
Title Formal Verification for Dependable Systems by
Model Checking

Author(s) 横川, 智教

Citation 大阪大学, 2004, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/1455

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Formal Verification for Dependable System

by Model Checking

Tomoyuki Yokogawa

December 2003

Contents

1 Introduction 1

1.1 Overview . 1

2 Model Checking 7

2.1 Model Checking . 7

2.1.1 Symbolic Model Checking . 7

2.1.2 Symbolic Model Verifier (SMV) . 8

3 Fault Tolerance Verification 11

3.1 Model of Fault-Tolerant Systems . 11

3.1.1 Guarded Command Programs . 11

3.1.2 Faults . 12

3.1.3 Fault Tolerance . 13

3.2 The Proposed Modeling Language . 14

3.2.1 Syntax . 15

3.2.2 Translation Method to the SMV Language 16

3.3 Case Studies . 20

3.3.1 Atomic Commitment Protocol . 20

3.3.2 Byzantine Agreement . 24

3.3.3 Leader Election . 27

3.3.4 Other results . 28

4 Feature Interaction Detection 35

4.1 Services and Interaction . 35

4.1.1 Communication Services . 35

ii

4.1.2 Feature Interaction . 36

4.2 Model . 37

4.2.1 Notation . 37

4.2.2 State Transition Model . 38

4.3 Symbolic Representation . 40

4.3.1 State Transition . 40

4.3.2 Interaction State . 42

4.4 Experimental Results . 44

4.4.1 Nondeterminism . 44

4.4.2 Invariant Violation . 44

5 Bounded Model Checking 48

5.1 Existing Scheme . 48

5.2 Proposed Scheme . 49

5.2.1 Encoding . 49

5.2.2 Constructing a Succinct Formula 51

5.2.3 Illustrative Example . 52

5.3 Representing Interaction State . 54

5.4 Comparison Results . 56

5.4.1 Nondeterminism . 56

5.4.2 Invariant Violation . 58

6 Conclusions 60

6.1 Achievements . 60

iii

Chapter 1

Introduction

1.1 Overview

In recent years, the growing demand for high availability and reliability of computer

systems has led to a formal verification for dependable systems. Among them, there are

a number of researches of formal verification for fault-tolerant systems [18, 23, 27, 30].

Methods for formally verifying fault tolerance are classified into deductive verification and

model checking.

The term deductive verification normally refers to the use of axioms and proof rules

to prove the correctness of systems. The importance of deductive verification is widely

recognized by computer scientists. There are some examples where the fault tolerance was

verified by deductive verification [23, 30]. Kljaich proposed a formal verification system

based on the use of automated reasoning techniques to validate fault tolerance [23]. An

extend Petri net representation, called flow nets, is used to describe the system to be

verified. Melliar-Smith showed the methodology employed to demonstrated rigorously

that the SIFT fault-tolerant computer meets its requirements [30]. The process of formal

specification and verification of SIFT discovered four design errors which would have

been difficult or impossible to detect by testing. However, deductive verification is a

time-consuming process that can be performed only by experts who are educated in

logical reasoning and have considerable experience. The proof of a single protocol or

circuit can last days or months. Moreover deductive verification cannot be performed

fully automatically; thus the use of it is rare. An advantage of deductive verification is

1

that it can be used for reasoning about infinite state systems. However, no limit can be

placed on the amount of time or memory that may be needed in order to find a proof.

Model checking is an automatic technique for verifying concurrent systems. That can

be performed absolutely automatically in stead of restriction that it can verify only finite

state systems. Because of this property, it is preferable to deductive verification, whenever

it can be applied. For realistic designs, however, the number of states of the system can

be very large and the explicit traversal of the state space may become infeasible. This

problem is usually called the state explosion problem.

Symbolic model checking [29] is one of the most successful approaches to state explo-

sion. This method alleviates the problem by symbolically representing the state space by

Boolean functions. Many symbolic model checking tools use Binary Decision Diagrams

(BDDs) as the data structure to manipulate Boolean functions efficiently. Since Boolean

functions can often be represented by BDDs very compactly, the symbolic model checking

method can reduce the memory and time required for analysis.

There are also some examples where fault tolerance property of concurrent systems

was verified by model checking [5, 19, 37]. Bernardeschi presented an approach for the

verification of the correctness of fault tolerant system [5]. The approach is based on pro-

cess algebras, equivalence theory and temporal logic. The usability of the approach is

supported by the availability of automatic tools for equivalence checking and for proving

the temporal logic properties by model checking. Gnesi described an experiment in formal

specification and verification performed in the context of a safety critical railway control

system [19]. In this research, verification of safety and liveness properties had been per-

formed using the verification tool suite SPIN. Schneider showed a practical application of

model checking for validating the requirements for a complex embedded system [37]. The

system verified in the case study is a dually redundant spacecraft controller, in which a

checkpoint and rollback scheme is used to provide fault tolerance during the execution of

critical control sequences.

In this dissertation, we aim to achieve formal verification for dependable systems

using model checking. There are a number of methods to verify dependable systems

using modelchecking. However, these methods for verification are specialized for specific

systems, and a general approach does not exist. Thus we propose a general method

2

for automatic verification for dependable systems using model checking. We propose

general approaches for automatic verification using model checking for two problems.

The first is verification for fault-tolerant systems, and the second is detection of feature

interaction. First, we propose a method to verify fault-tolerant systems, which is the

common dependable system, using model checking. We achieve verification for fault

tolerance using symbolic model checking by providing the framework to model fault-

tolerant systems and extracting transition relations as a Boolean formula from the model.

Second, we propose a method to detect feature interactions in telecommunication services

using model checking. Feature interaction refers to situations where a combination of

different services induce unexpected behaviors. We adopt a variant of State Transition

Rules (STR) [21, 34] to describe services and the behavior of the system. And we detect

feature interactions using symbolic model checking by extracting transition relations from

the model in a similar way. These methods use a symbolic model checking tool called

SMV (Symbolic Model Verifier) [29]. SMV is a tool for checking that finite-state systems

described by the input language of SMV satisfy specifications given in CTL (Computation

Tree Logic) [12].

First, we propose a method to verify fault-tolerant systems automatically using model

checking. Our aim is to provide a single method that can be applied to various kinds

of systems. We achieve this goal to adopting a model of fault-tolerant systems that is

proposed by Arora and Gouda [2]. In recent years, the model has been accepted as a

fundamentals for building and reasoning about fault-tolerant systems.

Of course, there are always situations where problem-specific properties, which cannot

be handled by our method, need to be verified. This is most likely when the designs to

be verified are detailed. However, we believe that our method is still useful especially in

early stages of development, where designs are in highly abstract level.

We assume that a system to be verified is given in the form of a guarded command

program [2]. We design a modeling language suited for describing guarded command

programs, and then we propose a translation method from the modeling language to

the SMV language. We present the CTL formula that describes fault tolerance. Finally

we apply the proposed method to some examples to demonstrate the usefulness of the

method.

3

A
BC

(C
F to C

)
(O

C
S to C

)

R
eady to

dial

A
BC

(C
F to C

)
(O

C
S to C

)

A
 dials B

V
iolation of

O
C

S to C

F
igu
re
1.1:

In
teraction

ex
am
p
le.

S
econ

d
w
e
p
rop
ose

a
m
eth
o
d
to
d
etect

featu
re

in
teraction

s
in
telecom

m
u
n
ication

ser-

v
ices

u
sin
g
m
o
d
el
ch
eck
in
g.

F
eatu

re
in

teraction
refers

to
situ

ation
s
w
h
ere

a
com

b
in
ation

of
d
iff
eren

t
serv

ices
b
eh
aves

d
iff
eren

tly
th
an
ex
p
ected

from
th
e
sin
gle

serv
ices’

b
eh
av
iors.

F
or
ex
am
p
le,
con

sid
er
a
situ

ation
w
h
ere

u
ser

A
h
as
su
b
scrib

ed
to
th
e
serv

ice
O
rigin

atin
g

C
all

S
creen

in
g
(O
C
S
)
an
d
d
o
es
n
ot
w
an
t
calls

to
u
ser

C
to
b
e
p
u
t
th
rou
gh
,
an
d
u
ser

B

h
as
activated

th
e
serv

ice
C
all

F
orw

ardin
g
(C
F
)
to
u
ser

C
.
In
th
is
situ

ation
,
if
A
calls

B
,

th
e
in
ten
tion

of
O
C
S
n
ot
to
b
e
con

n
ected

to
C
is
in
valid

ated
sin
ce
th
e
call

is
p
u
t
th
rou
gh

to
C
b
y
w
ay
of
B
.
F
igu
re
1.1

illu
strate

th
is
in
teraction

.

In
to
d
ay
’s
in
telligen

t
telecom

m
u
n
ication

n
etw

ork
s,
featu

re
in
teraction

is
con

sid
ered

a

m
a
jor

ob
stacle

to
th
e
in
tro
d
u
ction

of
n
ew

featu
res

an
d
th
e
p
rov
ision

of
reliab

le
serv

ices.

In
p
ractical

serv
ice

d
evelop

m
en
t,
h
ow
ever,

th
e
an
aly
sis

of
in
teraction

s
h
as
often

b
een

con
d
u
cted

in
an
ad
h
o
c
m
an
n
er.

T
h
is
lead

s
to
tim

e-con
su
m
in
g
serv

ice
d
esign

an
d
testin

g

w
ith
ou
t
an
y
in
teraction

-free
gu
aran

tee.

M
an
y
ap
p
roach

es
h
ave

b
een

ex
p
lored

to
overcom

e
th
is
situ

ation
.
K
eck

an
d
K
u
eh
n

su
rveyed

th
ese

ap
p
roach

es
[24].

T
h
ey
also

su
rveyed

classifi
cation

sch
em
es,
an
d
m
en
tion

ed

th
e
on
e
b
y
B
ou
m
a
an
d
V
elth

u
ijsen

[8]
as
a
gen

erally
accep

ted
categorization

fram
ew
ork
.

In
th
is
fram

ew
ork
,
th
e
ap
p
roach

es
to
featu

re
in
teraction

are
classifi

ed
in
to
on
-lin
e
an
d

off
-lin
e
an
d
in
to
avoid

an
ce,

d
etection

,
an
d
resolu

tion
.

W
e
p
rop
ose

a
form

al
ap
p
roach

w
h
ich

falls
in
to
th
e
off
-lin
e
d
etection

category
;
th
at
is,

th
e
p
rop
osed

ap
p
roach

is
aim

ed
at
d
etectin

g
laten

t
featu

re
in
teraction

in
given

com
m
u
n
i-

cation
serv

ice
sp
ecifi

cation
s.
A
lth
ou
gh
form

al
ap
p
roach

es
h
ave

b
een

w
ell
stu
d
ied

in
th
is

category,
ou
rs
is
d
iff
eren

t
in
th
at
it
u
ses

m
odel

checkin
g.

In
ou
r
m
eth
o
d
,
w
e
ach
ieve

to
d
etect

featu
re
in
teraction

b
y
th
e
S
M
V
to
ol
b
y
follow

in
g

4

processes. First we extract the transition relation from given specification as a boolean

formula and describe SMV program using the formula. And second we describe the

property of interaction occurrence as a CTL formula. As experiments, we demonstrate

that we can detect all interactions for given service specifications by SMV.

As stated above, we achieved automatic detection for feature interaction using sym-

bolic model checking. However, there are some case where SMV requires much time

for detection process. To solve this problem, we propose the method to detect feature

interaction using bounded model checking.

Bounded model checking [7, 39, 38] is a new symbolic model checking method which

does not use BDDs. The central idea behind this method is to reduce the model checking

problem to the propositional satisfiability (SAT) checking problem and to look for coun-

terexamples that are shorter than some fixed length k for a given property. The formula

to be checked is constructed by unwinding the transition relation of the system k times

such that truth assignments satisfying the formula correspond to counterexamples.

In the literature, it has been reported that bounded model checking can work effi-

ciently, especially for the verification of digital circuits. An advantage of this method is

that it works efficiently even when compact BDD representation cannot be obtained. It

is also an advantage that it can exploit recent advances in decision procedures of satisfi-

ability. (The latest SAT tools include, for example, Grasp [28] and Chaff [31].)

In contrast, this method does not work well for asynchronous systems, because the en-

coding scheme into propositional formulas is not suited for such systems. When applying

this technique to asynchronous systems, a large formula would be required to represent

the transition relation, thus resulting in large execution time and low scalability.

To overcome this problem we have been working on new encoding. In this dissertation

we describe the encoding scheme. (Preliminary results were presented as a short paper

[42].) The new encoding reduces the size of the resultant formula by exploiting the

property that usually only small fraction of state variables take in part of each state

transition. Interestingly, as a side-effect, the new scheme often explores a larger state

space than the existing bounded model checking does for the same k. By applying the

proposed scheme and other model checking methods to feature interaction detection, we

show the effectiveness of the propose method.

