

Title	セラミックスの研削加工損傷に関する研究
Author(s)	兼松, 涉
Citation	大阪大学, 1995, 博士論文
Version Type	VoR
URL	https://doi.org/10.11501/3108055
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

セラミックスの研削加工損傷に関する研究

兼 松 涉

+	=	1	11	7	-
Ľ	1	-	1	/	1

第1	章 緒調	Â
	1.1	序 ———
	1.2	セラミックスの加
	1.3	本論文の目的と構
第2	章 研销	削加工材強度のモデ
	2.1	緒言
	2.2	研削加工材強度特
	2.2.1	最大砥粒切込み
	2.2.2	研削加工材強度
	2.2	.2.1 砥粒一個あ
	2.2	.2.2 加工による
	2.2	.2.3 研削加工材
	2.3	強度に対する残留
		最大砥粒切込み深
	2.3.1	残留応力 ——
	2.3.2	砥粒の摩耗・破壊
	2.4	結言 ———
第3	章 研肖	削加工材強度に関す
	3.1	緒言 ———
	3.2	実験方法 ——
	3.3	結果と考察 ―
	3.3.1	室温強度による
	3.3.2	研削抵抗による
	3.3.3	高温強度の推定
	3.3	.3.1 高温強度表:

スの研削加工損傷に関する研究

て把佐は用よっでの彼い同し用語と		1
上損傷に関する研究栓適と問題只 	_	2
成.		4
ル化		C
性の定式化		6
形さ	-	7
	1	0
こりの法線抵抗 ―――	1	2
メディアンき裂深さ ―――	1	4
魚度および強度低下を生じない加工条件	1	5
応力および砥粒の摩耗・破砕による		
さの変動についての取り扱い ―――	1	6
	1	6
枠による最大砥粒切込み深さの変動	1	8
	2	1
る実験的検証		
	2	2
	2	2
	2	5
▲度モデルの実験的検証 ─────	2	5
▲度モデルの実験的検証 ────	2	8
	3	0
示式	3	0

	3.3	. 3. 2	炭化ケイ素および窒化ケイ素の高温強度	3	0
	3.3	.3.3	酸化の影響がある場合の高温強度 ――	3	2
3.	4	結言		3	5

第4章 耐加工損傷性とその影響因子

4		1	緒言
4		2	実験方法
	4.	2.1	供試材料
	4.	2.2	硬さ試験による押し込み抵抗の測定 ――
	4.	2.3	研削加工条件 ————————————————————————————————————
4		3	結果と考察
	4.	3.1	供試材の力学的特性が限界最大砥粒切込み深さに
			及ぼす影響
	4.	3.2	耐加工損傷性の向上に有効な強靭化機構 ————
	4.	3.3	限界最大砥粒切込み深さの温度依存性 —————
4	ł .	4	結言

第5章 研削加工部材の信頼性評価

5		1	緒言	6 0
5		2	研削加工材の強度分布 ————————————————————————————————————	6 1
	5.	2.1	強度分布モデル	6 1
	5.	2.2	強度分布シミュレーション ――	64
5		3	結果と考察	66
5		4	結言	68

第6章 疲労特性に及ぼす研削加工損傷の影響

6.	1	緒言	 7	1
6.	2	実験方法	 7	2

6.2.1 室温動疲労試験 —————————————————————	73
6.2.2 高温動疲労試験	7 5
6.3 結果と考察	7 6
6.3.1 室温疲労特性	7 6
6.3.1.1 研削加工によるn値の変化	7 6
6.3.1.2 n 値低下の原因	7 6
6.3.1.3 n値の低下を生じない加工条件	8 3
6.3.1.4 研削加工材の室温疲労寿命	8 3
6.3.2 高温疲労特性	8 6
6.3.2.1 高温疲労破面の観察	86
6.3.2.2 加工き裂モデル	8 9
6.3.2.3 高温き裂進展シミュレーション ――	92
6.3.2.4 高温におけるn値の低下とき裂進展機構 —	94
6.3.2.5 高温静疲労寿命の見積	99
6.4 結言	1 0 1
第7章 酸化特性に及ぼす研削加工損傷の影響	
7.1 緒言	1 0 2
7.2 実験方法	1 0 3
7.3 結果と考察	1 0 7
7.3.1 酸素侵入深さの測定	107
7.3.2 研削加工条件による酸素侵入深さの変化 ———	1 0 9
7.3.3 酸化温度および酸化時間による酸素侵入深さと	200
高温即時破壊強度の変化	1 1 4
7 4 結言	117
	111
第8章 結論	1 2 0

参考了	文献	126
付録	砥粒保持剛性が研削加工材強度特性に及ぼす影響 ——	1 3 2
謝辞		1 3 9

セラミックスは、高温強度、耐摩耗性、耐食性などに優れることから、例 えばガスタービン部材のような高温の腐食性雰囲気の下で用いられる構造部 材や、宇宙空間のような潤滑剤の使用が困難な条件下で使用される摺動部材 などへの適用が期待されている.一般にセラミックスは圧密性が悪いので. 原料粉体に油脂などを混練して可塑性を与え、一次成形を行った後、千数百 ℃以上の高温下で焼結し粒成長を生じさせることによって緻密化させ所要の 強度を得る.しかしながら、焼成時の体積収縮が避けられないため、寸法・ 形状を正確に制御することが困難となっている.したがって、機械・構造用 部材の組立などで必要となるような高精度な寸法・形状の制御を行うために は、焼成後に機械加工などによる二次的な成形が不可欠となっている. 現在最も多用されているセラミックスの加工法は、ダイヤモンド砥石によ る研削加工であるが、高強度・高硬度である反面、極めて靭性が低いという セラミックス特有の性質のため、加工傷による強度劣化の問題がセラミック スの実用化に向けての大きな障害となっている. つまり, セラミックスは高 硬度であるため,研削加工を行うには工具である砥石を大きな力で材料に押 し込む必要がある.そのうえ靭性が低いために、この押し込み力によって被 加工材表面に微小き裂が発生する.このき裂が加工後に残留すると、強度お よび寿命をはじめとする力学的特性の劣化の原因となり, 部材の強度特性に 悪影響を及ぼすことが知られている. 通常,構造用部材の設計においては,使用する材料固有の特性を基礎にし て許容応力,寿命などが算定される.セラミックスの場合,上述のような加 工傷による強度劣化の問題があるので、最終的に部材として供されたときの 強度特性を基に設計を行う必要がある.これには、二つのアプローチが考え

第1章 緒論

1.1 序

- 1 -

られる.一つは,加工能率を犠牲にしてでも強度特性の劣化を引き起こさな いような加工を行うという考え方,他の一つは加工能率を優先し,強度特性 の劣化の程度に応じて部材の使用条件を制限するという考え方である.いず れの場合も強度が低下しない加工限界を明らかにしなければならない.後者 の場合はさらに,加工限界よりも厳しい加工条件下で,どのように強度特性 が劣化するかをも把握しておく必要がある.

研削加工においては加工条件を定めるための作業条件が多岐にわたり,部 材の強度特性と加工条件との関係について体系的な知識は得られていない. 部材として供された状態での強度特性を正確に把握するには,部材の強度特 性と加工条件との定量的関係を整理し,これをできるだけ簡単な形で定式化 することが必要と考えられる.さらに,得られた部材の強度特性を基に,セ ラミック部材特有の設計のあり方について検討することは今後のセラミック スの適用範囲の拡大に寄与すると期待できる.

1.2 セラミックスの加工損傷に関する研究経過と問題点

脆性材料の研削加工損傷に関する研究は、大きく二つに分けることができ る.一つは、研削加工のモデル化実験である引っかき試験におけるき裂や加 工変質層の直接観察を行うことにより、加工メカニズムを解明しようとする もの、他の一つは、実際に研削加工を行った場合の加工条件と部材の特性変 化との関係を調べるものである.

前者の研究では, ガラスの押し込み試験における破壊現象に関する研究¹⁾ を基礎として, 球状圧子²⁾ あるいは, 円錐およびVickers圧子³⁾ による準静 的な引っかき試験において発生するき裂の大きさが, 硬さ試験時のそれと同 様に, 押し込み荷重の関数として表されることが明らかにされた. その後, 酸化物, あるいは非酸化物セラミックスを対象に, 通常の研削盤を用いた高

- 2 -

速引っかき試験手法が開発され^{4),5)},条痕直下に発生する加工変質層の直 接観察も行われている^{6),7)}.

一方.後者の研削加工条件と加工材の強度特性の変化との関係に関する研 究は、セラミックスの構造用部材への適用が検討され始めた1970年代か ら本格的に行われるようになった. Anderssonら⁸⁾は,研削加工材の強度分 布のワイブル統計処理を行うことによって、砥石粒度および、研削方向の影 響を調べ、粒度が粗いほど平均強度は低下するが、ばらつきは小さくなるこ と、研削方向と応力負荷方向が直角の場合は、平行の場合よりも平均強度が 低くなることなどを明らかにしている. 伊藤ら⁹⁾も同様の結果を得ている. この研削加工方向によって強度が変化する原因について、Riceら¹⁰⁾は破面 観察を行い,平行の場合と垂直の場合とでは、き裂形状が異なることを報告 している.また松尾ら¹¹⁾は、破壊原因が競合する場合の強度分布モデルを 提案し、これを用いて研削方向の影響を説明している.テーブル速度、砥石 切込みなど種々の加工条件と研削加工材強度との関係についてはいくつかの 報告¹²⁾⁻¹⁵⁾がなされている.中村ら^{13),16)}山内ら¹⁷⁾は,加工き裂の分 布形態モデルの提案を行っている.供試材の特性と加工損傷との関係に関し ては,結晶粒径と加工き裂深さとの相関¹⁸⁾、気孔率と研削加工材強度との 関係¹⁹⁾,破壊靭性と研削加工材強度との関係²⁰⁾などについて報告がある. 加工機特性と加工損傷との関係に関する研究は,表面粗さなどの表面性状と の関係を調べたものが主で,主軸剛性との関係^{21),22)},砥石結合材の影響 $2^{(23)}$ についての報告がある. 江田 $2^{(4)}$ は研削時のAE波形と砥石弾性率との 関係について検討し,弾性率が低いほど、AEエネルギーの実効値が小さく なることから,加工き裂を小さくできるとしている. 上述のように,加工損傷の程度に影響する個別の因子に関する知見をまと めた研究が中心であり、研削加工部材の強度特性の面から研削加工の最適化

- 3 -

を図ることを目的とした研究²⁵⁾⁻²⁷⁾は少ない、以下に、研削加工損傷に関 する研究における問題点を述べる。

研削加工部材の強度特性を基準として加工条件の最適化を行おうとする場 合.まず第一に最も基本的な強度特性である即時破壊強度すなわち,短時間 負荷に対する挙動を正確に把握することが不可欠である. そのためには加工 条件や材料特性との関係についての知識を体系的に収集,整理し,簡単な式 の形で表現できることが望ましい. また. 研削加工損傷が実使用条件下にお いて、部材特性にどのような影響を及ぼすかについても知ることが必要であ るが、これらに関する研究は極めて少ない、例えば、セラミック部材は高温 腐食性雰囲気下での使用が最も期待されているところであるが,研削加工損 傷が、このような環境下で強度²⁸⁾⁻³⁰⁾、酸化特性などに及ぼす影響につい てはほとんど知られていない.また、部材の寿命を見積るためには、その疲 労特性を知ることが不可欠となるが,疲労挙動に及ぼす加工損傷の影響³¹⁾ に関する研究はほとんど行われていない.

1.3 本論文の目的と構成

本研究は研削加工損傷がセラミック部材の特性に与える影響を明らかにし, 研削加工の最適化を図る技術の確立を目的とする. すなわち, 研削加工によっ て部材表面に発生するき裂に注目し,加工条件および材料特性と部材強度と の関係を定式化するとともに、加工損傷が疲労特性、高温酸化特性に及ぼす 影響についても調べ,最適加工条件を明らかにする.本論文は8章から構成 されており、第2章以下の概要は以下の通りである。

第2章では,研削加工材強度σ,は,研削加工によって発生したメディアン き裂によって支配されると仮定し、加工条件とσ,との関係の定式化を行う. 具体的には,メディアンき裂深さと砥粒一個あたりの研削抵抗との間に,圧 第3章では,第2章で提案した定式化手法の妥当性について,窒化ケイ素

子押し込みにおけるメディアンき裂深さと押し込み力との関係と同様の関係 則が成り立つと仮定し、σ,を、砥石仕様と研削作業条件によって一意的に定 まるパラメータ、最大砥粒切込み深さgの関数として表すことを試みる. および炭化ケイ素セラミックスを供試材として、室温および高温において実 験的な検証を行う.

第4章では、材料の耐加工損傷性の指標となる限界最大砥粒切込み深さg... と供試材の機械的特性との間の関係を導くとともに、その妥当性を実験的に 検証する、次に、in situ複合化窒化ケイ素および高靭性の炭化ケイ素セラミッ クスを対象として、耐加工損傷性の向上に有効な靭性強化機構について検討 を行う.

第5章では、最大砥粒切込み深さgと研削加工材の最低保証強度との関係 を明らかにするために,加工欠陥の分布をKnoop圧子圧入により発生するき 裂の分布で近似した研削加工材強度分布モデルを提案する.またこのモデル を用いて、強度分布特性の計算機シミュレーションを行い、その実験的検証 を行う.

第6章では、動疲労試験すなわち、定負荷速度試験により、き裂進展速度 を表すパラメータである疲労指数 n を求め, 室温および高温において, 研削 加工損傷がセラミック部材の疲労挙動、寿命に及ぼす影響について調べると ともに、その原因について検討を行う. 第7章では、二次イオン質量分析器を用いて高温酸化された試験片表面の 酸素侵入深さを調べ、加工損傷の度合いと酸化との関係について検討すると ともに、100時間までの長時間の酸化試験を行い、酸化時間と、即時破壊強 度および酸素侵入深さとの関係についても調べる. 第8章では、以上の研究成果の総括を行う.

- 5 -

第2章 研削加工材強度のモデル化

2.1 緒言

構造用部材の設計においては,疲労特性,耐酸化性,強度の統計学的取り 扱いから導かれる最低保証強度などの力学的データが必要となるが,本章で は最も基本的な特性である短時間負荷に対する強度すなわち, 即時破壊強度 について検討を行う.よく知られているように,研削加工されたセラミック スの即時破壊強度(以下,研削加工材強度と略記する)は研削加工損傷の全 くない材料(平滑材)のそれよりも低くなる1).ガラスやセラミックスのよ うな脆性材料の強度は材料中の最も弱い部分すなわち、最大欠陥に支配され ることから,この場合,研削加工材強度は材料の潜在欠陥よりも大きな加工 き裂によって支配されていると考えられる. 脆性材料を研削加工した場合, 加工中に発生する最も大きなき裂は, 砥粒進行方向とほぼ平行な面内に発生 するメディアンき裂であることがいくつかの研究で明らかにされている2)-4).

本章では,研削加工材強度σ,は,研削加工によって発生したメディアンき 裂の寸法によって支配されると仮定し,加工条件とσ,との関係の定式化を行 う. 具体的には、メディアンき裂深さと砥粒一個あたりの研削抵抗との間に、 圧子押し込みにおけるメディアンき裂深さと押し込み力との関係と同様の関 係が成り立つと仮定し、 σ_f を最大砥粒切込み深さgの関数として表すことを 試みる.ここで,gは個々の砥粒の除去量の大小を表すパラメータで,砥石 仕様と研削作業条件によって一意的に定まる.ただ,実際の砥粒分布は砥粒 の摩耗・破砕などによって時々刻々変化していると考えられ、最大砥粒切込 み深さの値もそれに応じて変化している可能性がある.このことについては, gに対する研削加工材強度の分布から考察する.

- 6 -

2.2 研削加工材強度特性の定式化 2.2.1 最大砥粒切込み深さ 研削加工は,単一の砥粒による切削の集積としてとらえることができるの で,研削加工材の損傷の度合いは、個々の砥粒の一回の切削における材料除 去量の大小によって変化すると考えられる、そこで、 砥粒による材料除去量 を表すパラメータとして, 砥粒と被削材の幾何学的干渉量, すなわち最大砥 粒切込み深さgを用いることとした.図2-1に模式的に示すように.gは 砥粒切れ刃によって削り取られる切りくずの最大厚さを表し、その値が大き いほど一回の切削で砥粒が削り取る量が大きくなることを意味する、先行す る切れ刃とこれに後続する切れ刃の間隔いわゆる連続切れ刃間隔が大きいほ ど.gは大きくなる.ここでは、ある切れ刃によって形成された切削痕を次 に通過する切れ刃が完全に削り取る場合,これら二つの切れ刃を連続切れ刃 と定義した⁵⁾、図2-2は砥石中心軸を含み砥粒進行方向に垂直な断面を表 す. 切れ刃の断面形状を頂角 2γの相似三角形と仮定したとき. 後続する切 れ刃先端が△CDEの中を通過するとき先行する切れ刃によって形成された切 削痕は完全に除去されることとなる.このとき、底面が△CDE、高さが連続 切れ刃間隔の三角柱の中に切れ刃が一個しか含まれないことが必要となる. 特に後続する切れ刃の先端が三角形CDEの底辺DEを通過するとき、線分CF の長さに相当する最大砥粒切込み深さgが得られる. 平面研削の場合gは幾 何学的解析により次式5)で与えられる注.

ここで, t:砥石切込み, v:テーブル速度, V:砥石周速, D:砥石径, do:

^{注1} 砥粒分布を一様分布と仮定した確率論的解析が提案されているが,式(2-1) とほぼ同様の結果が得られている⁶⁾

- 7 -

 $g = 1.26t \frac{1}{6} \left(\frac{6V_g}{\pi d_a^3} \tan \gamma \right)^{-\frac{1}{3}} \left(\frac{\nu}{V} \right)^{\frac{1}{3}} \left(\frac{1}{D} \right)^{\frac{1}{6}}$ (2 - 1)

砥粒粒径, V。:砥石中に占める砥粒の容積比(砥粒率), Y:切れ刃先端形 状を円錐と仮定したときの半頂角である.式(2-1)は砥石仕様および 主要な研削作業条件で与えられていることから、gを用いることにより容易 に加工条件の相互比較ができる.なお, doおよび V。は砥石仕様として与え られる数値から換算することができる。

2.2.2 研削加工材強度

前述のように, ガラスやセラミックスのような脆性材料の強度は最大欠陥 に支配されること(最弱リンク説)が知られている.この最弱リンク説を基 にすると,研削加工材の強度を支配する最大欠陥は,表面から最も深い位置 まで達するき裂と考えられる.研削加工時に発生するき裂の形態については, 一般に図2-3に模式的に示すように、メディアン、ラディアル、ラテラル の3種類に分類できることが知られているが、Swain²⁾, Kirchnerら³⁾, 張 ら4)は、引っかき試験および単粒研削によるモデル化実験で、砥粒進行方向 とほぼ平行に発生するメディアンき裂が表面から最も深い位置まで達するこ とを確認している. つまり, 強度を支配する最大欠陥はメディアンき裂と仮 定できる.

