};
up : boolean{true};
d : boolean{true, false};
action
up & ph=0 :> ph:=1, d:={false, true}, up:=up ;
up & ph=1 &
((up & ph=1 & d) & (pl.up & pl.ph=1 & pil.d)
& (p2.up & p2.ph=1 & p2.d) & ---)
:> ph:=2, d:=true, up:=up ;

up & ph=1 &
((tup | (ph>=1 & 'd)) | (!pl.up | (pl.ph>=1 & !pl.d))
| ('p2.up | (p2.ph>=1 & !p2.d)) | ---)

:> ph:=2, d:=false, up:=up ;
fault
true :> ph:=ph, d:=d, up:=0;

end

Figure 3.2: The coordinator process.

Commit decision (the second action). If ¢ detects that some process has voted

No or has stopped, it reaches an Abort decision (the third action).

Each process other than the coordinator has following two phases and can be described

as three or more actions.

Phase 1: If the process detects that ¢ has voted and entered the second phase, it casts its
vote, enters the second phase, and starts waiting for the vote of some process
(the first action). If the process detects that ¢ has stopped, it reaches an Abort

decision (the second action).

Phase 2: If the process detects that some process has not stopped and completed its
second phase, reaches the same decision as that process has (the third or other

actions).

21

Phase 1 ph=0 1 1 Phase 2 ph=1 32

e P E:.P true ATl = e I::_.:- false
':'D]up=tme true {'ﬂ]UP=W frue
& "'-_,-'":\-_‘ iy "'-_,—""l;_
up, ph ~, up, ph up, ph, d 5, up
(p1) (p2) (p1) ((p2)]
T T T ~___,
ph=0 "1 ph=0 "1 ph=1 2 up = false
d-‘¢M|¢ d-‘¢M|¢ d-m¢ﬂ1ls¢
{a) (b}

Figure 3.3: Example of atomic commitment.

Using Figure 3.3, we illustrate how the protocol works. We assume that the number

of processes is 3.

Phase 1: (Step 1) The coordinator process ¢ casts its vote and the value of ph is set
to 1. Here we assume that ¢ votes Yes (d = true). (Step 2) Process p; and py check that
¢ has not stopped and voted (c.up A c.ph = 1), and cast their votes. The value of p;.ph
and po.ph are set to 1.

Phase 2: Now suppose a crash fault occurs in process ps. (Step 3) Since py has
stopped, ¢ reaches an Abort decision. The value of ph is set to 2 and ¢ completes the
phase. (Step 4) Process p; checks that ¢ has not stopped and has completed the second
phase (c.up A c.ph = 2) and reaches the same decision as ¢ (d = false). The value of

p1.ph is set to 2 and p; completes the phase.

Finally all processes has completed or stopped. At this stage, the processes that have
not stopped (that is, ¢ and p;) have reached an Abort decision.

The coordinator process can be described by using the proposed input language as
shown in Figure 3.2. The variable ph represents the current phase of the process. The
value of ph is 0 initially, 1 after the process has cast its vote and entered phase 2, and 2
after the process has reached a decision and completed phase 2. The variable d represents
(depending upon the current phase) the vote or the decision of the process. The value of
d is true if the vote is Yes or the decision is Commit, and false if the vote is No or the

decision is Abort. The variable up represents the current status of the process. The value

22

const
conditionl :=
c.ph=0 ->
(c.ph=0 | (c.ph=2 & !'c.d))
& (pl1.ph=0 | (pl.ph=2 & !p1.d)) & --- ;
condition2 :=
c.ph=1 —>
(c.ph!=2 | !c.d) & (pl.ph!=2 | !pl.d) & --- ;
condition3d :=
c.ph=2 & c.d —>
(c.ph!=0 & c.d) & (pl.ph!=0 & p1.d) & --- ;
condition4 :=
c.ph=2 & !'c.d >
(c.ph!=2 | 'c.d) & (pl.ph!=2 | !p1.d) & --- ;
spec

conditionl & condition2 & condition3 & condition4d

Figure 3.4: Legal states of atomic commitment.

of up is true if the process is being executed, and false if the process is stopped. Other
processes can be described similarly.

We assume that if the following four conditions are satisfied, the system is in the legal
state. (1) If ¢ has not voted (c.ph = 0), then each process has either not voted or (detected
that ¢ had stopped and) reached an Abort decision. (2) If ¢ has voted but not reached a
decision (c.ph = 1), then each process has either not reached a decision or (detected that
¢ had stopped and) reached an Abort decision. (3) If ¢ has reached a Commit decision
(c.ph = 2 A c.d), then each process has either voted Yes (and not reached a decision) or
reached a Commit decision. (4) If ¢ has reached an Abort decision (c.ph = 2 A =(c.d)),
then each process has either not reached a decision or reached an Abort decision. Thus
the legal states can be described as shown in Figure 3.4.

By applying the translation method to this example described above, we verified the
fault tolerance by SMV. We applied the method to the systems where the number of
processes were 3, 4, 5, and 6. When the number of processes was 6, the time required

for verification was about 0.65 seconds and the number of reachable states was about

23

% smv -r 2phase.smv

-— specification AG (f -> AF S) is true

resources used:

user time: 0.65 s, system time: 0.03 s

BDD nodes allocated: 38479

Bytes allocated: 1900544

BDD nodes representing transition relation: 9391 + 14
reachable states:

3.10518e+07 (2~ 24.8882) out of 3.82206e+08 (2~ 28.5098)

Figure 3.5: Verification result produced by SMV (atomic commitment).

225 Figure 3.5 shows the output of SMV in case the number of processes was 6. The

performance of verification is shown in Table 3.1.

3.3.2 Byzantine Agreement

The second example is the Byzantine agreement problem [2]. Each process is either Reli-
able or Unreliable. Each Reliable process reaches one of two decisions, false or true. One
process ¢ is distinguished and has associated with it a Boolean value B. It is required

that:

1. If g is Reliable, the decision value of each Reliable process is B.

2. All Reliable processes reach the same decision.

We assume authenticated communication; messages sent by Reliable processes are
correctly received by Reliable processes, and Unreliable processes cannot forge messages
on behalf of Reliable processes [11, 40].

Agreement is reached within N+1 rounds of communication, where N is the maximum
number of processes that can be Unreliable. In each round r, where » < N, every Reliable
process j that has not yet reached a decision of true checks whether g and at least r» — 1
other processes have reached a decision of true. If the check is successful, j reaches a
decision of true. If j does not reach a decision of true in the first N rounds, it reaches a

decision of false in round N + 1.

24

Let d” be a Boolean value denoting the tentative decisions of a process up to round
r, and let ¢".k be a Boolean value that is true iff the process knows that process k has
reached a decision of true in round r. We assume that the system is in legal states when
the following four conditions are satisfied. (1) The number of Unreliable processes is at
most N. (2) Before the first round, the tentative decision of each Reliable process j is
false, and for each k, ¢".k of j is false. (3) In each round ¢, the tentative decision of
each Reliable process j is set to true iff its previous tentative decision is true or j knows
g and at least ¢ — 1 other processes have reached a decision of true, and ¢".j of each other
process k is set to true only if d? of j is true. (4) In each round ¢, for any two Reliable
processes j and k, if the current tentative decision of j is false then c%.k of j is true iff
the previous tentative decision of k is true or some process knows k has reached a decision

of true.

We can show that each computation of the protocol that starts at a state in the legal
states satisfies the Byzantine agreement specification as follows. If the tentative decision
of g before the first round was true, because the third and fourth conditions of legal states
stated above hold, c'.g of each Reliable process becomes true and the decisions of the
Reliable processes become true as well as g. If the tentative decision of g before the first
round was false, because of the third condition, the decisions of the Reliable processes

never change true. Thus the Reliable processes reach the same decision as process g.

b =true b =true b = true

.a— L=

f ., ELE=E —. g =t
Ry =k oy Epy=E - ey =t
Er- n:':'HI:E l B t'r“_l-f y Ly rpg=f
l:':' = [gy Clpy=t el Y o =t
r, o 5 "
& '\'-\.‘ -:__.- '
.\. .L'H.‘ __"-. '\'\._\.
£ . - i
Fal “ oy - Ty Py N P e
|’p1 L-npzw‘»-r pa‘n (p1 Jesl(p2)ie+{ p3) | el p2 el p3 |
'\-_-""____'\-\:'-"' e "'\—""1-.____"'\:"" e
b = true I:- = fal b o= ue bo=tue b =fubes b =tue b =ue b =fake b =fue
-:I“’-ralsu -:I“’-ralsu -:l"-fnlsu db=tue dl =false dl=tue Pt F=fle =t
a.—f 3-[g_—l' da=t dag=f da=t g=t og=f ':':E-=':
|..|-E |.-|—E |.-|-E dp=f p=f cpy=f '1:r‘|" I5:F“|'f LoR=tL
2 pg=F l: F=F l: Fy=f tlp=f dp=f o=t ipg=f cipy=f cipg=f
l:':'r~3-l:' = rg-l:' = r_g-f l:'r~3-r l:'r~3-l:' l:lr"s-" =t =t :1p3-r
fa} () ()

Figure 3.6: Example of Byzantine agreement.