5

The remainder of this dissertation is organized as follows. In Chapter2, we describe

model checking method. In Chapter3, we describe the method for automatic verification

for fault-tolerant systems and show the result of case studies. In Chapter4, we describe

the method to detect feature interactions and show the experimental reslts. In Chapter5,

we propose to use bounded model checking for feature interaction detection and show its

effectiveness. In Chapter6, we conclude the dissertation.

6

Chapter 2

Model Checking

2.1 Model Checking

Model checking is an automatic technique for verifying finite state concurrent systems.

Model checking methods search the finite state space to determine if some specification is

true or not [13]. One benefit of the restriction to finite state systems is that verification

can be performed automatically. Although this restriction may seem to be a major dis-

advantage, model checking is applicable to several very important classes of systems. For

example, hardware controllers are finite state systems, and so are many communication

protocols. In many cases errors can be found by restricting unbounded data structures to

specific instances that are finite state. For example, programs with unbounded message

queues can be debugged by restricting the size of the queues to a small number like two

or three.

2.1.1 Symbolic Model Checking

The main challenge in model checking is dealing with the state explosion problem. The

problem occurs in systems with many components that can interact concurrently. To cope

with the problem, a method has been proposed that expresses the state space and the

transition relation by Boolean functions, and verifies systems by processing the Boolean

functions. This method is called symbolic model checking [10, 29].

In symbolic model checking, a Boolean function is expressed by using OBDDs (Ordered

binary decision diagrams)[9]. OBDDs provide a canonical form for Boolean functions

7

that are often substantially more compact than conjunctive or disjunctive normal form,

and very efficient algorithms have been developed for manipulating them. Therefore, it

achieves the conciseness to express the state space and the transition relation, and enables

the avoidance of the state explosion problem.

In model checking, it is necessary to describe the properties that the system must

satisfy as a specification. The specification is usually given as a formula in some logic.

For concurrent systems, it is common to use temporal logic, which can assert how the

behavior of the system evolves over time. A well-used temporal logic is CTL [12]. Time

is not mentioned explicitly in CTL; instead a formula might specify that eventually some

designated state is reached, or that an error state is never entered. Properties like even-

tually or never are specified using special temporal operators. These operators can be

combined with Boolean connectives or nested arbitrarily.

CTL formulas describe properties of computation trees. The tree is formed by unwind-

ing the execution sequences into an infinite tree with the designated initial state at the

root. The computation tree shows all of the possible executions starting from the initial

state. In CTL, formulas are composed of path quantifiers and temporal operators. The

path quantifiers are used to describe the branching structure in the computation tree.

There are two such quantifiers; one is A (“for all computation paths”) and another is E

(“for some computation path”). These quantifiers are used in a particular state to specify

that all of the paths or some of the paths starting at that state have some property. The

temporal operators describe properties of a path through the tree. There are four basic

operators, X (“next time”), F (“in the future”), G (“globally”), U (“until”). In this

paper, we use only AF and AG. The formula AGp holds in state s if p holds in all states

along all sequences of states starting from s, while the formula AFp holds in state s if p

holds in some states along all sequences of states starting from s. An atomic proposition

is a CTL formula. If f and g are CTL formulas, so are ¬f , f ∧ g, f ∨ g, AFf , and AGf .

2.1.2 Symbolic Model Verifier (SMV)

SMV is a software tool that implements symbolic model checking [29]. It is based on

a language for describing hierarchical finite-state systems. Programs described in the

language contain specifications expressed by CTL. The model checker extracts a state

8

space and a transition system from a program in the SMV language and uses an OBDD-

based search algorithm to determine whether the system satisfies its specification. If the

system does not satisfy the specification, the verification tool will produce an execution

trace that shows why the specification is false.

Figure 2.1 is an example of an SMV program. A state of the transition system is

represented by a collection of state variables. The variables may be of Boolean, integer

subrange, or enumerated type. The keyword VAR is used to declare variables. The variable

request is declared to be a Boolean in the program, while the variable state can take

on the symbolic values ready or busy.

In the SMV language, the transition relation is described by specifying changes of

the values of variables with ASSIGN declaration, or by using a Boolean-valued function

with TRANS declaration. When using ASSIGN, the change of the value is individually

described for every variable. This is not appropriate for describing guarded command

programs in which each action updates multiple variables and selection of actions can

be non-deterministic. We therefore use TRANS and describe the transition relation as a

Boolean formula over the program variables. Similarly, initial states are described by a

Boolean formula.

Specifically the transition relation is a set of the pairs of the current state and the next

state that satisfy the Boolean formula defined in the TRANS statement. Also the initial

states are a set of states where the Boolean formula defined in the INIT statement holds.

The expression next(x) is used to refer to the variable x in the next state.

The specification is described as a formula in CTL under the keyword SPEC. SMV

MODULE main

VAR request:boolean;

state:{ready, busy};
INIT state = ready

TRANS (state = ready & request)

& next(state) = busy

SPEC AG(request -> AF state = busy)

Figure 2.1: SMV program

9

verifies whether all possible initial states satisfy the specification. In this case, the spec-

ification signifies that invariantly if request is true, then eventually the value of state

will be busy.

In model checking, only the correctness along fair computation paths is interested in

many cases. For example, we do not consider a computation where a certain process

has never selected as an object of verification. Such properties are expressed by keyword

FAIRNESS in SMV. The keyword FAIRNESS and a CTL formula force SMV to verify only

computation paths where the associated CTL formula becomes true infinitely often.

10

Chapter 3

Fault Tolerance Verification

3.1 Model of Fault-Tolerant Systems

3.1.1 Guarded Command Programs

To describe systems to be verified, we adopt the model proposed in [2]. A system is

described as a program that consists of a set of variables and a finite set of processes.

Each variable has a predefined nonempty domain. Each process consists of a finite set of

actions. Each action consists of a guard and a statement, where the guard is a Boolean

expression over program variables, and the statement is a set of assignments that updates

zero or more program variables and always terminates upon execution. The action is

described in the form

〈guard〉 → 〈statement〉.

A state of the system is defined as a valuation values of the program variables. There-

fore a Boolean expression over the program variables describes a set of states where that

expression evaluates to true, and a state transition is described by assignments that up-

date the program variables.

An action is enabled at a state iff its guard evaluates to true at that state. At each

state, a process is selected non-deterministicly, and if there exist enabled actions in the

process, one of them is also selected non-deterministicly and then the statement updates

the program variables. State transitions thus occur by execution of actions.

11

We assume that the sequence of state transitions is process-fair; that is, any process

is infinitely often chosen for execution.

3.1.2 Faults

A formal approach to defining the term “fault” is usually based on the observation that

systems change their state as a result of two quite similar event classes: normal system

operation and fault occurrences [14]. Thus, a fault can be modeled as an unwanted (but

nevertheless possible) state transition of a process. By using additional (virtual) variables

to extend the actual state space of a process, various kinds of faults, such as, crash faults,

omission faults, or some type of Byzantine faults, can be represented [1, 2, 43, 17].

In this model, we describe the occurrences of faults, that is, the unwanted transitions,

by a set of actions, F , over the variables of the program.

We refer to actions in F as fault actions. These three types of faults are modeled by

actions as follows.

(1) Crash faults

First, we add a Boolean variable up to the process and set the initial value of up to true.

In addition, the guard of each action of the process is modified to the conjunction of the

guard and up, as shown below.

up ∧ 〈guard〉 → 〈statement〉.

This means that no action is selected when up = false. Finally the fault action

fault : true → up := false

is added to the process. If the action is selected, up is set to false and no action becomes

selectable from then. We thus can represent a crash fault.

(2) Omission faults

A fault that causes a process to not respond to some inputs is called an omission fault.

This type of a fault can be represented in the same way as crash faults, except that an

additional action

12

up → up := false

is needed to represent that the process behaves incorrectly intermittently.

(3) Byzantine faults

Byzantine fault refers to fault which causes the process to behave in totally arbitrary

manner. Incorrect computation faults are an important subset of the Byzantine fault.

With this type of fault, a process simply produces an incorrect output. Consider the

following action

〈guard〉 → v := valk.

Where v is a variable that has the range of values {val1, · · · , valn}(1 ≤ k ≤ n).

In the case, we can represent an incorrect computation fault by adding the fault action

fault : 〈guard〉 → v := {val1, · · · , valn}

to the process. If the action is selected, the value of v changes arbitrarily.

3.1.3 Fault Tolerance

In the model, the fault tolerance of the system is formally defined as follows. We assume

that a Boolean expression S that represents legal states is given. In addition, we assume

that S is never invalidated by non-fault actions. This property is referred to as the closure

property.

These assumptions stem from the following observation. A well-established method

for verifying fault-free systems is to detect a predicate that is true throughout system

execution. Such an invariant predicate identifies the legal states of system and asserts

that the set of legal states is closed under system execution without fault. For exam-

ple, Arora and Kulkarni proposed a methodology for constructing fault-tolerant systems

systematically [3]. In the methodology, fault-tolerant programs are incrementally con-

structing from non-fault-tolerant systems and each step of the construction, an invariant

property is required to be identified and verified. Following this observation, we require

that for each fault-tolerant system there exists a predicate S that is invariant throughout

fault-free system execution.

13

Let c be any legal state, that is, any state of the program where S holds. If S is not

invalidated in c by any action in the set F of fault actions, then the program is said to

be tolerant to F . (This type of fault tolerance is referred to as masking fault tolerance.)

Otherwise, executing an enabled action in F in c may yield an illegal state, where ¬S

holds. If continuous execution of a sufficiently large number of actions that are not in

F always yields a legal state from any illegal state, then the program is also said to be

tolerant to F . (This type of fault tolerance is referred to as nonmasking fault tolerance.)

Figure 3.1 illustrates this concept.

Fact∈.

Fact∉.

Fact∈.
nactactact ⋅⋅⋅ ...21

Legal states

Illegal states

)(Facti ∉

Figure 3.1: Schematic overview of the fault tolerance property

3.2 The Proposed Modeling Language

To describe and verify fault-tolerant systems, we propose a modeling language for de-

scribing guarded command programs. By translating programs written in this language

into the SMV language, it becomes possible to model check fault tolerance. Using this

proposed language, we need not describe the non-determinism of systems, the fairness

14

property of the selection of processes and the fault-tolerance property explicitly. We note

that because of the lack of flexibility of the SMV language, it is difficult and tedious to

represent these properties by hand. By representing a given system as a guarded com-

mand program and the legal states as a Boolean formula, we can verify fault tolerance

automatically. In this section, we show the syntax of the modeling language and explain

how to translate it to the SMV language.

3.2.1 Syntax

The program is described in the following form.

program :: "program"

macros_definition

legal_states_description

process_description1

process_description2

...

The set of legal states is specified as a Boolean formula.

legal_states_description :: "spec" expression

The processes are described in the following form.

process_description :: "process" process_name

"begin"

var_declaration

macros_definition

action_description

fault_description

"end"

The variables of a process are declared with two elements. One is the type of the

variable, while the other is a set of the initial values of the variable.

The type associated with a variable declaration can be either Boolean, a set of integers,

or enumeration of symbols. An integer type is defined either by upper and lower bounds

like {1..5} or by an enumeration of elements like {1, 2, 3, 4, 5}.

15

Actions (including fault actions) which specify the transition relation of the system

are described in the following form.

action_description :: "action" seq_of_actions

fault_description :: "fault" seq_of_actions

seq_of_actions :: action1 ";"

action2 ";" ...

action :: guard ":>" statement ";"

guard :: expression

statement :: assignment1 ","

assignment2 "," ...

assignment :: left ":=" right

left :: variable_name

| process_name "." variable_name

right :: expression

| "{" val1 "," val2 "," ... "}"

The left hand side of an assignment denotes the variable that will change by the action.

If the right hand side is an expression, the assignment means that the variable changes

to the value of the right hand side. On the other hand, if the right hand side is a set, the

variable changes to one value of the set non-deterministicly.

3.2.2 Translation Method to the SMV Language

Action

As stated above, an action is represented in the proposed language as follows.

P :> x1:=expr1, x2:=expr2, · · · , xn:=exprn

The changes of the variable values caused by the action can be represented as a

Boolean formula next(x1)=expr1 & next(x2)=expr2 & · · · & next(xn)=exprn. Note

that the action can be selected only in the states represented by a Boolean formula P.

Consequently, the state transition by the action is described as the following formula.

P & next(x1)=expr1 & · · · & next(xn)=exprn

& next(y1)=y1 & · · · & next(ym)=ym

16

Here y1,· · · ,ym are the variables that do not change in the next state. The formula

holds iff this action is enabled and the value of each variable in the next state is assigned

as designated by this action. The formula thus represents that this action is selected. A

fault is expressed as an action and can be described similarly.

Let ai be this formula for an action. Then the transition of a process that has N

actions is expressed as formula A = a1 ∨ a2 ∨ · · · ∨ aN .