Swain²⁾は、Lawnら⁷⁾のVickers圧子押し込みによるメディアンき裂深さ の表示式を参考にして,円錐圧子引っかきによるメディアンき裂深さが押し 込み力のべき関数となることを示した.本章では、研削加工材強度 σ_f は、 研削加工によって発生したメディアンき裂によって支配されるものとし,研 削加工条件とσ,との関係を,以下のような仮定の下に定式化を行う.(ア) 切れ刃先端形状は粒径に依存せず同一形状とし,加工中変化しない.式(2 (-1)における γ の値は、 75°とする⁸⁾. (イ) セラミックスの研削加工 における法線研削抵抗(以下,法線抵抗と略記する)は接線研削抵抗に比べ 数倍以上大きくなることが知られている⁹⁾.加工表面に生じるメディアンき

裂の深さは、圧子押し込みの場合⁷⁾と同様に一個の砥粒によって研削加工材 表面に垂直方向に加えられる力すなわち, 砥粒一個あたりの法線抵抗によっ て定まる.

2.2.2.1 砥粒一個あたりの法線抵抗

図2-4に示すように、切れ刃先端形状を頂角 2γの円錐で近似し、接触 面での摩擦は小さく無視できるものとして、その面に垂直な力のみが作用す ると仮定する. 接触面を微小要素に分割したとき各要素に加わる垂直方向の 力 dp は, 各要素の砥粒進行方向に垂直な面上への投影断面積に, 単位切り くず断面積あたりの研削抵抗 R.を乗じたものと考える. dpの法線方向の成 分 df は df = dpsin γ であるので、これを接触領域全域にわたって積分すると、 砥粒一個あたりの法線抵抗 f. は幾何学的関係から

> $f_n = R_s g^2 \sin \gamma \tan \gamma$ (2 - 2)

で表される10).ところで砥粒は結合材によって弾性支持されており、その 砥粒の集合体である砥石は同じく弾性支持される研削盤主軸に取り付けられ ている. つまり, 砥粒は直列結合された二つのバネの先端に取り付けられて いる状態にモデル化できる.一方,通常の研削加工においては、供試材を取 り付けたテーブルを鉛直方向に移動させ、その移動量を設定切込みとする。 そのため、上述のバネー砥粒系は定常状態では押し縮められた状態になり、 設定砥石切込みに対してある大きさの切り残しを生じると考えられる.した がって,設定切込みから算出される法線抵抗に,切り残しに相当する分だけ の法線抵抗の増分を加算する必要が生じる.そこで,法線抵抗の増加分を表 すためにgの補正項をα」とし、f」を次のように表すこととした.

(2 - 3) $f_n = \xi R_s (g + \alpha_n)$ ここで
ξは式(2-2)の定数項である.なおα。の影響因子としては、上述 の砥石-研削盤主軸系の剛性が第一に挙げられるが、供試材による砥粒の摩 砥粒進行方向 df. dp df_n

図2-4 砥粒と加工材との接触面上の微小要素に加わる力

耗特性の変化によっても影響も受けると考えられる. すなわち. 砥粒の摩耗 が著しい場合には、上述の切り残しに起因するバネー砥粒系の変位が緩和さ れα,は小さくなると考えられる.

2.2.2.2 加工によるメディアンき裂深さ

加工表面に生じるメディアンき裂の深さcは、砥粒一個あたりの法線抵抗 f.によって定まり, cとf.との間に圧子押し込みの場合と同様の関係が成り 立つと仮定する.ところで、脆性材料に対してVickers圧子を押し込んだ場合. 圧子直下にメディアンき裂が発生することがよく知られている. 圧子と材料 との間の摩擦を無視し、き裂進展により解放されるひずみエネルギーがすべ て、表面エネルギーの増加すなわち、新たなき裂面の生成に消費されるとす ると、下記のような関係が導かれる⁷⁾.荷重 P によって生じるメディアン き裂深さc、は

$$c_i = \chi \left(\frac{P}{K_{lc}}\right)^{\frac{2}{3}}$$
 (2 - 4)

で表される.ここで、K_L:静的な負荷に対する破壊靭性^注, X: 圧子先端角 などを考慮した補正係数である.

研削加工材のき裂深さcは、式(2-4)における圧子押し込み荷重 Pを、 法線抵抗 f. と置き換え、さらに式(2-3)を代入することにより、次式の ようなgの関数として表される.

$$c = \zeta \left(\frac{f_n}{K_{Ic}}\right)^{\frac{2}{3}} = AK_{Ic}^{-\frac{2}{3}} (g + \alpha_n)^{\frac{4}{3}} \qquad \left(A = \zeta (\xi R_s)^{\frac{2}{3}}\right) \qquad (2 - 5)$$

^{注2} 個々の砥粒による切削は非常に高速な現象であり、材料の機械的特性は厳密に は動的な負荷に対する値を用いる必要がある.現状では、セラミックスの動的破壊 現象に関して十分な知見が得られているとは言い難いが、例えば破壊靭性について は、動的負荷に対する破壊靭性K_uは、静的な負荷に対する破壊靭性K_uよりも大き くなる傾向のあることが報告されている¹¹⁾.したがって、き裂深さなどについて K.を用いて評価しても、安全側の評価となる.

ここでとは、式(2-4)中の x と同じ意味の比例定数であるが、切れ刃先端 形状などに依存するので別の比例定数とした. 2.2.2.3 研削加工材強度および強度低下を生じない加工条件

き裂寸法が c である部材の破壊強度 σ, は, 部材使用温度における破壊靭性 (K_L)_uおよびき裂の形状係数 Y を用いて,次式のように表される.

$$\sigma_{\rm f} = \frac{\left({\rm K}_{\rm Ic}\right)_{\rm H}}{{\rm Y}\sqrt{\pi c}}$$

上式に式(2-5)を代入すると

$$\sigma_{\rm f} = \frac{\left({\rm K}_{\rm Ic}\right)_{\rm H} \cdot {\rm K}_{\rm Ic}^{\frac{1}{3}}}{{\rm Y}\sqrt{\pi}{\rm A}}$$

のように表される. 試験片寸法に対してき裂寸法が十分小さければ. き裂寸 法による Yの変動は無視できるほど小さいので、これを一定と考えると式 (2-8)の係数項は定数となり、 σ_{ϵ} はgのみの関数となる. 室温においては、(K_L)_Hは材料固有の破壊靭性K_Lと同一と考えられるの T

$$\sigma_{\rm f} = \frac{K_{\rm Ic}^{\frac{4}{3}}}{Y\sqrt{\pi A}} (g$$

と表される.

$$g_{cr} = \left(\frac{\left(K_{Ic}\right)_{H} \cdot K}{Y\sigma_{o}\sqrt{\pi A}}\right)$$

(2 - 6)

 $\frac{c}{c}(g+\alpha_{1})^{-\frac{2}{3}}$ (2 - 7)

 $(1 + \alpha_n)^{-\frac{2}{3}}$ (2 - 8)

研削加工材強度が式(2-7)のようなgの増加に対して単調に減少する べき関数で表されることから、強度低下を生じない限界の加工条件が存在す る.このときの最大砥粒切込み深さ(以下,限界最大砥粒切込み深さgg と 呼ぶ)は加工き裂の全くない平滑材の強度をσ。とすれば、次式で表される.

$$\left(\frac{1}{3}\right)^{\frac{3}{2}} - \alpha_n \qquad (2 - 9)$$

- 15 -

2.3 強度に対する残留応力および砥粒の摩耗・破砕による

最大砥粒切込み深さの変動についての取り扱い

ここまでの議論で考慮しなかった因子の中の主なものとして、残留応力と 砥粒の摩耗・破砕による最大砥粒切込み深さの変動の影響について以下で検 討を行う.

2.3.1 残留応力

2.2.2項で述べたように本研究においては、法線抵抗によって発生するメディ アンき裂のみに注目し、残留応力の影響について特に考慮はしていない. -般にダイヤモンド、 CBNなどの超高硬度の砥粒(超砥粒)を用いて加工を 行った場合,砥粒の熱伝導率が高いので、切削によって発生する熱エネルギー は切削点近傍にはほとんど留まらない、そのため、加工表面層の応力分布に 及ぼす加工熱の影響は小さく,残留応力は,主に切削点近傍の塑性流動的な 変形に起因する¹²⁾.加工表面層の残留応力分布は、図2-5に示すような、 表面あるいは表面直下において圧縮応力が最大で、内部に向かうにつれて急 激に減少し、低レベルの引張り応力領域がさらに内部に向かって分布するよ うな形態を取ることが知られている13).したがって、研削加工材表面にお いて残留応力が検出されなければ, 強度に及ぼす残留応力の影響は無視でき るものと考えられる.

次にX線応力測定装置による加工表面層の応力測定を行った.供試材は常 圧焼結炭化ケイ素(以下SC1材とする)で,曲げ試験片の研削は,横軸平 面研削盤を用い、予め厚さ3.1mm,幅4mm,長さ38mmに粗加工した後で、 下部スパン側表面を,長手方向に対して直角方向に再研削し,最終的に厚さ 3mmとした. 図 2 - 6 に, 研削加工材表面におけるCr-K α 線によるX線入射 角ψと回折角θとの関係(2θ-sin²ψ線図)を示す.(116)面(2θ=121.34°) からの回折線を用い、ピーク位置は、半価幅中線法により決定した. 図に示

図2-6 研削加工材表面(常圧焼結炭化ケイ素)におけるX線回折角

表面からの距離

図2-5 研削加工による残留応力分布モデル

すようにsin²wに対して、ほとんど回折角に変化がなく表面層に顕著な残留 応力は検出されなかった. 図中に示す加工条件は試験片加工などにおいて粗 加工の段階で用いる条件であることから、通常の場合、仮定のように研削加 工材の強度に及ぼす残留応力の影響は無視できると考えられる.

2.3.2 砥粒の摩耗・破砕による最大砥粒切込み深さの変動 2.2.1で述べたように、最大砥粒切込み深さは砥石仕様と研削作業条件によっ て一意的に定まる.しかしながら実際には砥粒分布は砥粒の摩耗・破砕など によって時々刻々変化していると考えられ、現実の最大砥粒切込み深さの値 もそれに応じて変動している可能性がある. 砥粒の平均粒径が数十~百umの オーダであることを考えると、砥石表面を研削盤に取り付けられた状態で直 接観察することは極めて難しい、そこで以下に示すように、最大砥粒切込み 深さgの変動の有無を強度分布から推定することを試みた.

まず、一定の欠陥分布を有する場合の基準として、上述のSC1材に対し、 Knoop圧子を荷重49N,保持時間15secで圧入した試験片を用意した.なお, 残留応力の影響を取り除くため圧入後,表面層を30µm除去した¹⁴⁾.破壊強 度はJIS R1601にしたがって4点曲げ試験により測定した。一般に、脆性材 料にKnoop圧子を圧入した場合, 圧痕の直下には半楕円状のき裂が発生する ことが知られている.したがって同一荷重で圧入した場合,圧入後の曲げ強 度のばらつきは、 圧痕近傍の材料特性のばらつきを表しているものと考えら れる.破壊確率分布を次式で表される二母数ワイブル分布で近似した.

 $F = 1 - e^{-\left(\frac{\sigma}{\xi}\right)^m}$ (2 - 1 0)ここで, σは負荷応力, mは形状母数(ワイブル係数), とは尺度母数であ

る. この場合, データのばらつきの程度を示すワイブル係数 m の値は32.5, とは174 MPaとなった.

ところでワイブル係数自体、統計学的性質を持ち、対象とするサンプルの

数によってそのばらつきの程度が影響を受けることが知られている¹⁵⁾、今 回の測定値を真値とし、30本の試験片を用いて測定した場合、ワイブル係数 がどの程度ばらつくかをシミュレーションにより見積った. シミュレーション の手順を以下に示す.

(1) まず、30個の乱数を発生させる。

(2) これを仮の破壊確率 F'として次式に代入し破壊応力を算出する.

$$\sigma = \xi \left(\ln \left(\frac{1}{1 - F} \right) \right)$$

(3)破壊応力の昇べきの順に並べ替える.

(4)破壊確率は次式で表される対称試料累積分布法¹⁶⁾を用いて計算する.

$$F = \frac{i - 0.5}{n}$$

ここで, i は昇べきの順に並べたときの順序数, n はサンプル数である. うと仮定し、ワイブル係数mを求める.

(5) 最後に, (4) で求めた破壊確率分布が二母数ワイブル分布にしたが

(1)から(5)の手順を5000回繰り返した結果,正規分布に近い分布が 得られ,平均値は32.5,標準偏差は5.9であった.ワイブル係数の測定におい ては、サンプル数30では、平均値は真値に近い値に収束するが、測定の度に かなり変動する可能性のあることを意味する. 一方,研削加工の場合,圧入荷重に相当する砥粒一個あたりの法線抵抗は, 2.2.2で述べたようにgの二乗に比例することから,gの変動がなければ研削 加工材強度のばらつきは同一荷重でKnoop圧子を圧入した場合と同様に材料 特性のばらつきを反映したものになると考えられる. そこで, 上述の残留応 力測定用試験片と同様にSC1材を供試材として, 試験片長手方向と直角方 向に研削加工した試験片を用意し,破壊確率分布を二母数ワイブル分布で近 似し、比較検討することとした.表2-1に示すような条件で、1ロット30

(2 - 1 1)

(2 - 1 2)

	表2-1	加工条件	
砥石		SDC200N	75B
砥石周速		1500	m/min
テーブル速度		3	m/min
砥石切込み量		8	μm
トラバース量		5	mm/pass

図2-7 研削加工材とKnoop圧子圧入材の強度分布の比較

本として3ロットの試料の加工を行った. 図2-7に示すように、研削加工材の強度分布は、Knoop圧入材のそれと 同様に二母数ワイブル分布でよく近似できることが分かる.また,3ロット の研削加工材のワイブル係数はそれぞれ28.3, 26.5, 22.3となった.いずれ の場合もKnoop圧入材のワイブル係数の平均値32.5に対する偏差は標準偏差 の2倍以内であり、両者のばらつきは、ほぼ同程度と見なすことができる. したがって,同一加工ロット内でのgの変動はほとんどないことが明らかと なった.

2.4 結言

研削加工材強度 σ_f は、研削加工によって発生したメディアンき裂によって 支配されると仮定し、研削加工条件と σ_f との関係の定式化を試みた. すなわ ち,メディアンき裂深さと砥粒一個あたりの研削抵抗との間に,圧子押し込 みにおけるメディアンき裂深さと押し込み力との関係と同様の関係が成り立 つと仮定し、 σ_f を最大砥粒切込み深さgのべき関数の形として表せることを 示した.また,研削加工材強度のばらつきとKnoop圧子圧入によるき裂を導 入した試料の強度のばらつきを比較することによって,同一加工条件下にお いては g の変動をほとんど無視できることを明らかにし, g は加工条件に対 して一意的に定まることをシミュレーションにより確認した.

第3章 研削加工材強度に関する実験的検証

3.1 緒言

第2章においては、砥石仕様や研削作業条件の組み合わせとして与えられ る加工条件を最大砥粒切込み深さgを用いて統一的に表すことによって、加 工部材の強度を定式化する手法について提案した.すなわち、研削抵抗がg の二次関数で表されるとともに、加工表面に発生する微小き裂は圧子圧入の 場合に生じるメディアンき裂と同様の力学モデルで説明できると仮定するこ とによって、研削加工材強度をgのべき関数として与えた.この強度の表示 式には、部材としての使用条件下における破壊靭性が材料定数として含まれ ている.したがって、研削加工によって生じたき裂の寸法・形状が部材の使 用雰囲気によって変化しなければ、この表示式は種々の使用条件の下で適用 することができる.

本章では第2章で提案した定式化手法の妥当性について,窒化ケイ素およ び炭化ケイ素セラミックスを供試材として室温において実験的な検証を行う. 次に,セラミックスが構造材料としての利用を期待されている1200℃以上の 高温下における本手法の適用性について検証する.

3.2 実験方法

本実験における供試材は,第2章で用いたものと同一の常圧焼結炭化ケイ 素(SC1材)およびホットプレス窒化ケイ素(HPSN材)である.一般 にセラミックスの高温における強度特性は,粒界相に析出する添加物(焼結 助剤)の影響を受ける.上記の材料の主な添加元素を表3-1に示す.

研削時の加工損傷が強度に及ぼす影響および研削抵抗を調べるにあたって は,砥石の研削性能をほぼ一定に整えることが重要である.本実験では毎回 の測定に先立ち,まずグリーンカーボランダム(GC)のスティック砥石を 研削することによって、ダイヤモンド砥石のドレッシングを行った.表3-2 にドレッサーとするGC砥石の粒度およびダイヤモンド砥石単位幅あたりの 研削除去体積すなわち、ドレッシング量を示す.さらに各砥石はドレッシン グ後,その研削性能を安定化させるため、常圧焼結窒化ケイ素ブロックを一 定量研削し実験に供した.

曲げ試験片の研削は、横軸平面研削盤を用い、厚さ3.1mm,幅4mm,長さ 38mmに予め加工した試料の下部スパン側表面を、長手方向に対して直角方 向に表3-3に示すような条件で再研削し、最終的に厚さ3mmとした.その 際、砥石粒度に応じ、砥石主軸の鉛直方向の移動量すなわち砥石切込みと、 テーブルスピードを調節してgを変化させた.なお、表3-3に示す加工条 件は、通常の強度測定用試験片の加工などにおける粗加工から仕上げまでの 加工条件を含むように設定した.これらの研削加工により仕上げられた試験 片は加工損傷を含むものであるが、比較対象として加工損傷のない平滑材試 験片を用意した.平滑材の引張り応力負荷面は、粒度600の砥石で試験片長 手方向に研削加工した後、ラッピングにより表面を30µm以上除去し、加工の 影響を取り除いた.

4 点曲げ強度は,負荷速度0.5 mm/minで測定し,試験雰囲気はいずれも大 気中とした.試験温度はSC1材については室温,1200℃および1500℃,H PSN材については室温および1200℃とし,高温下の試験では試験治具まわ りの温度を定常状態とするため,設定温度に15分間保持した後に試験を行っ た.曲げ試験に供する試験片は,5本1組として同時加工を行い,各加工条 件で1組から5組の試験片を用いた. 研削抵抗の測定は,曲げ試験片の研削の場合とほぼ同一の加工条件で行っ た.ただし,試験片は幅3mm長さ100mmの帯板を用い,クロスフィードをか けないで加工を行うプランジカット研削を行った.法線抵抗は圧電式動力計

-23 -

	表3-1	長3-1 供試材の主な添加元素					
		添加量	(wt%)			
	AI	Y	Fe	В	С		
SC1	0.040		0.197	0.570	3.030		
HPSN	1.45	2.92					

砥石	ドレッサー	ドレッシング体積 (mm ³ /mm)
SDC100N75B	GC120H	750
200	120H	750
400	220H	670
600	500H	500

美 3 -	- 2	加丁久件
IC J	0	加工禾仟

砥石周速	1500	m/min
テーブル速度	0.05 ~ 20	m/min
砥石切込み量	12	μm(#100)
	4, 8	μm(#200)
	4	μm(#400)
	2	μm(#600)
トラバース量	5	mm/pass

で測定した.