25

Figure 3.6 illustrates how the protocol works. We assume that the number of processes
is 4 and N = 1. The program variables in round 0 (that is, the initial state) have the
values as shown in Figure 3.6 (a). Now suppose a fault has occurred in the process ps

and p, has become Unreliable.

In round 1, each process acts as follows. First, each process sets the values of c¢'.k
(k = g,p1,p2,p3). The value of c'.k is set to true when d° is true for process k or there
exists a process such that .k is true. For example, for p; cl.g is true, c'.p; is false,

ct.py is false and c'.ps is false, while each c!.k of Unreliable process py is false.

Next, each process sets the value of d'. The value of d' is set to true when d° is true

or c'.g is true. For example, d* for p; is true, while d* for py is false.

When round 1 has been completed, the program variables have the values as shown
in Figure 3.6 (b).

In round 2, each process acts as follows. First, each process sets the values of c2.k
similarly as in round 1. For example, for p; c%.g is true, ¢®.p, is true, c®.py is false and

c?.ps is true, while each c2.k of Unreliable process p, is false.

Next, each process sets the value of d?. The value of d? is set to true when d' is true
or c?.g and at least one of (c®.py,c®.py, c®.p3) are true. For example, d? for p; is true,

while d? for p, is false.

When round 2 has been completed, the program variables have the values as shown

in Figure 3.6 (c), and each Reliable process reaches the same decision.

We described the Byzantine agreement problem as a program in the language that we
proposed. Figure 3.7 describes process g. Here we consider the case which the number
of processes is 4 and N is 1. The variables d0,d1,d2 denote d" for round 0,1,2. The
variables cOk,clk,c2k denote ¢".k for round 0, 1,2. The variables b is a Boolean value
that is true iff the process is Reliable. The variables r and rr denote the current round.
If rr is 1, then it means that the current round is 1 and that c!.k of each k has been set
to some value. Similarly when r is 1, the current round is 1 and d' has been set to some
value. The variables csuml and csum2 denote whether the process knows that g and at
least ¢ — 1 other processes have reached a decision of true for ¢ = 1 and 2 respectively.
Other processes can be described similarly. The legal states are described as shown in

Figure 3.8.

26

The time required for verification was about 316 seconds and the number of reachable

states was about 2%°. The performance of verification is shown in Table 3.1.

3.3.3 Leader Election

The third example is the leader election problem on rings. The leader election problem is
the problem of selecting one process as a leader on a ring where no distinguished process
initially exists. This problem originally arose in the study of token ring networks. In
such a network, a single “token” circulates around the network. Sometimes, however, the
token may be lost due to faults, and it becomes necessary for the processes to execute an
algorithm to regenerate the lost token. This regeneration procedure amounts to electing a
leader. We consider a ring consisting of N processes, pg, p1,---,pn_1, that are connected
in this order. The process p;_; is said to be a predecessor of the process p; in the ring.
The processes are assumed to have unique ids. The id for process p; is denoted by id;.

Here we consider a leader election algorithm proposed in [26]. In the algorithm, the
process with the maximum id is selected as the leader. Each process p; has two variables,
max; and dist;. max; means the maximum id the process i knows, and dist; means the
distance to the process p; where id; is max;.

Each process p; has the following three actions:

1. If 7d; is larger than max;, max; is set to id; and dist; is set to 0. While if dist; is
0 and max; is not equal to id;, max; is set to id;. And if max; is equal to id; and

dist; # 0, dist; is set to 0.

2. If dist;_1 + 1 < N and id; is smaller than max;_, max; is set to max;_, and dist;

is set to dist;_1 + 1.

3. If dist;_1+1 > N, or if id; is larger than the id; _; and id; is equal to or larger than

max;_1, max; is set to id; and dist; is set to 0.

Let K be the maximum id of any process in the ring. The leader is successfully elected

if the system reaches the state that satisfies the following conditions.

1. For all processes i, max; = K.

27

2. If j is the process with id K, then dist; = 0. For any other process ¢ # j, dist; =
1+ diSt(ifl)modN-

Since each process p; only have the two variables, maz; and dist;, there is exactly one
such state. Clearly, this state is the only legal state. We consider transient faults. A fault
changes the values of the variables of a process arbitrarily.

Using Figure 3.9, we explain the protocol. We assume that the number of processes
is 3 (K = 2) and that some faults have occurred at the initial state and the program
variables have the values as shown in Figure 3.9.

As an example, suppose that pi, pa, po, and p; are selected to be executed in this
order. First, the process p; executes the first action and sets max to 1 and dist to 0.
Next the process ps also executes the first action and sets max to 2 and dist to 0. Then
the process py executes the second action and sets max to 2 and dist to 1. Finally the
process p; executes the second action and sets max to 2 and dist to 2 and the system has
reached the legal state.

When N is 4, each process is described as shown in Figure 3.10. The variable max
denotes max;. Similarly, the variable dist denotes dist;. The legal state is described as
shown in Figure 3.11.

We apply the method to the systems where N = 3,4,5,6. In case N = 6, the time
requires for verification was about 9.68 seconds and the number of reachable states was
about 22'. The performance of verification is shown in Table 3.1.

To our knowledge, there is no other research that can be directly compared to ours;
however, since the time required for verification was only approximately 5 minutes even
for the largest example, we think that the proposed verification method is practical, at
least for systems with small number of processes. From our experience, design errors may
often be observed even when the number of processes is rather few [41]. Thus we think

that the proposed method is useful especially in early stages of system development.

3.3.4 Other results

Closure property As stated in 4.2.3 we can check the closure property of the system by
extending the proposed method. We checked the closure property for the three examples.

Table 3.2 shows the performance of the verification of the closure property. Since this

28

Table 3.1: Performance of verification.

Protocol (# of processes) || Time States

(sec) | Reachable | Total
0.03 59312 ~ 21
0.08 91392 e 219
0.21 s 220 ~ 22

Atomic Commit (3

2
6

(
Atomic Commit (4
Atomic Commit (

(

)
)
)
)

Atomic Commit 0.65 ~~ 2% ~~ 229

Leader Election (3) 0.04 11664 11664
Leader Election (4) 0.26 ~ 2% ~ 221
Leader Election (5) 2.27 ~ 2% A 229
Leader Election (6) 9.68 ~ 238 ~ 2%

Byzantine Agreement(4) || 315.89 SPAE ~ 281

property can be checked without considering faults, the state space to be explored is
significantly smaller than the case of fault tolerance verification.

Length of programs As stated before, we developed the modeling language and its
translation method to facilitate describing the system to be verified. To support our
claim, we compared the length of the program described in the proposed language and
the resulting SMV program. Table 3.3 compares both programs in terms of the total
number of tokens encountered in the parsing process. This result clearly shows that using

the proposed language significantly reduced the quantity of description.

29

Table 3.2: Performance of verification of the closure property.

Protocol (4 of processes) || Time States

(sec) | Reachable | Total
Atomic Commit (3) 0.01 552 13824
Atomic Commit (4) 003 | 4432 |~ 218
Atomic Commit (5) 0.11 37920 ~ 223
Atomic Commit (6) 0.25 ~ 218 ~ 227
Leader Election (3) 0.01 8 5832
Leader Election (4) 0.01 16 s 220
Leader Election (5) 0.03 32 ~ 228
Leader Election (6) 0.05 64 ~ 237
Byzantine Agreement(4) || 59.52 ~ 220 ~ 280

Table 3.3: Quantity of description.

Protocol (§ of processes) t of tokens
Proposed language | SMV
Atomic Commit (3) 771 2500
Atomic Commit (4) 1107 4499
Atomic Commit (5) 1459 7445
Atomic Commit (6) 1875 11440
Leader Election (3) 613 1768
Leader Election (4) 845 2662
Leader Election (5) 1095 3826
Leader Election (6) 1363 5200
Byzantine Agreement(4) 9575 77315

30

process g
begin
var r,rr:{0,1,2}{0}; Db:boolean{true};
d0,d1,d2:boolean{true,false};
cOg,cOpl,cOp2,cOp3:boolean{false};
clg,clpl,clp2,clp3:boolean{false};
c2g,c2pl,c2p2,c2p3:boolean{false};
const csuml:=true;
csum2:=(c2pl|c2p2|c2p3);
action
r=0 & rr=0 :> rr:=1,
clg:=d0 | (cOglpl.cOglp2.cOglp3.cOg),
clpl:=p1.d0 | (cOpllpl.cOpllp2.cOpllp3.cOpl),
clp2:=p2.d0 | (cOp2lpl.cOp2|p2.c0p2|p3.cop2),
c1p3:=p3.d0 | (cOp3lpl.cOp3|p2.cOp3|p3.cOp3);
r=0 & rr=0 & 'b & pl.b & p2.b & p3.b :> rr:=1,
clg:={true,false},clpl:=false,
clp2:=false,clp3:=false;
r=0 & rr=0 & 'b & !pl.b & p2.b & p3.b :> rr:=1,
clg:={true,false},clpl:={true,false},
clp2:=false,clp3:=false,

r=0 & rr=1 & pl.rr=1 & p2.rr=1 & p3.rr=1
:> d1:=d0|csuml&clg,r:=1;

r=0 & rr=1 & pl.rr=1 & p2.rr=1 & p3.rr=1 & 'b
:> dl:={true,false},r:=1;

fault b & pl.b & p2.b & p3.b :> b:=false;

end

Figure 3.7: Process g of Byzantine agreement.