State Transitions

Let Ai be a formula that expresses the transitions of process i. Since only one process is

selected simultaneously, the transitions of the system that has m processes is represented

as formula (A1 ∧ run1)∨ (A2 ∧ run2)∨ · · · ∨ (Am ∧ runm), where a Boolean variable runi

represents that a process i is selected. The constraint that only one process is selected

can be expressed by setting only one element in run1, run2, · · · , runm to true.

Consequently the transition relation of the system is represented as the following

formula.

(A1 ∧ run1) ∨ (A2 ∧ run2) ∨ · · · ∨ (Am ∧ runm) ∧ ((run1 ∧ ¬run2 ∧ · · · ∧ ¬runm) ∨
(¬run1 ∧ run2 ∧ · · · ∧ ¬runm) · · · ∨ (¬run1 ∧ ¬run2 ∧ · · · ∧ runm))

We assume the fairness for selection of processes; that is, each process must be selected

infinitely often. Thus, only execution sequences where each runi holds infinity often are

verified. This can be specified using FAIRNESS as follows.

FAIRNESS run1
...

FAIRNESS runm

The set of initial states is also described by a Boolean formula. When a variable x has

initial values x0, x1, · · ·, the set of states where x has the initial values is described by a

formula (x = x0) ∨ (x = x1) ∨ · · ·. Since the initial states are those where such a formula
holds for each variable, the conjunction of each formula represents the set of the initial

states.

17

Specifying Fault Tolerance

To use SMV, we have to express the property to be verified as a formula of a temporal

logic called CTL.

So far we have shown the method for expressing the transition relation of a system

in the SMV language, without considering verification of fault tolerance. In order for

verification to be carried out, it is necessary to describe the fault tolerance property

explicitly. For this purpose, we introduce a Boolean variable f and modify guards of fault

actions such that they can be selected only when f = 0. When f = 1, only non-fault

actions are selected.

We let the value of f to change as follows. If the system is in the legal states, the

value of f is always false. If the system is not in the legal states, the value of f changes

to true or false non-deterministicly. Once the value of f has changed to true, it remains

true invariantly in the illegal states. This is intended to represent the fact that faults will

stop occurring. If the system has come back to the legal states, the value of f changes to

false.

The guard of each fault action is modified as follows. Suppose that a fault action is

given in the modeling language as shown below.

P :> v1:=expr1, v2:=expr2, · · · , vn:=exprn

Then the condition of execution is modified to P ∧¬f , and another action is obtained as

follows.

P ∧ ¬f → v1 := expr1, v2 := expr2, · · · , vn := exprn

Note that the only difference between the two actions is that the latter is not enabled

when f is true. In addition, we do not exclude the possibility that f is always false. Thus

this modification does not deviate the resulting transition system from the behavior of

the given program.

The change of the value of f is described as the following formula F . Here S is a

Boolean formula that represents the set of legal states.

F = S & next(f)=0

18

| !S & !f & (next(f)=1|next(f)=0)

| !S & f & next(f)=f

(! represents negation.)

The value of f changes independently from the executions of actions. So by adding

F to the formula that represents the behavior of the whole system as a conjunctive, the

changes of the value of f are incorporated into the transition relation. Thus the TRANS

statement becomes as follows.

TRANS

(A1 & run1 | A2 & run2 | · · · | Am & runm)

& ((run1 & !run2 & · · · & !runm)
...

| (!run1 & !run2 & · · · & runm))

& F

Using f , the property to be verified, that is, the fault tolerance, is expressed in CTL

as follows.

AG(f → AF (S))

This CTL formula expresses the property that if f holds, then S will always hold

eventually. The CTL formula holds iff the system is either masking fault-tolerant or non-

masking fault-tolerant. In the case of nonmasking fault-tolerant systems, even though the

system falls into the illegal state where S does not hold by a fault action, if f changes

to true and faults stop occurring, then S will hold eventually by execution of non-fault

actions. In the case of masking fault-tolerant systems, S always holds. Thus AF (S)

always holds, so does this CTL formula.

The proposed method focuses on checking the fault tolerance property. Using different

CTL formulas, however, other properties can also be verified. For example, the closure

property can also be checked by using another CTL, as explained below.

Remark

As stated in 2.3, we assume that the closure property holds; that is, S is never invalidated

by non-fault actions. It should be noted that we can also check the closure property

19

as follows. First, with the method described in this section, a given guarded command

program is translated into an SMV program by considering non-fault actions only. Second,

CTL formula AG(S → AG(S)), which represents the closure property, is checked by the

SMV tool.

3.3 Case Studies

In this section, we show the results of applying the proposed method to several examples.

These examples are known to be fault-tolerant and all verification results coincided com-

pletely. The first two examples, namely atomic commitment and Byzantine agreement

protocols are masking fault-tolerant, while the third one is non-masking fault-tolerant. All

experiments were performed on a Linux machine with a 500MHz Pentium III processor

and 256 Mbytes of memory.

3.3.1 Atomic Commitment Protocol

The first example is the atomic commitment protocol [2, 6]. In the protocol, each process

casts one of two votes, Yes or No, then reaches one of two decisions, Commit or Abort.

If no faults occur and all processes vote Yes, all processes reach a Commit decision. A

process reaches a Commit decision only when all process voted Yes. And all processes that

have reached a certain decision reach the same decision. We consider using the two-phase

commit protocol to implement the atomic commitment protocol. We assume that faults

may stop processes.

In the first phase, each process casts its vote and sends the vote to a distinguished co-

ordinator process c. In the second phase, the coordinator process reaches a decision based

on the votes received from other processes and broadcasts the decision to all processes.

The coordinator process c has the following two phases and can be described as three

actions.

Phase 1: Process c casts its vote, enters the second phase, and starts waiting for the

votes of other processes (the first action).

Phase 2: If c detects that all processes have voted Yes and not stopped, it reaches a

20

process c

begin

var

ph : {0..2}{0};
up : boolean{true};
d : boolean{true, false};

action

up & ph=0 :> ph:=1, d:={false, true}, up:=up ;

up & ph=1 &

((up & ph=1 & d) & (p1.up & p1.ph=1 & p1.d)

& (p2.up & p2.ph=1 & p2.d) & · · ·)

:> ph:=2, d:=true, up:=up ;

up & ph=1 &

((!up | (ph>=1 & !d)) | (!p1.up | (p1.ph>=1 & !p1.d))

| (!p2.up | (p2.ph>=1 & !p2.d)) | · · ·)

:> ph:=2, d:=false, up:=up ;

fault

true :> ph:=ph, d:=d, up:=0;

end

Figure 3.2: The coordinator process.

Commit decision (the second action). If c detects that some process has voted

No or has stopped, it reaches an Abort decision (the third action).

Each process other than the coordinator has following two phases and can be described

as three or more actions.

Phase 1: If the process detects that c has voted and entered the second phase, it casts its

vote, enters the second phase, and starts waiting for the vote of some process

(the first action). If the process detects that c has stopped, it reaches an Abort

decision (the second action).

Phase 2: If the process detects that some process has not stopped and completed its

second phase, reaches the same decision as that process has (the third or other

actions).

21

Figure 3.3: Example of atomic commitment.

Using Figure 3.3, we illustrate how the protocol works. We assume that the number

of processes is 3.

Phase 1: (Step 1) The coordinator process c casts its vote and the value of ph is set

to 1. Here we assume that c votes Yes (d = true). (Step 2) Process p1 and p2 check that

c has not stopped and voted (c.up ∧ c.ph = 1), and cast their votes. The value of p1.ph

and p2.ph are set to 1.

Phase 2: Now suppose a crash fault occurs in process p2. (Step 3) Since p2 has

stopped, c reaches an Abort decision. The value of ph is set to 2 and c completes the

phase. (Step 4) Process p1 checks that c has not stopped and has completed the second

phase (c.up ∧ c.ph = 2) and reaches the same decision as c (d = false). The value of

p1.ph is set to 2 and p1 completes the phase.

Finally all processes has completed or stopped. At this stage, the processes that have

not stopped (that is, c and p1) have reached an Abort decision.

The coordinator process can be described by using the proposed input language as

shown in Figure 3.2. The variable ph represents the current phase of the process. The

value of ph is 0 initially, 1 after the process has cast its vote and entered phase 2, and 2

after the process has reached a decision and completed phase 2. The variable d represents

(depending upon the current phase) the vote or the decision of the process. The value of

d is true if the vote is Yes or the decision is Commit, and false if the vote is No or the

decision is Abort. The variable up represents the current status of the process. The value

22

const

condition1 :=

c.ph=0 ->

(c.ph=0 | (c.ph=2 & !c.d))

& (p1.ph=0 | (p1.ph=2 & !p1.d)) & · · · ;

condition2 :=

c.ph=1 ->

(c.ph!=2 | !c.d) & (p1.ph!=2 | !p1.d) & · · · ;

condition3 :=

c.ph=2 & c.d ->

(c.ph!=0 & c.d) & (p1.ph!=0 & p1.d) & · · · ;

condition4 :=

c.ph=2 & !c.d ->

(c.ph!=2 | !c.d) & (p1.ph!=2 | !p1.d) & · · · ;

spec

condition1 & condition2 & condition3 & condition4

Figure 3.4: Legal states of atomic commitment.

of up is true if the process is being executed, and false if the process is stopped. Other

processes can be described similarly.

We assume that if the following four conditions are satisfied, the system is in the legal

state. (1) If c has not voted (c.ph = 0), then each process has either not voted or (detected

that c had stopped and) reached an Abort decision. (2) If c has voted but not reached a

decision (c.ph = 1), then each process has either not reached a decision or (detected that

c had stopped and) reached an Abort decision. (3) If c has reached a Commit decision

(c.ph = 2 ∧ c.d), then each process has either voted Yes (and not reached a decision) or

reached a Commit decision. (4) If c has reached an Abort decision (c.ph = 2 ∧ ¬(c.d)),
then each process has either not reached a decision or reached an Abort decision. Thus

the legal states can be described as shown in Figure 3.4.

By applying the translation method to this example described above, we verified the

fault tolerance by SMV. We applied the method to the systems where the number of

processes were 3, 4, 5, and 6. When the number of processes was 6, the time required

for verification was about 0.65 seconds and the number of reachable states was about

23

% smv -r 2phase.smv

-- specification AG (f -> AF S) is true

resources used:

user time: 0.65 s, system time: 0.03 s

BDD nodes allocated: 38479

Bytes allocated: 1900544

BDD nodes representing transition relation: 9391 + 14

reachable states:

3.10518e+07 (2^ 24.8882) out of 3.82206e+08 (2^ 28.5098)

Figure 3.5: Verification result produced by SMV (atomic commitment).

225. Figure 3.5 shows the output of SMV in case the number of processes was 6. The

performance of verification is shown in Table 3.1.

3.3.2 Byzantine Agreement

The second example is the Byzantine agreement problem [2]. Each process is either Reli-

able or Unreliable. Each Reliable process reaches one of two decisions, false or true. One

process g is distinguished and has associated with it a Boolean value B. It is required

that:

1. If g is Reliable, the decision value of each Reliable process is B.

2. All Reliable processes reach the same decision.

We assume authenticated communication; messages sent by Reliable processes are

correctly received by Reliable processes, and Unreliable processes cannot forge messages

on behalf of Reliable processes [11, 40].

Agreement is reached within N+1 rounds of communication, where N is the maximum

number of processes that can be Unreliable. In each round r, where r ≤ N , every Reliable

process j that has not yet reached a decision of true checks whether g and at least r − 1
other processes have reached a decision of true. If the check is successful, j reaches a

decision of true. If j does not reach a decision of true in the first N rounds, it reaches a

decision of false in round N + 1.

24

Let dr be a Boolean value denoting the tentative decisions of a process up to round

r, and let cr.k be a Boolean value that is true iff the process knows that process k has

reached a decision of true in round r. We assume that the system is in legal states when

the following four conditions are satisfied. (1) The number of Unreliable processes is at

most N . (2) Before the first round, the tentative decision of each Reliable process j is

false, and for each k, cr.k of j is false. (3) In each round q, the tentative decision of

each Reliable process j is set to true iff its previous tentative decision is true or j knows

g and at least q−1 other processes have reached a decision of true, and cr.j of each other

process k is set to true only if dq of j is true. (4) In each round q, for any two Reliable

processes j and k, if the current tentative decision of j is false then cq.k of j is true iff

the previous tentative decision of k is true or some process knows k has reached a decision

of true.

We can show that each computation of the protocol that starts at a state in the legal

states satisfies the Byzantine agreement specification as follows. If the tentative decision

of g before the first round was true, because the third and fourth conditions of legal states

stated above hold, c1.g of each Reliable process becomes true and the decisions of the

Reliable processes become true as well as g. If the tentative decision of g before the first

round was false, because of the third condition, the decisions of the Reliable processes

never change true. Thus the Reliable processes reach the same decision as process g.

Figure 3.6: Example of Byzantine agreement.

25

Figure 3.6 illustrates how the protocol works. We assume that the number of processes

is 4 and N = 1. The program variables in round 0 (that is, the initial state) have the

values as shown in Figure 3.6 (a). Now suppose a fault has occurred in the process p2

and p2 has become Unreliable.