破壊靭性は JIS R1607および R1617に準じ, SEPB (Single Edge Pre-cracked Beam)法を用いて測定を行った. 試験温度はSC1材については室温, 1200 ℃および1500℃の3水準, HPSN材については室温および1200℃の2水準 とし、試験片本数は各5本とした.

3.3 結果と考察

3.3.1 室温強度による強度モデルの実験的検証 第2章で述べたように室温においては,研削加工材強度σ_fは第2章の式 (2-8) で示したように,次式のようなgのべき関数で表される.

値を示し、広い範囲で式(3-1)に示す関数形の回帰曲線

$\sigma_{\rm f} = 425(g + 0.772)^{-\frac{2}{3}}$

す. $\sigma_f \ge g$ の関係を表す回帰式として次式が得られた.

$\sigma_f = 356(g + 0.075)^{-\frac{2}{3}}$

 $\sigma_{\rm f} = const.(g + \alpha_n)^{-\frac{2}{3}} \qquad (const. = \frac{K_{\rm Ic}^3}{V_0/\pi\Delta})$ (3 - 1)ここで, K_{Ic}は破壊靭性, Yは形状係数, cはき裂長さ, α_nは加工系の剛性 などの影響を表す定数である.図3-1は、gに対するSC1材の4点曲げ 強度の平均値の変化を示すもので,実験点を通る線分の上下端がそれぞれ最 大,最小値を示す.本実験では粒度100,200,400,600の4種類の砥石を 用いているが、 σ_f は図3-1に示すように、同一のgに対しては、ほぼ同じ

(MPa) (3 - 2)によってよく近似できることが明らかになった.ここでgの単位はµmである. 同様に図3-2はgに対するHPSN材の4点曲げ強度の平均値の変化を示

(MPa) (3 - 3)上述のように、第2章で提案したgによる破壊強度 σ_f の定式化手法を用い ることによって,実際に,研削加工による強度低下の傾向を表すことができ ることが明らかとなった.特に、両材料ともgの小さい領域でσ,はgの増加

-25-

に対して急激に低下したが、式(3-2)および(3-3)で表される回帰 曲線はこの傾向をよく表すことができた.

式 (3-2) と (3-3) とを比較すると,式 (3-1) に示すように両 式の係数項は破壊靭性によって影響されるはずであるが, 実際は必ずしも対 応していない.この原因としては以下のようなことが挙げられる.第4章で 詳しく述べるように、加工き裂のような短いき裂に対するき裂進展抵抗は破 壊靭性試験で測定される値よりも小さい場合があり、実際のHPSN材の破 壊靭性が表3-5に示す値よりも小さい可能性がある.また、SC1材と比 較し砥粒が摩耗が進みやすいと、切れ刃先端角度が大きくなる可能性がある. この場合,式(2-2)から分かるように法線抵抗は増加し,式(2-7) における定数Aの増大すなわち、係数項の減少につながる.

3.3.2 研削抵抗による強度モデルの実験的検証

第2章では砥粒一個あたりの法線抵抗f.はgの二次関数で近似できると仮 定した.このf。に研削加工に関与する砥粒数n。を乗ずることで砥石全体に 加わる法線抵抗F。は

> $F_n = n_s \xi R_s (g + \alpha_n)^2 = k_n (g + \alpha_n)^2$ (3 - 4)

のように表される.ここで、とは切れ刃先端形状によって定まる係数である. 図3-3に、SC1材を供試材とした場合のgに対するF。の変化を示す.な お、研削抵抗は砥石単位幅あたりの値を用いて表した. 図中の実線は各々の 粒度についての実験結果の式(3-4)の形の回帰曲線を表す.ただし、 α_n の値については式 (3-2) における値 $(\alpha_{n}=0.772)$ を用いた. 法線抵抗は いずれの粒度の砥石を用いた場合においても広い範囲でgの二次関数で比較 的よい近似が得られ,研削抵抗の面からも第2章で提案した関数形の妥当性 が確認された.

(SC1材)

図3-3 最大砥粒切込み深さに対する法線研削抵抗の変化

3.3.3 高温強度の推定

3.3.3.1 高温強度表示式

研削加工材の強度 σ_{f} は、高温において酸化などを原因とするき裂の寸法・ 形状の変化がないとすると、式(2-6)に示したように次式で表すことが できる.

$$\sigma_{\rm f} = \frac{\left({\rm K}_{\rm Ic}\right)_{\rm H}}{{\rm Y}\sqrt{\pi c}}$$
$$= \frac{\left({\rm K}_{\rm Ic}\right)_{\rm H}}{{\rm K}_{\rm Ic}} \cdot \frac{{\rm K}_{\rm Ic}^{\frac{4}{3}}}{{\rm Y}\sqrt{\pi {\rm A}}} \left({\rm g} + \alpha_{\rm n}\right)^{-\frac{2}{3}} \qquad (3 - 5)$$

式(3-5)は式(2-8)に、室温における破壊靭性に対する部材使用温 度における破壊靭性の比を乗じたものであり,研削加工材の高温強度は,室 温強度と破壊靭性の温度依存性から予測可能であることが分かる.

3.3.3.2 炭化ケイ素および窒化ケイ素の高温強度

表3-4は炭化ケイ素SC1材の破壊靭性の測定結果を示す.1200℃およ び1500℃における破壊靭性は、室温における平均値に対しそれぞれ約30%お よび40%の上昇を示した.また1200℃および1500℃における平滑材強度は, それぞれ505MPa, 398MPaであった. 図3-4は1200℃における研削加工材 強度の加工条件gに対する変化を示す.図中のハッチング部分は,式(3-5) による強度の予測値を,同じく一点鎖線は室温における研削加工材強度を示 すものである. 高温強度は, 室温強度と同様にgの増加に対してべき関数的 に低下するが、その応力レベルは室温強度よりも高い.予測値は、gの広い 範囲で実験結果とほぼ一致している.これらのことから,研削加工材の高温 強度が室温強度と破壊靭性の温度依存性から十分予測できることが確認され た. なお, 平均値を基に求めた研削加工材高温強度の回帰式は次式のように なった.

> $\sigma_{\rm f} = 550(g + 0.772)^{-\frac{2}{3}}$ (3 - 6)

KIc (MPa•m^{1/2}) /SD 1.9

表3-4 页

-30 -

皮壞靭性	(常圧焼結炭化ク	- イ素)
室温	1200°C	1500°C
1/0.02	2.47/0.26	2.74/0.10
		SD:標準偏差

一方,室温および1200℃における窒化ケイ素HPSN材の破壊靭性の測定 結果を表3-5に示す.1200℃における破壊靭性は室温における平均値に対 し+5%から-12%までとばらつきはあるが、平均値を見ると温度上昇に対 して若干低下する傾向となった.図3-5は1200℃における研削加工材強度 のgに対する変化を示す.図中の各実験点は図3-2の室温の場合と同様に 3組15本の試験片の平均値を表し、実験点を通る線分の上端下端はそれぞれ 最大,最小値を表す.平滑材強度は図の破線に示すように622MPaであった. 図中の帯状のハッチング部分は,式(3-5)による強度の予測値を示し, その幅は1200℃における破壊靭性が平均値を中心に標準偏差分だけ変化した 場合の強度の変動量を表す.予測値はSC1材の場合に比べると多少差はあ るが,一点鎖線で示す室温強度と同様に,実験値の定性的な傾向をよく表し ていると言える.

3.3.3.3 酸化の影響がある場合の高温強度

高温構造用セラミック部材には,耐クリープ変形能の点から非酸化物系セ ラミックスが用いられることが多い. これらのセラミックスにはほとんどの 場合,焼結助剤として既に酸化物が含まれているため,新たな酸化が強度に 直接影響を及ぼすことはないことから,上述の高温強度の推定手法は適用で きると考えられる.しかし、今回用いたSC1材は粒界に酸化物相がほとん どなく,強度に及ぼす酸化の影響は大きいと推測される.研削加工材の酸化 特性については第7章で詳しく論じるが、ここでは、強度に影響を及ぼす表 面の酸化という観点から以下のような考察を試みた.

1500℃における測定結果を図3-6に示す. 図中のハッチング部分は式 (3-5)による強度の予測値を示す.両者は定性的には同じ傾向にあるが, 定量的に見るとgの小さい領域において実験値の方が予測値よりもやや低い ことが認められる.この低下がき裂に起因するものと仮定すると,浅いき裂

勒	的性(ホットプレ	ス窒化ケイ素)
	室温	1200°C
)	5.38/0.44	5.20/0.46
		SD:標準偏差

図3-5 窒化ケイ素セラミックス(HPSN材)の1200℃における強度予測

ほど、つまり、gの小さい領域ではき裂先端まで酸素が侵入しやすく、酸化 による劣化の確率が高くなることが予想される. ところで,炭化ケイ素の酸化は一般に表面にシリカ層が形成されて重量増 加の生じるいわゆるpassive酸化であるが,本供試材のように焼結助材として 炭素Cを含む場合には、シリカ層中の酸素の拡散によって母材中に含まれる Cが酸化され,顕著な場合にはCOガスが発生して欠陥が形成される¹⁾⁻³⁾ ことが知られている.したがって,酸化によって強度を支配するき裂の形状・ 寸法に変化が生じることが考えられるが,その形態としては以下の二つが挙 げられる. (ア)加工き裂とは独立に強度を支配する欠陥が酸化によって新 たに形成される, (イ)加工き裂先端近傍が酸化によって損傷を受け, 等価 的にき裂が進展した状態となる.しかし、図3-6においては強度とgの間 に明らかに相関関係があることから,後者のような考え方が妥当と考えられ る. このような場合,本手法を適用するには,き裂寸法に対し,これを増加 させる方向に補正を加える必要があると考えられる.たとえば,研削加工材 のき裂深さを表す式 (2-5) において、定数ζを大きくすれば、式 (3-5) における定数Aが増加し,図3-6の予測曲線は下方へ平行移動し,実験値 の傾向に近づくこととなる.

3.4 結言

第2章で提案した,研削加工部材の室温強度を最大砥粒切込み深さgのべ き関数として定式化する手法について,常圧焼結炭化ケイ素およびホットプ レス窒化ケイ素を供試材として実験的検討を行った.その結果,以下のこと が明らかとなった.

gの増加に対して上記の2種類の材料とも σ_f はべき関数的に低下し、特に gの小さい領域において加工前の強度から急激に低下する傾向を示した.こ

れらの傾向は,gによる表示式でよく表すことができた.次に,本手法の適 用範囲を高温にまで拡張することを試み,上記の2種類のセラミックスを供 試材として実験的に検討した結果,基本的には,破壊靭性の温度依存性を考 慮することで拡張可能であることを明らかにした.なお、炭化ケイ素セラミッ クスのように酸化による強度変化が認められる場合には,本手法をそのまま 適用することはできず,き裂寸法の補正が必要となる.

第4章 耐加工損傷性とその影響因子

4.1 緒言

近年,材料開発技術の進歩によって従来よりも強靭なセラミックスの開発 が可能となりつつある1)-3).例えば長柱状の結晶粒を発達させた組織を形 成させ、き裂面間の粒子架橋などを利用してき裂進展抵抗を高めた (in situ 複合化)窒化ケイ素セラミックスにおいては、市販の窒化ケイ素セラミックス の場合5~6MPa·m^{1/2}である破壊靭性が10MPa·m^{1/2}を越える例も報告されて いる4).しかし、セラミック部材の信頼性向上には、材料が外部から損傷を 与えられても本来の特性を維持する能力すなわち,耐加工損傷性をより一層 向上させることが不可欠であるが,これと破壊靭性をはじめとする材料の機 械的特性との関係は未だ明らかではない.両者の関係を明らかにすることに よって,材料開発において,どの機械的特性をどのように制御すべきか,そ れを実現するためにはどのような微構造が望ましいかなどを知ることができ 3.

ところで第2章においては、研削加工材強度が最大砥粒切込み深さgのべ き関数で表されることを導き、この関数がgの増加に対して単調に減少する ことから, 強度低下を生じない限界の加工条件すなわち, 限界最大砥粒切込 み深さgerが存在することを示した. つまりgerが大きいほど, 強度低下を生 じることなく研削加工できる範囲が広がり,その材料の耐加工損傷性は優れ ていると言える.このgerは、材料の破壊靭性、平滑材強度などの関数とし て与えられるので,本章ではgerを耐加工損傷性の指標として用いることと した.まず,g_{cr}と供試材の機械的特性との間の関係を導くとともに, 微構造 および機械的特性が異なる7種類の材料についてgerを実験的に求めること によって、その妥当性の検証を行う.次に、上述のin situ複合化窒化ケイ素 および高靭性の炭化ケイ素セラミックスを対象として,耐加工損傷性の向上

- 37 -

に有効な靭性強化機構について検討を行う.

セラミックスは高温強度特性に優れる材料であるが、1000℃以上の高温で は破壊靭性,平滑材強度などの機械的特性が温度によって変化する場合があ る.これらの関数として表されるg_{cr}は、同一材料でも部材の使用温度によっ て変化することとなる.つまり、室温で強度低下を生じない条件で加工を行っ ても、部材の使用温度において強度低下を生じる場合がある.そこで本章で は、供試材の機械的特性の温度依存性とg_{cr}との関係についても検討を行う.

4.2 実験方法

4.2.1 供試材料

本章では第3章で用いた常圧焼結炭化ケイ素(SC1材),ホットプレス 窒化ケイ素(HPSN材)に,新たに常圧焼結炭化ケイ素(SC2材), 常圧焼結窒化ケイ素(SSN材),insitu複合化窒化ケイ素(SC2材), 常圧焼結アルミナ(A材),炭化ケイ素粒子分散強化アルミナ(ASC材) の5種類を加え,合計7種類の材料を用いた.図4-1は走査型電子顕微鏡 (SEM)により各材料の微構造を観察した結果である.粒子形態の観察を 容易にするため鏡面研磨した試料に化学エッチングまたはサーマルエッチン グを行っている.表4-1に各材料の破壊靭性,平滑材強度をまとめて示す. 破壊靭性については第3章で用いたSEPB法により測定した.本実験では 炭化ケイ素,窒化ケイ素,アルミナの3種類の材料系を用いているが,それ ぞれの材料系の中では以下のような組織,特性に違いのあるものを選んだ. 炭化ケイ素系では,短い針状晶が主体のSC1材(図4-1(a))と,アルミ ナを焼結助剤として添加して板状の結晶を析出させ,SC1材に比べ破壊靭 性を約3倍に向上させたSC2材(同図(b))を用いた.窒化ケイ素系では, 微細な針状晶を発達させ高強度を実現したHPSN材(同図(c))と,微細な

表4-1	表4-1 供試材の破壊靭性および平滑材強度(室温)							
	SC1	SC2	HPSN	SSN	iSN	А	ASC	
破壊靭性 (MPa•m ^{1/2})	1.91	5.89	5.38	4.65	10.40	3.00	3.35	
平滑材強度(MPa)	440	413	800	498	639	493	713	

針状晶の中にやや太い柱状晶を析出させ. HPSN材と同程度の破壊靭性と したSSN材(同図(d))および、マトリクス相に比べて非常に太くて長い柱 状晶を成長させることによって粒子架橋効果を発揮させ、き裂進展抵抗を著 しく向上させた i SN材 (同図(e))を用いた.アルミナ系では図4-1(f)に 示すような、粒子形状が等方的な高純度アルミナセラミックス(A材)と、 A材と同程度の粒径のアルミナマトリクス中に炭化ケイ素粒子を分散させた ASC材(同図(g))を用いた.ASC材はA材に対し、破壊靭性を約10%、

ところで,表4-1に示すようにiSN材は、本研究の供試材の中では破 壊靭性が飛び抜けて大きい. そこで、iSN材については粒子架橋効果の影 響の程度を明らかにするため、き裂進展量に対するき裂進展抵抗の変化(R カーブ挙動)を修正AM-DCB (Applied Moment - Double Cantileber Beam)法⁵⁾ により測定した.この方法は、き裂進展抵抗 K。がき裂長さに依存しない⁶⁾ ため,き裂寸法を測定することなく,負荷荷重を直ちにK。に換算できる簡 便さを有するとともに,き裂を大きく成長させることができるので定常状態

砥粒が材料を除去するときの研削抵抗 R. を, Vickers 硬さ試験における圧 子押し込み抵抗で表すこととした.本研究ではR.を、図4-2に示すように、 圧子押し込み荷重と圧子の変位との関係から求められる投入仕事(OABの 面積)を,最大荷重時の圧子変位から算出されるくぼみの体積で除したもの と定義した.最大荷重は1.96Nで一定とした.表4-2に本実験で用いた7 種類の供試材のR。を示す.材質によるR。の変化は比較的小さく,最も大き いASC材の場合(14.3 GPa)でも最も小さいHPSN材の場合(10.3 GPa)に

- 43 -

図4-2 Vickers硬さ試験による押し込み抵抗の測定

表4-2 供試材の押し込。	み抵抗	芀
---------------	-----	---

	SC1	SC2	HPSN	SSN	iSN	А	ASC
R _s (GPa)	14.0	14.0	10.3	10.5	10.9	12.7	14.3

4.2.3 研削加工条件

砥石の準備条件,試験片寸法などは第3章と同一である。加工条件につい ても第3章と同様に砥石粒度に応じ、砥石切込みと、テーブルスピードを調 節してgを変化させた.なお,本章では第3章で用いた粒度100,200,400, 600の4種類の砥石に加え, iSN材の加工においては粒度60の砥石を用い た.