31

const

conditionl := g.b & pl.b & p2.b & p3.b

| 'g.b & pl.b & p2.b & p3.b
| g.b& !'pl.b & p2.b & p3.b
| g.b& pl.b & !p2.b & p3.b
| g.b& pl.b & p2.b & !'p3.b;

condition2 := (g.b -> (g.do
&(g.b -> (g.do
&C -+);

condition3 :=

g.b) & 'g.cOg)
g.b) & 'g.cOpl)

((g.r>=1 & g.rr>=1 & pl.r>=1 & pl.rr>=1

& p2.r>=1 & p2.rr>=1 & p3.r>=1 & p3.rr>=1)

-> ((g.b > (g.d1<>(g.d0|clgkg.csuml)))
&C -)
&(g.b > (g.clg -> g.d)&(pl.clg -> g.d1)

&(p2.clg -> g.d1)&(p3.clg -> g.dl))
&C -+)))
&C -0)

condition4 :

((g.r>=1 & g.rr>=1 & pl.r>=1 & pl.rr>=1
& p2.r>=1 & p2.rr>=1 & p3.r>=1 & p3.rr>=1)
> ((g.b&gbg& !g.do
-> (g.clg<>
(g.d0lg.cOglpl.cOglp2.cOglp3.cOg)))
&(g.b & pl.b & !g.do

-> (g.clpi<>
(p1.d0lg.cOpllpl.cOpllp2.cOpllp3.cOpl)))
&C -+))
&C -+)5
spec conditionl & --- & condition4

Figure 3.8: Legal states of Byzantine agreement.

32

(p0) g
-.;\,f_ __-;x dl-\.qt I:I
,d—-'.’.'a :5— _
max = 2 A R
dist =2 P2 P dist =1
id=12 id =

Figure 3.9: Example of leader election.

process pl

begin

var
max:{0,1,2,3}{3};
dist:{0,1,2,3}{2};

const
id := 1;

action
(id>max) | (id != max & dist=0)
| (id=max & dist != 0)
:> max:=id,dist:=0;
(p0.dist+1<N) & (id<pO.max)
& ! (max=p0.max & dist=p0.dist+1)
:> max:=p0.max,dist:=p0.dist+1;
((p0.dist+1>=N) | ((id>p0.id) & (id>=p0.max)))
& !(max=id & dist=0)
:> max:=id,dist:=0;

fault
true :> max:={0,1,2,3},dist:={0,1,2,3};

end

Figure 3.10: A process of leader election.

33

const
conditionl := pO.max=K & --- & p3.max=K;
condition2
:= (p0.id=K -> p0.max=K & pl.dist=1+p0.dist
& p2.dist=1+pl.dist & p3.dist=1+p2.dist)
& ---
&(p3.id=K -> p3.max=K & p0.dist=1+p3.dist
& pl.dist=1+p0.dist & p2.dist=1+pl.dist);
spec

conditionl & condition2

Figure 3.11: Legal states of leader election.

34

Chapter 4

Feature Interaction Detection

4.1 Services and Interaction

4.1.1 Communication Services

From ITU-T recommendation [22] (ITU-T Recommendations Q.1200 Series - Intelligent
Network Capability Set 1 (CS1)) and Bellcore’s feature standards [4] (Bellcore - LSSGR
Features Common to Residence and Business Customers I, II, IIT), we selected the fol-

lowing seven services (features) to consider:

Call Waiting (CW): This service allows the subscriber to receive a second incoming
call while he or she is already talking. Suppose that = subscribes to CW. Even

when x is busy taking with y, x can receive a call from a third party z.

Call Forwarding (CF): This service allows the subscriber to have his or her incoming
calls forwarded to another address. Suppose that z subscribes to CF and that x
specifies y to be a forwarding address. Then, any incoming call to z is automatically

forwarded to y.

Originating Call Screening (OCS): This service allows the subscriber to specify that
outgoing calls be either restricted or allowed according to a screening list. Suppose
that x subscribes OCS and that z puts y in the OCS screening list. Then, any
outgoing call to y from z is restricted, while any other call from z is allowed. Suppose
that x receives dialtone. At this time, even if z dials y, = receives busytone instead

of calling y.

35

Terminating Call Screening (TCS): This service allows the subscriber to specify that
incoming calls be either restricted or allowed according to a screening list. Suppose
that z subscribes TCS and that x puts y in the TCS screening list. Then, any
incoming call from y to x is restricted, while any other call to z is allowed. Suppose
that y receives dialtone. At this time, even if y dials z, y receives busytone instead

of calling .

Denied Origination (DO): This service allows subscriber to disable any call originat-
ing from the terminal. Only terminating calls are permitted. Suppose that z sub-
scribes to DO. Then, any outgoing call from z is restricted. Even if z offhooks when

the terminal is idle, z receives busytone instead of dialtone.

Denied Termination (DT): This service allows subscriber to disable any call terminat-
ing at the terminal. Only originating calls are permitted. Suppose that z subscribes
to DT. Then, any incoming call to z is restricted. Even if another user y dials z, y

receives busytone without calling z.

Direct Connect (DC): This service is a so-called hot line service. Suppose that z
subscribes to DC and that x specifies y as the destination address. Then, by only

offhooking, x is directly calling y. It is not necessary for z to dial v.

4.1.2 Feature Interaction

In this paper we consider two types of feature interaction. As shown below, the properties
of the absence of these types of interaction can be viewed as safety properties, and hence
detecting these types of interactions involves checking reachability from the initial state

to undesirable states.

Nondeterminism

The first type we consider is nondeterminism. Nondeterminism is one of the best known
types of feature interactions [15, 16, 20, 25, 33, 34]. Nondeterminism refers to a situation
where an event can simultaneously activate two or more functionalities of different services,

and as a result, it cannot be determined exactly which functionality should be activated.

36

It is known that this type of interaction occurs between CW and CF. Suppose that A
subscribes both services. Now consider the situation where (1) A is taking with B, (2) C
is ready to dial, and (3) D is in A’s forwarding address list and is idle. In this situation,
if C dials A, then either the call from C to A may be received by A because of A’s CW
feature, or it may be forwarded to D by the CF feature.

This type of interaction can be detected by checking reachability from the initial state

to the states that cause nondeterminism. We call such states nondeterministic states.

Invariant Violation

The next type of interaction we consider is invariant violation. It is usually the case that
services require for some specific properties to be satisfied at any time. For example, for
OCS service, the service designer may describe that “If x specifies y in the screening list,
then x is never calling y at any time”. Such a property is generally referred to as an
invariant property. It is known that combining multiple services can result in violation of
invariant properties. The OCS plus CF example described in the first section falls in this
type.

This type of feature interaction can also be detected by checking reachability from the

initial state to the undesirable states where the invariant properties are violated.

4.2 Model

In this paper we adopt a variant of State Transition Rules (STR) [21, 34] to describe

services and model the behavior of the system in a rigorous fashion.

4.2.1 Notation

A service specification is defined as 6-tuple (U, V, P, E, R, s;nit), where U is a set of con-
stants representing service users, V' is a set of variables, P is a set of predicates, F is a
set of events, R is a set of rules, and s;,;; is the (initial) state. Each rule r € R is defined

as follows:

r . pre—condition [event| post—condition.

37

U ={A,B}
V ={zy}
P = {idle(x), dialtone(z), busytone(x), calling(x,y), path(x,y)}
E = {onhook(z),of fhook(x),dial(x,y)}
R={
potsl :idle(x) [of fhook(x)] dialtone(x).
pots2 : dialtone(x) [onhook(x)] idle(x).
pots3 : dialtone(x),idle(y) [dial(x,y)] calling(z,y).
potsd : dialtone(z), —idle(y) [dial(x,y)] busytone(x).
potsh : calling(x,y) [onhook(z)] idle(x), idle(y).
pots6 : calling(x,y) [of fhook(y)] path(x,y), path(y, x).
potsT : path(x,y), path(y, x) [onhook(zx)] idle(x), busytone(y).
pots8 : busytone(x) [onhook(x)] idle(x).
pots9 : dialtone(x) [dial(x,x)] busytone(z).
}
Sinit = {idle(A),idle(B)}

Figure 4.1: Rule-based specification for POTS.