In round 1, each process acts as follows. First, each process sets the values of c1.k

(k = g, p1, p2, p3). The value of c
1.k is set to true when d0 is true for process k or there

exists a process such that c0.k is true. For example, for p1 c1.g is true, c1.p1 is false,

c1.p2 is false and c1.p3 is false, while each c1.k of Unreliable process p2 is false.

Next, each process sets the value of d1. The value of d1 is set to true when d0 is true

or c1.g is true. For example, d1 for p1 is true, while d1 for p2 is false.

When round 1 has been completed, the program variables have the values as shown

in Figure 3.6 (b).

In round 2, each process acts as follows. First, each process sets the values of c2.k

similarly as in round 1. For example, for p1 c2.g is true, c2.p1 is true, c2.p2 is false and

c2.p3 is true, while each c2.k of Unreliable process p2 is false.

Next, each process sets the value of d2. The value of d2 is set to true when d1 is true

or c2.g and at least one of (c2.p1, c
2.p2, c

2.p3) are true. For example, d2 for p1 is true,

while d2 for p2 is false.

When round 2 has been completed, the program variables have the values as shown

in Figure 3.6 (c), and each Reliable process reaches the same decision.

We described the Byzantine agreement problem as a program in the language that we

proposed. Figure 3.7 describes process g. Here we consider the case which the number

of processes is 4 and N is 1. The variables d0,d1,d2 denote dr for round 0, 1, 2. The

variables c0k,c1k,c2k denote cr.k for round 0, 1, 2. The variables b is a Boolean value

that is true iff the process is Reliable. The variables r and rr denote the current round.

If rr is 1, then it means that the current round is 1 and that c1.k of each k has been set

to some value. Similarly when r is 1, the current round is 1 and d1 has been set to some

value. The variables csum1 and csum2 denote whether the process knows that g and at

least q − 1 other processes have reached a decision of true for q = 1 and 2 respectively.

Other processes can be described similarly. The legal states are described as shown in

Figure 3.8.

26

The time required for verification was about 316 seconds and the number of reachable

states was about 225. The performance of verification is shown in Table 3.1.

3.3.3 Leader Election

The third example is the leader election problem on rings. The leader election problem is

the problem of selecting one process as a leader on a ring where no distinguished process

initially exists. This problem originally arose in the study of token ring networks. In

such a network, a single “token” circulates around the network. Sometimes, however, the

token may be lost due to faults, and it becomes necessary for the processes to execute an

algorithm to regenerate the lost token. This regeneration procedure amounts to electing a

leader. We consider a ring consisting of N processes, p0, p1, · · · , pN−1, that are connected

in this order. The process pi−1 is said to be a predecessor of the process pi in the ring.

The processes are assumed to have unique ids. The id for process pi is denoted by idi.

Here we consider a leader election algorithm proposed in [26]. In the algorithm, the

process with the maximum id is selected as the leader. Each process pi has two variables,

maxi and disti. maxi means the maximum id the process i knows, and disti means the

distance to the process pj where idj is maxi.

Each process pi has the following three actions:

1. If idi is larger than maxi, maxi is set to idi and disti is set to 0. While if disti is

0 and maxi is not equal to idi, maxi is set to idi. And if maxi is equal to idi and

disti �= 0, disti is set to 0.

2. If disti−1 + 1 < N and idi is smaller than maxi−1, maxi is set to maxi−1 and disti

is set to disti−1 + 1.

3. If disti−1+1 ≥ N , or if idi is larger than the idi−1 and idi is equal to or larger than

maxi−1, maxi is set to idi and disti is set to 0.

Let K be the maximum id of any process in the ring. The leader is successfully elected

if the system reaches the state that satisfies the following conditions.

1. For all processes i, maxi = K.

27

2. If j is the process with id K, then distj = 0. For any other process i �= j, disti =

1 + dist(i−1)modN .

Since each process pi only have the two variables, maxi and disti, there is exactly one

such state. Clearly, this state is the only legal state. We consider transient faults. A fault

changes the values of the variables of a process arbitrarily.

Using Figure 3.9, we explain the protocol. We assume that the number of processes

is 3 (K = 2) and that some faults have occurred at the initial state and the program

variables have the values as shown in Figure 3.9.

As an example, suppose that p1, p2, p0, and p1 are selected to be executed in this

order. First, the process p1 executes the first action and sets max to 1 and dist to 0.

Next the process p2 also executes the first action and sets max to 2 and dist to 0. Then

the process p0 executes the second action and sets max to 2 and dist to 1. Finally the

process p1 executes the second action and sets max to 2 and dist to 2 and the system has

reached the legal state.

When N is 4, each process is described as shown in Figure 3.10. The variable max

denotes maxi. Similarly, the variable dist denotes disti. The legal state is described as

shown in Figure 3.11.

We apply the method to the systems where N = 3, 4, 5, 6. In case N = 6, the time

requires for verification was about 9.68 seconds and the number of reachable states was

about 221. The performance of verification is shown in Table 3.1.

To our knowledge, there is no other research that can be directly compared to ours;

however, since the time required for verification was only approximately 5 minutes even

for the largest example, we think that the proposed verification method is practical, at

least for systems with small number of processes. From our experience, design errors may

often be observed even when the number of processes is rather few [41]. Thus we think

that the proposed method is useful especially in early stages of system development.

3.3.4 Other results

Closure property As stated in 4.2.3 we can check the closure property of the system by

extending the proposed method. We checked the closure property for the three examples.

Table 3.2 shows the performance of the verification of the closure property. Since this

28

Table 3.1: Performance of verification.

Protocol ($ of processes) Time States

(sec) Reachable Total

Atomic Commit (3) 0.03 5312 ≈ 215

Atomic Commit (4) 0.08 91392 ≈ 219

Atomic Commit (5) 0.21 ≈ 220 ≈ 224

Atomic Commit (6) 0.65 ≈ 225 ≈ 229

Leader Election (3) 0.04 11664 11664

Leader Election (4) 0.26 ≈ 221 ≈ 221

Leader Election (5) 2.27 ≈ 229 ≈ 229

Leader Election (6) 9.68 ≈ 238 ≈ 238

Byzantine Agreement(4) 315.89 ≈ 225 ≈ 281

property can be checked without considering faults, the state space to be explored is

significantly smaller than the case of fault tolerance verification.

Length of programs As stated before, we developed the modeling language and its

translation method to facilitate describing the system to be verified. To support our

claim, we compared the length of the program described in the proposed language and

the resulting SMV program. Table 3.3 compares both programs in terms of the total

number of tokens encountered in the parsing process. This result clearly shows that using

the proposed language significantly reduced the quantity of description.

29

Table 3.2: Performance of verification of the closure property.

Protocol ($ of processes) Time States

(sec) Reachable Total

Atomic Commit (3) 0.01 552 13824

Atomic Commit (4) 0.03 4432 ≈ 218

Atomic Commit (5) 0.11 37920 ≈ 223

Atomic Commit (6) 0.25 ≈ 218 ≈ 227

Leader Election (3) 0.01 8 5832

Leader Election (4) 0.01 16 ≈ 220

Leader Election (5) 0.03 32 ≈ 228

Leader Election (6) 0.05 64 ≈ 237

Byzantine Agreement(4) 59.52 ≈ 220 ≈ 280

Table 3.3: Quantity of description.

Protocol ($ of processes) $ of tokens

Proposed language SMV

Atomic Commit (3) 771 2500

Atomic Commit (4) 1107 4499

Atomic Commit (5) 1459 7445

Atomic Commit (6) 1875 11440

Leader Election (3) 613 1768

Leader Election (4) 845 2662

Leader Election (5) 1095 3826

Leader Election (6) 1363 5200

Byzantine Agreement(4) 9575 77315

30

process g

begin

var r,rr:{0,1,2}{0}; b:boolean{true};
d0,d1,d2:boolean{true,false};
c0g,c0p1,c0p2,c0p3:boolean{false};
c1g,c1p1,c1p2,c1p3:boolean{false};
c2g,c2p1,c2p2,c2p3:boolean{false};

const csum1:=true;

csum2:=(c2p1|c2p2|c2p3);

action

r=0 & rr=0 :> rr:=1,

c1g:=d0 | (c0g|p1.c0g|p2.c0g|p3.c0g),

c1p1:=p1.d0 | (c0p1|p1.c0p1|p2.c0p1|p3.c0p1),

c1p2:=p2.d0 | (c0p2|p1.c0p2|p2.c0p2|p3.c0p2),

c1p3:=p3.d0 | (c0p3|p1.c0p3|p2.c0p3|p3.c0p3);

r=0 & rr=0 & !b & p1.b & p2.b & p3.b :> rr:=1,

c1g:={true,false},c1p1:=false,
c1p2:=false,c1p3:=false;

r=0 & rr=0 & !b & !p1.b & p2.b & p3.b :> rr:=1,

c1g:={true,false},c1p1:={true,false},
c1p2:=false,c1p3:=false,

· · ·
r=0 & rr=1 & p1.rr=1 & p2.rr=1 & p3.rr=1

:> d1:=d0|csum1&c1g,r:=1;

r=0 & rr=1 & p1.rr=1 & p2.rr=1 & p3.rr=1 & !b

:> d1:={true,false},r:=1;
· · ·

fault b & p1.b & p2.b & p3.b :> b:=false;

end

Figure 3.7: Process g of Byzantine agreement.

31

const

condition1 := g.b & p1.b & p2.b & p3.b

| !g.b & p1.b & p2.b & p3.b

| g.b & !p1.b & p2.b & p3.b

| g.b & p1.b & !p2.b & p3.b

| g.b & p1.b & p2.b & !p3.b;

condition2 := (g.b -> (g.d0 = g.b) & !g.c0g)

&(g.b -> (g.d0 = g.b) & !g.c0p1)

&(· · ·);

condition3 :=

((g.r>=1 & g.rr>=1 & p1.r>=1 & p1.rr>=1

& p2.r>=1 & p2.rr>=1 & p3.r>=1 & p3.rr>=1)

-> ((g.b -> (g.d1<>(g.d0|c1g&g.csum1)))

&(· · ·)

&(g.b -> (g.c1g -> g.d1)&(p1.c1g -> g.d1)

&(p2.c1g -> g.d1)&(p3.c1g -> g.d1))

&(· · ·)))

&(· · ·);

condition4 :=

((g.r>=1 & g.rr>=1 & p1.r>=1 & p1.rr>=1

& p2.r>=1 & p2.rr>=1 & p3.r>=1 & p3.rr>=1)

-> ((g.b & g.b & !g.d0

-> (g.c1g<>

(g.d0|g.c0g|p1.c0g|p2.c0g|p3.c0g)))

&(g.b & p1.b & !g.d0

-> (g.c1p1<>

(p1.d0|g.c0p1|p1.c0p1|p2.c0p1|p3.c0p1)))

&(· · ·))

&(· · ·);

spec condition1 & · · · & condition4

Figure 3.8: Legal states of Byzantine agreement.

32

Figure 3.9: Example of leader election.

process p1

begin

var

max:{0,1,2,3}{3};
dist:{0,1,2,3}{2};

const

id := 1;

action

(id>max) | (id != max & dist=0)

| (id=max & dist != 0)

:> max:=id,dist:=0;

(p0.dist+1<N) & (id<p0.max)

& !(max=p0.max & dist=p0.dist+1)

:> max:=p0.max,dist:=p0.dist+1;

((p0.dist+1>=N) | ((id>p0.id) & (id>=p0.max)))

& !(max=id & dist=0)

:> max:=id,dist:=0;

fault

true :> max:={0,1,2,3},dist:={0,1,2,3};
end

Figure 3.10: A process of leader election.

33

const

condition1 := p0.max=K & · · · & p3.max=K;

condition2

:= (p0.id=K -> p0.max=K & p1.dist=1+p0.dist

& p2.dist=1+p1.dist & p3.dist=1+p2.dist)

& · · ·
&(p3.id=K -> p3.max=K & p0.dist=1+p3.dist

& p1.dist=1+p0.dist & p2.dist=1+p1.dist);

spec

condition1 & condition2

Figure 3.11: Legal states of leader election.

34

Chapter 4

Feature Interaction Detection

4.1 Services and Interaction

4.1.1 Communication Services

From ITU-T recommendation [22] (ITU-T Recommendations Q.1200 Series - Intelligent

Network Capability Set 1 (CS1)) and Bellcore’s feature standards [4] (Bellcore - LSSGR

Features Common to Residence and Business Customers I, II, III), we selected the fol-

lowing seven services (features) to consider:

Call Waiting (CW): This service allows the subscriber to receive a second incoming

call while he or she is already talking. Suppose that x subscribes to CW. Even

when x is busy taking with y, x can receive a call from a third party z.

Call Forwarding (CF): This service allows the subscriber to have his or her incoming

calls forwarded to another address. Suppose that x subscribes to CF and that x

specifies y to be a forwarding address. Then, any incoming call to x is automatically

forwarded to y.