- 4.3 結果と考察
- 4.3.1 供試材の力学的特性が限界最大砥粒切込み深さに 及ぼす影響

図4-3は最大砥粒切込み深さgに対する研削加工材強度 of との関係を 示し,図中の曲線は実験結果の回帰曲線を表す.ただし、縦軸はそれぞれの 材料の平滑材強度 σ_{o} で無次元化している. 回帰式, σ_{o} および g_{a} を表4-3 にまとめて示す.なお、A材については、補正項α,が計算上、負の値となっ たが絶対値が0.002と小さいので近似的に0とした.図4-3からは、g_が 材料によって変化し、同じ材料系であっても大きな差を生じていることが分 かる. 例えばSC2材のgrはSC1材のそれに比べ一桁大きな値となる. 一方, ASC材はA材に対して破壊靭性の増加は10%程度であるが, 平滑材 強度のそれは約50%で、gcr は低下している.次に、このような材料特性によ る g_{cr}の変化について検討する. 供試材の力学的特性とg,との関係について、まず第2章で述べた研削加工 材強度とgとの間の関係式を基に考察してみる. セラミックスの場合,一般 に破壊靭性は1000℃以上の高温でなければ温度依存性を有しない. そのため 室温では,式(2-9)で示されるg,は,部材使用温度における破壊靭性 (K_{Ic})_Hと室温での破壊靭性 K_{Ic}を等置することにより、次式で表されること

	表4-	 3 研削加工材強度の回帰式 限界砥粒切込み深さg_{cr} 	;, 平滑材強度;	および,
		回帰式	σ _o (MPa)	g _{cr} (µm)
6 0.8 A SC2	SC1	$\frac{\sigma_{\rm f}}{\sigma_{\rm o}} = 0.966(g + 0.772)^{-\frac{2}{3}}$	440	0.17
10.6 SC1 ASC ASC	SC2	$\frac{\sigma_{\rm f}}{\sigma_{\rm o}} = 2.34(g + 0.969)^{-\frac{2}{3}}$	413	2.61
ビス K 0.2 HPSN	HPSN	$\frac{\sigma_{\rm f}}{\sigma_{\rm o}} = 0.445 (g + 0.075)^{-\frac{2}{3}}$	800	0.26
0 0 1 2 3 4 5 最大砥粒切込み深さ g (µm)	SSN	$\frac{\sigma_{\rm f}}{\sigma_{\rm o}} = 0.922(g + 0.356)^{-\frac{2}{3}}$	498	0.59
図4-3 研削加工材無次元化強度と	А	$\frac{\sigma_{\rm f}}{\sigma_{\rm o}}=0.763{\rm g}^{-\frac{2}{3}}$	493	0.67
最大砥粒切込み深さとの関係	ASC	$\frac{\sigma_{\rm f}}{\sigma_{\rm o}} = 0.536(g + 0.330)^{-\frac{2}{3}}$	713	0.07
— 46 —		— 47 —		

となる.

$$g_{cr} = const. \left(\frac{K_{Ic}^{\frac{4}{3}}}{\sigma_{o}R_{s}^{\frac{1}{3}}}\right)^{\frac{3}{2}} - \alpha_{n}$$
 (4 - 1)

式 (4-1) の各項の指数の大きさから分かるように, g_{cr} に対しては, K_{Ic} の影響が最も大きく, R_s の影響は小さい. また, 表4-3に示したように材料による R_s の変化が小さいことから, g_{cr} は主に破壊靭性と, 平滑材強度に依存すると考えられる.

次に、 g_{cr} と供試材の機械的特性との関係について実験的に検討した. 図4 -4は式(4-1)を用いて(g_{cr} + α_n)と破壊靭性、平滑材強度、押し込み 抵抗との関係を両対数グラフ上に整理したものである.全体として、右上が りの傾向にあり、同じ材料系のSC1とSC2、HPSNとSSN、AとA SCで比較をすると、実線で示す傾き3/2の直線にほぼ沿って変化するこ とが分かる.上述のように破壊靭性の向上が g_{cr} の増加に最も効果的である が、実際、平滑材強度、押し込み抵抗は同程度であるSC1材とSC2材を 比較すると、破壊靭性が約3倍に向上することによって g_{cr} + α_n が約4倍に、 g_{cr} は約15倍に増加していることが分かる.

以上のことから,式(4-1)で表される関係が実際にもほぼ成り立つと 考えられる.したがって,破壊靭性,平滑材強度,押し込み抵抗の三つの材 料特性が分かれば,以下に示すような方法により,その材料のg_{er}および任 意の加工条件における研削加工材強度の見積が可能となる.

- (1)まず上記の三つの材料特性値から式(4-1)右辺第1項の括弧内の 値を計算し、α_nとして同一材料系の既知の値を代入すれば、図4-4 からg_{er}のおよその値が分かる.
- (2)次に式(2-8)を平滑材強度 σ。および限界最大砥粒切込み深さ g_{cr} を用いて無次元化した次式により任意のgにおける研削加工材強度と

図4-4 供試材の機械的特性による限界最大砥粒切込み深さの変化

平滑材強度との比が分かる.

$$\frac{\sigma_{\rm f}}{\sigma_{\rm o}} = \left(\frac{g + \alpha_{\rm n}}{g_{\rm cr} + \alpha_{\rm n}}\right)^{-\frac{2}{3}} \tag{4 - 2}$$

(3) 研削加工材強度 σ_f は、これに平滑材強度 σ_o を乗じることにより得ら れる.

4.3.2 耐加工損傷性の向上に有効な強靭化機構

前項で述べたような手法を用いて, i SN材を対象に研削加工材強度の見 積を行った. 4.2.1で述べたようにiSN材は粒子架橋効果の影響が大きく, 正確な意味での破壊靭性を測定することが既存の方法では難しい.図4-5 は、修正AM-DCB法によりき裂進展量に対するき裂進展抵抗 К の変化 (Rカーブ)を調べたものである.き裂進展開始直後の進展抵抗 K_{Ri}は約 6.5MPa·m^{1/2}であるが,進展量の増加に対してK_Rは増加し,約11.4MPa·m^{1/2} で飽和する.この飽和値を K_{Rm} とする.図4-6の2本の実線は、 K_{Ri} と K_{Rm} に対応してgと研削加工材強度との関係を予測したものである.K_{Ri}とK_{Rm}に 対応する $(g_{cr} + \alpha_n)$ の値はそれぞれ2.27 μ mと7.47 μ mである. なお, α_n はSS. NとHPSNのそれの平均をとり、 $\alpha_n = 0.24 \mu m$ とした.一方、図中の(●) は実際に粒度60の砥石で研削加工を行った試料の強度を示し、エラーバーの 両端は最大値と最小値に対応する.強度はgの増加に対して低下し,他の材 料と同様の傾向が見られるが,実験点は2本の予測曲線に挟まれた領域に分 布し,gが小さくなるにつれて K_{Ri} に対応する予測曲線に近付き, g_{cr} は K_{Ri} から予測される値に近いことが分かる.これは、粒子架橋によるき裂進展抵 抗の増大が,耐加工損傷性の向上には有効でないことを示している. すなわ ち,粒子架橋効果は,き裂先端よりも後方の破面に作用するので,これによっ てき裂進展抵抗が上昇するには、図4-5に示したように、ある程度き裂が 進展する必要がある.これに対して、一般に研削加工によって生じる表面き

図4-5 修正AM-DCB法によるRカーブの測定(iSN材)

き裂進展抵抗曲線を基にした 研削加工材強度の予測(iSN材) X 4 - 6

にはほとんど影響を及ぼさないと考えられる。 次に耐加工損傷性の向上にはどのような強靭化機構が有効であるかについ て考察してみる. セラミックスの強靭化機構モデルについてはいくつか提案 されている⁷⁾⁻¹⁰⁾が、それらは大きく二つに分けることができる.き裂が 進展することによって誘起されるものと、材料そのものに内在する特性に依 存し,き裂先端前方で作用するものの二つである。前者の代表としては、こ れまで述べてきたような粒子架橋効果⁷⁾や,正方晶ジルコニア多結晶体に見 られる,応力誘起変態⁸⁾に起因する、き裂先端よりも後方での圧縮残留応力 の効果などが挙げられる.また後者の例としてはき裂先端近傍での微小き裂 発生によるエネルギー散逸の効果やき裂が偏向して進展する効果⁹⁾、局所的 な圧縮残留応力による遮蔽効果¹⁰⁾などが挙げられる.ここでは、実際に耐 加工損傷性がSC1材に比べ大きく向上しているSC2材を例に、その強靭 化機構について検討した.

表4-4はSC2材について、室温と1400℃において破壊靭性および平滑 材の強度の比較を行った結果である.なお破壊靭性は、SENB法の一種で 先端半径が20µm以下の非常に鋭い切り欠きを導入するSEVNB (Single Edge V-Notched Beam) 法¹¹⁾ により測定した.本手法は予き裂を導入しないこ とから粒子架橋効果によるき裂進展抵抗の増加はほとんど無視することがで きる.

表4-4に示す室温におけるSEVNB法の結果と、表4-1に示すSE PB法の結果との差は、数%程度に止まっている。また、図4-1に示すよ うにSC2材(同図(b))の微構造はSC1材(同図(a))と比較して粒子架 橋効果の発現に有効と考えられる、大きな板状結晶が特に多いというわけで はない.これらのことから、SC2材においては、粒子架橋効果の影響は小

裂の寸法は、第5章で示すように数十µm程度と小さいため、き裂進展抵抗

恢 褒 朝 任 と -	千	
	室温	1400°C
破壊靭性 (MPa•m ^{1/2})	5.44	3.95
平滑材強度 (MPa)	413	350

表4-4 SC2材の室温および1400℃における

留応力の影響が大きいことが示唆される.

以上のような議論から,研削加工によって生じるような短いき裂に対して は, 粒子架橋効果のようなき裂先端後方で作用するタイプの強靭化機構は有 効ではないことが明らかとなった.また、耐加工損傷性の向上に対しては材 料内部の局所的な圧縮残留応力のような,き裂先端前方で作用するタイプの 強靭化機構が望ましいことが示唆された.

さく、き裂先端前方で作用する強靭化機構の影響が大きいということができ る、次に、局所的な圧縮残留応力の効果について検討してみる.

残留応力は、同一面内における積分値が0となるような分布となるので、 圧縮応力領域が存在すればそれに対応する形で引張り応力領域が存在する. ところで、残留応力の存在は、何らかの方法でこれを解放し、そのときの破 壊靭性の変化を調べれば確認できる.一般に焼結体中の内部残留応力は熱膨 張係数の不均一に起因する¹²⁾ものと考えられ,高温に加熱することによっ て解放される.表4-4に示すように、1400℃においては破壊靭性が室温に

おける値に比べ約30%低下する。同じく1400℃における平滑材強度は350MPa で約14%の低下となった.本材料は焼結助剤としてアルミナが添加されてい るが、その多くは粒界三重点に存在し、結晶粒界ではほとんど見られないこ とが知られている¹³⁾.したがってガラス相が存在するとしても、このアル ミナ粒子の周囲に限定され,通常の窒化ケイ素セラミックスで見られるよう なガラス相の軟化による破壊靭性の低下は生じにくいと考えられる. 平滑材 強度の低下量が破壊靭性の低下量に比べて小さいことから、ガラス層の軟化 はむしろ,き裂先端の鈍化などを引き起こし、き裂進展を抑える方向に作用 していると考えられる.これらのことから、引張り残留応力領域が存在する にしてもその絶対値は小さく、SC2材における強靭化に対しては、 圧縮残 4.3.3 限界最大砥粒切込み深さの温度依存性

前項において限界最大砥粒切込み深さ g_{cr} は,主に材料の破壊靭性および 平滑材強度に影響されることを明らかにした.この二つの強度特性が温度依 存性を有する場合, g_{cr} も温度によって変化すると考えられる.平滑材の部材 使用温度における強度を $(\sigma_o)_H$ とすれば,式(3-5)より,研削加工材の 部材使用温度における限界最大砥粒切込み深さ $(g_{cr})_H$ は

$$(g_{cr})_{H} = \left(\frac{K_{Ic}^{\frac{4}{3}}}{Y\sqrt{\pi A}}\right)^{\frac{3}{2}} \left(\frac{(K_{Ic})_{H}}{K_{Ic}}\right)^{\frac{3}{2}} \left(\frac{1}{(\sigma_{o})_{H}}\right)^{\frac{3}{2}} - \alpha_{n}$$
 (4 - 3)

で表される.式(4-3)および(2-9)の右辺第2項を移項し両者の比 をとると次式が得られる.

$$\frac{\left(\mathbf{g}_{cr}\right)_{\mathrm{H}} + \alpha_{\mathrm{n}}}{\mathbf{g}_{cr} + \alpha_{\mathrm{n}}} = \left(\frac{\frac{\left(\mathbf{K}_{\mathrm{Ic}}\right)_{\mathrm{H}}}{\mathbf{K}_{\mathrm{Ic}}}}{\frac{\left(\sigma_{\mathrm{o}}\right)_{\mathrm{H}}}{\sigma_{\mathrm{o}}}}\right)^{\frac{3}{2}} \quad (4 - 4)$$

上式は、部材使用温度と室温における破壊靭性の比が、平滑材強度の比より も大きいとき g_{cr} が増大することを示している.これを図示すると、図4-7 のようになる。例えば、SC1材は第3章で示したように、破壊靭性および 平滑材強度が両者とも温度上昇とともに増大するという特徴を有する.破壊 靭性および平滑材強度の変化率、1.29と1.15とから式(4-4)右辺の値は、 1.19となる。一方、実際の室温および1200℃における限界最大砥粒切込み深 さは、式(3-2)および(3-6)にそれぞれの温度における平滑材強度 の値を代入することで求められ、その値はそれぞれ0.17、0.36µmとなる。 ($g_{cr} + \alpha_n$)の変化率は1.2となり、図中の(〇)に示すように上記の計算値と ほぼ一致する。

式(2-1)に示したgの定義から分かるように, g_{cr}を2倍にできるということは,研削作業条件のうち例えば, テーブル速度のみを変化させるとす

図4-7 温度上昇による破壊靭性および平滑材強度の変化率と 限界砥粒切込み深さとの関係 ると、これを8倍に増加させることを意味し、部材使用温度における強度を 基準に加工条件を定めることにより、加工能率を大きく向上させ得ることと なる.

次にSC2材の場合について考えてみる. 4.3.2項で述べたように1400℃ において,破壊靭性は室温における値より約30%低下するが,平滑材強度は 350MPaと14%程度の低下にとどまる.式(4-3)よりg_{cr}は,約25%減少 することが予想される.したがって,この場合,SC1材とは逆に,部材使 用温度の上昇に対しては加工能率を低くしなければならない.

4.4 結言

本章では,第2章において示した,限界最大砥粒切込み深さg_{cr}が破壊靭性, 押し込み抵抗,平滑材強度など,材料の機械的特性の関数として与えられる ことを導き,炭化ケイ素,窒化ケイ素,アルミナの3種類の材料系の,合計 6種類の材料を用い,その実験的検証を行った.その結果g_{cr}は,主に破壊 靭性および平滑材強度に影響されることが明らかとなった.

また、このg_{cr}と材料の機械的特性との関係を用いて、in situ複合化窒化 ケイ素の研削加工による強度劣化を、そのき裂進展抵抗曲線(Rカーブ)を 基に見積を行った.その結果、g_{cr}はき裂が進展し始める時点でのき裂進展抵 抗K_{Ri}から予測される値とほぼ等しく、本材料において支配的な強靭化機構 である粒子架橋効果が、耐加工損傷性の向上には有効でないことが明らかと なった.これは、一般に研削加工によって生じる表面き裂の寸法は小さく、 き裂先端よりも後方の破面に作用する粒子架橋効果によって、き裂進展抵抗 が上昇するために十分な長さに達しないことに起因すると考えられた.さら に、高靭性の常圧焼結炭化ケイ素について、その強靭化機構について検討し た結果、耐加工損傷性の向上に対しては、材料内部の局所的な圧縮残留応力 のような,き裂先端前方で作用するタイプの強靭化機構が望ましいことを明 らかにした.

最後に,破壊靭性および平滑材強度が高温下で温度依存性を有する場合の, g_{er}の変化率について検討を行い,高温と室温における破壊靭性の比が,平滑 材強度の比よりも大きいときg_{er}が増大することを導き,実験結果ともほぼ 一致することを明らかにした. 第5章 研削加工部材の信頼性評価

5.1 緒言

一般に, セラミックスなどの脆性材料の強度は最弱リンク説に従い, 部材 中の最も弱い部分の強度すなわち,部材中に含まれる最も大きな欠陥の大き さによって支配される.そのため,強度は欠陥の大きさの分布特性に依存し たばらつきを持つこととなり,統計学的取り扱いが必要で,一般にはワイブ ル統計理論が用いられることが多い1).本来ワイブル分布は1種類の原因に よる破壊への適用を想定した分布モデルであるが, 複数の破壊原因による破 壊に対して適用可能な修正モデルもいくつか提案されている^{2),3)}.

このように強度にばらつきのある材料を用いて部材設計を行う場合、平均 強度だけを用いて部材に負荷できる応力を決定することは極めて危険となる. 例えば、市販のセラミックスとして一般的な二母数ワイブル分布で近似した ときのワイブル係数が10程度の材料について考えると、平均強度の80%の応 力においてさえ破壊確率が約8%に達し、実用的には無視できない危険度と なる.したがって部材の信頼性を考えるうえでは、平均強度を代表値とする よりも、むしろ、それ以下では絶対に破壊しない応力(最低保証強度)の方 が重要となる.しかしながら現状ではセラミックスにおいて最低保証強度が 存在するかどうかは明確ではないため、予め一定の負荷を加えて、ある強度 よりも弱いものを除去する保証試験を行うか,あるいは十分低い破壊確率に おける破壊応力を最低保証強度の代用とすることが多い4).

ところで、 平滑材の場合には、 強度は材料に内在する欠陥(自然欠陥)に よって支配されるが、研削加工材ではこれに加えて、加工によって生じた欠 陥(加工欠陥)が強度に影響を及ぼすこととなる.研削加工材の強度はこれ まで述べてきたように最大砥粒切込み深さgの関数として与えられる. 第2 章において示したように、加工中の砥粒の摩耗などによるgの変動はほとん

ど無視できる、したがって研削加工材においては、材料に内在する自然欠陥 と加工条件によって決まる加工欠陥の二つの破壊原因が競合する状態にある と考えられる.

本章では,最大砥粒切込み深さgと研削加工材の最低保証強度との関係を 明らかにするために、加工欠陥の分布を、Knoop圧子圧入により発生するき 裂の分布で近似した研削加工材強度分布モデルを提案するとともに、モデル を利用した強度分布特性の計算機シミュレーションを行い、その実験的検証 を行う.

5.2 研削加工材の強度分布 5.2.1 強度分布モデル 研削加工材強度は加工条件すなわちgによって、その平均値が変化すると ともに、ばらつきの程度も変化する、図5-1は、SC1材について平滑材 および粒度200の砥石による研削加工材(g=0.57, 1.10, 1.99µm)の破壊確率 分布を第2章の場合と同様に次式で表される二母数ワイブル分布に従うと仮 定し、ワイブル確率紙上に表したものである.

 $F = 1 - e^{-\left(\frac{\sigma}{\xi}\right)^m}$

ここで, mは形状母数(ワイブル係数), とは尺度母数である.gが小さく 強度が平滑材強度に近いほど、研削加工材強度のワイブル係数は小さくなり、 平滑材のワイブル係数に近付くことが分かる. すなわち、加工欠陥が小さく なればなるほど自然欠陥に強度が支配される割合が高くなることを示してい る. そこで本研究では、図5-2に模式的に示すような強度分布モデルを用 いることとした.まず、図に示すように自然欠陥によって支配される強度分 布(分布1)と、加工欠陥によって支配される強度分布(分布2)を考える. 分布1は平滑材の強度分布から求めることができる.一方,第2章で示した

(5-1)

ように、ほとんどすべての試験片の強度が加工欠陥によって支配されると考 えられるgの大きい加工条件の下では、強度のばらつきは小さく, Knoop圧 子圧入材とほぼ同程度である.したがって、加工欠陥によって支配される分 布2はKnoop圧子圧入材の強度分布で近似することとした.分布2はgに よって分布の形が変化することはなく、平均値のみが変化するものとする. つまり, gが大きくなれば左へ, gが小さくなれば右へ, X軸方向に平行移 動すると考える.前述のように研削加工材の強度は加工欠陥と自然欠陥との 競合すなわち,大きい方の欠陥によって支配されるので,分布1を表す曲線 と分布2を表す曲線との交点よりも上では加工欠陥に、交点よりも下では自 然欠陥によって強度が支配される.交点の位置はgが十分小さい場合には上 方へ移動し,実質的には強度は自然欠陥に支配され,gの十分大きい場合に は下方に移動し、加工欠陥に支配される割合が大きくなる.