A predicate is of the form p(zi,...,x;) where p € P and x; € V. Pre-condition
consists of predicates or negations of predicates, or both, while Post-condition consists of
predicates only. An event is of the form e(xy,...,z;), where e € E and z; € V.

Figure 4.1 shows an example of a specification. This specification describes the Plain
Old Telephone Service (POTS). Additional communication features, such as those de-
scribed in the previous subsection, can be described by modifying this specification (for
example, adding rules or predicate symbols). Specifications for the above services are
shown in [32]. In all these specifications, it is assumed that at the initial state, all users

are idle and no user subscribes to any service yet.

4.2.2 State Transition Model

Here we define the state transition system specified by the rule-based specification. Let
(U,V,P,E, R, $init) be a service specification. For r € R, let x1,...,z, (x; € V) be

variables appearing in r, and let 6 = (zy|ay,...,x,la,) (@i € U,a; # aj(i # j)) be a

38

N3 onhook(B)

NI ;
onhook(A : -
hook(A) (dialtone(CEp2 1) idle(A), thook(B)
idle(B)

A),
. < fﬂquv([)plfgg Off(]:j%féi dialtone(B
dial(A,B) onhook(B) 7 onhook(A) dial(B,A)
dialtone(A), \ —(=Ev[p261]) onhook(A) Ev[p304)
(=Ev[p861])
N8

(=Ev[p363]) (=Ev[p262])
onhook(B) dialtone(B)
calling(B,A)

2]

(=Ev[p802])

dial(B,A dial(A,B

(=Ev([p494])) N9 (=Ev§p493])) busytone(A ,N6
busytone(B)/4; i dialtone(B)

Halay) N0 CRR
offhook(B) onhook(B)
(=Ev[p162]) (=Ev[p802])

calling(A,B)

busytone(A),

offhook AP onhook A?
) busytone(B)

(=Ev[p101 (=Ev[p8d1]

off;lzg(ili(elzg onhook(A) q%hog)lggB N7 offhook(A)
P (=Ev[p801]) (=Ev[p862] busytone(A), (=Ev[p664])
onhookgA) onhook(B)
(=Ev[p763]) (=Ev[p704])
Legend

talk(A,B),

onhook(B onhook(A) Ev[p 0]=Ev[pots 0]
(:Ev[p8(62])) talk(B,A) *(=Ev[p891]) 91:<1x\j . 92’: f< B>
To NO N11 To NO 03=<x|A,y|B> 04=<x|B,y|A>

Figure 4.2: State transition diagram.

substitution replacing each x; in r with a;. Then, an instance of r based on 6 (denoted
by 76) is defined as a rule obtained from r by applying 0 = (z1|ay, ..., z,|a,) to r. We
represent the event and the post-condition of an instance r6 of a rule as e[rf] and Post[rf],
respectively. In addition, we denote by Pre[rf] and Pre[rd] the set of predicates in the
pre-condition and the set of predicates whose negations are in the pre-conditions. Hence
the precondition of an instance r0 of a rule is Pre[r6] U {—p | p € Pre[r6]}.

A state is defined as a set of instances of predicates p(ay,...,a;) where p € P and
a; € U. We think of each state as representing those that hold in the state.

Let s be a state. We say that an instance of rule, 70, is enabled for e(rf) at s iff all
instances in Pre[r] hold and no instances in Pre[r6] hold at s. The execution of the
enabled rule causes the next state s’ of s by deleting all instances in Pre[rf] from s and

adding all instances in Post[rf] to s; that is,
s' = (s\Pre[rf]) U Post[rf|

For example, suppose that r = pots4 in Figure 4.1, 0 = (z|A, y|B), and s = {dialtone(A),
dialtone(B)}. Then Pre[rf] = {dialtone(A)}, Pre[r0] = {idle(B)}, Post[rf] = {busytone
(A)}, and rule pots4 with substitution 6 is enabled for event dial(A, B). If subscriber A

39

dials B, that is, this event happens, then a state transition occurs, resulting in s =
{busytone(A), dialtone(B)}. Figure 4.2 shows the state transition diagram that is ob-
tained from the STR specification shown in Figure 4.1. In this diagram each circle repre-
sents a state and each arc between two states represents a state transition caused by execu-
tion of a rule instance. States that is not reachable from the initial state {idle(A), idle(B)}
are omitted in the diagram.

Let V denote the set of states. For each instance ¢ of a rule, we define a relation -
over states (—+C V x V) as follows: s — s iff the execution of ¢ causes s’ from s. We also
define a computation as a sequence of states sgsy - - - sg. such that for each 0 <@ < k, (i)
S; R si11 for some ¢, or (ii) no rule is enabled at s; and s; = s;11. We think of the length

of the computation as k.

4.3 Symbolic Representation

4.3.1 State Transition

To apply symbolic model checking to service specifications, it is necessary to encode the
state space and the transition relation by Boolean functions.

Let P = {p1, -, pm} be the set of all instances of predicates and let 7 = {t1,--,t,}
be the set of all instances of rules (m = |P| and n = |7|). A state s can then be viewed
as a Boolean vector s = (by, -, by,,) such that b; = true iff an instance p; of a predicate
holds in that state.

Any set of states can be represented as a Boolean function such that

true s € the set
f(s) =

false otherwise.

We say that f is a characteristic function of the state set.
For example, the characteristic function E;(s) of the set of states where t € 7T is

enabled is

Et(S) = /\ bz A\ /\ _|bz'.

pi€Prelt] pi€Prelt]

Any relation R over states can be similarly encoded since they are simply sets of

40

tuples.

) true sRs
F(s,s") =
false otherwise.

Now consider representing the relation 4 by Boolean function T;(s,s’). Since execu-
tion of ¢ causes (i) predicate instances in Post[t] to hold, (ii) those in Pre[t] but not in
Post|t] not to hold, and (iii) those in neither Pre[t] nor Post[t] to be unchanged, we have

Ti(s.s)=EA A A A bA A (oot
pi€Post]t] pi€Prelt]\Post[t] pi€P\(Pre[t]UPost[t])
where s = (b},---,b]).
For example, consider the specification shown in Figure 4.1. Let ¢ be the instance of

the rule ‘potsd : dialtone(z), —idle(y)|dial(x, y)|busytone(z)
(A, B). Since Pre[t] = {dialtone(A)}, Pre[t] = {idle(B)}, and Post[t] = {busytone(A)},

with substitution (z,y) =

we have
T, = dialtone(A) A\ —idle(B) A busytone(A) A ~dialtone(A)’
A(idle(A) < idle(A)") A (idle(B) « idle(B)")
N(dialtone(B) < dialtone(B)") A (busytone(B) < busytone(B)’)
N(calling(A, B) < calling(A, B)') A (calling(B, A) < calling(B, A)')
N(path(A, B) < path(A, B)") A (path(B, A) < path(B, A)’)
(The same symbol is used to denote each predicate and its corresponding Boolean variable,

since this is convenient and causes no confusion.)

In SMV program, the formula 7} is described as follows.

dialtone A & !'idle_B

& next(busytone_ A) & !next(dialtone_A)
& next(idle_A)=idle A

next(idle B)=idle B

next(dialtone B)=dialtone_B

next (busytone B)=busytone_ B
next(calling A B)=calling A B
next(calling B_A)=calling B_A

next (path_ A B)=path A B

IS = S L A

next (path B_A)=path B_A

41

The transition relation of the whole system is represeted by T, (s, s’) as the following
formula Ty, (s, ") V11, (s,8') V-V T, (s,s") where Ty, (s, s') represents the transition by the

instance t.

4.3.2 Interaction State

As described in the previous chapter, to use SMV, it is necessary to express the property
to be verified as a formula of CTL. To do this, first we describe the set of states where
interactions occur as a formula fo(s). And we model check the CTL formula AG—(fg(s)).
If this CTL formula is not true, the system can be in the state where an interaction occurs.

Thus we can detect the interaction.

Nondeterminism
Nondeterminism occurs at a state s iff two rules, r1 and 72, can be triggered by the same

event e at s. As shown in the previous example, when such r1, 72, and e are given, the

set of states where they are enabled simultaneously is represented by

\/ Er101 N Erago

{01,02}:¢[r101]=¢[r162]

Thus the characteristic function for the set of all states where nondeterminism occurs is

\V \V Er101 N Erag2
{r1,r2}:rl,r2€e R {601,02}:e[r161]=e[r262]

For example, the caracteristic function fg(s) representing nondeterministic states for

42

the specification shown in Fig. 4.1 is described as follows.

idle(A) A calling(B, A)

Vidle(B) A calling(A, B)

Vdialtone(A) A calling(A, B)

Vdialtone(A) A path(A, B) A path(B, A)
Vdialtone(A) A busytone(A)

Vealling(A, B) A path(A, B) A path(B, A)
Vealling(A, B) A busytone(A)

Vpath(A, B) A path(B, A) A busytone(A)
Vdialtone(B) A calling(B, A)

Vdialtone(B) A path(B, A) A path(A, B)
Vdialtone(B) N busytone(B)

Vealling(B, A) A path(B, A) A path(A, B)
Vealling(B, A) A busytone(B)

Vpath(B, A) A path(A, B) A busytone(B)
Vdialtone(A) Nidle(B) A dialtone(A) A —idle(B)
Vdialtone(B) A idle(A) A dialtone(B) A —idle(A)

Invariant Violation

Given an invariant that is intended to be satisfied by a service, whether it is satisfied or
not can be decided by checking the reachability to states where the property does not
hold. In this case

fa(s) = =Ino(s)

where Inv(s) is the Boolean function representing the set of states where the invariant

property holds.