Originating Call Screening (OCS): This service allows the subscriber to specify that

outgoing calls be either restricted or allowed according to a screening list. Suppose

that x subscribes OCS and that x puts y in the OCS screening list. Then, any

outgoing call to y from x is restricted, while any other call from x is allowed. Suppose

that x receives dialtone. At this time, even if x dials y, x receives busytone instead

of calling y.

35

Terminating Call Screening (TCS): This service allows the subscriber to specify that

incoming calls be either restricted or allowed according to a screening list. Suppose

that x subscribes TCS and that x puts y in the TCS screening list. Then, any

incoming call from y to x is restricted, while any other call to x is allowed. Suppose

that y receives dialtone. At this time, even if y dials x, y receives busytone instead

of calling x.

Denied Origination (DO): This service allows subscriber to disable any call originat-

ing from the terminal. Only terminating calls are permitted. Suppose that x sub-

scribes to DO. Then, any outgoing call from x is restricted. Even if x offhooks when

the terminal is idle, x receives busytone instead of dialtone.

Denied Termination (DT): This service allows subscriber to disable any call terminat-

ing at the terminal. Only originating calls are permitted. Suppose that x subscribes

to DT. Then, any incoming call to x is restricted. Even if another user y dials x, y

receives busytone without calling x.

Direct Connect (DC): This service is a so-called hot line service. Suppose that x

subscribes to DC and that x specifies y as the destination address. Then, by only

offhooking, x is directly calling y. It is not necessary for x to dial y.

4.1.2 Feature Interaction

In this paper we consider two types of feature interaction. As shown below, the properties

of the absence of these types of interaction can be viewed as safety properties, and hence

detecting these types of interactions involves checking reachability from the initial state

to undesirable states.

Nondeterminism

The first type we consider is nondeterminism. Nondeterminism is one of the best known

types of feature interactions [15, 16, 20, 25, 33, 34]. Nondeterminism refers to a situation

where an event can simultaneously activate two or more functionalities of different services,

and as a result, it cannot be determined exactly which functionality should be activated.

36

It is known that this type of interaction occurs between CW and CF. Suppose that A

subscribes both services. Now consider the situation where (1) A is taking with B, (2) C

is ready to dial, and (3) D is in A’s forwarding address list and is idle. In this situation,

if C dials A, then either the call from C to A may be received by A because of A’s CW

feature, or it may be forwarded to D by the CF feature.

This type of interaction can be detected by checking reachability from the initial state

to the states that cause nondeterminism. We call such states nondeterministic states.

Invariant Violation

The next type of interaction we consider is invariant violation. It is usually the case that

services require for some specific properties to be satisfied at any time. For example, for

OCS service, the service designer may describe that “If x specifies y in the screening list,

then x is never calling y at any time”. Such a property is generally referred to as an

invariant property. It is known that combining multiple services can result in violation of

invariant properties. The OCS plus CF example described in the first section falls in this

type.

This type of feature interaction can also be detected by checking reachability from the

initial state to the undesirable states where the invariant properties are violated.

4.2 Model

In this paper we adopt a variant of State Transition Rules (STR) [21, 34] to describe

services and model the behavior of the system in a rigorous fashion.

4.2.1 Notation

A service specification is defined as 6-tuple 〈U, V, P,E,R, sinit〉, where U is a set of con-

stants representing service users, V is a set of variables, P is a set of predicates, E is a

set of events, R is a set of rules, and sinit is the (initial) state. Each rule r ∈ R is defined

as follows:

r : pre−condition [event] post−condition.

37

U = {A, B}

V = {x, y}

P = {idle(x), dialtone(x), busytone(x), calling(x, y), path(x, y)}

E = {onhook(x), offhook(x), dial(x, y)}

R = {

pots1 : idle(x) [offhook(x)] dialtone(x).

pots2 : dialtone(x) [onhook(x)] idle(x).

pots3 : dialtone(x), idle(y) [dial(x, y)] calling(x, y).

pots4 : dialtone(x),¬idle(y) [dial(x, y)] busytone(x).

pots5 : calling(x, y) [onhook(x)] idle(x), idle(y).

pots6 : calling(x, y) [offhook(y)] path(x, y), path(y, x).

pots7 : path(x, y), path(y, x) [onhook(x)] idle(x), busytone(y).

pots8 : busytone(x) [onhook(x)] idle(x).

pots9 : dialtone(x) [dial(x, x)] busytone(x).

}

sinit = {idle(A), idle(B)}

Figure 4.1: Rule-based specification for POTS.

A predicate is of the form p(x1, . . . , xk) where p ∈ P and xi ∈ V . Pre-condition

consists of predicates or negations of predicates, or both, while Post-condition consists of

predicates only. An event is of the form e(x1, . . . , xk), where e ∈ E and xi ∈ V .

Figure 4.1 shows an example of a specification. This specification describes the Plain

Old Telephone Service (POTS). Additional communication features, such as those de-

scribed in the previous subsection, can be described by modifying this specification (for

example, adding rules or predicate symbols). Specifications for the above services are

shown in [32]. In all these specifications, it is assumed that at the initial state, all users

are idle and no user subscribes to any service yet.

4.2.2 State Transition Model

Here we define the state transition system specified by the rule-based specification. Let

〈U, V, P,E,R, sinit〉 be a service specification. For r ∈ R, let x1, . . . , xn (xi ∈ V) be

variables appearing in r, and let θ = 〈x1|a1, . . . , xn|an〉 (ai ∈ U, ai �= aj(i �= j)) be a

38

����������
��	
������

���������
��	
�������

���������
��	
������� ���������

��	
�������
���������

��	
�������

���������
��	
�������

����������
��	
������

���������
��	
�������

����������
��	
������

���������
��	
�������

���������
��	
�������

����������
��	
�������

����������
��	
�������

���������
��	
�������

���������
��	
�������

���������
��	
�������

���������
��	
�������

������

��� !�"#######���� !�"

���� !��$!�"##���� !��$!�"

	
����%��	
���&'��%�

����������

���������

���������

������������������

���������

���������

���������

���������

���������

����������

���������

����������

��������
�������

(�����������

����&�������
�������

��������
)*'$&������

����&�������
)*'$&������

����&�������
����&������

&���������
&��������

)*'$&�������
)*'$&������

��������
����&������

)*'$&�������
����&������

(�����������

)*'$&�������
�������

��	
���������	
�������

��	
��������	
������

��	
������

��	
���������	
�������

��	
�������

��	
�������

��	
�������

��	
�������

��	
��+������	
��+����

,�#-.,�#-.

-.

-

-�

-� -+

-

-�

-.

-�

-/
-� -�

Figure 4.2: State transition diagram.

substitution replacing each xi in r with ai. Then, an instance of r based on θ (denoted

by rθ) is defined as a rule obtained from r by applying θ = 〈x1|a1, . . . , xn|an〉 to r. We

represent the event and the post-condition of an instance rθ of a rule as e[rθ] and Post[rθ],

respectively. In addition, we denote by Pre[rθ] and P̂ re[rθ] the set of predicates in the

pre-condition and the set of predicates whose negations are in the pre-conditions. Hence

the precondition of an instance rθ of a rule is Pre[rθ] ∪ {¬p | p ∈ P̂ re[rθ]}.
A state is defined as a set of instances of predicates p(a1, . . . , ak) where p ∈ P and

ai ∈ U . We think of each state as representing those that hold in the state.

Let s be a state. We say that an instance of rule, rθ, is enabled for e(rθ) at s iff all

instances in Pre[rθ] hold and no instances in P̂ re[rθ] hold at s. The execution of the

enabled rule causes the next state s′ of s by deleting all instances in Pre[rθ] from s and

adding all instances in Post[rθ] to s; that is,

s′ = (s\Pre[rθ]) ∪ Post[rθ]

For example, suppose that r = pots4 in Figure 4.1, θ = 〈x|A, y|B〉, and s= {dialtone(A),
dialtone(B)}. Then Pre[rθ] = {dialtone(A)}, P̂ re[rθ] = {idle(B)}, Post[rθ] = {busytone
(A)}, and rule pots4 with substitution θ is enabled for event dial(A,B). If subscriber A

39

dials B, that is, this event happens, then a state transition occurs, resulting in s′ =

{busytone(A), dialtone(B)}. Figure 4.2 shows the state transition diagram that is ob-

tained from the STR specification shown in Figure 4.1. In this diagram each circle repre-

sents a state and each arc between two states represents a state transition caused by execu-

tion of a rule instance. States that is not reachable from the initial state {idle(A), idle(B)}
are omitted in the diagram.

Let V denote the set of states. For each instance t of a rule, we define a relation
t→

over states (
t→⊆ V ×V) as follows: s

t→ s′ iff the execution of t causes s′ from s. We also

define a computation as a sequence of states s0s1 · · · sk. such that for each 0 ≤ i < k, (i)

si
t→ si+1 for some t, or (ii) no rule is enabled at si and si = si+1. We think of the length

of the computation as k.

4.3 Symbolic Representation

4.3.1 State Transition

To apply symbolic model checking to service specifications, it is necessary to encode the

state space and the transition relation by Boolean functions.

Let P = {p1, · · · , pm} be the set of all instances of predicates and let T = {t1, · · · , tn}
be the set of all instances of rules (m = |P| and n = |T |). A state s can then be viewed

as a Boolean vector s = (b1, · · · , bm) such that bi = true iff an instance pi of a predicate

holds in that state.

Any set of states can be represented as a Boolean function such that

f(s) =

true s ∈ the set
false otherwise.

We say that f is a characteristic function of the state set.

For example, the characteristic function Et(s) of the set of states where t ∈ T is

enabled is

Et(s) =
∧

pi∈Pre[t]

bi ∧
∧

pi∈P̂ re[t]

¬bi.

Any relation R over states can be similarly encoded since they are simply sets of

40

tuples.

F (s, s′) =

true sRs′

false otherwise.

Now consider representing the relation
t→ by Boolean function Tt(s, s

′). Since execu-

tion of t causes (i) predicate instances in Post[t] to hold, (ii) those in Pre[t] but not in

Post[t] not to hold, and (iii) those in neither Pre[t] nor Post[t] to be unchanged, we have

Tt(s, s
′) = Et(s) ∧

∧
pi∈Post[t]

b′i ∧
∧

pi∈Pre[t]\Post[t]

¬b′i ∧
∧

pi∈P\(Pre[t]∪Post[t])

(bi ↔ b′i)

where s′ = (b′1, · · · , b′m).
For example, consider the specification shown in Figure 4.1. Let t be the instance of

the rule ‘pots4 : dialtone(x),¬idle(y)[dial(x, y)]busytone(x)’ with substitution (x, y) =

(A,B). Since Pre[t] = {dialtone(A)}, P̂ re[t] = {idle(B)}, and Post[t] = {busytone(A)},
we have

Tt = dialtone(A) ∧ ¬idle(B) ∧ busytone(A)′ ∧ ¬dialtone(A)′

∧(idle(A)↔ idle(A)′) ∧ (idle(B)↔ idle(B)′)

∧(dialtone(B)↔ dialtone(B)′) ∧ (busytone(B)↔ busytone(B)′)

∧(calling(A,B)↔ calling(A,B)′) ∧ (calling(B,A)↔ calling(B,A)′)

∧(path(A,B)↔ path(A,B)′) ∧ (path(B,A)↔ path(B,A)′)

(The same symbol is used to denote each predicate and its corresponding Boolean variable,

since this is convenient and causes no confusion.)

In SMV program, the formula Tt is described as follows.

dialtone A & !idle B

& next(busytone A) & !next(dialtone A)

& next(idle A)=idle A

& next(idle B)=idle B

& next(dialtone B)=dialtone B

& next(busytone B)=busytone B

& next(calling A B)=calling A B

& next(calling B A)=calling B A

& next(path A B)=path A B

& next(path B A)=path B A

41

The transition relation of the whole system is represeted by Tti(s, s
′) as the following

formula Tt1(s, s
′)∨Tt2(s, s

′)∨ ·∨Ttn(s, s
′) where Tti(s, s

′) represents the transition by the

instance t.

4.3.2 Interaction State

As described in the previous chapter, to use SMV, it is necessary to express the property

to be verified as a formula of CTL. To do this, first we describe the set of states where

interactions occur as a formula fG(s). And we model check the CTL formula AG¬(fG(s)).

If this CTL formula is not true, the system can be in the state where an interaction occurs.

Thus we can detect the interaction.