5.2.2 強度分布シミュレーション

上述のような強度分布モデルを基にして,計算機シミュレーションにより 研削加工材の強度分布を求めた.初期値として用いる強度分布特性は、第2. 3章で用いたものと同一の炭化ケイ素セラミックス(SC1材)のそれを用 いることとし、分布1の特性は平滑材の4点曲げ試験結果(試験片本数120 本, m₁=9.3, ξ₁=427MPa)を用いた.また分布2のワイブル係数は、第2章 で示したKnoop圧子圧入材の強度分布のそれ(試験片本数30本, m₂=32.5) を用いた。

シミュレーションの手順を以下に示す.ここでは試験片本数30本の場合に ついて計算を行った.

(1) まず,図5-2における分布2の位置を決めるため,平均強度µ2を 仮定し,尺度母数を,を次式5)から算出する.

ここで、Γはガンマ関数である. (2) 次に、30個の乱数を発生させてこれを仮の破壊確率 F.'とし、次式よ り分布1および2の破壊応力 σ_1 , σ_2 を算出する.

- 3.

$$F = \frac{i - 0.5}{n}$$

- 3.
- mおよび,尺度母数とを算出する.

 $\sigma_{\rm f} = 425(g + 0.772)^{-\frac{2}{3}}$

分布2の平均強度をランダムに変化させ、上記の手順に従ってσ_およびm を求めることにより、これらのgに対する変化を調べることができる. また本研究では、最低保証強度を破壊確率0.01%における破壊強度と定義 し、これをシミュレーションにより求めたmおよびとを用いて算出した.

- 64 -

$$(i=1,2)$$
 (5-3)

(3) σ₁, σ₂をそれぞれ昇べきの順に並べ替え,同じ順序数同士で大小 比較を行い、小さい方を選択して、30本の強度を定める、

(4)破壊確率Fは次式で表される対称試料累積分布法⁶⁾を用いて計算す

(5 - 4)

ここで,iは昇べきの順に並べたときの順序数,nはサンプル数であ

(5) 最後に強度の算術平均 σ_m(以下,平均強度と呼ぶ),ワイブル係数

上記の(1)~(5)の手順を繰り返し、 σ_m およびmの500回の試行に おける平均値を求める.このようにして求めた平均強度から、下記のような SC1材の研削加工材強度の回帰式,式(3-2)を用いてgを算出する.

5.3 結果と考察

図5-3は上述のようなシミュレーションにより,gに対するmの変化を 調べた結果である.研削加工材強度の平均強度が平滑材強度すなわち,分布 1の平均強度にほぼ等しくなるg=0.3においてmは約9となり,分布1のそ れとほぼ等しい値となる.一方gが1.5よりも大きい領域では、ほぼ一定値を 示し分布2のワイブル係数32.5とほぼ同一の値となっている.gの増加に対 するmの変化を見ると、分布1の値から分布2の値に連続的に変化すること が分かる.

図5-4は、同じくgに対する破壊確率0.01%における破壊強度すなわち、 本研究で定義した最低保証強度の変化をシミュレーションにより調べたもの である.図中の実線は平均強度を示し、(○)は、最低保証強度を示す.最 低保証強度はgの増加に対して一旦増加した後,減少に転じ極大値が存在す ることが分かる.この極大値の存在の意味について最適加工条件を定める立 場から考えてみる. 平均強度はgの増加に対して単調に低下するので, 強度 を低下させない条件の中で加工能率が最も高いという意味では gr が最適加 工条件となる.一方,最低保証強度を基準にすると,これが極大となる点が まさしく最適加工条件であり、しかもgarよりも高い能率での加工が可能と なる.

次に、上述のシミュレーション結果と研削加工材の実際の強度分布との比 較を行った.曲げ試験片の加工は3章で示したものと同様の手法を用いた. ただし同時に加工する試験片本数は30本とし、加工条件はg=0.64, 1.10, 1.99, 2.97µmの4種類とした. 各加工条件における強度分布の回帰式から 計算した最低保証強度および平均強度をそれぞれ,図5-4の(●)および (■) で表す.シミュレーション結果は実験結果と比較的よく一致しており, 本章で用いた強度分布モデルが実際にほぼ適合していることが分かる.

図5-3 加工条件によるワイブル係数の変化

図5-4 最大砥粒切込み深さに対する最低保証強度 (破壊確率0.01%における強度)の変化

上述のように,研削加工材の最低保証強度をシミュレーションにより予測 することができる、また、第2章、第3章および、第4章において述べたよ うに,研削加工材の即時破壊強度は最大砥粒切込み深さgのべき関数として 定式化でき、しかも供試材の破壊靭性、平滑材強度、押し込み抵抗が分かれ ば破壊強度の見積ができる.

これらを一連の手順としてまとめると、図5-5に示すようになる.すな わち、供試材の機械的特性および、平滑材とKnoop圧子圧入材のワイブル分 布特性が与えられたとき,

- (1) まず式 (4-1) を用い、 α_{n} を仮定することにより g_{α} を求める.
- (2) $g=g_{cr}$ で $\sigma_{f}=\sigma_{o}$ の条件をみたす,式(2-8)に示す関数形の強度 表示式を求める.
- (3) 5.2.2項に示したようなシミュレーション手法により平滑材とKnoop 圧子圧入材のワイブル分布特性とから,gと最低保証強度との関係 を求める.

上述の手順により、加工条件と供試材の機械的特性および、平滑材とKnoop 圧子圧入材のワイブル分布特性が分かれば,研削加工材の最低保証強度を基 進としたときの最適加工条件を推定することができる.

5.4 結言

研削加工材強度分布のシミュレーションを行い,最大砥粒切込み深さgと 強度分布特性との関係について検討した.シミュレーションを行うにあたっ て,加工欠陥に支配される場合の強度分布をKnoop圧子圧入によりき裂を導 入した場合の強度分布で近似した.

その結果、ワイブル係数はgの増加に対して、平滑材の値からKnoop圧子 圧入材の値に連続的に変化し、gが1.5µmよりも大きい領域では、ほぼ一定

-68 -

-入力-加工条件 供試材特性 K_{lc}, σ_0, R_s

 $g=g_{cr} \sigma_f = \sigma_o \delta$ をみたす強度 の表示式を求める

 $\sigma_{\rm f} = \frac{K_{\rm Ic}^{\frac{3}{3}}}{V_{\rm s}/\pi\Delta} (g + \alpha_{\rm n})^{-\frac{2}{3}}$

平滑材及びKnoop圧子圧入材強度の ワイブル分布特性から研削加工材の 強度分布をシミュレート

加工条件に対する最低保証強度算出

出力 最適加工条件

図5-5 最低保証強度を基準とする最適加工条件の見積方法

- 69 -

となった.また,最低保証強度はgの増加に対して極大値が存在する.この ことから,最低保証強度を基準に考えると,最適加工条件が存在し、しかも, その条件下では平均強度が低下しない加工限界よりも高能率な加工が可能で あることが明らかとなった.

炭化ケイ素セラミックス(SC1材)を供試材として実験的検証を行った 結果、シミュレーション結果は実験結果と比較的よく一致することを確認し te.

第6章 疲労特性に及ぼす研削加工損傷の影響

6.1 緒言

に把握することが不可欠となる. クラックグロースによって引き起こされる.

第2章および第3章においては,研削加工条件とその加工損傷の程度につ いて検討を加え,研削加工材表面に残留するき裂によって部材強度が支配さ れることを明らかにした.このようなき裂は、材料に内在する欠陥とは形状、 寸法,分布密度などが異なるものであり、き裂進展速度に何らかの影響を与 える可能性がある.本章では、定負荷速度試験(動疲労試験)により、き裂

これまで第2章から第5章においては、即時破壊強度すなわち、短時間の 応力負荷に対する材料の挙動について議論してきた.しかし,セラミック部 材に求められているのは、金属材料では耐えられないような厳しい高負荷応 力あるいは腐食性雰囲気の下で,その優れた特性を長期間,発揮し続けるこ とである. 例えば、実用化が期待されている産業用ガスタービン部材では、 数カ月から一年単位の連続運転に耐えることが必要とされている¹⁾、したがっ て, セラミック部材の特性評価においては、想定される応力条件の下で使用 期間中に破壊しないだけの信頼性を確保するために、部材の疲労特性を正確

一般にガラスの室温における疲労挙動は、大気中の水分を腐食種とする、 応力腐食によるゆっくりとしたき裂進展 (スロークラックグロース) に起因 すると考えられている2). セラミックスの場合においても、アルミナなどの 酸化物セラミックスやガラス相を含む非酸化物セラミックスに関して、同様 の応力腐食によるき裂進展が観察されることが報告されている³⁾.また、高 温におけるセラミックスの疲労挙動は、温度上昇に伴う粒界ガラス相の軟化 が主因と考えられている⁴⁾. それぞれメカニズムは異なるが、室温、高温の いずれにおいても、セラミックスの疲労挙動は、材料に潜在するき裂のスロー

-71 -

進展速度を表すパラメータである疲労指数n(以下n値とする)を求め,室 温および高温において、研削加工損傷がセラミック部材の疲労挙動,寿命に 及ぼす影響について調べるとともに、その原因について検討を行う.

6. 2 実験方法

進展挙動を評価する手法の一つである.スロークラックグロースが観察され る場合のき裂進展速度に関しては、特に、応力腐食が主因と考えられている 室温での現象に対して反応速度論的な解析も行われているが,一般には、数 学的取り扱いの簡単な、べき乗則と呼ばれる次式で表せることが経験的に知 られている5).

$$\frac{\mathrm{d}c}{\mathrm{d}t} = \mathrm{AK}_{\mathrm{I}}^{\mathrm{n}} \tag{6-1}$$

ここでcはき裂長さ、Aは定数である、また、K,はモードIの応力拡大係数 To

$$K_{I} = Y \sigma \sqrt{\pi c} \qquad (6 - 2)$$

で与えられる. Υはき裂の形状係数, σは負荷応力である. 負荷開始からの 経過時間 t における応力 $\sigma(t)$ は次式で与えられる.

$$\sigma(t) = \dot{\sigma}t \qquad (6-3)$$

式(6-2)と(6-3)を式(6-1)に代入し,tについて積分を行い, 破壊強度 σ_f と破壊までの経過時間 t_f との関係

 $\sigma_{\rm f} = \dot{\sigma} t_{\rm f}$

を用いると、次式のようなσとσ,との関係式が得られる.

$$\sigma_{\rm f} = {\rm C}\dot{\sigma}^{\frac{1}{n+1}} \qquad ({\rm C}={\rm const.}) \qquad (6-4)$$

 σ_f と σ との関係は両対数グラフ上で直線で表されることとなり、n値は直線

の傾きとして最小二乗法により求められる.また通常.セラミックスは室温 において弾性変形領域から破壊に至るので応力速度は試験機のクロスヘッド 速度 wに比例するとして、式(6-4)は次のように書き直すことができる、

$$t_{f}' = \frac{1}{n+1}C^{n+1}$$

この式から分かるように, n が小さいほど応力-寿命線図における直線の傾 きが大きくなり、同じ応力レベルでの寿命は短いすなわち、き裂進展速度は 増加する.

6.2.1 室温動疲労試験

本実験においては破壊応力は上部スパン10mm,下部スパン30mmの4点 曲げ試験により測定を行い、クロスヘッド速度は0.5、0.05、0.005、0.0005 mm/minの4段階とした.各速度における試験片本数は3~5本とした.試 験は室温大気中で行い,一部については真空中(10⁻⁵Torr)でも行った.また, 一定負荷応力の下での寿命を調べる静疲労試験も行った.

供試材は第3章および第4章で用いたものと同一のホットプレス窒化ケイ 素(HPSN材)と、常圧焼結アルミナ(A材)、常圧焼結窒化ケイ素(S SN材),常圧焼結炭化ケイ素(SC2材)の4種類である.後二者の主な 添加元素を表6-1に示す.なお、A材は不純物として0.16wt%のマグネシ ウムを含む。

表6-2に研削加工条件を示す.第3章の場合と同様に厚さ3.1mm,幅 4mm, 長さ38mmに予め加工したものの下部スパン側表面を, 長手方向に対

 $\sigma_{c} = C' w^{\frac{1}{n+1}} \quad (C' = \text{const.})$ (6 - 5)

一方,一定負荷応力 の下での寿命すなわち,静疲労寿命 t'は次のように 導かれる.まず,式(6-2)をtで微分し,式(6-1)を用いて整理す る.これをK,について積分し、整理すると次式のように表される.

> σ^{-n} (6 - 6)

表 6-1	供試材の主な添加元素		
	添加量	(wt%)	
	AI	Y	
SSN	3.4	6.7	
SC2	2.2		

	表 6-2	加工条件	
砥石周速		1500	m/min
テーブル速度		0.2 ~ 10	m/min
砥石切込み量		12	μm(#100)
		8	μm(#200)
		4	μm(#400)
		2	μm(#600)
トラバース量		5	mm/pass

して直角方向に,再研削した.ところで,最大砥粒切込み深さgはその値が 大きいほど研削加工材の強度低下量は大きくなり,損傷の程度がひどくなる ことを表すが、その定義式(2-1)が示すように、gの増減に対しては砥 粒粒径すなわち砥石粒度が最も影響することが分かる. そこで, まず砥石 粒度がn値に及ぼす影響について調べた.このときテーブルスピードは10 m/minに固定した.次に、テーブルスピードを調節してgを細かく変化させ gとn値との関係について調べた.加工損傷の全くない平滑材の特性は,第 3章の場合と同様にラッピング仕上げを行った試験片を用い測定した.

Knoop圧子の圧入により表面き裂を導入した試験片を準備し、その動疲労 特性についても調べた. 圧入荷重は49Nで,保持時間は15秒とした. 残留応 力の影響を取り除くために圧入後に表面を30µmラッピングにより除去した⁶⁾. また,研削加工によって生じるき裂の深さの指標として,強度を平滑材強 度に回復させるのに必要な表面除去厚さを測定した.表面除去はラッピング

により行った.

6.2.2 高温動疲労試験 供試材は室温動疲労試験で用いたものと同一のHPSN材で,研削加工材 と平滑材を用意した.研削加工は粒度200の砥石を用い,テーブルスピード は10m/minの条件で行った.他の加工条件や試験片の寸法,加工方法などは 室温の場合と同一である. 試験温度は1100℃とし, 高温酸化の影響のない条 件下で試験を行うために, 試験雰囲気は真空中とした. クロスヘッド速度は 室温の場合と同一で,各速度における試験片本数は5本とした.なお,高温 ではスロークラックグロースによるき裂進展量が室温に比べ大きく,各試験 片毎のばらつきも大きいため,試験時の荷重-変位曲線から応力速度を求め, これと破壊強度との関係からn値を求めた.

- 75 -

6.3 結果と考察

6.3.1 室温疲労特性

6.3.1.1 研削加工によるn値の変化

図6-1はHPSN材の動疲労試験におけるクロスヘッド速度と破壊強度 との関係を示す、砥石粒度は100から600の4種類とした、粒度100、200およ び400の砥石を用いた場合、平滑材に比べ強度レベルが低下するとともに、 近似直線の傾きがわずかに大きいことが分かる.研削加工材のn値は60前後 で、平滑材の値の約90よりも明らかに低下している、一方、粒度600の砥石 を用いた場合,n値は低下していないことから,粗い砥石を用いると加工損 傷により疲労特性が劣化すると考えることができる.このようなn値の低下 は、図6-2(a)~(c)に示すように、代表的酸化物セラミックスであるA材、 HPSN材と種類は異なるが焼結助剤としての酸化物を含むSSN材, SC 2材のいずれについても見られた.

6.3.1.2 n 値の低下の原因

前述のように、セラミックスの室温における疲労挙動は、材料に潜在的に 存在するき裂が大気中の水分によって応力腐食を受け、スロークラックグロー スを生じることに起因する.そのため、疲労挙動を示すかどうかは、強度を 支配するき裂先端に水分が存在するか否かによって決まると考えられる.図 6-3はHPSN材の真空中における動疲労試験の結果を示すもので、比較 のために大気中の結果(図6-1)を一点鎖線で示している.真空中での破 壊強度には、速度依存性が見られないことから、スロークラックグロースが 生じていないと考えられる.これらのことから,研削加工材のn値の低下は 主にき裂先端の応力腐食の程度に依存することが示唆される.このほかn値 に影響を及ぼす因子としては、強度を支配するき裂の寸法や加工損傷層中の 微小き裂などが挙げられる.次にこれらについて検討を行った.

図6-1 ホットプレス窒化ケイ素(HPSN材)の 研削加工によるn値の低下

図6-3 研削加工材のn値に及ぼす雰囲気の影響

図6-1に示したように、n値の低下量は粒度400よりも粗い砥石ではn= 60前後でほとんど変化がなく、砥石粒度すなわち加工損傷の度合いには依存 しない.よく知られているように研削加工材の表面層には加工によるき裂が 分布している.本研究では研削加工によるき裂深さの指標として,強度を平 滑材強度に回復させるのに必要な表面除去厚さを測定した。図6-4は粒度 200の砥石で加工した研削加工材の、ラッピングによる表面除去厚さと除去 後の破壊強度との関係を示している.この場合、強度回復に必要な除去厚さ は約17µmと見積られる. 粒度100および400の砥石による研削加工材につい ても同様な測定を行った.表6-3は砥石粒度による表面除去厚さとn値の 変化を示す. 粒度が粗くなるに従って強度回復に必要な表面除去厚さは増大 するが、n値はほとんど変化しないことから、n値の低下量はき裂深さには 依存しないと言うことができる.

第3章では,研削加工によって損傷を受けたセラミックスの強度と最大砥 粒切込み深さgとの関係を, 強度が単一のメディアンき裂によって支配され ると仮定することによって定式化した.ただ、実際は大きなメディアンき裂 だけではなく、微小なき裂も生じるものと考えられる、例えば、研削加工の モデル化実験である単粒研削においても、その条痕下に微小き裂の分布する 層が存在することが確認されている⁷⁾.したがって,研削加工材のき裂進展 特性がこのような微小き裂の影響を受ける可能性についての検討が必要とな 3.