Other Types of Interaction

Although we limit our discussion on detecting nondeterminism and invariant violation
in this paper, other types of interaction can be detected by the proposed method, if the
problem of detecting interaction can be reduced to reachability checking. Deadlock is

such an example. In our context, deadlock means the situation where functional conflicts

43

of two or more services cause a mutual prevention of their service execution. The problem
of deciding whether deadlock occurs or not can be reduced to the problem of checking
reachability to states where no rule is enabled. In this case fg will be

fa(s) = /\ —FEy(s).

teT

4.4 Experimental Results

In this section, we show the experimental results for interaction detection for the seven
services described in Section 4.1 using symbolic model checking. Combining two of the
seven services, we examined a total of the 21 pairs. The experiments were performed on

a Linux workstation with a 853 MHz Pentium III processor.

4.4.1 Nondeterminism

Table 4.1 shows the results of applying SMV to interaction detection. As shown in this
table, interactions are detected in only one or two minites for almost all pairs of services
by SMV. However, for the example which has large states such as CW+CF, SMV required
more than three hours to complete detection.

By enabling ‘early’ option, it is possible to force SMV to work on-the-fly; that is,
when using this option, SMV incrementally checks whether or not the property holds in
a breadth-first manner, and terminates immediately if it finds that the property can be
violated. Table 4.1 also shows the running time of SMV with this option enabled. As
expected, this resulted in short detection time for some service combinations. However, for
some cases such as CW+CF, CW+DO, CW+DT, CW+DC, CW+0OCS, or CW+TCS, it
ended up with much larger running time. A common characteristic of these combinations
is that the formula representing fg is very large. Hence the reason is thought to be that
the benefit of early termination was diminished by time consumed at each stage of the

incremental checking.

4.4.2 Invariant Violation
We consider invariant properties for four of the seven services as follows

44

OCS “If x puts y in the OCS screening list, = is never calling y at any time” (-OC'S(z,y)V
—calling(x,y))

TCS “If z puts y in the TCS screening list, y is never calling x at any time” (=7TCS(x,y)V
—calling(y, x))

DO “If x subscribes to DO, x never receives dialtone at any time” (=DO(x)V—dialtone(x))
DT “If x subscribes to DT, y is never calling z at any time” (=DT'(x) V —calling(y, x))

Tables 4.2 shows the results of applying SMV to detection of invariant violation. As
shown in this table, for all pairs of services interactions are detected in only one minite.
In this case, the formula representing f is not so large. Thus the incremental checking

does not require so much time that early termination makes the detection efficient.

45

Table 4.1: Performance of SMV for nondeterminism detection.

interaction | SMV | SMV(-early) | # of states

CW+CF detected | 12859.40 90473 278
CW+OCS | detected 44.23 194.91 200
CW+TCS | detected 39.28 168.28 260
CW-+DO - 70.21 726.40 257
CW+DT detected 82.12 410.37 257
CW+DC - 66.55 666.63 200
CF+0OCS | detected 22.79 5.51 257
CF+TCS | detected 27.59 5.55 257
CF+DO - 6.47 13.01 254
CF+DT detected 12.48 8.57 254
CF+DC - 20.20 31.26 257
OCS+TCS | detected 1.86 0.29 239
OCS+DO - 0.94 1.01 236
OCS+DT detected 1.23 0.24 236
0CS+DC - 1.59 1.72 239
TCS+DO - 1.24 1.27 236
TCS+DT | detected 1.66 0.24 236
TCS+DC - 2.19 2.35 239
DO+DT - 0.65 0.76 233
DO+DC detected 1.22 0.25 236
DT+DC - 0.65 0.76 236

46

Table 4.2: Performance of SMV for invariant violation detection.

interaction | SMV | SMV(-early) | # of states
CW-+OCS | detected | 23.51 13.41 200
CW+TCS | detected | 24.96 13.81 200
CW+DO - 37.22 37.37 257
CW+DT | detected | 40.29 35.43 257
CF+0CS detected | 22.46 1.10 257
CF+TCS | detected | 27.34 1.16 257
CF+DO - 6.25 6.32 254
CF+DT | detected | 10.83 0.97 2%
OCS+TCS | detected | 1.83 0.30 239
0OCS+DO - 0.98 1.00 236
OCS+DT - 1.30 1.27 236
0OCS+DC detected 1.83 0.32 239
TCS+DO - 1.28 1.28 236
TCS+DT - 1.70 1.72 236
TCS+DC detected 2.50 0.33 239
DO+DT - 0.66 0.65 233
DO+DC - 1.31 1.23 236
DT+DC - 0.36 0.38 236

47

Chapter 5

Bounded Model Checking

Bounded model checking has received recent attention as an efficient verification method
[7]. The basic idea of this method is to reduce the model checking problem to the propo-
sitional satisfiability decision problem.

For asynchronous systems, however, the existing bounded model checking does not
work well because the propositional formula to be checked tends to become very large for
such systems. Because of the asynchronous nature of telecommunication systems, it is

thus not practical to apply the original method to feature interaction detection.

In order to avoid this problem we develop a new encoding scheme. We describe the

scheme in detail in this section.

5.1 Existing Scheme

Similar to SMV, to apply bounded model checking to service specifications, it is necessary
to encode the state space and the transition relation by Boolean functions. We use the
same manner as shown in Section 4.3 for symbolic representation.

Let G denote the set of states whose reachability is to be decided and let f;(.S) be the
characteristic function for G. Although there are some variations [38], the basic formula

used for checking reachability in bounded model checking is as follows.

I(s0) ANT(s0,81) ANT(s1,82) -+ ANT(sk—-1,5k) A (fa(so) V-V fa(sk))

48

where 1(S) is the characteristic function of the set of the initial states, and

true s’ is reachable from s in one step,
/
T(s,s') = or s has no next states and s = ¢'.

false otherwise.

Clearly, I(sg) AT(so,51) AT (s1,82) - AT (Sk_1, k) = true iff s, s1,-- -, sk is a com-
putation from the initial states. Hence the above formula is satisfiable iff there is a state
that is in G and reachable from one of the initial states in at most k£ steps. By checking
the satisfiability of the formula, therefore, the verification can be carried out.

In practice, the formula often needs to be transformed into conjunctive normal form
(CNF), since most of SAT solvers require for input formulas to be in that form. However
the logically equivalent CNF formula can be exponential with respect to the size of the
original formula. To avoid this, it is usual to use structure preserving transformation [36],
which guarantees that the size of the resulting CNF formula is linear with the original
formula. Thus the efficiency of verification critically depends on the size of the original

formula in textual form.

Since we assume that exactly one rule is executed at a time, 7'(s, s’) will be

T(s,s") =Ty (s,)V - VT, (5,8) V([)\ bi =) AN-Ey(s) A+ A=Ey, (s))

piEP

It should be noted that this formula would be very large in size in practice. Since T;
contains at least m literals, the total number of the literals in T is greater than m x n

literals.