Nondeterminism

Nondeterminism occurs at a state s iff two rules, r1 and r2, can be triggered by the same

event e at s. As shown in the previous example, when such r1, r2, and e are given, the

set of states where they are enabled simultaneously is represented by

∨
{θ1,θ2}:e[r1θ1]=e[r1θ2]

Er1θ1 ∧ Er2θ2

Thus the characteristic function for the set of all states where nondeterminism occurs is

∨
{r1,r2}:r1,r2∈R

∨
{θ1,θ2}:e[r1θ1]=e[r2θ2]

Er1θ1 ∧ Er2θ2

For example, the caracteristic function fG(s) representing nondeterministic states for

42

the specification shown in Fig. 4.1 is described as follows.

idle(A) ∧ calling(B,A)

∨idle(B) ∧ calling(A,B)

∨dialtone(A) ∧ calling(A,B)

∨dialtone(A) ∧ path(A,B) ∧ path(B,A)

∨dialtone(A) ∧ busytone(A)

∨calling(A,B) ∧ path(A,B) ∧ path(B,A)

∨calling(A,B) ∧ busytone(A)

∨path(A,B) ∧ path(B,A) ∧ busytone(A)

∨dialtone(B) ∧ calling(B,A)

∨dialtone(B) ∧ path(B,A) ∧ path(A,B)

∨dialtone(B) ∧ busytone(B)

∨calling(B,A) ∧ path(B,A) ∧ path(A,B)

∨calling(B,A) ∧ busytone(B)

∨path(B,A) ∧ path(A,B) ∧ busytone(B)

∨dialtone(A) ∧ idle(B) ∧ dialtone(A) ∧ ¬idle(B)

∨dialtone(B) ∧ idle(A) ∧ dialtone(B) ∧ ¬idle(A)

Invariant Violation

Given an invariant that is intended to be satisfied by a service, whether it is satisfied or

not can be decided by checking the reachability to states where the property does not

hold. In this case

fG(s) = ¬Inv(s)

where Inv(s) is the Boolean function representing the set of states where the invariant

property holds.

Other Types of Interaction

Although we limit our discussion on detecting nondeterminism and invariant violation

in this paper, other types of interaction can be detected by the proposed method, if the

problem of detecting interaction can be reduced to reachability checking. Deadlock is

such an example. In our context, deadlock means the situation where functional conflicts

43

of two or more services cause a mutual prevention of their service execution. The problem

of deciding whether deadlock occurs or not can be reduced to the problem of checking

reachability to states where no rule is enabled. In this case fG will be

fG(s) =
∧
t∈T

¬Et(s).

4.4 Experimental Results

In this section, we show the experimental results for interaction detection for the seven

services described in Section 4.1 using symbolic model checking. Combining two of the

seven services, we examined a total of the 21 pairs. The experiments were performed on

a Linux workstation with a 853 MHz Pentium III processor.

4.4.1 Nondeterminism

Table 4.1 shows the results of applying SMV to interaction detection. As shown in this

table, interactions are detected in only one or two minites for almost all pairs of services

by SMV. However, for the example which has large states such as CW+CF, SMV required

more than three hours to complete detection.

By enabling ‘early’ option, it is possible to force SMV to work on-the-fly; that is,

when using this option, SMV incrementally checks whether or not the property holds in

a breadth-first manner, and terminates immediately if it finds that the property can be

violated. Table 4.1 also shows the running time of SMV with this option enabled. As

expected, this resulted in short detection time for some service combinations. However, for

some cases such as CW+CF, CW+DO, CW+DT, CW+DC, CW+OCS, or CW+TCS, it

ended up with much larger running time. A common characteristic of these combinations

is that the formula representing fG is very large. Hence the reason is thought to be that

the benefit of early termination was diminished by time consumed at each stage of the

incremental checking.

4.4.2 Invariant Violation

We consider invariant properties for four of the seven services as follows

44

OCS “If x puts y in the OCS screening list, x is never calling y at any time” (¬OCS(x, y)∨
¬calling(x, y))

TCS “If x puts y in the TCS screening list, y is never calling x at any time” (¬TCS(x, y)∨
¬calling(y, x))

DO “If x subscribes toDO, x never receives dialtone at any time” (¬DO(x)∨¬dialtone(x))

DT “If x subscribes to DT , y is never calling x at any time” (¬DT (x) ∨ ¬calling(y, x))

Tables 4.2 shows the results of applying SMV to detection of invariant violation. As

shown in this table, for all pairs of services interactions are detected in only one minite.

In this case, the formula representing fG is not so large. Thus the incremental checking

does not require so much time that early termination makes the detection efficient.

45

Table 4.1: Performance of SMV for nondeterminism detection.

interaction SMV SMV(-early) $ of states

CW+CF detected 12859.40 90473 278

CW+OCS detected 44.23 194.91 260

CW+TCS detected 39.28 168.28 260

CW+DO - 70.21 726.40 257

CW+DT detected 82.12 410.37 257

CW+DC - 66.55 666.63 260

CF+OCS detected 22.79 5.51 257

CF+TCS detected 27.59 5.55 257

CF+DO - 6.47 13.01 254

CF+DT detected 12.48 8.57 254

CF+DC - 20.20 31.26 257

OCS+TCS detected 1.86 0.29 239

OCS+DO - 0.94 1.01 236

OCS+DT detected 1.23 0.24 236

OCS+DC - 1.59 1.72 239

TCS+DO - 1.24 1.27 236

TCS+DT detected 1.66 0.24 236

TCS+DC - 2.19 2.35 239

DO+DT - 0.65 0.76 233

DO+DC detected 1.22 0.25 236

DT+DC - 0.65 0.76 236

46

Table 4.2: Performance of SMV for invariant violation detection.

interaction SMV SMV(-early) $ of states

CW+OCS detected 23.51 13.41 260

CW+TCS detected 24.96 13.81 260

CW+DO - 37.22 37.37 257

CW+DT detected 40.29 35.43 257

CF+OCS detected 22.46 1.10 257

CF+TCS detected 27.34 1.16 257

CF+DO - 6.25 6.32 254

CF+DT detected 10.83 0.97 254

OCS+TCS detected 1.83 0.30 239

OCS+DO - 0.98 1.00 236

OCS+DT - 1.30 1.27 236

OCS+DC detected 1.83 0.32 239

TCS+DO - 1.28 1.28 236

TCS+DT - 1.70 1.72 236

TCS+DC detected 2.50 0.33 239

DO+DT - 0.66 0.65 233

DO+DC - 1.31 1.23 236

DT+DC - 0.36 0.38 236

47

Chapter 5

Bounded Model Checking

Bounded model checking has received recent attention as an efficient verification method

[7]. The basic idea of this method is to reduce the model checking problem to the propo-

sitional satisfiability decision problem.

For asynchronous systems, however, the existing bounded model checking does not

work well because the propositional formula to be checked tends to become very large for

such systems. Because of the asynchronous nature of telecommunication systems, it is

thus not practical to apply the original method to feature interaction detection.

In order to avoid this problem we develop a new encoding scheme. We describe the

scheme in detail in this section.

5.1 Existing Scheme

Similar to SMV, to apply bounded model checking to service specifications, it is necessary

to encode the state space and the transition relation by Boolean functions. We use the

same manner as shown in Section 4.3 for symbolic representation.

Let G denote the set of states whose reachability is to be decided and let fG(S) be the

characteristic function for G. Although there are some variations [38], the basic formula

used for checking reachability in bounded model checking is as follows.

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) · · · ∧ T (sk−1, sk) ∧ (fG(s0) ∨ · · · ∨ fG(sk))

48

where I(S) is the characteristic function of the set of the initial states, and

T (s, s′) =

true s′ is reachable from s in one step,

or s has no next states and s = s′.

false otherwise.

Clearly, I(s0) ∧ T (s0, s1) ∧ T (s1, s2) · · · ∧ T (sk−1, sk) = true iff s0, s1, · · · , sk is a com-

putation from the initial states. Hence the above formula is satisfiable iff there is a state

that is in G and reachable from one of the initial states in at most k steps. By checking

the satisfiability of the formula, therefore, the verification can be carried out.

In practice, the formula often needs to be transformed into conjunctive normal form

(CNF), since most of SAT solvers require for input formulas to be in that form. However

the logically equivalent CNF formula can be exponential with respect to the size of the

original formula. To avoid this, it is usual to use structure preserving transformation [36],

which guarantees that the size of the resulting CNF formula is linear with the original

formula. Thus the efficiency of verification critically depends on the size of the original

formula in textual form.

Since we assume that exactly one rule is executed at a time, T (s, s′) will be

T (s, s′) = Tt1(s, s
′) ∨ · · · ∨ Ttn(s, s

′) ∨ ((
∧

pi∈P
bi ↔ b′i) ∧ ¬Et1(s) ∧ · · · ∧ ¬Etn(s))

It should be noted that this formula would be very large in size in practice. Since Tt

contains at least m literals, the total number of the literals in T is greater than m ∗ n

literals.

5.2 Proposed Scheme

5.2.1 Encoding

Our proposed scheme alleviates the above problem with a new encoding. Let Chng[t]

denote the set of predicate instances that change as a result of execution of rule instance

t; that is, Chng[t] = (Post[t]\Pre[t]) ∪ (Pre[t]\Post[t]). Then Tt can be transformed as

49

follows:

Tt(s, s
′) = Et(s) ∧

∧
pi∈Post[t]

b′i ∧
∧

pi∈Pre[t]\Post[t]

¬b′i ∧
∧

pi∈P\(Pre[t]∪Post[t])

(bi ↔ b′i)

=
∧

pi∈Pre[t]

bi ∧
∧

pi∈P̂ re[t]

¬bi

∧
∧

pi∈Post[t]\Pre[t]

b′i ∧
∧

pi∈Pre[t]\Post[t]

¬b′i ∧
∧

pi∈P\Chng[t]

(bi ↔ b′i).

Now let Dt(s, s
′) be defined as follows.

Dt(s, s
′) = Tt(s, s

′) ∨
∧

pi∈P
(bi ↔ b′i)

We have

Dt(s, s
′) = Tt(s, s

′) ∨
∧

pi∈P
(bi ↔ b′i)

= ((
∧

pi∈Pre[t]

bi ∧
∧

pi∈P̂ re[t]

¬bi ∧
∧

pi∈Post[t]\Pre[t]

b′i ∧
∧

pi∈Pre[t]\Post[t]

¬b′i)

∨
∧

pi∈Chng[t]

(bi ↔ b′i))

∧
∧

pi∈P\Chng[t]

(bi ↔ b′i)

For example, let t be the instance of the rule pots4 in Figure 4.1 with substitution

(x, y) = (A,B). Then

Dt = ((dialtone(A) ∧ ¬idle(B) ∧ busytone(A)′ ∧ ¬dialtone(A)′)

∨((dialtone(A)↔ dialtone(A)′) ∧ (busytone(A)↔ busytone(A)′)))

∧(idle(A)↔ idle(A)′) ∧ (idle(B)↔ idle(B)′)

∧(dialtone(B)↔ dialtone(B)′) ∧ (busytone(B)↔ busytone(B)′)

∧(calling(A,B)↔ calling(A,B)′) ∧ (calling(B,A)↔ calling(B,A)′)

∧(path(A,B)↔ path(A,B)′) ∧ (path(B,A)↔ path(B,A)′)

It is easy to see that Dt(S, S
′) = true iff S

t→ S ′ or S = S ′. In other words, Dt(S, S
′)

differs from Tt(S, S
′) only in that Dt(S, S

′) evaluates to true also when S = S ′. Using

50

this property, a step (or more) can be represented by a conjunction of Dt as follows.

Dt1(s0, s1) ∧Dt2(s1, s2) ∧ · · · ∧Dtn(sn−1, sn)

Note that this is in contrast to the traditional encoding, where a disjunction of Tt(S, S
′)

is used to represent one step. By definition, s0, s1, · · · , sn satisfies this formula iff for any

0 ≤ i < n, si
ti+1→ si+1 or si = si+1. This means that if the formula evaluates to true, sn is

reachable from s0 in at most n steps (including 0 steps), and that if there is at least one

ti such that s0
ti→ s′, it is satisfiable with an assignment such that s0 = · · · = si−1, si =

· · · = sn = s′.

As a result, our proposed scheme uses the following formula for the verification.

ϕ = I(s0)

∧Dt1(s0, s1) ∧Dt2(s1, s2) ∧ · · · ∧Dtn(sn−1, sn)

∧Dt1(sn, sn+1) ∧Dt2(sn+1, sn+2) ∧ · · · ∧Dtn(s2n−1, s2n)

· · ·
∧Dt1(s(k−1)∗n, s(k−1)∗n+1) ∧ · · · ∧Dtn(sk∗n−1, sk∗n)

∧fG(sk∗n)

If the formula ϕ is satisfiable, then we can conclude that there is a state in G that can

be reached from the initial state in at most k ∗n steps. On the other hand, if the formula

ϕ is unsatisfiable, then there is no state in G that can be reached from the initial state in

less than or equal to k steps.

An important observation here is that the method may be able to find a state in G

that requires more than k transition executions to reach.