ここでは,検討の方策として脆性材料にKnoop圧子を圧入した場合半楕円 状のき裂が発生すること⁸⁾を利用した.すなわち,このき裂が潜在欠陥より も大きければ材料の強度を支配すると考えて、微小き裂の影響を受けない 場合とし、研削加工材の結果との比較を行った.図6-5に示すように、 Knoop 圧子を圧入した場合のn値は,研削加工材のそれに非常に近い値と

砥石粒度(粒度

表面除去厚さ(u n 值

図6-4 研削加工材の強度回復に必要な表面除去量

表6-3 研削加工材の強度回復に必要な表面除去厚さと n値との関係(HPSN材)

番号)	400	200	100
.m)	17	24	77
	55	60	67

なった.即時破壊強度(クロスヘッド速度 w=0.5 m/min における値)が平 滑材強度の約1/2まで低下していることから,強度はKnoop圧子圧入によ るき裂のみによって支配されていると考えることができる.このことから, 研削加工材におけるn値の低下は,強度と同様に単一のメディアンき裂に

以上のような議論から,n値の低下は主にき裂先端の応力腐食の程度に依 存するものと言える. 大気中の水分は内部き裂よりも表面き裂の方がその先 端へ到達し易いことを考えると, 平滑材の強度を支配する欠陥は, 表面欠陥 と内部欠陥の両方を含むので, すべての欠陥が一様に応力腐食の影響を受け るわけではない.一方,研削加工材の強度は加工によって発生した表面き裂 に支配されるので,水分は強度を支配するすべてのき裂先端に到達すると考 えられる. その結果,同じ応力速度においては,研削加工材強度は平滑材強

第3章において,研削加工によって損傷を受けたセラミックスは強度が低 下するが,加工の際,最大砥粒切込み深さgをある限界の値gerよりも小さ くなるように加工条件を選ぶことで強度低下を避けられることを明らかにし た.図6-6は、強度の場合と同様にgに対するn値の変化を示している. gが1µm以上の領域ではgに無関係でほぼ一定の値を示すが,gが1µm以下 の領域ではn値は60から110の間で変動しながら急激に平滑材のレベルまで 近付く傾向が見られ,n値に関しても,その低下を生じない限界の値 (ger)f

研削加工材の寿命に対する加工損傷の影響を,図6-7に模式的に示す. S-N曲線の下方への平行移動は加工による強度低下を示す.また,n値の

低下はき裂進展速度の上昇を意味し,同じ応力レベルにおいては研削加工材 の寿命は平滑材のそれに比べ短くなる.その結果,研削加工材のS-N曲線 は両対数グラフ上で平滑材のそれよりも大きい傾きを持つこととなる.した がって,研削加工を行うセラミック部材の強度設計においては,即時破壊強 度低下とともに寿命が短くなることに注意しなければならない.

研削加工されたSC2材の静疲労試験における応力-寿命の関係を図6 -8に示す.図中の実線は図6-2(c)に示す動疲労試験の結果を用いて式 (6-4)から求めた予測値を示す.両試験では同一加工ロットの試験片を 用いている.また,図中の一点鎖線は平滑材の寿命の予測値を,矢印は負荷 時間1×10⁶秒においても破壊しなかったことを示している.研削加工による 強度低下は平滑材に比べ約10%程度と小さいが、寿命は明らかに低下するこ とが分かる.実験点はほぼ予測線に沿って分布しており,動疲労試験によっ て静的な負荷が加わる場合の疲労寿命を見積ることができることを示してい 3.

6.3.2 高温疲労特性

6.3.2.1 高温疲労破面の観察

図 6-9は、応力速度0.0242MPa/sの場合(同図(a))と25.0MPa/sの場合 (同図(b))の破面を比較したものである.図中の白っぽく見える半楕円形 の部分の大きさは0.0242MPa/sの場合の方が25.0MPa/sの場合よりも大きい ことが分かる.図6-10は、図6-9(a)の試料の白っぽく見える半楕円 形の内部(a)およびその外側の領域(b)を拡大して観察した結果である.図6 -10(a)に示す領域では、凹凸が激しく、図中に矢印で示す結晶粒の引き 抜けの跡などが観察され、粒界破壊が支配的であるのに対して、同図(b)に 示す領域では,比較的凹凸が小さく粒内破壊が支配的となっている.した がって、白っぽく見える半楕円形の領域はスロークラックグロースによりき裂

図 6 - 1 0 研削加工材の高温疲労破面 図 6 - 9(a)におけるスロークラックグロース領域の (a)内側と, (b)外側

進展が生じた領域(SCG領域)で、その外側に急速破断した領域が広がっ ていると考えられる.前述のように応力速度が低い場合は、高い場合に比べ て, SCG領域が大きいすなわち、き裂進展量が大きいために破壊強度が低 下すると考えられる.

また図6-11に図6-9(a)の試験片表面近傍を拡大して観察した結果を 示す. 図から, 試験片表面近傍には扁平な半楕円状に広がる粒内破壊の支配 的な領域が観察される.このような領域は、研削加工材の場合、すべての試 験片で複数観察されたが, 平滑材においては全く観察されなかった. ところ で, 脆性材料にKnoop圧子を圧入した場合, 圧痕直下に半楕円状のき裂が発 生することはよく知られているが,本供試材の場合,このき裂は粒内破壊に よって形成されることを確認している.したがって上述の粒内破壊領域は圧 入試験と同様に,砥粒が供試材に押し込まれたときに形成されたと推定され る. さらに、図6-12は、この粒内破壊領域の深さの分布を調べたもので あるが、分布範囲が20µm前後で非常に狭いことが分かる.これは、第5章 で示したように,加工損傷の程度のばらつきが小さく,研削加工材の強度の ばらつきが小さいことと対応しているものと考えられる.以上のことから. 研削加工材表面の粒内破壊領域は,加工によって生じた表面き裂(加工き裂) あるいは、その一部と見なし得る.加工き裂の形状・寸法などについては次 項で詳しく検討する.

6.3.2.2 加工き裂モデル 研削加工材の疲労き裂進展における初期欠陥は、加工き裂と考えることが できる. SCG領域の形がほぼ半楕円であることから,き裂が連続的に成長 することを考慮すると初期欠陥である加工き裂の形も,半楕円であると推定 できる.ここではまず、加工き裂の幅について検討する. スロークラックグロースの初期き裂の形状・寸法は,理想的には真の意味

での即時破壊すなわち,スロークラックグロースの全く生じない,十分応力 速度の大きい条件の下で破壊させた場合の破面から求めることができる.し かし,通常の静的材料試験機で用いられる荷重検出器の周波数特性では高速 の荷重変化には追従できない⁹⁾ため、一般的には、クロスヘッド速度で0.5 mm/min前後の負荷速度条件で測定した強度を,即時破壊強度としている. そ こで、本研究ではクロスヘッド速度0.5mm/minの場合の破面観察から、加工 き裂の形状・寸法について推定を行うこととした.

破面観察の結果, 粒内破壊領域はSCG領域の幅方向全体に分布していた. 狭い間隔で直列に複数並んだ同一形状のき裂はこれらに内接する一つのき裂 で近似できる10)ことから、加工き裂を図6-13に示すような半楕円と仮 定し、その幅AA'を加工き裂の幅とした.本実験における平均値は176µm であった.

次に加工き裂深さについて考察する.き裂深さは、等価き裂長さの考え方 を用いて見積ることができる. すなわち, 1100℃における即時破壊強度418 MPaと破壊靭性5.14MPa·m^{1/2}とから,研削加工材の等価き裂長さc_{ea}は48µm となる.これと等価な表面半楕円き裂の深さを逆算すると51µmとなった. この計算には表面半楕円き裂を有する曲げ試験片の応力拡大係数の計算式と してよく知られている下記のNewman-Rajuの式¹¹⁾を用いた.

$$K = \sigma Z \left(\frac{\pi b}{Q}\right)^{\frac{1}{2}}$$

(6 - 7)

ここで、σは負荷応力、Zは曲げ応力の分布と自由表面の効果を考慮した補 正係数, b はき裂深さすなわち半楕円き裂の短径, O は第二種完全楕円積分 である.

6.3.2.3 高温き裂進展シミュレーション

加工き裂の形状・寸法を前項で述べたように仮定したとき、動疲労試験に おいてどのような挙動を示すかについて計算機シミュレーションを行った。

き裂進展特性を表す式は、式(6-1)を用い、その定数項に関しては平 滑材の動疲労試験で得られたものを用いる.き裂先端における応力拡大係数 の計算には、上述のNewman-Rajuの式¹¹⁾を用いることとした.また、動疲 労試験中の負荷開始からの経過時間tにおける負荷応力は式(6-3)で表 すように応力速度とtの積で表される.シミュレーションの手順を以下に示 す.

- (1)まず、初期値として半楕円き裂の長径aおよび短径bと応力速度 σ の値を与える.
- (2) 次に、Δt 秒後の負荷応力を式(6-3)により算出する.
- (3)式(6-7)を用いてき裂前線と長軸および単軸との交点(図6-13の点AおよびB)における応力拡大係数K, K を算出する.
- (4) この K_A, K_Bを式(6-1)に代入し, Δt 秒間の横および深さ方向 のき裂進展量を算出し,進展後の長径および短径を求める.
- (5) 長径および短径の値を式(6-7) に代入し進展後のK_A, K_Bを求 める.
- (6) 再び,次の∆t 秒後の負荷応力,き裂の長径および短径を算出し,

式(6-7)から K_A , K_B を求める.

以上の手順をK_AまたはK_BがK_Lを越えるまで繰り返すことによって破壊 応力,き裂の長径および短径を求めることができる.

6.3.2.4 高温におけるn値の低下とき裂進展機構

図 6-14は、HPSN材の1100℃での動疲労試験における応力速度と破 壊強度との関係を示す.研削加工材は, 平滑材に比べ強度レベルが低下する とともに,回帰直線の傾きが大きくなっている. すなわち,n値の大きさが 約25と、平滑材の値の約50よりも明らかに低下しており、研削加工損傷に よってき裂進展速度が大きくなっていることが分かる.

図6-14 高温における研削加工材のn値の変化

しかしながら,前項のようなシミュレーションを行った結果,図6-14 の一点鎖線で示すように,回帰直線の傾きは平滑材のそれとほぼ同一でn値 は51となり,加工き裂は理論上,き裂進展速度に影響を与えないことが示さ れた.

そこで上述のような実験とシミュレーションとの差異について,き裂の形 状変化から検討を加えた.図6-15は、シミュレーション結果に基づき、 応力速度と破断時のSCG領域の大きさとの関係を示したものである.図中 の応力速度は実験における平均値に対応している.この図からスロークラッ クグロースは、以下のような過程を経るものと考えられる.き裂進展量の小 さい、応力速度の高い場合には、加工き裂が非常に扁平であるために、横方 向に比べ深さ方向の成長速度が非常に大きくなり、半円形に近付こうとする. そして応力速度が低く、き裂進展量が大きくなって半円形に近くなると、今 度はその形状をほぼ維持しながら成長する.

一方,図6-16は,破面のSEM観察結果を基に,SCG領域を半楕円 で近似し,短径と長径との関係を調べたものである.SCG領域は加工き裂 (シミュレーションにおける初期値を図中の(〇)で示す)から成長を始め る.応力速度が小さくなるほど成長量が大きくなるので,図の右上の方向へ 移動することとなる.なお,図中の一点鎖線は短径と長径との比が1すなわ ち,半円であることを示している.図中のハッチング領域で示すように,実 際のSCG領域の大きさは,ばらつきは大きいものの,全体として深さ方向 へのき裂進展速度が大きい傾向はシミュレーションと同様である.しかし, シミュレーションでは,図中の実線で示すように,応力速度の大きい場合に は横方向への進展はほとんどないのに対して,実際は加工き裂よりも右側 へのシフトすなわち,横方向への進展が見られる.また,応力速度の低い 0.025MPa/sにおけるSCG領域の形状は、シミュレーションではほぼ半円と

図6-15 スロークラックグロース領域の形状変化に及ぼす 応力速度の影響(平滑材のき裂進展特性を用いた シミュレーション)

100µm

図6-16 応力速度によるスロークラックグロース領域の 形状変化

なったが、実際は長径に対する短径の比が0.8程度の楕円となった。 これらのことから,研削加工材のき裂進展においては試験片表面近傍での 横方向へき裂を進展させる要因が存在し、これが図6-14に見られるよう なn値の低下を招くものと考えられる.この要因として以下のようなことが 挙げられる.

図6-17に模式的に示すように、スロークラックグロースの初期き裂と なる加工き裂と同一面内には、これと近接して他の加工き裂が存在すると推 定される.このような場合.き裂間隔が小さくなると双方の加工き裂ともに 長径端での応力拡大係数が,独立に存在する場合よりも大きくなることは. 数値解析により明らかにされている¹²⁾. 室温ではき裂進展速度が小さいた めスロークラックグロースによりき裂が連結する前に破壊に至るが、高温で は隣接するき裂同士が連結し、横方向へのき裂進展速度が見かけ上、大きく なると考えられる.

6.3.2.5 高温静疲労寿命の見積 図6-14に示した研削加工材の動疲労試験の結果から,静疲労寿命につ いて見積を行った.図6-18に示すように研削加工材の寿命は、同一応力 レベルでの平滑材のそれに比べ著しく短くなり、低応力レベルほどその差が 開くことが分かる.これは、実用的には次のようなことを意味する.加工き 裂を有するセラミック部材を用いる場合,特に高温においては負荷応力を即 時破壊強度に比べかなり小さく設定する必要がある.例えば本実験の場合, 研削加工材では、即時破壊強度の半分程度の負荷応力でも寿命は300日程度 であるが, 強度のばらつきなどを考えると, 実用上, これと同程度の寿命を 得るにはさらに負荷応力は小さくしなければならない. これに対して平滑材 では,即時破壊強度の7割程度でほぼ同じ寿命が得られる。

スロークラックグロース領域

初期き裂となる加工き裂

図6-17 隣接する加工き裂の連結に起因する横方向への き裂進展速度の見かけ上の増大

図6-18 動疲労試験結果による静疲労寿命の予測

6.4 結言 室温および高温における動疲労試験により,き裂進展速度を表すパラメー タであるn値を求め,研削加工損傷がき裂進展特性に与える影響について検 討した結果,以下のことが明らかとなった. まず室温においては,ガラス相を含む窒化ケイ素2種類,炭化ケイ素およ びアルミナの合計4種類を供試材とした.いずれの材料も,研削加工材のn 値は平滑材のそれに対して明らかに低下した.このようなn値の低下は主に き裂先端の応力腐食の程度に依存するものと考えられた.すなわち,大気中 の水分は内部き裂よりも表面き裂の方がその先端へ到達しやすいが,平滑材 の強度を支配する欠陥は,表面欠陥と内部欠陥の両方を含むので,すべての 欠陥が一様に応力腐食の影響を受けるわけではない.一方,研削加工材の強 度は加工によって発生した表面き裂に支配されるので,水分は強度を支配す るすべてのき裂先端に到達すると考えられる.その結果,同じ応力速度にお いては,研削加工材強度は平滑材強度に比べ低くなり,n値は低下すること となる.

次に,上記の4種類の材料のうちの一つであるホットプレス窒化ケイ素を 供試材とし,真空中,1100℃において動疲労試験を行った.この場合も研削 加工材のn値は平滑材のそれに対して明らかに低下した.破面観察およびき 裂進展シミュレーションの結果から,n値低下の原因は室温とは異なり,試 験片表面近傍での横方向へのき裂進展速度が大きくなるためと考えられた. き裂進展速度増加の原因は,初期き裂となる加工き裂がスロークラックグロー スにより,同一面内に隣接する他の加工き裂と連結するためと推定された. 第7章 酸化特性に及ぼす研削加工損傷の影響

7.1 緒言

セラミックスは1000℃以上の高温においても、その高い強度を維持すると ともに優れた耐食性を有するため高温構造部材としての利用が期待されてい る、しかしながら、セラミックスと言えども高温酸化雰囲気下においては酸 化による損傷が問題となる、第3章では、酸化の影響でき裂の形状・寸法が 変化し強度劣化を引き起こす可能性があることを示した、また、ガスタービ ン部材などでは燃焼ガスに接する部材表面が局部的に酸化され、表面が剥離 したり、強度特性が劣化することが問題となっている¹⁾.

これまでセラミックスの高温酸化に関しては,焼結体の粒界特性や微構造 などの材料特性と酸化増量や組織の変化などの酸化特性との関係を中心に論 じられてきており²⁾,最近では,酸化後の破壊挙動についても検討が行われ ている³⁾.しかし酸化特性は,材料特性だけではなく,酸素分圧⁴⁾,温度, 湿度⁵⁾など雰囲気の影響を受けるものであり,部材のそれを論じる場合には, 雰囲気に接触する部材表面の状態すなわち,表面に分布するき裂,表面粗さ などの影響を考慮すべきものと考えられる.

これまで述べてきたように,部材表面の状態は加工の影響を受ける.第2 章および第3章においては,研削加工とその加工損傷の度合いについて検討 を加え,研削加工面にはき裂が残留し,そのき裂寸法が部材強度を支配する ことを明らかにした.本章では,第3章において高温強度を測定した試験片 を対象に,二次イオン質量分析器 (SIMS)を用いて酸素侵入深さを調べ, 加工損傷の度合いと酸化との関係について検討するとともに,新たに100時間 までの長時間の酸化試験を行い,酸化時間と,即時破壊強度および酸素侵入 深さとの関係についても調べる. 7.2 実験方法

供試材は第3章で用いたものと同一の常圧焼結炭化ケイ素セラミックス (SC1材)である.試験片寸法,研削加工条件は第3章と同一で,各作業 条件の組み合わせにより最大砥粒切込み深さを変化させることにより,加工 損傷の度合いに違いを与えた.本材料は0.3%弱の酸素を含有しているが, 粒界での酸化物相の偏析がほとんどないので,酸素侵入深さの測定が容易と なる.

試験片の加熱は大気雰囲気中で行い,酸化温度は1200℃および1500℃とした.昇温パターンは図7-1に示すように加熱時間が同一となるように200 ℃からの昇温速度を調節し,酸化時間は15分を標準としたが,酸素侵入深さ および高温強度の酸化時間依存性を調べるため,1200℃において2,12,100 時間保持した試料も準備した.

炭化ケイ素の酸化は一般に、比較的高い酸素分圧の雰囲気中では、表面に シリカSiO₂の保護膜が形成されるpassive酸化であることが知られている⁶⁾. 上述のように本材料は粒界に酸化物相がほとんどないと考えられるので、炭 化ケイ素の構成元素であるシリコンSiに対する酸素Oの相対濃度分布を測定 すれば酸素侵入深さが推定できる.本研究では、この濃度分布の測定にSIMS を用いることとした.

SIMSとは、数keV~十数keVのエネルギーを持ったイオンビームを試料面 に照射し、イオンが試料面に衝突することによって発生する二次イオン強度 を測定する表面分析法の一種である.本法は検出感度が他の分析法に比べ高 く、イオンビーム径を絞ることによって局所的な元素分布の測定が可能であ る、等の特徴を有する⁷⁾.SIMSによる測定は図7-2に示すような方法で 行った.曲げ試験片の引張り応力面に対して傾斜角 θ で斜め研磨を行った試 料を用意し、研磨面上を約30µm間隔でイオンビームを照射して、SiとOの

表7-1 SIMS 測定条件		
一次イオン		
イオン種	Ar	
加速電圧	8.0~8.1 keV	
試料電流	50 nA	
イオンビーム径	$5 \ \mu m \phi$	
二次イオン		
極性	正	
測定時間	1 sec	

二次イオン強度を測定する.測定位置の表面からの深さはθと研磨面上での 表面からの距離 L から算出する. θ は. 研磨した試料を表面粗さ測定装置を 用いて測定した結果, 1.5~1.9度の範囲にあった. なお、SIMS (Cameca社 IMS-3F)の設定条件は表7-1に示す。約8keVの加速電圧を加えたアルゴ ンイオンビームを直径5µmまで絞り試料電流を50nAとした.二次イオン種は 正イオンを対象とし、エネルギー幅は60eV、測定時間は一点あたり1秒とし te.