5.2 Proposed Scheme

5.2.1 Encoding

Our proposed scheme alleviates the above problem with a new encoding. Let Chnglt]
denote the set of predicate instances that change as a result of execution of rule instance

t; that is, Chng[t] = (Post[t]\Pre[t]) U (Pre[t]\Post[t]). Then T; can be transformed as

49

follows:

Ti(s,s') = Ef(s)A N\ b A A =b;; A N (b; < b))

piEPost|t] p; € Pre[t]\Post][t] p; €P\(Pre[t]UPost][t])

pi€Preft] pi€Preli]

A A b, A A =bl; A AN (b= b))

pi€Post[t]\ Prelt] pi€Pre[t]\ Post[t] pi€P\Chnglt]
Now let Dy(s,s’) be defined as follows.
Di(s,s") = Ty(s,s")V /\ (b; < 1))
piEP

We have

Dy(s,s') = Ty(s,s)V N (b < b))

piEP

= ((A\ A N\ bA A b, A N —b)

pi€Prelt] pi€Prelt] pi € Post[t]\ Prelt] pi € Pre[t]\ Post][t]

Vi AN (b= b))

pi€Chnglt]

NN e b))

pi €P\Chnglt]
For example, let ¢ be the instance of the rule pots4 in Figure 4.1 with substitution

(x,y) = (A, B). Then

Dy = ((dialtone(A) A —idle(B) A busytone(A) A —dialtone(A)")
V((dialtone(A) « dialtone(A)") A (busytone(A) < busytone(A)')))
A(idle(A) < idle(A)") A (idle(B) < idle(B)')
N(dialtone(B) < dialtone(B)") A (busytone(B) < busytone(B)’)
N(calling(A, B) < calling(A, B)") A (calling(B, A) < calling(B, A)")
A(path(A, B) < path(A, B)") A (path(B, A) < path(B, A))

It is easy to see that Dy(S, ") = true iff S 5 S’ or S = S'. In other words, D;(S,5")
differs from T3(S,S’) only in that D;(S,S’) evaluates to true also when S = S’. Using

20

this property, a step (or more) can be represented by a conjunction of D, as follows.
Dy, (80, 81) A Dy (51,82) A=+ A D, (Sn—1, Sn)

Note that this is in contrast to the traditional encoding, where a disjunction of 73(S,S")

is used to represent one step. By definition, sg, s1,- -+, s, satisfies this formula iff for any

0<i<n,s; s Si+1 Or 8; = S;11. This means that if the formula evaluates to true, s, is

reachable from sq in at most n steps (including 0 steps), and that if there is at least one

t; such that sg L, s', it is satisfiable with an assignment such that sp = -+ = s;_1,8; =
/

=5, =S5

As a result, our proposed scheme uses the following formula for the verification.

o = I(s0)
ADy, (S0, 51) A Dy, (81,82) A+ A Dy, (Sp_1, Sn)

/\Dtl (Sna sn-‘rl) A Dtg(sn—l—ly 5n+2) ARERNA Dtn (8271—17 8271)

/\Dtl (S(k—l)*na S(k—l)*n—i—l) JANRRIVAY Dtn (Sk*nfla Sk*n)
/\fG(Sk*n)

If the formula ¢ is satisfiable, then we can conclude that there is a state in G that can
be reached from the initial state in at most k*xn steps. On the other hand, if the formula
 is unsatisfiable, then there is no state in G that can be reached from the initial state in
less than or equal to k steps.

An important observation here is that the method may be able to find a state in G

that requires more than £ transition executions to reach.

5.2.2 Constructing a Succinct Formula

The most important advantage of our scheme is that ¢ can be converted into a much
succinct formula that is not logically equivalent but has the same satisfiability. Let
s; = (b1j,b25,-,bm;) and sj11 = (b1j41,b241, . bmj+1). In each Dy(s;,s;41) in
@, term (b; ; <> b;;+1) for any p; € P\Chng[t] appears as a conjunct. Because of this,
¢ is satisfiable only if b, ; and b; ;41 have the same value. Hence a shorter formula that

maintains the satisfiability is obtained by removing (b; ; < b;j+1) and replacing b; ;11

o1

with b; ;. That is, for each Dy(s;, sj41) in ¢, (b;j <> b; j+1) for all p; € P\Chnglt] can be
removed by quantifying away b; ;11 by applying the formula below.

Fbi 1 (B A (biy < bijer)) = F

bi,j+1—=bi,j

where F' is an intermediate formula obtained from ¢ and F|,_, denotes the formula
obtained from F' by replacing b; ;11 with b; ;.

Note that b; ; may also be replaced by a further earlier version of variable b; ;_;. In
that case b; j;1 is replaced with b; j_; as a result.

Consequently, D, in ¢ can be replaced with

C AN bin A=bin A A N)Y A (e b))

pi€Prelt] pi€Pre[t] pi € Post[t]\ Prelt] pi€Pre[t]\ Post[t] pi€Chnglt]
by appropriately replacing some variables.

The number of literals occurring in the above formula is 4 % | Pre[t]\ Post[t]| + | Pre[t] N
Post[t]| + 3 = |Post[t]\Pre[t]| + |Post[t] N Pre[t]| + |Pre[t]\Post[t]|. T;, which is the
counterpart in the traditional encoding, contains at least |P| literals. Hence the proposed
scheme can exploit its advantage if Pre[t] U Pre[t] U Post[t] is a small fraction of the
whole set of predicate instances P. This is usually the case for the service specifications
we consider and is more likely when the number of users is large.

Figure 5.1 shows the algorithm that directly constructs the shorter formula for a given
k. In the algorithm, variable ¢; is used to denote the earlier version of the variable that

is substituted for b; j; that is, b; ; will be replaced with b; .

5.2.3 Illustrative Example

Consider an erroneous communication service that is obtained by replacing rule pots3 in

the POTS specification in Figure 4.1 with
potsd' : dialtone(z) [dial(x,y)] calling(z,y).

Here we demonstrate how we can verify that a state where two different rules potsl and
pots6 are simultaneously enabled for the same event onhook(zx) is reachable. The set of

such nondeterministic states can be represented by a characteristic function
fa(s) = (idle(A) A calling(B, A)) V (idle(B) A calling(A, B))

92

forp; € P
ci =0
J:=0;
X 1= I(5)|s,—s10 for all pePi

for step=1,---,k {

fort e T {
ji=7+1
X :=XA
C AN bieAN N b A A bij A N =bi)
piEPre[t] pi€Prelt] pi€Post[t]\ Pre[t] pi€Prelt]\ Post|t]
Vi A (i < biy)
pi€Chnglt]

for p; € Chng[t] (= (Post[t]\Pre[t]) U (Pre[t]\ Post[t]))

Ci = J;

}
X =XA fg<S)

bi—bi,c, for all p;eP;

Figure 5.1: Algorithm for constructing the formula used for verification.

I(s), which represents the set of the initial states, is

I(s) = idle(A) Aidle(B) A —~dialtone(A) A ~dialtone(B)
A=busytone(A) A —~busytone(B)
A=path(A, B) A —path(B, A) A —calling(A, B) A —calling(A, B)

When k = 1, the formula shown in Figure 5.2 is obtained by the algorithm in Figure 5.1.
This formula is satisfiable by, for example, assigning true to the following variables

and false to the others.

idleg(A),idleg(B), dialtone; (A),idles(B), dialtones(A), idles(B), callings(A, B),
idleg(B), callingyg(A, B),idle1o(B), calling;1 (A, B),idlei4(B), idleig(B)

Assignments satisfying the formula represent computations from the initial state to

the states where a confliction occurs. For example, the above assignment corresponds to

53

the following computation.

potsl<X|A,Y|B> pots3' <X|A,Y|B>
— —

{idle(A),idle(B)} {dialtone(A),idle(B)} {calling(A, B),idle(B)}

Note that potsl and pots6 are both enabled for event of fhook(B) at state {calling(A, B),
idle(B)}. As can be seen, computations of length more than & can be checked by the
proposed method.

Although this is not an example of feature interaction detection (since no feature is
considered), once a specification specifying multiple service is given, feature interaction

detection can be carried out the same way as described here.

5.3 Representing Interaction State

As the remaining problem is to represent states where interaction occurs by Boolean
function fg(s), it is previously described in Section 4.3.2. For example, the caracteristic
function fg(s) representing nondeterministic states for erroneous specification which is
shown in Section 5.2.3 is described as follows.

idle(A)15 A calling(B, A)2

Vidle(B)1s A calling(A, B)11

Vdialtone(A)y7 A calling(A, B)1;

A)17 A path(A, B)1a A path(B, A)14

Vdialtone(A)y7 A busytone(A)7
Vealling(A, B)11 A path(A, B)ia A path(B, A)14
Vealling(A, B)11 A busytone(A)y7
Vpath(A, B)14 A path(B, A)14 A busytone(A)q7

Vdialtone(

Vdialtone(B)1s A calling(B, A)12
Vdialtone(B)1s A path(B, A)14 A path(A, B)14
Vdialtone(B)is A busytone(B)1s