5.2.2 Constructing a Succinct Formula

The most important advantage of our scheme is that ϕ can be converted into a much

succinct formula that is not logically equivalent but has the same satisfiability. Let

sj = (b1,j, b2,j, · · · , bm,j) and sj+1 = (b1,j+1, b2,j+1, · · · , bm,j+1). In each Dt(sj, sj+1) in

ϕ, term (bi,j ↔ bi,j+1) for any pi ∈ P\Chng[t] appears as a conjunct. Because of this,

ϕ is satisfiable only if bi,j and bi,j+1 have the same value. Hence a shorter formula that

maintains the satisfiability is obtained by removing (bi,j ↔ bi,j+1) and replacing bi,j+1

51

with bi,j. That is, for each Dt(sj, sj+1) in ϕ, (bi,j ↔ bi,j+1) for all pi ∈ P\Chng[t] can be

removed by quantifying away bi,j+1 by applying the formula below.

∃bi,j+1(F ∧ (bi,j ↔ bi,j+1)) = F |bi,j+1→bi,j

where F is an intermediate formula obtained from φ and F |y→x denotes the formula

obtained from F by replacing bi,j+1 with bi,j.

Note that bi,j may also be replaced by a further earlier version of variable bi,j−1. In

that case bi,j+1 is replaced with bi,j−1 as a result.

Consequently, Dt in φ can be replaced with

((
∧

pi∈Pre[t]

bi ∧
∧

pi∈P̂ re[t]

¬bi ∧
∧

pi∈Post[t]\Pre[t]

b′i ∧
∧

pi∈Pre[t]\Post[t]

¬b′i) ∨
∧

pi∈Chng[t]

(bi ↔ b′i))

by appropriately replacing some variables.

The number of literals occurring in the above formula is 4∗ |Pre[t]\Post[t]|+ |Pre[t]∩
Post[t]| + 3 ∗ |Post[t]\Pre[t]| + |Post[t] ∩ P̂ re[t]| + |P̂ re[t]\Post[t]|. Tt, which is the

counterpart in the traditional encoding, contains at least |P| literals. Hence the proposed
scheme can exploit its advantage if Pre[t] ∪ P̂ re[t] ∪ Post[t] is a small fraction of the

whole set of predicate instances P. This is usually the case for the service specifications
we consider and is more likely when the number of users is large.

Figure 5.1 shows the algorithm that directly constructs the shorter formula for a given

k. In the algorithm, variable ci is used to denote the earlier version of the variable that

is substituted for bi,j; that is, bi,j will be replaced with bi,ci
.

5.2.3 Illustrative Example

Consider an erroneous communication service that is obtained by replacing rule pots3 in

the POTS specification in Figure 4.1 with

pots3′ : dialtone(x) [dial(x, y)] calling(x, y).

Here we demonstrate how we can verify that a state where two different rules pots1 and

pots6 are simultaneously enabled for the same event onhook(x) is reachable. The set of

such nondeterministic states can be represented by a characteristic function

fG(s) = (idle(A) ∧ calling(B,A)) ∨ (idle(B) ∧ calling(A,B))

52

for pi ∈ P
ci := 0;

j := 0;

X := I(s)|si→si,0 for all pi∈P ;

for step = 1, · · · , k {
for t ∈ T {

j := j + 1;

X := X∧
((

∧
pi∈Pre[t]

bi,ci
∧

∧

pi∈P̂ re[t]

¬bi,ci
∧

∧
pi∈Post[t]\Pre[t]

bi,j ∧
∧

pi∈Pre[t]\Post[t]

¬bi,j)

∨
∧

pi∈Chng[t]

(bi,ci
↔ bi,j))

for pi ∈ Chng[t] (= (Post[t]\Pre[t]) ∪ (Pre[t]\Post[t]))

ci := j;

}
}
X := X ∧ fG(S)|bi→bi,ci

for all pi∈P ;

Figure 5.1: Algorithm for constructing the formula used for verification.

I(s), which represents the set of the initial states, is

I(s) = idle(A) ∧ idle(B) ∧ ¬dialtone(A) ∧ ¬dialtone(B)

∧¬busytone(A) ∧ ¬busytone(B)

∧¬path(A,B) ∧ ¬path(B,A) ∧ ¬calling(A,B) ∧ ¬calling(A,B)

When k = 1, the formula shown in Figure 5.2 is obtained by the algorithm in Figure 5.1.

This formula is satisfiable by, for example, assigning true to the following variables

and false to the others.

idle0(A), idle0(B), dialtone1(A), idle2(B), dialtone3(A), idle4(B), calling5(A,B),

idle9(B), calling9(A,B), idle10(B), calling11(A,B), idle14(B), idle16(B)

Assignments satisfying the formula represent computations from the initial state to

the states where a confliction occurs. For example, the above assignment corresponds to

53

the following computation.

{idle(A), idle(B)} pots1<X|A,Y |B>→ {dialtone(A), idle(B)} pots3′<X|A,Y |B>→ {calling(A,B), idle(B)}

Note that pots1 and pots6 are both enabled for event offhook(B) at state {calling(A,B),

idle(B)}. As can be seen, computations of length more than k can be checked by the

proposed method.

Although this is not an example of feature interaction detection (since no feature is

considered), once a specification specifying multiple service is given, feature interaction

detection can be carried out the same way as described here.

5.3 Representing Interaction State

As the remaining problem is to represent states where interaction occurs by Boolean

function fG(s), it is previously described in Section 4.3.2. For example, the caracteristic

function fG(s) representing nondeterministic states for erroneous specification which is

shown in Section 5.2.3 is described as follows.

idle(A)15 ∧ calling(B,A)12

∨idle(B)16 ∧ calling(A,B)11

∨dialtone(A)17 ∧ calling(A,B)11

∨dialtone(A)17 ∧ path(A,B)14 ∧ path(B,A)14

∨dialtone(A)17 ∧ busytone(A)17

∨calling(A,B)11 ∧ path(A,B)14 ∧ path(B,A)14

∨calling(A,B)11 ∧ busytone(A)17

∨path(A,B)14 ∧ path(B,A)14 ∧ busytone(A)17

∨dialtone(B)18 ∧ calling(B,A)12

∨dialtone(B)18 ∧ path(B,A)14 ∧ path(A,B)14

∨dialtone(B)18 ∧ busytone(B)18

∨calling(B,A)12 ∧ path(B,A)14 ∧ path(A,B)14

∨calling(B,A)12 ∧ busytone(B)18

∨path(B,A)14 ∧ path(A,B)14 ∧ busytone(B)18

∨dialtone(A)17 ∧ dialtone(A)17 ∧ ¬idle(B)16

∨dialtone(B)18 ∧ dialtone(B)18 ∧ ¬idle(A)15

54

(idle0(A) ∧ idle0(B) ∧ ¬dialtone0(A) ∧ ¬dialtone0(B) ∧ ¬busytone0(A) ∧ ¬busytone0(B)

∧¬path0(A, B) ∧ ¬path0(B, A) ∧ ¬calling0(A, B) ∧ ¬calling0(A, B))

∧((idle0(A) ∧ dialtone1(A) ∧ ¬idle1(A))

∨((idle0(A) ↔ idle1(A)) ∧ (dialtone0(A) ↔ dialtone1(A)))

∧((idle0(B) ∧ dialtone2(B) ∧ ¬idle2(B))

∨((idle0(B) ↔ idle2(B)) ∧ (dialtone0(B) ↔ dialtone2(B)))

∧((dialtone1(A) ∧ idle3(A) ∧ ¬dialtone3(A))

∨((idle1(A) ↔ idle3(A)) ∧ (dialtone1(A) ↔ dialtone3(A)))

∧((dialtone2(B) ∧ idle4(B) ∧ ¬dialtone4(B))

∨((idle2(B) ↔ idle4(B)) ∧ (dialtone2(B) ↔ dialtone4(B)))

∧((dialtone3(A) ∧ calling5(A, B) ∧ ¬dialtone5(A))

∨((dialtone3(A) ↔ dialtone5(A)) ∧ (calling0(A, B) ↔ calling5(A, B)))

∧((dialtone4(B) ∧ calling6(B, A) ∧ ¬dialtone6(B))

∨((dialtone4(B) ↔ dialtone6(B)) ∧ (calling0(B, A) ↔ calling6(B, A)))

∧((dialtone5(A) ∧ ¬idle4(B) ∧ busytone7(A) ∧ ¬dialtone7(A))

∨((dialtone5(A) ↔ dialtone7(A)) ∧ (busytone0(A) ↔ busytone7(A)))

∧((dialtone6(B) ∧ ¬idle3(A) ∧ busytone8(B) ∧ ¬dialtone8(B))

∨((dialtone6(B) ↔ dialtone8(B)) ∧ (busytone0(B) ↔ busytone8(B)))

∧((calling5(A, B) ∧ idle9(A) ∧ idle9(B) ∧ ¬calling9(A, B))

∨((idle3(A) ↔ idle9(A)) ∧ (idle4(B) ↔ idle9(B)) ∧ (calling5(A, B) ↔ calling9(A, B)))

∧((calling6(B, A) ∧ idle10(A) ∧ idle10(B) ∧ ¬calling10(B, A))

∨((idle9(A) ↔ idle10(A)) ∧ (idle9(B) ↔ idle10(B)) ∧ (calling6(B, A) ↔ calling10(B, A)))

∧((calling9(A, B) ∧ path11(A, B) ∧ path11(B, A) ∧ ¬calling11(A, B))

∨((calling9(A, B) ↔ calling11(A, B)) ∧ (path0(A, B) ↔ path11(A, B)) ∧ (path0(B, A) ↔ path11(B, A)))

∧((calling10(B, A) ∧ path12(A, B) ∧ path12(B, A) ∧ ¬calling12(B, A))

∨((calling10(B, A) ↔ calling12(B, A)) ∧ (path11(A, B) ↔ path12(A, B)) ∧ (path11(B, A) ↔ path12(B, A)))

∧((path12(A, B) ∧ path12(B, A) ∧ idle13(A) ∧ busytone13(B) ∧ ¬path13(A, B) ∧ ¬path13(B, A))

∨((idle10(A) ↔ idle13(A)) ∧ (busytone8(B) ↔ busytone13(B)) ∧ (path12(A, B) ↔ path13(A, B))

∧(path12(B, A) ↔ path13(B, A)))

∧((path13(A, B) ∧ path13(B, A) ∧ idle14(B) ∧ busytone14(A) ∧ ¬path14(A, B) ∧ ¬path14(B, A))

∨((idle10(B) ↔ idle14(B)) ∧ (busytone7(A) ↔ busytone14(A)) ∧ (path13(A, B) ↔ path14(A, B))

∧(path13(B, A) ↔ path14(B, A)))

∧((busytone14(A) ∧ idle15(A) ∧ ¬busytone15(A))

∨((idle13(A) ↔ idle15(A)) ∧ (busytone14(A) ↔ busytone15(A)))

∧((busytone13(B) ∧ idle16(B) ∧ ¬busytone16(B))

∨((idle14(B) ↔ idle16(B)) ∧ (busytone13(B) ↔ busytone16(B)))

∧((dialtone7(A) ∧ busytone17(A) ∧ ¬dialtone17(A))

∨((dialtone7(A) ↔ dialtone17(A)) ∧ (busytone15(A) ↔ busytone17(A)))

∧((dialtone8(B) ∧ busytone18(B) ∧ ¬dialtone18(B))

∨((dialtone8(B) ↔ dialtone18(B)) ∧ (busytone16(B) ↔ busytone18(B)))

∧(idle15(A) ∧ calling12(B, A)) ∨ (idle16(B) ∧ calling11(A, B))

Figure 5.2: Resulting formula for an incorrect POTS specification.

55

5.4 Comparison Results

In order to evaluate the effectiveness of the proposed method, we conducted experimental

evaluation for the seven services described in Section 4.1. We used the same ordering

as in the given specification in the experiment. Combining two of the seven services, we

examined a total of the 21 pairs.

The experiments were performed on a Linux workstation with a 853 MHz Pentium III

processor. The number of users was assumed to be four. ZChaff, an implementation of

Chaff [31], was used as a SAT solver.

For each problem we incremented k until interaction was detected. Tables 5.1 and

5.3 show the value of k for which interaction was first found and the time (in seconds)

required by ZChaff to find a satisfying assignment for that value of k.

5.4.1 Nondeterminism

It has been known that out of a total of the 21 pairs of the seven services, 11 pairs cause

nondeterminism. Since the proposed method in itself cannot prove the absence of feature

interaction, we evaluated the performance of the detection method for these combinations

only.

Comparison with Traditional Scheme

Table 5.1 compares the proposed encoding and the traditional one with respect to the

running time, in seconds, required to detect nondeterministic states for these specifica-

tions. Items in the ‘length’ column represent the length of the shortest counterexample,

that is, the shortest computation from the initial state to a nondeterministic state.

As can be seen in this table, when using the proposed encoding, interaction was

detected with k of less than or equal to three for all cases. For CW plus CF case, for

example, k = 2 was sufficient while the shortest counterexample computation is of length

10. This is because it may be possible to check execution of two or more rules by one

formula Dt1 ∧ Dt2 ∧ · · · ∧ Dtn . In this experiment, we used the same ordering of rules as

in the given specification in encoding the formula. Thus if two rules are executed in the

order as in the specification, they can be checked by this single formula.