加工による表面き裂深さは、第6章で述べたように、き裂の幅が分かると、 き裂の形状を半楕円と仮定することによって、破壊強度から逆算することが できる.しかしながら,SC1材の場合は粒界にほとんどガラス相が存在し ないことからスロークラックグロースが観察されず,加工き裂領域が明確に は判別できない. そのため本実験では、試験片の最大引張り応力面をラッピ ングにより除去しながら逐次, 4 点曲げ強度を測定し, き裂深さの推定を行 うこととした.ここで加工によるき裂深さは、平滑材の強度に回復させるの に必要な除去厚さに, 潜在的なき裂深さを加えたものと定義し, 平滑材強度 と破壊靭性から算出できる,いわゆる等価き裂長さを潜在的なき裂深さとし た.本実験における供試材の潜在的なき裂深さは約6umとなる.

7.3 結果と考察

7.3.1 酸素侵入深さの測定 図7-3は高温下で酸化した研削加工材の深さ方向の酸素濃度分布を示す もので、縦軸は³⁰Siの二次イオン強度に対する¹⁶Oのそれの比(以下、イオ ン強度比と呼ぶ)を片対数グラフ表示している、イオン強度比が表面に近い ほど高くなっているのは酸素の侵入によるものと考え、イオン強度比がバッ クグラウンドレベルに減少するまでの深さを加工損傷による酸素侵入深さ

dox とした. その判定には次のような基準を用いた. イオン強度比の変化が 小さくなる領域を直線近似し、測定値と近似値との差の標準偏差(図7-3 のハッチング部分の幅)を求める.測定値と近似値との差が、この標準偏差 よりも大きくなる深さを dox とした.

なお,長時間の応力負荷では酸化の度合いが負荷応力の影響を受けること が報告されている⁸⁾が、本研究は即時破壊強度を測定したものであるため負 荷時間が短くその影響は小さいと考えられる.実際,同一試験片の最大応力 が加わる部分と無負荷部分とのdoxを比較した結果,両者にはほとんど差が 見られなかった.ここでは、酸素侵入深さの負荷応力による影響はほとんど 無視できるものとした.

7.3.2 研削加工条件による酸素侵入深さの変化 研削加工材表面のき裂としては, 砥粒進行方向に平行に進展するメディア ンき裂と、これと垂直方向に進展するラディアルき裂があるが9),部材強度 への影響が大きいのは、き裂深さの大きい前者である.第2章で示したよう に,研削加工によって発生するメディアンき裂が圧子押し込みの場合と同様 の力学モデル¹⁰⁾で説明できるとすると,き裂深さcは最大砥粒切込み深さ gの関数として次式で与えられる. $c = AK_{Ic}^{-\frac{2}{3}}(g + \alpha_n)^{\frac{4}{3}}$ (7 - 1)

ここでAは定数で, c, gの単位はµmである. 酸素侵入深さがき裂深さに比例すると仮定すると式(7-1)より、次式 が得られる.

 $d_{ox} = a(g + \alpha_n)^{\frac{4}{3}} + b$

ここで dox の単位はµm, a, b は定数である. 図7-4は7.3.1項の方法で求 めた酸素侵入深さdoxとgとの関係を表したもので、両者の関係を式(7 -2)の形で近似すると、図中の実線で示す次式が得られる.

(7 - 2)

(7 - 3)

ここでα。は第3章で求めた値を用いた.gは砥石切込み、テーブル速度など の研削作業条件および砥石粒度,砥粒含有率などの砥石仕様の関数として与 えられるので、式(7-3)を用いることにより加工条件から酸素侵入深さ

次に, き裂深さと dox との関係について検討した. 図7-5は、き裂深さ を実験的に求めるために、 ラッピングによる表面除去厚さと、表面除去を 行った試験片の強度との関係の一例を示したものである.図は粒度200の砥 石を用い,g=1.99µmとした場合である.本研究では、破壊強度が平滑材強 度とほぼ等しいレベルに達する除去厚さを, 強度が平滑材の強度に回復する までに必要な表面除去厚さとした.この場合は、表面除去厚さを25umとした. したがって潜在的なき裂深さ6µmを加えると、き裂深さは31µmとなる.図7 -4に示すg=1.99µmにおける酸素侵入深さは、このき裂深さの推定値に比 べかなり小さく、き裂先端まで酸化層が形成されていないことを示唆してい る.このような現象を説明するモデルとして以下の二つが考えられる.(ア) 図7-6(a)に示すように、き裂開口部において比較的短時間にSiO。リッチ の膜が形成され新たな酸素の侵入が困難となる(イ)同図(b)に示すように 研削加工によって発生した開口き裂が, 圧縮残留応力や摩擦熱などの原因で 砥粒通過後に閉じられる¹¹⁾ため、酸素の侵入が困難となる、しかし、以下

第6章において加工損傷を有するHPSN材(ホットプレス窒化ケイ素) に対し,室温大気中で一定応力速度で負荷をかける動疲労試験を行い、その 破壊強度は応力速度が小さくなるにつれて低下することを示した。これは大 気中の水分による粒界ガラス相の応力腐食12)によるものと推定された.す なわち,応力負荷中は、き裂は開口状態にあり、水分がき裂先端まで到達し

得ることを示している、本章における供試材は上述のように粒界にガラス相 をほとんど持たないが、これによってき裂発生形態に大きな差は生じないと 考えられる.したがって、本研究のように応力を負荷された条件下の酸化で は、図7-6(b)で想定している閉口き裂の酸化においても、同図(a)と同様 の結果が得られると推定される.

7.3.3 酸化温度および酸化時間による酸素侵入深さと

高温即時破壊強度の変化

図7-7は1500℃における doxのgに対する変化を示す.図中の一点鎖線 で示す1200℃における近似直線と比較すると、温度上昇によって酸素侵入深 さ dox は大きくなることが分かる.しかし,温度上昇による dox の 増加量は, gの大きさすなわち,き裂深さによらずほぼ一定で,相対的に浅いき裂ほど その先端で酸化の影響を受ける可能性が高くなることを示している. 第3章 の図3-6において、高温強度の予測値と実験値との比較から、浅いき裂ほ ど酸化の影響を受けやすくなることを述べたが、図7-7に示す結果は、こ れを裏付けるものとなっている.また,温度上昇によって酸素侵入深さ dox が大きくなる原因としては以下のようなメカニズムが推定される. 前項で述 べたように試験片表面には短時間でシリカリッチの膜ができ、大気と母材と の接触が困難となる.しかし、1500℃では、絶対温度の指数関数で表される 拡散係数は温度上昇により大きくなるので,酸素が拡散により膜の中を通っ て母材中に侵入すると考えられる.

次に,酸化時間の影響について検討した.一般にセラミックスのような脆 性材料の強度は最弱リンク説に支配されるため,き裂先端まで酸素が侵入し ない限り強度への酸化の影響は小さいと考えられる. 7.3.2項で述べたように dox は c に比べ小さく, しかも図7-8 に示すように, 酸化時間の増加に対 してほとんど変化は見られなかった.したがって,酸化温度1200℃において

図7-7 酸化温度による酸素侵入深さの変化

は高温強度に対する酸化の影響は小さいと考えられる. また図中の太い実線 に示すように,酸化後の強度は酸化時間の増加に伴って若干上昇する傾向が 見られるが、100時間酸化した後でもその上昇率はわずかであった. なお,100時間酸化した試料では、深さが1µmよりも浅い測定点でイオン強 度比が1を越える値を示した.このことは、表面層がほとんどシリカに変化 していることを示唆している.図7-9は斜め研磨面を光学顕微鏡を用い、 偏向フィルタを通して観察した結果である。同図(a)の酸化時間15分の場合に 比べ,同図(b)の酸化時間100時間の場合は、表面直下に母材とは異なる組織 が形成されていることがわかる. 斜め研磨面の傾斜角から、この部分の厚さ は1µm程度と換算されることから、上記の組織がシリカ層に相当するものと 考えられる.このことから,酸化温度が1200℃の場合酸化時間の増加によっ て酸素侵入深さはほとんど変化しないが、表面近傍の酸化が進み、母材であ る炭化ケイ素のほとんどがシリカに変わるものと推定された、シリカは高温 では粘性流動を起こすことが知られており13),炭化ケイ素との界面強度は 母材強度に比べ弱いと考えられる.したがって高速の燃焼ガスが吹き付ける ような実際の使用条件下では,部材表面において酸化膜の形成,その脱落が 繰り返されることによって損傷がひどくなることが予想される.

7.4 結言

粒界相に酸化物をほとんど含まない炭化ケイ素セラミックス(SC1材) を供試材として,研削加工されたセラミックスの,高温大気中での酸化の度 合いと加工損傷との関係について検討した.その結果,以下のことが明らか となった.

酸素侵入深さd_{ox}が研削加工によるメディアンき裂深さcと比例すると仮 定することにより,最大砥粒切込み深さgのべき関数として表されることを

導き,これを,二次イオン質量分析器を用いて d_{ox} を測定することによって 確認した.酸化温度1200℃においては d_{ox} は c に比べかなり小さく,しかも 酸化時間の増加に対してほとんど変化しなかったことから,き裂先端までは 酸素が侵入しておらず,強度に対する酸化の影響は小さいと考えられた.そ の原因としては比較的短時間に表面にシリカリッチの膜が形成され,酸素の 侵入が困難となるためと考えられた.また,酸化時間の増加によって表面近 傍の酸化が進み,母材である炭化ケイ素のほとんどがシリカに変化した.酸 化温度が1500℃に上昇すると拡散係数の増大によってシリカリッチの膜を通 しての母材中への酸素の拡散が顕著になるため d_{ox} は1200℃の場合に比べ若 第8章 結論

本論文は,研削加工によって部材表面に発生するき裂に注目し,加工条件 および材料特性と部材強度との関係を定式化するとともに,加工損傷が疲労 特性,高温酸化特性に及ぼす影響についても調べ,最適加工条件を明らかに することを目的としたものである.各章で得られた成果を要約すると次のよ うになる.

第1章では、セラミックスの研削加工損傷に関する研究の経緯と、本研究 の目的について述べた.

第2章では、研削加工材強度 σ_f が研削加工によって発生したメディアンき 裂によって支配されると仮定し、研削加工条件と σ_f との関係の定式化を試み た.すなわち、メディアンき裂深さと砥粒一個あたりの研削抵抗との間に、 圧子押し込みにおけるメディアンき裂深さと押し込み力との関係と同様の関 係則が成り立つと仮定し、 σ_f を最大砥粒切込み深さgのべき関数の形として 表せることを示した.また、研削加工材強度のばらつきとKnoop圧子圧入に よるき裂を導入した試料の強度のばらつきの比較によって、同一加工条件下 においてはgの変動をほとんど無視できることを明らかにし、gは加工条件 に対して一意的に定まることを確認した.

第3章では,第2章で提案した研削加工材強度を,最大砥粒切込み深さg のべき関数として定式化する手法の室温および高温における適用性について, 常圧焼結炭化ケイ素およびホットプレス窒化ケイ素を供試材として実験的検 討を行った.その結果,本手法は室温における実験結果をよく表すことがで き,基本的には,破壊靭性の温度依存性を考慮することで適用範囲を高温に まで拡張することができることを明らかにした.なお,酸化による強度変化 が認められる場合には,本手法をそのまま適用することはできず,き裂寸法 の補正が必要となる.

第4章では,第2章において示した,研削加工によって強度低下を生じな い限界の最大砥粒切込み深さg_が破壊靭性,硬さ試験における押し込み抵 抗, 平滑材強度など, 材料の機械的特性の関数として与えられること, その 結果gerは温度依存性を有することを導いた.炭化ケイ素,窒化ケイ素,ア ルミナの3種類の材料系の、合計6種類の材料を用い、gerは、主に破壊靭性 および平滑材強度に影響されることを実験的に明らかにした.また、このg. と材料の機械的特性との関係を用いて、in situ複合化窒化ケイ素の研削加工 による強度劣化を、そのき裂進展抵抗曲線(Rカーブ)を基に見積を行った。 その結果,g,はき裂が進展し始める時点でのき裂進展抵抗から予測される 値とほぼ等しく,本材料において支配的な強靭化機構である粒子架橋効果が, 耐加工損傷性の向上には有効でないことが明らかとなった.これは、一般に 研削加工によって生じる表面き裂の寸法は小さく,き裂先端よりも後方の破 面に作用する粒子架橋効果によってき裂進展抵抗が上昇するために十分な長 さに達しないことに起因すると考えられた. さらに, 高靭性の常圧焼結炭化 ケイ素について、その強靭化機構について検討した結果,耐加工損傷性の向 上に対しては,材料内部の局所的な圧縮残留応力のような、き裂先端前方で 作用するタイプの強靭化機構が望ましいことを明らかにした. 第5章では、加工欠陥の分布を、Knoop圧子圧入によるき裂のそれで近似 した研削加工材の強度分布モデルを提案し、これを用いたシミュレーション により,最大砥粒切込み深さgと強度分布特性との関係について検討した. その結果,ワイブル係数はgの増加に対して,平滑材の値からKnoop 圧子圧 入材の値に連続的に変化し、gが1.5µmよりも大きい領域では、ほぼ一定と なった.また,最低保証強度はgの増加に対して極大値が存在する.このこ とから,最低保証強度を基準に考えると、最適加工条件が存在し、しかも、 その条件下では平均強度が低下しない加工限界よりも高能率な加工が可能で

あることが明らかとなった.また,破壊確率0.01%における破壊強度を最低 保証強度とした場合,最低保証強度はgの増加に対して極大値が存在する. このことから,最低保証強度を基準に考えると,最適加工条件はこの極大値 の得られる点でのgであり,しかも,その条件下では平均強度が低下する条 件g_{cr}よりも高能率な加工が可能であることが明らかとなった.常圧焼結炭 化ケイ素セラミックスを供試材として実験的検証を行った結果,シミュレー ション結果は実験結果と比較的よく一致することを確認した.

第6章では、室温および高温における動疲労試験により、き裂進展速度を 表すパラメータであるn値を求め、研削加工損傷がき裂進展特性に与える影響について検討した結果、以下のことを明らかにした.まず室温においては、 ガラス相を含む窒化ケイ素2種類、炭化ケイ素およびアルミナの合計4種類 を供試材とした.いずれの材料も、研削加工材のn値は平滑材のそれに対し て明らかに低下した.このようなn値の低下は主にき裂先端の応力腐食の程 度に依存するものと考えられた.すなわち、大気中の水分は内部き裂よりも 表面き裂の方がその先端へ到達しやすいが、平滑材の強度を支配する欠陥は、 表面欠陥と内部欠陥の両方を含むので、すべての欠陥が一様に応力腐食の影響を受けるわけではない.一方、研削加工材の強度は加工によって発生した 表面き裂に支配されるので、水分は強度を支配するすべてのき裂先端に到達 すると考えられる.その結果、同じ応力速度においては、研削加工材強度は 平滑材強度に比べ低くなり、n値は低下することとなる.

次に,上記の4種類の材料のうちの一つであるホットプレス窒化ケイ素を 供試材とし,真空中,1100℃において動疲労試験を行った.この場合も研削 加工材のn値は平滑材のそれに対して明らかに低下した.破面観察およびき 裂進展シミュレーションの結果から,n値低下の原因は室温とは異なり,試 験片表面近傍での横方向へのき裂進展速度が大きくなるためと考えられた. このき裂進展速度増加の原因は、初期き裂となる加工き裂がスロークラック グロースにより、同一面内に隣接する他の加工き裂と連結するためと推定さ れた.

第7章では、粒界相に酸化物をほとんど含まない常圧焼結炭化ケイ素セラ ミックスを供試材として、研削加工されたセラミックスの、高温大気中での 酸化の度合いと加工損傷との関係について検討した.その結果、以下のこと が明らかとなった.酸素侵入深さdoxが研削加工によるメディアンき裂深さ こと比例すると仮定することにより、最大砥粒切込み深さgのべき関数とし て表されることを導き、これを、二次イオン質量分析器を用いてdoxを測定 することによって確認した.酸化温度1200℃においてはdox は c に比べかな り小さく、しかも酸化時間の増加に対してほとんど変化しなかったことから、 き裂先端までは酸素が侵入しておらず、強度に対する酸化の影響は小さいと 考えられた.その原因としては比較的短時間に表面にシリカリッチの膜が形 成され、酸素の侵入が困難となるためと考えられた.また、酸化時間の増加 によって表面近傍の酸化が進み、母材である炭化ケイ素のほとんどがシリカ に変化した.酸化温度が1500℃に上昇すると拡散係数の増大によってシリカ リッチの膜を通しての母材中への酸素の拡散が顕著になるためdox は1200℃ の場合に比べ若干増加した.

以上の結果から本論文における結論は以下のようにまとめられる. 研削加工材強度がメディアンき裂で支配されると仮定すると,加工条件を 最大砥粒切込み深さgで表すことによって,強度はgのべき関数で表すこと ができる.この手法は基本的には破壊靭性の温度依存性を考慮することによっ て高温強度に対しても適用できる.研削加工によって強度低下を生じない限 界の最大砥粒切込み深さg_{cr}は,破壊靭性,平滑材強度,硬さ試験における 押し込み抵抗など,供試材の機械的特性の関数として与えられる.この関係 を用いて任意の加工条件における強度の予測が可能となる.耐加工損傷性の 向上に対しては,き裂進展抵抗の大幅な増加をもたらす粒子架橋効果は有効 ではなく,材料内部の局所的な圧縮残留応力のような,き裂先端前方で作用 するタイプの強靭化機構が望ましい.研削加工材の最低保証強度はgの増加 に対して極大値が存在する.このことから,最低保証強度を基準に考えると, 最適加工条件が存在し,しかも,その条件下では平均強度が低下しない限界 の加工条件よりも高能率な加工が可能である.加工損傷は,室温,高温のい ずれにおいても,き裂進展速度を加速させ,疲労特性に悪影響を及ぼす.高 温酸化における酸素侵入深さはgのべき関数で表される.

本論文で得られた知見は,即時破壊強度,最低保証強度,疲労特性などの 所要の部材特性を得るための加工条件を選定する適切な指針となる.特に, 即時破壊強度と加工条件との関係に関しては,加工条件の関数として表され る最大砥粒切込み深さgのべき関数で表しているので,最適加工条件の選定 を極めて容易にしている.