Vealling(B, A)12 A path(B, A)1a A path(A, B)1a
Vealling(B, A)12 A busytone(B)1s

Vpath(B, A)14 A path(A, B)14 A busytone(B)1s
Vdialtone(A)y7 A dialtone(A)7 A —idle(B)ig
Vdialtone(B)s A dialtone(B)1s A —idle(A)1s

o4

(idleg(A) N idleg(B) A ~dialtoneg(A) A —~dialtoneg(B) A —busytoneg(A) A —~busytoneg(B)
A—patho (A, B) A —patho(B, A) A —callingo (A, B) A —callingo (A, B))
A((idleg(A) A dialtone (A) A —idlei (A))
V((idleg(A) < idlei (A)) A (dialtoneg(A) < dialtonei (A)))
A((idleg(B) A dialtonez(B) A —idlea(B))
V((idleg(B) « idlea(B)) A (dialtoneg(B) <« dialtonez(B)))
A((dialtoner (A) Aidles(A) A —dialtones(A))
V((idle1 (A) < idlez(A)) A (dialtoner (A) « dialtones(A)))
A((dialtonez(B) A idles(B) A —dialtones(B))
V((idle2(B) < idles(B)) A (dialtonez(B) « dialtones(B)))
A((dialtones(A) A callings (A, B) A ~dialtones(A))
V((dialtones(A) < dialtones(A)) A (callingo(A, B) < callings (A, B)))
A((dialtones(B) A callings (B, A) A ~dialtones(B))
V((dialtonea(B) <« dialtones(B)) A (callingo(B, A) < callings(B, A)))
A((dialtones(A) N —idlea(B) A busytoner(A) A —~dialtoner(A))
V((dialtones(A) < dialtone7(A)) A (busytoneg(A) <« busytoner(A)))
A((dialtones(B) A —idle3(A) A busytoneg(B) A ~dialtoneg(B))
V((dialtones(B) < dialtoneg(B)) A (busytoneo(B) < busytones(B)))
A((callings (A, B) Aidleg(A) A idleg(B) A —callingg (A, B))
V((idle3(A) < idleg(A)) A (idlea(B) < idleg(B)) A (callings (A, B) < callingg (A, B)))
A((callings (B, A) Aidle1o(A) Addleio(B) A —callingio(B, A))
V((idleg(A) < idleio(A)) A (idleg(B) < idleio(B)) A (callings (B, A) < callingi0(B, A)))
A((callingg (A, B) A pathi1(A, B) A pathi1(B, A) A —callingi1 (A, B))
V((callingg (A, B) < calling11(A, B)) A (patho(A, B) < pathi1(A, B)) A (patho(B, A) < path11(B, A)))
A((calling10(B, A) A pathi12(A, B) A pathi2(B, A) A —calling12(B, A))
V((calling10(B, A) < calling12(B, A)) A (pathi1(A, B) < pathi12(A, B)) A (pathi1(B, A) < pathi12(B, A)))
A((pathi12(A, B) A pathi2(B, A) Aidle13(A) A busytone13(B) A —pathi3(A, B) A —pathi3(B, A))
V((idle1g(A) < idle1z(A)) A (busytoneg(B) <> busytoneiz(B)) A (pathi2(A, B) < pathi13(A, B))
A(pathi12(B, A) < pathi3(B, A)))
A((pathi13(A, B) A path13(B, A) A idle14(B) A busytonei4(A) A —pathi1a(A, B) A —path14(B, A))
V((idle1o(B) « idle1a(B)) A (busytoner(A) < busytonei4(A)) A (pathi13(A, B) < pathi4(A, B))
A(pathi13(B, A) < path14(B, A)))
A((busytonera(A) A idlers(A) A —busytoners(A))
V((idle13(A) < idle1s(A)) A (busytonera(A) < busytoneis(A)))
A((busytone13(B) Aidleis(B) A —~busytoneis(B))
V((idle1a(B) < idleis(B)) A (busytone13(B) < busytoneis(B)))
A((dialtoner (A) A busytonei7(A) A —~dialtone7(A))
V((dialtoner(A) < dialtonei7(A)) A (busytoneis(A) «— busytoneir(A)))
A((dialtoneg(B) A busytoneig(B) A ~dialtoneig(B))
V((dialtoneg(B) < dialtone1g(B)) A (busytoneis(B) < busytoneis(B)))
A(idleis(A) A callingi2(B, A)) V (idle1g(B) A callingi1(A, B))

Figure 5.2: Resulting formula for an incorrect POTS specification.

95

5.4 Comparison Results

In order to evaluate the effectiveness of the proposed method, we conducted experimental
evaluation for the seven services described in Section 4.1. We used the same ordering
as in the given specification in the experiment. Combining two of the seven services, we
examined a total of the 21 pairs.

The experiments were performed on a Linux workstation with a 853 MHz Pentium I1I
processor. The number of users was assumed to be four. ZChaff, an implementation of
Chaff [31], was used as a SAT solver.

For each problem we incremented k until interaction was detected. Tables 5.1 and
5.3 show the value of k for which interaction was first found and the time (in seconds)

required by ZChaff to find a satisfying assignment for that value of k.

5.4.1 Nondeterminism

It has been known that out of a total of the 21 pairs of the seven services, 11 pairs cause
nondeterminism. Since the proposed method in itself cannot prove the absence of feature
interaction, we evaluated the performance of the detection method for these combinations

only.

Comparison with Traditional Scheme

Table 5.1 compares the proposed encoding and the traditional one with respect to the
running time, in seconds, required to detect nondeterministic states for these specifica-
tions. Items in the ‘length’ column represent the length of the shortest counterexample,
that is, the shortest computation from the initial state to a nondeterministic state.

As can be seen in this table, when using the proposed encoding, interaction was
detected with k of less than or equal to three for all cases. For CW plus CF case, for
example, k = 2 was sufficient while the shortest counterexample computation is of length
10. This is because it may be possible to check execution of two or more rules by one
formula Dy, A Dy, A --- A Dy,. In this experiment, we used the same ordering of rules as
in the given specification in encoding the formula. Thus if two rules are executed in the

order as in the specification, they can be checked by this single formula.

o6

Table 5.1: Performance of bounded model checking for nondeterminism detection.

k | time | Trad. scheme | length
CW+CF | 2| 3.02 4934.76 10
CW+DT | 3| 4.81 212.10 8
CW+0OCS | 2| 2.90 330.15 8
CW+TCS | 2 | 3.80 1470.37 8
CF+DT | 2] 0.02 53.52 5
CF+0CS | 2 0.02 89.32 5
CF+4+TCS | 2 0.02 65.10 5
DC+DO |1 | 0.02 0.87 2
DT+0OCS | 2 | 0.05 1.91 3
DT+TCS | 1| 0.02 1.86 3
OCS+TCS | 1| 0.01 1.01 2

Note that the length of the shortest counterexample coincides with the smallest &
value at which the traditional scheme can find such a computation. This resulted in large

detection time of the traditional scheme, as shown in this table.

Comparison with other Method

We also applied two other model checking tools to the same set of problems. The first
one is SMV, and the second one is SVAL, which is a tool which we had developed for
feature interaction detection [33]. The SVAL tool employs explicit state enumeration with
symmetry and partial order state reduction techniques.

Table 5.2 shows the results of applying SMV and SVAL to interaction detection.
Comparing with Table 5.1, it is clear that the proposed method detected interaction
much more efficiently than SMV. The difference is most clear for CW plus CF. For this
case, the running time of the proposed scheme was only three seconds, while SM'V required
more than three hours to complete detection.

As can be seen in Table 5.2, the propose method and SVAL exhibited similar per-
formance for four cases, namely, DC+DO, DT+0OCS, DT+TCS, and OCS+TCS. The

common characteristic of these cases is that nondeterminism occurs at a state that is very

57

Table 5.2: Performance of SMV and SVAL for nondeterminism detection.

SMV | SMV(-early) | SVAL | length
CW+CF | 12859.40 90473.00 17.45 10
CW+DT 82.12 410.37 3.29 8
CW+0CS 44.23 194.91 3.37 8
CW+TCS 39.28 168.28 9.65 8
CF+4+DT 12.51 8.21 1.83)
CF+0CS 22.80 2.55 6.11)
CF+4+TCS 27.52 5.55 2.45 5
DC+DO 1.21 0.25 0.31 2
DT+0OCS 1.23 0.24 0.06 3
DT+TCS 1.66 0.24 0.11 3
OCS+TCS 1.86 0.29 0.11 2

close to the initial state. In these cases, therefore, it is possible to detect interaction by
exploring a small number of states, thus resulting in very small detection times of SVAL.
On the other hand, for the cases of CW+CF, CW+0OCS, CW+TCS, CF+DT, CF+0CS,
and CF+TCS, computations of relatively large length have to be examined to conclude
the existence of nondeterministic states. For these cases, the proposed method outper-
formed the previous method, by efficiently exploring the large state space with symbolic

representation.

5.4.2 Invariant Violation

We consider the same invariant properties described in Section 4.4.2.

Tables 5.3 and 5.4 show the performance for bounded model checking and SMV,
respectively. SVAL is excluded because it does not support invariant violation checking.
Comparing with Tables 5.1 and 5.2, it can be seen that these three methods exhibited

similar tendencies.

58

Table 5.3: Performance of bounded model checking for invariant violation detection.

k | time | Trad. scheme | length

CW+DT | 3| 1.00 1318.41 10
CW+0CS | 2| 0.24 2795.61 10
CWHTCS | 2] 0.21 1744.04 10
CF+DT | 2] 0.01 149.74 6
CF+0CS | 2| 0.02 173.00 6
CF+TCS | 2 0.03 1850.80 6
DC+0OCS | 2 | 0.03 3.57 3
DC+TCS | 2| 0.04 3.68 3
OCS+TCS | 2| 0.12 3.13 3

Table 5.4: Performance of SMV for invariant violation detection.