56

Table 5.1: Performance of bounded model checking for nondeterminism detection.

k time Trad. scheme length

CW+CF 2 3.02 4934.76 10

CW+DT 3 4.81 212.10 8

CW+OCS 2 2.90 330.15 8

CW+TCS 2 3.80 1470.37 8

CF+DT 2 0.02 53.52 5

CF+OCS 2 0.02 89.32 5

CF+TCS 2 0.02 65.10 5

DC+DO 1 0.02 0.87 2

DT+OCS 2 0.05 1.91 3

DT+TCS 1 0.02 1.86 3

OCS+TCS 1 0.01 1.01 2

Note that the length of the shortest counterexample coincides with the smallest k

value at which the traditional scheme can find such a computation. This resulted in large

detection time of the traditional scheme, as shown in this table.

Comparison with other Method

We also applied two other model checking tools to the same set of problems. The first

one is SMV, and the second one is SVAL, which is a tool which we had developed for

feature interaction detection [33]. The SVAL tool employs explicit state enumeration with

symmetry and partial order state reduction techniques.

Table 5.2 shows the results of applying SMV and SVAL to interaction detection.

Comparing with Table 5.1, it is clear that the proposed method detected interaction

much more efficiently than SMV. The difference is most clear for CW plus CF. For this

case, the running time of the proposed scheme was only three seconds, while SMV required

more than three hours to complete detection.

As can be seen in Table 5.2, the propose method and SVAL exhibited similar per-

formance for four cases, namely, DC+DO, DT+OCS, DT+TCS, and OCS+TCS. The

common characteristic of these cases is that nondeterminism occurs at a state that is very

57

Table 5.2: Performance of SMV and SVAL for nondeterminism detection.

SMV SMV(-early) SVAL length

CW+CF 12859.40 90473.00 17.45 10

CW+DT 82.12 410.37 3.29 8

CW+OCS 44.23 194.91 3.37 8

CW+TCS 39.28 168.28 9.65 8

CF+DT 12.51 8.21 1.83 5

CF+OCS 22.80 5.55 6.11 5

CF+TCS 27.52 5.55 2.45 5

DC+DO 1.21 0.25 0.31 2

DT+OCS 1.23 0.24 0.06 3

DT+TCS 1.66 0.24 0.11 3

OCS+TCS 1.86 0.29 0.11 2

close to the initial state. In these cases, therefore, it is possible to detect interaction by

exploring a small number of states, thus resulting in very small detection times of SVAL.

On the other hand, for the cases of CW+CF, CW+OCS, CW+TCS, CF+DT, CF+OCS,

and CF+TCS, computations of relatively large length have to be examined to conclude

the existence of nondeterministic states. For these cases, the proposed method outper-

formed the previous method, by efficiently exploring the large state space with symbolic

representation.

5.4.2 Invariant Violation

We consider the same invariant properties described in Section 4.4.2.

Tables 5.3 and 5.4 show the performance for bounded model checking and SMV,

respectively. SVAL is excluded because it does not support invariant violation checking.

Comparing with Tables 5.1 and 5.2, it can be seen that these three methods exhibited

similar tendencies.

58

Table 5.3: Performance of bounded model checking for invariant violation detection.

k time Trad. scheme length

CW+DT 3 1.00 1318.41 10

CW+OCS 2 0.24 2795.61 10

CW+TCS 2 0.21 1744.04 10

CF+DT 2 0.01 149.74 6

CF+OCS 2 0.02 173.00 6

CF+TCS 2 0.03 1850.80 6

DC+OCS 2 0.03 3.57 3

DC+TCS 2 0.04 3.68 3

OCS+TCS 2 0.12 3.13 3

Table 5.4: Performance of SMV for invariant violation detection.

SMV SMV(-early) length

CW+DT 40.29 35.43 10

CW+OCS 23.51 13.41 10

CW+TCS 24.96 13.81 10

CF+DT 10.83 0.97 6

CF+OCS 22.46 1.10 6

CF+TCS 27.34 1.16 6

DC+OCS 1.83 0.32 3

DC+TCS 2.50 0.33 3

OCS+TCS 1.83 0.30 3

59

Chapter 6

Conclusions

6.1 Achievements

First, we proposed a formal method for verification of fault tolerance of concurrent sys-

tems. We use a model checking method to carry out the verification automatically. Dif-

fering from other related work, which is tailored to specific systems, we are aimed at

providing a single approach that can be applied to various systems. Specifically, we pro-

posed a method that can deal with any system if it is given as a guarded command

program based on the model proposed in [2].

We designed this method so that it can use a symbolic model checking tool called SMV,

which can avoid the state explosion problem. Automatic verification of fault tolerance is

performed by translating the program to the SMV language. For this purpose, we first

proposed a modeling language suited for describing fault-tolerant systems in the form of

guarded command programs. We then proposed a translation method from the modeling

language to the input language of SMV.

In the case studies, we demonstrated that various fault-tolerant systems can be auto-

matically verified by the proposed method. The results showed that the verification was

completed with practical time.

Second, we proposed a formal method for detection of feature interactions in telecom-

munication services. We also use symbolic model checking method to detect interactions.

In the experimental results, we can detect all interactions for given service specifications.

However, in some cases the detection processes result in much time spent to finish the

60

detection.

To solve this, we propose to use bounded model checking to detect feature interactions.

We developed a new encoding scheme that is tailored to this purpose. We demonstrated

its effectiveness by applying it to practical services.

61

Bibliography

[1] A. Arora. A Foundation of Fault-Tolerant Computing. Ph.D dissertation. The Uni-

versity of Texas, Austin, 1992.

[2] A. Arora and M. Gouda. Closure and convergence: A foundation of fault-tolerant

computing. IEEE Transactions on Software Engineering, 19(11):1015–1027, Novem-

ber 1993.

[3] A. Arora and S. Kulkarni. Designing masking fault-tolerance via nonmasking fault-

tolerance. IEEE Transactions on Software Engineering, 24(6):435–450, 1998.

[4] Bellcore. Advanced Intelligent Network (AIN) Release 1, Switching Systems Generic

Requirements. Bellcore Technical Advisory TA-NWT-001123, 1991.

[5] C. Bernardeschi, A. Fantechi, and L. Simoncini. Formally verifying fault tolerant

system designs. The Computer Journal, 43(3):191–205, 2000.

[6] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

in Database Systems. Reading, MA: Addison-Wesley, 1987.

[7] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In Proceedings of Tools and Algorithms for the Analysis and Construction of

Systems (TACAS’99), number 1579 in LNCS, pages 193–207, 1999.

[8] L. Bouma and H. Velthuijsen. Feature Interactions in Telecommunications Systems.

IOS Press, 1994.

[9] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transaction on Computers, C-35(8):677–691, 1985.

62

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hawng. Symbolic

model checking: 1020 states and beyond. Information and Computation, 98(2):142–

170, 1992.

[11] K. Chandy and J. Misra. Parallel Program Design: A Foundation. Reading, MA:

Addison-Wesley, 1988.

[12] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state

concurrent systems using temporal-logic specifications. ACM Trans. Programming

Languages and Systems, 8(2):244–263, 1986.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[14] F. Cristian. A rigorous approach to fault-tolerant programming. IEEE Transaction

on Software Engineering, 11(1):23–31, 1985.

[15] R. Dssouli, S. Some, J. W. Guillery, and N. Rico. Detection of feature interactions

with REST. In Proceedings of Fourth Workshop on Feature Interactions in Telecom-

munications Systems, pages 271–283, 1997.

[16] A. Gammelgaard and E. J. Kristensen. Interaction detection, a logical approach.

In Proceedings of Second Workshop on Feature Interactions in Telecommunications

Systems, pages 178–196, 1994.

[17] F. C. Gärtner. Specifications for Fault Tolerance: A Comedy of Failures. Technical

Report TUD-BS-1998-03, Darmstadt University of Technology, Germany, 1998.

[18] F. C. Gärtner. Fundamentals of fault-tolerant distributed computing in asynchronous

environments. ACM Computing Surveys, 31(1):1–26, March 1999.

[19] S. Gnesi, G. Lenzini, D. Latella, A. A. C. Abbaneo, and P. Marmo. An Auto-

matic SPIN Validation of a Safety Critical Railway Control System. In Proc. of The

International Conference on Dependable Systems and Networks (DSN 2000), pages

119–124. IEEE, 2000.

[20] Y. Harada, Y. Hirakawa, T. Takenaka, and N. Terashima. A conflict detection sup-

port method for telecommunication service descriptions. IEICE Transactions on

Communication, E75-B(10):986–997, October 1992.

63

[21] Y. Hirakawa and T. Takenaka. Telecommunication service description using state

transition rules. In Proceedings of IEEE Int’l Workshop on Software Specification

and Design, pages 140–147, October 1991.

[22] ITU-T Recommendations Q.1200 Series. Intelligent Network Capability Set 1 (CS1).

ITU-T, September 1990.

[23] J. K. Jr., B. T. Smith, and A. S. Wojcik. Formal verification of fault tolerance using

theorem-proving techniques. IEEE Transaction on Computers, 38(3):366–376, March

1989.

[24] D. O. Keck and P. J. Kuehn. The feature and service interaction problem in

telecommunications systems: A survey. IEEE Transactions on Software Engineering,

24(10):779–796, October 1998.

[25] A. Khoumsi. Detection and resolution of interactions between services of telephone

networks. In Proceedings of Fourth Workshop on Feature Interactions in Telecom-

munications Systems, pages 78–92, 1997.

[26] X. Lin and S. Ghosh. Maxima Finding in a Ring. In Proc. of 28th Ann. Allerton

Conf. on Computers, Communication, and Control, pages 662–671, 1991.

[27] Z. Liu and M. Joseph. Verification of Fault Tolerance and Real Time. In Proc. of

the 26th IEEE Symposium on Fault Tolerant Computing Systems (FTCS-26), pages

220–229. IEEE, June 1996.

[28] J. P. Marques Silva and K. A. Sakallah. GRASP: A search algorithm for propositional

satisfiability. IEEE Transactions on Computers, 48:506–521, 1999.

[29] K. L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

[30] P. M. Melliar-Smith and R. L. Schwartz. Formal specification and mechanical verifi-

cation of sift: A fault-tolerant flight control system. IEEE Transaction on Computers,

C-31(7):616–630, July 1982.

[31] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff : Engi-

neering an efficient sat solver. In Proceedings of 39th Design Automation Conference,

2001.

64

[32] M. Nakamura. Design and evaluation of efficient algorithms for feature interaction

detection in telecommunication services. Ph.D. Dissertation, Osaka University, 1998.

[33] M. Nakamura and T. Kikuno. Feature interaction detection using permutation sym-

metry. In Proc. of Fifth Int’l. Workshop on Feature Interactions in Telecommunica-

tion Networks and Distributed Systems (FIW’98), pages 193–207, 1998.

[34] T. Ohta and Y. Harada. Classification, detection and resolution of service interac-

tion in telecommunication services. In Proceedings of Second Workshop on Feature

Interactions in Telecommunications Systems, pages 60–72, 1994.

[35] E. Pastor, J. Cortadella, and O. Roig. Symbolic analysis of bounded petri nets. IEEE

Transactions on Computers, 50(5):432–448, May 2001.

[36] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation.

Journal of Symbolic Computation, 2:293–304, September 1986.

[37] F. Schneider, S. M. Easterbrook, J. R. Callahan, and G. J. Holzmann. Validating

Requirements for Fault Tolerant Systems using Model Checking. In Proc. of Inter-

national Conference on Requirements Engineering (ICRE), pages 4–14. IEEE, April

1998.

[38] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induc-

tion and a sat-solver. In Proc. of International Conference on Formal Methods in

Computer-Aided Design (FMCAD 2000), LNCS 1954, pages 108–125, 2000.

[39] O. Shtrichman. Pruning techniques for the sat-based bounded model checking prob-

lem. In Proc. of Advanced Research Working Conference on Correct Hardware Design

and Verification Methods (CHARME 2001), LNCS 2144, pages 58–70, 2001.

[40] T. K. Srikanth and S. Toueg. Simulating authenticated broadcast to derive simple

fault tolerant algorithms. Distrib. Computing, 2(2):80–94, 1987.

[41] T. Tsuchiya, S. Nagano, R. B. Paidi, and T. Kikuno. Symbolic model checking for

self-stabilizing algorithms. IEEE Transactions on Parallel and Distributed Systems,

12(1):81–95, 2001.

65

[42] T. Tsuchiya, M. Nakamura, and T. Kikuno. Detecting Feature Interactions in

Telecommunication Services with a SAT solver. In Proc. of 2002 Pacific Rim In-

ternational Symposium on Dependable Computing (PRDC’02), 2002.

[43] H. Völzer. Verifying fault tolerance of distributed algorithms formally: An example.

In Proc. of International Conference on Application of Concurrency to System Design

(CSD98), pages 187–197. IEEE, March 1998.

66