本論文においては,研削加工における材料の破壊条件は,圧子圧入時のそ れと同様の関係則が成り立つと考え,加工き裂としては単純なメディアンき 裂を仮定している.このような仮定は,結晶粒の大きさが,加工によって導 入されるき裂に対して相対的に十分小さく,等方・均質と見なせる材料に対 しては成り立つと考えられるが,今後開発が進められるであろう,異方性が 強く不均質な材料では,粒子形状や配向方向,粒子と粒界相との間の界面特 性などの影響を受け,き裂形状はより複雑なものとなると考えられる.もち ろん,このような場合,等方・均質体であることが前提条件の破壊力学は, その適用性に問題が生じる.今後は,上記のような微小な領域での材料特性 と破壊現象との関係に関して得られるであろう新たな知見を基に,研削加工 における材料の破壊条件について精緻に検討を行う必要があると考える.こ のような研究は、加工き裂の発生を回避するための加工限界に関する情報を 与えるだけでなく、耐加工損傷性に優れた材料の開発に資するところが大き いと期待される. 参考文献

第1章

- 1) F.C.Frank and B.R.Lawn, Proc.R.Soc.Lond. A, 299, 291-306(1967)
- 2) B.R.Lawn, Proc.R.Soc.Lond. A, 299, 307-16(1967)
- 3) M.V.Swain, Proc.R.Soc.Lond. A, 366, 575-97(1979)
- 4) H.P.Kirchner and E.D.Isaacson, "Fracture Mechanics of Ceramics, vol.5", Ed.by R.C.Bradt, Plenum Press(1983), pp423-48
- 5) H.P.Kirchner, J.Am.Ceram.Soc., 67, 127-32(1984)
- 6)張 璧, 戸倉 和, 吉川昌範, 精密工学会誌, 53, 826-32(1987)
- 7) 張 璧, 戸倉 和, 吉川昌範, 精密工学会誌, 54, 587-93(1988)
- 8) C.A.Andersson and R.J.Bratton, The Science of Ceramic Machining and Surface Finishing II(1979), NBS Special Publication 562, pp463-81
- 9)奥田博,伊藤正治,材料, 32, 823-29(1983)
- 1 0) R.W.Rice and J.J.Mecholsky, Jr., The Science of Ceramic Machining and Surface Finishing II(1979), NBS Special Publication 562, pp351-78
- 11) 松尾陽太郎, 小笠原俊夫, 木村脩七, 安田榮一, 材料, 36, 166-72(1987)
- 1 2) R.Sedlacek, F.A.Halden and P.J.Jorgensen, The Science of Ceramic Machining and Surface Finishing(1972), NBS Special Publication 348, pp391-98
- 13) 中村守, 平井幸男, 久保勝司, 窯業協会誌, 94, 683-86 (1986)
- 1 4) H.Miyasato, H.Okamoto, S.Usui, A.Miyamoto and Y.Ueno, ISIJ International, 29, 726-33(1989)
- 15)金富安, 関忠裕, 安藤柱, 日本機械学会論文集, 58-548, A, 627-33(1990)
- 16) 中村守, 平井幸男, 伊藤正治, 久保勝司, 精密工学会誌, 53, 117-23(1987)
- 17) 山内幸彦, 酒井清介, 伊藤勝, 大司達樹, 兼松 渉, 伊藤正治, 窯業協会誌, 95, 1125-27 (1987)
- 1 8) R.W.Rice, Machining of Advanced Materials(1993), NIST Special Publication 847, pp185-204
- 1 9) R.W.Rice, J.Am.Ceram.Soc., 77, 2232-36(1994)
- 20) 浦島和浩,渡辺正一,日本セラミックス協会第12回高温材料基礎討論会予稿集,

48-51(1992)

- 21) 由井明紀, 渡部武弘, 吉田嘉太郎, 日本機械学会論文集, 53-495, C, 2396-99(1987)
- インセラミックスの精度と工作機械特性)(1990)
- 24) 江田弘, 精密工学会誌, 56, 1865-70(1990)
- 2 5) S.Malkin and J.E.Ritter, J.Eng.for Industry, 111, 167-74(1989)
- 工研究会(1989), pp26-36
- Publication 847, pp205-22
- (1988), pp11-18
- 29) 岸和司, 梅林正気, J.Ceram.Soc.Japan, 99, 1250-54(1991)
- 会予稿集, 89-90(1984)
- 会学術講演会論文集, 265-67(1990)

第2章

- 1) 伊藤正治, セラミックス, 18, 479-85(1983)
- 2) M.V.Swain, Proc.R.Soc.Lond. A, 366, 575-97(1979)
- Surface Finishing II(1979), NBS Special Publication 562, pp23-42
- 4) 張 璧, 戸倉 和, 吉川昌範, 精密工学会誌, 54, 587-93(1988)
- 5) 長尾高明, 砥粒加工学会誌, 33, 2-7(1989)
- 6) 松井正巳, 精密機械, 46,298-304(1980)
- 7) B.R.Lawn and E.R.Fuller, J.Mat.Sci, 10, 2016-24 (1975)

22) 工作機械技術振興財団,加工性能に及ぼす工作機械特性の影響に関する研究(ファ

23) 渡邊政嘉,張 璧, 戸倉 和, 吉川昌範, 精密工学会誌, 55, 1066-72(1989)

26)太田稔,宮原克敏,セラミックスの加工と研究 第22回資料,セラミックス加

27) J.E.Mayer, Jr. and G.P.Fang, Machining of Advanced Materials(1993), NIST Special

28)伊藤正治,セラミックスの加工と研究 第17回資料,セラミックス加工研究会

30) 大司達樹, 酒井清介, 伊藤勝, 伊藤正治, 第36回名古屋工業技術試験所研究発表

31) 高橋学, 武藤睦治, 井原郁夫, 岡本寛己, 老川恒夫, 日本材料学会第39期通常総

3) H.P.Kirchner, R.M.Gruver and D.M.Richard, The Science of Ceramic Machining and

- 8) 田牧純一, 松井正巳, 精密工学会誌, 55, 185-90 (1989)
- 9) 杉田忠彰,"セラミックスの機械加工",養賢堂(1985), pp121-24
- 10)河村末久, 矢野章成, 樋口誠宏, 杉田忠彰, "研削加工と砥粒加工", 共立出版 (1984), p38-43
- 11) 山田達也、"ファインセラミックス 次世代研究開発の軌跡と成果",ファイン セラミックス技術研究組合(1993), pp1801-22
- 12)石川忠幸,第2回グラインディングアカデミーテキスト,23-30(1989)
- 13) 例えば岸本秀弘,上野明,河本洋,近藤真司,材料, 36, 810-16(1991)
- 14) 山内幸彦, 酒井清介, 伊藤勝, 大司達樹, 兼松 涉, 伊藤正治, 窯業協会誌, 94, 631-35 (1986)
- 15) 材料強度確率モデル研究会編,"材料強度の機械的性質", 養賢堂(1992), p272
- 16) 西田俊彦, 安田榮一編著, "セラミックスの力学的特性評価", 日刊工業新聞社 (1986), p50

第3章

- 1) Diane M. Mieskowski, T.E. Mitchell, and A.H. Heuer, J.Am. Ceram. Soc., 67, C17-18(1984)
- 2) 前田穣, 中村和雄, 東伸行, J.Ceram.Soc.Japan, 96, 795-98 (1988)
- 3) 山内幸彦, 酒井清介, 伊藤勝, 大司達樹, 兼松渉, 伊藤正治, J.Ceram. Soc.Japan, 98, 250-56 (1990)

第4章

- 1) E.Tani, S.Umebayashi, K.Kishi, K.Kobayashi, and M.Nishijima, Am.Ceram.Soc.Bull., 65, 1311-15(1986)
- 2) M.Mitomo, and S.Uenosono, J.Am.Ceram.Soc., 75, 103-108(1992)
- 3) N.Hirosaki, Y.Akimune, and M.Mitomo, J.Am.Ceram.Soc., 76, 1892-94(1993)
- 4) K.Hirao, T.Nagaoka, M.E.Brito, and S.Kanzaki, J.Am.Ceram.Soc., 77, 1857-62 (1994)
- 5) 宮島達也,山内幸彦,兼松渉,大司達樹,伊藤正治,日本セラミックス協会第5 回秋期シンポジウム予稿集, (1992)

- 70, 279-89(1987)
- 8) F.F.Lange, J.Mat.Sci, 17, 235-39(1982)
- 9) 宮田昇, セラミックス, 21, 605-12(1986)

- 学会論文集, 56-525, A, 1148-53(1990)

第5章

- (1986), p46

- (1986), p50

第6章

- 1) 杉本隆雄, 日本ガスタービン学会誌, 20, 71-74(1992)
- 2) S.M.Wiederhorn, J.Am.Ceram.Soc., 50, 407-14(1967)
- 4) 例えば, A.G.Evans and W.Blumenthal, "Fracture Mechanics of Ceramics, vol.6", Ed.by R.C.Bradt, Plenum Press(1981), pp423-48
- 5) R.J.Charles, J.Appl.Phys., 29,1549-1553(1958)

6) S.W.Freiman, D.R.Mulville, and P.W.Mast, J.Mat.Sci, 8, 1527-33 (1973)

7) P.L.Swanson, C.J.Fairbanks, B.R.Lawn, Y.Mai, and B.J.Hockey, J.Am.Ceram.Soc.,

10) 安田公一, 松尾陽太郎, 木村脩七, J.Ceram.Soc.Japan, 100, 1332-37(1992)

11) 鈴木弘茂,井関孝善共訳,"セラミックスの強度と破壊",共立出版(1982), p88 12) 淡路英夫,渡部忠男,山田達也,坂井田喜久,田宮博道,中川平三郎,日本機械

13) 田中紘一,石崎幸三編,"新素材焼結",内田老鶴圃(1987), p113

1) 材料強度確率モデル研究会編,"材料強度の機械的性質",養賢堂(1992), p270 2) 西田俊彦, 安田榮一編著, "セラミックスの力学的特性評価", 日刊工業新聞社

3) 松尾陽太郎, 小笠原俊夫, 木村脩七, 安田榮一, 材料, 36, 166-72(1987) 4) 材料強度確率モデル研究会編,"材料強度の機械的性質", 養賢堂(1992), p300 5) 岡村弘之, 板垣浩, "強度の統計的取り扱い", 培風館(1979), p38 6) 西田俊彦, 安田榮一編著, "セラミックスの力学的特性評価", 日刊工業新聞社

3) 例えば,若井史博, 桜本 久, 阪口修司, 松野外男, 材料, 35, 898-903(1986)

6) 山内幸彦, 酒井清介, 伊藤勝, 大司達樹, 兼松 渉, 伊藤正治, 窯業協会誌, 94,

631-35(1986)

- 7) 張 璧, 戸倉 和, 吉川昌範, 精密工学会誌, 54, 587-93(1988)
- 8) J.J.Petrovic and M.G.Mendiratta, "Fracture Mechanics Applied to Brittle Materials",
 S.W.Freiman, ed., ASTM STP 678, ASTM, Philadelphia(1979), pp83-102
- 9)村山宣光,阪口修司,若井史博,第49回名古屋工業技術試験所研究発表会予稿集, 26-27(1990)
- 1 0) Y.Murakami Ed., "Stress Intensity Factors Handbook", Pergamon Press(1987), p863
- 1 1) J.C.Newman, Jr. and I.S.Raju, "Computational Methods in the Mechanics of Fracture", Ed.by S.N.Atluri, Elsevier Science Publishers(1986), pp312-334
- 1 2) Y.Murakami Ed., "Stress Intensity Factors Handbook", Pergamon Press(1987), pp856-62

第7章

- 1) 阿部俊夫, 久松 暢, 石川 浩, 宮田 寛, 飯島史郎, 大島亮一郎, 日本ガスター ビン学会誌, 14, 20-25(1986)
- 2) 例えば,前田 穣,中村和雄,東 伸行,日本セラミックス協会学術論文誌,96, 795-98(1988)
- 3)河本 洋,近藤卓也, 機論, 58-556, 2321-27(1992)
- 4) Takayuki Narushima, Takashi Goto, and Toshio Hirai, J. Am. Ceram. Soc., 72, 1386-90(1989)
- 5) Takayuki Narushima, Takashi Goto, Yasutaka Iguchi, and Toshio Hirai, J. Am. Ceram. Soc., 73, 3580-84(1990)
- 6) 阿部 弘, 川合 実, 菅野隆志, 鈴木恵一朗, エンジニアリングセラミックス, 技報堂出版(1984), p161
- 7) 染野 檀, 安盛岩雄, 表面分析, 講談社サイエンティフィク(1976), p21
- 8) J.A. Costello and R.E. Tressler, Ceramics International, 11, 39-44(1985)
- 9)張 璧, 戸倉 和, 吉川昌範, 精密工学会誌, 54, 1537-43(1988)
- 1 0) B.R. Lawn and E.R. Fuller, J. Mater. Sci., 10, 2016-24(1975)
- 11) 中村 守, 平井幸男, 久保勝司, 窯業協会誌, 94, 683-88(1986)
- 12) 阿部 弘, 川合 実, 菅野隆志, 鈴木恵一朗, エンジニアリングセラミックス,

技報堂出版(1984), p141 13) 小松和藏ら共訳, セラミックス材料科学入門, 内田老鶴圃(1981), p728 付録、砥粒保持剛性が研削加工材強度特性に及ぼす影響

本論文では研削加工材の強度が最大砥粒切込み深さgのべき関数で表され ることを示した、この表示式の中で、gを定める研削加工条件以外の, 主軸 剛性, 砥粒の保持剛性などの影響を包括して加工系の剛性の影響と呼び、こ れを補正項α。で表した. ここでは、系全体の剛性に大きな影響を及ぼすと 考えられる主軸静剛性, 砥粒保持剛性に注目する.

このとき、砥粒は図A-1に示すように直列に結合された二つのバネの一 端に取り付けられている状態にモデル化できる.バネの一方は、主軸静剛性、 他方は砥粒保持剛性に対応する. つまり、両者の弱い方が全体の剛性により 大きな影響を及ぼすこととなる、本研究で用いた研削盤は汎用のもので、そ の主軸静剛性は約30N/µmであった.一方、ダイヤモンド砥粒の結合材とし ては一般に, 有機質のレジノイド結合材, ガラス質のビトリファイド結合材. 銅などの金属粉末を焼結したメタル結合材の3種類が用いられる.図A-2 は、レジノイドボンドダイヤモンド砥石表面のSEM写真であるが、砥粒は 細かな結合材粒子の中に埋め込まれるような形で保持されている.しかも, これら結合材の弾性率は鉄鋼材料に比べ数分の一程度であることから, 砥粒 保持剛性は主軸静剛性に比べるとかなり小さいと考えられる.したがって, 系全体の剛性に対しては, 主軸静剛性よりも砥粒保持剛性の方が影響が大き いと言える.

一般に砥粒保持剛性は,砥粒を保持する結合材の材質や,砥粒と砥粒を結 ぶ結合材の太さを決める砥粒の含有率等の影響を受けるが, セラミックスの 研削に用いるダイヤモンド砥石は砥粒含有率が高々十数%と非常に低いので, 結合材の材質によって最も大きな影響を受けると考えられる.本研究では, 最大砥粒切込み深さgに影響を及ぼす集中度と砥石粒度を同一に保ったまま, 結合材のみを変化させた砥石を用意し,砥粒保持剛性が研削加工損傷による

■ 図A-2 砥粒の保持状態(レジノイドボンド砥石)

強度劣化に及ぼす影響について検討した.結合材はレジノイド,ビトリファ イド,メタルの3種類とし,集中度は75,粒度は200とした.砥粒保持剛性 を表すパラメータは今のところ規格化されておらず,相関のあると考えられ ている特性を用いて評価されている.表A-1に,それぞれの砥石の曲げ強 度及び弾性率を示す.弾性率はレジノイド,ビトリファイド,メタルの順に 大きくなる.また,一般に砥石は硬脆材料である砥粒や,気孔などを多く含 むので脆性材料として扱われる.そのため3点曲げ強度は,欠陥として作用 する気孔などの大きさを反映したものということができ,実際,気孔率の高 いビトリファイド砥石が著しく低い値となっている.このことは,砥粒に大 きな力が加わった場合,結合材の破壊によって砥粒が脱落しやすいことを意 味する.

砥石の準備条件,研削加工方法は第3章などと同様である.なお,メタル ボンド砥石のドレッシングにはボンドダイヤモンドドレッサを用いた.供試 材は炭化ケイ素セラミックス(SC1材)である.図A-3は結合材による 研削加工材強度の劣化の程度を,レジノイドボンド砥石の場合を基準として 比較したもので,図中の曲線は実験結果の回帰曲線を示す.基準となるレジ ノイドボンド砥石の結果は,第3章で得られた式(3-2)を用いた.細い 実線で示すビトリファイドボンド砥石の場合は,gの増加に対する強度劣化 の傾向がレジノイドボンド砥石とほとんど変わらないが,メタルボンド砥石 の場合はgの増加に対して,より急激に強度が低下する傾向が見られる.そ の回帰式として次式が得られた.

 $\sigma_{\rm f} = 259(g + 0.120)^{-\frac{2}{3}}$

式(3-2)と比較すると係数項,補正項 α_n ともに小さくなっている.これ らの変化は定性的には次のように説明できる. α_n の減少は砥粒保持剛性の 増加により砥粒の切削における切り残しが小さくなることに対応していると

表A-1 結合材の曲げ強度および弾性率		
結合材	三点曲げ強度*(MPa)	弾性率(GPa)
レジノイドボンド	142	2.3
ビトリファイドボンド	47	4.7
メタルボンド	421	5.1
	*	JIS K6911に準拠

図A-3 研削加工材強度に及ぼす砥石結合材の影響

最大砥粒切込み深さ g

図A-4 研削加工材強度に及ぼす砥粒保持剛性の影響

考えられる.また,係数項の減少は砥粒先端の摩耗によって先端が鈍くなったことに対応していると考えられる.

以上のことから,砥粒保持剛性と研削加工損傷による強度劣化との関係は, 図A-4に模式的に示すように保持剛性が大きくなるほどgの増加に対する 強度の低下率が大きくなると考えられる. 謝辞

本論文をまとめるにあたり,終始懇切なる御指導を賜りました大阪大学基礎工学部小倉敬二教授,適切なる御助言,御批評を賜りました大阪大学基礎 工学部小坂田宏造教授,平尾雅彦教授に深甚なる感謝の意を表します.

また、本研究の遂行にあたり、ひとかたならぬ御指導、御鞭撻を賜りまし た元名古屋工業技術研究所構造プロセス部長(現 摂南大学教授)久保勝司 氏に厚く御礼申し上げます。

さらに、本研究における種々の実験に関し多大なご協力をいただきました 元名古屋工業技術研究所主任研究官の酒井清介氏、伊藤勝氏、研究を進める うえで常に適切な助言をいただきました構造プロセス部伊藤正治氏、山内幸 彦氏、大司達樹氏、宮島達也氏、セラミックス基礎部中村守氏をはじめ、名 古屋工業技術研究所の皆様に心から感謝いたします.