SMV | SMV (-early) | length
CW+DT | 40.29 35.43 10
CW+0CS | 23.51 13.41 10
CW+TCS | 24.96 13.81 10
CF+DT | 10.83 0.97 6
CF+0CS | 22.46 1.10 6
CF+TCS | 27.34 1.16 6
DC+0OCS | 1.83 0.32 3
DC+TCS | 2.50 0.33 3
OCS+TCS | 1.83 0.30 3

59

Chapter 6

Conclusions

6.1 Achievements

First, we proposed a formal method for verification of fault tolerance of concurrent sys-
tems. We use a model checking method to carry out the verification automatically. Dif-
fering from other related work, which is tailored to specific systems, we are aimed at
providing a single approach that can be applied to various systems. Specifically, we pro-
posed a method that can deal with any system if it is given as a guarded command
program based on the model proposed in [2].

We designed this method so that it can use a symbolic model checking tool called SMV,
which can avoid the state explosion problem. Automatic verification of fault tolerance is
performed by translating the program to the SMV language. For this purpose, we first
proposed a modeling language suited for describing fault-tolerant systems in the form of
guarded command programs. We then proposed a translation method from the modeling
language to the input language of SMV.

In the case studies, we demonstrated that various fault-tolerant systems can be auto-
matically verified by the proposed method. The results showed that the verification was
completed with practical time.

Second, we proposed a formal method for detection of feature interactions in telecom-
munication services. We also use symbolic model checking method to detect interactions.
In the experimental results, we can detect all interactions for given service specifications.

However, in some cases the detection processes result in much time spent to finish the

60

detection.
To solve this, we propose to use bounded model checking to detect feature interactions.
We developed a new encoding scheme that is tailored to this purpose. We demonstrated

its effectiveness by applying it to practical services.

61

Bibliography

1]

A. Arora. A Foundation of Fault-Tolerant Computing. Ph.D dissertation. The Uni-

versity of Texas, Austin, 1992.

A. Arora and M. Gouda. Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering, 19(11):1015-1027, Novem-
ber 1993.

A. Arora and S. Kulkarni. Designing masking fault-tolerance via nonmasking fault-

tolerance. IEEE Transactions on Software Engineering, 24(6):435-450, 1998.

Bellcore. Advanced Intelligent Network (AIN) Release 1, Switching Systems Generic
Requirements. Bellcore Technical Advisory TA-NWT-001123, 1991.

C. Bernardeschi, A. Fantechi, and L. Simoncini. Formally verifying fault tolerant

system designs. The Computer Journal, 43(3):191-205, 2000.

P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

in Database Systems. Reading, MA: Addison-Wesley, 1987.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proceedings of Tools and Algorithms for the Analysis and Construction of
Systems (TACAS’99), number 1579 in LNCS, pages 193-207, 1999.

L. Bouma and H. Velthuijsen. Feature Interactions in Telecommunications Systems.

IOS Press, 1994.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. [FEFE
Transaction on Computers, C-35(8):677-691, 1985.

62

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hawng. Symbolic
model checking: 10%° states and beyond. Information and Computation, 98(2):142—
170, 1992.

K. Chandy and J. Misra. Parallel Program Design: A Foundation. Reading, MA:
Addison-Wesley, 1988.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal-logic specifications. ACM Trans. Programming

Languages and Systems, 8(2):244-263, 1986.
E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

F. Cristian. A rigorous approach to fault-tolerant programming. IFEE Transaction

on Software Engineering, 11(1):23-31, 1985.

R. Dssouli, S. Some, J. W. Guillery, and N. Rico. Detection of feature interactions
with REST. In Proceedings of Fourth Workshop on Feature Interactions in Telecom-
munications Systems, pages 271-283, 1997.

A. Gammelgaard and E. J. Kristensen. Interaction detection, a logical approach.
In Proceedings of Second Workshop on Feature Interactions in Telecommunications

Systems, pages 178-196, 1994.

F. C. Géartner. Specifications for Fault Tolerance: A Comedy of Fuailures. Technical
Report TUD-BS-1998-03, Darmstadt University of Technology, Germany, 1998.

F. C. Gartner. Fundamentals of fault-tolerant distributed computing in asynchronous

environments. ACM Computing Surveys, 31(1):1-26, March 1999.

S. Gnesi, G. Lenzini, D. Latella, A. A. C. Abbaneo, and P. Marmo. An Auto-
matic SPIN Validation of a Safety Critical Railway Control System. In Proc. of The

International Conference on Dependable Systems and Networks (DSN 2000), pages
119-124. IEEE, 2000.

Y. Harada, Y. Hirakawa, T. Takenaka, and N. Terashima. A conflict detection sup-
port method for telecommunication service descriptions. [IFICE Transactions on

Communication, E75-B(10):986-997, October 1992.

63

[21]

[22]

[23]

[31]

Y. Hirakawa and T. Takenaka. Telecommunication service description using state
transition rules. In Proceedings of IEEE Int’l Workshop on Software Specification
and Design, pages 140-147, October 1991.

ITU-T Recommendations Q.1200 Series. Intelligent Network Capability Set 1 (CS1).
ITU-T, September 1990.

J. K. Jr., B. T. Smith, and A. S. Wojcik. Formal verification of fault tolerance using

theorem-proving techniques. IEEE Transaction on Computers, 38(3):366-376, March
1989.

D. O. Keck and P. J. Kuehn. The feature and service interaction problem in

telecommunications systems: A survey. IEEE Transactions on Software Engineering,

24(10):779-796, October 1998.

A. Khoumsi. Detection and resolution of interactions between services of telephone
networks. In Proceedings of Fourth Workshop on Feature Interactions in Telecom-

munications Systems, pages 78-92, 1997.

X. Lin and S. Ghosh. Maxima Finding in a Ring. In Proc. of 28th Ann. Allerton
Conf. on Computers, Communication, and Control, pages 662671, 1991.

Z. Liu and M. Joseph. Verification of Fault Tolerance and Real Time. In Proc. of
the 20th IEEE Symposium on Fault Tolerant Computing Systems (FTCS-26), pages
220-229. IEEE, June 1996.

J. P. Marques Silva and K. A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEFE Transactions on Computers, 48:506-521, 1999.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

P. M. Melliar-Smith and R. L. Schwartz. Formal specification and mechanical verifi-

cation of sift: A fault-tolerant flight control system. IEEFE Transaction on Computers,

C-31(7):616-630, July 1982.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L.. Zhang, and S. Malik. Chaff : Engi-
neering an efficient sat solver. In Proceedings of 39th Design Automation Conference,

2001.

64

32]

[33]

[34]

[35]

[36]

[37]

[38]

[40]

[41]

M. Nakamura. Design and evaluation of efficient algorithms for feature interaction

detection in telecommunication services. Ph.D. Dissertation, Osaka University, 1998.

M. Nakamura and T. Kikuno. Feature interaction detection using permutation sym-
metry. In Proc. of Fifth Int’l. Workshop on Feature Interactions in Telecommunica-

tion Networks and Distributed Systems (FIW’98), pages 193-207, 1998.

T. Ohta and Y. Harada. Classification, detection and resolution of service interac-
tion in telecommunication services. In Proceedings of Second Workshop on Feature

Interactions in Telecommunications Systems, pages 60-72, 1994.

E. Pastor, J. Cortadella, and O. Roig. Symbolic analysis of bounded petri nets. IEFEFE
Transactions on Computers, 50(5):432-448, May 2001.

D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation.

Journal of Symbolic Computation, 2:293-304, September 1986.

F. Schneider, S. M. Easterbrook, J. R. Callahan, and G. J. Holzmann. Validating
Requirements for Fault Tolerant Systems using Model Checking. In Proc. of Inter-

national Conference on Requirements Engineering (ICRE), pages 4-14. IEEE, April
1998.

M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties using induc-
tion and a sat-solver. In Proc. of International Conference on Formal Methods in

Computer-Aided Design (FMCAD 2000), LNCS 195/, pages 108125, 2000.

O. Shtrichman. Pruning techniques for the sat-based bounded model checking prob-
lem. In Proc. of Advanced Research Working Conference on Correct Hardware Design

and Verification Methods (CHARME 2001), LNCS 2144, pages 58-70, 2001.

T. K. Srikanth and S. Toueg. Simulating authenticated broadcast to derive simple
fault tolerant algorithms. Distrib. Computing, 2(2):80-94, 1987.

T. Tsuchiya, S. Nagano, R. B. Paidi, and T. Kikuno. Symbolic model checking for
self-stabilizing algorithms. IEEFE Transactions on Parallel and Distributed Systems,
12(1):81-95, 2001.

65

[42] T. Tsuchiya, M. Nakamura, and T. Kikuno. Detecting Feature Interactions in
Telecommunication Services with a SAT solver. In Proc. of 2002 Pacific Rim In-

ternational Symposium on Dependable Computing (PRDC’02), 2002.

[43] H. Vélzer. Verifying fault tolerance of distributed algorithms formally: An example.
In Proc. of International Conference on Application of Concurrency to System Design

(CSDIS8), pages 187-197. IEEE, March 1998.

66

